1 //===---- ScheduleDAG.cpp - Implement the ScheduleDAG class ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the ScheduleDAG class, which is a base class used by 11 // scheduling implementation classes. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/ScheduleDAG.h" 16 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 17 #include "llvm/CodeGen/SelectionDAGNodes.h" 18 #include "llvm/Support/CommandLine.h" 19 #include "llvm/Support/Debug.h" 20 #include "llvm/Support/raw_ostream.h" 21 #include "llvm/Target/TargetInstrInfo.h" 22 #include "llvm/Target/TargetMachine.h" 23 #include "llvm/Target/TargetRegisterInfo.h" 24 #include "llvm/Target/TargetSubtargetInfo.h" 25 #include <climits> 26 using namespace llvm; 27 28 #define DEBUG_TYPE "pre-RA-sched" 29 30 #ifndef NDEBUG 31 static cl::opt<bool> StressSchedOpt( 32 "stress-sched", cl::Hidden, cl::init(false), 33 cl::desc("Stress test instruction scheduling")); 34 #endif 35 36 void SchedulingPriorityQueue::anchor() { } 37 38 ScheduleDAG::ScheduleDAG(MachineFunction &mf) 39 : TM(mf.getTarget()), TII(mf.getSubtarget().getInstrInfo()), 40 TRI(mf.getSubtarget().getRegisterInfo()), MF(mf), 41 MRI(mf.getRegInfo()), EntrySU(), ExitSU() { 42 #ifndef NDEBUG 43 StressSched = StressSchedOpt; 44 #endif 45 } 46 47 ScheduleDAG::~ScheduleDAG() {} 48 49 /// Clear the DAG state (e.g. between scheduling regions). 50 void ScheduleDAG::clearDAG() { 51 SUnits.clear(); 52 EntrySU = SUnit(); 53 ExitSU = SUnit(); 54 } 55 56 /// getInstrDesc helper to handle SDNodes. 57 const MCInstrDesc *ScheduleDAG::getNodeDesc(const SDNode *Node) const { 58 if (!Node || !Node->isMachineOpcode()) return nullptr; 59 return &TII->get(Node->getMachineOpcode()); 60 } 61 62 /// addPred - This adds the specified edge as a pred of the current node if 63 /// not already. It also adds the current node as a successor of the 64 /// specified node. 65 bool SUnit::addPred(const SDep &D, bool Required) { 66 // If this node already has this dependence, don't add a redundant one. 67 for (SmallVectorImpl<SDep>::iterator I = Preds.begin(), E = Preds.end(); 68 I != E; ++I) { 69 // Zero-latency weak edges may be added purely for heuristic ordering. Don't 70 // add them if another kind of edge already exists. 71 if (!Required && I->getSUnit() == D.getSUnit()) 72 return false; 73 if (I->overlaps(D)) { 74 // Extend the latency if needed. Equivalent to removePred(I) + addPred(D). 75 if (I->getLatency() < D.getLatency()) { 76 SUnit *PredSU = I->getSUnit(); 77 // Find the corresponding successor in N. 78 SDep ForwardD = *I; 79 ForwardD.setSUnit(this); 80 for (SmallVectorImpl<SDep>::iterator II = PredSU->Succs.begin(), 81 EE = PredSU->Succs.end(); II != EE; ++II) { 82 if (*II == ForwardD) { 83 II->setLatency(D.getLatency()); 84 break; 85 } 86 } 87 I->setLatency(D.getLatency()); 88 } 89 return false; 90 } 91 } 92 // Now add a corresponding succ to N. 93 SDep P = D; 94 P.setSUnit(this); 95 SUnit *N = D.getSUnit(); 96 // Update the bookkeeping. 