1 //===- ScheduleDAG.cpp - Implement the ScheduleDAG class ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file Implements the ScheduleDAG class, which is a base class used by 11 /// scheduling implementation classes. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/ScheduleDAG.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/iterator_range.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 21 #include "llvm/CodeGen/SelectionDAGNodes.h" 22 #include "llvm/CodeGen/TargetInstrInfo.h" 23 #include "llvm/CodeGen/TargetRegisterInfo.h" 24 #include "llvm/CodeGen/TargetSubtargetInfo.h" 25 #include "llvm/Config/llvm-config.h" 26 #include "llvm/Support/CommandLine.h" 27 #include "llvm/Support/Compiler.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/raw_ostream.h" 30 #include <algorithm> 31 #include <cassert> 32 #include <iterator> 33 #include <limits> 34 #include <utility> 35 #include <vector> 36 37 using namespace llvm; 38 39 #define DEBUG_TYPE "pre-RA-sched" 40 41 #ifndef NDEBUG 42 static cl::opt<bool> StressSchedOpt( 43 "stress-sched", cl::Hidden, cl::init(false), 44 cl::desc("Stress test instruction scheduling")); 45 #endif 46 47 void SchedulingPriorityQueue::anchor() {} 48 49 ScheduleDAG::ScheduleDAG(MachineFunction &mf) 50 : TM(mf.getTarget()), TII(mf.getSubtarget().getInstrInfo()), 51 TRI(mf.getSubtarget().getRegisterInfo()), MF(mf), 52 MRI(mf.getRegInfo()) { 53 #ifndef NDEBUG 54 StressSched = StressSchedOpt; 55 #endif 56 } 57 58 ScheduleDAG::~ScheduleDAG() = default; 59 60 void ScheduleDAG::clearDAG() { 61 SUnits.clear(); 62 EntrySU = SUnit(); 63 ExitSU = SUnit(); 64 } 65 66 const MCInstrDesc *ScheduleDAG::getNodeDesc(const SDNode *Node) const { 67 if (!Node || !Node->isMachineOpcode()) return nullptr; 68 return &TII->get(Node->getMachineOpcode()); 69 } 70 71 LLVM_DUMP_METHOD void SDep::dump(const TargetRegisterInfo *TRI) const { 72 switch (getKind()) { 73 case Data: dbgs() << "Data"; break; 74 case Anti: dbgs() << "Anti"; break; 75 case Output: dbgs() << "Out "; break; 76 case Order: dbgs() << "Ord "; break; 77 } 78 79 switch (getKind()) { 80 case Data: 81 dbgs() << " Latency=" << getLatency(); 82 if (TRI && isAssignedRegDep()) 83 dbgs() << " Reg=" << printReg(getReg(), TRI); 84 break; 85 case Anti: 86 case Output: 87 dbgs() << " Latency=" << getLatency(); 88 break; 89 case Order: 90 dbgs() << " Latency=" << getLatency(); 91 switch(Contents.OrdKind) { 92 case Barrier: dbgs() << " Barrier"; break; 93 case MayAliasMem: 94 case MustAliasMem: dbgs() << " Memory"; break; 95 case Artificial: dbgs() << " Artificial"; break; 96 case Weak: dbgs() << " Weak"; break; 97 case Cluster: dbgs() << " Cluster"; break; 98 } 99 break; 100 } 101 } 102 103 bool SUnit::addPred(const SDep &D, bool Required) { 104 // If this node already has this dependence, don't add a redundant one. 105 for (SDep &PredDep : Preds) { 106 // Zero-latency weak edges may be added purely for heuristic ordering. Don't 107 // add them if another kind of edge already exists. 108 if (!Required && PredDep.getSUnit() == D.getSUnit()) 109 return false; 110 if (PredDep.overlaps(D)) { 111 // Extend the latency if needed. Equivalent to 112 // removePred(PredDep) + addPred(D). 