1 //===- ScheduleDAG.cpp - Implement the ScheduleDAG class ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file Implements the ScheduleDAG class, which is a base class used by 11 /// scheduling implementation classes. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/ScheduleDAG.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/iterator_range.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 21 #include "llvm/CodeGen/SelectionDAGNodes.h" 22 #include "llvm/CodeGen/TargetInstrInfo.h" 23 #include "llvm/CodeGen/TargetRegisterInfo.h" 24 #include "llvm/CodeGen/TargetSubtargetInfo.h" 25 #include "llvm/Config/llvm-config.h" 26 #include "llvm/Support/CommandLine.h" 27 #include "llvm/Support/Compiler.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/raw_ostream.h" 30 #include <algorithm> 31 #include <cassert> 32 #include <iterator> 33 #include <limits> 34 #include <utility> 35 #include <vector> 36 37 using namespace llvm; 38 39 #define DEBUG_TYPE "pre-RA-sched" 40 41 #ifndef NDEBUG 42 static cl::opt<bool> StressSchedOpt( 43 "stress-sched", cl::Hidden, cl::init(false), 44 cl::desc("Stress test instruction scheduling")); 45 #endif 46 47 void SchedulingPriorityQueue::anchor() {} 48 49 ScheduleDAG::ScheduleDAG(MachineFunction &mf) 50 : TM(mf.getTarget()), TII(mf.getSubtarget().getInstrInfo()), 51 TRI(mf.getSubtarget().getRegisterInfo()), MF(mf), 52 MRI(mf.getRegInfo()) { 53 #ifndef NDEBUG 54 StressSched = StressSchedOpt; 55 #endif 56 } 57 58 ScheduleDAG::~ScheduleDAG() = default; 59 60 void ScheduleDAG::clearDAG() { 61 SUnits.clear(); 62 EntrySU = SUnit(); 63 ExitSU = SUnit(); 64 } 65 66 const MCInstrDesc *ScheduleDAG::getNodeDesc(const SDNode *Node) const { 67 if (!Node || !Node->isMachineOpcode()) return nullptr; 68 return &TII->get(Node->getMachineOpcode()); 69 } 70 71 LLVM_DUMP_METHOD 72 raw_ostream &SDep::print(raw_ostream &OS, const TargetRegisterInfo *TRI) const { 73 switch (getKind()) { 74 case Data: OS << "Data"; break; 75 case Anti: OS << "Anti"; break; 76 case Output: OS << "Out "; break; 77 case Order: OS << "Ord "; break; 78 } 79 80 switch (getKind()) { 81 case Data: 82 OS << " Latency=" << getLatency(); 83 if (TRI && isAssignedRegDep()) 84 OS << " Reg=" << printReg(getReg(), TRI); 85 break; 86 case Anti: 87 case Output: 88 OS << " Latency=" << getLatency(); 89 break; 90 case Order: 91 OS << " Latency=" << getLatency(); 92 switch(Contents.OrdKind) { 93 case Barrier: OS << " Barrier"; break; 94 case MayAliasMem: 95 case MustAliasMem: OS << " Memory"; break; 96 case Artificial: OS << " Artificial"; break; 97 case Weak: OS << " Weak"; break; 98 case Cluster: OS << " Cluster"; break; 99 } 100 break; 101 } 102 103 return OS; 104 } 105 106 bool SUnit::addPred(const SDep &D, bool Required) { 107 // If this node already has this dependence, don't add a redundant one. 108 for (SDep &PredDep : Preds) { 109 // Zero-latency weak edges may be added purely for heuristic ordering. Don't 110 // add them if another kind of edge already exists. 111 if (!Required && PredDep.getSUnit() == D.getSUnit()) 112 return false; 113 if (PredDep.overlaps(D)) { 114 // Extend the latency if needed. Equivalent to 115 // removePred(PredDep) + addPred(D). 