1 //===-- SafeStack.cpp - Safe Stack Insertion ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass splits the stack into the safe stack (kept as-is for LLVM backend) 11 // and the unsafe stack (explicitly allocated and managed through the runtime 12 // support library). 13 // 14 // http://clang.llvm.org/docs/SafeStack.html 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "SafeStackColoring.h" 19 #include "SafeStackLayout.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/Analysis/AssumptionCache.h" 23 #include "llvm/Analysis/BranchProbabilityInfo.h" 24 #include "llvm/Analysis/ScalarEvolution.h" 25 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 26 #include "llvm/CodeGen/Passes.h" 27 #include "llvm/CodeGen/TargetPassConfig.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DIBuilder.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/InstIterator.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/IntrinsicInst.h" 37 #include "llvm/IR/Intrinsics.h" 38 #include "llvm/IR/MDBuilder.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/Pass.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/Format.h" 44 #include "llvm/Support/MathExtras.h" 45 #include "llvm/Support/raw_os_ostream.h" 46 #include "llvm/Target/TargetLowering.h" 47 #include "llvm/Target/TargetSubtargetInfo.h" 48 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 49 #include "llvm/Transforms/Utils/Local.h" 50 #include "llvm/Transforms/Utils/ModuleUtils.h" 51 52 using namespace llvm; 53 using namespace llvm::safestack; 54 55 #define DEBUG_TYPE "safe-stack" 56 57 namespace llvm { 58 59 STATISTIC(NumFunctions, "Total number of functions"); 60 STATISTIC(NumUnsafeStackFunctions, "Number of functions with unsafe stack"); 61 STATISTIC(NumUnsafeStackRestorePointsFunctions, 62 "Number of functions that use setjmp or exceptions"); 63 64 STATISTIC(NumAllocas, "Total number of allocas"); 65 STATISTIC(NumUnsafeStaticAllocas, "Number of unsafe static allocas"); 66 STATISTIC(NumUnsafeDynamicAllocas, "Number of unsafe dynamic allocas"); 67 STATISTIC(NumUnsafeByValArguments, "Number of unsafe byval arguments"); 68 STATISTIC(NumUnsafeStackRestorePoints, "Number of setjmps and landingpads"); 69 70 } // namespace llvm 71 72 namespace { 73 74 /// Rewrite an SCEV expression for a memory access address to an expression that 75 /// represents offset from the given alloca. 76 /// 77 /// The implementation simply replaces all mentions of the alloca with zero. 78 class AllocaOffsetRewriter : public SCEVRewriteVisitor<AllocaOffsetRewriter> { 79 const Value *AllocaPtr; 80 81 public: 82 AllocaOffsetRewriter(ScalarEvolution &SE, const Value *AllocaPtr) 83 : SCEVRewriteVisitor(SE), AllocaPtr(AllocaPtr) {} 84 85 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 86 if (Expr->getValue() == AllocaPtr) 87 return SE.getZero(Expr->getType()); 88 return Expr; 89 } 90 }; 91 92 /// The SafeStack pass splits the stack of each function into the safe 93 /// stack, which is only accessed through memory safe dereferences (as 94 /// determined statically), and the unsafe stack, which contains all 95 /// local variables that are accessed in ways that we can't prove to 96 /// be safe. 97 class SafeStack { 98 Function &F; 99 const TargetLoweringBase &TL; 100 const DataLayout &DL; 101 ScalarEvolution &SE; 102 103 Type *StackPtrTy; 104 Type *IntPtrTy; 105 Type *Int32Ty; 106 Type *Int8Ty; 107 108 Value *UnsafeStackPtr = nullptr; 109 110 /// Unsafe stack alignment. Each stack frame must ensure that the stack is 111 /// aligned to this value. We need to re-align the unsafe stack if the 112 /// alignment of any object on the stack exceeds this value. 