113 if (PredDep.getLatency() < D.getLatency()) { 114 SUnit *PredSU = PredDep.getSUnit(); 115 // Find the corresponding successor in N. 116 SDep ForwardD = PredDep; 117 ForwardD.setSUnit(this); 118 for (SDep &SuccDep : PredSU->Succs) { 119 if (SuccDep == ForwardD) { 120 SuccDep.setLatency(D.getLatency()); 121 break; 122 } 123 } 124 PredDep.setLatency(D.getLatency()); 125 } 126 return false; 127 } 128 } 129 // Now add a corresponding succ to N. 130 SDep P = D; 131 P.setSUnit(this); 132 SUnit *N = D.getSUnit(); 133 // Update the bookkeeping. 134 if (D.getKind() == SDep::Data) { 135 assert(NumPreds < std::numeric_limits<unsigned>::max() && 136 "NumPreds will overflow!"); 137 assert(N->NumSuccs < std::numeric_limits<unsigned>::max() && 138 "NumSuccs will overflow!"); 139 ++NumPreds; 140 ++N->NumSuccs; 141 } 142 if (!N->isScheduled) { 143 if (D.isWeak()) { 144 ++WeakPredsLeft; 145 } 146 else { 147 assert(NumPredsLeft < std::numeric_limits<unsigned>::max() && 148 "NumPredsLeft will overflow!"); 149 ++NumPredsLeft; 150 } 151 } 152 if (!isScheduled) { 153 if (D.isWeak()) { 154 ++N->WeakSuccsLeft; 155 } 156 else { 157 assert(N->NumSuccsLeft < std::numeric_limits<unsigned>::max() && 158 "NumSuccsLeft will overflow!"); 159 ++N->NumSuccsLeft; 160 } 161 } 162 Preds.push_back(D); 163 N->Succs.push_back(P); 164 if (P.getLatency() != 0) { 165 this->setDepthDirty(); 166 N->setHeightDirty(); 167 } 168 return true; 169 } 170 171 void SUnit::removePred(const SDep &D) { 172 // Find the matching predecessor. 173 SmallVectorImpl<SDep>::iterator I = llvm::find(Preds, D); 174 if (I == Preds.end()) 175 return; 176 // Find the corresponding successor in N. 177 SDep P = D; 178 P.setSUnit(this); 179 SUnit *N = D.getSUnit(); 180 SmallVectorImpl<SDep>::iterator Succ = llvm::find(N->Succs, P); 181 assert(Succ != N->Succs.end() && "Mismatching preds / succs lists!"); 182 N->Succs.erase(Succ); 183 Preds.erase(I); 184 // Update the bookkeeping. 185 if (P.getKind() == SDep::Data) { 186 assert(NumPreds > 0 && "NumPreds will underflow!"); 187 assert(N->NumSuccs > 0 && "NumSuccs will underflow!"); 188 --NumPreds; 189 --N->NumSuccs; 190 } 191 if (!N->isScheduled) { 192 if (D.isWeak()) 193 --WeakPredsLeft; 194 else { 195 assert(NumPredsLeft > 0 && "NumPredsLeft will underflow!"); 196 --NumPredsLeft; 197 } 198 } 199 if (!isScheduled) { 200 if (D.isWeak()) 201 --N->WeakSuccsLeft; 202 else { 203 assert(N->NumSuccsLeft > 0 && "NumSuccsLeft will underflow!"); 204 --N->NumSuccsLeft; 205 } 206 } 207 if (P.getLatency() != 0) { 208 this->setDepthDirty(); 209 N->setHeightDirty(); 210 } 211 } 212 213 void SUnit::setDepthDirty() { 214 if (!isDepthCurrent) return; 215 SmallVector<SUnit*, 8> WorkList; 216 WorkList.push_back(this); 217 do { 218 SUnit *SU = WorkList.pop_back_val(); 219 SU->isDepthCurrent = false; 220 for (SDep &SuccDep : SU->Succs) { 221 SUnit *SuccSU = SuccDep.getSUnit(); 222 if (SuccSU->isDepthCurrent) 223 WorkList.push_back(SuccSU); 224 } 225 } while (!WorkList.empty()); 226 } 227 228 void SUnit::setHeightDirty() { 229 if (!isHeightCurrent) return; 230 SmallVector<SUnit*, 8> WorkList; 231 WorkList.push_back(this); 232 do { 233 SUnit *SU = WorkList.pop_back_val(); 234 SU->isHeightCurrent = false; 235 for (SDep &PredDep : SU->Preds) { 236 SUnit *PredSU = PredDep.getSUnit(); 237 if (PredSU->isHeightCurrent) 238 WorkList.push_back(PredSU); 239 } 240 } while (!WorkList.empty()); 241 } 242 243 void SUnit::setDepthToAtLeast(unsigned NewDepth) { 244 if (NewDepth <= getDepth()) 245 