97 if (D.getKind() == SDep::Data) { 98 assert(NumPreds < UINT_MAX && "NumPreds will overflow!"); 99 assert(N->NumSuccs < UINT_MAX && "NumSuccs will overflow!"); 100 ++NumPreds; 101 ++N->NumSuccs; 102 } 103 if (!N->isScheduled) { 104 if (D.isWeak()) { 105 ++WeakPredsLeft; 106 } 107 else { 108 assert(NumPredsLeft < UINT_MAX && "NumPredsLeft will overflow!"); 109 ++NumPredsLeft; 110 } 111 } 112 if (!isScheduled) { 113 if (D.isWeak()) { 114 ++N->WeakSuccsLeft; 115 } 116 else { 117 assert(N->NumSuccsLeft < UINT_MAX && "NumSuccsLeft will overflow!"); 118 ++N->NumSuccsLeft; 119 } 120 } 121 Preds.push_back(D); 122 N->Succs.push_back(P); 123 if (P.getLatency() != 0) { 124 this->setDepthDirty(); 125 N->setHeightDirty(); 126 } 127 return true; 128 } 129 130 /// removePred - This removes the specified edge as a pred of the current 131 /// node if it exists. It also removes the current node as a successor of 132 /// the specified node. 133 void SUnit::removePred(const SDep &D) { 134 // Find the matching predecessor. 135 for (SmallVectorImpl<SDep>::iterator I = Preds.begin(), E = Preds.end(); 136 I != E; ++I) 137 if (*I == D) { 138 // Find the corresponding successor in N. 139 SDep P = D; 140 P.setSUnit(this); 141 SUnit *N = D.getSUnit(); 142 SmallVectorImpl<SDep>::iterator Succ = find(N->Succs, P); 143 assert(Succ != N->Succs.end() && "Mismatching preds / succs lists!"); 144 N->Succs.erase(Succ); 145 Preds.erase(I); 146 // Update the bookkeeping. 147 if (P.getKind() == SDep::Data) { 148 assert(NumPreds > 0 && "NumPreds will underflow!"); 149 assert(N->NumSuccs > 0 && "NumSuccs will underflow!"); 150 --NumPreds; 151 --N->NumSuccs; 152 } 153 if (!N->isScheduled) { 154 if (D.isWeak()) 155 --WeakPredsLeft; 156 else { 157 assert(NumPredsLeft > 0 && "NumPredsLeft will underflow!"); 158 --NumPredsLeft; 159 } 160 } 161 if (!isScheduled) { 162 if (D.isWeak()) 163 --N->WeakSuccsLeft; 164 else { 165 assert(N->NumSuccsLeft > 0 && "NumSuccsLeft will underflow!"); 166 --N->NumSuccsLeft; 167 } 168 } 169 if (P.getLatency() != 0) { 170 this->setDepthDirty(); 171 N->setHeightDirty(); 172 } 173 return; 174 } 175 } 176 177 void SUnit::setDepthDirty() { 178 if (!isDepthCurrent) return; 179 SmallVector<SUnit*, 8> WorkList; 180 WorkList.push_back(this); 181 do { 182 SUnit *SU = WorkList.pop_back_val(); 183 SU->isDepthCurrent = false; 184 for (SUnit::const_succ_iterator I = SU->Succs.begin(), 185 E = SU->Succs.end(); I != E; ++I) { 186 SUnit *SuccSU = I->getSUnit(); 187 if (SuccSU->isDepthCurrent) 188 WorkList.push_back(SuccSU); 189 } 190 } while (!WorkList.empty()); 191 } 192 193 void SUnit::setHeightDirty() { 194 if (!isHeightCurrent) return; 195 SmallVector<SUnit*, 8> WorkList; 196 WorkList.push_back(this); 197 do { 198 SUnit *SU = WorkList.pop_back_val(); 199 SU->isHeightCurrent = false; 200 for (SUnit::const_pred_iterator I = SU->Preds.begin(), 201 E = SU->Preds.end(); I != E; ++I) { 202 SUnit *PredSU = I->getSUnit(); 203 if (PredSU->isHeightCurrent) 204 WorkList.push_back(PredSU); 205 } 206 } while (!WorkList.empty()); 207 } 208 209 /// setDepthToAtLeast - Update this node's successors to reflect the 210 /// fact that this node's depth just increased. 211 /// 212 void SUnit::setDepthToAtLeast(unsigned NewDepth) { 213 if (NewDepth <= getDepth()) 214 return; 215 setDepthDirty(); 216 Depth = NewDepth; 217 isDepthCurrent = true; 218 } 219 220 /// setHeightToAtLeast - Update this node's predecessors to reflect the 221 /// fact that this node's height just increased. 