1 //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the ScheduleDAGInstrs class, which implements re-scheduling
11 // of MachineInstrs.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #define DEBUG_TYPE "sched-instrs"
16 #include "ScheduleDAGInstrs.h"
17 #include "llvm/Operator.h"
18 #include "llvm/Analysis/AliasAnalysis.h"
19 #include "llvm/Analysis/ValueTracking.h"
20 #include "llvm/CodeGen/MachineFunctionPass.h"
21 #include "llvm/CodeGen/MachineMemOperand.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/PseudoSourceValue.h"
24 #include "llvm/MC/MCInstrItineraries.h"
25 #include "llvm/Target/TargetMachine.h"
26 #include "llvm/Target/TargetInstrInfo.h"
27 #include "llvm/Target/TargetRegisterInfo.h"
28 #include "llvm/Target/TargetSubtargetInfo.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/ADT/SmallSet.h"
32 using namespace llvm;
33 
34 ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
35                                      const MachineLoopInfo &mli,
36                                      const MachineDominatorTree &mdt)
37   : ScheduleDAG(mf), MLI(mli), MDT(mdt), MFI(mf.getFrameInfo()),
38     InstrItins(mf.getTarget().getInstrItineraryData()),
39     Defs(TRI->getNumRegs()), Uses(TRI->getNumRegs()),
40     LoopRegs(MLI, MDT), FirstDbgValue(0) {
41   DbgValues.clear();
42 }
43 
44 /// Run - perform scheduling.
45 ///
46 void ScheduleDAGInstrs::Run(MachineBasicBlock *bb,
47                             MachineBasicBlock::iterator begin,
48                             MachineBasicBlock::iterator end,
49                             unsigned endcount) {
50   BB = bb;
51   Begin = begin;
52   InsertPosIndex = endcount;
53 
54   ScheduleDAG::Run(bb, end);
55 }
56 
57 /// getUnderlyingObjectFromInt - This is the function that does the work of
58 /// looking through basic ptrtoint+arithmetic+inttoptr sequences.
59 static const Value *getUnderlyingObjectFromInt(const Value *V) {
60   do {
61     if (const Operator *U = dyn_cast<Operator>(V)) {
62       // If we find a ptrtoint, we can transfer control back to the
63       // regular getUnderlyingObjectFromInt.
64       if (U->getOpcode() == Instruction::PtrToInt)
65         return U->getOperand(0);
66       // If we find an add of a constant or a multiplied value, it's
67       // likely that the other operand will lead us to the base
68       // object. We don't have to worry about the case where the
69       // object address is somehow being computed by the multiply,
70       // because our callers only care when the result is an
71       // identifibale object.
72       if (U->getOpcode() != Instruction::Add ||
73           (!isa<ConstantInt>(U->getOperand(1)) &&
74            Operator::getOpcode(U->getOperand(1)) != Instruction::Mul))
75         return V;
76       V = U->getOperand(0);
77     } else {
78       return V;
79     }
80     assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
81   } while (1);
82 }
83 
84 /// getUnderlyingObject - This is a wrapper around GetUnderlyingObject
85 /// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
86 static const Value *getUnderlyingObject(const Value *V) {
87   // First just call Value::getUnderlyingObject to let it do what it does.
88   do {
89     V = GetUnderlyingObject(V);
90     // If it found an inttoptr, use special code to continue climing.
91     if (Operator::getOpcode(V) != Instruction::IntToPtr)
92       break;
93     const Value *O = getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
94     // If that succeeded in finding a pointer, continue the search.
95     if (!O->getType()->isPointerTy())
96       break;
97     V = O;
98   } while (1);
99   return V;
100 }
101 
102 /// getUnderlyingObjectForInstr - If this machine instr has memory reference
103 /// information and it can be tracked to a normal reference to a known
104 /// object, return the Value for that object. Otherwise return null.