113 /// 114 /// 16 seems like a reasonable upper bound on the alignment of objects that we 115 /// might expect to appear on the stack on most common targets. 116 enum { StackAlignment = 16 }; 117 118 /// \brief Return the value of the stack canary. 119 Value *getStackGuard(IRBuilder<> &IRB, Function &F); 120 121 /// \brief Load stack guard from the frame and check if it has changed. 122 void checkStackGuard(IRBuilder<> &IRB, Function &F, ReturnInst &RI, 123 AllocaInst *StackGuardSlot, Value *StackGuard); 124 125 /// \brief Find all static allocas, dynamic allocas, return instructions and 126 /// stack restore points (exception unwind blocks and setjmp calls) in the 127 /// given function and append them to the respective vectors. 128 void findInsts(Function &F, SmallVectorImpl<AllocaInst *> &StaticAllocas, 129 SmallVectorImpl<AllocaInst *> &DynamicAllocas, 130 SmallVectorImpl<Argument *> &ByValArguments, 131 SmallVectorImpl<ReturnInst *> &Returns, 132 SmallVectorImpl<Instruction *> &StackRestorePoints); 133 134 /// \brief Calculate the allocation size of a given alloca. Returns 0 if the 135 /// size can not be statically determined. 136 uint64_t getStaticAllocaAllocationSize(const AllocaInst* AI); 137 138 /// \brief Allocate space for all static allocas in \p StaticAllocas, 139 /// replace allocas with pointers into the unsafe stack and generate code to 140 /// restore the stack pointer before all return instructions in \p Returns. 141 /// 142 /// \returns A pointer to the top of the unsafe stack after all unsafe static 143 /// allocas are allocated. 144 Value *moveStaticAllocasToUnsafeStack(IRBuilder<> &IRB, Function &F, 145 ArrayRef<AllocaInst *> StaticAllocas, 146 ArrayRef<Argument *> ByValArguments, 147 ArrayRef<ReturnInst *> Returns, 148 Instruction *BasePointer, 149 AllocaInst *StackGuardSlot); 150 151 /// \brief Generate code to restore the stack after all stack restore points 152 /// in \p StackRestorePoints. 153 /// 154 /// \returns A local variable in which to maintain the dynamic top of the 155 /// unsafe stack if needed. 156 AllocaInst * 157 createStackRestorePoints(IRBuilder<> &IRB, Function &F, 158 ArrayRef<Instruction *> StackRestorePoints, 159 Value *StaticTop, bool NeedDynamicTop); 160 161 /// \brief Replace all allocas in \p DynamicAllocas with code to allocate 162 /// space dynamically on the unsafe stack and store the dynamic unsafe stack 163 /// top to \p DynamicTop if non-null. 164 void moveDynamicAllocasToUnsafeStack(Function &F, Value *UnsafeStackPtr, 165 AllocaInst *DynamicTop, 166 ArrayRef<AllocaInst *> DynamicAllocas); 167 168 bool IsSafeStackAlloca(const Value *AllocaPtr, uint64_t AllocaSize); 169 170 bool IsMemIntrinsicSafe(const MemIntrinsic *MI, const Use &U, 171 const Value *AllocaPtr, uint64_t AllocaSize); 172 bool IsAccessSafe(Value *Addr, uint64_t Size, const Value *AllocaPtr, 173 uint64_t AllocaSize); 174 175 public: 176 SafeStack(Function &F, const TargetLoweringBase &TL, const DataLayout &DL, 177 ScalarEvolution &SE) 178 : F(F), TL(TL), DL(DL), SE(SE), 179 StackPtrTy(Type::getInt8PtrTy(F.getContext())), 180 IntPtrTy(DL.getIntPtrType(F.getContext())), 181 Int32Ty(Type::getInt32Ty(F.getContext())), 182 Int8Ty(Type::getInt8Ty(F.getContext())) {} 183 184 // Run the transformation on the associated function. 185 // Returns whether the function was changed. 