1 //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the ScheduleDAGInstrs class, which implements re-scheduling 11 // of MachineInstrs. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 16 #include "llvm/ADT/IntEqClasses.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/ValueTracking.h" 21 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 22 #include "llvm/CodeGen/MachineFunctionPass.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/CodeGen/MachineMemOperand.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/PseudoSourceValue.h" 28 #include "llvm/CodeGen/RegisterPressure.h" 29 #include "llvm/CodeGen/ScheduleDFS.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/Type.h" 32 #include "llvm/IR/Operator.h" 33 #include "llvm/Support/CommandLine.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/Format.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include "llvm/Target/TargetInstrInfo.h" 38 #include "llvm/Target/TargetMachine.h" 39 #include "llvm/Target/TargetRegisterInfo.h" 40 #include "llvm/Target/TargetSubtargetInfo.h" 41 #include <queue> 42 43 using namespace llvm; 44 45 #define DEBUG_TYPE "misched" 46 47 static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden, 48 cl::ZeroOrMore, cl::init(false), 49 cl::desc("Enable use of AA during MI DAG construction")); 50 51 static cl::opt<bool> UseTBAA("use-tbaa-in-sched-mi", cl::Hidden, 52 cl::init(true), cl::desc("Enable use of TBAA during MI DAG construction")); 53 54 // Note: the two options below might be used in tuning compile time vs 55 // output quality. Setting HugeRegion so large that it will never be 56 // reached means best-effort, but may be slow. 57 58 // When Stores and Loads maps (or NonAliasStores and NonAliasLoads) 59 // together hold this many SUs, a reduction of maps will be done. 60 static cl::opt<unsigned> HugeRegion("dag-maps-huge-region", cl::Hidden, 61 cl::init(1000), cl::desc("The limit to use while constructing the DAG " 62 "prior to scheduling, at which point a trade-off " 63 "is made to avoid excessive compile time.")); 64 65 static cl::opt<unsigned> ReductionSize("dag-maps-reduction-size", cl::Hidden, 66 cl::desc("A huge scheduling region will have maps reduced by this many " 67 "nodes at a time. Defaults to HugeRegion / 2.")); 68 69 static void dumpSUList(ScheduleDAGInstrs::SUList &L) { 70 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 71 dbgs() << "{ "; 72 for (auto *su : L) { 73 dbgs() << "SU(" << su->NodeNum << ")"; 74 if (su != L.back()) 75 dbgs() << ", "; 76 } 77 dbgs() << "}\n"; 78 #endif 79 } 80 81 ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf, 82 const MachineLoopInfo *mli, 83 bool RemoveKillFlags) 84 : ScheduleDAG(mf), MLI(mli), MFI(mf.getFrameInfo()), 85 RemoveKillFlags(RemoveKillFlags), CanHandleTerminators(false), 86 TrackLaneMasks(false), AAForDep(nullptr), BarrierChain(nullptr), 87 UnknownValue(UndefValue::get( 88 Type::getVoidTy(mf.getFunction()->getContext()))), 89 FirstDbgValue(nullptr) { 90 DbgValues.clear(); 91 92 const TargetSubtargetInfo &ST = mf.getSubtarget(); 93 SchedModel.init(ST.getSchedModel(), &ST, TII); 94 } 95 96 /// getUnderlyingObjectFromInt - This is the function that does the work of 97 /// looking through basic ptrtoint+arithmetic+inttoptr sequences. 98 static const Value *getUnderlyingObjectFromInt(const Value *V) { 99 do { 100 if (const Operator *U = dyn_cast<Operator>(V)) { 101 // If we find a ptrtoint, we can transfer control back to the 102 // regular getUnderlyingObjectFromInt. 103 if (U->getOpcode() == Instruction::PtrToInt) 104 return U->getOperand(0); 105 // If we find an add of a constant, a multiplied value, or a phi, it's 106 // likely that the other operand will lead us to the base 107 // object. We don't have to worry about the case where the 108 // object address is somehow being computed by the multiply, 109 // because our callers only care when the result is an 110 // identifiable object. 111 if (U->getOpcode() != Instruction::Add || 112 (!isa<ConstantInt>(U->getOperand(1)) && 113 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 114 !isa<PHINode>(U->getOperand(1)))) 115 return V; 116 V = U->getOperand(0); 117 } else { 118 return V; 119 } 120 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 121 } while (1); 122 } 123 124 /// getUnderlyingObjects - This is a wrapper around GetUnderlyingObjects 125 /// and adds support for basic ptrtoint+arithmetic+inttoptr sequences. 126 static void getUnderlyingObjects(const Value *V, 127 SmallVectorImpl<Value *> &Objects, 128 const DataLayout &DL) { 129 SmallPtrSet<const Value *, 16> Visited; 130 SmallVector<const Value *, 4> Working(1, V); 131 do { 132 V = Working.pop_back_val(); 133 134 SmallVector<Value *, 4> Objs; 135 GetUnderlyingObjects(const_cast<Value *>(V), Objs, DL); 136 137 for (SmallVectorImpl<Value *>::iterator I = Objs.begin(), IE = Objs.end(); 138 I != IE; ++I) { 139 V = *I; 140 if (!Visited.insert(V).second) 141 continue; 142 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 143 const Value *O = 144 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 145 if (O->getType()->isPointerTy()) { 146 Working.push_back(O); 147 continue; 148 } 149 } 150 Objects.push_back(const_cast<Value *>(V)); 151 } 152 } while (!Working.empty()); 153 } 154 155 /// getUnderlyingObjectsForInstr - If this machine instr has memory reference 156 /// information and it can be tracked to a normal reference to a known 157 /// object, return the Value for that object. 158 static void getUnderlyingObjectsForInstr(const MachineInstr *MI, 159 const MachineFrameInfo *MFI, 160 UnderlyingObjectsVector &Objects, 161 const DataLayout &DL) { 162 auto allMMOsOkay = [&]() { 163 for (const MachineMemOperand *MMO : MI->memoperands()) { 164 if (MMO->isVolatile()) 165 return false; 166 167 if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) { 168 // Function that contain tail calls don't have unique PseudoSourceValue 169 // objects. Two PseudoSourceValues might refer to the same or 170 // overlapping locations. The client code calling this function assumes 171 // this is not the case. So return a conservative answer of no known 172 // object. 173 if (MFI->hasTailCall()) 174 return false; 175 176 // For now, ignore PseudoSourceValues which may alias LLVM IR values 177 // because the code that uses this function has no way to cope with 178 // such aliases. 179 if (PSV->isAliased(MFI)) 180 return false; 181 182 bool MayAlias = PSV->mayAlias(MFI); 183 Objects.push_back(UnderlyingObjectsVector::value_type(PSV, MayAlias)); 184 } else if (const Value *V = MMO->getValue()) { 185 SmallVector<Value *, 4> Objs; 186 getUnderlyingObjects(V, Objs, DL); 187 188 for (Value *V : Objs) { 189 if (!isIdentifiedObject(V)) 190 return false; 191 192 Objects.push_back(UnderlyingObjectsVector::value_type(V, true)); 193 } 194 } else 195 return false; 196 } 197 return true; 198 }; 199 200 if (!allMMOsOkay()) 201 Objects.clear(); 202 } 203 204 void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) { 205 BB = bb; 206 } 207 208 void ScheduleDAGInstrs::finishBlock() { 209 // Subclasses should no longer refer to the old block. 210 BB = nullptr; 211 } 212 213 /// Initialize the DAG and common scheduler state for the current scheduling 214 /// region. This does not actually create the DAG, only clears it. The 215 /// scheduling driver may call BuildSchedGraph multiple times per scheduling 216 /// region. 217 void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb, 218 MachineBasicBlock::iterator begin, 219 MachineBasicBlock::iterator end, 220 unsigned regioninstrs) { 221 assert(bb == BB && "startBlock should set BB"); 222 RegionBegin = begin; 223 RegionEnd = end; 224 NumRegionInstrs = regioninstrs; 225 } 226 227 /// Close the current scheduling region. Don't clear any state in case the 228 /// driver wants to refer to the previous scheduling region. 