1 //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the ScheduleDAGInstrs class, which implements re-scheduling 11 // of MachineInstrs. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 16 #include "llvm/ADT/IntEqClasses.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/ValueTracking.h" 21 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 22 #include "llvm/CodeGen/MachineFunctionPass.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/CodeGen/MachineMemOperand.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/PseudoSourceValue.h" 28 #include "llvm/CodeGen/RegisterPressure.h" 29 #include "llvm/CodeGen/ScheduleDFS.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/Type.h" 32 #include "llvm/IR/Operator.h" 33 #include "llvm/Support/CommandLine.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/Format.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include "llvm/Target/TargetInstrInfo.h" 38 #include "llvm/Target/TargetMachine.h" 39 #include "llvm/Target/TargetRegisterInfo.h" 40 #include "llvm/Target/TargetSubtargetInfo.h" 41 42 using namespace llvm; 43 44 #define DEBUG_TYPE "misched" 45 46 static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden, 47 cl::ZeroOrMore, cl::init(false), 48 cl::desc("Enable use of AA during MI DAG construction")); 49 50 static cl::opt<bool> UseTBAA("use-tbaa-in-sched-mi", cl::Hidden, 51 cl::init(true), cl::desc("Enable use of TBAA during MI DAG construction")); 52 53 // Note: the two options below might be used in tuning compile time vs 54 // output quality. Setting HugeRegion so large that it will never be 55 // reached means best-effort, but may be slow. 56 57 // When Stores and Loads maps (or NonAliasStores and NonAliasLoads) 58 // together hold this many SUs, a reduction of maps will be done. 59 static cl::opt<unsigned> HugeRegion("dag-maps-huge-region", cl::Hidden, 60 cl::init(1000), cl::desc("The limit to use while constructing the DAG " 61 "prior to scheduling, at which point a trade-off " 62 "is made to avoid excessive compile time.")); 63 64 static cl::opt<unsigned> ReductionSize( 65 "dag-maps-reduction-size", cl::Hidden, 66 cl::desc("A huge scheduling region will have maps reduced by this many " 67 "nodes at a time. Defaults to HugeRegion / 2.")); 68 69 static unsigned getReductionSize() { 70 // Always reduce a huge region with half of the elements, except 71 // when user sets this number explicitly. 72 if (ReductionSize.getNumOccurrences() == 0) 73 return HugeRegion / 2; 74 return ReductionSize; 75 } 76 77 static void dumpSUList(ScheduleDAGInstrs::SUList &L) { 78 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 79 dbgs() << "{ "; 80 for (auto *su : L) { 81 dbgs() << "SU(" << su->NodeNum << ")"; 82 if (su != L.back()) 83 dbgs() << ", "; 84 } 85 dbgs() << "}\n"; 86 #endif 87 } 88 89 ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf, 90 const MachineLoopInfo *mli, 91 bool RemoveKillFlags) 92 : ScheduleDAG(mf), MLI(mli), MFI(mf.getFrameInfo()), 93 RemoveKillFlags(RemoveKillFlags), CanHandleTerminators(false), 94 TrackLaneMasks(false), AAForDep(nullptr), BarrierChain(nullptr), 95 UnknownValue(UndefValue::get( 96 Type::getVoidTy(mf.getFunction()->getContext()))), 97 FirstDbgValue(nullptr) { 98 DbgValues.clear(); 99 100 const TargetSubtargetInfo &ST = mf.getSubtarget(); 101 SchedModel.init(ST.getSchedModel(), &ST, TII); 102 } 103 104 /// getUnderlyingObjectFromInt - This is the function that does the work of 105 /// looking through basic ptrtoint+arithmetic+inttoptr sequences. 106 static const Value *getUnderlyingObjectFromInt(const Value *V) { 107 do { 108 if (const Operator *U = dyn_cast<Operator>(V)) { 109 // If we find a ptrtoint, we can transfer control back to the 110 // regular getUnderlyingObjectFromInt. 111 if (U->getOpcode() == Instruction::PtrToInt) 112 return U->getOperand(0); 113 // If we find an add of a constant, a multiplied value, or a phi, it's 114 // likely that the other operand will lead us to the base 115 // object. We don't have to worry about the case where the 116 // object address is somehow being computed by the multiply, 117 // because our callers only care when the result is an 118 // identifiable object. 119 if (U->getOpcode() != Instruction::Add || 120 (!isa<ConstantInt>(U->getOperand(1)) && 121 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 122 !isa<PHINode>(U->getOperand(1)))) 123 return V; 124 V = U->getOperand(0); 125 } else { 126 return V; 127 } 128 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 129 } while (1); 130 } 131 132 /// getUnderlyingObjects - This is a wrapper around GetUnderlyingObjects 133 /// and adds support for basic ptrtoint+arithmetic+inttoptr sequences. 134 static void getUnderlyingObjects(const Value *V, 135 SmallVectorImpl<Value *> &Objects, 136 const DataLayout &DL) { 137 SmallPtrSet<const Value *, 16> Visited; 138 SmallVector<const Value *, 4> Working(1, V); 139 do { 140 V = Working.pop_back_val(); 141 142 SmallVector<Value *, 4> Objs; 143 GetUnderlyingObjects(const_cast<Value *>(V), Objs, DL); 144 145 for (SmallVectorImpl<Value *>::iterator I = Objs.begin(), IE = Objs.end(); 146 I != IE; ++I) { 147 V = *I; 148 if (!Visited.insert(V).second) 149 continue; 150 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 151 const Value *O = 152 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 153 if (O->getType()->isPointerTy()) { 154 Working.push_back(O); 155 continue; 156 } 157 } 158 Objects.push_back(const_cast<Value *>(V)); 159 } 160 } while (!Working.empty()); 161 } 162 163 /// getUnderlyingObjectsForInstr - If this machine instr has memory reference 164 /// information and it can be tracked to a normal reference to a known 165 /// object, return the Value for that object. 166 static void getUnderlyingObjectsForInstr(const MachineInstr *MI, 167 const MachineFrameInfo *MFI, 168 UnderlyingObjectsVector &Objects, 169 const DataLayout &DL) { 170 auto allMMOsOkay = [&]() { 171 for (const MachineMemOperand *MMO : MI->memoperands()) { 172 if (MMO->isVolatile()) 173 return false; 174 175 if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) { 176 // Function that contain tail calls don't have unique PseudoSourceValue 177 // objects. Two PseudoSourceValues might refer to the same or 178 // overlapping locations. The client code calling this function assumes 179 // this is not the case. So return a conservative answer of no known 180 // object. 181 if (MFI->hasTailCall()) 182 return false; 183 184 // For now, ignore PseudoSourceValues which may alias LLVM IR values 185 // because the code that uses this function has no way to cope with 186 // such aliases. 187 if (PSV->isAliased(MFI)) 188 return false; 189 190 bool MayAlias = PSV->mayAlias(MFI); 191 Objects.push_back(UnderlyingObjectsVector::value_type(PSV, MayAlias)); 192 } else if (const Value *V = MMO->getValue()) { 193 SmallVector<Value *, 4> Objs; 194 getUnderlyingObjects(V, Objs, DL); 195 196 for (Value *V : Objs) { 197 if (!isIdentifiedObject(V)) 198 return false; 199 200 Objects.push_back(UnderlyingObjectsVector::value_type(V, true)); 201 } 202 } else 203 return false; 204 } 205 return true; 206 }; 207 208 if (!allMMOsOkay()) 209 Objects.clear(); 210 } 211 212 void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) { 213 BB = bb; 214 } 215 216 void ScheduleDAGInstrs::finishBlock() { 217 // Subclasses should no longer refer to the old block. 218 BB = nullptr; 219 } 220 221 /// Initialize the DAG and common scheduler state for the current scheduling 222 /// region. This does not actually create the DAG, only clears it. The 223 /// scheduling driver may call BuildSchedGraph multiple times per scheduling 224 /// region. 