1 //===- ScheduleDAG.cpp - Implement the ScheduleDAG class ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file Implements the ScheduleDAG class, which is a base class used by 11 /// scheduling implementation classes. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/ScheduleDAG.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/iterator_range.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 21 #include "llvm/CodeGen/SelectionDAGNodes.h" 22 #include "llvm/CodeGen/TargetInstrInfo.h" 23 #include "llvm/CodeGen/TargetRegisterInfo.h" 24 #include "llvm/CodeGen/TargetSubtargetInfo.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Support/Compiler.h" 27 #include "llvm/Support/Debug.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include <algorithm> 30 #include <cassert> 31 #include <iterator> 32 #include <limits> 33 #include <utility> 34 #include <vector> 35 36 using namespace llvm; 37 38 #define DEBUG_TYPE "pre-RA-sched" 39 40 #ifndef NDEBUG 41 static cl::opt<bool> StressSchedOpt( 42 "stress-sched", cl::Hidden, cl::init(false), 43 cl::desc("Stress test instruction scheduling")); 44 #endif 45 46 void SchedulingPriorityQueue::anchor() {} 47 48 ScheduleDAG::ScheduleDAG(MachineFunction &mf) 49 : TM(mf.getTarget()), TII(mf.getSubtarget().getInstrInfo()), 50 TRI(mf.getSubtarget().getRegisterInfo()), MF(mf), 51 MRI(mf.getRegInfo()) { 52 #ifndef NDEBUG 53 StressSched = StressSchedOpt; 54 #endif 55 } 56 57 ScheduleDAG::~ScheduleDAG() = default; 58 59 void ScheduleDAG::clearDAG() { 60 SUnits.clear(); 61 EntrySU = SUnit(); 62 ExitSU = SUnit(); 63 } 64 65 const MCInstrDesc *ScheduleDAG::getNodeDesc(const SDNode *Node) const { 66 if (!Node || !Node->isMachineOpcode()) return nullptr; 67 return &TII->get(Node->getMachineOpcode()); 68 } 69 70 LLVM_DUMP_METHOD 71 raw_ostream &SDep::print(raw_ostream &OS, const TargetRegisterInfo *TRI) const { 72 switch (getKind()) { 73 case Data: OS << "Data"; break; 74 case Anti: OS << "Anti"; break; 75 case Output: OS << "Out "; break; 76 case Order: OS << "Ord "; break; 77 } 78 79 switch (getKind()) { 80 case Data: 81 OS << " Latency=" << getLatency(); 82 if (TRI && isAssignedRegDep()) 83 OS << " Reg=" << printReg(getReg(), TRI); 84 break; 85 case Anti: 86 case Output: 87 OS << " Latency=" << getLatency(); 88 break; 89 case Order: 90 OS << " Latency=" << getLatency(); 91 switch(Contents.OrdKind) { 92 case Barrier: OS << " Barrier"; break; 93 case MayAliasMem: 94 case MustAliasMem: OS << " Memory"; break; 95 case Artificial: OS << " Artificial"; break; 96 case Weak: OS << " Weak"; break; 97 case Cluster: OS << " Cluster"; break; 98 } 99 break; 100 } 101 102 return OS; 103 } 104 105 bool SUnit::addPred(const SDep &D, bool Required) { 106 // If this node already has this dependence, don't add a redundant one. 107 for (SDep &PredDep : Preds) { 108 // Zero-latency weak edges may be added purely for heuristic ordering. Don't 109 // add them if another kind of edge already exists. 110 if (!Required && PredDep.getSUnit() == D.getSUnit()) 111 return false; 112 if (PredDep.overlaps(D)) { 113 // Extend the latency if needed. Equivalent to 114 // removePred(PredDep) + addPred(D). 