1 //===- ScheduleDAG.cpp - Implement the ScheduleDAG class ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file Implements the ScheduleDAG class, which is a base class used by 11 /// scheduling implementation classes. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/ScheduleDAG.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/iterator_range.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 21 #include "llvm/CodeGen/SelectionDAGNodes.h" 22 #include "llvm/Support/CommandLine.h" 23 #include "llvm/Support/Compiler.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/raw_ostream.h" 26 #include "llvm/Target/TargetInstrInfo.h" 27 #include "llvm/Target/TargetRegisterInfo.h" 28 #include "llvm/Target/TargetSubtargetInfo.h" 29 #include <algorithm> 30 #include <cassert> 31 #include <iterator> 32 #include <limits> 33 #include <utility> 34 #include <vector> 35 36 using namespace llvm; 37 38 #define DEBUG_TYPE "pre-RA-sched" 39 40 #ifndef NDEBUG 41 static cl::opt<bool> StressSchedOpt( 42 "stress-sched", cl::Hidden, cl::init(false), 43 cl::desc("Stress test instruction scheduling")); 44 #endif 45 46 void SchedulingPriorityQueue::anchor() {} 47 48 ScheduleDAG::ScheduleDAG(MachineFunction &mf) 49 : TM(mf.getTarget()), TII(mf.getSubtarget().getInstrInfo()), 50 TRI(mf.getSubtarget().getRegisterInfo()), MF(mf), 51 MRI(mf.getRegInfo()) { 52 #ifndef NDEBUG 53 StressSched = StressSchedOpt; 54 #endif 55 } 56 57 ScheduleDAG::~ScheduleDAG() = default; 58 59 void ScheduleDAG::clearDAG() { 60 SUnits.clear(); 61 EntrySU = SUnit(); 62 ExitSU = SUnit(); 63 } 64 65 const MCInstrDesc *ScheduleDAG::getNodeDesc(const SDNode *Node) const { 66 if (!Node || !Node->isMachineOpcode()) return nullptr; 67 return &TII->get(Node->getMachineOpcode()); 68 } 69 70 bool SUnit::addPred(const SDep &D, bool Required) { 71 // If this node already has this dependence, don't add a redundant one. 72 for (SDep &PredDep : Preds) { 73 // Zero-latency weak edges may be added purely for heuristic ordering. Don't 74 // add them if another kind of edge already exists. 75 if (!Required && PredDep.getSUnit() == D.getSUnit()) 76 return false; 77 if (PredDep.overlaps(D)) { 78 // Extend the latency if needed. Equivalent to 79 // removePred(PredDep) + addPred(D). 80 if (PredDep.getLatency() < D.getLatency()) { 81 SUnit *PredSU = PredDep.getSUnit(); 82 // Find the corresponding successor in N. 83 SDep ForwardD = PredDep; 84 ForwardD.setSUnit(this); 85 for (SDep &SuccDep : PredSU->Succs) { 86 if (SuccDep == ForwardD) { 87 SuccDep.setLatency(D.getLatency()); 88 break; 89 } 90 } 91 PredDep.setLatency(D.getLatency()); 92 } 93 return false; 94 } 95 } 96 // Now add a corresponding succ to N. 97 SDep P = D; 98 P.setSUnit(this); 99 SUnit *N = D.getSUnit(); 100 // Update the bookkeeping. 101 if (D.getKind() == SDep::Data) { 102 assert(NumPreds < std::numeric_limits<unsigned>::max() && 103 "NumPreds will overflow!"); 104 assert(N->NumSuccs < std::numeric_limits<unsigned>::max() && 105 "NumSuccs will overflow!"); 106 ++NumPreds; 107 ++N->NumSuccs; 108 } 109 if (!N->isScheduled) { 110 if (D.isWeak()) { 111 ++WeakPredsLeft; 112 } 113 else { 114 assert(NumPredsLeft < std::numeric_limits<unsigned>::max() && 115 "NumPredsLeft will overflow!"); 116 ++NumPredsLeft; 117 } 118 } 119 if (!isScheduled) { 120 if (D.isWeak()) { 121 ++N->WeakSuccsLeft; 122 } 123 else { 124 assert(N->NumSuccsLeft < std::numeric_limits<unsigned>::max() && 125 "NumSuccsLeft will overflow!"); 126 ++N->NumSuccsLeft; 127 } 128 } 129 Preds.push_back(D); 130 N->Succs.push_back(P); 131 if (P.getLatency() != 0) { 132 this->setDepthDirty(); 133 N->setHeightDirty(); 134 } 135 return true; 136 } 137 138 void SUnit::removePred(const SDep &D) { 139 // Find the matching predecessor. 