225 void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb, 226 MachineBasicBlock::iterator begin, 227 MachineBasicBlock::iterator end, 228 unsigned regioninstrs) { 229 assert(bb == BB && "startBlock should set BB"); 230 RegionBegin = begin; 231 RegionEnd = end; 232 NumRegionInstrs = regioninstrs; 233 } 234 235 /// Close the current scheduling region. Don't clear any state in case the 236 /// driver wants to refer to the previous scheduling region. 237 void ScheduleDAGInstrs::exitRegion() { 238 // Nothing to do. 239 } 240 241 /// addSchedBarrierDeps - Add dependencies from instructions in the current 242 /// list of instructions being scheduled to scheduling barrier by adding 243 /// the exit SU to the register defs and use list. This is because we want to 244 /// make sure instructions which define registers that are either used by 245 /// the terminator or are live-out are properly scheduled. This is 246 /// especially important when the definition latency of the return value(s) 247 /// are too high to be hidden by the branch or when the liveout registers 248 /// used by instructions in the fallthrough block. 249 void ScheduleDAGInstrs::addSchedBarrierDeps() { 250 MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : nullptr; 251 ExitSU.setInstr(ExitMI); 252 bool AllDepKnown = ExitMI && 253 (ExitMI->isCall() || ExitMI->isBarrier()); 254 if (ExitMI && AllDepKnown) { 255 // If it's a call or a barrier, add dependencies on the defs and uses of 256 // instruction. 257 for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) { 258 const MachineOperand &MO = ExitMI->getOperand(i); 259 if (!MO.isReg() || MO.isDef()) continue; 260 unsigned Reg = MO.getReg(); 261 if (Reg == 0) continue; 262 263 if (TRI->isPhysicalRegister(Reg)) 264 Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg)); 265 else if (MO.readsReg()) // ignore undef operands 266 addVRegUseDeps(&ExitSU, i); 267 } 268 } else { 269 // For others, e.g. fallthrough, conditional branch, assume the exit 270 // uses all the registers that are livein to the successor blocks. 271 assert(Uses.empty() && "Uses in set before adding deps?"); 272 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), 273 SE = BB->succ_end(); SI != SE; ++SI) 274 for (const auto &LI : (*SI)->liveins()) { 275 if (!Uses.contains(LI.PhysReg)) 276 Uses.insert(PhysRegSUOper(&ExitSU, -1, LI.PhysReg)); 277 } 278 } 279 } 280 281 /// MO is an operand of SU's instruction that defines a physical register. Add 282 /// data dependencies from SU to any uses of the physical register. 283 void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) { 284 const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx); 285 assert(MO.isDef() && "expect physreg def"); 286 287 // Ask the target if address-backscheduling is desirable, and if so how much. 288 const TargetSubtargetInfo &ST = MF.getSubtarget(); 289 290 for (MCRegAliasIterator Alias(MO.getReg(), TRI, true); 291 Alias.isValid(); ++Alias) { 292 if (!Uses.contains(*Alias)) 293 continue; 294 for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) { 295 SUnit *UseSU = I->SU; 296 if (UseSU == SU) 297 continue; 298 299 // Adjust the dependence latency using operand def/use information, 300 // then allow the target to perform its own adjustments. 301 int UseOp = I->OpIdx; 302 MachineInstr *RegUse = nullptr; 303 SDep Dep; 304 if (UseOp < 0) 305 Dep = SDep(SU, SDep::Artificial); 306 else { 307 // Set the hasPhysRegDefs only for physreg defs that have a use within 308 // the scheduling region. 309 SU->hasPhysRegDefs = true; 310 Dep = SDep(SU, SDep::Data, *Alias); 311 RegUse = UseSU->getInstr(); 312 } 313 Dep.setLatency( 314 SchedModel.computeOperandLatency(SU->getInstr(), OperIdx, RegUse, 315 UseOp)); 316 317 ST.adjustSchedDependency(SU, UseSU, Dep); 318 UseSU->addPred(Dep); 319 } 320 } 321 } 322 323 /// addPhysRegDeps - Add register dependencies (data, anti, and output) from 324 /// this SUnit to following instructions in the same scheduling region that 325 /// depend the physical register referenced at OperIdx. 326 void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) { 327 MachineInstr *MI = SU->getInstr(); 328 MachineOperand &MO = MI->getOperand(OperIdx); 329 330 // Optionally add output and anti dependencies. For anti 331 // dependencies we use a latency of 0 because for a multi-issue 332 // target we want to allow the defining instruction to issue 333 // in the same cycle as the using instruction. 334 // TODO: Using a latency of 1 here for output dependencies assumes 335 // there's no cost for reusing registers. 336 SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output; 337 for (MCRegAliasIterator Alias(MO.getReg(), TRI, true); 338 Alias.isValid(); ++Alias) { 339 if (!Defs.contains(*Alias)) 340 continue; 341 for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) { 342 SUnit *DefSU = I->SU; 343 if (DefSU == &ExitSU) 344 continue; 345 if (DefSU != SU && 346 (Kind != SDep::Output || !MO.isDead() || 347 !DefSU->getInstr()->registerDefIsDead(*Alias))) { 348 if (Kind == SDep::Anti) 349 DefSU->addPred(SDep(SU, Kind, /*Reg=*/*Alias)); 350 else { 351 SDep Dep(SU, Kind, /*Reg=*/*Alias); 352 Dep.setLatency( 353 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr())); 354 DefSU->addPred(Dep); 355 } 356 } 357 } 358 } 359 360 if (!MO.isDef()) { 361 SU->hasPhysRegUses = true; 362 // Either insert a new Reg2SUnits entry with an empty SUnits list, or 363 // retrieve the existing SUnits list for this register's uses. 364 // Push this SUnit on the use list. 365 Uses.insert(PhysRegSUOper(SU, OperIdx, MO.getReg())); 366 if (RemoveKillFlags) 367 MO.setIsKill(false); 368 } 369 else { 370 addPhysRegDataDeps(SU, OperIdx); 371 unsigned Reg = MO.getReg(); 372 373 // clear this register's use list 374 if (Uses.contains(Reg)) 375 Uses.eraseAll(Reg); 376 377 if (!MO.isDead()) { 378 Defs.eraseAll(Reg); 379 } else if (SU->isCall) { 380 // Calls will not be reordered because of chain dependencies (see 381 // below). Since call operands are dead, calls may continue to be added 382 // to the DefList making dependence checking quadratic in the size of 383 // the block. Instead, we leave only one call at the back of the 384 // DefList. 385 Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg); 386 Reg2SUnitsMap::iterator B = P.first; 387 Reg2SUnitsMap::iterator I = P.second; 388 for (bool isBegin = I == B; !isBegin; /* empty */) { 389 isBegin = (--I) == B; 390 if (!I->SU->isCall) 391 break; 392 I = Defs.erase(I); 393 } 394 } 395 396 // Defs are pushed in the order they are visited and never reordered. 397 Defs.insert(PhysRegSUOper(SU, OperIdx, Reg)); 398 } 399 } 400 401 LaneBitmask ScheduleDAGInstrs::getLaneMaskForMO(const MachineOperand &MO) const 402 { 403 unsigned Reg = MO.getReg(); 404 // No point in tracking lanemasks if we don't have interesting subregisters. 405 const TargetRegisterClass &RC = *MRI.getRegClass(Reg); 406 if (!RC.HasDisjunctSubRegs) 407 return ~0u; 408 409 unsigned SubReg = MO.getSubReg(); 410 if (SubReg == 0) 411 return RC.getLaneMask(); 412 return TRI->getSubRegIndexLaneMask(SubReg); 413 } 414 415 /// addVRegDefDeps - Add register output and data dependencies from this SUnit 416 /// to instructions that occur later in the same scheduling region if they read 417 /// from or write to the virtual register defined at OperIdx. 418 /// 419 /// TODO: Hoist loop induction variable increments. This has to be 420 /// reevaluated. Generally, IV scheduling should be done before coalescing. 421 void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) { 422 MachineInstr *MI = SU->getInstr(); 423 MachineOperand &MO = MI->getOperand(OperIdx); 424 unsigned Reg = MO.getReg(); 425 426 LaneBitmask DefLaneMask; 427 LaneBitmask KillLaneMask; 428 if (TrackLaneMasks) { 429 bool IsKill = MO.getSubReg() == 0 || MO.isUndef(); 430 DefLaneMask = getLaneMaskForMO(MO); 431 // If we have a <read-undef> flag, none of the lane values comes from an 432 // earlier instruction. 