229 void ScheduleDAGInstrs::exitRegion() { 230 // Nothing to do. 231 } 232 233 /// addSchedBarrierDeps - Add dependencies from instructions in the current 234 /// list of instructions being scheduled to scheduling barrier by adding 235 /// the exit SU to the register defs and use list. This is because we want to 236 /// make sure instructions which define registers that are either used by 237 /// the terminator or are live-out are properly scheduled. This is 238 /// especially important when the definition latency of the return value(s) 239 /// are too high to be hidden by the branch or when the liveout registers 240 /// used by instructions in the fallthrough block. 241 void ScheduleDAGInstrs::addSchedBarrierDeps() { 242 MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : nullptr; 243 ExitSU.setInstr(ExitMI); 244 bool AllDepKnown = ExitMI && 245 (ExitMI->isCall() || ExitMI->isBarrier()); 246 if (ExitMI && AllDepKnown) { 247 // If it's a call or a barrier, add dependencies on the defs and uses of 248 // instruction. 249 for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) { 250 const MachineOperand &MO = ExitMI->getOperand(i); 251 if (!MO.isReg() || MO.isDef()) continue; 252 unsigned Reg = MO.getReg(); 253 if (Reg == 0) continue; 254 255 if (TRI->isPhysicalRegister(Reg)) 256 Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg)); 257 else if (MO.readsReg()) // ignore undef operands 258 addVRegUseDeps(&ExitSU, i); 259 } 260 } else { 261 // For others, e.g. fallthrough, conditional branch, assume the exit 262 // uses all the registers that are livein to the successor blocks. 263 assert(Uses.empty() && "Uses in set before adding deps?"); 264 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), 265 SE = BB->succ_end(); SI != SE; ++SI) 266 for (const auto &LI : (*SI)->liveins()) { 267 if (!Uses.contains(LI.PhysReg)) 268 Uses.insert(PhysRegSUOper(&ExitSU, -1, LI.PhysReg)); 269 } 270 } 271 } 272 273 /// MO is an operand of SU's instruction that defines a physical register. Add 274 /// data dependencies from SU to any uses of the physical register. 275 void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) { 276 const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx); 277 assert(MO.isDef() && "expect physreg def"); 278 279 // Ask the target if address-backscheduling is desirable, and if so how much. 280 const TargetSubtargetInfo &ST = MF.getSubtarget(); 281 282 for (MCRegAliasIterator Alias(MO.getReg(), TRI, true); 283 Alias.isValid(); ++Alias) { 284 if (!Uses.contains(*Alias)) 285 continue; 286 for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) { 287 SUnit *UseSU = I->SU; 288 if (UseSU == SU) 289 continue; 290 291 // Adjust the dependence latency using operand def/use information, 292 // then allow the target to perform its own adjustments. 293 int UseOp = I->OpIdx; 294 MachineInstr *RegUse = nullptr; 295 SDep Dep; 296 if (UseOp < 0) 297 Dep = SDep(SU, SDep::Artificial); 298 else { 299 // Set the hasPhysRegDefs only for physreg defs that have a use within 300 // the scheduling region. 301 SU->hasPhysRegDefs = true; 302 Dep = SDep(SU, SDep::Data, *Alias); 303 RegUse = UseSU->getInstr(); 304 } 305 Dep.setLatency( 306 SchedModel.computeOperandLatency(SU->getInstr(), OperIdx, RegUse, 307 UseOp)); 308 309 ST.adjustSchedDependency(SU, UseSU, Dep); 310 UseSU->addPred(Dep); 311 } 312 } 313 } 314 315 /// addPhysRegDeps - Add register dependencies (data, anti, and output) from 316 /// this SUnit to following instructions in the same scheduling region that 317 /// depend the physical register referenced at OperIdx. 318 void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) { 319 MachineInstr *MI = SU->getInstr(); 320 MachineOperand &MO = MI->getOperand(OperIdx); 321 322 // Optionally add output and anti dependencies. For anti 323 // dependencies we use a latency of 0 because for a multi-issue 324 // target we want to allow the defining instruction to issue 325 // in the same cycle as the using instruction. 326 // TODO: Using a latency of 1 here for output dependencies assumes 327 // there's no cost for reusing registers. 328 SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output; 329 for (MCRegAliasIterator Alias(MO.getReg(), TRI, true); 330 Alias.isValid(); ++Alias) { 331 if (!Defs.contains(*Alias)) 332 continue; 333 for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) { 334 SUnit *DefSU = I->SU; 335 if (DefSU == &ExitSU) 336 continue; 337 if (DefSU != SU && 338 (Kind != SDep::Output || !MO.isDead() || 339 !DefSU->getInstr()->registerDefIsDead(*Alias))) { 340 if (Kind == SDep::Anti) 341 DefSU->addPred(SDep(SU, Kind, /*Reg=*/*Alias)); 342 else { 343 SDep Dep(SU, Kind, /*Reg=*/*Alias); 344 Dep.setLatency( 345 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr())); 346 DefSU->addPred(Dep); 347 } 348 } 349 } 350 } 351 352 if (!MO.isDef()) { 353 SU->hasPhysRegUses = true; 354 // Either insert a new Reg2SUnits entry with an empty SUnits list, or 355 // retrieve the existing SUnits list for this register's uses. 356 // Push this SUnit on the use list. 357 Uses.insert(PhysRegSUOper(SU, OperIdx, MO.getReg())); 358 if (RemoveKillFlags) 359 MO.setIsKill(false); 360 } 361 else { 362 addPhysRegDataDeps(SU, OperIdx); 363 unsigned Reg = MO.getReg(); 364 365 // clear this register's use list 366 if (Uses.contains(Reg)) 367 Uses.eraseAll(Reg); 368 369 if (!MO.isDead()) { 370 Defs.eraseAll(Reg); 371 } else if (SU->isCall) { 372 // Calls will not be reordered because of chain dependencies (see 373 // below). Since call operands are dead, calls may continue to be added 374 // to the DefList making dependence checking quadratic in the size of 375 // the block. Instead, we leave only one call at the back of the 376 // DefList. 377 Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg); 378 Reg2SUnitsMap::iterator B = P.first; 379 Reg2SUnitsMap::iterator I = P.second; 380 for (bool isBegin = I == B; !isBegin; /* empty */) { 381 isBegin = (--I) == B; 382 if (!I->SU->isCall) 383 break; 384 I = Defs.erase(I); 385 } 386 } 387 388 // Defs are pushed in the order they are visited and never reordered. 389 Defs.insert(PhysRegSUOper(SU, OperIdx, Reg)); 390 } 391 } 392 393 LaneBitmask ScheduleDAGInstrs::getLaneMaskForMO(const MachineOperand &MO) const 394 { 395 unsigned Reg = MO.getReg(); 396 // No point in tracking lanemasks if we don't have interesting subregisters. 397 const TargetRegisterClass &RC = *MRI.getRegClass(Reg); 398 if (!RC.HasDisjunctSubRegs) 399 return ~0u; 400 401 unsigned SubReg = MO.getSubReg(); 402 if (SubReg == 0) 403 return RC.getLaneMask(); 404 return TRI->getSubRegIndexLaneMask(SubReg); 405 } 406 407 /// addVRegDefDeps - Add register output and data dependencies from this SUnit 408 /// to instructions that occur later in the same scheduling region if they read 409 /// from or write to the virtual register defined at OperIdx. 410 /// 411 /// TODO: Hoist loop induction variable increments. This has to be 412 /// reevaluated. Generally, IV scheduling should be done before coalescing. 413 void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) { 414 MachineInstr *MI = SU->getInstr(); 415 MachineOperand &MO = MI->getOperand(OperIdx); 416 unsigned Reg = MO.getReg(); 417 418 LaneBitmask DefLaneMask; 419 LaneBitmask KillLaneMask; 420 if (TrackLaneMasks) { 421 bool IsKill = MO.getSubReg() == 0 || MO.isUndef(); 422 DefLaneMask = getLaneMaskForMO(MO); 423 // If we have a <read-undef> flag, none of the lane values comes from an 424 // earlier instruction. 