115 if (PredDep.getLatency() < D.getLatency()) { 116 SUnit *PredSU = PredDep.getSUnit(); 117 // Find the corresponding successor in N. 118 SDep ForwardD = PredDep; 119 ForwardD.setSUnit(this); 120 for (SDep &SuccDep : PredSU->Succs) { 121 if (SuccDep == ForwardD) { 122 SuccDep.setLatency(D.getLatency()); 123 break; 124 } 125 } 126 PredDep.setLatency(D.getLatency()); 127 } 128 return false; 129 } 130 } 131 // Now add a corresponding succ to N. 132 SDep P = D; 133 P.setSUnit(this); 134 SUnit *N = D.getSUnit(); 135 // Update the bookkeeping. 136 if (D.getKind() == SDep::Data) { 137 assert(NumPreds < std::numeric_limits<unsigned>::max() && 138 "NumPreds will overflow!"); 139 assert(N->NumSuccs < std::numeric_limits<unsigned>::max() && 140 "NumSuccs will overflow!"); 141 ++NumPreds; 142 ++N->NumSuccs; 143 } 144 if (!N->isScheduled) { 145 if (D.isWeak()) { 146 ++WeakPredsLeft; 147 } 148 else { 149 assert(NumPredsLeft < std::numeric_limits<unsigned>::max() && 150 "NumPredsLeft will overflow!"); 151 ++NumPredsLeft; 152 } 153 } 154 if (!isScheduled) { 155 if (D.isWeak()) { 156 ++N->WeakSuccsLeft; 157 } 158 else { 159 assert(N->NumSuccsLeft < std::numeric_limits<unsigned>::max() && 160 "NumSuccsLeft will overflow!"); 161 ++N->NumSuccsLeft; 162 } 163 } 164 Preds.push_back(D); 165 N->Succs.push_back(P); 166 if (P.getLatency() != 0) { 167 this->setDepthDirty(); 168 N->setHeightDirty(); 169 } 170 return true; 171 } 172 173 void SUnit::removePred(const SDep &D) { 174 // Find the matching predecessor. 175 SmallVectorImpl<SDep>::iterator I = llvm::find(Preds, D); 176 if (I == Preds.end()) 177 return; 178 // Find the corresponding successor in N. 179 SDep P = D; 180 P.setSUnit(this); 181 SUnit *N = D.getSUnit(); 182 SmallVectorImpl<SDep>::iterator Succ = llvm::find(N->Succs, P); 183 assert(Succ != N->Succs.end() && "Mismatching preds / succs lists!"); 184 N->Succs.erase(Succ); 185 Preds.erase(I); 186 // Update the bookkeeping. 187 if (P.getKind() == SDep::Data) { 188 assert(NumPreds > 0 && "NumPreds will underflow!"); 189 assert(N->NumSuccs > 0 && "NumSuccs will underflow!"); 190 --NumPreds; 191 --N->NumSuccs; 192 } 193 if (!N->isScheduled) { 194 if (D.isWeak()) 195 --WeakPredsLeft; 196 else { 197 assert(NumPredsLeft > 0 && "NumPredsLeft will underflow!"); 198 --NumPredsLeft; 199 } 200 } 201 if (!isScheduled) { 202 if (D.isWeak()) 203 --N->WeakSuccsLeft; 204 else { 205 assert(N->NumSuccsLeft > 0 && "NumSuccsLeft will underflow!"); 206 --N->NumSuccsLeft; 207 } 208 } 209 if (P.getLatency() != 0) { 210 this->setDepthDirty(); 211 N->setHeightDirty(); 212 } 213 } 214 215 void SUnit::setDepthDirty() { 216 if (!isDepthCurrent) return; 217 SmallVector<SUnit*, 8> WorkList; 218 WorkList.push_back(this); 219 do { 220 SUnit *SU = WorkList.pop_back_val(); 221 SU->isDepthCurrent = false; 222 for (SDep &SuccDep : SU->Succs) { 223 SUnit *SuccSU = SuccDep.getSUnit(); 224 if (SuccSU->isDepthCurrent) 225 WorkList.push_back(SuccSU); 226 } 227 } while (!WorkList.empty()); 228 } 229 230 void SUnit::setHeightDirty() { 231 if (!isHeightCurrent) return; 232 SmallVector<SUnit*, 8> WorkList; 233 WorkList.push_back(this); 234 do { 235 SUnit *SU = WorkList.pop_back_val(); 236 SU->isHeightCurrent = false; 237 for (SDep &PredDep : SU->Preds) { 238 SUnit *PredSU = PredDep.getSUnit(); 239 if (PredSU->isHeightCurrent) 240 WorkList.push_back(PredSU); 241 } 242 } while (!WorkList.empty()); 243 } 244 245 void SUnit::setDepthToAtLeast(unsigned NewDepth) { 246 if (NewDepth <= getDepth()) 247 return; 248 setDepthDirty(); 249 Depth = NewDepth; 250 isDepthCurrent = true; 251 } 252 253 void