1 //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the ScheduleDAGInstrs class, which implements re-scheduling 11 // of MachineInstrs. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 16 #include "llvm/ADT/IntEqClasses.h" 17 #include "llvm/ADT/MapVector.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 23 #include "llvm/CodeGen/MachineFunctionPass.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineMemOperand.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/PseudoSourceValue.h" 29 #include "llvm/CodeGen/RegisterPressure.h" 30 #include "llvm/CodeGen/ScheduleDFS.h" 31 #include "llvm/IR/Operator.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/Format.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetInstrInfo.h" 37 #include "llvm/Target/TargetMachine.h" 38 #include "llvm/Target/TargetRegisterInfo.h" 39 #include "llvm/Target/TargetSubtargetInfo.h" 40 #include <queue> 41 42 using namespace llvm; 43 44 #define DEBUG_TYPE "misched" 45 46 static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden, 47 cl::ZeroOrMore, cl::init(false), 48 cl::desc("Enable use of AA during MI DAG construction")); 49 50 static cl::opt<bool> UseTBAA("use-tbaa-in-sched-mi", cl::Hidden, 51 cl::init(true), cl::desc("Enable use of TBAA during MI DAG construction")); 52 53 ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf, 54 const MachineLoopInfo *mli, 55 bool RemoveKillFlags) 56 : ScheduleDAG(mf), MLI(mli), MFI(mf.getFrameInfo()), 57 RemoveKillFlags(RemoveKillFlags), CanHandleTerminators(false), 58 TrackLaneMasks(false), FirstDbgValue(nullptr) { 59 DbgValues.clear(); 60 61 const TargetSubtargetInfo &ST = mf.getSubtarget(); 62 SchedModel.init(ST.getSchedModel(), &ST, TII); 63 } 64 65 /// getUnderlyingObjectFromInt - This is the function that does the work of 66 /// looking through basic ptrtoint+arithmetic+inttoptr sequences. 67 static const Value *getUnderlyingObjectFromInt(const Value *V) { 68 do { 69 if (const Operator *U = dyn_cast<Operator>(V)) { 70 // If we find a ptrtoint, we can transfer control back to the 71 // regular getUnderlyingObjectFromInt. 72 if (U->getOpcode() == Instruction::PtrToInt) 73 return U->getOperand(0); 74 // If we find an add of a constant, a multiplied value, or a phi, it's 75 // likely that the other operand will lead us to the base 76 // object. We don't have to worry about the case where the 77 // object address is somehow being computed by the multiply, 78 // because our callers only care when the result is an 79 // identifiable object. 80 if (U->getOpcode() != Instruction::Add || 81 (!isa<ConstantInt>(U->getOperand(1)) && 82 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 83 !isa<PHINode>(U->getOperand(1)))) 84 return V; 85 V = U->getOperand(0); 86 } else { 87 return V; 88 } 89 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 90 } while (1); 91 } 92 93 /// getUnderlyingObjects - This is a wrapper around GetUnderlyingObjects 94 /// and adds support for basic ptrtoint+arithmetic+inttoptr sequences. 95 static void getUnderlyingObjects(const Value *V, 96 SmallVectorImpl<Value *> &Objects, 97 const DataLayout &DL) { 98 SmallPtrSet<const Value *, 16> Visited; 99 SmallVector<const Value *, 4> Working(1, V); 100 do { 101 V = Working.pop_back_val(); 102 103 SmallVector<Value *, 4> Objs; 104 GetUnderlyingObjects(const_cast<Value *>(V), Objs, DL); 105 106 for (SmallVectorImpl<Value *>::iterator I = Objs.begin(), IE = Objs.end(); 107 I != IE; ++I) { 108 V = *I; 109 if (!Visited.insert(V).second) 110 continue; 111 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 112 const Value *O = 113 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 114 if (O->getType()->isPointerTy()) { 115 Working.push_back(O); 116 continue; 117 } 118 } 119 Objects.push_back(const_cast<Value *>(V)); 120 } 121 } while (!Working.empty()); 122 } 123 124 typedef PointerUnion<const Value *, const PseudoSourceValue *> ValueType; 125 typedef SmallVector<PointerIntPair<ValueType, 1, bool>, 4> 126 UnderlyingObjectsVector; 127 128 /// getUnderlyingObjectsForInstr - If this machine instr has memory reference 129 /// information and it can be tracked to a normal reference to a known 130 /// object, return the Value for that object. 131 static void getUnderlyingObjectsForInstr(const MachineInstr *MI, 132 const MachineFrameInfo *MFI, 133 UnderlyingObjectsVector &Objects, 134 const DataLayout &DL) { 135 if (!MI->hasOneMemOperand() || 136 (!(*MI->memoperands_begin())->getValue() && 137 !(*MI->memoperands_begin())->getPseudoValue()) || 138 (*MI->memoperands_begin())->isVolatile()) 139 return; 140 141 if (const PseudoSourceValue *PSV = 142 (*MI->memoperands_begin())->getPseudoValue()) { 143 // Function that contain tail calls don't have unique PseudoSourceValue 144 // objects. Two PseudoSourceValues might refer to the same or overlapping 145 // locations. The client code calling this function assumes this is not the 146 // case. So return a conservative answer of no known object. 147 if (MFI->hasTailCall()) 148 return; 149 150 // For now, ignore PseudoSourceValues which may alias LLVM IR values 151 // because the code that uses this function has no way to cope with 152 // such aliases. 153 if (!PSV->isAliased(MFI)) { 154 bool MayAlias = PSV->mayAlias(MFI); 155 Objects.push_back(UnderlyingObjectsVector::value_type(PSV, MayAlias)); 156 } 157 return; 158 } 159 160 const Value *V = (*MI->memoperands_begin())->getValue(); 161 if (!V) 162 return; 163 164 SmallVector<Value *, 4> Objs; 165 getUnderlyingObjects(V, Objs, DL); 166 167 for (Value *V : Objs) { 168 if (!isIdentifiedObject(V)) { 169 Objects.clear(); 170 return; 171 } 172 173 Objects.push_back(UnderlyingObjectsVector::value_type(V, true)); 174 } 175 } 176 177 void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) { 178 BB = bb; 179 } 180 181 void ScheduleDAGInstrs::finishBlock() { 182 // Subclasses should no longer refer to the old block. 183 BB = nullptr; 184 } 185 186 /// Initialize the DAG and common scheduler state for the current scheduling 187 /// region. This does not actually create the DAG, only clears it. The 188 /// scheduling driver may call BuildSchedGraph multiple times per scheduling 189 /// region. 190 void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb, 191 MachineBasicBlock::iterator begin, 192 MachineBasicBlock::iterator end, 193 unsigned regioninstrs) { 194 assert(bb == BB && "startBlock should set BB"); 195 RegionBegin = begin; 196 RegionEnd = end; 197 NumRegionInstrs = regioninstrs; 198 } 199 200 /// Close the current scheduling region. Don't clear any state in case the 201 /// driver wants to refer to the previous scheduling region. 202 void ScheduleDAGInstrs::exitRegion() { 203 // Nothing to do. 204 } 205 206 /// addSchedBarrierDeps - Add dependencies from instructions in the current 207 /// list of instructions being scheduled to scheduling barrier by adding 208 /// the exit SU to the register defs and use list. This is because we want to 209 /// make sure instructions which define registers that are either used by 210 /// the terminator or are live-out are properly scheduled. This is 211 /// especially important when the definition latency of the return value(s) 212 /// are too high to be hidden by the branch or when the liveout registers 213 /// used by instructions in the fallthrough block. 214 void ScheduleDAGInstrs::addSchedBarrierDeps() { 215 MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : nullptr; 216 ExitSU.setInstr(ExitMI); 217 bool AllDepKnown = ExitMI && 218 (ExitMI->isCall() || ExitMI->isBarrier()); 219 if (ExitMI && AllDepKnown) { 220 // If it's a call or a barrier, add dependencies on the defs and uses of 221 // instruction. 