return; 246 setDepthDirty(); 247 Depth = NewDepth; 248 isDepthCurrent = true; 249 } 250 251 void SUnit::setHeightToAtLeast(unsigned NewHeight) { 252 if (NewHeight <= getHeight()) 253 return; 254 setHeightDirty(); 255 Height = NewHeight; 256 isHeightCurrent = true; 257 } 258 259 /// Calculates the maximal path from the node to the exit. 260 void SUnit::ComputeDepth() { 261 SmallVector<SUnit*, 8> WorkList; 262 WorkList.push_back(this); 263 do { 264 SUnit *Cur = WorkList.back(); 265 266 bool Done = true; 267 unsigned MaxPredDepth = 0; 268 for (const SDep &PredDep : Cur->Preds) { 269 SUnit *PredSU = PredDep.getSUnit(); 270 if (PredSU->isDepthCurrent) 271 MaxPredDepth = std::max(MaxPredDepth, 272 PredSU->Depth + PredDep.getLatency()); 273 else { 274 Done = false; 275 WorkList.push_back(PredSU); 276 } 277 } 278 279 if (Done) { 280 WorkList.pop_back(); 281 if (MaxPredDepth != Cur->Depth) { 282 Cur->setDepthDirty(); 283 Cur->Depth = MaxPredDepth; 284 } 285 Cur->isDepthCurrent = true; 286 } 287 } while (!WorkList.empty()); 288 } 289 290 /// Calculates the maximal path from the node to the entry. 291 void SUnit::ComputeHeight() { 292 SmallVector<SUnit*, 8> WorkList; 293 WorkList.push_back(this); 294 do { 295 SUnit *Cur = WorkList.back(); 296 297 bool Done = true; 298 unsigned MaxSuccHeight = 0; 299 for (const SDep &SuccDep : Cur->Succs) { 300 SUnit *SuccSU = SuccDep.getSUnit(); 301 if (SuccSU->isHeightCurrent) 302 MaxSuccHeight = std::max(MaxSuccHeight, 303 SuccSU->Height + SuccDep.getLatency()); 304 else { 305 Done = false; 306 WorkList.push_back(SuccSU); 307 } 308 } 309 310 if (Done) { 311 WorkList.pop_back(); 312 if (MaxSuccHeight != Cur->Height) { 313 Cur->setHeightDirty(); 314 Cur->Height = MaxSuccHeight; 315 } 316 Cur->isHeightCurrent = true; 317 } 318 } while (!WorkList.empty()); 319 } 320 321 void SUnit::biasCriticalPath() { 322 if (NumPreds < 2) 323 return; 324 325 SUnit::pred_iterator BestI = Preds.begin(); 326 unsigned MaxDepth = BestI->getSUnit()->getDepth(); 327 for (SUnit::pred_iterator I = std::next(BestI), E = Preds.end(); I != E; 328 ++I) { 329 if (I->getKind() == SDep::Data && I->getSUnit()->getDepth() > MaxDepth) 330 BestI = I; 331 } 332 if (BestI != Preds.begin()) 333 std::swap(*Preds.begin(), *BestI); 334 } 335 336 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 337 LLVM_DUMP_METHOD void SUnit::dumpAttributes() const { 338 dbgs() << " # preds left : " << NumPredsLeft << "\n"; 339 dbgs() << " # succs left : " << NumSuccsLeft << "\n"; 340 if (WeakPredsLeft) 341 dbgs() << " # weak preds left : " << WeakPredsLeft << "\n"; 342 if (WeakSuccsLeft) 343 dbgs() << " # weak succs left : " << WeakSuccsLeft << "\n"; 344 dbgs() << " # rdefs left : " << NumRegDefsLeft << "\n"; 345 dbgs() << " Latency : " << Latency << "\n"; 346 dbgs() << " Depth : " << getDepth() << "\n"; 347 dbgs() << " Height : " << getHeight() << "\n"; 348 } 349 350 LLVM_DUMP_METHOD void ScheduleDAG::dumpNodeName(const SUnit &SU) const { 351 if (&SU == &EntrySU) 352 dbgs() << "EntrySU"; 353 else if (&SU == &ExitSU) 354 dbgs() << "ExitSU"; 355 else 356 dbgs() << "SU(" << SU.NodeNum << ")"; 357 } 358 359 LLVM_DUMP_METHOD void ScheduleDAG::dumpNodeAll(const SUnit &SU) const { 360 dumpNode(SU); 361 SU.dumpAttributes(); 362 if (SU.Preds.size() > 0) { 363 dbgs() << " Predecessors:\n"; 364 for (const SDep &Dep : SU.Preds) { 