222 /// 223 void SUnit::setHeightToAtLeast(unsigned NewHeight) { 224 if (NewHeight <= getHeight()) 225 return; 226 setHeightDirty(); 227 Height = NewHeight; 228 isHeightCurrent = true; 229 } 230 231 /// ComputeDepth - Calculate the maximal path from the node to the exit. 232 /// 233 void SUnit::ComputeDepth() { 234 SmallVector<SUnit*, 8> WorkList; 235 WorkList.push_back(this); 236 do { 237 SUnit *Cur = WorkList.back(); 238 239 bool Done = true; 240 unsigned MaxPredDepth = 0; 241 for (SUnit::const_pred_iterator I = Cur->Preds.begin(), 242 E = Cur->Preds.end(); I != E; ++I) { 243 SUnit *PredSU = I->getSUnit(); 244 if (PredSU->isDepthCurrent) 245 MaxPredDepth = std::max(MaxPredDepth, 246 PredSU->Depth + I->getLatency()); 247 else { 248 Done = false; 249 WorkList.push_back(PredSU); 250 } 251 } 252 253 if (Done) { 254 WorkList.pop_back(); 255 if (MaxPredDepth != Cur->Depth) { 256 Cur->setDepthDirty(); 257 Cur->Depth = MaxPredDepth; 258 } 259 Cur->isDepthCurrent = true; 260 } 261 } while (!WorkList.empty()); 262 } 263 264 /// ComputeHeight - Calculate the maximal path from the node to the entry. 265 /// 266 void SUnit::ComputeHeight() { 267 SmallVector<SUnit*, 8> WorkList; 268 WorkList.push_back(this); 269 do { 270 SUnit *Cur = WorkList.back(); 271 272 bool Done = true; 273 unsigned MaxSuccHeight = 0; 274 for (SUnit::const_succ_iterator I = Cur->Succs.begin(), 275 E = Cur->Succs.end(); I != E; ++I) { 276 SUnit *SuccSU = I->getSUnit(); 277 if (SuccSU->isHeightCurrent) 278 MaxSuccHeight = std::max(MaxSuccHeight, 279 SuccSU->Height + I->getLatency()); 280 else { 281 Done = false; 282 WorkList.push_back(SuccSU); 283 } 284 } 285 286 if (Done) { 287 WorkList.pop_back(); 288 if (MaxSuccHeight != Cur->Height) { 289 Cur->setHeightDirty(); 290 Cur->Height = MaxSuccHeight; 291 } 292 Cur->isHeightCurrent = true; 293 } 294 } while (!WorkList.empty()); 295 } 296 297 void SUnit::biasCriticalPath() { 298 if (NumPreds < 2) 299 return; 300 301 SUnit::pred_iterator BestI = Preds.begin(); 302 unsigned MaxDepth = BestI->getSUnit()->getDepth(); 303 for (SUnit::pred_iterator I = std::next(BestI), E = Preds.end(); I != E; 304 ++I) { 305 if (I->getKind() == SDep::Data && I->getSUnit()->getDepth() > MaxDepth) 306 BestI = I; 307 } 308 if (BestI != Preds.begin()) 309 std::swap(*Preds.begin(), *BestI); 310 } 311 312 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 313 static void dumpSUIdentifier(const ScheduleDAG &DAG, const SUnit &SU) { 314 if (&SU == &DAG.ExitSU) 315 dbgs() << "ExitSU"; 316 else if (&SU == &DAG.EntrySU) 317 dbgs() << "EntrySU"; 318 else 319 dbgs() << "SU(" << SU.NodeNum << ")"; 320 } 321 322 /// SUnit - Scheduling unit. It's an wrapper around either a single SDNode or 323 /// a group of nodes flagged together. 324 void SUnit::dump(const ScheduleDAG *G) const { 325 dumpSUIdentifier(*G, *this); 326 dbgs() << ": "; 327 G->dumpNode(this); 328 } 329 330 void SUnit::dumpAll(const ScheduleDAG *G) const { 331 dump(G); 332 if (skip) { 333 dbgs() << " Skipped\n"; 334 return; 335 } 336 337 dbgs() << " # preds left : " << NumPredsLeft << "\n"; 338 dbgs() << " # succs left : " << NumSuccsLeft << "\n"; 339 if (WeakPredsLeft) 340 dbgs() << " # weak preds left : " << WeakPredsLeft << "\n"; 341 if (WeakSuccsLeft) 342 dbgs() << " # weak succs left : " << WeakSuccsLeft << "\n"; 343 dbgs() << " # rdefs left : " << NumRegDefsLeft << "\n"; 344 dbgs() << " Latency : " << Latency << "\n"; 345 dbgs() << " Depth : " << getDepth() << "\n"; 346 dbgs() << " Height : " << getHeight() << "\n"; 347 348 if (Preds.size() != 0) { 349 dbgs() << " Predecessors:\n"; 350 for (SUnit::const_succ_iterator I = Preds.begin(), E = Preds.end(); 351 I != E; ++I) { 352 dbgs() << " "; 353 switch (I->getKind()) { 354 case SDep::Data: dbgs() << "data "; break; 355 case SDep::Anti: dbgs() << "anti "; break; 356 case SDep::Output: dbgs() << "out "; break; 357 case SDep::Order: dbgs() << "ord "; break; 358 } 359 dumpSUIdentifier(*G, *I->getSUnit()); 360 if (I->isArtificial()) 361 dbgs() << " *"; 362 dbgs() << ": Latency=" << I->getLatency(); 363 if (I->isAssignedRegDep()) 364 dbgs() << " Reg=" << PrintReg(I->getReg(), G->TRI); 365 dbgs() << "\n"; 366 } 367 } 368 if (Succs.size() != 0) { 369 dbgs() << " Successors:\n"; 370 for (SUnit::const_succ_iterator I = Succs.begin(), E = Succs.end(); 371 I != E; ++I) { 372 dbgs() << " "; 373 switch (I->getKind()) { 374 case SDep::Data: dbgs() << "data "; break; 375 case SDep::Anti: dbgs() << "anti "; break; 376 case SDep::Output: dbgs() << "out "; break; 377 case SDep::Order: dbgs() << "ord "; break; 378 } 379 dumpSUIdentifier(*G, *I->getSUnit()); 380 if (I->isArtificial()) 381 dbgs() << " *"; 382 dbgs() << ": Latency=" << I->getLatency(); 383 if (I->isAssignedRegDep()) 384 dbgs() << " Reg=" << PrintReg(I->getReg(), G->TRI); 385 dbgs() << "\n"; 386 } 387 } 388 } 389 #endif 390 391 #ifndef NDEBUG 392 /// VerifyScheduledDAG - Verify that all SUnits were scheduled and that 393 /// their state is consistent. Return the number of scheduled nodes. 394 /// 395 unsigned ScheduleDAG::VerifyScheduledDAG(bool isBottomUp) { 396 bool AnyNotSched = false; 397 unsigned DeadNodes = 0; 398 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { 399 if (!SUnits[i].isScheduled) { 400 if (SUnits[i].NumPreds == 0 && SUnits[i].NumSuccs == 0) { 401 ++DeadNodes; 402 continue; 403 } 404 if (!AnyNotSched) 405 dbgs() << "*** Scheduling failed! ***\n"; 406 SUnits[i].dump(this); 407 dbgs() << "has not been scheduled!\n"; 408 AnyNotSched = true; 409 } 410 if (SUnits[i].isScheduled && 411 (isBottomUp ? SUnits[i].getHeight() : SUnits[i].getDepth()) > 412 unsigned(INT_MAX)) { 413 if (!AnyNotSched) 414 dbgs() << "*** Scheduling failed! ***\n"; 415 SUnits[i].dump(this); 416 dbgs() << "has an unexpected " 417 << (isBottomUp ? "Height" : "Depth") << " value!\n"; 418 AnyNotSched = true; 419 } 420 if (isBottomUp) { 421 if (SUnits[i].NumSuccsLeft != 0) { 422 if (!AnyNotSched) 423 dbgs() << "*** Scheduling failed! ***\n"; 424 SUnits[i].dump(this); 425 dbgs() << "has successors left!\n"; 426 AnyNotSched = true; 427 } 428 } else { 429 if (SUnits[i].NumPredsLeft != 0) { 430 if (!AnyNotSched) 431 dbgs() << "*** Scheduling failed! ***\n"; 432 SUnits[i].dump(this); 433 dbgs() << "has predecessors left!\n"; 434 AnyNotSched = true; 435 } 436 } 437 } 438 assert(!AnyNotSched); 439 return SUnits.size() - DeadNodes; 440 } 441 #endif 442 443 /// InitDAGTopologicalSorting - create the initial topological 444 /// ordering from the DAG to be scheduled. 445 /// 446 /// The idea of the algorithm is taken from 447 /// "Online algorithms for managing the topological order of 448 /// a directed acyclic graph" by David J. Pearce and Paul H.J. Kelly 449 /// This is the MNR algorithm, which was first introduced by 450 /// A. Marchetti-Spaccamela, U. Nanni and H. Rohnert in 451 /// "Maintaining a topological order under edge insertions". 452 /// 453 /// Short description of the algorithm: 454 /// 455 /// Topological ordering, ord, of a DAG maps each node to a topological 456 /// index so that for all edges X->Y it is the case that ord(X) < ord(Y). 