SUnit::setHeightToAtLeast(unsigned NewHeight) { 254 if (NewHeight <= getHeight()) 255 return; 256 setHeightDirty(); 257 Height = NewHeight; 258 isHeightCurrent = true; 259 } 260 261 /// Calculates the maximal path from the node to the exit. 262 void SUnit::ComputeDepth() { 263 SmallVector<SUnit*, 8> WorkList; 264 WorkList.push_back(this); 265 do { 266 SUnit *Cur = WorkList.back(); 267 268 bool Done = true; 269 unsigned MaxPredDepth = 0; 270 for (const SDep &PredDep : Cur->Preds) { 271 SUnit *PredSU = PredDep.getSUnit(); 272 if (PredSU->isDepthCurrent) 273 MaxPredDepth = std::max(MaxPredDepth, 274 PredSU->Depth + PredDep.getLatency()); 275 else { 276 Done = false; 277 WorkList.push_back(PredSU); 278 } 279 } 280 281 if (Done) { 282 WorkList.pop_back(); 283 if (MaxPredDepth != Cur->Depth) { 284 Cur->setDepthDirty(); 285 Cur->Depth = MaxPredDepth; 286 } 287 Cur->isDepthCurrent = true; 288 } 289 } while (!WorkList.empty()); 290 } 291 292 /// Calculates the maximal path from the node to the entry. 293 void SUnit::ComputeHeight() { 294 SmallVector<SUnit*, 8> WorkList; 295 WorkList.push_back(this); 296 do { 297 SUnit *Cur = WorkList.back(); 298 299 bool Done = true; 300 unsigned MaxSuccHeight = 0; 301 for (const SDep &SuccDep : Cur->Succs) { 302 SUnit *SuccSU = SuccDep.getSUnit(); 303 if (SuccSU->isHeightCurrent) 304 MaxSuccHeight = std::max(MaxSuccHeight, 305 SuccSU->Height + SuccDep.getLatency()); 306 else { 307 Done = false; 308 WorkList.push_back(SuccSU); 309 } 310 } 311 312 if (Done) { 313 WorkList.pop_back(); 314 if (MaxSuccHeight != Cur->Height) { 315 Cur->setHeightDirty(); 316 Cur->Height = MaxSuccHeight; 317 } 318 Cur->isHeightCurrent = true; 319 } 320 } while (!WorkList.empty()); 321 } 322 323 void SUnit::biasCriticalPath() { 324 if (NumPreds < 2) 325 return; 326 327 SUnit::pred_iterator BestI = Preds.begin(); 328 unsigned MaxDepth = BestI->getSUnit()->getDepth(); 329 for (SUnit::pred_iterator I = std::next(BestI), E = Preds.end(); I != E; 330 ++I) { 331 if (I->getKind() == SDep::Data && I->getSUnit()->getDepth() > MaxDepth) 332 BestI = I; 333 } 334 if (BestI != Preds.begin()) 335 std::swap(*Preds.begin(), *BestI); 336 } 337 338 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 339 LLVM_DUMP_METHOD 340 raw_ostream &SUnit::print(raw_ostream &OS, 341 const SUnit *Entry, const SUnit *Exit) const { 342 if (this == Entry) 343 OS << "EntrySU"; 344 else if (this == Exit) 345 OS << "ExitSU"; 346 else 347 OS << "SU(" << NodeNum << ")"; 348 return OS; 349 } 350 351 LLVM_DUMP_METHOD 352 raw_ostream &SUnit::print(raw_ostream &OS, const ScheduleDAG *G) const { 353 return print(OS, &G->EntrySU, &G->ExitSU); 354 } 355 356 LLVM_DUMP_METHOD 357 void SUnit::dump(const ScheduleDAG *G) const { 358 print(dbgs(), G); 359 dbgs() << ": "; 360 G->dumpNode(this); 361 } 362 363 LLVM_DUMP_METHOD void SUnit::dumpAll(const ScheduleDAG *G) const { 364 dump(G); 365 366 dbgs() << " # preds left : " << NumPredsLeft << "\n"; 367 dbgs() << " # succs left : " << NumSuccsLeft << "\n"; 368 if (WeakPredsLeft) 369 dbgs() << " # weak preds left : " << WeakPredsLeft << "\n"; 370 if (WeakSuccsLeft) 371 dbgs() << " # weak succs left : " << WeakSuccsLeft << "\n"; 372 dbgs() << " # rdefs left : " << NumRegDefsLeft << "\n"; 373 dbgs() << " Latency : " << Latency << "\n"; 374 dbgs() << " Depth : " << getDepth() << "\n"; 375 dbgs() << " Height : " << getHeight() << "\n"; 376 377 