140 SmallVectorImpl<SDep>::iterator I = llvm::find(Preds, D); 141 if (I == Preds.end()) 142 return; 143 // Find the corresponding successor in N. 144 SDep P = D; 145 P.setSUnit(this); 146 SUnit *N = D.getSUnit(); 147 SmallVectorImpl<SDep>::iterator Succ = llvm::find(N->Succs, P); 148 assert(Succ != N->Succs.end() && "Mismatching preds / succs lists!"); 149 N->Succs.erase(Succ); 150 Preds.erase(I); 151 // Update the bookkeeping. 152 if (P.getKind() == SDep::Data) { 153 assert(NumPreds > 0 && "NumPreds will underflow!"); 154 assert(N->NumSuccs > 0 && "NumSuccs will underflow!"); 155 --NumPreds; 156 --N->NumSuccs; 157 } 158 if (!N->isScheduled) { 159 if (D.isWeak()) 160 --WeakPredsLeft; 161 else { 162 assert(NumPredsLeft > 0 && "NumPredsLeft will underflow!"); 163 --NumPredsLeft; 164 } 165 } 166 if (!isScheduled) { 167 if (D.isWeak()) 168 --N->WeakSuccsLeft; 169 else { 170 assert(N->NumSuccsLeft > 0 && "NumSuccsLeft will underflow!"); 171 --N->NumSuccsLeft; 172 } 173 } 174 if (P.getLatency() != 0) { 175 this->setDepthDirty(); 176 N->setHeightDirty(); 177 } 178 } 179 180 void SUnit::setDepthDirty() { 181 if (!isDepthCurrent) return; 182 SmallVector<SUnit*, 8> WorkList; 183 WorkList.push_back(this); 184 do { 185 SUnit *SU = WorkList.pop_back_val(); 186 SU->isDepthCurrent = false; 187 for (SDep &SuccDep : SU->Succs) { 188 SUnit *SuccSU = SuccDep.getSUnit(); 189 if (SuccSU->isDepthCurrent) 190 WorkList.push_back(SuccSU); 191 } 192 } while (!WorkList.empty()); 193 } 194 195 void SUnit::setHeightDirty() { 196 if (!isHeightCurrent) return; 197 SmallVector<SUnit*, 8> WorkList; 198 WorkList.push_back(this); 199 do { 200 SUnit *SU = WorkList.pop_back_val(); 201 SU->isHeightCurrent = false; 202 for (SDep &PredDep : SU->Preds) { 203 SUnit *PredSU = PredDep.getSUnit(); 204 if (PredSU->isHeightCurrent) 205 WorkList.push_back(PredSU); 206 } 207 } while (!WorkList.empty()); 208 } 209 210 void SUnit::setDepthToAtLeast(unsigned NewDepth) { 211 if (NewDepth <= getDepth()) 212 return; 213 setDepthDirty(); 214 Depth = NewDepth; 215 isDepthCurrent = true; 216 } 217 218 void SUnit::setHeightToAtLeast(unsigned NewHeight) { 219 if (NewHeight <= getHeight()) 220 return; 221 setHeightDirty(); 222 Height = NewHeight; 223 isHeightCurrent = true; 224 } 225 226 /// Calculates the maximal path from the node to the exit. 227 void SUnit::ComputeDepth() { 228 SmallVector<SUnit*, 8> WorkList; 229 WorkList.push_back(this); 230 do { 231 SUnit *Cur = WorkList.back(); 232 233 bool Done = true; 234 unsigned MaxPredDepth = 0; 235 for (const SDep &PredDep : Cur->Preds) { 236 SUnit *PredSU = PredDep.getSUnit(); 237 if (PredSU->isDepthCurrent) 238 MaxPredDepth = std::max(MaxPredDepth, 239 PredSU->Depth + PredDep.getLatency()); 240 else { 241 Done = false; 242 WorkList.push_back(PredSU); 243 } 244 } 245 246 if (Done) { 247 WorkList.pop_back(); 248 if (MaxPredDepth != Cur->Depth) { 249 Cur->setDepthDirty(); 250 Cur->Depth = MaxPredDepth; 251 } 252 Cur->isDepthCurrent = true; 253 } 254 } while (!WorkList.empty()); 255 } 256 257 /// Calculates the maximal path from the node to the entry. 