1 //===-- SafeStack.cpp - Safe Stack Insertion ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass splits the stack into the safe stack (kept as-is for LLVM backend) 11 // and the unsafe stack (explicitly allocated and managed through the runtime 12 // support library). 13 // 14 // http://clang.llvm.org/docs/SafeStack.html 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "SafeStackColoring.h" 19 #include "SafeStackLayout.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/Analysis/BranchProbabilityInfo.h" 23 #include "llvm/Analysis/ScalarEvolution.h" 24 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 25 #include "llvm/CodeGen/Passes.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DIBuilder.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/IRBuilder.h" 32 #include "llvm/IR/InstIterator.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/MDBuilder.h" 37 #include "llvm/IR/Module.h" 38 #include "llvm/Pass.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/Format.h" 42 #include "llvm/Support/MathExtras.h" 43 #include "llvm/Support/raw_os_ostream.h" 44 #include "llvm/Target/TargetLowering.h" 45 #include "llvm/Target/TargetSubtargetInfo.h" 46 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 47 #include "llvm/Transforms/Utils/Local.h" 48 #include "llvm/Transforms/Utils/ModuleUtils.h" 49 50 using namespace llvm; 51 using namespace llvm::safestack; 52 53 #define DEBUG_TYPE "safestack" 54 55 enum UnsafeStackPtrStorageVal { ThreadLocalUSP, SingleThreadUSP }; 56 57 static cl::opt<UnsafeStackPtrStorageVal> USPStorage("safe-stack-usp-storage", 58 cl::Hidden, cl::init(ThreadLocalUSP), 59 cl::desc("Type of storage for the unsafe stack pointer"), 60 cl::values(clEnumValN(ThreadLocalUSP, "thread-local", 61 "Thread-local storage"), 62 clEnumValN(SingleThreadUSP, "single-thread", 63 "Non-thread-local storage"), 64 clEnumValEnd)); 65 66 namespace llvm { 67 68 STATISTIC(NumFunctions, "Total number of functions"); 69 STATISTIC(NumUnsafeStackFunctions, "Number of functions with unsafe stack"); 70 STATISTIC(NumUnsafeStackRestorePointsFunctions, 71 "Number of functions that use setjmp or exceptions"); 72 73 STATISTIC(NumAllocas, "Total number of allocas"); 74 STATISTIC(NumUnsafeStaticAllocas, "Number of unsafe static allocas"); 75 STATISTIC(NumUnsafeDynamicAllocas, "Number of unsafe dynamic allocas"); 76 STATISTIC(NumUnsafeByValArguments, "Number of unsafe byval arguments"); 77 STATISTIC(NumUnsafeStackRestorePoints, "Number of setjmps and landingpads"); 78 79 } // namespace llvm 80 81 namespace { 82 83 /// Rewrite an SCEV expression for a memory access address to an expression that 84 /// represents offset from the given alloca. 85 /// 86 /// The implementation simply replaces all mentions of the alloca with zero. 87 class AllocaOffsetRewriter : public SCEVRewriteVisitor<AllocaOffsetRewriter> { 88 const Value *AllocaPtr; 89 90 public: 91 AllocaOffsetRewriter(ScalarEvolution &SE, const Value *AllocaPtr) 92 : SCEVRewriteVisitor(SE), AllocaPtr(AllocaPtr) {} 93 94 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 95 if (Expr->getValue() == AllocaPtr) 96 return SE.getZero(Expr->getType()); 97 return Expr; 98 } 99 }; 100 101 /// The SafeStack pass splits the stack of each function into the safe 102 /// stack, which is only accessed through memory safe dereferences (as 103 /// determined statically), and the unsafe stack, which contains all 104 /// local variables that are accessed in ways that we can't prove to 105 /// be safe. 106 class SafeStack : public FunctionPass { 107 const TargetMachine *TM; 108 const TargetLoweringBase *TL; 109 const DataLayout *DL; 110 ScalarEvolution *SE; 111 112 Type *StackPtrTy; 113 Type *IntPtrTy; 114 Type *Int32Ty; 115 Type *Int8Ty; 116 117 Value *UnsafeStackPtr = nullptr; 118 119 /// Unsafe stack alignment. Each stack frame must ensure that the stack is 120 /// aligned to this value. We need to re-align the unsafe stack if the 121 /// alignment of any object on the stack exceeds this value. 