425 KillLaneMask = IsKill ? ~0u : DefLaneMask; 426 427 // Clear undef flag, we'll re-add it later once we know which subregister 428 // Def is first. 429 MO.setIsUndef(false); 430 } else { 431 DefLaneMask = ~0u; 432 KillLaneMask = ~0u; 433 } 434 435 if (MO.isDead()) { 436 assert(CurrentVRegUses.find(Reg) == CurrentVRegUses.end() && 437 "Dead defs should have no uses"); 438 } else { 439 // Add data dependence to all uses we found so far. 440 const TargetSubtargetInfo &ST = MF.getSubtarget(); 441 for (VReg2SUnitOperIdxMultiMap::iterator I = CurrentVRegUses.find(Reg), 442 E = CurrentVRegUses.end(); I != E; /*empty*/) { 443 LaneBitmask LaneMask = I->LaneMask; 444 // Ignore uses of other lanes. 445 if ((LaneMask & KillLaneMask) == 0) { 446 ++I; 447 continue; 448 } 449 450 if ((LaneMask & DefLaneMask) != 0) { 451 SUnit *UseSU = I->SU; 452 MachineInstr *Use = UseSU->getInstr(); 453 SDep Dep(SU, SDep::Data, Reg); 454 Dep.setLatency(SchedModel.computeOperandLatency(MI, OperIdx, Use, 455 I->OperandIndex)); 456 ST.adjustSchedDependency(SU, UseSU, Dep); 457 UseSU->addPred(Dep); 458 } 459 460 LaneMask &= ~KillLaneMask; 461 // If we found a Def for all lanes of this use, remove it from the list. 462 if (LaneMask != 0) { 463 I->LaneMask = LaneMask; 464 ++I; 465 } else 466 I = CurrentVRegUses.erase(I); 467 } 468 } 469 470 // Shortcut: Singly defined vregs do not have output/anti dependencies. 471 if (MRI.hasOneDef(Reg)) 472 return; 473 474 // Add output dependence to the next nearest defs of this vreg. 475 // 476 // Unless this definition is dead, the output dependence should be 477 // transitively redundant with antidependencies from this definition's 478 // uses. We're conservative for now until we have a way to guarantee the uses 479 // are not eliminated sometime during scheduling. The output dependence edge 480 // is also useful if output latency exceeds def-use latency. 481 LaneBitmask LaneMask = DefLaneMask; 482 for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg), 483 CurrentVRegDefs.end())) { 484 // Ignore defs for other lanes. 485 if ((V2SU.LaneMask & LaneMask) == 0) 486 continue; 487 // Add an output dependence. 488 SUnit *DefSU = V2SU.SU; 489 // Ignore additional defs of the same lanes in one instruction. This can 490 // happen because lanemasks are shared for targets with too many 491 // subregisters. We also use some representration tricks/hacks where we 492 // add super-register defs/uses, to imply that although we only access parts 493 // of the reg we care about the full one. 494 if (DefSU == SU) 495 continue; 496 SDep Dep(SU, SDep::Output, Reg); 497 Dep.setLatency( 498 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr())); 499 DefSU->addPred(Dep); 500 501 // Update current definition. This can get tricky if the def was about a 502 // bigger lanemask before. We then have to shrink it and create a new 503 // VReg2SUnit for the non-overlapping part. 504 LaneBitmask OverlapMask = V2SU.LaneMask & LaneMask; 505 LaneBitmask NonOverlapMask = V2SU.LaneMask & ~LaneMask; 506 if (NonOverlapMask != 0) 507 CurrentVRegDefs.insert(VReg2SUnit(Reg, NonOverlapMask, V2SU.SU)); 508 V2SU.SU = SU; 509 V2SU.LaneMask = OverlapMask; 510 } 511 // If there was no CurrentVRegDefs entry for some lanes yet, create one. 512 if (LaneMask != 0) 513 CurrentVRegDefs.insert(VReg2SUnit(Reg, LaneMask, SU)); 514 } 515 516 /// addVRegUseDeps - Add a register data dependency if the instruction that 517 /// defines the virtual register used at OperIdx is mapped to an SUnit. Add a 518 /// register antidependency from this SUnit to instructions that occur later in 519 /// the same scheduling region if they write the virtual register. 520 /// 521 /// TODO: Handle ExitSU "uses" properly. 522 void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) { 523 const MachineInstr *MI = SU->getInstr(); 524 const MachineOperand &MO = MI->getOperand(OperIdx); 525 unsigned Reg = MO.getReg(); 526 527 // Remember the use. Data dependencies will be added when we find the def. 528 LaneBitmask LaneMask = TrackLaneMasks ? getLaneMaskForMO(MO) : ~0u; 529 CurrentVRegUses.insert(VReg2SUnitOperIdx(Reg, LaneMask, OperIdx, SU)); 530 531 // Add antidependences to the following defs of the vreg. 532 for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg), 533 CurrentVRegDefs.end())) { 534 // Ignore defs for unrelated lanes. 535 LaneBitmask PrevDefLaneMask = V2SU.LaneMask; 536 if ((PrevDefLaneMask & LaneMask) == 0) 537 continue; 538 if (V2SU.SU == SU) 539 continue; 540 541 V2SU.SU->addPred(SDep(SU, SDep::Anti, Reg)); 542 } 543 } 544 545 /// Return true if MI is an instruction we are unable to reason about 546 /// (like a call or something with unmodeled side effects). 547 static inline bool isGlobalMemoryObject(AliasAnalysis *AA, MachineInstr *MI) { 548 return MI->isCall() || MI->hasUnmodeledSideEffects() || 549 (MI->hasOrderedMemoryRef() && !MI->isInvariantLoad(AA)); 550 } 551 552 /// This returns true if the two MIs need a chain edge between them. 553 /// This is called on normal stores and loads. 554 static bool MIsNeedChainEdge(AliasAnalysis *AA, const MachineFrameInfo *MFI, 555 const DataLayout &DL, MachineInstr *MIa, 556 MachineInstr *MIb) { 557 const MachineFunction *MF = MIa->getParent()->getParent(); 558 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 559 560 assert ((MIa->mayStore() || MIb->mayStore()) && 561 "Dependency checked between two loads"); 562 563 // Let the target decide if memory accesses cannot possibly overlap. 564 if (TII->areMemAccessesTriviallyDisjoint(MIa, MIb, AA)) 565 return false; 566 567 // To this point analysis is generic. From here on we do need AA. 568 if (!AA) 569 return true; 570 571 // FIXME: Need to handle multiple memory operands to support all targets. 572 if (!MIa->hasOneMemOperand() || !MIb->hasOneMemOperand()) 573 return true; 574 575 MachineMemOperand *MMOa = *MIa->memoperands_begin(); 576 MachineMemOperand *MMOb = *MIb->memoperands_begin(); 577 578 if (!MMOa->getValue() || !MMOb->getValue()) 579 return true; 580 581 // The following interface to AA is fashioned after DAGCombiner::isAlias 582 // and operates with MachineMemOperand offset with some important 583 // assumptions: 584 // - LLVM fundamentally assumes flat address spaces. 585 // - MachineOperand offset can *only* result from legalization and 586 // cannot affect queries other than the trivial case of overlap 587 // checking. 588 // - These offsets never wrap and never step outside 589 // of allocated objects. 590 // - There should never be any negative offsets here. 591 // 592 // FIXME: Modify API to hide this math from "user" 593 // FIXME: Even before we go to AA we can reason locally about some 594 // memory objects. It can save compile time, and possibly catch some 595 // corner cases not currently covered. 596 597 assert ((MMOa->getOffset() >= 0) && "Negative MachineMemOperand offset"); 598 assert ((MMOb->getOffset() >= 0) && "Negative MachineMemOperand offset"); 599 600 int64_t MinOffset = std::min(MMOa->getOffset(), MMOb->getOffset()); 601 int64_t Overlapa = MMOa->getSize() + MMOa->getOffset() - MinOffset; 602 int64_t Overlapb = MMOb->getSize() + MMOb->getOffset() - MinOffset; 603 604 AliasResult AAResult = 605 AA->alias(MemoryLocation(MMOa->getValue(), Overlapa, 606 UseTBAA ? MMOa->getAAInfo() : AAMDNodes()), 607 MemoryLocation(MMOb->getValue(), Overlapb, 608 UseTBAA ? MMOb->getAAInfo() : AAMDNodes())); 609 610 return (AAResult != NoAlias); 611 } 612 613 /// Check whether two objects need a chain edge and add it if needed. 