433 KillLaneMask = IsKill ? ~0u : DefLaneMask; 434 435 // Clear undef flag, we'll re-add it later once we know which subregister 436 // Def is first. 437 MO.setIsUndef(false); 438 } else { 439 DefLaneMask = ~0u; 440 KillLaneMask = ~0u; 441 } 442 443 if (MO.isDead()) { 444 assert(CurrentVRegUses.find(Reg) == CurrentVRegUses.end() && 445 "Dead defs should have no uses"); 446 } else { 447 // Add data dependence to all uses we found so far. 448 const TargetSubtargetInfo &ST = MF.getSubtarget(); 449 for (VReg2SUnitOperIdxMultiMap::iterator I = CurrentVRegUses.find(Reg), 450 E = CurrentVRegUses.end(); I != E; /*empty*/) { 451 LaneBitmask LaneMask = I->LaneMask; 452 // Ignore uses of other lanes. 453 if ((LaneMask & KillLaneMask) == 0) { 454 ++I; 455 continue; 456 } 457 458 if ((LaneMask & DefLaneMask) != 0) { 459 SUnit *UseSU = I->SU; 460 MachineInstr *Use = UseSU->getInstr(); 461 SDep Dep(SU, SDep::Data, Reg); 462 Dep.setLatency(SchedModel.computeOperandLatency(MI, OperIdx, Use, 463 I->OperandIndex)); 464 ST.adjustSchedDependency(SU, UseSU, Dep); 465 UseSU->addPred(Dep); 466 } 467 468 LaneMask &= ~KillLaneMask; 469 // If we found a Def for all lanes of this use, remove it from the list. 470 if (LaneMask != 0) { 471 I->LaneMask = LaneMask; 472 ++I; 473 } else 474 I = CurrentVRegUses.erase(I); 475 } 476 } 477 478 // Shortcut: Singly defined vregs do not have output/anti dependencies. 479 if (MRI.hasOneDef(Reg)) 480 return; 481 482 // Add output dependence to the next nearest defs of this vreg. 483 // 484 // Unless this definition is dead, the output dependence should be 485 // transitively redundant with antidependencies from this definition's 486 // uses. We're conservative for now until we have a way to guarantee the uses 487 // are not eliminated sometime during scheduling. The output dependence edge 488 // is also useful if output latency exceeds def-use latency. 489 LaneBitmask LaneMask = DefLaneMask; 490 for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg), 491 CurrentVRegDefs.end())) { 492 // Ignore defs for other lanes. 493 if ((V2SU.LaneMask & LaneMask) == 0) 494 continue; 495 // Add an output dependence. 496 SUnit *DefSU = V2SU.SU; 497 // Ignore additional defs of the same lanes in one instruction. This can 498 // happen because lanemasks are shared for targets with too many 499 // subregisters. We also use some representration tricks/hacks where we 500 // add super-register defs/uses, to imply that although we only access parts 501 // of the reg we care about the full one. 502 if (DefSU == SU) 503 continue; 504 SDep Dep(SU, SDep::Output, Reg); 505 Dep.setLatency( 506 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr())); 507 DefSU->addPred(Dep); 508 509 // Update current definition. This can get tricky if the def was about a 510 // bigger lanemask before. We then have to shrink it and create a new 511 // VReg2SUnit for the non-overlapping part. 512 LaneBitmask OverlapMask = V2SU.LaneMask & LaneMask; 513 LaneBitmask NonOverlapMask = V2SU.LaneMask & ~LaneMask; 514 V2SU.SU = SU; 515 V2SU.LaneMask = OverlapMask; 516 if (NonOverlapMask != 0) 517 CurrentVRegDefs.insert(VReg2SUnit(Reg, NonOverlapMask, DefSU)); 518 } 519 // If there was no CurrentVRegDefs entry for some lanes yet, create one. 520 if (LaneMask != 0) 521 CurrentVRegDefs.insert(VReg2SUnit(Reg, LaneMask, SU)); 522 } 523 524 /// addVRegUseDeps - Add a register data dependency if the instruction that 525 /// defines the virtual register used at OperIdx is mapped to an SUnit. Add a 526 /// register antidependency from this SUnit to instructions that occur later in 527 /// the same scheduling region if they write the virtual register. 528 /// 529 /// TODO: Handle ExitSU "uses" properly. 530 void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) { 531 const MachineInstr *MI = SU->getInstr(); 532 const MachineOperand &MO = MI->getOperand(OperIdx); 533 unsigned Reg = MO.getReg(); 534 535 // Remember the use. Data dependencies will be added when we find the def. 536 LaneBitmask LaneMask = TrackLaneMasks ? getLaneMaskForMO(MO) : ~0u; 537 CurrentVRegUses.insert(VReg2SUnitOperIdx(Reg, LaneMask, OperIdx, SU)); 538 539 // Add antidependences to the following defs of the vreg. 540 for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg), 541 CurrentVRegDefs.end())) { 542 // Ignore defs for unrelated lanes. 543 LaneBitmask PrevDefLaneMask = V2SU.LaneMask; 544 if ((PrevDefLaneMask & LaneMask) == 0) 545 continue; 546 if (V2SU.SU == SU) 547 continue; 548 549 V2SU.SU->addPred(SDep(SU, SDep::Anti, Reg)); 550 } 551 } 552 553 /// Return true if MI is an instruction we are unable to reason about 554 /// (like a call or something with unmodeled side effects). 555 static inline bool isGlobalMemoryObject(AliasAnalysis *AA, MachineInstr *MI) { 556 return MI->isCall() || MI->hasUnmodeledSideEffects() || 557 (MI->hasOrderedMemoryRef() && !MI->isInvariantLoad(AA)); 558 } 559 560 /// This returns true if the two MIs need a chain edge between them. 561 /// This is called on normal stores and loads. 562 static bool MIsNeedChainEdge(AliasAnalysis *AA, const MachineFrameInfo *MFI, 563 const DataLayout &DL, MachineInstr *MIa, 564 MachineInstr *MIb) { 565 const MachineFunction *MF = MIa->getParent()->getParent(); 566 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 567 568 assert ((MIa->mayStore() || MIb->mayStore()) && 569 "Dependency checked between two loads"); 570 571 // Let the target decide if memory accesses cannot possibly overlap. 572 if (TII->areMemAccessesTriviallyDisjoint(MIa, MIb, AA)) 573 return false; 574 575 // To this point analysis is generic. From here on we do need AA. 576 if (!AA) 577 return true; 578 579 // FIXME: Need to handle multiple memory operands to support all targets. 580 if (!MIa->hasOneMemOperand() || !MIb->hasOneMemOperand()) 581 return true; 582 583 MachineMemOperand *MMOa = *MIa->memoperands_begin(); 584 MachineMemOperand *MMOb = *MIb->memoperands_begin(); 585 586 if (!MMOa->getValue() || !MMOb->getValue()) 587 return true; 588 589 // The following interface to AA is fashioned after DAGCombiner::isAlias 590 // and operates with MachineMemOperand offset with some important 591 // assumptions: 592 // - LLVM fundamentally assumes flat address spaces. 593 // - MachineOperand offset can *only* result from legalization and 594 // cannot affect queries other than the trivial case of overlap 595 // checking. 596 // - These offsets never wrap and never step outside 597 // of allocated objects. 598 // - There should never be any negative offsets here. 599 // 600 // FIXME: Modify API to hide this math from "user" 601 // FIXME: Even before we go to AA we can reason locally about some 602 // memory objects. It can save compile time, and possibly catch some 603 // corner cases not currently covered. 604 605 assert ((MMOa->getOffset() >= 0) && "Negative MachineMemOperand offset"); 606 assert ((MMOb->getOffset() >= 0) && "Negative MachineMemOperand offset"); 607 608 int64_t MinOffset = std::min(MMOa->getOffset(), MMOb->getOffset()); 609 int64_t Overlapa = MMOa->getSize() + MMOa->getOffset() - MinOffset; 610 int64_t Overlapb = MMOb->getSize() + MMOb->getOffset() - MinOffset; 611 612 AliasResult AAResult = 613 AA->alias(MemoryLocation(MMOa->getValue(), Overlapa, 614 UseTBAA ? MMOa->getAAInfo() : AAMDNodes()), 615 MemoryLocation(MMOb->getValue(), Overlapb, 616 UseTBAA ? MMOb->getAAInfo() : AAMDNodes())); 617 618 return (AAResult != NoAlias); 619 } 620 621 /// Check whether two objects need a chain edge and add it if needed. 