122 /// 123 /// 16 seems like a reasonable upper bound on the alignment of objects that we 124 /// might expect to appear on the stack on most common targets. 125 enum { StackAlignment = 16 }; 126 127 /// \brief Build a value representing a pointer to the unsafe stack pointer. 128 Value *getOrCreateUnsafeStackPtr(IRBuilder<> &IRB, Function &F); 129 130 /// \brief Return the value of the stack canary. 131 Value *getStackGuard(IRBuilder<> &IRB, Function &F); 132 133 /// \brief Load stack guard from the frame and check if it has changed. 134 void checkStackGuard(IRBuilder<> &IRB, Function &F, ReturnInst &RI, 135 AllocaInst *StackGuardSlot, Value *StackGuard); 136 137 /// \brief Find all static allocas, dynamic allocas, return instructions and 138 /// stack restore points (exception unwind blocks and setjmp calls) in the 139 /// given function and append them to the respective vectors. 140 void findInsts(Function &F, SmallVectorImpl<AllocaInst *> &StaticAllocas, 141 SmallVectorImpl<AllocaInst *> &DynamicAllocas, 142 SmallVectorImpl<Argument *> &ByValArguments, 143 SmallVectorImpl<ReturnInst *> &Returns, 144 SmallVectorImpl<Instruction *> &StackRestorePoints); 145 146 /// \brief Calculate the allocation size of a given alloca. Returns 0 if the 147 /// size can not be statically determined. 148 uint64_t getStaticAllocaAllocationSize(const AllocaInst* AI); 149 150 /// \brief Allocate space for all static allocas in \p StaticAllocas, 151 /// replace allocas with pointers into the unsafe stack and generate code to 152 /// restore the stack pointer before all return instructions in \p Returns. 153 /// 154 /// \returns A pointer to the top of the unsafe stack after all unsafe static 155 /// allocas are allocated. 156 Value *moveStaticAllocasToUnsafeStack(IRBuilder<> &IRB, Function &F, 157 ArrayRef<AllocaInst *> StaticAllocas, 158 ArrayRef<Argument *> ByValArguments, 159 ArrayRef<ReturnInst *> Returns, 160 Instruction *BasePointer, 161 AllocaInst *StackGuardSlot); 162 163 /// \brief Generate code to restore the stack after all stack restore points 164 /// in \p StackRestorePoints. 165 /// 166 /// \returns A local variable in which to maintain the dynamic top of the 167 /// unsafe stack if needed. 168 AllocaInst * 169 createStackRestorePoints(IRBuilder<> &IRB, Function &F, 170 ArrayRef<Instruction *> StackRestorePoints, 171 Value *StaticTop, bool NeedDynamicTop); 172 173 /// \brief Replace all allocas in \p DynamicAllocas with code to allocate 174 /// space dynamically on the unsafe stack and store the dynamic unsafe stack 175 /// top to \p DynamicTop if non-null. 176 void moveDynamicAllocasToUnsafeStack(Function &F, Value *UnsafeStackPtr, 177 AllocaInst *DynamicTop, 178 ArrayRef<AllocaInst *> DynamicAllocas); 179 180 bool IsSafeStackAlloca(const Value *AllocaPtr, uint64_t AllocaSize); 181 182 bool IsMemIntrinsicSafe(const MemIntrinsic *MI, const Use &U, 183 const Value *AllocaPtr, uint64_t AllocaSize); 184 bool IsAccessSafe(Value *Addr, uint64_t Size, const Value *AllocaPtr, 185 uint64_t AllocaSize); 186 187 public: 188 static char ID; // Pass identification, replacement for typeid. 189 SafeStack(const TargetMachine *TM) 190 : FunctionPass(ID), TM(TM), TL(nullptr), DL(nullptr) { 191 initializeSafeStackPass(*PassRegistry::getPassRegistry()); 192 } 193 SafeStack() : SafeStack(nullptr) {} 194 195 void getAnalysisUsage(AnalysisUsage &AU) const override { 196 AU.addRequired<ScalarEvolutionWrapperPass>(); 197 } 198 199 bool doInitialization(Module &M) override { 200 DL = &M.getDataLayout(); 201 202 StackPtrTy = Type::getInt8PtrTy(M.getContext()); 203 IntPtrTy = DL->getIntPtrType(M.getContext()); 204 Int32Ty = Type::getInt32Ty(M.getContext()); 205 Int8Ty = Type::getInt8Ty(M.getContext()); 206 207 return false; 208 } 209 210 bool runOnFunction(Function &F) override; 211 }; // class SafeStack 212 213 uint64_t SafeStack::getStaticAllocaAllocationSize(const