365 dbgs() << " "; 366 dumpNodeName(*Dep.getSUnit()); 367 dbgs() << ": "; 368 Dep.dump(TRI); 369 dbgs() << '\n'; 370 } 371 } 372 if (SU.Succs.size() > 0) { 373 dbgs() << " Successors:\n"; 374 for (const SDep &Dep : SU.Succs) { 375 dbgs() << " "; 376 dumpNodeName(*Dep.getSUnit()); 377 dbgs() << ": "; 378 Dep.dump(TRI); 379 dbgs() << '\n'; 380 } 381 } 382 } 383 #endif 384 385 #ifndef NDEBUG 386 unsigned ScheduleDAG::VerifyScheduledDAG(bool isBottomUp) { 387 bool AnyNotSched = false; 388 unsigned DeadNodes = 0; 389 for (const SUnit &SUnit : SUnits) { 390 if (!SUnit.isScheduled) { 391 if (SUnit.NumPreds == 0 && SUnit.NumSuccs == 0) { 392 ++DeadNodes; 393 continue; 394 } 395 if (!AnyNotSched) 396 dbgs() << "*** Scheduling failed! ***\n"; 397 dumpNode(SUnit); 398 dbgs() << "has not been scheduled!\n"; 399 AnyNotSched = true; 400 } 401 if (SUnit.isScheduled && 402 (isBottomUp ? SUnit.getHeight() : SUnit.getDepth()) > 403 unsigned(std::numeric_limits<int>::max())) { 404 if (!AnyNotSched) 405 dbgs() << "*** Scheduling failed! ***\n"; 406 dumpNode(SUnit); 407 dbgs() << "has an unexpected " 408 << (isBottomUp ? "Height" : "Depth") << " value!\n"; 409 AnyNotSched = true; 410 } 411 if (isBottomUp) { 412 if (SUnit.NumSuccsLeft != 0) { 413 if (!AnyNotSched) 414 dbgs() << "*** Scheduling failed! ***\n"; 415 dumpNode(SUnit); 416 dbgs() << "has successors left!\n"; 417 AnyNotSched = true; 418 } 419 } else { 420 if (SUnit.NumPredsLeft != 0) { 421 if (!AnyNotSched) 422 dbgs() << "*** Scheduling failed! ***\n"; 423 dumpNode(SUnit); 424 dbgs() << "has predecessors left!\n"; 425 AnyNotSched = true; 426 } 427 } 428 } 429 assert(!AnyNotSched); 430 return SUnits.size() - DeadNodes; 431 } 432 #endif 433 434 void ScheduleDAGTopologicalSort::InitDAGTopologicalSorting() { 435 // The idea of the algorithm is taken from 436 // "Online algorithms for managing the topological order of 437 // a directed acyclic graph" by David J. Pearce and Paul H.J. Kelly 438 // This is the MNR algorithm, which was first introduced by 439 // A. Marchetti-Spaccamela, U. Nanni and H. Rohnert in 440 // "Maintaining a topological order under edge insertions". 441 // 442 // Short description of the algorithm: 443 // 444 // Topological ordering, ord, of a DAG maps each node to a topological 445 // index so that for all edges X->Y it is the case that ord(X) < ord(Y). 446 // 447 // This means that if there is a path from the node X to the node Z, 448 // then ord(X) < ord(Z). 449 // 450 // This property can be used to check for reachability of nodes: 451 // if Z is reachable from X, then an insertion of the edge Z->X would 452 // create a cycle. 453 // 454 // The algorithm first computes a topological ordering for the DAG by 455 // initializing the Index2Node and Node2Index arrays and then tries to keep 456 // the ordering up-to-date after edge insertions by reordering the DAG. 457 // 458 // On insertion of the edge X->Y, the algorithm first marks by calling DFS 459 // the nodes reachable from Y, and then shifts them using Shift to lie 460 // immediately after X in Index2Node. 461 unsigned DAGSize = SUnits.size(); 462 std::vector<SUnit*> WorkList; 463 WorkList.reserve(DAGSize); 464 465 Index2Node.resize(DAGSize); 466 Node2Index.resize(DAGSize); 467 468 // Initialize the data structures. 