1 //===---- ScheduleDAG.cpp - Implement the ScheduleDAG class ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the ScheduleDAG class, which is a base class used by 11 // scheduling implementation classes. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/ScheduleDAG.h" 16 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 17 #include "llvm/CodeGen/SelectionDAGNodes.h" 18 #include "llvm/Support/CommandLine.h" 19 #include "llvm/Support/Debug.h" 20 #include "llvm/Support/raw_ostream.h" 21 #include "llvm/Target/TargetInstrInfo.h" 22 #include "llvm/Target/TargetMachine.h" 23 #include "llvm/Target/TargetRegisterInfo.h" 24 #include "llvm/Target/TargetSubtargetInfo.h" 25 #include <climits> 26 using namespace llvm; 27 28 #define DEBUG_TYPE "pre-RA-sched" 29 30 #ifndef NDEBUG 31 static cl::opt<bool> StressSchedOpt( 32 "stress-sched", cl::Hidden, cl::init(false), 33 cl::desc("Stress test instruction scheduling")); 34 #endif 35 36 void SchedulingPriorityQueue::anchor() { } 37 38 ScheduleDAG::ScheduleDAG(MachineFunction &mf) 39 : TM(mf.getTarget()), TII(mf.getSubtarget().getInstrInfo()), 40 TRI(mf.getSubtarget().getRegisterInfo()), MF(mf), 41 MRI(mf.getRegInfo()), EntrySU(), ExitSU() { 42 #ifndef NDEBUG 43 StressSched = StressSchedOpt; 44 #endif 45 } 46 47 ScheduleDAG::~ScheduleDAG() {} 48 49 /// Clear the DAG state (e.g. between scheduling regions). 50 void ScheduleDAG::clearDAG() { 51 SUnits.clear(); 52 EntrySU = SUnit(); 53 ExitSU = SUnit(); 54 } 55 56 /// getInstrDesc helper to handle SDNodes. 57 const MCInstrDesc *ScheduleDAG::getNodeDesc(const SDNode *Node) const { 58 if (!Node || !Node->isMachineOpcode()) return nullptr; 59 return &TII->get(Node->getMachineOpcode()); 60 } 61 62 /// addPred - This adds the specified edge as a pred of the current node if 63 /// not already. It also adds the current node as a successor of the 64 /// specified node. 65 bool SUnit::addPred(const SDep &D, bool Required) { 66 // If this node already has this dependence, don't add a redundant one. 67 for (SmallVectorImpl<SDep>::iterator I = Preds.begin(), E = Preds.end(); 68 I != E; ++I) { 69 // Zero-latency weak edges may be added purely for heuristic ordering. Don't 70 // add them if another kind of edge already exists. 71 if (!Required && I->getSUnit() == D.getSUnit()) 72 return false; 73 if (I->overlaps(D)) { 74 // Extend the latency if needed. Equivalent to removePred(I) + addPred(D). 75 if (I->getLatency() < D.getLatency()) { 76 SUnit *PredSU = I->getSUnit(); 77 // Find the corresponding successor in N. 78 SDep ForwardD = *I; 79 ForwardD.setSUnit(this); 80 for (SmallVectorImpl<SDep>::iterator II = PredSU->Succs.begin(), 81 EE = PredSU->Succs.end(); II != EE; ++II) { 82 if (*II == ForwardD) { 83 II->setLatency(D.getLatency()); 84 break; 85 } 86 } 87 I->setLatency(D.getLatency()); 88 } 89 return false; 90 } 91 } 92 // Now add a corresponding succ to N. 93 SDep P = D; 94 P.setSUnit(this); 95 SUnit *N = D.getSUnit(); 96 // Update the bookkeeping. 