AllocaInst* AI) { 214 uint64_t Size = DL->getTypeAllocSize(AI->getAllocatedType()); 215 if (AI->isArrayAllocation()) { 216 auto C = dyn_cast<ConstantInt>(AI->getArraySize()); 217 if (!C) 218 return 0; 219 Size *= C->getZExtValue(); 220 } 221 return Size; 222 } 223 224 bool SafeStack::IsAccessSafe(Value *Addr, uint64_t AccessSize, 225 const Value *AllocaPtr, uint64_t AllocaSize) { 226 AllocaOffsetRewriter Rewriter(*SE, AllocaPtr); 227 const SCEV *Expr = Rewriter.visit(SE->getSCEV(Addr)); 228 229 uint64_t BitWidth = SE->getTypeSizeInBits(Expr->getType()); 230 ConstantRange AccessStartRange = SE->getUnsignedRange(Expr); 231 ConstantRange SizeRange = 232 ConstantRange(APInt(BitWidth, 0), APInt(BitWidth, AccessSize)); 233 ConstantRange AccessRange = AccessStartRange.add(SizeRange); 234 ConstantRange AllocaRange = 235 ConstantRange(APInt(BitWidth, 0), APInt(BitWidth, AllocaSize)); 236 bool Safe = AllocaRange.contains(AccessRange); 237 238 DEBUG(dbgs() << "[SafeStack] " 239 << (isa<AllocaInst>(AllocaPtr) ? "Alloca " : "ByValArgument ") 240 << *AllocaPtr << "\n" 241 << " Access " << *Addr << "\n" 242 << " SCEV " << *Expr 243 << " U: " << SE->getUnsignedRange(Expr) 244 << ", S: " << SE->getSignedRange(Expr) << "\n" 245 << " Range " << AccessRange << "\n" 246 << " AllocaRange " << AllocaRange << "\n" 247 << " " << (Safe ? "safe" : "unsafe") << "\n"); 248 249 return Safe; 250 } 251 252 bool SafeStack::IsMemIntrinsicSafe(const MemIntrinsic *MI, const Use &U, 253 const Value *AllocaPtr, 254 uint64_t AllocaSize) { 255 // All MemIntrinsics have destination address in Arg0 and size in Arg2. 256 if (MI->getRawDest() != U) return true; 257 const auto *Len = dyn_cast<ConstantInt>(MI->getLength()); 258 // Non-constant size => unsafe. FIXME: try SCEV getRange. 259 if (!Len) return false; 260 return IsAccessSafe(U, Len->getZExtValue(), AllocaPtr, AllocaSize); 261 } 262 263 /// Check whether a given allocation must be put on the safe 264 /// stack or not. The function analyzes all uses of AI and checks whether it is 265 /// only accessed in a memory safe way (as decided statically). 266 bool SafeStack::IsSafeStackAlloca(const Value *AllocaPtr, uint64_t AllocaSize) { 267 // Go through all uses of this alloca and check whether all accesses to the 268 // allocated object are statically known to be memory safe and, hence, the 269 // object can be placed on the safe stack. 270 SmallPtrSet<const Value *, 16> Visited; 271 SmallVector<const Value *, 8> WorkList; 272 WorkList.push_back(AllocaPtr); 273 274 // A DFS search through all uses of the alloca in bitcasts/PHI/GEPs/etc. 275 while (!WorkList.empty()) { 276 const Value *V = WorkList.pop_back_val(); 277 for (const Use &UI : V->uses()) { 278 auto I = cast<const Instruction>(UI.getUser()); 279 assert(V == UI.get()); 280 281 switch (I->getOpcode()) { 282 case Instruction::Load: { 283 if (!IsAccessSafe(UI, DL->getTypeStoreSize(I->getType()), AllocaPtr, 284 AllocaSize)) 285 return false; 286 break; 287 } 288 case Instruction::VAArg: 289 // "va-arg" from a pointer is safe. 290 break; 291 case Instruction::Store: { 292 if (V == I->getOperand(0)) { 293 // Stored the pointer - conservatively assume it may be unsafe. 294 DEBUG(dbgs() << "[SafeStack] Unsafe alloca: " << *AllocaPtr 295 << "\n store of address: " << *I << "\n"); 296 return false; 297 } 298 299 if (!IsAccessSafe(UI, DL->getTypeStoreSize(I->getOperand(0)->getType()), 300 AllocaPtr, AllocaSize)) 301 return false; 302 break; 303 } 304 case Instruction::Ret: { 305 // Information leak. 306 return false; 307 } 308 309 case Instruction::Call: 310 case Instruction::Invoke: { 311 ImmutableCallSite CS(I); 312 313 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 314 if (II->getIntrinsicID() == Intrinsic::lifetime_start || 315 II->getIntrinsicID() == Intrinsic::lifetime_end) 316 continue; 317 } 318 319 if (const MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) { 320 if (!IsMemIntrinsicSafe(MI, UI, AllocaPtr, AllocaSize)) { 321 DEBUG(dbgs() << "[SafeStack] Unsafe alloca: " << *AllocaPtr 322 << "\n unsafe memintrinsic: " << *I 323 << "\n"); 324 return false; 325 } 326 continue; 327 } 328 329 // LLVM 'nocapture' attribute is only set for arguments whose address 330 // is not stored, passed around, or used in any other non-trivial way. 331 // We assume that passing a pointer to an object as a 'nocapture 332 // readnone' argument is safe. 333 // FIXME: a more precise solution would require an interprocedural 334 // analysis here, which would look at all uses of an argument inside 335 // the function being called. 336 ImmutableCallSite::arg_iterator B = CS.arg_begin(), E = CS.arg_end(); 337 for (ImmutableCallSite::arg_iterator A = B; A != E; ++A) 338 if (A->get() == V) 339 if (!(CS.doesNotCapture(A - B) && (CS.doesNotAccessMemory(A - B) || 340 CS.doesNotAccessMemory()))) { 341 DEBUG(dbgs() << "[SafeStack] Unsafe alloca: " << *AllocaPtr 342 << "\n unsafe call: " << *I << "\n"); 343 return false; 344 } 345 continue; 346 } 347 348 default: 349 if (Visited.insert(I).second) 350 WorkList.push_back(cast<const Instruction>(I)); 351 } 352 } 353 } 354 355 // All uses of the alloca are safe, we can place it on the safe stack. 356 return true; 357 } 358 359 Value *SafeStack::getOrCreateUnsafeStackPtr(IRBuilder<> &IRB, Function &F) { 360 // Check if there is a target-specific location for the unsafe stack pointer. 361 if (Value *V = TL->getSafeStackPointerLocation(IRB)) 362 return V; 363 364 // Otherwise, assume the target links with compiler-rt, which provides a 365 // thread-local variable with a magic name. 366 Module &M = *F.getParent(); 367 const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr"; 368 auto UnsafeStackPtr = 369 dyn_cast_or_null<GlobalVariable>(M.getNamedValue(UnsafeStackPtrVar)); 370 371 bool UseTLS = USPStorage == ThreadLocalUSP; 372 373 if (!UnsafeStackPtr) { 374 auto TLSModel = UseTLS ? 375 GlobalValue::InitialExecTLSModel : 376 GlobalValue::NotThreadLocal; 377 // The global variable is not defined yet, define it ourselves. 378 // We use the initial-exec TLS model because we do not support the 379 // variable living anywhere other than in the main executable. 380 UnsafeStackPtr = new GlobalVariable( 381 M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr, 382 UnsafeStackPtrVar, nullptr, TLSModel); 383 } else { 384 // The variable exists, check its type and attributes. 385 if (UnsafeStackPtr->getValueType() != StackPtrTy) 386 report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type"); 387 if (UseTLS != UnsafeStackPtr->isThreadLocal()) 388 report_fatal_error(Twine(UnsafeStackPtrVar) + " must " + 389 (UseTLS ? "" : "not ") + "be thread-local"); 390 } 391 return UnsafeStackPtr; 392 } 393 394 Value *SafeStack::getStackGuard(IRBuilder<> &IRB, Function &F) { 395 Value *StackGuardVar = TL->getIRStackGuard(IRB); 396 if (!StackGuardVar) 397 StackGuardVar = 398 F.getParent()->getOrInsertGlobal("__stack_chk_guard", StackPtrTy); 399 return IRB.CreateLoad(StackGuardVar, "StackGuard"); 400 } 401 402 void SafeStack::findInsts(Function &F, 403 SmallVectorImpl<AllocaInst *> &StaticAllocas, 404 SmallVectorImpl<AllocaInst *> &DynamicAllocas, 405 SmallVectorImpl<Argument *> &ByValArguments, 406 SmallVectorImpl<ReturnInst *> &Returns, 407 SmallVectorImpl<Instruction *> &StackRestorePoints) { 408 for (Instruction &I : instructions(&F)) { 409 if (auto AI = dyn_cast<AllocaInst>(&I)) { 410 ++NumAllocas; 411 412 uint64_t Size = getStaticAllocaAllocationSize(AI); 413 if (IsSafeStackAlloca(AI, Size)) 414 continue; 415 416 if (AI->isStaticAlloca()) { 417 ++NumUnsafeStaticAllocas; 418 StaticAllocas.push_back(AI); 419 } else { 420 ++NumUnsafeDynamicAllocas; 421 DynamicAllocas.push_back(AI); 422 } 423 } else if (auto RI = dyn_cast<ReturnInst>(&I)) { 424 Returns.push_back(RI); 425 } else if (auto CI = dyn_cast<CallInst>(&I)) { 426 // setjmps require stack restore. 