105 static const Value *getUnderlyingObjectForInstr(const MachineInstr *MI,
106                                                 const MachineFrameInfo *MFI,
107                                                 bool &MayAlias) {
108   MayAlias = true;
109   if (!MI->hasOneMemOperand() ||
110       !(*MI->memoperands_begin())->getValue() ||
111       (*MI->memoperands_begin())->isVolatile())
112     return 0;
113 
114   const Value *V = (*MI->memoperands_begin())->getValue();
115   if (!V)
116     return 0;
117 
118   V = getUnderlyingObject(V);
119   if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
120     // For now, ignore PseudoSourceValues which may alias LLVM IR values
121     // because the code that uses this function has no way to cope with
122     // such aliases.
123     if (PSV->isAliased(MFI))
124       return 0;
125 
126     MayAlias = PSV->mayAlias(MFI);
127     return V;
128   }
129 
130   if (isIdentifiedObject(V))
131     return V;
132 
133   return 0;
134 }
135 
136 void ScheduleDAGInstrs::StartBlock(MachineBasicBlock *BB) {
137   LoopRegs.Deps.clear();
138   if (MachineLoop *ML = MLI.getLoopFor(BB))
139     if (BB == ML->getLoopLatch())
140       LoopRegs.VisitLoop(ML);
141 }
142 
143 /// AddSchedBarrierDeps - Add dependencies from instructions in the current
144 /// list of instructions being scheduled to scheduling barrier by adding
145 /// the exit SU to the register defs and use list. This is because we want to
146 /// make sure instructions which define registers that are either used by
147 /// the terminator or are live-out are properly scheduled. This is
148 /// especially important when the definition latency of the return value(s)
149 /// are too high to be hidden by the branch or when the liveout registers
150 /// used by instructions in the fallthrough block.
151 void ScheduleDAGInstrs::AddSchedBarrierDeps() {
152   MachineInstr *ExitMI = InsertPos != BB->end() ? &*InsertPos : 0;
153   ExitSU.setInstr(ExitMI);
154   bool AllDepKnown = ExitMI &&
155     (ExitMI->isCall() || ExitMI->isBarrier());
156   if (ExitMI && AllDepKnown) {
157     // If it's a call or a barrier, add dependencies on the defs and uses of
158     // instruction.
159     for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) {
160       const MachineOperand &MO = ExitMI->getOperand(i);
161       if (!MO.isReg() || MO.isDef()) continue;
162       unsigned Reg = MO.getReg();
163       if (Reg == 0) continue;
164 
165       assert(TRI->isPhysicalRegister(Reg) && "Virtual register encountered!");
166       Uses[Reg].push_back(&ExitSU);
167     }
168   } else {
169     // For others, e.g. fallthrough, conditional branch, assume the exit
170     // uses all the registers that are livein to the successor blocks.
171     SmallSet<unsigned, 8> Seen;
172     for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
173            SE = BB->succ_end(); SI != SE; ++SI)
174       for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
175              E = (*SI)->livein_end(); I != E; ++I) {
176         unsigned Reg = *I;
177         if (Seen.insert(Reg))
178           Uses[Reg].push_back(&ExitSU);
179       }
180   }
181 }
182 
183 void ScheduleDAGInstrs::BuildSchedGraph(AliasAnalysis *AA) {
184   // We'll be allocating one SUnit for each instruction, plus one for
185   // the region exit node.
186   SUnits.reserve(BB->size());
187 
188   // We build scheduling units by walking a block's instruction list from bottom
189   // to top.
190 
191   // Remember where a generic side-effecting instruction is as we procede.
192   SUnit *BarrierChain = 0, *AliasChain = 0;
193 
194   // Memory references to specific known memory locations are tracked
195   // so that they can be given more precise dependencies. We track
196   // separately the known memory locations that may alias and those
197   // that are known not to alias
198   std::map<const Value *, SUnit *> AliasMemDefs, NonAliasMemDefs;
199   std::map<const Value *, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses;
200 
201   // Check to see if the scheduler cares about latencies.