258 void SUnit::ComputeHeight() { 259 SmallVector<SUnit*, 8> WorkList; 260 WorkList.push_back(this); 261 do { 262 SUnit *Cur = WorkList.back(); 263 264 bool Done = true; 265 unsigned MaxSuccHeight = 0; 266 for (const SDep &SuccDep : Cur->Succs) { 267 SUnit *SuccSU = SuccDep.getSUnit(); 268 if (SuccSU->isHeightCurrent) 269 MaxSuccHeight = std::max(MaxSuccHeight, 270 SuccSU->Height + SuccDep.getLatency()); 271 else { 272 Done = false; 273 WorkList.push_back(SuccSU); 274 } 275 } 276 277 if (Done) { 278 WorkList.pop_back(); 279 if (MaxSuccHeight != Cur->Height) { 280 Cur->setHeightDirty(); 281 Cur->Height = MaxSuccHeight; 282 } 283 Cur->isHeightCurrent = true; 284 } 285 } while (!WorkList.empty()); 286 } 287 288 void SUnit::biasCriticalPath() { 289 if (NumPreds < 2) 290 return; 291 292 SUnit::pred_iterator BestI = Preds.begin(); 293 unsigned MaxDepth = BestI->getSUnit()->getDepth(); 294 for (SUnit::pred_iterator I = std::next(BestI), E = Preds.end(); I != E; 295 ++I) { 296 if (I->getKind() == SDep::Data && I->getSUnit()->getDepth() > MaxDepth) 297 BestI = I; 298 } 299 if (BestI != Preds.begin()) 300 std::swap(*Preds.begin(), *BestI); 301 } 302 303 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 304 LLVM_DUMP_METHOD 305 void SUnit::print(raw_ostream &OS, const ScheduleDAG *DAG) const { 306 if (this == &DAG->ExitSU) 307 OS << "ExitSU"; 308 else if (this == &DAG->EntrySU) 309 OS << "EntrySU"; 310 else 311 OS << "SU(" << NodeNum << ")"; 312 } 313 314 LLVM_DUMP_METHOD void SUnit::dump(const ScheduleDAG *G) const { 315 print(dbgs(), G); 316 dbgs() << ": "; 317 G->dumpNode(this); 318 } 319 320 LLVM_DUMP_METHOD void SUnit::dumpAll(const ScheduleDAG *G) const { 321 dump(G); 322 323 dbgs() << " # preds left : " << NumPredsLeft << "\n"; 324 dbgs() << " # succs left : " << NumSuccsLeft << "\n"; 325 if (WeakPredsLeft) 326 dbgs() << " # weak preds left : " << WeakPredsLeft << "\n"; 327 if (WeakSuccsLeft) 328 dbgs() << " # weak succs left : " << WeakSuccsLeft << "\n"; 329 dbgs() << " # rdefs left : " << NumRegDefsLeft << "\n"; 330 dbgs() << " Latency : " << Latency << "\n"; 331 dbgs() << " Depth : " << getDepth() << "\n"; 332 dbgs() << " Height : " << getHeight() << "\n"; 333 334 if (Preds.size() != 0) { 335 dbgs() << " Predecessors:\n"; 336 for (const SDep &SuccDep : Preds) { 337 dbgs() << " "; 338 switch (SuccDep.getKind()) { 339 case SDep::Data: dbgs() << "data "; break; 340 case SDep::Anti: dbgs() << "anti "; break; 341 case SDep::Output: dbgs() << "out "; break; 342 case SDep::Order: dbgs() << "ord "; break; 343 } 344 SuccDep.getSUnit()->print(dbgs(), G); 345 if (SuccDep.isArtificial()) 346 dbgs() << " *"; 347 dbgs() << ": Latency=" << SuccDep.getLatency(); 348 if (SuccDep.isAssignedRegDep()) 349 dbgs() << " Reg=" << PrintReg(SuccDep.getReg(), G->TRI); 350 dbgs() << "\n"; 351 } 352 } 353 if (Succs.size() != 0) { 354 dbgs() << " Successors:\n"; 355 for (const SDep &SuccDep : Succs) { 356 dbgs() << " "; 357 switch (SuccDep.getKind()) { 358 case SDep::Data: dbgs() << "data "; break; 359 case SDep::Anti: dbgs() << "anti "; break; 360 case SDep::Output: dbgs() << "out "; break; 361 case SDep::Order: dbgs() << "ord "; break; 362 } 363 SuccDep.getSUnit()->print(dbgs(), G); 364 if (SuccDep.isArtificial()) 365 dbgs() << " *"; 366 dbgs() << ": Latency=" << SuccDep.getLatency(); 367 if (SuccDep.isAssignedRegDep()) 368 dbgs() << " Reg=" << PrintReg(SuccDep.getReg(), G->TRI); 369 dbgs() << "\n"; 370 } 371 } 372 } 373 #endif 374 375 #ifndef NDEBUG 376 unsigned ScheduleDAG::VerifyScheduledDAG(bool isBottomUp) { 377 bool AnyNotSched = false; 378 unsigned DeadNodes = 0; 379 for (const SUnit &SUnit : SUnits) { 380 if (!SUnit.isScheduled) { 381 if (SUnit.NumPreds == 0 && SUnit.NumSuccs == 0) { 382 ++DeadNodes; 383 continue; 384 } 385 if (!AnyNotSched) 386 dbgs() << "*** Scheduling failed! ***\n"; 387 SUnit.dump(this); 388 dbgs() << "has not been scheduled!\n"; 389 AnyNotSched = true; 390 } 391 if (SUnit.isScheduled && 392 (isBottomUp ? SUnit.getHeight() : SUnit.getDepth()) > 393 unsigned(std::numeric_limits<int>::max())) { 394 if (!AnyNotSched) 395 dbgs() << "*** Scheduling failed! ***\n"; 396 SUnit.dump(this); 397 dbgs() << "has an unexpected " 398 << (isBottomUp ? "Height" : "Depth") << " value!\n"; 399 AnyNotSched = true; 400 } 401 if (isBottomUp) { 402 if (SUnit.NumSuccsLeft != 0) { 403 if (!AnyNotSched) 404 dbgs() << "*** Scheduling failed! ***\n"; 405 SUnit.dump(this); 406 dbgs() << "has successors left!\n"; 407 AnyNotSched = true; 408 } 409 } else { 410 if (SUnit.NumPredsLeft != 0) { 411 if (!AnyNotSched) 412 dbgs() << "*** Scheduling failed! ***\n"; 413 SUnit.dump(this); 414 dbgs() << "has predecessors left!\n"; 415 AnyNotSched = true; 416 } 417 } 418 } 419 assert(!AnyNotSched); 420 return SUnits.size() - DeadNodes; 421 } 422 #endif 423 424 void ScheduleDAGTopologicalSort::InitDAGTopologicalSorting() { 425 // The idea of the algorithm is taken from 426 // "Online algorithms for managing the topological order of 427 // a directed acyclic graph" by David J. Pearce and Paul H.J. Kelly 428 // This is the MNR algorithm, which was first introduced by 429 // A. Marchetti-Spaccamela, U. Nanni and H. Rohnert in 430 // "Maintaining a topological order under edge insertions". 431 // 432 // Short description of the algorithm: 433 // 434 // Topological ordering, ord, of a DAG maps each node to a topological 435 // index so that for all edges X->Y it is the case that ord(X) < ord(Y). 436 // 437 // This means that if there is a path from the node X to the node Z, 438 // then ord(X) < ord(Z). 439 // 440 // This property can be used to check for reachability of nodes: 441 // if Z is reachable from X, then an insertion of the edge Z->X would 442 // create a cycle. 443 // 444 // The algorithm first computes a topological ordering for the DAG by 445 // initializing the Index2Node and Node2Index arrays and then tries to keep 446 // the ordering up-to-date after edge insertions by reordering the DAG. 447 // 448 // On insertion of the edge X->Y, the algorithm first marks by calling DFS 449 // the nodes reachable from Y, and then shifts them using Shift to lie 450 // immediately after X in Index2Node. 451 unsigned DAGSize = SUnits.size(); 452 std::vector<SUnit*> WorkList; 453 WorkList.reserve(DAGSize); 454 455 Index2Node.resize(DAGSize); 456 Node2Index.resize(DAGSize); 457 458 // Initialize the data structures. 