if (Preds.size() != 0) { 378 dbgs() << " Predecessors:\n"; 379 for (const SDep &Dep : Preds) { 380 dbgs() << " "; 381 Dep.getSUnit()->print(dbgs(), G); dbgs() << ": "; 382 Dep.print(dbgs(), G->TRI); dbgs() << '\n'; 383 } 384 } 385 if (Succs.size() != 0) { 386 dbgs() << " Successors:\n"; 387 for (const SDep &Dep : Succs) { 388 dbgs() << " "; 389 Dep.getSUnit()->print(dbgs(), G); dbgs() << ": "; 390 Dep.print(dbgs(), G->TRI); dbgs() << '\n'; 391 } 392 } 393 } 394 #endif 395 396 #ifndef NDEBUG 397 unsigned ScheduleDAG::VerifyScheduledDAG(bool isBottomUp) { 398 bool AnyNotSched = false; 399 unsigned DeadNodes = 0; 400 for (const SUnit &SUnit : SUnits) { 401 if (!SUnit.isScheduled) { 402 if (SUnit.NumPreds == 0 && SUnit.NumSuccs == 0) { 403 ++DeadNodes; 404 continue; 405 } 406 if (!AnyNotSched) 407 dbgs() << "*** Scheduling failed! ***\n"; 408 SUnit.dump(this); 409 dbgs() << "has not been scheduled!\n"; 410 AnyNotSched = true; 411 } 412 if (SUnit.isScheduled && 413 (isBottomUp ? SUnit.getHeight() : SUnit.getDepth()) > 414 unsigned(std::numeric_limits<int>::max())) { 415 if (!AnyNotSched) 416 dbgs() << "*** Scheduling failed! ***\n"; 417 SUnit.dump(this); 418 dbgs() << "has an unexpected " 419 << (isBottomUp ? "Height" : "Depth") << " value!\n"; 420 AnyNotSched = true; 421 } 422 if (isBottomUp) { 423 if (SUnit.NumSuccsLeft != 0) { 424 if (!AnyNotSched) 425 dbgs() << "*** Scheduling failed! ***\n"; 426 SUnit.dump(this); 427 dbgs() << "has successors left!\n"; 428 AnyNotSched = true; 429 } 430 } else { 431 if (SUnit.NumPredsLeft != 0) { 432 if (!AnyNotSched) 433 dbgs() << "*** Scheduling failed! ***\n"; 434 SUnit.dump(this); 435 dbgs() << "has predecessors left!\n"; 436 AnyNotSched = true; 437 } 438 } 439 } 440 assert(!AnyNotSched); 441 return SUnits.size() - DeadNodes; 442 } 443 #endif 444 445 void ScheduleDAGTopologicalSort::InitDAGTopologicalSorting() { 446 // The idea of the algorithm is taken from 447 // "Online algorithms for managing the topological order of 448 // a directed acyclic graph" by David J. Pearce and Paul H.J. Kelly 449 // This is the MNR algorithm, which was first introduced by 450 // A. Marchetti-Spaccamela, U. Nanni and H. Rohnert in 451 // "Maintaining a topological order under edge insertions". 452 // 453 // Short description of the algorithm: 454 // 455 // Topological ordering, ord, of a DAG maps each node to a topological 456 // index so that for all edges X->Y it is the case that ord(X) < ord(Y). 457 // 458 // This means that if there is a path from the node X to the node Z, 459 // then ord(X) < ord(Z). 460 // 461 // This property can be used to check for reachability of nodes: 462 // if Z is reachable from X, then an insertion of the edge Z->X would 463 // create a cycle. 464 // 465 // The algorithm first computes a topological ordering for the DAG by 466 // initializing the Index2Node and Node2Index arrays and then tries to keep 467 // the ordering up-to-date after edge insertions by reordering the DAG. 468 // 469 // On insertion of the edge X->Y, the algorithm first marks by calling DFS 470 // the nodes reachable from Y, and then shifts them using Shift to lie 471 // immediately after X in Index2Node. 472 unsigned DAGSize = SUnits.size(); 473 std::vector<SUnit*> WorkList; 474 WorkList.reserve(DAGSize); 475 476 Index2Node.resize(DAGSize); 477 Node2Index.resize(DAGSize); 478 479 // Initialize the data structures. 