614 void ScheduleDAGInstrs::addChainDependency (SUnit *SUa, SUnit *SUb, 615 unsigned Latency) { 616 if (MIsNeedChainEdge(AAForDep, MFI, MF.getDataLayout(), SUa->getInstr(), 617 SUb->getInstr())) { 618 SDep Dep(SUa, SDep::MayAliasMem); 619 Dep.setLatency(Latency); 620 SUb->addPred(Dep); 621 } 622 } 623 624 /// Create an SUnit for each real instruction, numbered in top-down topological 625 /// order. The instruction order A < B, implies that no edge exists from B to A. 626 /// 627 /// Map each real instruction to its SUnit. 628 /// 629 /// After initSUnits, the SUnits vector cannot be resized and the scheduler may 630 /// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs 631 /// instead of pointers. 632 /// 633 /// MachineScheduler relies on initSUnits numbering the nodes by their order in 634 /// the original instruction list. 635 void ScheduleDAGInstrs::initSUnits() { 636 // We'll be allocating one SUnit for each real instruction in the region, 637 // which is contained within a basic block. 638 SUnits.reserve(NumRegionInstrs); 639 640 for (MachineBasicBlock::iterator I = RegionBegin; I != RegionEnd; ++I) { 641 MachineInstr *MI = I; 642 if (MI->isDebugValue()) 643 continue; 644 645 SUnit *SU = newSUnit(MI); 646 MISUnitMap[MI] = SU; 647 648 SU->isCall = MI->isCall(); 649 SU->isCommutable = MI->isCommutable(); 650 651 // Assign the Latency field of SU using target-provided information. 652 SU->Latency = SchedModel.computeInstrLatency(SU->getInstr()); 653 654 // If this SUnit uses a reserved or unbuffered resource, mark it as such. 655 // 656 // Reserved resources block an instruction from issuing and stall the 657 // entire pipeline. These are identified by BufferSize=0. 658 // 659 // Unbuffered resources prevent execution of subsequent instructions that 660 // require the same resources. This is used for in-order execution pipelines 661 // within an out-of-order core. These are identified by BufferSize=1. 662 if (SchedModel.hasInstrSchedModel()) { 663 const MCSchedClassDesc *SC = getSchedClass(SU); 664 for (TargetSchedModel::ProcResIter 665 PI = SchedModel.getWriteProcResBegin(SC), 666 PE = SchedModel.getWriteProcResEnd(SC); PI != PE; ++PI) { 667 switch (SchedModel.getProcResource(PI->ProcResourceIdx)->BufferSize) { 668 case 0: 669 SU->hasReservedResource = true; 670 break; 671 case 1: 672 SU->isUnbuffered = true; 673 break; 674 default: 675 break; 676 } 677 } 678 } 679 } 680 } 681 682 void ScheduleDAGInstrs::collectVRegUses(SUnit *SU) { 683 const MachineInstr *MI = SU->getInstr(); 684 for (const MachineOperand &MO : MI->operands()) { 685 if (!MO.isReg()) 686 continue; 687 if (!MO.readsReg()) 688 continue; 689 if (TrackLaneMasks && !MO.isUse()) 690 continue; 691 692 unsigned Reg = MO.getReg(); 693 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 694 continue; 695 696 // Ignore re-defs. 697 if (TrackLaneMasks) { 698 bool FoundDef = false; 699 for (const MachineOperand &MO2 : MI->operands()) { 700 if (MO2.isReg() && MO2.isDef() && MO2.getReg() == Reg && !MO2.isDead()) { 701 FoundDef = true; 702 break; 703 } 704 } 705 if (FoundDef) 706 continue; 707 } 708 709 // Record this local VReg use. 710 VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg); 711 for (; UI != VRegUses.end(); ++UI) { 712 if (UI->SU == SU) 713 break; 714 } 715 if (UI == VRegUses.end()) 716 VRegUses.insert(VReg2SUnit(Reg, 0, SU)); 717 } 718 } 719 720 class ScheduleDAGInstrs::Value2SUsMap : public MapVector<ValueType, SUList> { 721 722 /// Current total number of SUs in map. 723 unsigned NumNodes; 724 725 /// 1 for loads, 0 for stores. (see comment in SUList) 726 unsigned TrueMemOrderLatency; 727 public: 728 729 Value2SUsMap(unsigned lat = 0) : NumNodes(0), TrueMemOrderLatency(lat) {} 730 731 /// To keep NumNodes up to date, insert() is used instead of 732 /// this operator w/ push_back(). 733 ValueType &operator[](const SUList &Key) { 734 llvm_unreachable("Don't use. Use insert() instead."); }; 735 736 /// Add SU to the SUList of V. If Map grows huge, reduce its size 737 /// by calling reduce(). 738 void inline insert(SUnit *SU, ValueType V) { 739 MapVector::operator[](V).push_back(SU); 740 NumNodes++; 741 } 742 743 /// Clears the list of SUs mapped to V. 744 void inline clearList(ValueType V) { 745 iterator Itr = find(V); 746 if (Itr != end()) { 747 assert (NumNodes >= Itr->second.size()); 748 NumNodes -= Itr->second.size(); 749 750 Itr->second.clear(); 751 } 752 } 753 754 /// Clears map from all contents. 755 void clear() { 756 MapVector<ValueType, SUList>::clear(); 757 NumNodes = 0; 758 } 759 760 unsigned inline size() const { return NumNodes; } 761 762 /// Count the number of SUs in this map after a reduction. 763 void reComputeSize(void) { 764 NumNodes = 0; 765 for (auto &I : *this) 766 NumNodes += I.second.size(); 767 } 768 769 unsigned inline getTrueMemOrderLatency() const { 770 return TrueMemOrderLatency; 771 } 772 773 void dump(); 774 }; 775 776 void ScheduleDAGInstrs::addChainDependencies(SUnit *SU, 777 Value2SUsMap &Val2SUsMap) { 778 for (auto &I : Val2SUsMap) 779 addChainDependencies(SU, I.second, 780 Val2SUsMap.getTrueMemOrderLatency()); 781 } 782 783 void ScheduleDAGInstrs::addChainDependencies(SUnit *SU, 784 Value2SUsMap &Val2SUsMap, 785 ValueType V) { 786 Value2SUsMap::iterator Itr = Val2SUsMap.find(V); 787 if (Itr != Val2SUsMap.end()) 788 addChainDependencies(SU, Itr->second, 789 Val2SUsMap.getTrueMemOrderLatency()); 790 } 791 792 void ScheduleDAGInstrs::addBarrierChain(Value2SUsMap &map) { 793 assert (BarrierChain != nullptr); 794 795 for (auto &I : map) { 796 SUList &sus = I.second; 797 for (auto *SU : sus) 798 SU->addPredBarrier(BarrierChain); 799 } 800 map.clear(); 801 } 802 803 void ScheduleDAGInstrs::insertBarrierChain(Value2SUsMap &map) { 804 assert (BarrierChain != nullptr); 805 806 // Go through all lists of SUs. 807 for (Value2SUsMap::iterator I = map.begin(), EE = map.end(); I != EE;) { 808 Value2SUsMap::iterator CurrItr = I++; 809 SUList &sus = CurrItr->second; 810 SUList::iterator SUItr = sus.begin(), SUEE = sus.end(); 811 for (; SUItr != SUEE; ++SUItr) { 812 // Stop on BarrierChain or any instruction above it. 813 if ((*SUItr)->NodeNum <= BarrierChain->NodeNum) 814 break; 815 816 (*SUItr)->addPredBarrier(BarrierChain); 817 } 818 819 // Remove also the BarrierChain from list if present. 820 if (*SUItr == BarrierChain) 821 SUItr++; 822 823 // Remove all SUs that are now successors of BarrierChain. 824 if (SUItr != sus.begin()) 825 sus.erase(sus.begin(), SUItr); 826 } 827 828 // Remove all entries with empty su lists. 829 map.remove_if([&](std::pair<ValueType, SUList> &mapEntry) { 830 return (mapEntry.second.empty()); }); 831 832 // Recompute the size of the map (NumNodes). 833 map.reComputeSize(); 834 } 835 836 /// If RegPressure is non-null, compute register pressure as a side effect. The 837 /// DAG builder is an efficient place to do it because it already visits 838 /// operands. 839 void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA, 840 RegPressureTracker *RPTracker, 841 PressureDiffs *PDiffs, 842 LiveIntervals *LIS, 843 bool TrackLaneMasks) { 844 const TargetSubtargetInfo &ST = MF.getSubtarget(); 845 bool UseAA = EnableAASchedMI.getNumOccurrences() > 0 ? EnableAASchedMI 846 : ST.useAA(); 847 AAForDep = UseAA ? AA : nullptr; 848 849 BarrierChain = nullptr; 850 851 this->TrackLaneMasks = TrackLaneMasks; 852 MISUnitMap.clear(); 853 ScheduleDAG::clearDAG(); 854 855 // Create an SUnit for each real instruction. 856 initSUnits(); 857 858 if (PDiffs) 859 PDiffs->init(SUnits.size()); 860 861 // We build scheduling units by walking a block's instruction list 862 // from bottom to top. 863 864 // Each MIs' memory operand(s) is analyzed to a list of underlying 865 // objects. The SU is then inserted in the SUList(s) mapped from the 866 // Value(s). Each Value thus gets mapped to lists of SUs depending 867 // on it, stores and loads kept separately. Two SUs are trivially 868 // non-aliasing if they both depend on only identified Values and do 869 // not share any common Value. 