116 if (PredDep.getLatency() < D.getLatency()) { 117 SUnit *PredSU = PredDep.getSUnit(); 118 // Find the corresponding successor in N. 119 SDep ForwardD = PredDep; 120 ForwardD.setSUnit(this); 121 for (SDep &SuccDep : PredSU->Succs) { 122 if (SuccDep == ForwardD) { 123 SuccDep.setLatency(D.getLatency()); 124 break; 125 } 126 } 127 PredDep.setLatency(D.getLatency()); 128 } 129 return false; 130 } 131 } 132 // Now add a corresponding succ to N. 133 SDep P = D; 134 P.setSUnit(this); 135 SUnit *N = D.getSUnit(); 136 // Update the bookkeeping. 137 if (D.getKind() == SDep::Data) { 138 assert(NumPreds < std::numeric_limits<unsigned>::max() && 139 "NumPreds will overflow!"); 140 assert(N->NumSuccs < std::numeric_limits<unsigned>::max() && 141 "NumSuccs will overflow!"); 142 ++NumPreds; 143 ++N->NumSuccs; 144 } 145 if (!N->isScheduled) { 146 if (D.isWeak()) { 147 ++WeakPredsLeft; 148 } 149 else { 150 assert(NumPredsLeft < std::numeric_limits<unsigned>::max() && 151 "NumPredsLeft will overflow!"); 152 ++NumPredsLeft; 153 } 154 } 155 if (!isScheduled) { 156 if (D.isWeak()) { 157 ++N->WeakSuccsLeft; 158 } 159 else { 160 assert(N->NumSuccsLeft < std::numeric_limits<unsigned>::max() && 161 "NumSuccsLeft will overflow!"); 162 ++N->NumSuccsLeft; 163 } 164 } 165 Preds.push_back(D); 166 N->Succs.push_back(P); 167 if (P.getLatency() != 0) { 168 this->setDepthDirty(); 169 N->setHeightDirty(); 170 } 171 return true; 172 } 173 174 void SUnit::removePred(const SDep &D) { 175 // Find the matching predecessor. 176 SmallVectorImpl<SDep>::iterator I = llvm::find(Preds, D); 177 if (I == Preds.end()) 178 return; 179 // Find the corresponding successor in N. 180 SDep P = D; 181 P.setSUnit(this); 182 SUnit *N = D.getSUnit(); 183 SmallVectorImpl<SDep>::iterator Succ = llvm::find(N->Succs, P); 184 assert(Succ != N->Succs.end() && "Mismatching preds / succs lists!"); 185 N->Succs.erase(Succ); 186 Preds.erase(I); 187 // Update the bookkeeping. 188 if (P.getKind() == SDep::Data) { 189 assert(NumPreds > 0 && "NumPreds will underflow!"); 190 assert(N->NumSuccs > 0 && "NumSuccs will underflow!"); 191 --NumPreds; 192 --N->NumSuccs; 193 } 194 if (!N->isScheduled) { 195 if (D.isWeak()) 196 --WeakPredsLeft; 197 else { 198 assert(NumPredsLeft > 0 && "NumPredsLeft will underflow!"); 199 --NumPredsLeft; 200 } 201 } 202 if (!isScheduled) { 203 if (D.isWeak()) 204 --N->WeakSuccsLeft; 205 else { 206 assert(N->NumSuccsLeft > 0 && "NumSuccsLeft will underflow!"); 207 --N->NumSuccsLeft; 208 } 209 } 210 if (P.getLatency() != 0) { 211 this->setDepthDirty(); 212 N->setHeightDirty(); 213 } 214 } 215 216 void SUnit::setDepthDirty() { 217 if (!isDepthCurrent) return; 218 SmallVector<SUnit*, 8> WorkList; 219 WorkList.push_back(this); 220 do { 221 SUnit *SU = WorkList.pop_back_val(); 222 SU->isDepthCurrent = false; 223 for (SDep &SuccDep : SU->Succs) { 224 SUnit *SuccSU = SuccDep.getSUnit(); 225 if (SuccSU->isDepthCurrent) 226 WorkList.push_back(SuccSU); 227 } 228 } while (!WorkList.empty()); 229 } 230 231 void SUnit::setHeightDirty() { 232 if (!isHeightCurrent) return; 233 SmallVector<SUnit*, 8> WorkList; 234 WorkList.push_back(this); 235 do { 236 SUnit *SU = WorkList.pop_back_val(); 237 SU->isHeightCurrent = false; 238 for (SDep &PredDep : SU->Preds) { 239 SUnit *PredSU = PredDep.getSUnit(); 240 if (PredSU->isHeightCurrent) 241 WorkList.push_back(PredSU); 242 } 243 } while (!WorkList.empty()); 244 } 245 246 void SUnit::setDepthToAtLeast(unsigned NewDepth) { 247 if (NewDepth <= getDepth()) 248 return; 249 setDepthDirty(); 250 Depth = NewDepth; 251 isDepthCurrent = true; 252 } 253 