480 if (ExitSU) 481 WorkList.push_back(ExitSU); 482 for (SUnit &SU : SUnits) { 483 int NodeNum = SU.NodeNum; 484 unsigned Degree = SU.Succs.size(); 485 // Temporarily use the Node2Index array as scratch space for degree counts. 486 Node2Index[NodeNum] = Degree; 487 488 // Is it a node without dependencies? 489 if (Degree == 0) { 490 assert(SU.Succs.empty() && "SUnit should have no successors"); 491 // Collect leaf nodes. 492 WorkList.push_back(&SU); 493 } 494 } 495 496 int Id = DAGSize; 497 while (!WorkList.empty()) { 498 SUnit *SU = WorkList.back(); 499 WorkList.pop_back(); 500 if (SU->NodeNum < DAGSize) 501 Allocate(SU->NodeNum, --Id); 502 for (const SDep &PredDep : SU->Preds) { 503 SUnit *SU = PredDep.getSUnit(); 504 if (SU->NodeNum < DAGSize && !--Node2Index[SU->NodeNum]) 505 // If all dependencies of the node are processed already, 506 // then the node can be computed now. 507 WorkList.push_back(SU); 508 } 509 } 510 511 Visited.resize(DAGSize); 512 513 #ifndef NDEBUG 514 // Check correctness of the ordering 515 for (SUnit &SU : SUnits) { 516 for (const SDep &PD : SU.Preds) { 517 assert(Node2Index[SU.NodeNum] > Node2Index[PD.getSUnit()->NodeNum] && 518 "Wrong topological sorting"); 519 } 520 } 521 #endif 522 } 523 524 void ScheduleDAGTopologicalSort::AddPred(SUnit *Y, SUnit *X) { 525 int UpperBound, LowerBound; 526 LowerBound = Node2Index[Y->NodeNum]; 527 UpperBound = Node2Index[X->NodeNum]; 528 bool HasLoop = false; 529 // Is Ord(X) < Ord(Y) ? 530 if (LowerBound < UpperBound) { 531 // Update the topological order. 532 Visited.reset(); 533 DFS(Y, UpperBound, HasLoop); 534 assert(!HasLoop && "Inserted edge creates a loop!"); 535 // Recompute topological indexes. 536 Shift(Visited, LowerBound, UpperBound); 537 } 538 } 539 540 void ScheduleDAGTopologicalSort::RemovePred(SUnit *M, SUnit *N) { 541 // InitDAGTopologicalSorting(); 542 } 543 544 void ScheduleDAGTopologicalSort::DFS(const SUnit *SU, int UpperBound, 545 bool &HasLoop) { 546 std::vector<const SUnit*> WorkList; 547 WorkList.reserve(SUnits.size()); 548 549 WorkList.push_back(SU); 550 do { 551 SU = WorkList.back(); 552 WorkList.pop_back(); 553 Visited.set(SU->NodeNum); 554 for (const SDep &SuccDep 555 : make_range(SU->Succs.rbegin(), SU->Succs.rend())) { 556 unsigned s = SuccDep.getSUnit()->NodeNum; 557 // Edges to non-SUnits are allowed but ignored (e.g. ExitSU). 558 if (s >= Node2Index.size()) 559 continue; 560 if (Node2Index[s] == UpperBound) { 561 HasLoop = true; 562 return; 563 } 564 // Visit successors if not already and in affected region. 565 if (!Visited.test(s) && Node2Index[s] < UpperBound) { 566 WorkList.push_back(SuccDep.getSUnit()); 567 } 568 } 569 } while (!WorkList.empty()); 570 } 571 572 std::vector<int> ScheduleDAGTopologicalSort::GetSubGraph(const SUnit &StartSU, 573 const SUnit &TargetSU, 574 bool &Success) { 575 std::vector<const SUnit*> WorkList; 576 int LowerBound = Node2Index[StartSU.NodeNum]; 577 int UpperBound = Node2Index[TargetSU.NodeNum]; 578 bool Found = false; 579 BitVector VisitedBack; 580 std::vector<int> Nodes; 581 582 if (LowerBound > UpperBound) { 583 Success = false; 584 return Nodes; 585 } 586 587 WorkList.reserve(SUnits.size()); 588 Visited.reset(); 589 590 // Starting from StartSU, visit all successors up 591 // to UpperBound. 