459 if (ExitSU) 460 WorkList.push_back(ExitSU); 461 for (SUnit &SU : SUnits) { 462 int NodeNum = SU.NodeNum; 463 unsigned Degree = SU.Succs.size(); 464 // Temporarily use the Node2Index array as scratch space for degree counts. 465 Node2Index[NodeNum] = Degree; 466 467 // Is it a node without dependencies? 468 if (Degree == 0) { 469 assert(SU.Succs.empty() && "SUnit should have no successors"); 470 // Collect leaf nodes. 471 WorkList.push_back(&SU); 472 } 473 } 474 475 int Id = DAGSize; 476 while (!WorkList.empty()) { 477 SUnit *SU = WorkList.back(); 478 WorkList.pop_back(); 479 if (SU->NodeNum < DAGSize) 480 Allocate(SU->NodeNum, --Id); 481 for (const SDep &PredDep : SU->Preds) { 482 SUnit *SU = PredDep.getSUnit(); 483 if (SU->NodeNum < DAGSize && !--Node2Index[SU->NodeNum]) 484 // If all dependencies of the node are processed already, 485 // then the node can be computed now. 486 WorkList.push_back(SU); 487 } 488 } 489 490 Visited.resize(DAGSize); 491 492 #ifndef NDEBUG 493 // Check correctness of the ordering 494 for (SUnit &SU : SUnits) { 495 for (const SDep &PD : SU.Preds) { 496 assert(Node2Index[SU.NodeNum] > Node2Index[PD.getSUnit()->NodeNum] && 497 "Wrong topological sorting"); 498 } 499 } 500 #endif 501 } 502 503 void ScheduleDAGTopologicalSort::AddPred(SUnit *Y, SUnit *X) { 504 int UpperBound, LowerBound; 505 LowerBound = Node2Index[Y->NodeNum]; 506 UpperBound = Node2Index[X->NodeNum]; 507 bool HasLoop = false; 508 // Is Ord(X) < Ord(Y) ? 509 if (LowerBound < UpperBound) { 510 // Update the topological order. 511 Visited.reset(); 512 DFS(Y, UpperBound, HasLoop); 513 assert(!HasLoop && "Inserted edge creates a loop!"); 514 // Recompute topological indexes. 515 Shift(Visited, LowerBound, UpperBound); 516 } 517 } 518 519 void ScheduleDAGTopologicalSort::RemovePred(SUnit *M, SUnit *N) { 520 // InitDAGTopologicalSorting(); 521 } 522 523 void ScheduleDAGTopologicalSort::DFS(const SUnit *SU, int UpperBound, 524 bool &HasLoop) { 525 std::vector<const SUnit*> WorkList; 526 WorkList.reserve(SUnits.size()); 527 528 WorkList.push_back(SU); 529 do { 530 SU = WorkList.back(); 531 WorkList.pop_back(); 532 Visited.set(SU->NodeNum); 533 for (const SDep &SuccDep 534 : make_range(SU->Succs.rbegin(), SU->Succs.rend())) { 535 unsigned s = SuccDep.getSUnit()->NodeNum; 536 // Edges to non-SUnits are allowed but ignored (e.g. ExitSU). 537 if (s >= Node2Index.size()) 538 continue; 539 if (Node2Index[s] == UpperBound) { 540 HasLoop = true; 541 return; 542 } 543 // Visit successors if not already and in affected region. 544 if (!Visited.test(s) && Node2Index[s] < UpperBound) { 545 WorkList.push_back(SuccDep.getSUnit()); 546 } 547 } 548 } while (!WorkList.empty()); 549 } 550 551 std::vector<int> ScheduleDAGTopologicalSort::GetSubGraph(const SUnit &StartSU, 552 const SUnit &TargetSU, 553 bool &Success) { 554 std::vector<const SUnit*> WorkList; 555 int LowerBound = Node2Index[StartSU.NodeNum]; 556 int UpperBound = Node2Index[TargetSU.NodeNum]; 557 bool Found = false; 558 BitVector VisitedBack; 559 std::vector<int> Nodes; 560 561 if (LowerBound > UpperBound) { 562 Success = false; 563 return Nodes; 564 } 565 566 WorkList.reserve(SUnits.size()); 567 Visited.reset(); 568 569 // Starting from StartSU, visit all successors up 570 // to UpperBound. 