622 void ScheduleDAGInstrs::addChainDependency (SUnit *SUa, SUnit *SUb, 623 unsigned Latency) { 624 if (MIsNeedChainEdge(AAForDep, MFI, MF.getDataLayout(), SUa->getInstr(), 625 SUb->getInstr())) { 626 SDep Dep(SUa, SDep::MayAliasMem); 627 Dep.setLatency(Latency); 628 SUb->addPred(Dep); 629 } 630 } 631 632 /// Create an SUnit for each real instruction, numbered in top-down topological 633 /// order. The instruction order A < B, implies that no edge exists from B to A. 634 /// 635 /// Map each real instruction to its SUnit. 636 /// 637 /// After initSUnits, the SUnits vector cannot be resized and the scheduler may 638 /// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs 639 /// instead of pointers. 640 /// 641 /// MachineScheduler relies on initSUnits numbering the nodes by their order in 642 /// the original instruction list. 643 void ScheduleDAGInstrs::initSUnits() { 644 // We'll be allocating one SUnit for each real instruction in the region, 645 // which is contained within a basic block. 646 SUnits.reserve(NumRegionInstrs); 647 648 for (MachineBasicBlock::iterator I = RegionBegin; I != RegionEnd; ++I) { 649 MachineInstr *MI = I; 650 if (MI->isDebugValue()) 651 continue; 652 653 SUnit *SU = newSUnit(MI); 654 MISUnitMap[MI] = SU; 655 656 SU->isCall = MI->isCall(); 657 SU->isCommutable = MI->isCommutable(); 658 659 // Assign the Latency field of SU using target-provided information. 660 SU->Latency = SchedModel.computeInstrLatency(SU->getInstr()); 661 662 // If this SUnit uses a reserved or unbuffered resource, mark it as such. 663 // 664 // Reserved resources block an instruction from issuing and stall the 665 // entire pipeline. These are identified by BufferSize=0. 666 // 667 // Unbuffered resources prevent execution of subsequent instructions that 668 // require the same resources. This is used for in-order execution pipelines 669 // within an out-of-order core. These are identified by BufferSize=1. 670 if (SchedModel.hasInstrSchedModel()) { 671 const MCSchedClassDesc *SC = getSchedClass(SU); 672 for (TargetSchedModel::ProcResIter 673 PI = SchedModel.getWriteProcResBegin(SC), 674 PE = SchedModel.getWriteProcResEnd(SC); PI != PE; ++PI) { 675 switch (SchedModel.getProcResource(PI->ProcResourceIdx)->BufferSize) { 676 case 0: 677 SU->hasReservedResource = true; 678 break; 679 case 1: 680 SU->isUnbuffered = true; 681 break; 682 default: 683 break; 684 } 685 } 686 } 687 } 688 } 689 690 void ScheduleDAGInstrs::collectVRegUses(SUnit *SU) { 691 const MachineInstr *MI = SU->getInstr(); 692 for (const MachineOperand &MO : MI->operands()) { 693 if (!MO.isReg()) 694 continue; 695 if (!MO.readsReg()) 696 continue; 697 if (TrackLaneMasks && !MO.isUse()) 698 continue; 699 700 unsigned Reg = MO.getReg(); 701 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 702 continue; 703 704 // Ignore re-defs. 705 if (TrackLaneMasks) { 706 bool FoundDef = false; 707 for (const MachineOperand &MO2 : MI->operands()) { 708 if (MO2.isReg() && MO2.isDef() && MO2.getReg() == Reg && !MO2.isDead()) { 709 FoundDef = true; 710 break; 711 } 712 } 713 if (FoundDef) 714 continue; 715 } 716 717 // Record this local VReg use. 718 VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg); 719 for (; UI != VRegUses.end(); ++UI) { 720 if (UI->SU == SU) 721 break; 722 } 723 if (UI == VRegUses.end()) 724 VRegUses.insert(VReg2SUnit(Reg, 0, SU)); 725 } 726 } 727 728 class ScheduleDAGInstrs::Value2SUsMap : public MapVector<ValueType, SUList> { 729 730 /// Current total number of SUs in map. 731 unsigned NumNodes; 732 733 /// 1 for loads, 0 for stores. (see comment in SUList) 734 unsigned TrueMemOrderLatency; 735 public: 736 737 Value2SUsMap(unsigned lat = 0) : NumNodes(0), TrueMemOrderLatency(lat) {} 738 739 /// To keep NumNodes up to date, insert() is used instead of 740 /// this operator w/ push_back(). 741 ValueType &operator[](const SUList &Key) { 742 llvm_unreachable("Don't use. Use insert() instead."); }; 743 744 /// Add SU to the SUList of V. If Map grows huge, reduce its size 745 /// by calling reduce(). 746 void inline insert(SUnit *SU, ValueType V) { 747 MapVector::operator[](V).push_back(SU); 748 NumNodes++; 749 } 750 751 /// Clears the list of SUs mapped to V. 752 void inline clearList(ValueType V) { 753 iterator Itr = find(V); 754 if (Itr != end()) { 755 assert (NumNodes >= Itr->second.size()); 756 NumNodes -= Itr->second.size(); 757 758 Itr->second.clear(); 759 } 760 } 761 762 /// Clears map from all contents. 763 void clear() { 764 MapVector<ValueType, SUList>::clear(); 765 NumNodes = 0; 766 } 767 768 unsigned inline size() const { return NumNodes; } 769 770 /// Count the number of SUs in this map after a reduction. 771 void reComputeSize(void) { 772 NumNodes = 0; 773 for (auto &I : *this) 774 NumNodes += I.second.size(); 775 } 776 777 unsigned inline getTrueMemOrderLatency() const { 778 return TrueMemOrderLatency; 779 } 780 781 void dump(); 782 }; 783 784 void ScheduleDAGInstrs::addChainDependencies(SUnit *SU, 785 Value2SUsMap &Val2SUsMap) { 786 for (auto &I : Val2SUsMap) 787 addChainDependencies(SU, I.second, 788 Val2SUsMap.getTrueMemOrderLatency()); 789 } 790 791 void ScheduleDAGInstrs::addChainDependencies(SUnit *SU, 792 Value2SUsMap &Val2SUsMap, 793 ValueType V) { 794 Value2SUsMap::iterator Itr = Val2SUsMap.find(V); 795 if (Itr != Val2SUsMap.end()) 796 addChainDependencies(SU, Itr->second, 797 Val2SUsMap.getTrueMemOrderLatency()); 798 } 799 800 void ScheduleDAGInstrs::addBarrierChain(Value2SUsMap &map) { 801 assert (BarrierChain != nullptr); 802 803 for (auto &I : map) { 804 SUList &sus = I.second; 805 for (auto *SU : sus) 806 SU->addPredBarrier(BarrierChain); 807 } 808 map.clear(); 809 } 810 811 void ScheduleDAGInstrs::insertBarrierChain(Value2SUsMap &map) { 812 assert (BarrierChain != nullptr); 813 814 // Go through all lists of SUs. 815 for (Value2SUsMap::iterator I = map.begin(), EE = map.end(); I != EE;) { 816 Value2SUsMap::iterator CurrItr = I++; 817 SUList &sus = CurrItr->second; 818 SUList::iterator SUItr = sus.begin(), SUEE = sus.end(); 819 for (; SUItr != SUEE; ++SUItr) { 820 // Stop on BarrierChain or any instruction above it. 821 if ((*SUItr)->NodeNum <= BarrierChain->NodeNum) 822 break; 823 824 (*SUItr)->addPredBarrier(BarrierChain); 825 } 826 827 // Remove also the BarrierChain from list if present. 828 if (SUItr != SUEE && *SUItr == BarrierChain) 829 SUItr++; 830 831 // Remove all SUs that are now successors of BarrierChain. 832 if (SUItr != sus.begin()) 833 sus.erase(sus.begin(), SUItr); 834 } 835 836 // Remove all entries with empty su lists. 837 map.remove_if([&](std::pair<ValueType, SUList> &mapEntry) { 838 return (mapEntry.second.empty()); }); 839 840 // Recompute the size of the map (NumNodes). 841 map.reComputeSize(); 842 } 843 844 /// If RegPressure is non-null, compute register pressure as a side effect. The 845 /// DAG builder is an efficient place to do it because it already visits 846 /// operands. 847 void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA, 848 RegPressureTracker *RPTracker, 849 PressureDiffs *PDiffs, 850 LiveIntervals *LIS, 851 bool TrackLaneMasks) { 852 const TargetSubtargetInfo &ST = MF.getSubtarget(); 853 bool UseAA = EnableAASchedMI.getNumOccurrences() > 0 ? EnableAASchedMI 854 : ST.useAA(); 855 AAForDep = UseAA ? AA : nullptr; 856 857 BarrierChain = nullptr; 858 859 this->TrackLaneMasks = TrackLaneMasks; 860 MISUnitMap.clear(); 861 ScheduleDAG::clearDAG(); 862 863 // Create an SUnit for each real instruction. 