1 //===---- ScheduleDAG.cpp - Implement the ScheduleDAG class ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the ScheduleDAG class, which is a base class used by 11 // scheduling implementation classes. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "pre-RA-sched" 16 #include "llvm/CodeGen/ScheduleDAG.h" 17 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 18 #include "llvm/CodeGen/SelectionDAGNodes.h" 19 #include "llvm/Target/TargetMachine.h" 20 #include "llvm/Target/TargetInstrInfo.h" 21 #include "llvm/Target/TargetRegisterInfo.h" 22 #include "llvm/Support/CommandLine.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/raw_ostream.h" 25 #include <climits> 26 using namespace llvm; 27 28 #ifndef NDEBUG 29 static cl::opt<bool> StressSchedOpt( 30 "stress-sched", cl::Hidden, cl::init(false), 31 cl::desc("Stress test instruction scheduling")); 32 #endif 33 34 void SchedulingPriorityQueue::anchor() { } 35 36 ScheduleDAG::ScheduleDAG(MachineFunction &mf) 37 : TM(mf.getTarget()), 38 TII(TM.getInstrInfo()), 39 TRI(TM.getRegisterInfo()), 40 MF(mf), MRI(mf.getRegInfo()), 41 EntrySU(), ExitSU() { 42 #ifndef NDEBUG 43 StressSched = StressSchedOpt; 44 #endif 45 } 46 47 ScheduleDAG::~ScheduleDAG() {} 48 49 /// getInstrDesc helper to handle SDNodes. 50 const MCInstrDesc *ScheduleDAG::getNodeDesc(const SDNode *Node) const { 51 if (!Node || !Node->isMachineOpcode()) return NULL; 52 return &TII->get(Node->getMachineOpcode()); 53 } 54 55 /// dump - dump the schedule. 56 void ScheduleDAG::dumpSchedule() const { 57 for (unsigned i = 0, e = Sequence.size(); i != e; i++) { 58 if (SUnit *SU = Sequence[i]) 59 SU->dump(this); 60 else 61 dbgs() << "**** NOOP ****\n"; 62 } 63 } 64 65 66 /// Run - perform scheduling. 67 /// 68 void ScheduleDAG::Run(MachineBasicBlock *bb, 69 MachineBasicBlock::iterator insertPos) { 70 BB = bb; 71 InsertPos = insertPos; 72 73 SUnits.clear(); 74 Sequence.clear(); 75 EntrySU = SUnit(); 76 ExitSU = SUnit(); 77 78 Schedule(); 79 80 DEBUG({ 81 dbgs() << "*** Final schedule ***\n"; 82 dumpSchedule(); 83 dbgs() << '\n'; 84 }); 85 } 86 87 /// addPred - This adds the specified edge as a pred of the current node if 88 /// not already. It also adds the current node as a successor of the 89 /// specified node. 90 bool SUnit::addPred(const SDep &D) { 91 // If this node already has this depenence, don't add a redundant one. 92 for (SmallVector<SDep, 4>::const_iterator I = Preds.begin(), E = Preds.end(); 93 I != E; ++I) 94 if (*I == D) 95 return false; 96 // Now add a corresponding succ to N. 97 SDep P = D; 98 P.setSUnit(this); 99 SUnit *N = D.getSUnit(); 100 // Update the bookkeeping. 101 if (D.getKind() == SDep::Data) { 102 assert(NumPreds < UINT_MAX && "NumPreds will overflow!"); 103 assert(N->NumSuccs < UINT_MAX && "NumSuccs will overflow!"); 104 ++NumPreds; 105 ++N->NumSuccs; 106 } 107 if (!N->isScheduled) { 108 assert(NumPredsLeft < UINT_MAX && "NumPredsLeft will overflow!"); 109 ++NumPredsLeft; 110 } 111 if (!isScheduled) { 112 assert(N->NumSuccsLeft < UINT_MAX && "NumSuccsLeft will overflow!"); 113 ++N->NumSuccsLeft; 114 } 115 Preds.push_back(D); 116 N->Succs.push_back(P); 117 if (P.getLatency() != 0) { 118 this->setDepthDirty(); 119 N->setHeightDirty(); 120 } 121 return true; 122 } 123 124 /// removePred - This removes the specified edge as a pred of the current 125 /// node if it exists. It also removes the current node as a successor of 126 /// the specified node. 127 void SUnit::removePred(const SDep &D) { 128 // Find the matching predecessor. 