427 if (CI->getCalledFunction() && CI->canReturnTwice()) 428 StackRestorePoints.push_back(CI); 429 } else if (auto LP = dyn_cast<LandingPadInst>(&I)) { 430 // Exception landing pads require stack restore. 431 StackRestorePoints.push_back(LP); 432 } else if (auto II = dyn_cast<IntrinsicInst>(&I)) { 433 if (II->getIntrinsicID() == Intrinsic::gcroot) 434 llvm::report_fatal_error( 435 "gcroot intrinsic not compatible with safestack attribute"); 436 } 437 } 438 for (Argument &Arg : F.args()) { 439 if (!Arg.hasByValAttr()) 440 continue; 441 uint64_t Size = 442 DL->getTypeStoreSize(Arg.getType()->getPointerElementType()); 443 if (IsSafeStackAlloca(&Arg, Size)) 444 continue; 445 446 ++NumUnsafeByValArguments; 447 ByValArguments.push_back(&Arg); 448 } 449 } 450 451 AllocaInst * 452 SafeStack::createStackRestorePoints(IRBuilder<> &IRB, Function &F, 453 ArrayRef<Instruction *> StackRestorePoints, 454 Value *StaticTop, bool NeedDynamicTop) { 455 assert(StaticTop && "The stack top isn't set."); 456 457 if (StackRestorePoints.empty()) 458 return nullptr; 459 460 // We need the current value of the shadow stack pointer to restore 461 // after longjmp or exception catching. 462 463 // FIXME: On some platforms this could be handled by the longjmp/exception 464 // runtime itself. 465 466 AllocaInst *DynamicTop = nullptr; 467 if (NeedDynamicTop) { 468 // If we also have dynamic alloca's, the stack pointer value changes 469 // throughout the function. For now we store it in an alloca. 470 DynamicTop = IRB.CreateAlloca(StackPtrTy, /*ArraySize=*/nullptr, 471 "unsafe_stack_dynamic_ptr"); 472 IRB.CreateStore(StaticTop, DynamicTop); 473 } 474 475 // Restore current stack pointer after longjmp/exception catch. 476 for (Instruction *I : StackRestorePoints) { 477 ++NumUnsafeStackRestorePoints; 478 479 IRB.SetInsertPoint(I->getNextNode()); 480 Value *CurrentTop = DynamicTop ? IRB.CreateLoad(DynamicTop) : StaticTop; 481 IRB.CreateStore(CurrentTop, UnsafeStackPtr); 482 } 483 484 return DynamicTop; 485 } 486 487 void SafeStack::checkStackGuard(IRBuilder<> &IRB, Function &F, ReturnInst &RI, 488 AllocaInst *StackGuardSlot, Value *StackGuard) { 489 Value *V = IRB.CreateLoad(StackGuardSlot); 490 Value *Cmp = IRB.CreateICmpNE(StackGuard, V); 491 492 auto SuccessProb = BranchProbabilityInfo::getBranchProbStackProtector(true); 493 auto FailureProb = BranchProbabilityInfo::getBranchProbStackProtector(false); 494 MDNode *Weights = MDBuilder(F.getContext()) 495 .createBranchWeights(SuccessProb.getNumerator(), 496 FailureProb.getNumerator()); 497 Instruction *CheckTerm = 498 SplitBlockAndInsertIfThen(Cmp, &RI, 499 /* Unreachable */ true, Weights); 500 IRBuilder<> IRBFail(CheckTerm); 501 // FIXME: respect -fsanitize-trap / -ftrap-function here? 502 Constant *StackChkFail = F.getParent()->getOrInsertFunction( 503 "__stack_chk_fail", IRB.getVoidTy(), nullptr); 504 IRBFail.CreateCall(StackChkFail, {}); 505 } 506 507 /// We explicitly compute and set the unsafe stack layout for all unsafe 508 /// static alloca instructions. We save the unsafe "base pointer" in the 509 /// prologue into a local variable and restore it in the epilogue. 510 Value *SafeStack::moveStaticAllocasToUnsafeStack( 511 IRBuilder<> &IRB, Function &F, ArrayRef<AllocaInst *> StaticAllocas, 512 ArrayRef<Argument *> ByValArguments, ArrayRef<ReturnInst *> Returns, 513 Instruction *BasePointer, AllocaInst *StackGuardSlot) { 514 if (StaticAllocas.empty() && ByValArguments.empty()) 515 return BasePointer; 516 517 DIBuilder DIB(*F.getParent()); 518 519 StackColoring SSC(F, StaticAllocas); 520 SSC.run(); 521 SSC.removeAllMarkers(); 522 523 // Unsafe stack always grows down. 524 StackLayout SSL(StackAlignment); 525 if (StackGuardSlot) { 526 Type *Ty = StackGuardSlot->getAllocatedType(); 527 unsigned Align = 528 std::max(DL->getPrefTypeAlignment(Ty), StackGuardSlot->getAlignment()); 529 SSL.addObject(StackGuardSlot, getStaticAllocaAllocationSize(StackGuardSlot), 530 Align, SSC.getFullLiveRange()); 531 } 532 533 for (Argument *Arg : ByValArguments) { 534 Type *Ty = Arg->getType()->getPointerElementType(); 535 uint64_t Size = DL->getTypeStoreSize(Ty); 536 if (Size == 0) 537 Size = 1; // Don't create zero-sized stack objects. 