186 bool run(); 187 }; 188 189 uint64_t SafeStack::getStaticAllocaAllocationSize(const AllocaInst* AI) { 190 uint64_t Size = DL.getTypeAllocSize(AI->getAllocatedType()); 191 if (AI->isArrayAllocation()) { 192 auto C = dyn_cast<ConstantInt>(AI->getArraySize()); 193 if (!C) 194 return 0; 195 Size *= C->getZExtValue(); 196 } 197 return Size; 198 } 199 200 bool SafeStack::IsAccessSafe(Value *Addr, uint64_t AccessSize, 201 const Value *AllocaPtr, uint64_t AllocaSize) { 202 AllocaOffsetRewriter Rewriter(SE, AllocaPtr); 203 const SCEV *Expr = Rewriter.visit(SE.getSCEV(Addr)); 204 205 uint64_t BitWidth = SE.getTypeSizeInBits(Expr->getType()); 206 ConstantRange AccessStartRange = SE.getUnsignedRange(Expr); 207 ConstantRange SizeRange = 208 ConstantRange(APInt(BitWidth, 0), APInt(BitWidth, AccessSize)); 209 ConstantRange AccessRange = AccessStartRange.add(SizeRange); 210 ConstantRange AllocaRange = 211 ConstantRange(APInt(BitWidth, 0), APInt(BitWidth, AllocaSize)); 212 bool Safe = AllocaRange.contains(AccessRange); 213 214 DEBUG(dbgs() << "[SafeStack] " 215 << (isa<AllocaInst>(AllocaPtr) ? "Alloca " : "ByValArgument ") 216 << *AllocaPtr << "\n" 217 << " Access " << *Addr << "\n" 218 << " SCEV " << *Expr 219 << " U: " << SE.getUnsignedRange(Expr) 220 << ", S: " << SE.getSignedRange(Expr) << "\n" 221 << " Range " << AccessRange << "\n" 222 << " AllocaRange " << AllocaRange << "\n" 223 << " " << (Safe ? "safe" : "unsafe") << "\n"); 224 225 return Safe; 226 } 227 228 bool SafeStack::IsMemIntrinsicSafe(const MemIntrinsic *MI, const Use &U, 229 const Value *AllocaPtr, 230 uint64_t AllocaSize) { 231 // All MemIntrinsics have destination address in Arg0 and size in Arg2. 232 if (MI->getRawDest() != U) return true; 233 const auto *Len = dyn_cast<ConstantInt>(MI->getLength()); 234 // Non-constant size => unsafe. FIXME: try SCEV getRange. 235 if (!Len) return false; 236 return IsAccessSafe(U, Len->getZExtValue(), AllocaPtr, AllocaSize); 237 } 238 239 /// Check whether a given allocation must be put on the safe 240 /// stack or not. The function analyzes all uses of AI and checks whether it is 241 /// only accessed in a memory safe way (as decided statically). 242 bool SafeStack::IsSafeStackAlloca(const Value *AllocaPtr, uint64_t AllocaSize) { 243 // Go through all uses of this alloca and check whether all accesses to the 244 // allocated object are statically known to be memory safe and, hence, the 245 // object can be placed on the safe stack. 246 SmallPtrSet<const Value *, 16> Visited; 247 SmallVector<const Value *, 8> WorkList; 248 WorkList.push_back(AllocaPtr); 249 250 // A DFS search through all uses of the alloca in bitcasts/PHI/GEPs/etc. 251 while (!WorkList.empty()) { 252 const Value *V = WorkList.pop_back_val(); 253 for (const Use &UI : V->uses()) { 254 auto I = cast<const Instruction>(UI.getUser()); 255 assert(V == UI.get()); 256 257 switch (I->getOpcode()) { 258 case Instruction::Load: { 259 if (!IsAccessSafe(UI, DL.getTypeStoreSize(I->getType()), AllocaPtr, 260 AllocaSize)) 261 return false; 262 break; 263 } 264 case Instruction::VAArg: 265 // "va-arg" from a pointer is safe. 266 break; 267 case Instruction::Store: { 268 if (V == I->getOperand(0)) { 269 // Stored the pointer - conservatively assume it may be unsafe. 