870 Value2SUsMap Stores, Loads(1 /*TrueMemOrderLatency*/); 871 872 // Certain memory accesses are known to not alias any SU in Stores 873 // or Loads, and have therefore their own 'NonAlias' 874 // domain. E.g. spill / reload instructions never alias LLVM I/R 875 // Values. It would be nice to assume that this type of memory 876 // accesses always have a proper memory operand modelling, and are 877 // therefore never unanalyzable, but this is conservatively not 878 // done. 879 Value2SUsMap NonAliasStores, NonAliasLoads(1 /*TrueMemOrderLatency*/); 880 881 // Always reduce a huge region with half of the elements, except 882 // when user sets this number explicitly. 883 if (ReductionSize.getNumOccurrences() == 0) 884 ReductionSize = (HugeRegion / 2); 885 886 // Remove any stale debug info; sometimes BuildSchedGraph is called again 887 // without emitting the info from the previous call. 888 DbgValues.clear(); 889 FirstDbgValue = nullptr; 890 891 assert(Defs.empty() && Uses.empty() && 892 "Only BuildGraph should update Defs/Uses"); 893 Defs.setUniverse(TRI->getNumRegs()); 894 Uses.setUniverse(TRI->getNumRegs()); 895 896 assert(CurrentVRegDefs.empty() && "nobody else should use CurrentVRegDefs"); 897 assert(CurrentVRegUses.empty() && "nobody else should use CurrentVRegUses"); 898 unsigned NumVirtRegs = MRI.getNumVirtRegs(); 899 CurrentVRegDefs.setUniverse(NumVirtRegs); 900 CurrentVRegUses.setUniverse(NumVirtRegs); 901 902 VRegUses.clear(); 903 VRegUses.setUniverse(NumVirtRegs); 904 905 // Model data dependencies between instructions being scheduled and the 906 // ExitSU. 907 addSchedBarrierDeps(); 908 909 // Walk the list of instructions, from bottom moving up. 910 MachineInstr *DbgMI = nullptr; 911 for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin; 912 MII != MIE; --MII) { 913 MachineInstr *MI = std::prev(MII); 914 if (MI && DbgMI) { 915 DbgValues.push_back(std::make_pair(DbgMI, MI)); 916 DbgMI = nullptr; 917 } 918 919 if (MI->isDebugValue()) { 920 DbgMI = MI; 921 continue; 922 } 923 SUnit *SU = MISUnitMap[MI]; 924 assert(SU && "No SUnit mapped to this MI"); 925 926 if (RPTracker) { 927 collectVRegUses(SU); 928 929 RegisterOperands RegOpers; 930 RegOpers.collect(*MI, *TRI, MRI, TrackLaneMasks, false); 931 if (TrackLaneMasks) { 932 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI); 933 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx); 934 } 935 if (PDiffs != nullptr) 936 PDiffs->addInstruction(SU->NodeNum, RegOpers, MRI); 937 938 RPTracker->recedeSkipDebugValues(); 939 assert(&*RPTracker->getPos() == MI && "RPTracker in sync"); 940 RPTracker->recede(RegOpers); 941 } 942 943 assert( 944 (CanHandleTerminators || (!MI->isTerminator() && !MI->isPosition())) && 945 "Cannot schedule terminators or labels!"); 946 947 // Add register-based dependencies (data, anti, and output). 948 bool HasVRegDef = false; 949 for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) { 950 const MachineOperand &MO = MI->getOperand(j); 951 if (!MO.isReg()) continue; 952 unsigned Reg = MO.getReg(); 953 if (Reg == 0) continue; 954 955 if (TRI->isPhysicalRegister(Reg)) 956 addPhysRegDeps(SU, j); 957 else { 958 if (MO.isDef()) { 959 HasVRegDef = true; 960 addVRegDefDeps(SU, j); 961 } 962 else if (MO.readsReg()) // ignore undef operands 963 addVRegUseDeps(SU, j); 964 } 965 } 966 // If we haven't seen any uses in this scheduling region, create a 967 // dependence edge to ExitSU to model the live-out latency. This is required 968 // for vreg defs with no in-region use, and prefetches with no vreg def. 969 // 970 // FIXME: NumDataSuccs would be more precise than NumSuccs here. This 971 // check currently relies on being called before adding chain deps. 972 if (SU->NumSuccs == 0 && SU->Latency > 1 973 && (HasVRegDef || MI->mayLoad())) { 974 SDep Dep(SU, SDep::Artificial); 975 Dep.setLatency(SU->Latency - 1); 976 ExitSU.addPred(Dep); 977 } 978 979 // Add memory dependencies (Note: isStoreToStackSlot and 980 // isLoadFromStackSLot are not usable after stack slots are lowered to 981 // actual addresses). 982 983 // This is a barrier event that acts as a pivotal node in the DAG. 984 if (isGlobalMemoryObject(AA, MI)) { 985 986 // Become the barrier chain. 987 if (BarrierChain) 988 BarrierChain->addPredBarrier(SU); 989 BarrierChain = SU; 990 991 DEBUG(dbgs() << "Global memory object and new barrier chain: SU(" 992 << BarrierChain->NodeNum << ").\n";); 993 994 // Add dependencies against everything below it and clear maps. 995 addBarrierChain(Stores); 996 addBarrierChain(Loads); 997 addBarrierChain(NonAliasStores); 998 addBarrierChain(NonAliasLoads); 999 1000 continue; 1001 } 1002 1003 // If it's not a store or a variant load, we're done. 1004 if (!MI->mayStore() && !(MI->mayLoad() && !MI->isInvariantLoad(AA))) 1005 continue; 1006 1007 // Always add dependecy edge to BarrierChain if present. 1008 if (BarrierChain) 1009 BarrierChain->addPredBarrier(SU); 1010 1011 // Find the underlying objects for MI. The Objs vector is either 1012 // empty, or filled with the Values of memory locations which this 1013 // SU depends on. An empty vector means the memory location is 1014 // unknown, and may alias anything. 1015 UnderlyingObjectsVector Objs; 1016 getUnderlyingObjectsForInstr(MI, MFI, Objs, MF.getDataLayout()); 1017 1018 if (MI->mayStore()) { 1019 if (Objs.empty()) { 1020 // An unknown store depends on all stores and loads. 1021 addChainDependencies(SU, Stores); 1022 addChainDependencies(SU, NonAliasStores); 1023 addChainDependencies(SU, Loads); 1024 addChainDependencies(SU, NonAliasLoads); 1025 1026 // Map this store to 'UnknownValue'. 1027 Stores.insert(SU, UnknownValue); 1028 } else { 1029 // Add precise dependencies against all previously seen memory 1030 // accesses mapped to the same Value(s). 1031 for (const UnderlyingObject &UnderlObj : Objs) { 1032 ValueType V = UnderlObj.getValue(); 1033 bool ThisMayAlias = UnderlObj.mayAlias(); 1034 1035 // Add dependencies to previous stores and loads mapped to V. 1036 addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V); 1037 addChainDependencies(SU, (ThisMayAlias ? Loads : NonAliasLoads), V); 1038 } 1039 // Update the store map after all chains have been added to avoid adding 1040 // self-loop edge if multiple underlying objects are present. 1041 for (const UnderlyingObject &UnderlObj : Objs) { 1042 ValueType V = UnderlObj.getValue(); 1043 bool ThisMayAlias = UnderlObj.mayAlias(); 1044 1045 // Map this store to V. 1046 (ThisMayAlias ? Stores : NonAliasStores).insert(SU, V); 1047 } 1048 // The store may have dependencies to unanalyzable loads and 1049 // stores. 1050 addChainDependencies(SU, Loads, UnknownValue); 1051 addChainDependencies(SU, Stores, UnknownValue); 1052 } 1053 } else { // SU is a load. 1054 if (Objs.empty()) { 1055 // An unknown load depends on all stores. 1056 addChainDependencies(SU, Stores); 1057 addChainDependencies(SU, NonAliasStores); 1058 1059 Loads.insert(SU, UnknownValue); 1060 } else { 1061 for (const UnderlyingObject &UnderlObj : Objs) { 1062 ValueType V = UnderlObj.getValue(); 1063 bool ThisMayAlias = UnderlObj.mayAlias(); 1064 1065 // Add precise dependencies against all previously seen stores 1066 // mapping to the same Value(s). 1067 addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V); 1068 1069 // Map this load to V. 1070 (ThisMayAlias ? Loads : NonAliasLoads).insert(SU, V); 1071 } 1072 // The load may have dependencies to unanalyzable stores. 