538 539 // Ensure the object is properly aligned. 540 unsigned Align = std::max((unsigned)DL->getPrefTypeAlignment(Ty), 541 Arg->getParamAlignment()); 542 SSL.addObject(Arg, Size, Align, SSC.getFullLiveRange()); 543 } 544 545 for (AllocaInst *AI : StaticAllocas) { 546 Type *Ty = AI->getAllocatedType(); 547 uint64_t Size = getStaticAllocaAllocationSize(AI); 548 if (Size == 0) 549 Size = 1; // Don't create zero-sized stack objects. 550 551 // Ensure the object is properly aligned. 552 unsigned Align = 553 std::max((unsigned)DL->getPrefTypeAlignment(Ty), AI->getAlignment()); 554 555 SSL.addObject(AI, Size, Align, SSC.getLiveRange(AI)); 556 } 557 558 SSL.computeLayout(); 559 unsigned FrameAlignment = SSL.getFrameAlignment(); 560 561 // FIXME: tell SSL that we start at a less-then-MaxAlignment aligned location 562 // (AlignmentSkew). 563 if (FrameAlignment > StackAlignment) { 564 // Re-align the base pointer according to the max requested alignment. 565 assert(isPowerOf2_32(FrameAlignment)); 566 IRB.SetInsertPoint(BasePointer->getNextNode()); 567 BasePointer = cast<Instruction>(IRB.CreateIntToPtr( 568 IRB.CreateAnd(IRB.CreatePtrToInt(BasePointer, IntPtrTy), 569 ConstantInt::get(IntPtrTy, ~uint64_t(FrameAlignment - 1))), 570 StackPtrTy)); 571 } 572 573 IRB.SetInsertPoint(BasePointer->getNextNode()); 574 575 if (StackGuardSlot) { 576 unsigned Offset = SSL.getObjectOffset(StackGuardSlot); 577 Value *Off = IRB.CreateGEP(BasePointer, // BasePointer is i8* 578 ConstantInt::get(Int32Ty, -Offset)); 579 Value *NewAI = 580 IRB.CreateBitCast(Off, StackGuardSlot->getType(), "StackGuardSlot"); 581 582 // Replace alloc with the new location. 583 StackGuardSlot->replaceAllUsesWith(NewAI); 584 StackGuardSlot->eraseFromParent(); 585 } 586 587 for (Argument *Arg : ByValArguments) { 588 unsigned Offset = SSL.getObjectOffset(Arg); 589 Type *Ty = Arg->getType()->getPointerElementType(); 590 591 uint64_t Size = DL->getTypeStoreSize(Ty); 592 if (Size == 0) 593 Size = 1; // Don't create zero-sized stack objects. 594 595 Value *Off = IRB.CreateGEP(BasePointer, // BasePointer is i8* 596 ConstantInt::get(Int32Ty, -Offset)); 597 Value *NewArg = IRB.CreateBitCast(Off, Arg->getType(), 598 Arg->getName() + ".unsafe-byval"); 599 600 // Replace alloc with the new location. 601 replaceDbgDeclare(Arg, BasePointer, BasePointer->getNextNode(), DIB, 602 /*Deref=*/true, -Offset); 603 Arg->replaceAllUsesWith(NewArg); 604 IRB.SetInsertPoint(cast<Instruction>(NewArg)->getNextNode()); 605 IRB.CreateMemCpy(Off, Arg, Size, Arg->getParamAlignment()); 606 } 607 608 // Allocate space for every unsafe static AllocaInst on the unsafe stack. 609 for (AllocaInst *AI : StaticAllocas) { 610 IRB.SetInsertPoint(AI); 611 unsigned Offset = SSL.getObjectOffset(AI); 612 613 uint64_t Size = getStaticAllocaAllocationSize(AI); 614 if (Size == 0) 615 Size = 1; // Don't create zero-sized stack objects. 616 617 replaceDbgDeclareForAlloca(AI, BasePointer, DIB, /*Deref=*/true, -Offset); 618 replaceDbgValueForAlloca(AI, BasePointer, DIB, -Offset); 619 620 // Replace uses of the alloca with the new location. 621 // Insert address calculation close to each use to work around PR27844. 622 std::string Name = std::string(AI->getName()) + ".unsafe"; 623 while (!AI->use_empty()) { 624 Use &U = *AI->use_begin(); 625 Instruction *User = cast<Instruction>(U.getUser()); 626 627 Instruction *InsertBefore; 628 if (auto *PHI = dyn_cast<PHINode>(User)) 629 InsertBefore = PHI->getIncomingBlock(U)->getTerminator(); 630 else 631 InsertBefore = User; 632 633 IRBuilder<> IRBUser(InsertBefore); 634 Value *Off = IRBUser.CreateGEP(BasePointer, // BasePointer is i8* 635 ConstantInt::get(Int32Ty, -Offset)); 636 Value *Replacement = IRBUser.CreateBitCast(Off, AI->getType(), Name); 637 638 if (auto *PHI = dyn_cast<PHINode>(User)) { 639 // PHI nodes may have multiple incoming edges from the same BB (why??), 640 // all must be updated at once with the same incoming value. 