270 DEBUG(dbgs() << "[SafeStack] Unsafe alloca: " << *AllocaPtr 271 << "\n store of address: " << *I << "\n"); 272 return false; 273 } 274 275 if (!IsAccessSafe(UI, DL.getTypeStoreSize(I->getOperand(0)->getType()), 276 AllocaPtr, AllocaSize)) 277 return false; 278 break; 279 } 280 case Instruction::Ret: { 281 // Information leak. 282 return false; 283 } 284 285 case Instruction::Call: 286 case Instruction::Invoke: { 287 ImmutableCallSite CS(I); 288 289 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 290 if (II->getIntrinsicID() == Intrinsic::lifetime_start || 291 II->getIntrinsicID() == Intrinsic::lifetime_end) 292 continue; 293 } 294 295 if (const MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) { 296 if (!IsMemIntrinsicSafe(MI, UI, AllocaPtr, AllocaSize)) { 297 DEBUG(dbgs() << "[SafeStack] Unsafe alloca: " << *AllocaPtr 298 << "\n unsafe memintrinsic: " << *I 299 << "\n"); 300 return false; 301 } 302 continue; 303 } 304 305 // LLVM 'nocapture' attribute is only set for arguments whose address 306 // is not stored, passed around, or used in any other non-trivial way. 307 // We assume that passing a pointer to an object as a 'nocapture 308 // readnone' argument is safe. 309 // FIXME: a more precise solution would require an interprocedural 310 // analysis here, which would look at all uses of an argument inside 311 // the function being called. 312 ImmutableCallSite::arg_iterator B = CS.arg_begin(), E = CS.arg_end(); 313 for (ImmutableCallSite::arg_iterator A = B; A != E; ++A) 314 if (A->get() == V) 315 if (!(CS.doesNotCapture(A - B) && (CS.doesNotAccessMemory(A - B) || 316 CS.doesNotAccessMemory()))) { 317 DEBUG(dbgs() << "[SafeStack] Unsafe alloca: " << *AllocaPtr 318 << "\n unsafe call: " << *I << "\n"); 319 return false; 320 } 321 continue; 322 } 323 324 default: 325 if (Visited.insert(I).second) 326 WorkList.push_back(cast<const Instruction>(I)); 327 } 328 } 329 } 330 331 // All uses of the alloca are safe, we can place it on the safe stack. 332 return true; 333 } 334 335 Value *SafeStack::getStackGuard(IRBuilder<> &IRB, Function &F) { 336 Value *StackGuardVar = TL.getIRStackGuard(IRB); 337 if (!StackGuardVar) 338 StackGuardVar = 339 F.getParent()->getOrInsertGlobal("__stack_chk_guard", StackPtrTy); 340 return IRB.CreateLoad(StackGuardVar, "StackGuard"); 341 } 342 343 void SafeStack::findInsts(Function &F, 344 SmallVectorImpl<AllocaInst *> &StaticAllocas, 345 SmallVectorImpl<AllocaInst *> &DynamicAllocas, 346 SmallVectorImpl<Argument *> &ByValArguments, 347 SmallVectorImpl<ReturnInst *> &Returns, 348 SmallVectorImpl<Instruction *> &StackRestorePoints) { 349 for (Instruction &I : instructions(&F)) { 350 if (auto AI = dyn_cast<AllocaInst>(&I)) { 351 ++NumAllocas; 352 353 uint64_t Size = getStaticAllocaAllocationSize(AI); 354 if (IsSafeStackAlloca(AI, Size)) 355 continue; 356 357 if (AI->isStaticAlloca()) { 358 ++NumUnsafeStaticAllocas; 359 StaticAllocas.push_back(AI); 360 } else { 361 ++NumUnsafeDynamicAllocas; 362 DynamicAllocas.push_back(AI); 363 } 364 } else if (auto RI = dyn_cast<ReturnInst>(&I)) { 365 Returns.push_back(RI); 366 } else if (auto CI = dyn_cast<CallInst>(&I)) { 367 // setjmps require stack restore. 368 if (CI->getCalledFunction() && CI->canReturnTwice()) 369 StackRestorePoints.push_back(CI); 370 } else if (auto LP = dyn_cast<LandingPadInst>(&I)) { 371 // Exception landing pads require stack restore. 