129 for (SmallVector<SDep, 4>::iterator I = Preds.begin(), E = Preds.end(); 130 I != E; ++I) 131 if (*I == D) { 132 bool FoundSucc = false; 133 // Find the corresponding successor in N. 134 SDep P = D; 135 P.setSUnit(this); 136 SUnit *N = D.getSUnit(); 137 for (SmallVector<SDep, 4>::iterator II = N->Succs.begin(), 138 EE = N->Succs.end(); II != EE; ++II) 139 if (*II == P) { 140 FoundSucc = true; 141 N->Succs.erase(II); 142 break; 143 } 144 assert(FoundSucc && "Mismatching preds / succs lists!"); 145 (void)FoundSucc; 146 Preds.erase(I); 147 // Update the bookkeeping. 148 if (P.getKind() == SDep::Data) { 149 assert(NumPreds > 0 && "NumPreds will underflow!"); 150 assert(N->NumSuccs > 0 && "NumSuccs will underflow!"); 151 --NumPreds; 152 --N->NumSuccs; 153 } 154 if (!N->isScheduled) { 155 assert(NumPredsLeft > 0 && "NumPredsLeft will underflow!"); 156 --NumPredsLeft; 157 } 158 if (!isScheduled) { 159 assert(N->NumSuccsLeft > 0 && "NumSuccsLeft will underflow!"); 160 --N->NumSuccsLeft; 161 } 162 if (P.getLatency() != 0) { 163 this->setDepthDirty(); 164 N->setHeightDirty(); 165 } 166 return; 167 } 168 } 169 170 void SUnit::setDepthDirty() { 171 if (!isDepthCurrent) return; 172 SmallVector<SUnit*, 8> WorkList; 173 WorkList.push_back(this); 174 do { 175 SUnit *SU = WorkList.pop_back_val(); 176 SU->isDepthCurrent = false; 177 for (SUnit::const_succ_iterator I = SU->Succs.begin(), 178 E = SU->Succs.end(); I != E; ++I) { 179 SUnit *SuccSU = I->getSUnit(); 180 if (SuccSU->isDepthCurrent) 181 WorkList.push_back(SuccSU); 182 } 183 } while (!WorkList.empty()); 184 } 185 186 void SUnit::setHeightDirty() { 187 if (!isHeightCurrent) return; 188 SmallVector<SUnit*, 8> WorkList; 189 WorkList.push_back(this); 190 do { 191 SUnit *SU = WorkList.pop_back_val(); 192 SU->isHeightCurrent = false; 193 for (SUnit::const_pred_iterator I = SU->Preds.begin(), 194 E = SU->Preds.end(); I != E; ++I) { 195 SUnit *PredSU = I->getSUnit(); 196 if (PredSU->isHeightCurrent) 197 WorkList.push_back(PredSU); 198 } 199 } while (!WorkList.empty()); 200 } 201 202 /// setDepthToAtLeast - Update this node's successors to reflect the 203 /// fact that this node's depth just increased. 204 /// 205 void SUnit::setDepthToAtLeast(unsigned NewDepth) { 206 if (NewDepth <= getDepth()) 207 return; 208 setDepthDirty(); 209 Depth = NewDepth; 210 isDepthCurrent = true; 211 } 212 213 /// setHeightToAtLeast - Update this node's predecessors to reflect the 214 /// fact that this node's height just increased. 