457 /// 458 /// This means that if there is a path from the node X to the node Z, 459 /// then ord(X) < ord(Z). 460 /// 461 /// This property can be used to check for reachability of nodes: 462 /// if Z is reachable from X, then an insertion of the edge Z->X would 463 /// create a cycle. 464 /// 465 /// The algorithm first computes a topological ordering for the DAG by 466 /// initializing the Index2Node and Node2Index arrays and then tries to keep 467 /// the ordering up-to-date after edge insertions by reordering the DAG. 468 /// 469 /// On insertion of the edge X->Y, the algorithm first marks by calling DFS 470 /// the nodes reachable from Y, and then shifts them using Shift to lie 471 /// immediately after X in Index2Node. 472 void ScheduleDAGTopologicalSort::InitDAGTopologicalSorting() { 473 unsigned DAGSize = SUnits.size(); 474 std::vector<SUnit*> WorkList; 475 WorkList.reserve(DAGSize); 476 477 Index2Node.resize(DAGSize); 478 Node2Index.resize(DAGSize); 479 480 // Initialize the data structures. 481 if (ExitSU) 482 WorkList.push_back(ExitSU); 483 for (unsigned i = 0, e = DAGSize; i != e; ++i) { 484 SUnit *SU = &SUnits[i]; 485 int NodeNum = SU->NodeNum; 486 unsigned Degree = SU->Succs.size(); 487 // Temporarily use the Node2Index array as scratch space for degree counts. 488 Node2Index[NodeNum] = Degree; 489 490 // Is it a node without dependencies? 491 if (Degree == 0) { 492 assert(SU->Succs.empty() && "SUnit should have no successors"); 493 // Collect leaf nodes. 494 WorkList.push_back(SU); 495 } 496 } 497 498 int Id = DAGSize; 499 while (!WorkList.empty()) { 500 SUnit *SU = WorkList.back(); 501 WorkList.pop_back(); 502 if (SU->NodeNum < DAGSize) 503 Allocate(SU->NodeNum, --Id); 504 for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); 505 I != E; ++I) { 506 SUnit *SU = I->getSUnit(); 507 if (SU->NodeNum < DAGSize && !--Node2Index[SU->NodeNum]) 508 // If all dependencies of the node are processed already, 509 // then the node can be computed now. 510 WorkList.push_back(SU); 511 } 512 } 513 514 Visited.resize(DAGSize); 515 516 #ifndef NDEBUG 517 // Check correctness of the ordering 518 for (unsigned i = 0, e = DAGSize; i != e; ++i) { 519 SUnit *SU = &SUnits[i]; 520 for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); 521 I != E; ++I) { 522 assert(Node2Index[SU->NodeNum] > Node2Index[I->getSUnit()->NodeNum] && 523 "Wrong topological sorting"); 524 } 525 } 526 #endif 527 } 528 529 /// AddPred - Updates the topological ordering to accommodate an edge 530 /// to be added from SUnit X to SUnit Y. 531 void ScheduleDAGTopologicalSort::AddPred(SUnit *Y, SUnit *X) { 532 int UpperBound, LowerBound; 533 LowerBound = Node2Index[Y->NodeNum]; 534 UpperBound = Node2Index[X->NodeNum]; 535 bool HasLoop = false; 536 // Is Ord(X) < Ord(Y) ? 537 if (LowerBound < UpperBound) { 538 // Update the topological order. 539 Visited.reset(); 540 DFS(Y, UpperBound, HasLoop); 541 assert(!HasLoop && "Inserted edge creates a loop!"); 542 // Recompute topological indexes. 