372 StackRestorePoints.push_back(LP); 373 } else if (auto II = dyn_cast<IntrinsicInst>(&I)) { 374 if (II->getIntrinsicID() == Intrinsic::gcroot) 375 llvm::report_fatal_error( 376 "gcroot intrinsic not compatible with safestack attribute"); 377 } 378 } 379 for (Argument &Arg : F.args()) { 380 if (!Arg.hasByValAttr()) 381 continue; 382 uint64_t Size = 383 DL.getTypeStoreSize(Arg.getType()->getPointerElementType()); 384 if (IsSafeStackAlloca(&Arg, Size)) 385 continue; 386 387 ++NumUnsafeByValArguments; 388 ByValArguments.push_back(&Arg); 389 } 390 } 391 392 AllocaInst * 393 SafeStack::createStackRestorePoints(IRBuilder<> &IRB, Function &F, 394 ArrayRef<Instruction *> StackRestorePoints, 395 Value *StaticTop, bool NeedDynamicTop) { 396 assert(StaticTop && "The stack top isn't set."); 397 398 if (StackRestorePoints.empty()) 399 return nullptr; 400 401 // We need the current value of the shadow stack pointer to restore 402 // after longjmp or exception catching. 403 404 // FIXME: On some platforms this could be handled by the longjmp/exception 405 // runtime itself. 406 407 AllocaInst *DynamicTop = nullptr; 408 if (NeedDynamicTop) { 409 // If we also have dynamic alloca's, the stack pointer value changes 410 // throughout the function. For now we store it in an alloca. 411 DynamicTop = IRB.CreateAlloca(StackPtrTy, /*ArraySize=*/nullptr, 412 "unsafe_stack_dynamic_ptr"); 413 IRB.CreateStore(StaticTop, DynamicTop); 414 } 415 416 // Restore current stack pointer after longjmp/exception catch. 417 for (Instruction *I : StackRestorePoints) { 418 ++NumUnsafeStackRestorePoints; 419 420 IRB.SetInsertPoint(I->getNextNode()); 421 Value *CurrentTop = DynamicTop ? IRB.CreateLoad(DynamicTop) : StaticTop; 422 IRB.CreateStore(CurrentTop, UnsafeStackPtr); 423 } 424 425 return DynamicTop; 426 } 427 428 void SafeStack::checkStackGuard(IRBuilder<> &IRB, Function &F, ReturnInst &RI, 429 AllocaInst *StackGuardSlot, Value *StackGuard) { 430 Value *V = IRB.CreateLoad(StackGuardSlot); 431 Value *Cmp = IRB.CreateICmpNE(StackGuard, V); 432 433 auto SuccessProb = BranchProbabilityInfo::getBranchProbStackProtector(true); 434 auto FailureProb = BranchProbabilityInfo::getBranchProbStackProtector(false); 435 MDNode *Weights = MDBuilder(F.getContext()) 436 .createBranchWeights(SuccessProb.getNumerator(), 437 FailureProb.getNumerator()); 438 Instruction *CheckTerm = 439 SplitBlockAndInsertIfThen(Cmp, &RI, 440 /* Unreachable */ true, Weights); 441 IRBuilder<> IRBFail(CheckTerm); 442 // FIXME: respect -fsanitize-trap / -ftrap-function here? 443 Constant *StackChkFail = F.getParent()->getOrInsertFunction( 444 "__stack_chk_fail", IRB.getVoidTy()); 445 IRBFail.CreateCall(StackChkFail, {}); 446 } 447 448 /// We explicitly compute and set the unsafe stack layout for all unsafe 449 /// static alloca instructions. We save the unsafe "base pointer" in the 450 /// prologue into a local variable and restore it in the epilogue. 451 Value *SafeStack::moveStaticAllocasToUnsafeStack( 452 IRBuilder<> &IRB, Function &F, ArrayRef<AllocaInst *> StaticAllocas, 453 ArrayRef<Argument *> ByValArguments, ArrayRef<ReturnInst *> Returns, 454 Instruction *BasePointer, AllocaInst *StackGuardSlot) { 455 if (StaticAllocas.empty() && ByValArguments.empty()) 456 return BasePointer; 457 458 DIBuilder DIB(*F.getParent()); 459 460 StackColoring SSC(F, StaticAllocas); 461 SSC.run(); 462 SSC.removeAllMarkers(); 463 464 // Unsafe stack always grows down. 465 StackLayout SSL(StackAlignment); 466 if (StackGuardSlot) { 467 Type *Ty = StackGuardSlot->getAllocatedType(); 468 unsigned Align = 469 std::max(DL.getPrefTypeAlignment(Ty), StackGuardSlot->getAlignment()); 470 SSL.addObject(StackGuardSlot, getStaticAllocaAllocationSize(StackGuardSlot), 471 Align, SSC.getFullLiveRange()); 472 } 473 474 for (Argument *Arg : ByValArguments) { 475 Type *Ty = Arg->getType()->getPointerElementType(); 476 uint64_t Size = DL.getTypeStoreSize(Ty); 477 if (Size == 0) 478 Size = 1; // Don't create zero-sized stack objects. 