215 /// 216 void SUnit::setHeightToAtLeast(unsigned NewHeight) { 217 if (NewHeight <= getHeight()) 218 return; 219 setHeightDirty(); 220 Height = NewHeight; 221 isHeightCurrent = true; 222 } 223 224 /// ComputeDepth - Calculate the maximal path from the node to the exit. 225 /// 226 void SUnit::ComputeDepth() { 227 SmallVector<SUnit*, 8> WorkList; 228 WorkList.push_back(this); 229 do { 230 SUnit *Cur = WorkList.back(); 231 232 bool Done = true; 233 unsigned MaxPredDepth = 0; 234 for (SUnit::const_pred_iterator I = Cur->Preds.begin(), 235 E = Cur->Preds.end(); I != E; ++I) { 236 SUnit *PredSU = I->getSUnit(); 237 if (PredSU->isDepthCurrent) 238 MaxPredDepth = std::max(MaxPredDepth, 239 PredSU->Depth + I->getLatency()); 240 else { 241 Done = false; 242 WorkList.push_back(PredSU); 243 } 244 } 245 246 if (Done) { 247 WorkList.pop_back(); 248 if (MaxPredDepth != Cur->Depth) { 249 Cur->setDepthDirty(); 250 Cur->Depth = MaxPredDepth; 251 } 252 Cur->isDepthCurrent = true; 253 } 254 } while (!WorkList.empty()); 255 } 256 257 /// ComputeHeight - Calculate the maximal path from the node to the entry. 258 /// 259 void SUnit::ComputeHeight() { 260 SmallVector<SUnit*, 8> WorkList; 261 WorkList.push_back(this); 262 do { 263 SUnit *Cur = WorkList.back(); 264 265 bool Done = true; 266 unsigned MaxSuccHeight = 0; 267 for (SUnit::const_succ_iterator I = Cur->Succs.begin(), 268 E = Cur->Succs.end(); I != E; ++I) { 269 SUnit *SuccSU = I->getSUnit(); 270 if (SuccSU->isHeightCurrent) 271 MaxSuccHeight = std::max(MaxSuccHeight, 272 SuccSU->Height + I->getLatency()); 273 else { 274 Done = false; 275 WorkList.push_back(SuccSU); 276 } 277 } 278 279 if (Done) { 280 WorkList.pop_back(); 281 if (MaxSuccHeight != Cur->Height) { 282 Cur->setHeightDirty(); 283 Cur->Height = MaxSuccHeight; 284 } 285 Cur->isHeightCurrent = true; 286 } 287 } while (!WorkList.empty()); 288 } 289 290 /// SUnit - Scheduling unit. It's an wrapper around either a single SDNode or 291 /// a group of nodes flagged together. 292 void SUnit::dump(const ScheduleDAG *G) const { 293 dbgs() << "SU(" << NodeNum << "): "; 294 G->dumpNode(this); 295 } 296 297 void SUnit::dumpAll(const ScheduleDAG *G) const { 298 dump(G); 299 300 dbgs() << " # preds left : " << NumPredsLeft << "\n"; 301 dbgs() << " # succs left : " << NumSuccsLeft << "\n"; 302 dbgs() << " # rdefs left : " << NumRegDefsLeft << "\n"; 303 dbgs() << " Latency : " << Latency << "\n"; 304 dbgs() << " Depth : " << Depth << "\n"; 305 dbgs() << " Height : " << Height << "\n"; 306 307 if (Preds.size() != 0) { 308 dbgs() << " Predecessors:\n"; 309 for (SUnit::const_succ_iterator I = Preds.begin(), E = Preds.end(); 310 I != E; ++I) { 311 dbgs() << " "; 312 switch (I->getKind()) { 313 case SDep::Data: dbgs() << "val "; break; 314 case SDep::Anti: dbgs() << "anti"; break; 315 case SDep::Output: dbgs() << "out "; break; 316 case SDep::Order: dbgs() << "ch "; break; 317 } 318 dbgs() << "#"; 319 dbgs() << I->getSUnit() << " - SU(" << I->getSUnit()->NodeNum << ")"; 320 if (I->isArtificial()) 321 dbgs() << " *"; 322 dbgs() << ": Latency=" << I->getLatency(); 323 if (I->isAssignedRegDep()) 324 dbgs() << " Reg=" << PrintReg(I->getReg()); 325 dbgs() << "\n"; 326 } 327 } 328 if (Succs.size() != 0) { 329 dbgs() << " Successors:\n"; 