641 auto *BB = PHI->getIncomingBlock(U); 642 for (unsigned I = 0; I < PHI->getNumIncomingValues(); ++I) 643 if (PHI->getIncomingBlock(I) == BB) 644 PHI->setIncomingValue(I, Replacement); 645 } else { 646 U.set(Replacement); 647 } 648 } 649 650 AI->eraseFromParent(); 651 } 652 653 // Re-align BasePointer so that our callees would see it aligned as 654 // expected. 655 // FIXME: no need to update BasePointer in leaf functions. 656 unsigned FrameSize = alignTo(SSL.getFrameSize(), StackAlignment); 657 658 // Update shadow stack pointer in the function epilogue. 659 IRB.SetInsertPoint(BasePointer->getNextNode()); 660 661 Value *StaticTop = 662 IRB.CreateGEP(BasePointer, ConstantInt::get(Int32Ty, -FrameSize), 663 "unsafe_stack_static_top"); 664 IRB.CreateStore(StaticTop, UnsafeStackPtr); 665 return StaticTop; 666 } 667 668 void SafeStack::moveDynamicAllocasToUnsafeStack( 669 Function &F, Value *UnsafeStackPtr, AllocaInst *DynamicTop, 670 ArrayRef<AllocaInst *> DynamicAllocas) { 671 DIBuilder DIB(*F.getParent()); 672 673 for (AllocaInst *AI : DynamicAllocas) { 674 IRBuilder<> IRB(AI); 675 676 // Compute the new SP value (after AI). 677 Value *ArraySize = AI->getArraySize(); 678 if (ArraySize->getType() != IntPtrTy) 679 ArraySize = IRB.CreateIntCast(ArraySize, IntPtrTy, false); 680 681 Type *Ty = AI->getAllocatedType(); 682 uint64_t TySize = DL->getTypeAllocSize(Ty); 683 Value *Size = IRB.CreateMul(ArraySize, ConstantInt::get(IntPtrTy, TySize)); 684 685 Value *SP = IRB.CreatePtrToInt(IRB.CreateLoad(UnsafeStackPtr), IntPtrTy); 686 SP = IRB.CreateSub(SP, Size); 687 688 // Align the SP value to satisfy the AllocaInst, type and stack alignments. 689 unsigned Align = std::max( 690 std::max((unsigned)DL->getPrefTypeAlignment(Ty), AI->getAlignment()), 691 (unsigned)StackAlignment); 692 693 assert(isPowerOf2_32(Align)); 694 Value *NewTop = IRB.CreateIntToPtr( 695 IRB.CreateAnd(SP, ConstantInt::get(IntPtrTy, ~uint64_t(Align - 1))), 696 StackPtrTy); 697 698 // Save the stack pointer. 699 IRB.CreateStore(NewTop, UnsafeStackPtr); 700 if (DynamicTop) 701 IRB.CreateStore(NewTop, DynamicTop); 702 703 Value *NewAI = IRB.CreatePointerCast(NewTop, AI->getType()); 704 if (AI->hasName() && isa<Instruction>(NewAI)) 705 NewAI->takeName(AI); 706 707 replaceDbgDeclareForAlloca(AI, NewAI, DIB, /*Deref=*/true); 708 AI->replaceAllUsesWith(NewAI); 709 AI->eraseFromParent(); 710 } 711 712 if (!DynamicAllocas.empty()) { 713 // Now go through the instructions again, replacing stacksave/stackrestore. 714 for (inst_iterator It = inst_begin(&F), Ie = inst_end(&F); It != Ie;) { 715 Instruction *I = &*(It++); 716 auto II = dyn_cast<IntrinsicInst>(I); 717 if (!II) 718 continue; 719 720 if (II->getIntrinsicID() == Intrinsic::stacksave) { 721 IRBuilder<> IRB(II); 722 Instruction *LI = IRB.CreateLoad(UnsafeStackPtr); 723 LI->takeName(II); 724 II->replaceAllUsesWith(LI); 725 II->eraseFromParent(); 726 } else if (II->getIntrinsicID() == Intrinsic::stackrestore) { 727 IRBuilder<> IRB(II); 728 Instruction *SI = IRB.CreateStore(II->getArgOperand(0), UnsafeStackPtr); 729 SI->takeName(II); 730 assert(II->use_empty()); 731 II->eraseFromParent(); 732 } 733 } 734 } 735 } 736 737 bool SafeStack::runOnFunction(Function &F) { 738 DEBUG(dbgs() << "[SafeStack] Function: " << F.getName() << "\n"); 739 740 if (!F.hasFnAttribute(Attribute::SafeStack)) { 741 DEBUG(dbgs() << "[SafeStack] safestack is not requested" 742 " for this function\n"); 743 return false; 744 } 745 746 if (F.isDeclaration()) { 747 DEBUG(dbgs() << "[SafeStack] function definition" 748 " is not available\n"); 749 return false; 750 } 751 752 if (!TM) 753 report_fatal_error("Target machine is required"); 754 TL = TM->getSubtargetImpl(F)->getTargetLowering(); 755 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 756 757 ++NumFunctions; 758 759 SmallVector<AllocaInst *, 16> StaticAllocas; 760 SmallVector<AllocaInst *, 4> DynamicAllocas; 761 SmallVector<Argument *, 4> ByValArguments; 762 SmallVector<ReturnInst *, 4> Returns; 763 764 // Collect all points where stack gets unwound and needs to be restored 765 // This is only necessary because the runtime (setjmp and unwind code) is 766 // not aware of the unsafe stack and won't unwind/restore it prorerly. 