1073 addChainDependencies(SU, Stores, UnknownValue); 1074 } 1075 } 1076 1077 // Reduce maps if they grow huge. 1078 if (Stores.size() + Loads.size() >= HugeRegion) { 1079 DEBUG(dbgs() << "Reducing Stores and Loads maps.\n";); 1080 reduceHugeMemNodeMaps(Stores, Loads, ReductionSize); 1081 } 1082 if (NonAliasStores.size() + NonAliasLoads.size() >= HugeRegion) { 1083 DEBUG(dbgs() << "Reducing NonAliasStores and NonAliasLoads maps.\n";); 1084 reduceHugeMemNodeMaps(NonAliasStores, NonAliasLoads, ReductionSize); 1085 } 1086 } 1087 1088 if (DbgMI) 1089 FirstDbgValue = DbgMI; 1090 1091 Defs.clear(); 1092 Uses.clear(); 1093 CurrentVRegDefs.clear(); 1094 CurrentVRegUses.clear(); 1095 } 1096 1097 raw_ostream &llvm::operator<<(raw_ostream &OS, const PseudoSourceValue* PSV) { 1098 PSV->printCustom(OS); 1099 return OS; 1100 } 1101 1102 void ScheduleDAGInstrs::Value2SUsMap::dump() { 1103 for (auto &Itr : *this) { 1104 if (Itr.first.is<const Value*>()) { 1105 const Value *V = Itr.first.get<const Value*>(); 1106 if (isa<UndefValue>(V)) 1107 dbgs() << "Unknown"; 1108 else 1109 V->printAsOperand(dbgs()); 1110 } 1111 else if (Itr.first.is<const PseudoSourceValue*>()) 1112 dbgs() << Itr.first.get<const PseudoSourceValue*>(); 1113 else 1114 llvm_unreachable("Unknown Value type."); 1115 1116 dbgs() << " : "; 1117 dumpSUList(Itr.second); 1118 } 1119 } 1120 1121 /// Reduce maps in FIFO order, by N SUs. This is better than turning 1122 /// every Nth memory SU into BarrierChain in buildSchedGraph(), since 1123 /// it avoids unnecessary edges between seen SUs above the new 1124 /// BarrierChain, and those below it. 1125 void ScheduleDAGInstrs::reduceHugeMemNodeMaps(Value2SUsMap &stores, 1126 Value2SUsMap &loads, unsigned N) { 1127 DEBUG(dbgs() << "Before reduction:\nStoring SUnits:\n"; 1128 stores.dump(); 1129 dbgs() << "Loading SUnits:\n"; 1130 loads.dump()); 1131 1132 // Insert all SU's NodeNums into a vector and sort it. 1133 std::vector<unsigned> NodeNums; 1134 NodeNums.reserve(stores.size() + loads.size()); 1135 for (auto &I : stores) 1136 for (auto *SU : I.second) 1137 NodeNums.push_back(SU->NodeNum); 1138 for (auto &I : loads) 1139 for (auto *SU : I.second) 1140 NodeNums.push_back(SU->NodeNum); 1141 std::sort(NodeNums.begin(), NodeNums.end()); 1142 1143 // The N last elements in NodeNums will be removed, and the SU with 1144 // the lowest NodeNum of them will become the new BarrierChain to 1145 // let the not yet seen SUs have a dependency to the removed SUs. 1146 assert (N <= NodeNums.size()); 1147 SUnit *newBarrierChain = &SUnits[*(NodeNums.end() - N)]; 1148 if (BarrierChain) { 1149 // The aliasing and non-aliasing maps reduce independently of each 1150 // other, but share a common BarrierChain. Check if the 1151 // newBarrierChain is above the former one. If it is not, it may 1152 // introduce a loop to use newBarrierChain, so keep the old one. 1153 if (newBarrierChain->NodeNum < BarrierChain->NodeNum) { 1154 BarrierChain->addPredBarrier(newBarrierChain); 1155 BarrierChain = newBarrierChain; 1156 DEBUG(dbgs() << "Inserting new barrier chain: SU(" 1157 << BarrierChain->NodeNum << ").\n";); 1158 } 1159 else 1160 DEBUG(dbgs() << "Keeping old barrier chain: SU(" 1161 << BarrierChain->NodeNum << ").\n";); 1162 } 1163 else 1164 BarrierChain = newBarrierChain; 1165 1166 insertBarrierChain(stores); 1167 insertBarrierChain(loads); 1168 1169 DEBUG(dbgs() << "After reduction:\nStoring SUnits:\n"; 1170 stores.dump(); 1171 dbgs() << "Loading SUnits:\n"; 1172 loads.dump()); 1173 } 1174 1175 /// \brief Initialize register live-range state for updating kills. 1176 void ScheduleDAGInstrs::startBlockForKills(MachineBasicBlock *BB) { 1177 // Start with no live registers. 1178 LiveRegs.reset(); 1179 1180 // Examine the live-in regs of all successors. 1181 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), 1182 SE = BB->succ_end(); SI != SE; ++SI) { 1183 for (const auto &LI : (*SI)->liveins()) { 1184 // Repeat, for reg and all subregs. 1185 for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true); 1186 SubRegs.isValid(); ++SubRegs) 1187 LiveRegs.set(*SubRegs); 1188 } 1189 } 1190 } 1191 1192 /// \brief If we change a kill flag on the bundle instruction implicit register 1193 /// operands, then we also need to propagate that to any instructions inside 1194 /// the bundle which had the same kill state. 1195 static void toggleBundleKillFlag(MachineInstr *MI, unsigned Reg, 1196 bool NewKillState) { 1197 if (MI->getOpcode() != TargetOpcode::BUNDLE) 1198 return; 1199 1200 // Walk backwards from the last instruction in the bundle to the first. 1201 // Once we set a kill flag on an instruction, we bail out, as otherwise we 1202 // might set it on too many operands. We will clear as many flags as we 1203 // can though. 1204 MachineBasicBlock::instr_iterator Begin = MI->getIterator(); 1205 MachineBasicBlock::instr_iterator End = getBundleEnd(*MI); 1206 while (Begin != End) { 1207 for (MachineOperand &MO : (--End)->operands()) { 1208 if (!MO.isReg() || MO.isDef() || Reg != MO.getReg()) 1209 continue; 1210 1211 // DEBUG_VALUE nodes do not contribute to code generation and should 1212 // always be ignored. Failure to do so may result in trying to modify 1213 // KILL flags on DEBUG_VALUE nodes, which is distressing. 1214 if (MO.isDebug()) 1215 continue; 1216 1217 // If the register has the internal flag then it could be killing an 1218 // internal def of the register. In this case, just skip. We only want 1219 // to toggle the flag on operands visible outside the bundle. 1220 if (MO.isInternalRead()) 1221 continue; 1222 1223 if (MO.isKill() == NewKillState) 1224 continue; 1225 MO.setIsKill(NewKillState); 1226 if (NewKillState) 1227 return; 1228 } 1229 } 1230 } 1231 1232 bool ScheduleDAGInstrs::toggleKillFlag(MachineInstr *MI, MachineOperand &MO) { 1233 // Setting kill flag... 1234 if (!MO.isKill()) { 1235 MO.setIsKill(true); 1236 toggleBundleKillFlag(MI, MO.getReg(), true); 1237 return false; 1238 } 1239 1240 // If MO itself is live, clear the kill flag... 1241 if (LiveRegs.test(MO.getReg())) { 1242 MO.setIsKill(false); 1243 toggleBundleKillFlag(MI, MO.getReg(), false); 1244 return false; 1245 } 1246 1247 // If any subreg of MO is live, then create an imp-def for that 1248 // subreg and keep MO marked as killed. 1249 MO.setIsKill(false); 1250 toggleBundleKillFlag(MI, MO.getReg(), false); 1251 bool AllDead = true; 1252 const unsigned SuperReg = MO.getReg(); 1253 MachineInstrBuilder MIB(MF, MI); 1254 for (MCSubRegIterator SubRegs(SuperReg, TRI); SubRegs.isValid(); ++SubRegs) { 1255 if (LiveRegs.test(*SubRegs)) { 1256 MIB.addReg(*SubRegs, RegState::ImplicitDefine); 1257 AllDead = false; 1258 } 1259 } 1260 1261 if(AllDead) { 1262 MO.setIsKill(true); 1263 toggleBundleKillFlag(MI, MO.getReg(), true); 1264 } 1265 return false; 1266 } 1267 1268 // FIXME: Reuse the LivePhysRegs utility for this. 1269 void ScheduleDAGInstrs::fixupKills(MachineBasicBlock *MBB) { 1270 DEBUG(dbgs() << "Fixup kills for BB#" << MBB->getNumber() << '\n'); 1271 1272 LiveRegs.resize(TRI->getNumRegs()); 1273 BitVector killedRegs(TRI->getNumRegs()); 1274 1275 startBlockForKills(MBB); 1276 1277 // Examine block from end to start... 1278 unsigned Count = MBB->size(); 1279 for (MachineBasicBlock::iterator I = MBB->end(), E = MBB->begin(); 1280 I != E; --Count) { 1281 MachineInstr *MI = --I; 1282 if (MI->isDebugValue()) 1283 continue; 1284 1285 // Update liveness. Registers that are defed but not used in this 1286 // instruction are now dead. Mark register and all subregs as they 1287 // are completely defined. 