864 initSUnits(); 865 866 if (PDiffs) 867 PDiffs->init(SUnits.size()); 868 869 // We build scheduling units by walking a block's instruction list 870 // from bottom to top. 871 872 // Each MIs' memory operand(s) is analyzed to a list of underlying 873 // objects. The SU is then inserted in the SUList(s) mapped from the 874 // Value(s). Each Value thus gets mapped to lists of SUs depending 875 // on it, stores and loads kept separately. Two SUs are trivially 876 // non-aliasing if they both depend on only identified Values and do 877 // not share any common Value. 878 Value2SUsMap Stores, Loads(1 /*TrueMemOrderLatency*/); 879 880 // Certain memory accesses are known to not alias any SU in Stores 881 // or Loads, and have therefore their own 'NonAlias' 882 // domain. E.g. spill / reload instructions never alias LLVM I/R 883 // Values. It would be nice to assume that this type of memory 884 // accesses always have a proper memory operand modelling, and are 885 // therefore never unanalyzable, but this is conservatively not 886 // done. 887 Value2SUsMap NonAliasStores, NonAliasLoads(1 /*TrueMemOrderLatency*/); 888 889 // Remove any stale debug info; sometimes BuildSchedGraph is called again 890 // without emitting the info from the previous call. 891 DbgValues.clear(); 892 FirstDbgValue = nullptr; 893 894 assert(Defs.empty() && Uses.empty() && 895 "Only BuildGraph should update Defs/Uses"); 896 Defs.setUniverse(TRI->getNumRegs()); 897 Uses.setUniverse(TRI->getNumRegs()); 898 899 assert(CurrentVRegDefs.empty() && "nobody else should use CurrentVRegDefs"); 900 assert(CurrentVRegUses.empty() && "nobody else should use CurrentVRegUses"); 901 unsigned NumVirtRegs = MRI.getNumVirtRegs(); 902 CurrentVRegDefs.setUniverse(NumVirtRegs); 903 CurrentVRegUses.setUniverse(NumVirtRegs); 904 905 VRegUses.clear(); 906 VRegUses.setUniverse(NumVirtRegs); 907 908 // Model data dependencies between instructions being scheduled and the 909 // ExitSU. 910 addSchedBarrierDeps(); 911 912 // Walk the list of instructions, from bottom moving up. 913 MachineInstr *DbgMI = nullptr; 914 for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin; 915 MII != MIE; --MII) { 916 MachineInstr *MI = std::prev(MII); 917 if (MI && DbgMI) { 918 DbgValues.push_back(std::make_pair(DbgMI, MI)); 919 DbgMI = nullptr; 920 } 921 922 if (MI->isDebugValue()) { 923 DbgMI = MI; 924 continue; 925 } 926 SUnit *SU = MISUnitMap[MI]; 927 assert(SU && "No SUnit mapped to this MI"); 928 929 if (RPTracker) { 930 collectVRegUses(SU); 931 932 RegisterOperands RegOpers; 933 RegOpers.collect(*MI, *TRI, MRI, TrackLaneMasks, false); 934 if (TrackLaneMasks) { 935 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI); 936 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx); 937 } 938 if (PDiffs != nullptr) 939 PDiffs->addInstruction(SU->NodeNum, RegOpers, MRI); 940 941 RPTracker->recedeSkipDebugValues(); 942 assert(&*RPTracker->getPos() == MI && "RPTracker in sync"); 943 RPTracker->recede(RegOpers); 944 } 945 946 assert( 947 (CanHandleTerminators || (!MI->isTerminator() && !MI->isPosition())) && 948 "Cannot schedule terminators or labels!"); 949 950 // Add register-based dependencies (data, anti, and output). 951 // For some instructions (calls, returns, inline-asm, etc.) there can 952 // be explicit uses and implicit defs, in which case the use will appear 953 // on the operand list before the def. Do two passes over the operand 954 // list to make sure that defs are processed before any uses. 955 bool HasVRegDef = false; 956 for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) { 957 const MachineOperand &MO = MI->getOperand(j); 958 if (!MO.isReg() || !MO.isDef()) 959 continue; 960 unsigned Reg = MO.getReg(); 961 if (Reg == 0) 962 continue; 963 964 if (TRI->isPhysicalRegister(Reg)) 965 addPhysRegDeps(SU, j); 966 else { 967 HasVRegDef = true; 968 addVRegDefDeps(SU, j); 969 } 970 } 971 // Now process all uses. 972 for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) { 973 const MachineOperand &MO = MI->getOperand(j); 974 // Only look at use operands. 975 // We do not need to check for MO.readsReg() here because subsequent 976 // subregister defs will get output dependence edges and need no 977 // additional use dependencies. 978 if (!MO.isReg() || !MO.isUse()) 979 continue; 980 unsigned Reg = MO.getReg(); 981 if (Reg == 0) 982 continue; 983 984 if (TRI->isPhysicalRegister(Reg)) 985 addPhysRegDeps(SU, j); 986 else if (MO.readsReg()) // ignore undef operands 987 addVRegUseDeps(SU, j); 988 } 989 990 // If we haven't seen any uses in this scheduling region, create a 991 // dependence edge to ExitSU to model the live-out latency. This is required 992 // for vreg defs with no in-region use, and prefetches with no vreg def. 993 // 994 // FIXME: NumDataSuccs would be more precise than NumSuccs here. This 995 // check currently relies on being called before adding chain deps. 996 if (SU->NumSuccs == 0 && SU->Latency > 1 997 && (HasVRegDef || MI->mayLoad())) { 998 SDep Dep(SU, SDep::Artificial); 999 Dep.setLatency(SU->Latency - 1); 1000 ExitSU.addPred(Dep); 1001 } 1002 1003 // Add memory dependencies (Note: isStoreToStackSlot and 1004 // isLoadFromStackSLot are not usable after stack slots are lowered to 1005 // actual addresses). 1006 1007 // This is a barrier event that acts as a pivotal node in the DAG. 1008 if (isGlobalMemoryObject(AA, MI)) { 1009 1010 // Become the barrier chain. 1011 if (BarrierChain) 1012 BarrierChain->addPredBarrier(SU); 1013 BarrierChain = SU; 1014 1015 DEBUG(dbgs() << "Global memory object and new barrier chain: SU(" 1016 << BarrierChain->NodeNum << ").\n";); 1017 1018 // Add dependencies against everything below it and clear maps. 1019 addBarrierChain(Stores); 1020 addBarrierChain(Loads); 1021 addBarrierChain(NonAliasStores); 1022 addBarrierChain(NonAliasLoads); 1023 1024 continue; 1025 } 1026 1027 // If it's not a store or a variant load, we're done. 1028 if (!MI->mayStore() && !(MI->mayLoad() && !MI->isInvariantLoad(AA))) 1029 continue; 1030 1031 // Always add dependecy edge to BarrierChain if present. 1032 if (BarrierChain) 1033 BarrierChain->addPredBarrier(SU); 1034 1035 // Find the underlying objects for MI. The Objs vector is either 1036 // empty, or filled with the Values of memory locations which this 1037 // SU depends on. An empty vector means the memory location is 1038 // unknown, and may alias anything. 1039 UnderlyingObjectsVector Objs; 1040 getUnderlyingObjectsForInstr(MI, MFI, Objs, MF.getDataLayout()); 1041 1042 if (MI->mayStore()) { 1043 if (Objs.empty()) { 1044 // An unknown store depends on all stores and loads. 1045 addChainDependencies(SU, Stores); 1046 addChainDependencies(SU, NonAliasStores); 1047 addChainDependencies(SU, Loads); 1048 addChainDependencies(SU, NonAliasLoads); 1049 1050 // Map this store to 'UnknownValue'. 1051 Stores.insert(SU, UnknownValue); 1052 } else { 1053 // Add precise dependencies against all previously seen memory 1054 // accesses mapped to the same Value(s). 1055 for (const UnderlyingObject &UnderlObj : Objs) { 1056 ValueType V = UnderlObj.getValue(); 1057 bool ThisMayAlias = UnderlObj.mayAlias(); 1058 1059 // Add dependencies to previous stores and loads mapped to V. 1060 addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V); 1061 addChainDependencies(SU, (ThisMayAlias ? Loads : NonAliasLoads), V); 1062 } 1063 // Update the store map after all chains have been added to avoid adding 1064 // self-loop edge if multiple underlying objects are present. 1065 for (const UnderlyingObject &UnderlObj : Objs) { 1066 ValueType V = UnderlObj.getValue(); 1067 bool ThisMayAlias = UnderlObj.mayAlias(); 1068 1069 // Map this store to V. 1070 (ThisMayAlias ? Stores : NonAliasStores).insert(SU, V); 1071 } 1072 // The store may have dependencies to unanalyzable loads and 1073 // stores. 1074 addChainDependencies(SU, Loads, UnknownValue); 1075 addChainDependencies(SU, Stores, UnknownValue); 1076 } 1077 } else { // SU is a load. 1078 if (Objs.empty()) { 1079 // An unknown load depends on all stores. 