479 480 // Ensure the object is properly aligned. 481 unsigned Align = std::max((unsigned)DL.getPrefTypeAlignment(Ty), 482 Arg->getParamAlignment()); 483 SSL.addObject(Arg, Size, Align, SSC.getFullLiveRange()); 484 } 485 486 for (AllocaInst *AI : StaticAllocas) { 487 Type *Ty = AI->getAllocatedType(); 488 uint64_t Size = getStaticAllocaAllocationSize(AI); 489 if (Size == 0) 490 Size = 1; // Don't create zero-sized stack objects. 491 492 // Ensure the object is properly aligned. 493 unsigned Align = 494 std::max((unsigned)DL.getPrefTypeAlignment(Ty), AI->getAlignment()); 495 496 SSL.addObject(AI, Size, Align, SSC.getLiveRange(AI)); 497 } 498 499 SSL.computeLayout(); 500 unsigned FrameAlignment = SSL.getFrameAlignment(); 501 502 // FIXME: tell SSL that we start at a less-then-MaxAlignment aligned location 503 // (AlignmentSkew). 504 if (FrameAlignment > StackAlignment) { 505 // Re-align the base pointer according to the max requested alignment. 506 assert(isPowerOf2_32(FrameAlignment)); 507 IRB.SetInsertPoint(BasePointer->getNextNode()); 508 BasePointer = cast<Instruction>(IRB.CreateIntToPtr( 509 IRB.CreateAnd(IRB.CreatePtrToInt(BasePointer, IntPtrTy), 510 ConstantInt::get(IntPtrTy, ~uint64_t(FrameAlignment - 1))), 511 StackPtrTy)); 512 } 513 514 IRB.SetInsertPoint(BasePointer->getNextNode()); 515 516 if (StackGuardSlot) { 517 unsigned Offset = SSL.getObjectOffset(StackGuardSlot); 518 Value *Off = IRB.CreateGEP(BasePointer, // BasePointer is i8* 519 ConstantInt::get(Int32Ty, -Offset)); 520 Value *NewAI = 521 IRB.CreateBitCast(Off, StackGuardSlot->getType(), "StackGuardSlot"); 522 523 // Replace alloc with the new location. 524 StackGuardSlot->replaceAllUsesWith(NewAI); 525 StackGuardSlot->eraseFromParent(); 526 } 527 528 for (Argument *Arg : ByValArguments) { 529 unsigned Offset = SSL.getObjectOffset(Arg); 530 Type *Ty = Arg->getType()->getPointerElementType(); 531 532 uint64_t Size = DL.getTypeStoreSize(Ty); 533 if (Size == 0) 534 Size = 1; // Don't create zero-sized stack objects. 535 536 Value *Off = IRB.CreateGEP(BasePointer, // BasePointer is i8* 537 ConstantInt::get(Int32Ty, -Offset)); 538 Value *NewArg = IRB.CreateBitCast(Off, Arg->getType(), 539 Arg->getName() + ".unsafe-byval"); 540 541 // Replace alloc with the new location. 542 replaceDbgDeclare(Arg, BasePointer, BasePointer->getNextNode(), DIB, 543 /*Deref=*/false, -Offset); 544 Arg->replaceAllUsesWith(NewArg); 545 IRB.SetInsertPoint(cast<Instruction>(NewArg)->getNextNode()); 546 IRB.CreateMemCpy(Off, Arg, Size, Arg->getParamAlignment()); 547 } 548 549 // Allocate space for every unsafe static AllocaInst on the unsafe stack. 550 for (AllocaInst *AI : StaticAllocas) { 551 IRB.SetInsertPoint(AI); 552 unsigned Offset = SSL.getObjectOffset(AI); 553 554 uint64_t Size = getStaticAllocaAllocationSize(AI); 555 if (Size == 0) 556 Size = 1; // Don't create zero-sized stack objects. 557 558 replaceDbgDeclareForAlloca(AI, BasePointer, DIB, /*Deref=*/false, -Offset); 559 replaceDbgValueForAlloca(AI, BasePointer, DIB, -Offset); 560 561 // Replace uses of the alloca with the new location. 562 // Insert address calculation close to each use to work around PR27844. 