1288 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1289 MachineOperand &MO = MI->getOperand(i); 1290 if (MO.isRegMask()) 1291 LiveRegs.clearBitsNotInMask(MO.getRegMask()); 1292 if (!MO.isReg()) continue; 1293 unsigned Reg = MO.getReg(); 1294 if (Reg == 0) continue; 1295 if (!MO.isDef()) continue; 1296 // Ignore two-addr defs. 1297 if (MI->isRegTiedToUseOperand(i)) continue; 1298 1299 // Repeat for reg and all subregs. 1300 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 1301 SubRegs.isValid(); ++SubRegs) 1302 LiveRegs.reset(*SubRegs); 1303 } 1304 1305 // Examine all used registers and set/clear kill flag. When a 1306 // register is used multiple times we only set the kill flag on 1307 // the first use. Don't set kill flags on undef operands. 1308 killedRegs.reset(); 1309 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1310 MachineOperand &MO = MI->getOperand(i); 1311 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue; 1312 unsigned Reg = MO.getReg(); 1313 if ((Reg == 0) || MRI.isReserved(Reg)) continue; 1314 1315 bool kill = false; 1316 if (!killedRegs.test(Reg)) { 1317 kill = true; 1318 // A register is not killed if any subregs are live... 1319 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) { 1320 if (LiveRegs.test(*SubRegs)) { 1321 kill = false; 1322 break; 1323 } 1324 } 1325 1326 // If subreg is not live, then register is killed if it became 1327 // live in this instruction 1328 if (kill) 1329 kill = !LiveRegs.test(Reg); 1330 } 1331 1332 if (MO.isKill() != kill) { 1333 DEBUG(dbgs() << "Fixing " << MO << " in "); 1334 // Warning: toggleKillFlag may invalidate MO. 1335 toggleKillFlag(MI, MO); 1336 DEBUG(MI->dump()); 1337 DEBUG(if (MI->getOpcode() == TargetOpcode::BUNDLE) { 1338 MachineBasicBlock::instr_iterator Begin = MI->getIterator(); 1339 MachineBasicBlock::instr_iterator End = getBundleEnd(*MI); 1340 while (++Begin != End) 1341 DEBUG(Begin->dump()); 1342 }); 1343 } 1344 1345 killedRegs.set(Reg); 1346 } 1347 1348 // Mark any used register (that is not using undef) and subregs as 1349 // now live... 1350 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1351 MachineOperand &MO = MI->getOperand(i); 1352 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue; 1353 unsigned Reg = MO.getReg(); 1354 if ((Reg == 0) || MRI.isReserved(Reg)) continue; 1355 1356 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 1357 SubRegs.isValid(); ++SubRegs) 1358 LiveRegs.set(*SubRegs); 1359 } 1360 } 1361 } 1362 1363 void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const { 1364 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1365 SU->getInstr()->dump(); 1366 #endif 1367 } 1368 1369 std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const { 1370 std::string s; 1371 raw_string_ostream oss(s); 1372 if (SU == &EntrySU) 1373 oss << "<entry>"; 1374 else if (SU == &ExitSU) 1375 oss << "<exit>"; 1376 else 1377 SU->getInstr()->print(oss, /*SkipOpers=*/true); 1378 return oss.str(); 1379 } 1380 1381 /// Return the basic block label. It is not necessarilly unique because a block 1382 /// contains multiple scheduling regions. But it is fine for visualization. 1383 std::string ScheduleDAGInstrs::getDAGName() const { 1384 return "dag." + BB->getFullName(); 1385 } 1386 1387 //===----------------------------------------------------------------------===// 1388 // SchedDFSResult Implementation 1389 //===----------------------------------------------------------------------===// 1390 1391 namespace llvm { 1392 /// \brief Internal state used to compute SchedDFSResult. 1393 class SchedDFSImpl { 1394 SchedDFSResult &R; 1395 1396 /// Join DAG nodes into equivalence classes by their subtree. 1397 IntEqClasses SubtreeClasses; 1398 /// List PredSU, SuccSU pairs that represent data edges between subtrees. 1399 std::vector<std::pair<const SUnit*, const SUnit*> > ConnectionPairs; 1400 1401 struct RootData { 1402 unsigned NodeID; 1403 unsigned ParentNodeID; // Parent node (member of the parent subtree). 1404 unsigned SubInstrCount; // Instr count in this tree only, not children. 1405 1406 RootData(unsigned id): NodeID(id), 1407 ParentNodeID(SchedDFSResult::InvalidSubtreeID), 1408 SubInstrCount(0) {} 1409 1410 unsigned getSparseSetIndex() const { return NodeID; } 1411 }; 1412 1413 SparseSet<RootData> RootSet; 1414 1415 public: 1416 SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) { 1417 RootSet.setUniverse(R.DFSNodeData.size()); 1418 } 1419 1420 /// Return true if this node been visited by the DFS traversal. 1421 /// 1422 /// During visitPostorderNode the Node's SubtreeID is assigned to the Node 1423 /// ID. Later, SubtreeID is updated but remains valid. 1424 bool isVisited(const SUnit *SU) const { 1425 return R.DFSNodeData[SU->NodeNum].SubtreeID 1426 != SchedDFSResult::InvalidSubtreeID; 1427 } 1428 1429 /// Initialize this node's instruction count. We don't need to flag the node 1430 /// visited until visitPostorder because the DAG cannot have cycles. 1431 void visitPreorder(const SUnit *SU) { 1432 R.DFSNodeData[SU->NodeNum].InstrCount = 1433 SU->getInstr()->isTransient() ? 0 : 1; 1434 } 1435 1436 /// Called once for each node after all predecessors are visited. Revisit this 1437 /// node's predecessors and potentially join them now that we know the ILP of 1438 /// the other predecessors. 1439 void visitPostorderNode(const SUnit *SU) { 1440 // Mark this node as the root of a subtree. It may be joined with its 1441 // successors later. 1442 R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum; 1443 RootData RData(SU->NodeNum); 1444 RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1; 1445 1446 // If any predecessors are still in their own subtree, they either cannot be 1447 // joined or are large enough to remain separate. If this parent node's 1448 // total instruction count is not greater than a child subtree by at least 1449 // the subtree limit, then try to join it now since splitting subtrees is 1450 // only useful if multiple high-pressure paths are possible. 1451 unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount; 1452 for (SUnit::const_pred_iterator 1453 PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) { 1454 if (PI->getKind() != SDep::Data) 1455 continue; 1456 unsigned PredNum = PI->getSUnit()->NodeNum; 1457 if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit) 1458 joinPredSubtree(*PI, SU, /*CheckLimit=*/false); 1459 1460 // Either link or merge the TreeData entry from the child to the parent. 1461 if (R.DFSNodeData[PredNum].SubtreeID == PredNum) { 1462 // If the predecessor's parent is invalid, this is a tree edge and the 1463 // current node is the parent. 1464 if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID) 1465 RootSet[PredNum].ParentNodeID = SU->NodeNum; 1466 } 1467 else if (RootSet.count(PredNum)) { 1468 // The predecessor is not a root, but is still in the root set. This 1469 // must be the new parent that it was just joined to. Note that 1470 // RootSet[PredNum].ParentNodeID may either be invalid or may still be 1471 // set to the original parent. 1472 RData.SubInstrCount += RootSet[PredNum].SubInstrCount; 1473 RootSet.erase(PredNum); 1474 } 1475 } 1476 RootSet[SU->NodeNum] = RData; 1477 } 1478 1479 /// Called once for each tree edge after calling visitPostOrderNode on the 1480 /// predecessor. Increment the parent node's instruction count and 1481 /// preemptively join this subtree to its parent's if it is small enough. 1482 void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) { 1483 R.DFSNodeData[Succ->NodeNum].InstrCount 1484 += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount; 1485 joinPredSubtree(PredDep, Succ); 1486 } 1487 1488 /// Add a connection for cross edges. 