202   bool UnitLatencies = ForceUnitLatencies();
203 
204   // Ask the target if address-backscheduling is desirable, and if so how much.
205   const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
206   unsigned SpecialAddressLatency = ST.getSpecialAddressLatency();
207 
208   // Remove any stale debug info; sometimes BuildSchedGraph is called again
209   // without emitting the info from the previous call.
210   DbgValues.clear();
211   FirstDbgValue = NULL;
212 
213   // Model data dependencies between instructions being scheduled and the
214   // ExitSU.
215   AddSchedBarrierDeps();
216 
217   for (int i = 0, e = TRI->getNumRegs(); i != e; ++i) {
218     assert(Defs[i].empty() && "Only BuildGraph should push/pop Defs");
219   }
220 
221   // Walk the list of instructions, from bottom moving up.
222   MachineInstr *PrevMI = NULL;
223   for (MachineBasicBlock::iterator MII = InsertPos, MIE = Begin;
224        MII != MIE; --MII) {
225     MachineInstr *MI = prior(MII);
226     if (MI && PrevMI) {
227       DbgValues.push_back(std::make_pair(PrevMI, MI));
228       PrevMI = NULL;
229     }
230 
231     if (MI->isDebugValue()) {
232       PrevMI = MI;
233       continue;
234     }
235 
236     assert(!MI->isTerminator() && !MI->isLabel() &&
237            "Cannot schedule terminators or labels!");
238     // Create the SUnit for this MI.
239     SUnit *SU = NewSUnit(MI);
240     SU->isCall = MI->isCall();
241     SU->isCommutable = MI->isCommutable();
242 
243     // Assign the Latency field of SU using target-provided information.
244     if (UnitLatencies)
245       SU->Latency = 1;
246     else
247       ComputeLatency(SU);
248 
249     // Add register-based dependencies (data, anti, and output).
250     for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
251       const MachineOperand &MO = MI->getOperand(j);
252       if (!MO.isReg()) continue;
253       unsigned Reg = MO.getReg();
254       if (Reg == 0) continue;
255 
256       assert(TRI->isPhysicalRegister(Reg) && "Virtual register encountered!");
257 
258       // Optionally add output and anti dependencies. For anti
259       // dependencies we use a latency of 0 because for a multi-issue
260       // target we want to allow the defining instruction to issue
261       // in the same cycle as the using instruction.
262       // TODO: Using a latency of 1 here for output dependencies assumes
263       //       there's no cost for reusing registers.
264       SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
265       for (const unsigned *Alias = TRI->getOverlaps(Reg); *Alias; ++Alias) {
266         std::vector<SUnit *> &DefList = Defs[*Alias];
267         for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
268           SUnit *DefSU = DefList[i];
269           if (DefSU == &ExitSU)
270             continue;
271           if (DefSU != SU &&
272               (Kind != SDep::Output || !MO.isDead() ||
273                !DefSU->getInstr()->registerDefIsDead(*Alias))) {
274             if (Kind == SDep::Anti)
275               DefSU->addPred(SDep(SU, Kind, 0, /*Reg=*/*Alias));
276             else {
277               unsigned AOLat = TII->getOutputLatency(InstrItins, MI, j,
278                                                      DefSU->getInstr());
279               DefSU->addPred(SDep(SU, Kind, AOLat, /*Reg=*/*Alias));
280             }
281           }
282         }
283       }
284 
285       // Retrieve the UseList to add data dependencies and update uses.
286       std::vector<SUnit *> &UseList = Uses[Reg];
287       if (MO.isDef()) {
288         // Update DefList. Defs are pushed in the order they are visited and
289         // never reordered.
290         std::vector<SUnit *> &DefList = Defs[Reg];
291 
292         // Add any data dependencies.