469 if (ExitSU) 470 WorkList.push_back(ExitSU); 471 for (SUnit &SU : SUnits) { 472 int NodeNum = SU.NodeNum; 473 unsigned Degree = SU.Succs.size(); 474 // Temporarily use the Node2Index array as scratch space for degree counts. 475 Node2Index[NodeNum] = Degree; 476 477 // Is it a node without dependencies? 478 if (Degree == 0) { 479 assert(SU.Succs.empty() && "SUnit should have no successors"); 480 // Collect leaf nodes. 481 WorkList.push_back(&SU); 482 } 483 } 484 485 int Id = DAGSize; 486 while (!WorkList.empty()) { 487 SUnit *SU = WorkList.back(); 488 WorkList.pop_back(); 489 if (SU->NodeNum < DAGSize) 490 Allocate(SU->NodeNum, --Id); 491 for (const SDep &PredDep : SU->Preds) { 492 SUnit *SU = PredDep.getSUnit(); 493 if (SU->NodeNum < DAGSize && !--Node2Index[SU->NodeNum]) 494 // If all dependencies of the node are processed already, 495 // then the node can be computed now. 496 WorkList.push_back(SU); 497 } 498 } 499 500 Visited.resize(DAGSize); 501 502 #ifndef NDEBUG 503 // Check correctness of the ordering 504 for (SUnit &SU : SUnits) { 505 for (const SDep &PD : SU.Preds) { 506 assert(Node2Index[SU.NodeNum] > Node2Index[PD.getSUnit()->NodeNum] && 507 "Wrong topological sorting"); 508 } 509 } 510 #endif 511 } 512 513 void ScheduleDAGTopologicalSort::AddPred(SUnit *Y, SUnit *X) { 514 int UpperBound, LowerBound; 515 LowerBound = Node2Index[Y->NodeNum]; 516 UpperBound = Node2Index[X->NodeNum]; 517 bool HasLoop = false; 518 // Is Ord(X) < Ord(Y) ? 519 if (LowerBound < UpperBound) { 520 // Update the topological order. 521 Visited.reset(); 522 DFS(Y, UpperBound, HasLoop); 523 assert(!HasLoop && "Inserted edge creates a loop!"); 524 // Recompute topological indexes. 525 Shift(Visited, LowerBound, UpperBound); 526 } 527 } 528 529 void ScheduleDAGTopologicalSort::RemovePred(SUnit *M, SUnit *N) { 530 // InitDAGTopologicalSorting(); 531 } 532 533 void ScheduleDAGTopologicalSort::DFS(const SUnit *SU, int UpperBound, 534 bool &HasLoop) { 535 std::vector<const SUnit*> WorkList; 536 WorkList.reserve(SUnits.size()); 537 538 WorkList.push_back(SU); 539 do { 540 SU = WorkList.back(); 541 WorkList.pop_back(); 542 Visited.set(SU->NodeNum); 543 for (const SDep &SuccDep 544 : make_range(SU->Succs.rbegin(), SU->Succs.rend())) { 545 unsigned s = SuccDep.getSUnit()->NodeNum; 546 // Edges to non-SUnits are allowed but ignored (e.g. ExitSU). 547 if (s >= Node2Index.size()) 548 continue; 549 if (Node2Index[s] == UpperBound) { 550 HasLoop = true; 551 return; 552 } 553 // Visit successors if not already and in affected region. 554 if (!Visited.test(s) && Node2Index[s] < UpperBound) { 555 WorkList.push_back(SuccDep.getSUnit()); 556 } 557 } 558 } while (!WorkList.empty()); 559 } 560 561 std::vector<int> ScheduleDAGTopologicalSort::GetSubGraph(const SUnit &StartSU, 562 const SUnit &TargetSU, 563 bool &Success) { 564 std::vector<const SUnit*> WorkList; 565 int LowerBound = Node2Index[StartSU.NodeNum]; 566 int UpperBound = Node2Index[TargetSU.NodeNum]; 567 bool Found = false; 568 BitVector VisitedBack; 569 std::vector<int> Nodes; 570 571 if (LowerBound > UpperBound) { 572 Success = false; 573 return Nodes; 574 } 575 576 WorkList.reserve(SUnits.size()); 577 Visited.reset(); 578 579 // Starting from StartSU, visit all successors up 580 // to UpperBound. 