592 WorkList.push_back(&StartSU); 593 do { 594 const SUnit *SU = WorkList.back(); 595 WorkList.pop_back(); 596 for (int I = SU->Succs.size()-1; I >= 0; --I) { 597 const SUnit *Succ = SU->Succs[I].getSUnit(); 598 unsigned s = Succ->NodeNum; 599 // Edges to non-SUnits are allowed but ignored (e.g. ExitSU). 600 if (Succ->isBoundaryNode()) 601 continue; 602 if (Node2Index[s] == UpperBound) { 603 Found = true; 604 continue; 605 } 606 // Visit successors if not already and in affected region. 607 if (!Visited.test(s) && Node2Index[s] < UpperBound) { 608 Visited.set(s); 609 WorkList.push_back(Succ); 610 } 611 } 612 } while (!WorkList.empty()); 613 614 if (!Found) { 615 Success = false; 616 return Nodes; 617 } 618 619 WorkList.clear(); 620 VisitedBack.resize(SUnits.size()); 621 Found = false; 622 623 // Starting from TargetSU, visit all predecessors up 624 // to LowerBound. SUs that are visited by the two 625 // passes are added to Nodes. 626 WorkList.push_back(&TargetSU); 627 do { 628 const SUnit *SU = WorkList.back(); 629 WorkList.pop_back(); 630 for (int I = SU->Preds.size()-1; I >= 0; --I) { 631 const SUnit *Pred = SU->Preds[I].getSUnit(); 632 unsigned s = Pred->NodeNum; 633 // Edges to non-SUnits are allowed but ignored (e.g. EntrySU). 634 if (Pred->isBoundaryNode()) 635 continue; 636 if (Node2Index[s] == LowerBound) { 637 Found = true; 638 continue; 639 } 640 if (!VisitedBack.test(s) && Visited.test(s)) { 641 VisitedBack.set(s); 642 WorkList.push_back(Pred); 643 Nodes.push_back(s); 644 } 645 } 646 } while (!WorkList.empty()); 647 648 assert(Found && "Error in SUnit Graph!"); 649 Success = true; 650 return Nodes; 651 } 652 653 void ScheduleDAGTopologicalSort::Shift(BitVector& Visited, int LowerBound, 654 int UpperBound) { 655 std::vector<int> L; 656 int shift = 0; 657 int i; 658 659 for (i = LowerBound; i <= UpperBound; ++i) { 660 // w is node at topological index i. 661 int w = Index2Node[i]; 662 if (Visited.test(w)) { 663 // Unmark. 664 Visited.reset(w); 665 L.push_back(w); 666 shift = shift + 1; 667 } else { 668 Allocate(w, i - shift); 669 } 670 } 671 672 for (unsigned LI : L) { 673 Allocate(LI, i - shift); 674 i = i + 1; 675 } 676 } 677 678 bool ScheduleDAGTopologicalSort::WillCreateCycle(SUnit *TargetSU, SUnit *SU) { 679 // Is SU reachable from TargetSU via successor edges? 680 if (IsReachable(SU, TargetSU)) 681 return true; 682 for (const SDep &PredDep : TargetSU->Preds) 683 if (PredDep.isAssignedRegDep() && 684 IsReachable(SU, PredDep.getSUnit())) 685 return true; 686 return false; 687 } 688 689 bool ScheduleDAGTopologicalSort::IsReachable(const SUnit *SU, 690 const SUnit *TargetSU) { 691 // If insertion of the edge SU->TargetSU would create a cycle 692 // then there is a path from TargetSU to SU. 693 int UpperBound, LowerBound; 694 LowerBound = Node2Index[TargetSU->NodeNum]; 695 UpperBound = Node2Index[SU->NodeNum]; 696 bool HasLoop = false; 697 // Is Ord(TargetSU) < Ord(SU) ? 698 if (LowerBound < UpperBound) { 699 Visited.reset(); 700 // There may be a path from TargetSU to SU. Check for it. 701 DFS(TargetSU, UpperBound, HasLoop); 702 } 703 return HasLoop; 704 } 705 706 void ScheduleDAGTopologicalSort::Allocate(int n, int index) { 707 Node2Index[n] = index; 708 Index2Node[index] = n; 709 } 710 711 ScheduleDAGTopologicalSort:: 712 ScheduleDAGTopologicalSort(std::vector<SUnit> &sunits, SUnit *exitsu) 713 : SUnits(sunits), ExitSU(exitsu) {} 714 715 ScheduleHazardRecognizer::~ScheduleHazardRecognizer() = default; 716