222 for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) { 223 const MachineOperand &MO = ExitMI->getOperand(i); 224 if (!MO.isReg() || MO.isDef()) continue; 225 unsigned Reg = MO.getReg(); 226 if (Reg == 0) continue; 227 228 if (TRI->isPhysicalRegister(Reg)) 229 Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg)); 230 else if (MO.readsReg()) // ignore undef operands 231 addVRegUseDeps(&ExitSU, i); 232 } 233 } else { 234 // For others, e.g. fallthrough, conditional branch, assume the exit 235 // uses all the registers that are livein to the successor blocks. 236 assert(Uses.empty() && "Uses in set before adding deps?"); 237 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), 238 SE = BB->succ_end(); SI != SE; ++SI) 239 for (const auto &LI : (*SI)->liveins()) { 240 if (!Uses.contains(LI.PhysReg)) 241 Uses.insert(PhysRegSUOper(&ExitSU, -1, LI.PhysReg)); 242 } 243 } 244 } 245 246 /// MO is an operand of SU's instruction that defines a physical register. Add 247 /// data dependencies from SU to any uses of the physical register. 248 void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) { 249 const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx); 250 assert(MO.isDef() && "expect physreg def"); 251 252 // Ask the target if address-backscheduling is desirable, and if so how much. 253 const TargetSubtargetInfo &ST = MF.getSubtarget(); 254 255 for (MCRegAliasIterator Alias(MO.getReg(), TRI, true); 256 Alias.isValid(); ++Alias) { 257 if (!Uses.contains(*Alias)) 258 continue; 259 for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) { 260 SUnit *UseSU = I->SU; 261 if (UseSU == SU) 262 continue; 263 264 // Adjust the dependence latency using operand def/use information, 265 // then allow the target to perform its own adjustments. 266 int UseOp = I->OpIdx; 267 MachineInstr *RegUse = nullptr; 268 SDep Dep; 269 if (UseOp < 0) 270 Dep = SDep(SU, SDep::Artificial); 271 else { 272 // Set the hasPhysRegDefs only for physreg defs that have a use within 273 // the scheduling region. 274 SU->hasPhysRegDefs = true; 275 Dep = SDep(SU, SDep::Data, *Alias); 276 RegUse = UseSU->getInstr(); 277 } 278 Dep.setLatency( 279 SchedModel.computeOperandLatency(SU->getInstr(), OperIdx, RegUse, 280 UseOp)); 281 282 ST.adjustSchedDependency(SU, UseSU, Dep); 283 UseSU->addPred(Dep); 284 } 285 } 286 } 287 288 /// addPhysRegDeps - Add register dependencies (data, anti, and output) from 289 /// this SUnit to following instructions in the same scheduling region that 290 /// depend the physical register referenced at OperIdx. 291 void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) { 292 MachineInstr *MI = SU->getInstr(); 293 MachineOperand &MO = MI->getOperand(OperIdx); 294 295 // Optionally add output and anti dependencies. For anti 296 // dependencies we use a latency of 0 because for a multi-issue 297 // target we want to allow the defining instruction to issue 298 // in the same cycle as the using instruction. 299 // TODO: Using a latency of 1 here for output dependencies assumes 300 // there's no cost for reusing registers. 301 SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output; 302 for (MCRegAliasIterator Alias(MO.getReg(), TRI, true); 303 Alias.isValid(); ++Alias) { 304 if (!Defs.contains(*Alias)) 305 continue; 306 for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) { 307 SUnit *DefSU = I->SU; 308 if (DefSU == &ExitSU) 309 continue; 310 if (DefSU != SU && 311 (Kind != SDep::Output || !MO.isDead() || 312 !DefSU->getInstr()->registerDefIsDead(*Alias))) { 313 if (Kind == SDep::Anti) 314 DefSU->addPred(SDep(SU, Kind, /*Reg=*/*Alias)); 315 else { 316 SDep Dep(SU, Kind, /*Reg=*/*Alias); 317 Dep.setLatency( 318 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr())); 319 DefSU->addPred(Dep); 320 } 321 } 322 } 323 } 324 325 if (!MO.isDef()) { 326 SU->hasPhysRegUses = true; 327 // Either insert a new Reg2SUnits entry with an empty SUnits list, or 328 // retrieve the existing SUnits list for this register's uses. 329 // Push this SUnit on the use list. 330 Uses.insert(PhysRegSUOper(SU, OperIdx, MO.getReg())); 331 if (RemoveKillFlags) 332 MO.setIsKill(false); 333 } 334 else { 335 addPhysRegDataDeps(SU, OperIdx); 336 unsigned Reg = MO.getReg(); 337 338 // clear this register's use list 339 if (Uses.contains(Reg)) 340 Uses.eraseAll(Reg); 341 342 if (!MO.isDead()) { 343 Defs.eraseAll(Reg); 344 } else if (SU->isCall) { 345 // Calls will not be reordered because of chain dependencies (see 346 // below). Since call operands are dead, calls may continue to be added 347 // to the DefList making dependence checking quadratic in the size of 348 // the block. Instead, we leave only one call at the back of the 349 // DefList. 350 Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg); 351 Reg2SUnitsMap::iterator B = P.first; 352 Reg2SUnitsMap::iterator I = P.second; 353 for (bool isBegin = I == B; !isBegin; /* empty */) { 354 isBegin = (--I) == B; 355 if (!I->SU->isCall) 356 break; 357 I = Defs.erase(I); 358 } 359 } 360 361 // Defs are pushed in the order they are visited and never reordered. 362 Defs.insert(PhysRegSUOper(SU, OperIdx, Reg)); 363 } 364 } 365 366 LaneBitmask ScheduleDAGInstrs::getLaneMaskForMO(const MachineOperand &MO) const 367 { 368 unsigned Reg = MO.getReg(); 369 // No point in tracking lanemasks if we don't have interesting subregisters. 370 const TargetRegisterClass &RC = *MRI.getRegClass(Reg); 371 if (!RC.HasDisjunctSubRegs) 372 return ~0u; 373 374 unsigned SubReg = MO.getSubReg(); 375 if (SubReg == 0) 376 return RC.getLaneMask(); 377 return TRI->getSubRegIndexLaneMask(SubReg); 378 } 379 380 /// addVRegDefDeps - Add register output and data dependencies from this SUnit 381 /// to instructions that occur later in the same scheduling region if they read 382 /// from or write to the virtual register defined at OperIdx. 383 /// 384 /// TODO: Hoist loop induction variable increments. This has to be 385 /// reevaluated. Generally, IV scheduling should be done before coalescing. 386 void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) { 387 MachineInstr *MI = SU->getInstr(); 388 MachineOperand &MO = MI->getOperand(OperIdx); 389 unsigned Reg = MO.getReg(); 390 391 LaneBitmask DefLaneMask; 392 LaneBitmask KillLaneMask; 393 if (TrackLaneMasks) { 394 bool IsKill = MO.getSubReg() == 0 || MO.isUndef(); 395 DefLaneMask = getLaneMaskForMO(MO); 396 // If we have a <read-undef> flag, none of the lane values comes from an 397 // earlier instruction. 398 KillLaneMask = IsKill ? ~0u : DefLaneMask; 399 400 // Clear undef flag, we'll re-add it later once we know which subregister 401 // Def is first. 402 MO.setIsUndef(false); 403 } else { 404 DefLaneMask = ~0u; 405 KillLaneMask = ~0u; 406 } 407 408 if (MO.isDead()) { 409 assert(CurrentVRegUses.find(Reg) == CurrentVRegUses.end() && 410 "Dead defs should have no uses"); 411 } else { 412 // Add data dependence to all uses we found so far. 413 const TargetSubtargetInfo &ST = MF.getSubtarget(); 414 for (VReg2SUnitOperIdxMultiMap::iterator I = CurrentVRegUses.find(Reg), 415 E = CurrentVRegUses.end(); I != E; /*empty*/) { 416 LaneBitmask LaneMask = I->LaneMask; 417 // Ignore uses of other lanes. 418 if ((LaneMask & KillLaneMask) == 0) { 419 ++I; 420 continue; 421 } 422 423 if ((LaneMask & DefLaneMask) != 0) { 424 SUnit *UseSU = I->SU; 425 MachineInstr *Use = UseSU->getInstr(); 426 SDep Dep(SU, SDep::Data, Reg); 427 Dep.setLatency(SchedModel.computeOperandLatency(MI, OperIdx, Use, 428 I->OperandIndex)); 429 ST.adjustSchedDependency(SU, UseSU, Dep); 430 UseSU->addPred(Dep); 431 } 432 433 LaneMask &= ~KillLaneMask; 434 // If we found a Def for all lanes of this use, remove it from the list. 435 if (LaneMask != 0) { 436 I->LaneMask = LaneMask; 437 ++I; 438 } else 439 I = CurrentVRegUses.erase(I); 440 } 441 } 442 443 // Shortcut: Singly defined vregs do not have output/anti dependencies. 444 if (MRI.hasOneDef(Reg)) 445 return; 446 447 // Add output dependence to the next nearest defs of this vreg. 448 // 449 // Unless this definition is dead, the output dependence should be 450 // transitively redundant with antidependencies from this definition's 451 // uses. We're conservative for now until we have a way to guarantee the uses 452 // are not eliminated sometime during scheduling. The output dependence edge 453 // is also useful if output latency exceeds def-use latency. 