293         unsigned DataLatency = SU->Latency;
294         for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
295           SUnit *UseSU = UseList[i];
296           if (UseSU == SU)
297             continue;
298           unsigned LDataLatency = DataLatency;
299           // Optionally add in a special extra latency for nodes that
300           // feed addresses.
301           // TODO: Do this for register aliases too.
302           // TODO: Perhaps we should get rid of
303           // SpecialAddressLatency and just move this into
304           // adjustSchedDependency for the targets that care about it.
305           if (SpecialAddressLatency != 0 && !UnitLatencies &&
306               UseSU != &ExitSU) {
307             MachineInstr *UseMI = UseSU->getInstr();
308             const MCInstrDesc &UseMCID = UseMI->getDesc();
309             int RegUseIndex = UseMI->findRegisterUseOperandIdx(Reg);
310             assert(RegUseIndex >= 0 && "UseMI doesn's use register!");
311             if (RegUseIndex >= 0 &&
312                 (UseMI->mayLoad() || UseMI->mayStore()) &&
313                 (unsigned)RegUseIndex < UseMCID.getNumOperands() &&
314                 UseMCID.OpInfo[RegUseIndex].isLookupPtrRegClass())
315               LDataLatency += SpecialAddressLatency;
316           }
317           // Adjust the dependence latency using operand def/use
318           // information (if any), and then allow the target to
319           // perform its own adjustments.
320           const SDep& dep = SDep(SU, SDep::Data, LDataLatency, Reg);
321           if (!UnitLatencies) {
322             ComputeOperandLatency(SU, UseSU, const_cast<SDep &>(dep));
323             ST.adjustSchedDependency(SU, UseSU, const_cast<SDep &>(dep));
324           }
325           UseSU->addPred(dep);
326         }
327         for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
328           std::vector<SUnit *> &UseList = Uses[*Alias];
329           for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
330             SUnit *UseSU = UseList[i];
331             if (UseSU == SU)
332               continue;
333             const SDep& dep = SDep(SU, SDep::Data, DataLatency, *Alias);
334             if (!UnitLatencies) {
335               ComputeOperandLatency(SU, UseSU, const_cast<SDep &>(dep));
336               ST.adjustSchedDependency(SU, UseSU, const_cast<SDep &>(dep));
337             }
338             UseSU->addPred(dep);
339           }
340         }
341 
342         // If a def is going to wrap back around to the top of the loop,
343         // backschedule it.
344         if (!UnitLatencies && DefList.empty()) {
345           LoopDependencies::LoopDeps::iterator I = LoopRegs.Deps.find(Reg);
346           if (I != LoopRegs.Deps.end()) {
347             const MachineOperand *UseMO = I->second.first;
348             unsigned Count = I->second.second;
349             const MachineInstr *UseMI = UseMO->getParent();
350             unsigned UseMOIdx = UseMO - &UseMI->getOperand(0);
351             const MCInstrDesc &UseMCID = UseMI->getDesc();
352             // TODO: If we knew the total depth of the region here, we could
353             // handle the case where the whole loop is inside the region but
354             // is large enough that the isScheduleHigh trick isn't needed.
355             if (UseMOIdx < UseMCID.getNumOperands()) {
356               // Currently, we only support scheduling regions consisting of
357               // single basic blocks. Check to see if the instruction is in
358               // the same region by checking to see if it has the same parent.
359               if (UseMI->getParent() != MI->getParent()) {
360                 unsigned Latency = SU->Latency;
361                 if (UseMCID.OpInfo[UseMOIdx].isLookupPtrRegClass())
362                   Latency += SpecialAddressLatency;
363                 // This is a wild guess as to the portion of the latency which
364                 // will be overlapped by work done outside the current
365                 // scheduling region.
366                 Latency -= std::min(Latency, Count);
367                 // Add the artificial edge.