97 if (D.getKind() == SDep::Data) { 98 assert(NumPreds < UINT_MAX && "NumPreds will overflow!"); 99 assert(N->NumSuccs < UINT_MAX && "NumSuccs will overflow!"); 100 ++NumPreds; 101 ++N->NumSuccs; 102 } 103 if (!N->isScheduled) { 104 if (D.isWeak()) { 105 ++WeakPredsLeft; 106 } 107 else { 108 assert(NumPredsLeft < UINT_MAX && "NumPredsLeft will overflow!"); 109 ++NumPredsLeft; 110 } 111 } 112 if (!isScheduled) { 113 if (D.isWeak()) { 114 ++N->WeakSuccsLeft; 115 } 116 else { 117 assert(N->NumSuccsLeft < UINT_MAX && "NumSuccsLeft will overflow!"); 118 ++N->NumSuccsLeft; 119 } 120 } 121 Preds.push_back(D); 122 N->Succs.push_back(P); 123 if (P.getLatency() != 0) { 124 this->setDepthDirty(); 125 N->setHeightDirty(); 126 } 127 return true; 128 } 129 130 /// removePred - This removes the specified edge as a pred of the current 131 /// node if it exists. It also removes the current node as a successor of 132 /// the specified node. 133 void SUnit::removePred(const SDep &D) { 134 // Find the matching predecessor. 135 for (SmallVectorImpl<SDep>::iterator I = Preds.begin(), E = Preds.end(); 136 I != E; ++I) 137 if (*I == D) { 138 // Find the corresponding successor in N. 139 SDep P = D; 140 P.setSUnit(this); 141 SUnit *N = D.getSUnit(); 142 SmallVectorImpl<SDep>::iterator Succ = find(N->Succs, P); 143 assert(Succ != N->Succs.end() && "Mismatching preds / succs lists!"); 144 N->Succs.erase(Succ); 145 Preds.erase(I); 146 // Update the bookkeeping. 147 if (P.getKind() == SDep::Data) { 148 assert(NumPreds > 0 && "NumPreds will underflow!"); 149 assert(N->NumSuccs > 0 && "NumSuccs will underflow!"); 150 --NumPreds; 151 --N->NumSuccs; 152 } 153 if (!N->isScheduled) { 154 if (D.isWeak()) 155 --WeakPredsLeft; 156 else { 157 assert(NumPredsLeft > 0 && "NumPredsLeft will underflow!"); 158 --NumPredsLeft; 159 } 160 } 161 if (!isScheduled) { 162 if (D.isWeak()) 163 --N->WeakSuccsLeft; 164 else { 165 assert(N->NumSuccsLeft > 0 && "NumSuccsLeft will underflow!"); 166 --N->NumSuccsLeft; 167 } 168 } 169 if (P.getLatency() != 0) { 170 this->setDepthDirty(); 171 N->setHeightDirty(); 172 } 173 return; 174 } 175 } 176 177 void SUnit::setDepthDirty() { 178 if (!isDepthCurrent) return; 179 SmallVector<SUnit*, 8> WorkList; 180 WorkList.push_back(this); 181 do { 182 SUnit *SU = WorkList.pop_back_val(); 183 SU->isDepthCurrent = false; 184 for (SUnit::const_succ_iterator I = SU->Succs.begin(), 185 E = SU->Succs.end(); I != E; ++I) { 186 SUnit *SuccSU = I->getSUnit(); 187 if (SuccSU->isDepthCurrent) 188 WorkList.push_back(SuccSU); 189 } 190 } while (!WorkList.empty()); 191 } 192 193 void SUnit::setHeightDirty() { 194 if (!isHeightCurrent) return; 195 SmallVector<SUnit*, 8> WorkList; 196 WorkList.push_back(this); 197 do { 198 SUnit *SU = WorkList.pop_back_val(); 199 SU->isHeightCurrent = false; 200 for (SUnit::const_pred_iterator I = SU->Preds.begin(), 201 E = SU->Preds.end(); I != E; ++I) { 202 SUnit *PredSU = I->getSUnit(); 203 if (PredSU->isHeightCurrent) 204 WorkList.push_back(PredSU); 205 } 206 } while (!WorkList.empty()); 207 } 208 209 /// setDepthToAtLeast - Update this node's successors to reflect the 210 /// fact that this node's depth just increased. 211 /// 212 void SUnit::setDepthToAtLeast(unsigned NewDepth) { 213 if (NewDepth <= getDepth()) 214 return; 215 setDepthDirty(); 216 Depth = NewDepth; 217 isDepthCurrent = true; 218 } 219 220 /// setHeightToAtLeast - Update this node's predecessors to reflect the 221 /// fact that this node's height just increased. 