571 WorkList.push_back(&StartSU); 572 do { 573 const SUnit *SU = WorkList.back(); 574 WorkList.pop_back(); 575 for (int I = SU->Succs.size()-1; I >= 0; --I) { 576 const SUnit *Succ = SU->Succs[I].getSUnit(); 577 unsigned s = Succ->NodeNum; 578 // Edges to non-SUnits are allowed but ignored (e.g. ExitSU). 579 if (Succ->isBoundaryNode()) 580 continue; 581 if (Node2Index[s] == UpperBound) { 582 Found = true; 583 continue; 584 } 585 // Visit successors if not already and in affected region. 586 if (!Visited.test(s) && Node2Index[s] < UpperBound) { 587 Visited.set(s); 588 WorkList.push_back(Succ); 589 } 590 } 591 } while (!WorkList.empty()); 592 593 if (!Found) { 594 Success = false; 595 return Nodes; 596 } 597 598 WorkList.clear(); 599 VisitedBack.resize(SUnits.size()); 600 Found = false; 601 602 // Starting from TargetSU, visit all predecessors up 603 // to LowerBound. SUs that are visited by the two 604 // passes are added to Nodes. 605 WorkList.push_back(&TargetSU); 606 do { 607 const SUnit *SU = WorkList.back(); 608 WorkList.pop_back(); 609 for (int I = SU->Preds.size()-1; I >= 0; --I) { 610 const SUnit *Pred = SU->Preds[I].getSUnit(); 611 unsigned s = Pred->NodeNum; 612 // Edges to non-SUnits are allowed but ignored (e.g. EntrySU). 613 if (Pred->isBoundaryNode()) 614 continue; 615 if (Node2Index[s] == LowerBound) { 616 Found = true; 617 continue; 618 } 619 if (!VisitedBack.test(s) && Visited.test(s)) { 620 VisitedBack.set(s); 621 WorkList.push_back(Pred); 622 Nodes.push_back(s); 623 } 624 } 625 } while (!WorkList.empty()); 626 627 assert(Found && "Error in SUnit Graph!"); 628 Success = true; 629 return Nodes; 630 } 631 632 void ScheduleDAGTopologicalSort::Shift(BitVector& Visited, int LowerBound, 633 int UpperBound) { 634 std::vector<int> L; 635 int shift = 0; 636 int i; 637 638 for (i = LowerBound; i <= UpperBound; ++i) { 639 // w is node at topological index i. 640 int w = Index2Node[i]; 641 if (Visited.test(w)) { 642 // Unmark. 643 Visited.reset(w); 644 L.push_back(w); 645 shift = shift + 1; 646 } else { 647 Allocate(w, i - shift); 648 } 649 } 650 651 for (unsigned LI : L) { 652 Allocate(LI, i - shift); 653 i = i + 1; 654 } 655 } 656 657 bool ScheduleDAGTopologicalSort::WillCreateCycle(SUnit *TargetSU, SUnit *SU) { 658 // Is SU reachable from TargetSU via successor edges? 659 if (IsReachable(SU, TargetSU)) 660 return true; 661 for (const SDep &PredDep : TargetSU->Preds) 662 if (PredDep.isAssignedRegDep() && 663 IsReachable(SU, PredDep.getSUnit())) 664 return true; 665 return false; 666 } 667 668 bool ScheduleDAGTopologicalSort::IsReachable(const SUnit *SU, 669 const SUnit *TargetSU) { 670 // If insertion of the edge SU->TargetSU would create a cycle 671 // then there is a path from TargetSU to SU. 672 int UpperBound, LowerBound; 673 LowerBound = Node2Index[TargetSU->NodeNum]; 674 UpperBound = Node2Index[SU->NodeNum]; 675 bool HasLoop = false; 676 // Is Ord(TargetSU) < Ord(SU) ? 677 if (LowerBound < UpperBound) { 678 Visited.reset(); 679 // There may be a path from TargetSU to SU. Check for it. 680 DFS(TargetSU, UpperBound, HasLoop); 681 } 682 return HasLoop; 683 } 684 685 void ScheduleDAGTopologicalSort::Allocate(int n, int index) { 686 Node2Index[n] = index; 687 Index2Node[index] = n; 688 } 689 690 ScheduleDAGTopologicalSort:: 691 ScheduleDAGTopologicalSort(std::vector<SUnit> &sunits, SUnit *exitsu) 692 : SUnits(sunits), ExitSU(exitsu) {} 693 694 ScheduleHazardRecognizer::~ScheduleHazardRecognizer() = default; 695