454 LaneBitmask LaneMask = DefLaneMask; 455 for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg), 456 CurrentVRegDefs.end())) { 457 // Ignore defs for other lanes. 458 if ((V2SU.LaneMask & LaneMask) == 0) 459 continue; 460 // Add an output dependence. 461 SUnit *DefSU = V2SU.SU; 462 // Ignore additional defs of the same lanes in one instruction. This can 463 // happen because lanemasks are shared for targets with too many 464 // subregisters. We also use some representration tricks/hacks where we 465 // add super-register defs/uses, to imply that although we only access parts 466 // of the reg we care about the full one. 467 if (DefSU == SU) 468 continue; 469 SDep Dep(SU, SDep::Output, Reg); 470 Dep.setLatency( 471 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr())); 472 DefSU->addPred(Dep); 473 474 // Update current definition. This can get tricky if the def was about a 475 // bigger lanemask before. We then have to shrink it and create a new 476 // VReg2SUnit for the non-overlapping part. 477 LaneBitmask OverlapMask = V2SU.LaneMask & LaneMask; 478 LaneBitmask NonOverlapMask = V2SU.LaneMask & ~LaneMask; 479 if (NonOverlapMask != 0) 480 CurrentVRegDefs.insert(VReg2SUnit(Reg, NonOverlapMask, V2SU.SU)); 481 V2SU.SU = SU; 482 V2SU.LaneMask = OverlapMask; 483 } 484 // If there was no CurrentVRegDefs entry for some lanes yet, create one. 485 if (LaneMask != 0) 486 CurrentVRegDefs.insert(VReg2SUnit(Reg, LaneMask, SU)); 487 } 488 489 /// addVRegUseDeps - Add a register data dependency if the instruction that 490 /// defines the virtual register used at OperIdx is mapped to an SUnit. Add a 491 /// register antidependency from this SUnit to instructions that occur later in 492 /// the same scheduling region if they write the virtual register. 493 /// 494 /// TODO: Handle ExitSU "uses" properly. 495 void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) { 496 const MachineInstr *MI = SU->getInstr(); 497 const MachineOperand &MO = MI->getOperand(OperIdx); 498 unsigned Reg = MO.getReg(); 499 500 // Remember the use. Data dependencies will be added when we find the def. 501 LaneBitmask LaneMask = TrackLaneMasks ? getLaneMaskForMO(MO) : ~0u; 502 CurrentVRegUses.insert(VReg2SUnitOperIdx(Reg, LaneMask, OperIdx, SU)); 503 504 // Add antidependences to the following defs of the vreg. 505 for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg), 506 CurrentVRegDefs.end())) { 507 // Ignore defs for unrelated lanes. 508 LaneBitmask PrevDefLaneMask = V2SU.LaneMask; 509 if ((PrevDefLaneMask & LaneMask) == 0) 510 continue; 511 if (V2SU.SU == SU) 512 continue; 513 514 V2SU.SU->addPred(SDep(SU, SDep::Anti, Reg)); 515 } 516 } 517 518 /// Return true if MI is an instruction we are unable to reason about 519 /// (like a call or something with unmodeled side effects). 520 static inline bool isGlobalMemoryObject(AliasAnalysis *AA, MachineInstr *MI) { 521 return MI->isCall() || MI->hasUnmodeledSideEffects() || 522 (MI->hasOrderedMemoryRef() && 523 (!MI->mayLoad() || !MI->isInvariantLoad(AA))); 524 } 525 526 // This MI might have either incomplete info, or known to be unsafe 527 // to deal with (i.e. volatile object). 528 static inline bool isUnsafeMemoryObject(MachineInstr *MI, 529 const MachineFrameInfo *MFI, 530 const DataLayout &DL) { 531 if (!MI || MI->memoperands_empty()) 532 return true; 533 // We purposefully do no check for hasOneMemOperand() here 534 // in hope to trigger an assert downstream in order to 535 // finish implementation. 536 if ((*MI->memoperands_begin())->isVolatile() || 537 MI->hasUnmodeledSideEffects()) 538 return true; 539 540 if ((*MI->memoperands_begin())->getPseudoValue()) { 541 // Similarly to getUnderlyingObjectForInstr: 542 // For now, ignore PseudoSourceValues which may alias LLVM IR values 543 // because the code that uses this function has no way to cope with 544 // such aliases. 545 return true; 546 } 547 548 const Value *V = (*MI->memoperands_begin())->getValue(); 549 if (!V) 550 return true; 551 552 SmallVector<Value *, 4> Objs; 553 getUnderlyingObjects(V, Objs, DL); 554 for (Value *V : Objs) { 555 // Does this pointer refer to a distinct and identifiable object? 556 if (!isIdentifiedObject(V)) 557 return true; 558 } 559 560 return false; 561 } 562 563 /// This returns true if the two MIs need a chain edge between them. 564 /// If these are not even memory operations, we still may need 565 /// chain deps between them. The question really is - could 566 /// these two MIs be reordered during scheduling from memory dependency 567 /// point of view. 568 static bool MIsNeedChainEdge(AliasAnalysis *AA, const MachineFrameInfo *MFI, 569 const DataLayout &DL, MachineInstr *MIa, 570 MachineInstr *MIb) { 571 const MachineFunction *MF = MIa->getParent()->getParent(); 572 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 573 574 // Cover a trivial case - no edge is need to itself. 575 if (MIa == MIb) 576 return false; 577 578 // Let the target decide if memory accesses cannot possibly overlap. 579 if ((MIa->mayLoad() || MIa->mayStore()) && 580 (MIb->mayLoad() || MIb->mayStore())) 581 if (TII->areMemAccessesTriviallyDisjoint(MIa, MIb, AA)) 582 return false; 583 584 // FIXME: Need to handle multiple memory operands to support all targets. 585 if (!MIa->hasOneMemOperand() || !MIb->hasOneMemOperand()) 586 return true; 587 588 if (isUnsafeMemoryObject(MIa, MFI, DL) || isUnsafeMemoryObject(MIb, MFI, DL)) 589 return true; 590 591 // If we are dealing with two "normal" loads, we do not need an edge 592 // between them - they could be reordered. 593 if (!MIa->mayStore() && !MIb->mayStore()) 594 return false; 595 596 // To this point analysis is generic. From here on we do need AA. 597 if (!AA) 598 return true; 599 600 MachineMemOperand *MMOa = *MIa->memoperands_begin(); 601 MachineMemOperand *MMOb = *MIb->memoperands_begin(); 602 603 if (!MMOa->getValue() || !MMOb->getValue()) 604 return true; 605 606 // The following interface to AA is fashioned after DAGCombiner::isAlias 607 // and operates with MachineMemOperand offset with some important 608 // assumptions: 609 // - LLVM fundamentally assumes flat address spaces. 610 // - MachineOperand offset can *only* result from legalization and 611 // cannot affect queries other than the trivial case of overlap 612 // checking. 613 // - These offsets never wrap and never step outside 614 // of allocated objects. 615 // - There should never be any negative offsets here. 616 // 617 // FIXME: Modify API to hide this math from "user" 618 // FIXME: Even before we go to AA we can reason locally about some 619 // memory objects. It can save compile time, and possibly catch some 620 // corner cases not currently covered. 621 622 assert ((MMOa->getOffset() >= 0) && "Negative MachineMemOperand offset"); 623 assert ((MMOb->getOffset() >= 0) && "Negative MachineMemOperand offset"); 624 625 int64_t MinOffset = std::min(MMOa->getOffset(), MMOb->getOffset()); 626 int64_t Overlapa = MMOa->getSize() + MMOa->getOffset() - MinOffset; 627 int64_t Overlapb = MMOb->getSize() + MMOb->getOffset() - MinOffset; 628 629 AliasResult AAResult = 630 AA->alias(MemoryLocation(MMOa->getValue(), Overlapa, 631 UseTBAA ? MMOa->getAAInfo() : AAMDNodes()), 632 MemoryLocation(MMOb->getValue(), Overlapb, 633 UseTBAA ? MMOb->getAAInfo() : AAMDNodes())); 634 635 return (AAResult != NoAlias); 636 } 637 638 /// This recursive function iterates over chain deps of SUb looking for 639 /// "latest" node that needs a chain edge to SUa. 640 static unsigned iterateChainSucc(AliasAnalysis *AA, const MachineFrameInfo *MFI, 641 const DataLayout &DL, SUnit *SUa, SUnit *SUb, 642 SUnit *ExitSU, unsigned *Depth, 643 SmallPtrSetImpl<const SUnit *> &Visited) { 644 if (!SUa || !SUb || SUb == ExitSU) 645 return *Depth; 646 647 // Remember visited nodes. 