1489 void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) { 1490 ConnectionPairs.push_back(std::make_pair(PredDep.getSUnit(), Succ)); 1491 } 1492 1493 /// Set each node's subtree ID to the representative ID and record connections 1494 /// between trees. 1495 void finalize() { 1496 SubtreeClasses.compress(); 1497 R.DFSTreeData.resize(SubtreeClasses.getNumClasses()); 1498 assert(SubtreeClasses.getNumClasses() == RootSet.size() 1499 && "number of roots should match trees"); 1500 for (SparseSet<RootData>::const_iterator 1501 RI = RootSet.begin(), RE = RootSet.end(); RI != RE; ++RI) { 1502 unsigned TreeID = SubtreeClasses[RI->NodeID]; 1503 if (RI->ParentNodeID != SchedDFSResult::InvalidSubtreeID) 1504 R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[RI->ParentNodeID]; 1505 R.DFSTreeData[TreeID].SubInstrCount = RI->SubInstrCount; 1506 // Note that SubInstrCount may be greater than InstrCount if we joined 1507 // subtrees across a cross edge. InstrCount will be attributed to the 1508 // original parent, while SubInstrCount will be attributed to the joined 1509 // parent. 1510 } 1511 R.SubtreeConnections.resize(SubtreeClasses.getNumClasses()); 1512 R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses()); 1513 DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n"); 1514 for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) { 1515 R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx]; 1516 DEBUG(dbgs() << " SU(" << Idx << ") in tree " 1517 << R.DFSNodeData[Idx].SubtreeID << '\n'); 1518 } 1519 for (std::vector<std::pair<const SUnit*, const SUnit*> >::const_iterator 1520 I = ConnectionPairs.begin(), E = ConnectionPairs.end(); 1521 I != E; ++I) { 1522 unsigned PredTree = SubtreeClasses[I->first->NodeNum]; 1523 unsigned SuccTree = SubtreeClasses[I->second->NodeNum]; 1524 if (PredTree == SuccTree) 1525 continue; 1526 unsigned Depth = I->first->getDepth(); 1527 addConnection(PredTree, SuccTree, Depth); 1528 addConnection(SuccTree, PredTree, Depth); 1529 } 1530 } 1531 1532 protected: 1533 /// Join the predecessor subtree with the successor that is its DFS 1534 /// parent. Apply some heuristics before joining. 1535 bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ, 1536 bool CheckLimit = true) { 1537 assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges"); 1538 1539 // Check if the predecessor is already joined. 1540 const SUnit *PredSU = PredDep.getSUnit(); 1541 unsigned PredNum = PredSU->NodeNum; 1542 if (R.DFSNodeData[PredNum].SubtreeID != PredNum) 1543 return false; 1544 1545 // Four is the magic number of successors before a node is considered a 1546 // pinch point. 1547 unsigned NumDataSucs = 0; 1548 for (SUnit::const_succ_iterator SI = PredSU->Succs.begin(), 1549 SE = PredSU->Succs.end(); SI != SE; ++SI) { 1550 if (SI->getKind() == SDep::Data) { 1551 if (++NumDataSucs >= 4) 1552 return false; 1553 } 1554 } 1555 if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit) 1556 return false; 1557 R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum; 1558 SubtreeClasses.join(Succ->NodeNum, PredNum); 1559 return true; 1560 } 1561 1562 /// Called by finalize() to record a connection between trees. 1563 void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) { 1564 if (!Depth) 1565 return; 1566 1567 do { 1568 SmallVectorImpl<SchedDFSResult::Connection> &Connections = 1569 R.SubtreeConnections[FromTree]; 1570 for (SmallVectorImpl<SchedDFSResult::Connection>::iterator 1571 I = Connections.begin(), E = Connections.end(); I != E; ++I) { 1572 if (I->TreeID == ToTree) { 1573 I->Level = std::max(I->Level, Depth); 1574 return; 1575 } 1576 } 1577 Connections.push_back(SchedDFSResult::Connection(ToTree, Depth)); 1578 FromTree = R.DFSTreeData[FromTree].ParentTreeID; 1579 } while (FromTree != SchedDFSResult::InvalidSubtreeID); 1580 } 1581 }; 1582 } // namespace llvm 1583 1584 namespace { 1585 /// \brief Manage the stack used by a reverse depth-first search over the DAG. 1586 class SchedDAGReverseDFS { 1587 std::vector<std::pair<const SUnit*, SUnit::const_pred_iterator> > DFSStack; 1588 public: 1589 bool isComplete() const { return DFSStack.empty(); } 1590 1591 void follow(const SUnit *SU) { 1592 DFSStack.push_back(std::make_pair(SU, SU->Preds.begin())); 1593 } 1594 void advance() { ++DFSStack.back().second; } 1595 1596 const SDep *backtrack() { 1597 DFSStack.pop_back(); 1598 return DFSStack.empty() ? nullptr : std::prev(DFSStack.back().second); 1599 } 1600 1601 const SUnit *getCurr() const { return DFSStack.back().first; } 1602 1603 SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; } 1604 1605 SUnit::const_pred_iterator getPredEnd() const { 1606 return getCurr()->Preds.end(); 1607 } 1608 }; 1609 } // anonymous 1610 1611 static bool hasDataSucc(const SUnit *SU) { 1612 for (SUnit::const_succ_iterator 1613 SI = SU->Succs.begin(), SE = SU->Succs.end(); SI != SE; ++SI) { 1614 if (SI->getKind() == SDep::Data && !SI->getSUnit()->isBoundaryNode()) 1615 return true; 1616 } 1617 return false; 1618 } 1619 1620 /// Compute an ILP metric for all nodes in the subDAG reachable via depth-first 1621 /// search from this root. 1622 void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) { 1623 if (!IsBottomUp) 1624 llvm_unreachable("Top-down ILP metric is unimplemnted"); 1625 1626 SchedDFSImpl Impl(*this); 1627 for (ArrayRef<SUnit>::const_iterator 1628 SI = SUnits.begin(), SE = SUnits.end(); SI != SE; ++SI) { 1629 const SUnit *SU = &*SI; 1630 if (Impl.isVisited(SU) || hasDataSucc(SU)) 1631 continue; 1632 1633 SchedDAGReverseDFS DFS; 1634 Impl.visitPreorder(SU); 1635 DFS.follow(SU); 1636 for (;;) { 1637 // Traverse the leftmost path as far as possible. 1638 while (DFS.getPred() != DFS.getPredEnd()) { 1639 const SDep &PredDep = *DFS.getPred(); 1640 DFS.advance(); 1641 // Ignore non-data edges. 1642 if (PredDep.getKind() != SDep::Data 1643 || PredDep.getSUnit()->isBoundaryNode()) { 1644 continue; 1645 } 1646 // An already visited edge is a cross edge, assuming an acyclic DAG. 1647 if (Impl.isVisited(PredDep.getSUnit())) { 1648 Impl.visitCrossEdge(PredDep, DFS.getCurr()); 1649 continue; 1650 } 1651 Impl.visitPreorder(PredDep.getSUnit()); 1652 DFS.follow(PredDep.getSUnit()); 1653 } 1654 // Visit the top of the stack in postorder and backtrack. 1655 const SUnit *Child = DFS.getCurr(); 1656 const SDep *PredDep = DFS.backtrack(); 1657 Impl.visitPostorderNode(Child); 1658 if (PredDep) 1659 Impl.visitPostorderEdge(*PredDep, DFS.getCurr()); 1660 if (DFS.isComplete()) 1661 break; 1662 } 1663 } 1664 Impl.finalize(); 1665 } 1666 1667 /// The root of the given SubtreeID was just scheduled. For all subtrees 1668 /// connected to this tree, record the depth of the connection so that the 1669 /// nearest connected subtrees can be prioritized. 1670 void SchedDFSResult::scheduleTree(unsigned SubtreeID) { 1671 for (SmallVectorImpl<Connection>::const_iterator 1672 I = SubtreeConnections[SubtreeID].begin(), 1673 E = SubtreeConnections[SubtreeID].end(); I != E; ++I) { 1674 SubtreeConnectLevels[I->TreeID] = 1675 std::max(SubtreeConnectLevels[I->TreeID], I->Level); 1676 DEBUG(dbgs() << " Tree: " << I->TreeID 1677 << " @" << SubtreeConnectLevels[I->TreeID] << '\n'); 1678 } 1679 } 1680 1681 LLVM_DUMP_METHOD 1682 void ILPValue::print(raw_ostream &OS) const { 1683 OS << InstrCount << " / " << Length << " = "; 1684 if (!Length) 1685 OS << "BADILP"; 1686 else 1687 OS << format("%g", ((double)InstrCount / Length)); 1688 } 1689 1690 LLVM_DUMP_METHOD 1691 void ILPValue::dump() const { 1692 dbgs() << *this << '\n'; 1693 } 1694 1695 namespace llvm { 1696 1697 LLVM_DUMP_METHOD 1698 raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) { 1699 Val.print(OS); 1700 return OS; 1701 } 1702 1703 } // namespace llvm 1704