543 Shift(Visited, LowerBound, UpperBound); 544 } 545 } 546 547 /// RemovePred - Updates the topological ordering to accommodate an 548 /// an edge to be removed from the specified node N from the predecessors 549 /// of the current node M. 550 void ScheduleDAGTopologicalSort::RemovePred(SUnit *M, SUnit *N) { 551 // InitDAGTopologicalSorting(); 552 } 553 554 /// DFS - Make a DFS traversal to mark all nodes reachable from SU and mark 555 /// all nodes affected by the edge insertion. These nodes will later get new 556 /// topological indexes by means of the Shift method. 557 void ScheduleDAGTopologicalSort::DFS(const SUnit *SU, int UpperBound, 558 bool &HasLoop) { 559 std::vector<const SUnit*> WorkList; 560 WorkList.reserve(SUnits.size()); 561 562 WorkList.push_back(SU); 563 do { 564 SU = WorkList.back(); 565 WorkList.pop_back(); 566 Visited.set(SU->NodeNum); 567 for (int I = SU->Succs.size()-1; I >= 0; --I) { 568 unsigned s = SU->Succs[I].getSUnit()->NodeNum; 569 // Edges to non-SUnits are allowed but ignored (e.g. ExitSU). 570 if (s >= Node2Index.size()) 571 continue; 572 if (Node2Index[s] == UpperBound) { 573 HasLoop = true; 574 return; 575 } 576 // Visit successors if not already and in affected region. 577 if (!Visited.test(s) && Node2Index[s] < UpperBound) { 578 WorkList.push_back(SU->Succs[I].getSUnit()); 579 } 580 } 581 } while (!WorkList.empty()); 582 } 583 584 /// Shift - Renumber the nodes so that the topological ordering is 585 /// preserved. 586 void ScheduleDAGTopologicalSort::Shift(BitVector& Visited, int LowerBound, 587 int UpperBound) { 588 std::vector<int> L; 589 int shift = 0; 590 int i; 591 592 for (i = LowerBound; i <= UpperBound; ++i) { 593 // w is node at topological index i. 594 int w = Index2Node[i]; 595 if (Visited.test(w)) { 596 // Unmark. 597 Visited.reset(w); 598 L.push_back(w); 599 shift = shift + 1; 600 } else { 601 Allocate(w, i - shift); 602 } 603 } 604 605 for (unsigned j = 0; j < L.size(); ++j) { 606 Allocate(L[j], i - shift); 607 i = i + 1; 608 } 609 } 610 611 612 /// WillCreateCycle - Returns true if adding an edge to TargetSU from SU will 613 /// create a cycle. If so, it is not safe to call AddPred(TargetSU, SU). 614 bool ScheduleDAGTopologicalSort::WillCreateCycle(SUnit *TargetSU, SUnit *SU) { 615 // Is SU reachable from TargetSU via successor edges? 616 if (IsReachable(SU, TargetSU)) 617 return true; 618 for (SUnit::pred_iterator 619 I = TargetSU->Preds.begin(), E = TargetSU->Preds.end(); I != E; ++I) 620 if (I->isAssignedRegDep() && 621 IsReachable(SU, I->getSUnit())) 622 return true; 623 return false; 624 } 625 626 /// IsReachable - Checks if SU is reachable from TargetSU. 627 bool ScheduleDAGTopologicalSort::IsReachable(const SUnit *SU, 628 const SUnit *TargetSU) { 629 // If insertion of the edge SU->TargetSU would create a cycle 630 // then there is a path from TargetSU to SU. 631 int UpperBound, LowerBound; 632 LowerBound = Node2Index[TargetSU->NodeNum]; 633 UpperBound = Node2Index[SU->NodeNum]; 634 bool HasLoop = false; 635 // Is Ord(TargetSU) < Ord(SU) ? 636 if (LowerBound < UpperBound) { 637 Visited.reset(); 638 // There may be a path from TargetSU to SU. Check for it. 639 DFS(TargetSU, UpperBound, HasLoop); 640 } 641 return HasLoop; 642 } 643 644 /// Allocate - assign the topological index to the node n. 645 void ScheduleDAGTopologicalSort::Allocate(int n, int index) { 646 Node2Index[n] = index; 647 Index2Node[index] = n; 648 } 649 650 ScheduleDAGTopologicalSort:: 651 ScheduleDAGTopologicalSort(std::vector<SUnit> &sunits, SUnit *exitsu) 652 : SUnits(sunits), ExitSU(exitsu) {} 653 654 ScheduleHazardRecognizer::~ScheduleHazardRecognizer() {} 655