648 if (!Visited.insert(SUb).second) 649 return *Depth; 650 // If there is _some_ dependency already in place, do not 651 // descend any further. 652 // TODO: Need to make sure that if that dependency got eliminated or ignored 653 // for any reason in the future, we would not violate DAG topology. 654 // Currently it does not happen, but makes an implicit assumption about 655 // future implementation. 656 // 657 // Independently, if we encounter node that is some sort of global 658 // object (like a call) we already have full set of dependencies to it 659 // and we can stop descending. 660 if (SUa->isSucc(SUb) || 661 isGlobalMemoryObject(AA, SUb->getInstr())) 662 return *Depth; 663 664 // If we do need an edge, or we have exceeded depth budget, 665 // add that edge to the predecessors chain of SUb, 666 // and stop descending. 667 if (*Depth > 200 || 668 MIsNeedChainEdge(AA, MFI, DL, SUa->getInstr(), SUb->getInstr())) { 669 SUb->addPred(SDep(SUa, SDep::MayAliasMem)); 670 return *Depth; 671 } 672 // Track current depth. 673 (*Depth)++; 674 // Iterate over memory dependencies only. 675 for (SUnit::const_succ_iterator I = SUb->Succs.begin(), E = SUb->Succs.end(); 676 I != E; ++I) 677 if (I->isNormalMemoryOrBarrier()) 678 iterateChainSucc(AA, MFI, DL, SUa, I->getSUnit(), ExitSU, Depth, Visited); 679 return *Depth; 680 } 681 682 /// This function assumes that "downward" from SU there exist 683 /// tail/leaf of already constructed DAG. It iterates downward and 684 /// checks whether SU can be aliasing any node dominated 685 /// by it. 686 static void adjustChainDeps(AliasAnalysis *AA, const MachineFrameInfo *MFI, 687 const DataLayout &DL, SUnit *SU, SUnit *ExitSU, 688 std::set<SUnit *> &CheckList, 689 unsigned LatencyToLoad) { 690 if (!SU) 691 return; 692 693 SmallPtrSet<const SUnit*, 16> Visited; 694 unsigned Depth = 0; 695 696 for (std::set<SUnit *>::iterator I = CheckList.begin(), IE = CheckList.end(); 697 I != IE; ++I) { 698 if (SU == *I) 699 continue; 700 if (MIsNeedChainEdge(AA, MFI, DL, SU->getInstr(), (*I)->getInstr())) { 701 SDep Dep(SU, SDep::MayAliasMem); 702 Dep.setLatency(((*I)->getInstr()->mayLoad()) ? LatencyToLoad : 0); 703 (*I)->addPred(Dep); 704 } 705 706 // Iterate recursively over all previously added memory chain 707 // successors. Keep track of visited nodes. 708 for (SUnit::const_succ_iterator J = (*I)->Succs.begin(), 709 JE = (*I)->Succs.end(); J != JE; ++J) 710 if (J->isNormalMemoryOrBarrier()) 711 iterateChainSucc(AA, MFI, DL, SU, J->getSUnit(), ExitSU, &Depth, 712 Visited); 713 } 714 } 715 716 /// Check whether two objects need a chain edge, if so, add it 717 /// otherwise remember the rejected SU. 718 static inline void addChainDependency(AliasAnalysis *AA, 719 const MachineFrameInfo *MFI, 720 const DataLayout &DL, SUnit *SUa, 721 SUnit *SUb, std::set<SUnit *> &RejectList, 722 unsigned TrueMemOrderLatency = 0, 723 bool isNormalMemory = false) { 724 // If this is a false dependency, 725 // do not add the edge, but remember the rejected node. 726 if (MIsNeedChainEdge(AA, MFI, DL, SUa->getInstr(), SUb->getInstr())) { 727 SDep Dep(SUa, isNormalMemory ? SDep::MayAliasMem : SDep::Barrier); 728 Dep.setLatency(TrueMemOrderLatency); 729 SUb->addPred(Dep); 730 } 731 else { 732 // Duplicate entries should be ignored. 733 RejectList.insert(SUb); 734 DEBUG(dbgs() << "\tReject chain dep between SU(" 735 << SUa->NodeNum << ") and SU(" 736 << SUb->NodeNum << ")\n"); 737 } 738 } 739 740 /// Create an SUnit for each real instruction, numbered in top-down topological 741 /// order. The instruction order A < B, implies that no edge exists from B to A. 742 /// 743 /// Map each real instruction to its SUnit. 744 /// 745 /// After initSUnits, the SUnits vector cannot be resized and the scheduler may 746 /// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs 747 /// instead of pointers. 748 /// 749 /// MachineScheduler relies on initSUnits numbering the nodes by their order in 750 /// the original instruction list. 751 void ScheduleDAGInstrs::initSUnits() { 752 // We'll be allocating one SUnit for each real instruction in the region, 753 // which is contained within a basic block. 754 SUnits.reserve(NumRegionInstrs); 755 756 for (MachineBasicBlock::iterator I = RegionBegin; I != RegionEnd; ++I) { 757 MachineInstr *MI = I; 758 if (MI->isDebugValue()) 759 continue; 760 761 SUnit *SU = newSUnit(MI); 762 MISUnitMap[MI] = SU; 763 764 SU->isCall = MI->isCall(); 765 SU->isCommutable = MI->isCommutable(); 766 767 // Assign the Latency field of SU using target-provided information. 768 SU->Latency = SchedModel.computeInstrLatency(SU->getInstr()); 769 770 // If this SUnit uses a reserved or unbuffered resource, mark it as such. 771 // 772 // Reserved resources block an instruction from issuing and stall the 773 // entire pipeline. These are identified by BufferSize=0. 774 // 775 // Unbuffered resources prevent execution of subsequent instructions that 776 // require the same resources. This is used for in-order execution pipelines 777 // within an out-of-order core. These are identified by BufferSize=1. 778 if (SchedModel.hasInstrSchedModel()) { 779 const MCSchedClassDesc *SC = getSchedClass(SU); 780 for (TargetSchedModel::ProcResIter 781 PI = SchedModel.getWriteProcResBegin(SC), 782 PE = SchedModel.getWriteProcResEnd(SC); PI != PE; ++PI) { 783 switch (SchedModel.getProcResource(PI->ProcResourceIdx)->BufferSize) { 784 case 0: 785 SU->hasReservedResource = true; 786 break; 787 case 1: 788 SU->isUnbuffered = true; 789 break; 790 default: 791 break; 792 } 793 } 794 } 795 } 796 } 797 798 void ScheduleDAGInstrs::collectVRegUses(SUnit *SU) { 799 const MachineInstr *MI = SU->getInstr(); 800 for (const MachineOperand &MO : MI->operands()) { 801 if (!MO.isReg()) 802 continue; 803 if (!MO.readsReg()) 804 continue; 805 if (TrackLaneMasks && !MO.isUse()) 806 continue; 807 808 unsigned Reg = MO.getReg(); 809 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 810 continue; 811 812 // Ignore re-defs. 813 if (TrackLaneMasks) { 814 bool FoundDef = false; 815 for (const MachineOperand &MO2 : MI->operands()) { 816 if (MO2.isReg() && MO2.isDef() && MO2.getReg() == Reg && !MO2.isDead()) { 817 FoundDef = true; 818 break; 819 } 820 } 821 if (FoundDef) 822 continue; 823 } 824 825 // Record this local VReg use. 826 VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg); 827 for (; UI != VRegUses.end(); ++UI) { 828 if (UI->SU == SU) 829 break; 830 } 831 if (UI == VRegUses.end()) 832 VRegUses.insert(VReg2SUnit(Reg, 0, SU)); 833 } 834 } 835 836 /// If RegPressure is non-null, compute register pressure as a side effect. The 837 /// DAG builder is an efficient place to do it because it already visits 838 /// operands. 839 void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA, 840 RegPressureTracker *RPTracker, 841 PressureDiffs *PDiffs, 842 LiveIntervals *LIS, 843 bool TrackLaneMasks) { 844 const TargetSubtargetInfo &ST = MF.getSubtarget(); 845 bool UseAA = EnableAASchedMI.getNumOccurrences() > 0 ? EnableAASchedMI 846 : ST.useAA(); 847 AliasAnalysis *AAForDep = UseAA ? AA : nullptr; 848 849 this->TrackLaneMasks = TrackLaneMasks; 850 MISUnitMap.clear(); 851 ScheduleDAG::clearDAG(); 852 853 // Create an SUnit for each real instruction. 854 initSUnits(); 855 856 if (PDiffs) 857 PDiffs->init(SUnits.size()); 858 859 // We build scheduling units by walking a block's instruction list from bottom 860 // to top. 861 862 // Remember where a generic side-effecting instruction is as we proceed. 