1080 addChainDependencies(SU, Stores); 1081 addChainDependencies(SU, NonAliasStores); 1082 1083 Loads.insert(SU, UnknownValue); 1084 } else { 1085 for (const UnderlyingObject &UnderlObj : Objs) { 1086 ValueType V = UnderlObj.getValue(); 1087 bool ThisMayAlias = UnderlObj.mayAlias(); 1088 1089 // Add precise dependencies against all previously seen stores 1090 // mapping to the same Value(s). 1091 addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V); 1092 1093 // Map this load to V. 1094 (ThisMayAlias ? Loads : NonAliasLoads).insert(SU, V); 1095 } 1096 // The load may have dependencies to unanalyzable stores. 1097 addChainDependencies(SU, Stores, UnknownValue); 1098 } 1099 } 1100 1101 // Reduce maps if they grow huge. 1102 if (Stores.size() + Loads.size() >= HugeRegion) { 1103 DEBUG(dbgs() << "Reducing Stores and Loads maps.\n";); 1104 reduceHugeMemNodeMaps(Stores, Loads, getReductionSize()); 1105 } 1106 if (NonAliasStores.size() + NonAliasLoads.size() >= HugeRegion) { 1107 DEBUG(dbgs() << "Reducing NonAliasStores and NonAliasLoads maps.\n";); 1108 reduceHugeMemNodeMaps(NonAliasStores, NonAliasLoads, getReductionSize()); 1109 } 1110 } 1111 1112 if (DbgMI) 1113 FirstDbgValue = DbgMI; 1114 1115 Defs.clear(); 1116 Uses.clear(); 1117 CurrentVRegDefs.clear(); 1118 CurrentVRegUses.clear(); 1119 } 1120 1121 raw_ostream &llvm::operator<<(raw_ostream &OS, const PseudoSourceValue* PSV) { 1122 PSV->printCustom(OS); 1123 return OS; 1124 } 1125 1126 void ScheduleDAGInstrs::Value2SUsMap::dump() { 1127 for (auto &Itr : *this) { 1128 if (Itr.first.is<const Value*>()) { 1129 const Value *V = Itr.first.get<const Value*>(); 1130 if (isa<UndefValue>(V)) 1131 dbgs() << "Unknown"; 1132 else 1133 V->printAsOperand(dbgs()); 1134 } 1135 else if (Itr.first.is<const PseudoSourceValue*>()) 1136 dbgs() << Itr.first.get<const PseudoSourceValue*>(); 1137 else 1138 llvm_unreachable("Unknown Value type."); 1139 1140 dbgs() << " : "; 1141 dumpSUList(Itr.second); 1142 } 1143 } 1144 1145 /// Reduce maps in FIFO order, by N SUs. This is better than turning 1146 /// every Nth memory SU into BarrierChain in buildSchedGraph(), since 1147 /// it avoids unnecessary edges between seen SUs above the new 1148 /// BarrierChain, and those below it. 1149 void ScheduleDAGInstrs::reduceHugeMemNodeMaps(Value2SUsMap &stores, 1150 Value2SUsMap &loads, unsigned N) { 1151 DEBUG(dbgs() << "Before reduction:\nStoring SUnits:\n"; 1152 stores.dump(); 1153 dbgs() << "Loading SUnits:\n"; 1154 loads.dump()); 1155 1156 // Insert all SU's NodeNums into a vector and sort it. 1157 std::vector<unsigned> NodeNums; 1158 NodeNums.reserve(stores.size() + loads.size()); 1159 for (auto &I : stores) 1160 for (auto *SU : I.second) 1161 NodeNums.push_back(SU->NodeNum); 1162 for (auto &I : loads) 1163 for (auto *SU : I.second) 1164 NodeNums.push_back(SU->NodeNum); 1165 std::sort(NodeNums.begin(), NodeNums.end()); 1166 1167 // The N last elements in NodeNums will be removed, and the SU with 1168 // the lowest NodeNum of them will become the new BarrierChain to 1169 // let the not yet seen SUs have a dependency to the removed SUs. 1170 assert (N <= NodeNums.size()); 1171 SUnit *newBarrierChain = &SUnits[*(NodeNums.end() - N)]; 1172 if (BarrierChain) { 1173 // The aliasing and non-aliasing maps reduce independently of each 1174 // other, but share a common BarrierChain. Check if the 1175 // newBarrierChain is above the former one. If it is not, it may 1176 // introduce a loop to use newBarrierChain, so keep the old one. 1177 if (newBarrierChain->NodeNum < BarrierChain->NodeNum) { 1178 BarrierChain->addPredBarrier(newBarrierChain); 1179 BarrierChain = newBarrierChain; 1180 DEBUG(dbgs() << "Inserting new barrier chain: SU(" 1181 << BarrierChain->NodeNum << ").\n";); 1182 } 1183 else 1184 DEBUG(dbgs() << "Keeping old barrier chain: SU(" 1185 << BarrierChain->NodeNum << ").\n";); 1186 } 1187 else 1188 BarrierChain = newBarrierChain; 1189 1190 insertBarrierChain(stores); 1191 insertBarrierChain(loads); 1192 1193 DEBUG(dbgs() << "After reduction:\nStoring SUnits:\n"; 1194 stores.dump(); 1195 dbgs() << "Loading SUnits:\n"; 1196 loads.dump()); 1197 } 1198 1199 /// \brief Initialize register live-range state for updating kills. 1200 void ScheduleDAGInstrs::startBlockForKills(MachineBasicBlock *BB) { 1201 // Start with no live registers. 1202 LiveRegs.reset(); 1203 1204 // Examine the live-in regs of all successors. 1205 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), 1206 SE = BB->succ_end(); SI != SE; ++SI) { 1207 for (const auto &LI : (*SI)->liveins()) { 1208 // Repeat, for reg and all subregs. 1209 for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true); 1210 SubRegs.isValid(); ++SubRegs) 1211 LiveRegs.set(*SubRegs); 1212 } 1213 } 1214 } 1215 1216 /// \brief If we change a kill flag on the bundle instruction implicit register 1217 /// operands, then we also need to propagate that to any instructions inside 1218 /// the bundle which had the same kill state. 1219 static void toggleBundleKillFlag(MachineInstr *MI, unsigned Reg, 1220 bool NewKillState, 1221 const TargetRegisterInfo *TRI) { 1222 if (MI->getOpcode() != TargetOpcode::BUNDLE) 1223 return; 1224 1225 // Walk backwards from the last instruction in the bundle to the first. 1226 // Once we set a kill flag on an instruction, we bail out, as otherwise we 1227 // might set it on too many operands. We will clear as many flags as we 1228 // can though. 1229 MachineBasicBlock::instr_iterator Begin = MI->getIterator(); 1230 MachineBasicBlock::instr_iterator End = getBundleEnd(*MI); 1231 while (Begin != End) { 1232 if (NewKillState) { 1233 if ((--End)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false)) 1234 return; 1235 } else 1236 (--End)->clearRegisterKills(Reg, TRI); 1237 } 1238 } 1239 1240 bool ScheduleDAGInstrs::toggleKillFlag(MachineInstr *MI, MachineOperand &MO) { 1241 // Setting kill flag... 1242 if (!MO.isKill()) { 1243 MO.setIsKill(true); 1244 toggleBundleKillFlag(MI, MO.getReg(), true, TRI); 1245 return false; 1246 } 1247 1248 // If MO itself is live, clear the kill flag... 1249 if (LiveRegs.test(MO.getReg())) { 1250 MO.setIsKill(false); 1251 toggleBundleKillFlag(MI, MO.getReg(), false, TRI); 1252 return false; 1253 } 1254 1255 // If any subreg of MO is live, then create an imp-def for that 1256 // subreg and keep MO marked as killed. 1257 MO.setIsKill(false); 1258 toggleBundleKillFlag(MI, MO.getReg(), false, TRI); 1259 bool AllDead = true; 1260 const unsigned SuperReg = MO.getReg(); 1261 MachineInstrBuilder MIB(MF, MI); 1262 for (MCSubRegIterator SubRegs(SuperReg, TRI); SubRegs.isValid(); ++SubRegs) { 1263 if (LiveRegs.test(*SubRegs)) { 1264 MIB.addReg(*SubRegs, RegState::ImplicitDefine); 1265 AllDead = false; 1266 } 1267 } 1268 1269 if(AllDead) { 1270 MO.setIsKill(true); 1271 toggleBundleKillFlag(MI, MO.getReg(), true, TRI); 1272 } 1273 return false; 1274 } 1275 1276 // FIXME: Reuse the LivePhysRegs utility for this. 1277 void ScheduleDAGInstrs::fixupKills(MachineBasicBlock *MBB) { 1278 DEBUG(dbgs() << "Fixup kills for BB#" << MBB->getNumber() << '\n'); 1279 1280 LiveRegs.resize(TRI->getNumRegs()); 1281 BitVector killedRegs(TRI->getNumRegs()); 1282 1283 startBlockForKills(MBB); 1284 1285 // Examine block from end to start... 1286 unsigned Count = MBB->size(); 1287 for (MachineBasicBlock::iterator I = MBB->end(), E = MBB->begin(); 1288 I != E; --Count) { 1289 MachineInstr *MI = --I; 1290 if (MI->isDebugValue()) 1291 continue; 1292 1293 // Update liveness. Registers that are defed but not used in this 1294 // instruction are now dead. Mark register and all subregs as they 1295 // are completely defined. 