222 /// 223 void SUnit::setHeightToAtLeast(unsigned NewHeight) { 224 if (NewHeight <= getHeight()) 225 return; 226 setHeightDirty(); 227 Height = NewHeight; 228 isHeightCurrent = true; 229 } 230 231 /// ComputeDepth - Calculate the maximal path from the node to the exit. 232 /// 233 void SUnit::ComputeDepth() { 234 SmallVector<SUnit*, 8> WorkList; 235 WorkList.push_back(this); 236 do { 237 SUnit *Cur = WorkList.back(); 238 239 bool Done = true; 240 unsigned MaxPredDepth = 0; 241 for (SUnit::const_pred_iterator I = Cur->Preds.begin(), 242 E = Cur->Preds.end(); I != E; ++I) { 243 SUnit *PredSU = I->getSUnit(); 244 if (PredSU->isDepthCurrent) 245 MaxPredDepth = std::max(MaxPredDepth, 246 PredSU->Depth + I->getLatency()); 247 else { 248 Done = false; 249 WorkList.push_back(PredSU); 250 } 251 } 252 253 if (Done) { 254 WorkList.pop_back(); 255 if (MaxPredDepth != Cur->Depth) { 256 Cur->setDepthDirty(); 257 Cur->Depth = MaxPredDepth; 258 } 259 Cur->isDepthCurrent = true; 260 } 261 } while (!WorkList.empty()); 262 } 263 264 /// ComputeHeight - Calculate the maximal path from the node to the entry. 265 /// 266 void SUnit::ComputeHeight() { 267 SmallVector<SUnit*, 8> WorkList; 268 WorkList.push_back(this); 269 do { 270 SUnit *Cur = WorkList.back(); 271 272 bool Done = true; 273 unsigned MaxSuccHeight = 0; 274 for (SUnit::const_succ_iterator I = Cur->Succs.begin(), 275 E = Cur->Succs.end(); I != E; ++I) { 276 SUnit *SuccSU = I->getSUnit(); 277 if (SuccSU->isHeightCurrent) 278 MaxSuccHeight = std::max(MaxSuccHeight, 279 SuccSU->Height + I->getLatency()); 280 else { 281 Done = false; 282 WorkList.push_back(SuccSU); 283 } 284 } 285 286 if (Done) { 287 WorkList.pop_back(); 288 if (MaxSuccHeight != Cur->Height) { 289 Cur->setHeightDirty(); 290 Cur->Height = MaxSuccHeight; 291 } 292 Cur->isHeightCurrent = true; 293 } 294 } while (!WorkList.empty()); 295 } 296 297 void SUnit::biasCriticalPath() { 298 if (NumPreds < 2) 299 return; 300 301 SUnit::pred_iterator BestI = Preds.begin(); 302 unsigned MaxDepth = BestI->getSUnit()->getDepth(); 303 for (SUnit::pred_iterator I = std::next(BestI), E = Preds.end(); I != E; 304 ++I) { 305 if (I->getKind() == SDep::Data && I->getSUnit()->getDepth() > MaxDepth) 306 BestI = I; 307 } 308 if (BestI != Preds.begin()) 309 std::swap(*Preds.begin(), *BestI); 310 } 311 312 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 313 /// SUnit - Scheduling unit. It's an wrapper around either a single SDNode or 314 /// a group of nodes flagged together. 315 void SUnit::dump(const ScheduleDAG *G) const { 316 dbgs() << "SU(" << NodeNum << "): "; 317 G->dumpNode(this); 318 } 319 320 void SUnit::dumpAll(const ScheduleDAG *G) const { 321 dump(G); 322 323 dbgs() << " # preds left : " << NumPredsLeft << "\n"; 324 dbgs() << " # succs left : " << NumSuccsLeft << "\n"; 325 if (WeakPredsLeft) 326 dbgs() << " # weak preds left : " << WeakPredsLeft << "\n"; 327 if (WeakSuccsLeft) 328 dbgs() << " # weak succs left : " << WeakSuccsLeft << "\n"; 329 dbgs() << " # rdefs left : " << NumRegDefsLeft << "\n"; 330 dbgs() << " Latency : " << Latency << "\n"; 331 dbgs() << " Depth : " << getDepth() << "\n"; 332 dbgs() << " Height : " << getHeight() << "\n"; 333 334 if (Preds.size() != 0) { 335 dbgs() << " Predecessors:\n"; 336 for (SUnit::const_succ_iterator I = Preds.begin(), E = Preds.end(); 337 I != E; ++I) { 338 dbgs() << " "; 339 switch (I->getKind()) { 340 case SDep::Data: dbgs() << "data "; break; 341 case SDep::Anti: dbgs() << "anti "; break; 