863 SUnit *BarrierChain = nullptr, *AliasChain = nullptr; 864 865 // Memory references to specific known memory locations are tracked 866 // so that they can be given more precise dependencies. We track 867 // separately the known memory locations that may alias and those 868 // that are known not to alias 869 MapVector<ValueType, std::vector<SUnit *> > AliasMemDefs, NonAliasMemDefs; 870 MapVector<ValueType, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses; 871 std::set<SUnit*> RejectMemNodes; 872 873 // Remove any stale debug info; sometimes BuildSchedGraph is called again 874 // without emitting the info from the previous call. 875 DbgValues.clear(); 876 FirstDbgValue = nullptr; 877 878 assert(Defs.empty() && Uses.empty() && 879 "Only BuildGraph should update Defs/Uses"); 880 Defs.setUniverse(TRI->getNumRegs()); 881 Uses.setUniverse(TRI->getNumRegs()); 882 883 assert(CurrentVRegDefs.empty() && "nobody else should use CurrentVRegDefs"); 884 assert(CurrentVRegUses.empty() && "nobody else should use CurrentVRegUses"); 885 unsigned NumVirtRegs = MRI.getNumVirtRegs(); 886 CurrentVRegDefs.setUniverse(NumVirtRegs); 887 CurrentVRegUses.setUniverse(NumVirtRegs); 888 889 VRegUses.clear(); 890 VRegUses.setUniverse(NumVirtRegs); 891 892 // Model data dependencies between instructions being scheduled and the 893 // ExitSU. 894 addSchedBarrierDeps(); 895 896 // Walk the list of instructions, from bottom moving up. 897 MachineInstr *DbgMI = nullptr; 898 for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin; 899 MII != MIE; --MII) { 900 MachineInstr *MI = std::prev(MII); 901 if (MI && DbgMI) { 902 DbgValues.push_back(std::make_pair(DbgMI, MI)); 903 DbgMI = nullptr; 904 } 905 906 if (MI->isDebugValue()) { 907 DbgMI = MI; 908 continue; 909 } 910 SUnit *SU = MISUnitMap[MI]; 911 assert(SU && "No SUnit mapped to this MI"); 912 913 if (RPTracker) { 914 collectVRegUses(SU); 915 916 RegisterOperands RegOpers; 917 RegOpers.collect(*MI, *TRI, MRI, TrackLaneMasks, false); 918 if (TrackLaneMasks) { 919 SlotIndex SlotIdx = LIS->getInstructionIndex(MI); 920 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx); 921 } 922 if (PDiffs != nullptr) 923 PDiffs->addInstruction(SU->NodeNum, RegOpers, MRI); 924 925 RPTracker->recedeSkipDebugValues(); 926 assert(&*RPTracker->getPos() == MI && "RPTracker in sync"); 927 RPTracker->recede(RegOpers); 928 } 929 930 assert( 931 (CanHandleTerminators || (!MI->isTerminator() && !MI->isPosition())) && 932 "Cannot schedule terminators or labels!"); 933 934 // Add register-based dependencies (data, anti, and output). 935 bool HasVRegDef = false; 936 for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) { 937 const MachineOperand &MO = MI->getOperand(j); 938 if (!MO.isReg()) continue; 939 unsigned Reg = MO.getReg(); 940 if (Reg == 0) continue; 941 942 if (TRI->isPhysicalRegister(Reg)) 943 addPhysRegDeps(SU, j); 944 else { 945 if (MO.isDef()) { 946 HasVRegDef = true; 947 addVRegDefDeps(SU, j); 948 } 949 else if (MO.readsReg()) // ignore undef operands 950 addVRegUseDeps(SU, j); 951 } 952 } 953 // If we haven't seen any uses in this scheduling region, create a 954 // dependence edge to ExitSU to model the live-out latency. This is required 955 // for vreg defs with no in-region use, and prefetches with no vreg def. 956 // 957 // FIXME: NumDataSuccs would be more precise than NumSuccs here. This 958 // check currently relies on being called before adding chain deps. 959 if (SU->NumSuccs == 0 && SU->Latency > 1 960 && (HasVRegDef || MI->mayLoad())) { 961 SDep Dep(SU, SDep::Artificial); 962 Dep.setLatency(SU->Latency - 1); 963 ExitSU.addPred(Dep); 964 } 965 966 // Add chain dependencies. 967 // Chain dependencies used to enforce memory order should have 968 // latency of 0 (except for true dependency of Store followed by 969 // aliased Load... we estimate that with a single cycle of latency 970 // assuming the hardware will bypass) 971 // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable 972 // after stack slots are lowered to actual addresses. 973 // TODO: Use an AliasAnalysis and do real alias-analysis queries, and 974 // produce more precise dependence information. 975 unsigned TrueMemOrderLatency = MI->mayStore() ? 1 : 0; 976 if (isGlobalMemoryObject(AA, MI)) { 977 // Be conservative with these and add dependencies on all memory 978 // references, even those that are known to not alias. 979 for (MapVector<ValueType, std::vector<SUnit *> >::iterator I = 980 NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) { 981 for (unsigned i = 0, e = I->second.size(); i != e; ++i) { 982 I->second[i]->addPred(SDep(SU, SDep::Barrier)); 983 } 984 } 985 for (MapVector<ValueType, std::vector<SUnit *> >::iterator I = 986 NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) { 987 for (unsigned i = 0, e = I->second.size(); i != e; ++i) { 988 SDep Dep(SU, SDep::Barrier); 989 Dep.setLatency(TrueMemOrderLatency); 990 I->second[i]->addPred(Dep); 991 } 992 } 993 // Add SU to the barrier chain. 994 if (BarrierChain) 995 BarrierChain->addPred(SDep(SU, SDep::Barrier)); 996 BarrierChain = SU; 997 // This is a barrier event that acts as a pivotal node in the DAG, 998 // so it is safe to clear list of exposed nodes. 999 adjustChainDeps(AA, MFI, MF.getDataLayout(), SU, &ExitSU, RejectMemNodes, 1000 TrueMemOrderLatency); 1001 RejectMemNodes.clear(); 1002 NonAliasMemDefs.clear(); 1003 NonAliasMemUses.clear(); 1004 1005 // fall-through 1006 new_alias_chain: 1007 // Chain all possibly aliasing memory references through SU. 1008 if (AliasChain) { 1009 unsigned ChainLatency = 0; 1010 if (AliasChain->getInstr()->mayLoad()) 1011 ChainLatency = TrueMemOrderLatency; 1012 addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU, AliasChain, 1013 RejectMemNodes, ChainLatency); 1014 } 1015 AliasChain = SU; 1016 for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k) 1017 addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU, 1018 PendingLoads[k], RejectMemNodes, 1019 TrueMemOrderLatency); 1020 for (MapVector<ValueType, std::vector<SUnit *> >::iterator I = 1021 AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I) { 1022 for (unsigned i = 0, e = I->second.size(); i != e; ++i) 1023 addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU, 1024 I->second[i], RejectMemNodes); 1025 } 1026 for (MapVector<ValueType, std::vector<SUnit *> >::iterator I = 1027 AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) { 1028 for (unsigned i = 0, e = I->second.size(); i != e; ++i) 1029 addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU, 1030 I->second[i], RejectMemNodes, TrueMemOrderLatency); 1031 } 1032 // This call must come after calls to addChainDependency() since it 1033 // consumes the 'RejectMemNodes' list that addChainDependency() possibly 1034 // adds to. 1035 adjustChainDeps(AA, MFI, MF.getDataLayout(), SU, &ExitSU, RejectMemNodes, 1036 TrueMemOrderLatency); 1037 PendingLoads.clear(); 1038 AliasMemDefs.clear(); 1039 AliasMemUses.clear(); 1040 } else if (MI->mayStore()) { 1041 // Add dependence on barrier chain, if needed. 1042 // There is no point to check aliasing on barrier event. Even if 1043 // SU and barrier _could_ be reordered, they should not. In addition, 1044 // we have lost all RejectMemNodes below barrier. 1045 if (BarrierChain) 1046 BarrierChain->addPred(SDep(SU, SDep::Barrier)); 1047 1048 UnderlyingObjectsVector Objs; 1049 getUnderlyingObjectsForInstr(MI, MFI, Objs, MF.getDataLayout()); 1050 1051 if (Objs.empty()) { 1052 // Treat all other stores conservatively. 1053 goto new_alias_chain; 1054 } 1055 1056 bool MayAlias = false; 1057 for (UnderlyingObjectsVector::iterator K = Objs.begin(), KE = Objs.end(); 1058 K != KE; ++K) { 1059 ValueType V = K->getPointer(); 1060 bool ThisMayAlias = K->getInt(); 1061 if (ThisMayAlias) 1062 MayAlias = true; 1063 1064 // A store to a specific PseudoSourceValue. Add precise dependencies. 1065 // Record the def in MemDefs, first adding a dep if there is 1066 // an existing def. 1067 MapVector<ValueType, std::vector<SUnit *> >::iterator I = 1068 ((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V)); 1069 MapVector<ValueType, std::vector<SUnit *> >::iterator IE = 1070 ((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end()); 1071 if (I != IE) { 1072 for (unsigned i = 0, e = I->second.size(); i != e; ++i) 1073 addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU, 1074 I->second[i], RejectMemNodes, 0, true); 1075 1076 // If we're not using AA, then we only need one store per object. 