330 for (SUnit::const_succ_iterator I = Succs.begin(), E = Succs.end(); 331 I != E; ++I) { 332 dbgs() << " "; 333 switch (I->getKind()) { 334 case SDep::Data: dbgs() << "val "; break; 335 case SDep::Anti: dbgs() << "anti"; break; 336 case SDep::Output: dbgs() << "out "; break; 337 case SDep::Order: dbgs() << "ch "; break; 338 } 339 dbgs() << "#"; 340 dbgs() << I->getSUnit() << " - SU(" << I->getSUnit()->NodeNum << ")"; 341 if (I->isArtificial()) 342 dbgs() << " *"; 343 dbgs() << ": Latency=" << I->getLatency(); 344 dbgs() << "\n"; 345 } 346 } 347 dbgs() << "\n"; 348 } 349 350 #ifndef NDEBUG 351 /// VerifySchedule - Verify that all SUnits were scheduled and that 352 /// their state is consistent. 353 /// 354 void ScheduleDAG::VerifySchedule(bool isBottomUp) { 355 bool AnyNotSched = false; 356 unsigned DeadNodes = 0; 357 unsigned Noops = 0; 358 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { 359 if (!SUnits[i].isScheduled) { 360 if (SUnits[i].NumPreds == 0 && SUnits[i].NumSuccs == 0) { 361 ++DeadNodes; 362 continue; 363 } 364 if (!AnyNotSched) 365 dbgs() << "*** Scheduling failed! ***\n"; 366 SUnits[i].dump(this); 367 dbgs() << "has not been scheduled!\n"; 368 AnyNotSched = true; 369 } 370 if (SUnits[i].isScheduled && 371 (isBottomUp ? SUnits[i].getHeight() : SUnits[i].getDepth()) > 372 unsigned(INT_MAX)) { 373 if (!AnyNotSched) 374 dbgs() << "*** Scheduling failed! ***\n"; 375 SUnits[i].dump(this); 376 dbgs() << "has an unexpected " 377 << (isBottomUp ? "Height" : "Depth") << " value!\n"; 378 AnyNotSched = true; 379 } 380 if (isBottomUp) { 381 if (SUnits[i].NumSuccsLeft != 0) { 382 if (!AnyNotSched) 383 dbgs() << "*** Scheduling failed! ***\n"; 384 SUnits[i].dump(this); 385 dbgs() << "has successors left!\n"; 386 AnyNotSched = true; 387 } 388 } else { 389 if (SUnits[i].NumPredsLeft != 0) { 390 if (!AnyNotSched) 391 dbgs() << "*** Scheduling failed! ***\n"; 392 SUnits[i].dump(this); 393 dbgs() << "has predecessors left!\n"; 394 AnyNotSched = true; 395 } 396 } 397 } 398 for (unsigned i = 0, e = Sequence.size(); i != e; ++i) 399 if (!Sequence[i]) 400 ++Noops; 401 assert(!AnyNotSched); 402 assert(Sequence.size() + DeadNodes - Noops == SUnits.size() && 403 "The number of nodes scheduled doesn't match the expected number!"); 404 } 405 #endif 406 407 /// InitDAGTopologicalSorting - create the initial topological 408 /// ordering from the DAG to be scheduled. 409 /// 410 /// The idea of the algorithm is taken from 411 /// "Online algorithms for managing the topological order of 412 /// a directed acyclic graph" by David J. Pearce and Paul H.J. Kelly 413 /// This is the MNR algorithm, which was first introduced by 414 /// A. Marchetti-Spaccamela, U. Nanni and H. Rohnert in 415 /// "Maintaining a topological order under edge insertions". 416 /// 417 /// Short description of the algorithm: 418 /// 419 /// Topological ordering, ord, of a DAG maps each node to a topological 420 /// index so that for all edges X->Y it is the case that ord(X) < ord(Y). 421 /// 422 /// This means that if there is a path from the node X to the node Z, 423 /// then ord(X) < ord(Z). 