342 case SDep::Output: dbgs() << "out "; break; 343 case SDep::Order: dbgs() << "ord "; break; 344 } 345 dbgs() << "SU(" << I->getSUnit()->NodeNum << ")"; 346 if (I->isArtificial()) 347 dbgs() << " *"; 348 dbgs() << ": Latency=" << I->getLatency(); 349 if (I->isAssignedRegDep()) 350 dbgs() << " Reg=" << PrintReg(I->getReg(), G->TRI); 351 dbgs() << "\n"; 352 } 353 } 354 if (Succs.size() != 0) { 355 dbgs() << " Successors:\n"; 356 for (SUnit::const_succ_iterator I = Succs.begin(), E = Succs.end(); 357 I != E; ++I) { 358 dbgs() << " "; 359 switch (I->getKind()) { 360 case SDep::Data: dbgs() << "data "; break; 361 case SDep::Anti: dbgs() << "anti "; break; 362 case SDep::Output: dbgs() << "out "; break; 363 case SDep::Order: dbgs() << "ord "; break; 364 } 365 dbgs() << "SU(" << I->getSUnit()->NodeNum << ")"; 366 if (I->isArtificial()) 367 dbgs() << " *"; 368 dbgs() << ": Latency=" << I->getLatency(); 369 if (I->isAssignedRegDep()) 370 dbgs() << " Reg=" << PrintReg(I->getReg(), G->TRI); 371 dbgs() << "\n"; 372 } 373 } 374 } 375 #endif 376 377 #ifndef NDEBUG 378 /// VerifyScheduledDAG - Verify that all SUnits were scheduled and that 379 /// their state is consistent. Return the number of scheduled nodes. 380 /// 381 unsigned ScheduleDAG::VerifyScheduledDAG(bool isBottomUp) { 382 bool AnyNotSched = false; 383 unsigned DeadNodes = 0; 384 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { 385 if (!SUnits[i].isScheduled) { 386 if (SUnits[i].NumPreds == 0 && SUnits[i].NumSuccs == 0) { 387 ++DeadNodes; 388 continue; 389 } 390 if (!AnyNotSched) 391 dbgs() << "*** Scheduling failed! ***\n"; 392 SUnits[i].dump(this); 393 dbgs() << "has not been scheduled!\n"; 394 AnyNotSched = true; 395 } 396 if (SUnits[i].isScheduled && 397 (isBottomUp ? SUnits[i].getHeight() : SUnits[i].getDepth()) > 398 unsigned(INT_MAX)) { 399 if (!AnyNotSched) 400 dbgs() << "*** Scheduling failed! ***\n"; 401 SUnits[i].dump(this); 402 dbgs() << "has an unexpected " 403 << (isBottomUp ? "Height" : "Depth") << " value!\n"; 404 AnyNotSched = true; 405 } 406 if (isBottomUp) { 407 if (SUnits[i].NumSuccsLeft != 0) { 408 if (!AnyNotSched) 409 dbgs() << "*** Scheduling failed! ***\n"; 410 SUnits[i].dump(this); 411 dbgs() << "has successors left!\n"; 412 AnyNotSched = true; 413 } 414 } else { 415 if (SUnits[i].NumPredsLeft != 0) { 416 if (!AnyNotSched) 417 dbgs() << "*** Scheduling failed! ***\n"; 418 SUnits[i].dump(this); 419 dbgs() << "has predecessors left!\n"; 420 AnyNotSched = true; 421 } 422 } 423 } 424 assert(!AnyNotSched); 425 return SUnits.size() - DeadNodes; 426 } 427 #endif 428 429 /// InitDAGTopologicalSorting - create the initial topological 430 /// ordering from the DAG to be scheduled. 431 /// 432 /// The idea of the algorithm is taken from 433 /// "Online algorithms for managing the topological order of 434 /// a directed acyclic graph" by David J. Pearce and Paul H.J. Kelly 435 /// This is the MNR algorithm, which was first introduced by 436 /// A. Marchetti-Spaccamela, U. Nanni and H. Rohnert in 437 /// "Maintaining a topological order under edge insertions". 438 /// 439 /// Short description of the algorithm: 440 /// 441 /// Topological ordering, ord, of a DAG maps each node to a topological 442 /// index so that for all edges X->Y it is the case that ord(X) < ord(Y). 