1077 if (!AAForDep) 1078 I->second.clear(); 1079 I->second.push_back(SU); 1080 } else { 1081 if (ThisMayAlias) { 1082 if (!AAForDep) 1083 AliasMemDefs[V].clear(); 1084 AliasMemDefs[V].push_back(SU); 1085 } else { 1086 if (!AAForDep) 1087 NonAliasMemDefs[V].clear(); 1088 NonAliasMemDefs[V].push_back(SU); 1089 } 1090 } 1091 // Handle the uses in MemUses, if there are any. 1092 MapVector<ValueType, std::vector<SUnit *> >::iterator J = 1093 ((ThisMayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V)); 1094 MapVector<ValueType, std::vector<SUnit *> >::iterator JE = 1095 ((ThisMayAlias) ? AliasMemUses.end() : NonAliasMemUses.end()); 1096 if (J != JE) { 1097 for (unsigned i = 0, e = J->second.size(); i != e; ++i) 1098 addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU, 1099 J->second[i], RejectMemNodes, 1100 TrueMemOrderLatency, true); 1101 J->second.clear(); 1102 } 1103 } 1104 if (MayAlias) { 1105 // Add dependencies from all the PendingLoads, i.e. loads 1106 // with no underlying object. 1107 for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k) 1108 addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU, 1109 PendingLoads[k], RejectMemNodes, 1110 TrueMemOrderLatency); 1111 // Add dependence on alias chain, if needed. 1112 if (AliasChain) 1113 addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU, AliasChain, 1114 RejectMemNodes); 1115 } 1116 // This call must come after calls to addChainDependency() since it 1117 // consumes the 'RejectMemNodes' list that addChainDependency() possibly 1118 // adds to. 1119 adjustChainDeps(AA, MFI, MF.getDataLayout(), SU, &ExitSU, RejectMemNodes, 1120 TrueMemOrderLatency); 1121 } else if (MI->mayLoad()) { 1122 bool MayAlias = true; 1123 if (MI->isInvariantLoad(AA)) { 1124 // Invariant load, no chain dependencies needed! 1125 } else { 1126 UnderlyingObjectsVector Objs; 1127 getUnderlyingObjectsForInstr(MI, MFI, Objs, MF.getDataLayout()); 1128 1129 if (Objs.empty()) { 1130 // A load with no underlying object. Depend on all 1131 // potentially aliasing stores. 1132 for (MapVector<ValueType, std::vector<SUnit *> >::iterator I = 1133 AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I) 1134 for (unsigned i = 0, e = I->second.size(); i != e; ++i) 1135 addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU, 1136 I->second[i], RejectMemNodes); 1137 1138 PendingLoads.push_back(SU); 1139 MayAlias = true; 1140 } else { 1141 MayAlias = false; 1142 } 1143 1144 for (UnderlyingObjectsVector::iterator 1145 J = Objs.begin(), JE = Objs.end(); J != JE; ++J) { 1146 ValueType V = J->getPointer(); 1147 bool ThisMayAlias = J->getInt(); 1148 1149 if (ThisMayAlias) 1150 MayAlias = true; 1151 1152 // A load from a specific PseudoSourceValue. Add precise dependencies. 1153 MapVector<ValueType, std::vector<SUnit *> >::iterator I = 1154 ((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V)); 1155 MapVector<ValueType, std::vector<SUnit *> >::iterator IE = 1156 ((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end()); 1157 if (I != IE) 1158 for (unsigned i = 0, e = I->second.size(); i != e; ++i) 1159 addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU, 1160 I->second[i], RejectMemNodes, 0, true); 1161 if (ThisMayAlias) 1162 AliasMemUses[V].push_back(SU); 1163 else 1164 NonAliasMemUses[V].push_back(SU); 1165 } 1166 // Add dependencies on alias and barrier chains, if needed. 1167 if (MayAlias && AliasChain) 1168 addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU, AliasChain, 1169 RejectMemNodes); 1170 if (MayAlias) 1171 // This call must come after calls to addChainDependency() since it 1172 // consumes the 'RejectMemNodes' list that addChainDependency() 1173 // possibly adds to. 1174 adjustChainDeps(AA, MFI, MF.getDataLayout(), SU, &ExitSU, 1175 RejectMemNodes, /*Latency=*/0); 1176 if (BarrierChain) 1177 BarrierChain->addPred(SDep(SU, SDep::Barrier)); 1178 } 1179 } 1180 } 1181 if (DbgMI) 1182 FirstDbgValue = DbgMI; 1183 1184 Defs.clear(); 1185 Uses.clear(); 1186 CurrentVRegDefs.clear(); 1187 CurrentVRegUses.clear(); 1188 PendingLoads.clear(); 1189 } 1190 1191 /// \brief Initialize register live-range state for updating kills. 1192 void ScheduleDAGInstrs::startBlockForKills(MachineBasicBlock *BB) { 1193 // Start with no live registers. 1194 LiveRegs.reset(); 1195 1196 // Examine the live-in regs of all successors. 1197 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), 1198 SE = BB->succ_end(); SI != SE; ++SI) { 1199 for (const auto &LI : (*SI)->liveins()) { 1200 // Repeat, for reg and all subregs. 1201 for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true); 1202 SubRegs.isValid(); ++SubRegs) 1203 LiveRegs.set(*SubRegs); 1204 } 1205 } 1206 } 1207 1208 /// \brief If we change a kill flag on the bundle instruction implicit register 1209 /// operands, then we also need to propagate that to any instructions inside 1210 /// the bundle which had the same kill state. 1211 static void toggleBundleKillFlag(MachineInstr *MI, unsigned Reg, 1212 bool NewKillState) { 1213 if (MI->getOpcode() != TargetOpcode::BUNDLE) 1214 return; 1215 1216 // Walk backwards from the last instruction in the bundle to the first. 1217 // Once we set a kill flag on an instruction, we bail out, as otherwise we 1218 // might set it on too many operands. We will clear as many flags as we 1219 // can though. 1220 MachineBasicBlock::instr_iterator Begin = MI->getIterator(); 1221 MachineBasicBlock::instr_iterator End = getBundleEnd(MI); 1222 while (Begin != End) { 1223 for (MachineOperand &MO : (--End)->operands()) { 1224 if (!MO.isReg() || MO.isDef() || Reg != MO.getReg()) 1225 continue; 1226 1227 // DEBUG_VALUE nodes do not contribute to code generation and should 1228 // always be ignored. Failure to do so may result in trying to modify 1229 // KILL flags on DEBUG_VALUE nodes, which is distressing. 1230 if (MO.isDebug()) 1231 continue; 1232 1233 // If the register has the internal flag then it could be killing an 1234 // internal def of the register. In this case, just skip. We only want 1235 // to toggle the flag on operands visible outside the bundle. 1236 if (MO.isInternalRead()) 1237 continue; 1238 1239 if (MO.isKill() == NewKillState) 1240 continue; 1241 MO.setIsKill(NewKillState); 1242 if (NewKillState) 1243 return; 1244 } 1245 } 1246 } 1247 1248 bool ScheduleDAGInstrs::toggleKillFlag(MachineInstr *MI, MachineOperand &MO) { 1249 // Setting kill flag... 1250 if (!MO.isKill()) { 1251 MO.setIsKill(true); 1252 toggleBundleKillFlag(MI, MO.getReg(), true); 1253 return false; 1254 } 1255 1256 // If MO itself is live, clear the kill flag... 1257 if (LiveRegs.test(MO.getReg())) { 1258 MO.setIsKill(false); 1259 toggleBundleKillFlag(MI, MO.getReg(), false); 1260 return false; 1261 } 1262 1263 // If any subreg of MO is live, then create an imp-def for that 1264 // subreg and keep MO marked as killed. 1265 MO.setIsKill(false); 1266 toggleBundleKillFlag(MI, MO.getReg(), false); 1267 bool AllDead = true; 1268 const unsigned SuperReg = MO.getReg(); 1269 MachineInstrBuilder MIB(MF, MI); 1270 for (MCSubRegIterator SubRegs(SuperReg, TRI); SubRegs.isValid(); ++SubRegs) { 1271 if (LiveRegs.test(*SubRegs)) { 1272 MIB.addReg(*SubRegs, RegState::ImplicitDefine); 1273 AllDead = false; 1274 } 1275 } 1276 1277 if(AllDead) { 1278 MO.setIsKill(true); 1279 toggleBundleKillFlag(MI, MO.getReg(), true); 1280 } 1281 return false; 1282 } 1283 1284 // FIXME: Reuse the LivePhysRegs utility for this. 1285 void ScheduleDAGInstrs::fixupKills(MachineBasicBlock *MBB) { 1286 DEBUG(dbgs() << "Fixup kills for BB#" << MBB->getNumber() << '\n'); 1287 1288 LiveRegs.resize(TRI->getNumRegs()); 1289 BitVector killedRegs(TRI->getNumRegs()); 1290 1291 startBlockForKills(MBB); 1292 1293 // Examine block from end to start... 