424 /// 425 /// This property can be used to check for reachability of nodes: 426 /// if Z is reachable from X, then an insertion of the edge Z->X would 427 /// create a cycle. 428 /// 429 /// The algorithm first computes a topological ordering for the DAG by 430 /// initializing the Index2Node and Node2Index arrays and then tries to keep 431 /// the ordering up-to-date after edge insertions by reordering the DAG. 432 /// 433 /// On insertion of the edge X->Y, the algorithm first marks by calling DFS 434 /// the nodes reachable from Y, and then shifts them using Shift to lie 435 /// immediately after X in Index2Node. 436 void ScheduleDAGTopologicalSort::InitDAGTopologicalSorting() { 437 unsigned DAGSize = SUnits.size(); 438 std::vector<SUnit*> WorkList; 439 WorkList.reserve(DAGSize); 440 441 Index2Node.resize(DAGSize); 442 Node2Index.resize(DAGSize); 443 444 // Initialize the data structures. 445 for (unsigned i = 0, e = DAGSize; i != e; ++i) { 446 SUnit *SU = &SUnits[i]; 447 int NodeNum = SU->NodeNum; 448 unsigned Degree = SU->Succs.size(); 449 // Temporarily use the Node2Index array as scratch space for degree counts. 450 Node2Index[NodeNum] = Degree; 451 452 // Is it a node without dependencies? 453 if (Degree == 0) { 454 assert(SU->Succs.empty() && "SUnit should have no successors"); 455 // Collect leaf nodes. 456 WorkList.push_back(SU); 457 } 458 } 459 460 int Id = DAGSize; 461 while (!WorkList.empty()) { 462 SUnit *SU = WorkList.back(); 463 WorkList.pop_back(); 464 Allocate(SU->NodeNum, --Id); 465 for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); 466 I != E; ++I) { 467 SUnit *SU = I->getSUnit(); 468 if (!--Node2Index[SU->NodeNum]) 469 // If all dependencies of the node are processed already, 470 // then the node can be computed now. 471 WorkList.push_back(SU); 472 } 473 } 474 475 Visited.resize(DAGSize); 476 477 #ifndef NDEBUG 478 // Check correctness of the ordering 479 for (unsigned i = 0, e = DAGSize; i != e; ++i) { 480 SUnit *SU = &SUnits[i]; 481 for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); 482 I != E; ++I) { 483 assert(Node2Index[SU->NodeNum] > Node2Index[I->getSUnit()->NodeNum] && 484 "Wrong topological sorting"); 485 } 486 } 487 #endif 488 } 489 490 /// AddPred - Updates the topological ordering to accommodate an edge 491 /// to be added from SUnit X to SUnit Y. 492 void ScheduleDAGTopologicalSort::AddPred(SUnit *Y, SUnit *X) { 493 int UpperBound, LowerBound; 494 LowerBound = Node2Index[Y->NodeNum]; 495 UpperBound = Node2Index[X->NodeNum]; 496 bool HasLoop = false; 497 // Is Ord(X) < Ord(Y) ? 498 if (LowerBound < UpperBound) { 499 // Update the topological order. 500 Visited.reset(); 501 DFS(Y, UpperBound, HasLoop); 502 assert(!HasLoop && "Inserted edge creates a loop!"); 503 // Recompute topological indexes. 