443 /// 444 /// This means that if there is a path from the node X to the node Z, 445 /// then ord(X) < ord(Z). 446 /// 447 /// This property can be used to check for reachability of nodes: 448 /// if Z is reachable from X, then an insertion of the edge Z->X would 449 /// create a cycle. 450 /// 451 /// The algorithm first computes a topological ordering for the DAG by 452 /// initializing the Index2Node and Node2Index arrays and then tries to keep 453 /// the ordering up-to-date after edge insertions by reordering the DAG. 454 /// 455 /// On insertion of the edge X->Y, the algorithm first marks by calling DFS 456 /// the nodes reachable from Y, and then shifts them using Shift to lie 457 /// immediately after X in Index2Node. 458 void ScheduleDAGTopologicalSort::InitDAGTopologicalSorting() { 459 unsigned DAGSize = SUnits.size(); 460 std::vector<SUnit*> WorkList; 461 WorkList.reserve(DAGSize); 462 463 Index2Node.resize(DAGSize); 464 Node2Index.resize(DAGSize); 465 466 // Initialize the data structures. 467 if (ExitSU) 468 WorkList.push_back(ExitSU); 469 for (unsigned i = 0, e = DAGSize; i != e; ++i) { 470 SUnit *SU = &SUnits[i]; 471 int NodeNum = SU->NodeNum; 472 unsigned Degree = SU->Succs.size(); 473 // Temporarily use the Node2Index array as scratch space for degree counts. 474 Node2Index[NodeNum] = Degree; 475 476 // Is it a node without dependencies? 477 if (Degree == 0) { 478 assert(SU->Succs.empty() && "SUnit should have no successors"); 479 // Collect leaf nodes. 480 WorkList.push_back(SU); 481 } 482 } 483 484 int Id = DAGSize; 485 while (!WorkList.empty()) { 486 SUnit *SU = WorkList.back(); 487 WorkList.pop_back(); 488 if (SU->NodeNum < DAGSize) 489 Allocate(SU->NodeNum, --Id); 490 for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); 491 I != E; ++I) { 492 SUnit *SU = I->getSUnit(); 493 if (SU->NodeNum < DAGSize && !--Node2Index[SU->NodeNum]) 494 // If all dependencies of the node are processed already, 495 // then the node can be computed now. 496 WorkList.push_back(SU); 497 } 498 } 499 500 Visited.resize(DAGSize); 501 502 #ifndef NDEBUG 503 // Check correctness of the ordering 504 for (unsigned i = 0, e = DAGSize; i != e; ++i) { 505 SUnit *SU = &SUnits[i]; 506 for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); 507 I != E; ++I) { 508 assert(Node2Index[SU->NodeNum] > Node2Index[I->getSUnit()->NodeNum] && 509 "Wrong topological sorting"); 510 } 511 } 512 #endif 513 } 514 515 /// AddPred - Updates the topological ordering to accommodate an edge 516 /// to be added from SUnit X to SUnit Y. 517 void ScheduleDAGTopologicalSort::AddPred(SUnit *Y, SUnit *X) { 518 int UpperBound, LowerBound; 519 LowerBound = Node2Index[Y->NodeNum]; 520 UpperBound = Node2Index[X->NodeNum]; 521 bool HasLoop = false; 522 // Is Ord(X) < Ord(Y) ? 523 if (LowerBound < UpperBound) { 524 // Update the topological order. 525 Visited.reset(); 526 DFS(Y, UpperBound, HasLoop); 527 assert(!HasLoop && "Inserted edge creates a loop!"); 528 // Recompute topological indexes. 529 Shift(Visited, LowerBound, UpperBound); 530 } 531 } 532 533 /// RemovePred - Updates the topological ordering to accommodate an 534 /// an edge to be removed from the specified node N from the predecessors 535 /// of the current node M. 536 void ScheduleDAGTopologicalSort::RemovePred(SUnit *M, SUnit *N) { 537 // InitDAGTopologicalSorting(); 538 } 539 540 /// DFS - Make a DFS traversal to mark all nodes reachable from SU and mark 541 /// all nodes affected by the edge insertion. These nodes will later get new 542 /// topological indexes by means of the Shift method. 