254 void SUnit::setHeightToAtLeast(unsigned NewHeight) { 255 if (NewHeight <= getHeight()) 256 return; 257 setHeightDirty(); 258 Height = NewHeight; 259 isHeightCurrent = true; 260 } 261 262 /// Calculates the maximal path from the node to the exit. 263 void SUnit::ComputeDepth() { 264 SmallVector<SUnit*, 8> WorkList; 265 WorkList.push_back(this); 266 do { 267 SUnit *Cur = WorkList.back(); 268 269 bool Done = true; 270 unsigned MaxPredDepth = 0; 271 for (const SDep &PredDep : Cur->Preds) { 272 SUnit *PredSU = PredDep.getSUnit(); 273 if (PredSU->isDepthCurrent) 274 MaxPredDepth = std::max(MaxPredDepth, 275 PredSU->Depth + PredDep.getLatency()); 276 else { 277 Done = false; 278 WorkList.push_back(PredSU); 279 } 280 } 281 282 if (Done) { 283 WorkList.pop_back(); 284 if (MaxPredDepth != Cur->Depth) { 285 Cur->setDepthDirty(); 286 Cur->Depth = MaxPredDepth; 287 } 288 Cur->isDepthCurrent = true; 289 } 290 } while (!WorkList.empty()); 291 } 292 293 /// Calculates the maximal path from the node to the entry. 294 void SUnit::ComputeHeight() { 295 SmallVector<SUnit*, 8> WorkList; 296 WorkList.push_back(this); 297 do { 298 SUnit *Cur = WorkList.back(); 299 300 bool Done = true; 301 unsigned MaxSuccHeight = 0; 302 for (const SDep &SuccDep : Cur->Succs) { 303 SUnit *SuccSU = SuccDep.getSUnit(); 304 if (SuccSU->isHeightCurrent) 305 MaxSuccHeight = std::max(MaxSuccHeight, 306 SuccSU->Height + SuccDep.getLatency()); 307 else { 308 Done = false; 309 WorkList.push_back(SuccSU); 310 } 311 } 312 313 if (Done) { 314 WorkList.pop_back(); 315 if (MaxSuccHeight != Cur->Height) { 316 Cur->setHeightDirty(); 317 Cur->Height = MaxSuccHeight; 318 } 319 Cur->isHeightCurrent = true; 320 } 321 } while (!WorkList.empty()); 322 } 323 324 void SUnit::biasCriticalPath() { 325 if (NumPreds < 2) 326 return; 327 328 SUnit::pred_iterator BestI = Preds.begin(); 329 unsigned MaxDepth = BestI->getSUnit()->getDepth(); 330 for (SUnit::pred_iterator I = std::next(BestI), E = Preds.end(); I != E; 331 ++I) { 332 if (I->getKind() == SDep::Data && I->getSUnit()->getDepth() > MaxDepth) 333 BestI = I; 334 } 335 if (BestI != Preds.begin()) 336 std::swap(*Preds.begin(), *BestI); 337 } 338 339 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 340 LLVM_DUMP_METHOD 341 raw_ostream &SUnit::print(raw_ostream &OS, 342 const SUnit *Entry, const SUnit *Exit) const { 343 if (this == Entry) 344 OS << "EntrySU"; 345 else if (this == Exit) 346 OS << "ExitSU"; 347 else 348 OS << "SU(" << NodeNum << ")"; 349 return OS; 350 } 351 352 LLVM_DUMP_METHOD 353 raw_ostream &SUnit::print(raw_ostream &OS, const ScheduleDAG *G) const { 354 return print(OS, &G->EntrySU, &G->ExitSU); 355 } 356 357 LLVM_DUMP_METHOD 358 void SUnit::dump(const ScheduleDAG *G) const { 359 print(dbgs(), G); 360 dbgs() << ": "; 361 G->dumpNode(this); 362 } 363 364 LLVM_DUMP_METHOD void SUnit::dumpAll(const ScheduleDAG *G) const { 365 dump(G); 366 367 dbgs() << " # preds left : " << NumPredsLeft << "\n"; 368 dbgs() << " # succs left : " << NumSuccsLeft << "\n"; 369 if (WeakPredsLeft) 370 dbgs() << " # weak preds left : " << WeakPredsLeft << "\n"; 371 if (WeakSuccsLeft) 372 dbgs() << " # weak succs left : " << WeakSuccsLeft << "\n"; 373 dbgs() << " # rdefs left : " << NumRegDefsLeft << "\n"; 374 dbgs() << " Latency : " << Latency << "\n"; 375 dbgs() << " Depth : " << getDepth() << "\n"; 376 dbgs() << " Height : " << getHeight() << "\n"; 