1296 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1297 MachineOperand &MO = MI->getOperand(i); 1298 if (MO.isRegMask()) 1299 LiveRegs.clearBitsNotInMask(MO.getRegMask()); 1300 if (!MO.isReg()) continue; 1301 unsigned Reg = MO.getReg(); 1302 if (Reg == 0) continue; 1303 if (!MO.isDef()) continue; 1304 // Ignore two-addr defs. 1305 if (MI->isRegTiedToUseOperand(i)) continue; 1306 1307 // Repeat for reg and all subregs. 1308 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 1309 SubRegs.isValid(); ++SubRegs) 1310 LiveRegs.reset(*SubRegs); 1311 } 1312 1313 // Examine all used registers and set/clear kill flag. When a 1314 // register is used multiple times we only set the kill flag on 1315 // the first use. Don't set kill flags on undef operands. 1316 killedRegs.reset(); 1317 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1318 MachineOperand &MO = MI->getOperand(i); 1319 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue; 1320 unsigned Reg = MO.getReg(); 1321 if ((Reg == 0) || MRI.isReserved(Reg)) continue; 1322 1323 bool kill = false; 1324 if (!killedRegs.test(Reg)) { 1325 kill = true; 1326 // A register is not killed if any subregs are live... 1327 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) { 1328 if (LiveRegs.test(*SubRegs)) { 1329 kill = false; 1330 break; 1331 } 1332 } 1333 1334 // If subreg is not live, then register is killed if it became 1335 // live in this instruction 1336 if (kill) 1337 kill = !LiveRegs.test(Reg); 1338 } 1339 1340 if (MO.isKill() != kill) { 1341 DEBUG(dbgs() << "Fixing " << MO << " in "); 1342 // Warning: toggleKillFlag may invalidate MO. 1343 toggleKillFlag(MI, MO); 1344 DEBUG(MI->dump()); 1345 DEBUG(if (MI->getOpcode() == TargetOpcode::BUNDLE) { 1346 MachineBasicBlock::instr_iterator Begin = MI->getIterator(); 1347 MachineBasicBlock::instr_iterator End = getBundleEnd(*MI); 1348 while (++Begin != End) 1349 DEBUG(Begin->dump()); 1350 }); 1351 } 1352 1353 killedRegs.set(Reg); 1354 } 1355 1356 // Mark any used register (that is not using undef) and subregs as 1357 // now live... 1358 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1359 MachineOperand &MO = MI->getOperand(i); 1360 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue; 1361 unsigned Reg = MO.getReg(); 1362 if ((Reg == 0) || MRI.isReserved(Reg)) continue; 1363 1364 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 1365 SubRegs.isValid(); ++SubRegs) 1366 LiveRegs.set(*SubRegs); 1367 } 1368 } 1369 } 1370 1371 void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const { 1372 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1373 SU->getInstr()->dump(); 1374 #endif 1375 } 1376 1377 std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const { 1378 std::string s; 1379 raw_string_ostream oss(s); 1380 if (SU == &EntrySU) 1381 oss << "<entry>"; 1382 else if (SU == &ExitSU) 1383 oss << "<exit>"; 1384 else 1385 SU->getInstr()->print(oss, /*SkipOpers=*/true); 1386 return oss.str(); 1387 } 1388 1389 /// Return the basic block label. It is not necessarilly unique because a block 1390 /// contains multiple scheduling regions. But it is fine for visualization. 1391 std::string ScheduleDAGInstrs::getDAGName() const { 1392 return "dag." + BB->getFullName(); 1393 } 1394 1395 //===----------------------------------------------------------------------===// 1396 // SchedDFSResult Implementation 1397 //===----------------------------------------------------------------------===// 1398 1399 namespace llvm { 1400 /// \brief Internal state used to compute SchedDFSResult. 1401 class SchedDFSImpl { 1402 SchedDFSResult &R; 1403 1404 /// Join DAG nodes into equivalence classes by their subtree. 1405 IntEqClasses SubtreeClasses; 1406 /// List PredSU, SuccSU pairs that represent data edges between subtrees. 1407 std::vector<std::pair<const SUnit*, const SUnit*> > ConnectionPairs; 1408 1409 struct RootData { 1410 unsigned NodeID; 1411 unsigned ParentNodeID; // Parent node (member of the parent subtree). 1412 unsigned SubInstrCount; // Instr count in this tree only, not children. 1413 1414 RootData(unsigned id): NodeID(id), 1415 ParentNodeID(SchedDFSResult::InvalidSubtreeID), 1416 SubInstrCount(0) {} 1417 1418 unsigned getSparseSetIndex() const { return NodeID; } 1419 }; 1420 1421 SparseSet<RootData> RootSet; 1422 1423 public: 1424 SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) { 1425 RootSet.setUniverse(R.DFSNodeData.size()); 1426 } 1427 1428 /// Return true if this node been visited by the DFS traversal. 1429 /// 1430 /// During visitPostorderNode the Node's SubtreeID is assigned to the Node 1431 /// ID. Later, SubtreeID is updated but remains valid. 1432 bool isVisited(const SUnit *SU) const { 1433 return R.DFSNodeData[SU->NodeNum].SubtreeID 1434 != SchedDFSResult::InvalidSubtreeID; 1435 } 1436 1437 /// Initialize this node's instruction count. We don't need to flag the node 1438 /// visited until visitPostorder because the DAG cannot have cycles. 1439 void visitPreorder(const SUnit *SU) { 1440 R.DFSNodeData[SU->NodeNum].InstrCount = 1441 SU->getInstr()->isTransient() ? 0 : 1; 1442 } 1443 1444 /// Called once for each node after all predecessors are visited. Revisit this 1445 /// node's predecessors and potentially join them now that we know the ILP of 1446 /// the other predecessors. 1447 void visitPostorderNode(const SUnit *SU) { 1448 // Mark this node as the root of a subtree. It may be joined with its 1449 // successors later. 1450 R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum; 1451 RootData RData(SU->NodeNum); 1452 RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1; 1453 1454 // If any predecessors are still in their own subtree, they either cannot be 1455 // joined or are large enough to remain separate. If this parent node's 1456 // total instruction count is not greater than a child subtree by at least 1457 // the subtree limit, then try to join it now since splitting subtrees is 1458 // only useful if multiple high-pressure paths are possible. 1459 unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount; 1460 for (SUnit::const_pred_iterator 1461 PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) { 1462 if (PI->getKind() != SDep::Data) 1463 continue; 1464 unsigned PredNum = PI->getSUnit()->NodeNum; 1465 if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit) 1466 joinPredSubtree(*PI, SU, /*CheckLimit=*/false); 1467 1468 // Either link or merge the TreeData entry from the child to the parent. 1469 if (R.DFSNodeData[PredNum].SubtreeID == PredNum) { 1470 // If the predecessor's parent is invalid, this is a tree edge and the 1471 // current node is the parent. 1472 if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID) 1473 RootSet[PredNum].ParentNodeID = SU->NodeNum; 1474 } 1475 else if (RootSet.count(PredNum)) { 1476 // The predecessor is not a root, but is still in the root set. This 1477 // must be the new parent that it was just joined to. Note that 1478 // RootSet[PredNum].ParentNodeID may either be invalid or may still be 1479 // set to the original parent. 1480 RData.SubInstrCount += RootSet[PredNum].SubInstrCount; 1481 RootSet.erase(PredNum); 1482 } 1483 } 1484 RootSet[SU->NodeNum] = RData; 1485 } 1486 1487 /// Called once for each tree edge after calling visitPostOrderNode on the 1488 /// predecessor. Increment the parent node's instruction count and 1489 /// preemptively join this subtree to its parent's if it is small enough. 1490 void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) { 1491 R.DFSNodeData[Succ->NodeNum].InstrCount 1492 += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount; 1493 joinPredSubtree(PredDep, Succ); 1494 } 1495 1496 /// Add a connection for cross edges. 