543 void ScheduleDAGTopologicalSort::DFS(const SUnit *SU, int UpperBound, 544 bool &HasLoop) { 545 std::vector<const SUnit*> WorkList; 546 WorkList.reserve(SUnits.size()); 547 548 WorkList.push_back(SU); 549 do { 550 SU = WorkList.back(); 551 WorkList.pop_back(); 552 Visited.set(SU->NodeNum); 553 for (int I = SU->Succs.size()-1; I >= 0; --I) { 554 unsigned s = SU->Succs[I].getSUnit()->NodeNum; 555 // Edges to non-SUnits are allowed but ignored (e.g. ExitSU). 556 if (s >= Node2Index.size()) 557 continue; 558 if (Node2Index[s] == UpperBound) { 559 HasLoop = true; 560 return; 561 } 562 // Visit successors if not already and in affected region. 563 if (!Visited.test(s) && Node2Index[s] < UpperBound) { 564 WorkList.push_back(SU->Succs[I].getSUnit()); 565 } 566 } 567 } while (!WorkList.empty()); 568 } 569 570 /// Shift - Renumber the nodes so that the topological ordering is 571 /// preserved. 572 void ScheduleDAGTopologicalSort::Shift(BitVector& Visited, int LowerBound, 573 int UpperBound) { 574 std::vector<int> L; 575 int shift = 0; 576 int i; 577 578 for (i = LowerBound; i <= UpperBound; ++i) { 579 // w is node at topological index i. 580 int w = Index2Node[i]; 581 if (Visited.test(w)) { 582 // Unmark. 583 Visited.reset(w); 584 L.push_back(w); 585 shift = shift + 1; 586 } else { 587 Allocate(w, i - shift); 588 } 589 } 590 591 for (unsigned j = 0; j < L.size(); ++j) { 592 Allocate(L[j], i - shift); 593 i = i + 1; 594 } 595 } 596 597 598 /// WillCreateCycle - Returns true if adding an edge to TargetSU from SU will 599 /// create a cycle. If so, it is not safe to call AddPred(TargetSU, SU). 600 bool ScheduleDAGTopologicalSort::WillCreateCycle(SUnit *TargetSU, SUnit *SU) { 601 // Is SU reachable from TargetSU via successor edges? 602 if (IsReachable(SU, TargetSU)) 603 return true; 604 for (SUnit::pred_iterator 605 I = TargetSU->Preds.begin(), E = TargetSU->Preds.end(); I != E; ++I) 606 if (I->isAssignedRegDep() && 607 IsReachable(SU, I->getSUnit())) 608 return true; 609 return false; 610 } 611 612 /// IsReachable - Checks if SU is reachable from TargetSU. 613 bool ScheduleDAGTopologicalSort::IsReachable(const SUnit *SU, 614 const SUnit *TargetSU) { 615 // If insertion of the edge SU->TargetSU would create a cycle 616 // then there is a path from TargetSU to SU. 617 int UpperBound, LowerBound; 618 LowerBound = Node2Index[TargetSU->NodeNum]; 619 UpperBound = Node2Index[SU->NodeNum]; 620 bool HasLoop = false; 621 // Is Ord(TargetSU) < Ord(SU) ? 622 if (LowerBound < UpperBound) { 623 Visited.reset(); 624 // There may be a path from TargetSU to SU. Check for it. 625 DFS(TargetSU, UpperBound, HasLoop); 626 } 627 return HasLoop; 628 } 629 630 /// Allocate - assign the topological index to the node n. 631 void ScheduleDAGTopologicalSort::Allocate(int n, int index) { 632 Node2Index[n] = index; 633 Index2Node[index] = n; 634 } 635 636 ScheduleDAGTopologicalSort:: 637 ScheduleDAGTopologicalSort(std::vector<SUnit> &sunits, SUnit *exitsu) 638 : SUnits(sunits), ExitSU(exitsu) {} 639 640 ScheduleHazardRecognizer::~ScheduleHazardRecognizer() {} 641