368                 ExitSU.addPred(SDep(SU, SDep::Order, Latency,
369                                     /*Reg=*/0, /*isNormalMemory=*/false,
370                                     /*isMustAlias=*/false,
371                                     /*isArtificial=*/true));
372               } else if (SpecialAddressLatency > 0 &&
373                          UseMCID.OpInfo[UseMOIdx].isLookupPtrRegClass()) {
374                 // The entire loop body is within the current scheduling region
375                 // and the latency of this operation is assumed to be greater
376                 // than the latency of the loop.
377                 // TODO: Recursively mark data-edge predecessors as
378                 //       isScheduleHigh too.
379                 SU->isScheduleHigh = true;
380               }
381             }
382             LoopRegs.Deps.erase(I);
383           }
384         }
385 
386         UseList.clear();
387         if (!MO.isDead())
388           DefList.clear();
389 
390         // Calls will not be reordered because of chain dependencies (see
391         // below). Since call operands are dead, calls may continue to be added
392         // to the DefList making dependence checking quadratic in the size of
393         // the block. Instead, we leave only one call at the back of the
394         // DefList.
395         if (SU->isCall) {
396           while (!DefList.empty() && DefList.back()->isCall)
397             DefList.pop_back();
398         }
399         DefList.push_back(SU);
400       } else {
401         UseList.push_back(SU);
402       }
403     }
404 
405     // Add chain dependencies.
406     // Chain dependencies used to enforce memory order should have
407     // latency of 0 (except for true dependency of Store followed by
408     // aliased Load... we estimate that with a single cycle of latency
409     // assuming the hardware will bypass)
410     // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable
411     // after stack slots are lowered to actual addresses.
412     // TODO: Use an AliasAnalysis and do real alias-analysis queries, and
413     // produce more precise dependence information.
414 #define STORE_LOAD_LATENCY 1
415     unsigned TrueMemOrderLatency = 0;
416     if (MI->isCall() || MI->hasUnmodeledSideEffects() ||
417         (MI->hasVolatileMemoryRef() &&
418          (!MI->mayLoad() || !MI->isInvariantLoad(AA)))) {
419       // Be conservative with these and add dependencies on all memory
420       // references, even those that are known to not alias.
421       for (std::map<const Value *, SUnit *>::iterator I =
422              NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) {
423         I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
424       }
425       for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
426              NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) {
427         for (unsigned i = 0, e = I->second.size(); i != e; ++i)
428           I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
429       }
430       NonAliasMemDefs.clear();
431       NonAliasMemUses.clear();
432       // Add SU to the barrier chain.
433       if (BarrierChain)
434         BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
435       BarrierChain = SU;
436 
437       // fall-through
438     new_alias_chain:
439       // Chain all possibly aliasing memory references though SU.
440       if (AliasChain)
441         AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
442       AliasChain = SU;
443       for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
444         PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
445       for (std::map<const Value *, SUnit *>::iterator I = AliasMemDefs.begin(),
446            E = AliasMemDefs.end(); I != E; ++I) {
447         I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
448       }
449       for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
450            AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) {
451         for (unsigned i = 0, e = I->second.size(); i != e; ++i)
452           I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
453       }
454       PendingLoads.clear();
455       AliasMemDefs.clear();
456       AliasMemUses.clear();
457     } else if (MI->mayStore()) {
458       bool MayAlias = true;
459       TrueMemOrderLatency = STORE_LOAD_LATENCY;
460       if (const Value *V = getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
461         // A store to a specific PseudoSourceValue. Add precise dependencies.
462         // Record the def in MemDefs, first adding a dep if there is
463         // an existing def.
464         std::map<const Value *, SUnit *>::iterator I =
465           ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
466         std::map<const Value *, SUnit *>::iterator IE =
467           ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
468         if (I != IE) {
469           I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0,
470                                   /*isNormalMemory=*/true));
471           I->second = SU;
472         } else {
473           if (MayAlias)
474             AliasMemDefs[V] = SU;
475           else
476             NonAliasMemDefs[V] = SU;
477         }
478         // Handle the uses in MemUses, if there are any.