377 378 if (Preds.size() != 0) { 379 dbgs() << " Predecessors:\n"; 380 for (const SDep &Dep : Preds) { 381 dbgs() << " "; 382 Dep.getSUnit()->print(dbgs(), G); dbgs() << ": "; 383 Dep.print(dbgs(), G->TRI); dbgs() << '\n'; 384 } 385 } 386 if (Succs.size() != 0) { 387 dbgs() << " Successors:\n"; 388 for (const SDep &Dep : Succs) { 389 dbgs() << " "; 390 Dep.getSUnit()->print(dbgs(), G); dbgs() << ": "; 391 Dep.print(dbgs(), G->TRI); dbgs() << '\n'; 392 } 393 } 394 } 395 #endif 396 397 #ifndef NDEBUG 398 unsigned ScheduleDAG::VerifyScheduledDAG(bool isBottomUp) { 399 bool AnyNotSched = false; 400 unsigned DeadNodes = 0; 401 for (const SUnit &SUnit : SUnits) { 402 if (!SUnit.isScheduled) { 403 if (SUnit.NumPreds == 0 && SUnit.NumSuccs == 0) { 404 ++DeadNodes; 405 continue; 406 } 407 if (!AnyNotSched) 408 dbgs() << "*** Scheduling failed! ***\n"; 409 SUnit.dump(this); 410 dbgs() << "has not been scheduled!\n"; 411 AnyNotSched = true; 412 } 413 if (SUnit.isScheduled && 414 (isBottomUp ? SUnit.getHeight() : SUnit.getDepth()) > 415 unsigned(std::numeric_limits<int>::max())) { 416 if (!AnyNotSched) 417 dbgs() << "*** Scheduling failed! ***\n"; 418 SUnit.dump(this); 419 dbgs() << "has an unexpected " 420 << (isBottomUp ? "Height" : "Depth") << " value!\n"; 421 AnyNotSched = true; 422 } 423 if (isBottomUp) { 424 if (SUnit.NumSuccsLeft != 0) { 425 if (!AnyNotSched) 426 dbgs() << "*** Scheduling failed! ***\n"; 427 SUnit.dump(this); 428 dbgs() << "has successors left!\n"; 429 AnyNotSched = true; 430 } 431 } else { 432 if (SUnit.NumPredsLeft != 0) { 433 if (!AnyNotSched) 434 dbgs() << "*** Scheduling failed! ***\n"; 435 SUnit.dump(this); 436 dbgs() << "has predecessors left!\n"; 437 AnyNotSched = true; 438 } 439 } 440 } 441 assert(!AnyNotSched); 442 return SUnits.size() - DeadNodes; 443 } 444 #endif 445 446 void ScheduleDAGTopologicalSort::InitDAGTopologicalSorting() { 447 // The idea of the algorithm is taken from 448 // "Online algorithms for managing the topological order of 449 // a directed acyclic graph" by David J. Pearce and Paul H.J. Kelly 450 // This is the MNR algorithm, which was first introduced by 451 // A. Marchetti-Spaccamela, U. Nanni and H. Rohnert in 452 // "Maintaining a topological order under edge insertions". 453 // 454 // Short description of the algorithm: 455 // 456 // Topological ordering, ord, of a DAG maps each node to a topological 457 // index so that for all edges X->Y it is the case that ord(X) < ord(Y). 458 // 459 // This means that if there is a path from the node X to the node Z, 460 // then ord(X) < ord(Z). 461 // 462 // This property can be used to check for reachability of nodes: 463 // if Z is reachable from X, then an insertion of the edge Z->X would 464 // create a cycle. 465 // 466 // The algorithm first computes a topological ordering for the DAG by 467 // initializing the Index2Node and Node2Index arrays and then tries to keep 468 // the ordering up-to-date after edge insertions by reordering the DAG. 469 // 470 // On insertion of the edge X->Y, the algorithm first marks by calling DFS 471 // the nodes reachable from Y, and then shifts them using Shift to lie 472 // immediately after X in Index2Node. 473 unsigned DAGSize = SUnits.size(); 474 std::vector<SUnit*> WorkList; 475 WorkList.reserve(DAGSize); 476 477 Index2Node.resize(DAGSize); 478 Node2Index.resize(DAGSize); 479 480 // Initialize the data structures. 