1294 unsigned Count = MBB->size(); 1295 for (MachineBasicBlock::iterator I = MBB->end(), E = MBB->begin(); 1296 I != E; --Count) { 1297 MachineInstr *MI = --I; 1298 if (MI->isDebugValue()) 1299 continue; 1300 1301 // Update liveness. Registers that are defed but not used in this 1302 // instruction are now dead. Mark register and all subregs as they 1303 // are completely defined. 1304 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1305 MachineOperand &MO = MI->getOperand(i); 1306 if (MO.isRegMask()) 1307 LiveRegs.clearBitsNotInMask(MO.getRegMask()); 1308 if (!MO.isReg()) continue; 1309 unsigned Reg = MO.getReg(); 1310 if (Reg == 0) continue; 1311 if (!MO.isDef()) continue; 1312 // Ignore two-addr defs. 1313 if (MI->isRegTiedToUseOperand(i)) continue; 1314 1315 // Repeat for reg and all subregs. 1316 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 1317 SubRegs.isValid(); ++SubRegs) 1318 LiveRegs.reset(*SubRegs); 1319 } 1320 1321 // Examine all used registers and set/clear kill flag. When a 1322 // register is used multiple times we only set the kill flag on 1323 // the first use. Don't set kill flags on undef operands. 1324 killedRegs.reset(); 1325 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1326 MachineOperand &MO = MI->getOperand(i); 1327 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue; 1328 unsigned Reg = MO.getReg(); 1329 if ((Reg == 0) || MRI.isReserved(Reg)) continue; 1330 1331 bool kill = false; 1332 if (!killedRegs.test(Reg)) { 1333 kill = true; 1334 // A register is not killed if any subregs are live... 1335 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) { 1336 if (LiveRegs.test(*SubRegs)) { 1337 kill = false; 1338 break; 1339 } 1340 } 1341 1342 // If subreg is not live, then register is killed if it became 1343 // live in this instruction 1344 if (kill) 1345 kill = !LiveRegs.test(Reg); 1346 } 1347 1348 if (MO.isKill() != kill) { 1349 DEBUG(dbgs() << "Fixing " << MO << " in "); 1350 // Warning: toggleKillFlag may invalidate MO. 1351 toggleKillFlag(MI, MO); 1352 DEBUG(MI->dump()); 1353 DEBUG(if (MI->getOpcode() == TargetOpcode::BUNDLE) { 1354 MachineBasicBlock::instr_iterator Begin = MI->getIterator(); 1355 MachineBasicBlock::instr_iterator End = getBundleEnd(MI); 1356 while (++Begin != End) 1357 DEBUG(Begin->dump()); 1358 }); 1359 } 1360 1361 killedRegs.set(Reg); 1362 } 1363 1364 // Mark any used register (that is not using undef) and subregs as 1365 // now live... 1366 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1367 MachineOperand &MO = MI->getOperand(i); 1368 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue; 1369 unsigned Reg = MO.getReg(); 1370 if ((Reg == 0) || MRI.isReserved(Reg)) continue; 1371 1372 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 1373 SubRegs.isValid(); ++SubRegs) 1374 LiveRegs.set(*SubRegs); 1375 } 1376 } 1377 } 1378 1379 void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const { 1380 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1381 SU->getInstr()->dump(); 1382 #endif 1383 } 1384 1385 std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const { 1386 std::string s; 1387 raw_string_ostream oss(s); 1388 if (SU == &EntrySU) 1389 oss << "<entry>"; 1390 else if (SU == &ExitSU) 1391 oss << "<exit>"; 1392 else 1393 SU->getInstr()->print(oss, /*SkipOpers=*/true); 1394 return oss.str(); 1395 } 1396 1397 /// Return the basic block label. It is not necessarilly unique because a block 1398 /// contains multiple scheduling regions. But it is fine for visualization. 1399 std::string ScheduleDAGInstrs::getDAGName() const { 1400 return "dag." + BB->getFullName(); 1401 } 1402 1403 //===----------------------------------------------------------------------===// 1404 // SchedDFSResult Implementation 1405 //===----------------------------------------------------------------------===// 1406 1407 namespace llvm { 1408 /// \brief Internal state used to compute SchedDFSResult. 1409 class SchedDFSImpl { 1410 SchedDFSResult &R; 1411 1412 /// Join DAG nodes into equivalence classes by their subtree. 1413 IntEqClasses SubtreeClasses; 1414 /// List PredSU, SuccSU pairs that represent data edges between subtrees. 1415 std::vector<std::pair<const SUnit*, const SUnit*> > ConnectionPairs; 1416 1417 struct RootData { 1418 unsigned NodeID; 1419 unsigned ParentNodeID; // Parent node (member of the parent subtree). 1420 unsigned SubInstrCount; // Instr count in this tree only, not children. 1421 1422 RootData(unsigned id): NodeID(id), 1423 ParentNodeID(SchedDFSResult::InvalidSubtreeID), 1424 SubInstrCount(0) {} 1425 1426 unsigned getSparseSetIndex() const { return NodeID; } 1427 }; 1428 1429 SparseSet<RootData> RootSet; 1430 1431 public: 1432 SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) { 1433 RootSet.setUniverse(R.DFSNodeData.size()); 1434 } 1435 1436 /// Return true if this node been visited by the DFS traversal. 1437 /// 1438 /// During visitPostorderNode the Node's SubtreeID is assigned to the Node 1439 /// ID. Later, SubtreeID is updated but remains valid. 1440 bool isVisited(const SUnit *SU) const { 1441 return R.DFSNodeData[SU->NodeNum].SubtreeID 1442 != SchedDFSResult::InvalidSubtreeID; 1443 } 1444 1445 /// Initialize this node's instruction count. We don't need to flag the node 1446 /// visited until visitPostorder because the DAG cannot have cycles. 1447 void visitPreorder(const SUnit *SU) { 1448 R.DFSNodeData[SU->NodeNum].InstrCount = 1449 SU->getInstr()->isTransient() ? 0 : 1; 1450 } 1451 1452 /// Called once for each node after all predecessors are visited. Revisit this 1453 /// node's predecessors and potentially join them now that we know the ILP of 1454 /// the other predecessors. 1455 void visitPostorderNode(const SUnit *SU) { 1456 // Mark this node as the root of a subtree. It may be joined with its 1457 // successors later. 1458 R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum; 1459 RootData RData(SU->NodeNum); 1460 RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1; 1461 1462 // If any predecessors are still in their own subtree, they either cannot be 1463 // joined or are large enough to remain separate. If this parent node's 1464 // total instruction count is not greater than a child subtree by at least 1465 // the subtree limit, then try to join it now since splitting subtrees is 1466 // only useful if multiple high-pressure paths are possible. 1467 unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount; 1468 for (SUnit::const_pred_iterator 1469 PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) { 1470 if (PI->getKind() != SDep::Data) 1471 continue; 1472 unsigned PredNum = PI->getSUnit()->NodeNum; 1473 if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit) 1474 joinPredSubtree(*PI, SU, /*CheckLimit=*/false); 1475 1476 // Either link or merge the TreeData entry from the child to the parent. 1477 if (R.DFSNodeData[PredNum].SubtreeID == PredNum) { 1478 // If the predecessor's parent is invalid, this is a tree edge and the 1479 // current node is the parent. 1480 if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID) 1481 RootSet[PredNum].ParentNodeID = SU->NodeNum; 1482 } 1483 else if (RootSet.count(PredNum)) { 1484 // The predecessor is not a root, but is still in the root set. This 1485 // must be the new parent that it was just joined to. Note that 1486 // RootSet[PredNum].ParentNodeID may either be invalid or may still be 1487 // set to the original parent. 1488 RData.SubInstrCount += RootSet[PredNum].SubInstrCount; 1489 RootSet.erase(PredNum); 1490 } 1491 } 1492 RootSet[SU->NodeNum] = RData; 1493 } 1494 1495 /// Called once for each tree edge after calling visitPostOrderNode on the 1496 /// predecessor. Increment the parent node's instruction count and 1497 /// preemptively join this subtree to its parent's if it is small enough. 