504 Shift(Visited, LowerBound, UpperBound); 505 } 506 } 507 508 /// RemovePred - Updates the topological ordering to accommodate an 509 /// an edge to be removed from the specified node N from the predecessors 510 /// of the current node M. 511 void ScheduleDAGTopologicalSort::RemovePred(SUnit *M, SUnit *N) { 512 // InitDAGTopologicalSorting(); 513 } 514 515 /// DFS - Make a DFS traversal to mark all nodes reachable from SU and mark 516 /// all nodes affected by the edge insertion. These nodes will later get new 517 /// topological indexes by means of the Shift method. 518 void ScheduleDAGTopologicalSort::DFS(const SUnit *SU, int UpperBound, 519 bool &HasLoop) { 520 std::vector<const SUnit*> WorkList; 521 WorkList.reserve(SUnits.size()); 522 523 WorkList.push_back(SU); 524 do { 525 SU = WorkList.back(); 526 WorkList.pop_back(); 527 Visited.set(SU->NodeNum); 528 for (int I = SU->Succs.size()-1; I >= 0; --I) { 529 int s = SU->Succs[I].getSUnit()->NodeNum; 530 if (Node2Index[s] == UpperBound) { 531 HasLoop = true; 532 return; 533 } 534 // Visit successors if not already and in affected region. 535 if (!Visited.test(s) && Node2Index[s] < UpperBound) { 536 WorkList.push_back(SU->Succs[I].getSUnit()); 537 } 538 } 539 } while (!WorkList.empty()); 540 } 541 542 /// Shift - Renumber the nodes so that the topological ordering is 543 /// preserved. 544 void ScheduleDAGTopologicalSort::Shift(BitVector& Visited, int LowerBound, 545 int UpperBound) { 546 std::vector<int> L; 547 int shift = 0; 548 int i; 549 550 for (i = LowerBound; i <= UpperBound; ++i) { 551 // w is node at topological index i. 552 int w = Index2Node[i]; 553 if (Visited.test(w)) { 554 // Unmark. 555 Visited.reset(w); 556 L.push_back(w); 557 shift = shift + 1; 558 } else { 559 Allocate(w, i - shift); 560 } 561 } 562 563 for (unsigned j = 0; j < L.size(); ++j) { 564 Allocate(L[j], i - shift); 565 i = i + 1; 566 } 567 } 568 569 570 /// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will 571 /// create a cycle. 572 bool ScheduleDAGTopologicalSort::WillCreateCycle(SUnit *SU, SUnit *TargetSU) { 573 if (IsReachable(TargetSU, SU)) 574 return true; 575 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); 576 I != E; ++I) 577 if (I->isAssignedRegDep() && 578 IsReachable(TargetSU, I->getSUnit())) 579 return true; 580 return false; 581 } 582 583 /// IsReachable - Checks if SU is reachable from TargetSU. 584 bool ScheduleDAGTopologicalSort::IsReachable(const SUnit *SU, 585 const SUnit *TargetSU) { 586 // If insertion of the edge SU->TargetSU would create a cycle 587 // then there is a path from TargetSU to SU. 588 int UpperBound, LowerBound; 589 LowerBound = Node2Index[TargetSU->NodeNum]; 590 UpperBound = Node2Index[SU->NodeNum]; 591 bool HasLoop = false; 592 // Is Ord(TargetSU) < Ord(SU) ? 593 if (LowerBound < UpperBound) { 594 Visited.reset(); 595 // There may be a path from TargetSU to SU. Check for it. 596 DFS(TargetSU, UpperBound, HasLoop); 597 } 598 return HasLoop; 599 } 600 601 /// Allocate - assign the topological index to the node n. 602 void ScheduleDAGTopologicalSort::Allocate(int n, int index) { 603 Node2Index[n] = index; 604 Index2Node[index] = n; 605 } 606 607 ScheduleDAGTopologicalSort:: 608 ScheduleDAGTopologicalSort(std::vector<SUnit> &sunits) : SUnits(sunits) {} 609 610 ScheduleHazardRecognizer::~ScheduleHazardRecognizer() {} 611