581 WorkList.push_back(&StartSU); 582 do { 583 const SUnit *SU = WorkList.back(); 584 WorkList.pop_back(); 585 for (int I = SU->Succs.size()-1; I >= 0; --I) { 586 const SUnit *Succ = SU->Succs[I].getSUnit(); 587 unsigned s = Succ->NodeNum; 588 // Edges to non-SUnits are allowed but ignored (e.g. ExitSU). 589 if (Succ->isBoundaryNode()) 590 continue; 591 if (Node2Index[s] == UpperBound) { 592 Found = true; 593 continue; 594 } 595 // Visit successors if not already and in affected region. 596 if (!Visited.test(s) && Node2Index[s] < UpperBound) { 597 Visited.set(s); 598 WorkList.push_back(Succ); 599 } 600 } 601 } while (!WorkList.empty()); 602 603 if (!Found) { 604 Success = false; 605 return Nodes; 606 } 607 608 WorkList.clear(); 609 VisitedBack.resize(SUnits.size()); 610 Found = false; 611 612 // Starting from TargetSU, visit all predecessors up 613 // to LowerBound. SUs that are visited by the two 614 // passes are added to Nodes. 615 WorkList.push_back(&TargetSU); 616 do { 617 const SUnit *SU = WorkList.back(); 618 WorkList.pop_back(); 619 for (int I = SU->Preds.size()-1; I >= 0; --I) { 620 const SUnit *Pred = SU->Preds[I].getSUnit(); 621 unsigned s = Pred->NodeNum; 622 // Edges to non-SUnits are allowed but ignored (e.g. EntrySU). 623 if (Pred->isBoundaryNode()) 624 continue; 625 if (Node2Index[s] == LowerBound) { 626 Found = true; 627 continue; 628 } 629 if (!VisitedBack.test(s) && Visited.test(s)) { 630 VisitedBack.set(s); 631 WorkList.push_back(Pred); 632 Nodes.push_back(s); 633 } 634 } 635 } while (!WorkList.empty()); 636 637 assert(Found && "Error in SUnit Graph!"); 638 Success = true; 639 return Nodes; 640 } 641 642 void ScheduleDAGTopologicalSort::Shift(BitVector& Visited, int LowerBound, 643 int UpperBound) { 644 std::vector<int> L; 645 int shift = 0; 646 int i; 647 648 for (i = LowerBound; i <= UpperBound; ++i) { 649 // w is node at topological index i. 650 int w = Index2Node[i]; 651 if (Visited.test(w)) { 652 // Unmark. 653 Visited.reset(w); 654 L.push_back(w); 655 shift = shift + 1; 656 } else { 657 Allocate(w, i - shift); 658 } 659 } 660 661 for (unsigned LI : L) { 662 Allocate(LI, i - shift); 663 i = i + 1; 664 } 665 } 666 667 bool ScheduleDAGTopologicalSort::WillCreateCycle(SUnit *TargetSU, SUnit *SU) { 668 // Is SU reachable from TargetSU via successor edges? 669 if (IsReachable(SU, TargetSU)) 670 return true; 671 for (const SDep &PredDep : TargetSU->Preds) 672 if (PredDep.isAssignedRegDep() && 673 IsReachable(SU, PredDep.getSUnit())) 674 return true; 675 return false; 676 } 677 678 bool ScheduleDAGTopologicalSort::IsReachable(const SUnit *SU, 679 const SUnit *TargetSU) { 680 // If insertion of the edge SU->TargetSU would create a cycle 681 // then there is a path from TargetSU to SU. 682 int UpperBound, LowerBound; 683 LowerBound = Node2Index[TargetSU->NodeNum]; 684 UpperBound = Node2Index[SU->NodeNum]; 685 bool HasLoop = false; 686 // Is Ord(TargetSU) < Ord(SU) ? 687 if (LowerBound < UpperBound) { 688 Visited.reset(); 689 // There may be a path from TargetSU to SU. Check for it. 690 DFS(TargetSU, UpperBound, HasLoop); 691 } 692 return HasLoop; 693 } 694 695 void ScheduleDAGTopologicalSort::Allocate(int n, int index) { 696 Node2Index[n] = index; 697 Index2Node[index] = n; 698 } 699 700 ScheduleDAGTopologicalSort:: 701 ScheduleDAGTopologicalSort(std::vector<SUnit> &sunits, SUnit *exitsu) 702 : SUnits(sunits), ExitSU(exitsu) {} 703 704 ScheduleHazardRecognizer::~ScheduleHazardRecognizer() = default; 705