1498 void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) { 1499 R.DFSNodeData[Succ->NodeNum].InstrCount 1500 += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount; 1501 joinPredSubtree(PredDep, Succ); 1502 } 1503 1504 /// Add a connection for cross edges. 1505 void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) { 1506 ConnectionPairs.push_back(std::make_pair(PredDep.getSUnit(), Succ)); 1507 } 1508 1509 /// Set each node's subtree ID to the representative ID and record connections 1510 /// between trees. 1511 void finalize() { 1512 SubtreeClasses.compress(); 1513 R.DFSTreeData.resize(SubtreeClasses.getNumClasses()); 1514 assert(SubtreeClasses.getNumClasses() == RootSet.size() 1515 && "number of roots should match trees"); 1516 for (SparseSet<RootData>::const_iterator 1517 RI = RootSet.begin(), RE = RootSet.end(); RI != RE; ++RI) { 1518 unsigned TreeID = SubtreeClasses[RI->NodeID]; 1519 if (RI->ParentNodeID != SchedDFSResult::InvalidSubtreeID) 1520 R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[RI->ParentNodeID]; 1521 R.DFSTreeData[TreeID].SubInstrCount = RI->SubInstrCount; 1522 // Note that SubInstrCount may be greater than InstrCount if we joined 1523 // subtrees across a cross edge. InstrCount will be attributed to the 1524 // original parent, while SubInstrCount will be attributed to the joined 1525 // parent. 1526 } 1527 R.SubtreeConnections.resize(SubtreeClasses.getNumClasses()); 1528 R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses()); 1529 DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n"); 1530 for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) { 1531 R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx]; 1532 DEBUG(dbgs() << " SU(" << Idx << ") in tree " 1533 << R.DFSNodeData[Idx].SubtreeID << '\n'); 1534 } 1535 for (std::vector<std::pair<const SUnit*, const SUnit*> >::const_iterator 1536 I = ConnectionPairs.begin(), E = ConnectionPairs.end(); 1537 I != E; ++I) { 1538 unsigned PredTree = SubtreeClasses[I->first->NodeNum]; 1539 unsigned SuccTree = SubtreeClasses[I->second->NodeNum]; 1540 if (PredTree == SuccTree) 1541 continue; 1542 unsigned Depth = I->first->getDepth(); 1543 addConnection(PredTree, SuccTree, Depth); 1544 addConnection(SuccTree, PredTree, Depth); 1545 } 1546 } 1547 1548 protected: 1549 /// Join the predecessor subtree with the successor that is its DFS 1550 /// parent. Apply some heuristics before joining. 1551 bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ, 1552 bool CheckLimit = true) { 1553 assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges"); 1554 1555 // Check if the predecessor is already joined. 1556 const SUnit *PredSU = PredDep.getSUnit(); 1557 unsigned PredNum = PredSU->NodeNum; 1558 if (R.DFSNodeData[PredNum].SubtreeID != PredNum) 1559 return false; 1560 1561 // Four is the magic number of successors before a node is considered a 1562 // pinch point. 1563 unsigned NumDataSucs = 0; 1564 for (SUnit::const_succ_iterator SI = PredSU->Succs.begin(), 1565 SE = PredSU->Succs.end(); SI != SE; ++SI) { 1566 if (SI->getKind() == SDep::Data) { 1567 if (++NumDataSucs >= 4) 1568 return false; 1569 } 1570 } 1571 if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit) 1572 return false; 1573 R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum; 1574 SubtreeClasses.join(Succ->NodeNum, PredNum); 1575 return true; 1576 } 1577 1578 /// Called by finalize() to record a connection between trees. 1579 void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) { 1580 if (!Depth) 1581 return; 1582 1583 do { 1584 SmallVectorImpl<SchedDFSResult::Connection> &Connections = 1585 R.SubtreeConnections[FromTree]; 1586 for (SmallVectorImpl<SchedDFSResult::Connection>::iterator 1587 I = Connections.begin(), E = Connections.end(); I != E; ++I) { 1588 if (I->TreeID == ToTree) { 1589 I->Level = std::max(I->Level, Depth); 1590 return; 1591 } 1592 } 1593 Connections.push_back(SchedDFSResult::Connection(ToTree, Depth)); 1594 FromTree = R.DFSTreeData[FromTree].ParentTreeID; 1595 } while (FromTree != SchedDFSResult::InvalidSubtreeID); 1596 } 1597 }; 1598 } // namespace llvm 1599 1600 namespace { 1601 /// \brief Manage the stack used by a reverse depth-first search over the DAG. 1602 class SchedDAGReverseDFS { 1603 std::vector<std::pair<const SUnit*, SUnit::const_pred_iterator> > DFSStack; 1604 public: 1605 bool isComplete() const { return DFSStack.empty(); } 1606 1607 void follow(const SUnit *SU) { 1608 DFSStack.push_back(std::make_pair(SU, SU->Preds.begin())); 1609 } 1610 void advance() { ++DFSStack.back().second; } 1611 1612 const SDep *backtrack() { 1613 DFSStack.pop_back(); 1614 return DFSStack.empty() ? nullptr : std::prev(DFSStack.back().second); 1615 } 1616 1617 const SUnit *getCurr() const { return DFSStack.back().first; } 1618 1619 SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; } 1620 1621 SUnit::const_pred_iterator getPredEnd() const { 1622 return getCurr()->Preds.end(); 1623 } 1624 }; 1625 } // anonymous 1626 1627 static bool hasDataSucc(const SUnit *SU) { 1628 for (SUnit::const_succ_iterator 1629 SI = SU->Succs.begin(), SE = SU->Succs.end(); SI != SE; ++SI) { 1630 if (SI->getKind() == SDep::Data && !SI->getSUnit()->isBoundaryNode()) 1631 return true; 1632 } 1633 return false; 1634 } 1635 1636 /// Compute an ILP metric for all nodes in the subDAG reachable via depth-first 1637 /// search from this root. 1638 void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) { 1639 if (!IsBottomUp) 1640 llvm_unreachable("Top-down ILP metric is unimplemnted"); 1641 1642 SchedDFSImpl Impl(*this); 1643 for (ArrayRef<SUnit>::const_iterator 1644 SI = SUnits.begin(), SE = SUnits.end(); SI != SE; ++SI) { 1645 const SUnit *SU = &*SI; 1646 if (Impl.isVisited(SU) || hasDataSucc(SU)) 1647 continue; 1648 1649 SchedDAGReverseDFS DFS; 1650 Impl.visitPreorder(SU); 1651 DFS.follow(SU); 1652 for (;;) { 1653 // Traverse the leftmost path as far as possible. 1654 while (DFS.getPred() != DFS.getPredEnd()) { 1655 const SDep &PredDep = *DFS.getPred(); 1656 DFS.advance(); 1657 // Ignore non-data edges. 1658 if (PredDep.getKind() != SDep::Data 1659 || PredDep.getSUnit()->isBoundaryNode()) { 1660 continue; 1661 } 1662 // An already visited edge is a cross edge, assuming an acyclic DAG. 1663 if (Impl.isVisited(PredDep.getSUnit())) { 1664 Impl.visitCrossEdge(PredDep, DFS.getCurr()); 1665 continue; 1666 } 1667 Impl.visitPreorder(PredDep.getSUnit()); 1668 DFS.follow(PredDep.getSUnit()); 1669 } 1670 // Visit the top of the stack in postorder and backtrack. 1671 const SUnit *Child = DFS.getCurr(); 1672 const SDep *PredDep = DFS.backtrack(); 1673 Impl.visitPostorderNode(Child); 1674 if (PredDep) 1675 Impl.visitPostorderEdge(*PredDep, DFS.getCurr()); 1676 if (DFS.isComplete()) 1677 break; 1678 } 1679 } 1680 Impl.finalize(); 1681 } 1682 1683 /// The root of the given SubtreeID was just scheduled. For all subtrees 1684 /// connected to this tree, record the depth of the connection so that the 1685 /// nearest connected subtrees can be prioritized. 1686 void SchedDFSResult::scheduleTree(unsigned SubtreeID) { 1687 for (SmallVectorImpl<Connection>::const_iterator 1688 I = SubtreeConnections[SubtreeID].begin(), 1689 E = SubtreeConnections[SubtreeID].end(); I != E; ++I) { 1690 SubtreeConnectLevels[I->TreeID] = 1691 std::max(SubtreeConnectLevels[I->TreeID], I->Level); 1692 DEBUG(dbgs() << " Tree: " << I->TreeID 1693 << " @" << SubtreeConnectLevels[I->TreeID] << '\n'); 1694 } 1695 } 1696 1697 LLVM_DUMP_METHOD 1698 void ILPValue::print(raw_ostream &OS) const { 1699 OS << InstrCount << " / " << Length << " = "; 1700 if (!Length) 1701 OS << "BADILP"; 1702 else 1703 OS << format("%g", ((double)InstrCount / Length)); 1704 } 1705 1706 LLVM_DUMP_METHOD 1707 void ILPValue::dump() const { 1708 dbgs() << *this << '\n'; 1709 } 1710 1711 namespace llvm { 1712 1713 LLVM_DUMP_METHOD 1714 raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) { 1715 Val.print(OS); 1716 return OS; 1717 } 1718 1719 } // namespace llvm 1720