767 // To work around this problem without changing the runtime, we insert 768 // instrumentation to restore the unsafe stack pointer when necessary. 769 SmallVector<Instruction *, 4> StackRestorePoints; 770 771 // Find all static and dynamic alloca instructions that must be moved to the 772 // unsafe stack, all return instructions and stack restore points. 773 findInsts(F, StaticAllocas, DynamicAllocas, ByValArguments, Returns, 774 StackRestorePoints); 775 776 if (StaticAllocas.empty() && DynamicAllocas.empty() && 777 ByValArguments.empty() && StackRestorePoints.empty()) 778 return false; // Nothing to do in this function. 779 780 if (!StaticAllocas.empty() || !DynamicAllocas.empty() || 781 !ByValArguments.empty()) 782 ++NumUnsafeStackFunctions; // This function has the unsafe stack. 783 784 if (!StackRestorePoints.empty()) 785 ++NumUnsafeStackRestorePointsFunctions; 786 787 IRBuilder<> IRB(&F.front(), F.begin()->getFirstInsertionPt()); 788 UnsafeStackPtr = getOrCreateUnsafeStackPtr(IRB, F); 789 790 // Load the current stack pointer (we'll also use it as a base pointer). 791 // FIXME: use a dedicated register for it ? 792 Instruction *BasePointer = 793 IRB.CreateLoad(UnsafeStackPtr, false, "unsafe_stack_ptr"); 794 assert(BasePointer->getType() == StackPtrTy); 795 796 AllocaInst *StackGuardSlot = nullptr; 797 // FIXME: implement weaker forms of stack protector. 798 if (F.hasFnAttribute(Attribute::StackProtect) || 799 F.hasFnAttribute(Attribute::StackProtectStrong) || 800 F.hasFnAttribute(Attribute::StackProtectReq)) { 801 Value *StackGuard = getStackGuard(IRB, F); 802 StackGuardSlot = IRB.CreateAlloca(StackPtrTy, nullptr); 803 IRB.CreateStore(StackGuard, StackGuardSlot); 804 805 for (ReturnInst *RI : Returns) { 806 IRBuilder<> IRBRet(RI); 807 checkStackGuard(IRBRet, F, *RI, StackGuardSlot, StackGuard); 808 } 809 } 810 811 // The top of the unsafe stack after all unsafe static allocas are 812 // allocated. 813 Value *StaticTop = 814 moveStaticAllocasToUnsafeStack(IRB, F, StaticAllocas, ByValArguments, 815 Returns, BasePointer, StackGuardSlot); 816 817 // Safe stack object that stores the current unsafe stack top. It is updated 818 // as unsafe dynamic (non-constant-sized) allocas are allocated and freed. 819 // This is only needed if we need to restore stack pointer after longjmp 820 // or exceptions, and we have dynamic allocations. 821 // FIXME: a better alternative might be to store the unsafe stack pointer 822 // before setjmp / invoke instructions. 823 AllocaInst *DynamicTop = createStackRestorePoints( 824 IRB, F, StackRestorePoints, StaticTop, !DynamicAllocas.empty()); 825 826 // Handle dynamic allocas. 827 moveDynamicAllocasToUnsafeStack(F, UnsafeStackPtr, DynamicTop, 828 DynamicAllocas); 829 830 // Restore the unsafe stack pointer before each return. 831 for (ReturnInst *RI : Returns) { 832 IRB.SetInsertPoint(RI); 833 IRB.CreateStore(BasePointer, UnsafeStackPtr); 834 } 835 836 DEBUG(dbgs() << "[SafeStack] safestack applied\n"); 837 return true; 838 } 839 840 } // anonymous namespace 841 842 char SafeStack::ID = 0; 843 INITIALIZE_TM_PASS_BEGIN(SafeStack, "safe-stack", 844 "Safe Stack instrumentation pass", false, false) 845 INITIALIZE_TM_PASS_END(SafeStack, "safe-stack", 846 "Safe Stack instrumentation pass", false, false) 847 848 FunctionPass *llvm::createSafeStackPass(const llvm::TargetMachine *TM) { 849 return new SafeStack(TM); 850 } 851