481 if (ExitSU) 482 WorkList.push_back(ExitSU); 483 for (SUnit &SU : SUnits) { 484 int NodeNum = SU.NodeNum; 485 unsigned Degree = SU.Succs.size(); 486 // Temporarily use the Node2Index array as scratch space for degree counts. 487 Node2Index[NodeNum] = Degree; 488 489 // Is it a node without dependencies? 490 if (Degree == 0) { 491 assert(SU.Succs.empty() && "SUnit should have no successors"); 492 // Collect leaf nodes. 493 WorkList.push_back(&SU); 494 } 495 } 496 497 int Id = DAGSize; 498 while (!WorkList.empty()) { 499 SUnit *SU = WorkList.back(); 500 WorkList.pop_back(); 501 if (SU->NodeNum < DAGSize) 502 Allocate(SU->NodeNum, --Id); 503 for (const SDep &PredDep : SU->Preds) { 504 SUnit *SU = PredDep.getSUnit(); 505 if (SU->NodeNum < DAGSize && !--Node2Index[SU->NodeNum]) 506 // If all dependencies of the node are processed already, 507 // then the node can be computed now. 508 WorkList.push_back(SU); 509 } 510 } 511 512 Visited.resize(DAGSize); 513 514 #ifndef NDEBUG 515 // Check correctness of the ordering 516 for (SUnit &SU : SUnits) { 517 for (const SDep &PD : SU.Preds) { 518 assert(Node2Index[SU.NodeNum] > Node2Index[PD.getSUnit()->NodeNum] && 519 "Wrong topological sorting"); 520 } 521 } 522 #endif 523 } 524 525 void ScheduleDAGTopologicalSort::AddPred(SUnit *Y, SUnit *X) { 526 int UpperBound, LowerBound; 527 LowerBound = Node2Index[Y->NodeNum]; 528 UpperBound = Node2Index[X->NodeNum]; 529 bool HasLoop = false; 530 // Is Ord(X) < Ord(Y) ? 531 if (LowerBound < UpperBound) { 532 // Update the topological order. 533 Visited.reset(); 534 DFS(Y, UpperBound, HasLoop); 535 assert(!HasLoop && "Inserted edge creates a loop!"); 536 // Recompute topological indexes. 537 Shift(Visited, LowerBound, UpperBound); 538 } 539 } 540 541 void ScheduleDAGTopologicalSort::RemovePred(SUnit *M, SUnit *N) { 542 // InitDAGTopologicalSorting(); 543 } 544 545 void ScheduleDAGTopologicalSort::DFS(const SUnit *SU, int UpperBound, 546 bool &HasLoop) { 547 std::vector<const SUnit*> WorkList; 548 WorkList.reserve(SUnits.size()); 549 550 WorkList.push_back(SU); 551 do { 552 SU = WorkList.back(); 553 WorkList.pop_back(); 554 Visited.set(SU->NodeNum); 555 for (const SDep &SuccDep 556 : make_range(SU->Succs.rbegin(), SU->Succs.rend())) { 557 unsigned s = SuccDep.getSUnit()->NodeNum; 558 // Edges to non-SUnits are allowed but ignored (e.g. ExitSU). 559 if (s >= Node2Index.size()) 560 continue; 561 if (Node2Index[s] == UpperBound) { 562 HasLoop = true; 563 return; 564 } 565 // Visit successors if not already and in affected region. 566 if (!Visited.test(s) && Node2Index[s] < UpperBound) { 567 WorkList.push_back(SuccDep.getSUnit()); 568 } 569 } 570 } while (!WorkList.empty()); 571 } 572 573 std::vector<int> ScheduleDAGTopologicalSort::GetSubGraph(const SUnit &StartSU, 574 const SUnit &TargetSU, 575 bool &Success) { 576 std::vector<const SUnit*> WorkList; 577 int LowerBound = Node2Index[StartSU.NodeNum]; 578 int UpperBound = Node2Index[TargetSU.NodeNum]; 579 bool Found = false; 580 BitVector VisitedBack; 581 std::vector<int> Nodes; 582 583 if (LowerBound > UpperBound) { 584 Success = false; 585 return Nodes; 586 } 587 588 WorkList.reserve(SUnits.size()); 589 Visited.reset(); 590 591 // Starting from StartSU, visit all successors up 592 // to UpperBound. 