479         std::map<const Value *, std::vector<SUnit *> >::iterator J =
480           ((MayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V));
481         std::map<const Value *, std::vector<SUnit *> >::iterator JE =
482           ((MayAlias) ? AliasMemUses.end() : NonAliasMemUses.end());
483         if (J != JE) {
484           for (unsigned i = 0, e = J->second.size(); i != e; ++i)
485             J->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency,
486                                        /*Reg=*/0, /*isNormalMemory=*/true));
487           J->second.clear();
488         }
489         if (MayAlias) {
490           // Add dependencies from all the PendingLoads, i.e. loads
491           // with no underlying object.
492           for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
493             PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
494           // Add dependence on alias chain, if needed.
495           if (AliasChain)
496             AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
497         }
498         // Add dependence on barrier chain, if needed.
499         if (BarrierChain)
500           BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
501       } else {
502         // Treat all other stores conservatively.
503         goto new_alias_chain;
504       }
505 
506       if (!ExitSU.isPred(SU))
507         // Push store's up a bit to avoid them getting in between cmp
508         // and branches.
509         ExitSU.addPred(SDep(SU, SDep::Order, 0,
510                             /*Reg=*/0, /*isNormalMemory=*/false,
511                             /*isMustAlias=*/false,
512                             /*isArtificial=*/true));
513     } else if (MI->mayLoad()) {
514       bool MayAlias = true;
515       TrueMemOrderLatency = 0;
516       if (MI->isInvariantLoad(AA)) {
517         // Invariant load, no chain dependencies needed!
518       } else {
519         if (const Value *V =
520             getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
521           // A load from a specific PseudoSourceValue. Add precise dependencies.
522           std::map<const Value *, SUnit *>::iterator I =
523             ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
524           std::map<const Value *, SUnit *>::iterator IE =
525             ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
526           if (I != IE)
527             I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0,
528                                     /*isNormalMemory=*/true));
529           if (MayAlias)
530             AliasMemUses[V].push_back(SU);
531           else
532             NonAliasMemUses[V].push_back(SU);
533         } else {
534           // A load with no underlying object. Depend on all
535           // potentially aliasing stores.
536           for (std::map<const Value *, SUnit *>::iterator I =
537                  AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I)
538             I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
539 
540           PendingLoads.push_back(SU);
541           MayAlias = true;
542         }
543 
544         // Add dependencies on alias and barrier chains, if needed.
545         if (MayAlias && AliasChain)
546           AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
547         if (BarrierChain)
548           BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
549       }
550     }
551   }
552   if (PrevMI)
553     FirstDbgValue = PrevMI;
554 
555   for (int i = 0, e = TRI->getNumRegs(); i != e; ++i) {
556     Defs[i].clear();
557     Uses[i].clear();
558   }
559   PendingLoads.clear();
560 }
561 
562 void ScheduleDAGInstrs::FinishBlock() {
563   // Nothing to do.
564 }
565 
566 void ScheduleDAGInstrs::ComputeLatency(SUnit *SU) {
567   // Compute the latency for the node.
568   if (!InstrItins || InstrItins->isEmpty()) {
569     SU->Latency = 1;
570 
571     // Simplistic target-independent heuristic: assume that loads take
572     // extra time.
573     if (SU->getInstr()->mayLoad())
574       SU->Latency += 2;
575   } else {
576     SU->Latency = TII->getInstrLatency(InstrItins, SU->getInstr());
577   }
578 }
579 
580 void ScheduleDAGInstrs::ComputeOperandLatency(SUnit *Def, SUnit *Use,
581                                               SDep& dep) const {
582   if (!InstrItins || InstrItins->isEmpty())
583     return;
584 
585   // For a data dependency with a known register...