1497 void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) { 1498 ConnectionPairs.push_back(std::make_pair(PredDep.getSUnit(), Succ)); 1499 } 1500 1501 /// Set each node's subtree ID to the representative ID and record connections 1502 /// between trees. 1503 void finalize() { 1504 SubtreeClasses.compress(); 1505 R.DFSTreeData.resize(SubtreeClasses.getNumClasses()); 1506 assert(SubtreeClasses.getNumClasses() == RootSet.size() 1507 && "number of roots should match trees"); 1508 for (SparseSet<RootData>::const_iterator 1509 RI = RootSet.begin(), RE = RootSet.end(); RI != RE; ++RI) { 1510 unsigned TreeID = SubtreeClasses[RI->NodeID]; 1511 if (RI->ParentNodeID != SchedDFSResult::InvalidSubtreeID) 1512 R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[RI->ParentNodeID]; 1513 R.DFSTreeData[TreeID].SubInstrCount = RI->SubInstrCount; 1514 // Note that SubInstrCount may be greater than InstrCount if we joined 1515 // subtrees across a cross edge. InstrCount will be attributed to the 1516 // original parent, while SubInstrCount will be attributed to the joined 1517 // parent. 1518 } 1519 R.SubtreeConnections.resize(SubtreeClasses.getNumClasses()); 1520 R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses()); 1521 DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n"); 1522 for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) { 1523 R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx]; 1524 DEBUG(dbgs() << " SU(" << Idx << ") in tree " 1525 << R.DFSNodeData[Idx].SubtreeID << '\n'); 1526 } 1527 for (std::vector<std::pair<const SUnit*, const SUnit*> >::const_iterator 1528 I = ConnectionPairs.begin(), E = ConnectionPairs.end(); 1529 I != E; ++I) { 1530 unsigned PredTree = SubtreeClasses[I->first->NodeNum]; 1531 unsigned SuccTree = SubtreeClasses[I->second->NodeNum]; 1532 if (PredTree == SuccTree) 1533 continue; 1534 unsigned Depth = I->first->getDepth(); 1535 addConnection(PredTree, SuccTree, Depth); 1536 addConnection(SuccTree, PredTree, Depth); 1537 } 1538 } 1539 1540 protected: 1541 /// Join the predecessor subtree with the successor that is its DFS 1542 /// parent. Apply some heuristics before joining. 1543 bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ, 1544 bool CheckLimit = true) { 1545 assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges"); 1546 1547 // Check if the predecessor is already joined. 1548 const SUnit *PredSU = PredDep.getSUnit(); 1549 unsigned PredNum = PredSU->NodeNum; 1550 if (R.DFSNodeData[PredNum].SubtreeID != PredNum) 1551 return false; 1552 1553 // Four is the magic number of successors before a node is considered a 1554 // pinch point. 1555 unsigned NumDataSucs = 0; 1556 for (SUnit::const_succ_iterator SI = PredSU->Succs.begin(), 1557 SE = PredSU->Succs.end(); SI != SE; ++SI) { 1558 if (SI->getKind() == SDep::Data) { 1559 if (++NumDataSucs >= 4) 1560 return false; 1561 } 1562 } 1563 if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit) 1564 return false; 1565 R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum; 1566 SubtreeClasses.join(Succ->NodeNum, PredNum); 1567 return true; 1568 } 1569 1570 /// Called by finalize() to record a connection between trees. 1571 void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) { 1572 if (!Depth) 1573 return; 1574 1575 do { 1576 SmallVectorImpl<SchedDFSResult::Connection> &Connections = 1577 R.SubtreeConnections[FromTree]; 1578 for (SmallVectorImpl<SchedDFSResult::Connection>::iterator 1579 I = Connections.begin(), E = Connections.end(); I != E; ++I) { 1580 if (I->TreeID == ToTree) { 1581 I->Level = std::max(I->Level, Depth); 1582 return; 1583 } 1584 } 1585 Connections.push_back(SchedDFSResult::Connection(ToTree, Depth)); 1586 FromTree = R.DFSTreeData[FromTree].ParentTreeID; 1587 } while (FromTree != SchedDFSResult::InvalidSubtreeID); 1588 } 1589 }; 1590 } // namespace llvm 1591 1592 namespace { 1593 /// \brief Manage the stack used by a reverse depth-first search over the DAG. 1594 class SchedDAGReverseDFS { 1595 std::vector<std::pair<const SUnit*, SUnit::const_pred_iterator> > DFSStack; 1596 public: 1597 bool isComplete() const { return DFSStack.empty(); } 1598 1599 void follow(const SUnit *SU) { 1600 DFSStack.push_back(std::make_pair(SU, SU->Preds.begin())); 1601 } 1602 void advance() { ++DFSStack.back().second; } 1603 1604 const SDep *backtrack() { 1605 DFSStack.pop_back(); 1606 return DFSStack.empty() ? nullptr : std::prev(DFSStack.back().second); 1607 } 1608 1609 const SUnit *getCurr() const { return DFSStack.back().first; } 1610 1611 SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; } 1612 1613 SUnit::const_pred_iterator getPredEnd() const { 1614 return getCurr()->Preds.end(); 1615 } 1616 }; 1617 } // anonymous 1618 1619 static bool hasDataSucc(const SUnit *SU) { 1620 for (SUnit::const_succ_iterator 1621 SI = SU->Succs.begin(), SE = SU->Succs.end(); SI != SE; ++SI) { 1622 if (SI->getKind() == SDep::Data && !SI->getSUnit()->isBoundaryNode()) 1623 return true; 1624 } 1625 return false; 1626 } 1627 1628 /// Compute an ILP metric for all nodes in the subDAG reachable via depth-first 1629 /// search from this root. 1630 void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) { 1631 if (!IsBottomUp) 1632 llvm_unreachable("Top-down ILP metric is unimplemnted"); 1633 1634 SchedDFSImpl Impl(*this); 1635 for (ArrayRef<SUnit>::const_iterator 1636 SI = SUnits.begin(), SE = SUnits.end(); SI != SE; ++SI) { 1637 const SUnit *SU = &*SI; 1638 if (Impl.isVisited(SU) || hasDataSucc(SU)) 1639 continue; 1640 1641 SchedDAGReverseDFS DFS; 1642 Impl.visitPreorder(SU); 1643 DFS.follow(SU); 1644 for (;;) { 1645 // Traverse the leftmost path as far as possible. 1646 while (DFS.getPred() != DFS.getPredEnd()) { 1647 const SDep &PredDep = *DFS.getPred(); 1648 DFS.advance(); 1649 // Ignore non-data edges. 1650 if (PredDep.getKind() != SDep::Data 1651 || PredDep.getSUnit()->isBoundaryNode()) { 1652 continue; 1653 } 1654 // An already visited edge is a cross edge, assuming an acyclic DAG. 1655 if (Impl.isVisited(PredDep.getSUnit())) { 1656 Impl.visitCrossEdge(PredDep, DFS.getCurr()); 1657 continue; 1658 } 1659 Impl.visitPreorder(PredDep.getSUnit()); 1660 DFS.follow(PredDep.getSUnit()); 1661 } 1662 // Visit the top of the stack in postorder and backtrack. 1663 const SUnit *Child = DFS.getCurr(); 1664 const SDep *PredDep = DFS.backtrack(); 1665 Impl.visitPostorderNode(Child); 1666 if (PredDep) 1667 Impl.visitPostorderEdge(*PredDep, DFS.getCurr()); 1668 if (DFS.isComplete()) 1669 break; 1670 } 1671 } 1672 Impl.finalize(); 1673 } 1674 1675 /// The root of the given SubtreeID was just scheduled. For all subtrees 1676 /// connected to this tree, record the depth of the connection so that the 1677 /// nearest connected subtrees can be prioritized. 1678 void SchedDFSResult::scheduleTree(unsigned SubtreeID) { 1679 for (SmallVectorImpl<Connection>::const_iterator 1680 I = SubtreeConnections[SubtreeID].begin(), 1681 E = SubtreeConnections[SubtreeID].end(); I != E; ++I) { 1682 SubtreeConnectLevels[I->TreeID] = 1683 std::max(SubtreeConnectLevels[I->TreeID], I->Level); 1684 DEBUG(dbgs() << " Tree: " << I->TreeID 1685 << " @" << SubtreeConnectLevels[I->TreeID] << '\n'); 1686 } 1687 } 1688 1689 LLVM_DUMP_METHOD 1690 void ILPValue::print(raw_ostream &OS) const { 1691 OS << InstrCount << " / " << Length << " = "; 1692 if (!Length) 1693 OS << "BADILP"; 1694 else 1695 OS << format("%g", ((double)InstrCount / Length)); 1696 } 1697 1698 LLVM_DUMP_METHOD 1699 void ILPValue::dump() const { 1700 dbgs() << *this << '\n'; 1701 } 1702 1703 namespace llvm { 1704 1705 LLVM_DUMP_METHOD 1706 raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) { 1707 Val.print(OS); 1708 return OS; 1709 } 1710 1711 } // namespace llvm 1712