593 WorkList.push_back(&StartSU); 594 do { 595 const SUnit *SU = WorkList.back(); 596 WorkList.pop_back(); 597 for (int I = SU->Succs.size()-1; I >= 0; --I) { 598 const SUnit *Succ = SU->Succs[I].getSUnit(); 599 unsigned s = Succ->NodeNum; 600 // Edges to non-SUnits are allowed but ignored (e.g. ExitSU). 601 if (Succ->isBoundaryNode()) 602 continue; 603 if (Node2Index[s] == UpperBound) { 604 Found = true; 605 continue; 606 } 607 // Visit successors if not already and in affected region. 608 if (!Visited.test(s) && Node2Index[s] < UpperBound) { 609 Visited.set(s); 610 WorkList.push_back(Succ); 611 } 612 } 613 } while (!WorkList.empty()); 614 615 if (!Found) { 616 Success = false; 617 return Nodes; 618 } 619 620 WorkList.clear(); 621 VisitedBack.resize(SUnits.size()); 622 Found = false; 623 624 // Starting from TargetSU, visit all predecessors up 625 // to LowerBound. SUs that are visited by the two 626 // passes are added to Nodes. 627 WorkList.push_back(&TargetSU); 628 do { 629 const SUnit *SU = WorkList.back(); 630 WorkList.pop_back(); 631 for (int I = SU->Preds.size()-1; I >= 0; --I) { 632 const SUnit *Pred = SU->Preds[I].getSUnit(); 633 unsigned s = Pred->NodeNum; 634 // Edges to non-SUnits are allowed but ignored (e.g. EntrySU). 635 if (Pred->isBoundaryNode()) 636 continue; 637 if (Node2Index[s] == LowerBound) { 638 Found = true; 639 continue; 640 } 641 if (!VisitedBack.test(s) && Visited.test(s)) { 642 VisitedBack.set(s); 643 WorkList.push_back(Pred); 644 Nodes.push_back(s); 645 } 646 } 647 } while (!WorkList.empty()); 648 649 assert(Found && "Error in SUnit Graph!"); 650 Success = true; 651 return Nodes; 652 } 653 654 void ScheduleDAGTopologicalSort::Shift(BitVector& Visited, int LowerBound, 655 int UpperBound) { 656 std::vector<int> L; 657 int shift = 0; 658 int i; 659 660 for (i = LowerBound; i <= UpperBound; ++i) { 661 // w is node at topological index i. 662 int w = Index2Node[i]; 663 if (Visited.test(w)) { 664 // Unmark. 665 Visited.reset(w); 666 L.push_back(w); 667 shift = shift + 1; 668 } else { 669 Allocate(w, i - shift); 670 } 671 } 672 673 for (unsigned LI : L) { 674 Allocate(LI, i - shift); 675 i = i + 1; 676 } 677 } 678 679 bool ScheduleDAGTopologicalSort::WillCreateCycle(SUnit *TargetSU, SUnit *SU) { 680 // Is SU reachable from TargetSU via successor edges? 681 if (IsReachable(SU, TargetSU)) 682 return true; 683 for (const SDep &PredDep : TargetSU->Preds) 684 if (PredDep.isAssignedRegDep() && 685 IsReachable(SU, PredDep.getSUnit())) 686 return true; 687 return false; 688 } 689 690 bool ScheduleDAGTopologicalSort::IsReachable(const SUnit *SU, 691 const SUnit *TargetSU) { 692 // If insertion of the edge SU->TargetSU would create a cycle 693 // then there is a path from TargetSU to SU. 694 int UpperBound, LowerBound; 695 LowerBound = Node2Index[TargetSU->NodeNum]; 696 UpperBound = Node2Index[SU->NodeNum]; 697 bool HasLoop = false; 698 // Is Ord(TargetSU) < Ord(SU) ? 699 if (LowerBound < UpperBound) { 700 Visited.reset(); 701 // There may be a path from TargetSU to SU. Check for it. 702 DFS(TargetSU, UpperBound, HasLoop); 703 } 704 return HasLoop; 705 } 706 707 void ScheduleDAGTopologicalSort::Allocate(int n, int index) { 708 Node2Index[n] = index; 709 Index2Node[index] = n; 710 } 711 712 ScheduleDAGTopologicalSort:: 713 ScheduleDAGTopologicalSort(std::vector<SUnit> &sunits, SUnit *exitsu) 714 : SUnits(sunits), ExitSU(exitsu) {} 715 716 ScheduleHazardRecognizer::~ScheduleHazardRecognizer() = default; 717