586   if ((dep.getKind() != SDep::Data) || (dep.getReg() == 0))
587     return;
588 
589   const unsigned Reg = dep.getReg();
590 
591   // ... find the definition of the register in the defining
592   // instruction
593   MachineInstr *DefMI = Def->getInstr();
594   int DefIdx = DefMI->findRegisterDefOperandIdx(Reg);
595   if (DefIdx != -1) {
596     const MachineOperand &MO = DefMI->getOperand(DefIdx);
597     if (MO.isReg() && MO.isImplicit() &&
598         DefIdx >= (int)DefMI->getDesc().getNumOperands()) {
599       // This is an implicit def, getOperandLatency() won't return the correct
600       // latency. e.g.
601       //   %D6<def>, %D7<def> = VLD1q16 %R2<kill>, 0, ..., %Q3<imp-def>
602       //   %Q1<def> = VMULv8i16 %Q1<kill>, %Q3<kill>, ...
603       // What we want is to compute latency between def of %D6/%D7 and use of
604       // %Q3 instead.
605       DefIdx = DefMI->findRegisterDefOperandIdx(Reg, false, true, TRI);
606     }
607     MachineInstr *UseMI = Use->getInstr();
608     // For all uses of the register, calculate the maxmimum latency
609     int Latency = -1;
610     if (UseMI) {
611       for (unsigned i = 0, e = UseMI->getNumOperands(); i != e; ++i) {
612         const MachineOperand &MO = UseMI->getOperand(i);
613         if (!MO.isReg() || !MO.isUse())
614           continue;
615         unsigned MOReg = MO.getReg();
616         if (MOReg != Reg)
617           continue;
618 
619         int UseCycle = TII->getOperandLatency(InstrItins, DefMI, DefIdx,
620                                               UseMI, i);
621         Latency = std::max(Latency, UseCycle);
622       }
623     } else {
624       // UseMI is null, then it must be a scheduling barrier.
625       if (!InstrItins || InstrItins->isEmpty())
626         return;
627       unsigned DefClass = DefMI->getDesc().getSchedClass();
628       Latency = InstrItins->getOperandCycle(DefClass, DefIdx);
629     }
630 
631     // If we found a latency, then replace the existing dependence latency.
632     if (Latency >= 0)
633       dep.setLatency(Latency);
634   }
635 }
636 
637 void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
638   SU->getInstr()->dump();
639 }
640 
641 std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
642   std::string s;
643   raw_string_ostream oss(s);
644   if (SU == &EntrySU)
645     oss << "<entry>";
646   else if (SU == &ExitSU)
647     oss << "<exit>";
648   else
649     SU->getInstr()->print(oss);
650   return oss.str();
651 }
652 
653 // EmitSchedule - Emit the machine code in scheduled order.
654 MachineBasicBlock *ScheduleDAGInstrs::EmitSchedule() {
655   Begin = InsertPos;
656 
657   // If first instruction was a DBG_VALUE then put it back.
658   if (FirstDbgValue)
659     BB->splice(InsertPos, BB, FirstDbgValue);
660 
661   // Then re-insert them according to the given schedule.
662   for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
663     if (SUnit *SU = Sequence[i])
664       BB->splice(InsertPos, BB, SU->getInstr());
665     else
666       // Null SUnit* is a noop.
667       EmitNoop();
668 
669     // Update the Begin iterator, as the first instruction in the block
670     // may have been scheduled later.
671     if (i == 0)
672       Begin = prior(InsertPos);
673   }
674 
675   // Reinsert any remaining debug_values.
676   for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
677          DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
678     std::pair<MachineInstr *, MachineInstr *> P = *prior(DI);
679     MachineInstr *DbgValue = P.first;
680     MachineBasicBlock::iterator OrigPrivMI = P.second;
681     BB->splice(++OrigPrivMI, BB, DbgValue);
682   }
683   DbgValues.clear();
684   FirstDbgValue = NULL;
685   return BB;
686 }
687