563 std::string Name = std::string(AI->getName()) + ".unsafe"; 564 while (!AI->use_empty()) { 565 Use &U = *AI->use_begin(); 566 Instruction *User = cast<Instruction>(U.getUser()); 567 568 Instruction *InsertBefore; 569 if (auto *PHI = dyn_cast<PHINode>(User)) 570 InsertBefore = PHI->getIncomingBlock(U)->getTerminator(); 571 else 572 InsertBefore = User; 573 574 IRBuilder<> IRBUser(InsertBefore); 575 Value *Off = IRBUser.CreateGEP(BasePointer, // BasePointer is i8* 576 ConstantInt::get(Int32Ty, -Offset)); 577 Value *Replacement = IRBUser.CreateBitCast(Off, AI->getType(), Name); 578 579 if (auto *PHI = dyn_cast<PHINode>(User)) { 580 // PHI nodes may have multiple incoming edges from the same BB (why??), 581 // all must be updated at once with the same incoming value. 582 auto *BB = PHI->getIncomingBlock(U); 583 for (unsigned I = 0; I < PHI->getNumIncomingValues(); ++I) 584 if (PHI->getIncomingBlock(I) == BB) 585 PHI->setIncomingValue(I, Replacement); 586 } else { 587 U.set(Replacement); 588 } 589 } 590 591 AI->eraseFromParent(); 592 } 593 594 // Re-align BasePointer so that our callees would see it aligned as 595 // expected. 596 // FIXME: no need to update BasePointer in leaf functions. 597 unsigned FrameSize = alignTo(SSL.getFrameSize(), StackAlignment); 598 599 // Update shadow stack pointer in the function epilogue. 600 IRB.SetInsertPoint(BasePointer->getNextNode()); 601 602 Value *StaticTop = 603 IRB.CreateGEP(BasePointer, ConstantInt::get(Int32Ty, -FrameSize), 604 "unsafe_stack_static_top"); 605 IRB.CreateStore(StaticTop, UnsafeStackPtr); 606 return StaticTop; 607 } 608 609 void SafeStack::moveDynamicAllocasToUnsafeStack( 610 Function &F, Value *UnsafeStackPtr, AllocaInst *DynamicTop, 611 ArrayRef<AllocaInst *> DynamicAllocas) { 612 DIBuilder DIB(*F.getParent()); 613 614 for (AllocaInst *AI : DynamicAllocas) { 615 IRBuilder<> IRB(AI); 616 617 // Compute the new SP value (after AI). 618 Value *ArraySize = AI->getArraySize(); 619 if (ArraySize->getType() != IntPtrTy) 620 ArraySize = IRB.CreateIntCast(ArraySize, IntPtrTy, false); 621 622 Type *Ty = AI->getAllocatedType(); 623 uint64_t TySize = DL.getTypeAllocSize(Ty); 624 Value *Size = IRB.CreateMul(ArraySize, ConstantInt::get(IntPtrTy, TySize)); 625 626 Value *SP = IRB.CreatePtrToInt(IRB.CreateLoad(UnsafeStackPtr), IntPtrTy); 627 SP = IRB.CreateSub(SP, Size); 628 629 // Align the SP value to satisfy the AllocaInst, type and stack alignments. 630 unsigned Align = std::max( 631 std::max((unsigned)DL.getPrefTypeAlignment(Ty), AI->getAlignment()), 632 (unsigned)StackAlignment); 633 634 assert(isPowerOf2_32(Align)); 635 Value *NewTop = IRB.CreateIntToPtr( 636 IRB.CreateAnd(SP, ConstantInt::get(IntPtrTy, ~uint64_t(Align - 1))), 637 StackPtrTy); 638 639 // Save the stack pointer. 640 IRB.CreateStore(NewTop, UnsafeStackPtr); 641 if (DynamicTop) 642 IRB.CreateStore(NewTop, DynamicTop); 643 644 Value *NewAI = IRB.CreatePointerCast(NewTop, AI->getType()); 645 if (AI->hasName() && isa<Instruction>(NewAI)) 646 NewAI->takeName(AI); 647 648 replaceDbgDeclareForAlloca(AI, NewAI, DIB, /*Deref=*/false); 649 AI->replaceAllUsesWith(NewAI); 650 AI->eraseFromParent(); 651 } 652 653 if (!DynamicAllocas.empty()) { 654 // Now go through the instructions again, replacing stacksave/stackrestore. 655 for (inst_iterator It = inst_begin(&F), Ie = inst_end(&F); It != Ie;) { 656 Instruction *I = &*(It++); 657 auto II = dyn_cast<IntrinsicInst>(I); 658 if (!II) 659 continue; 660 661 if (II->getIntrinsicID() == Intrinsic::stacksave) { 662 IRBuilder<> IRB(II); 663 Instruction *LI = IRB.CreateLoad(UnsafeStackPtr); 664 LI->takeName(II); 665 II->replaceAllUsesWith(LI); 666 II->eraseFromParent(); 667 } else if (II->getIntrinsicID() == Intrinsic::stackrestore) { 668 IRBuilder<> IRB(II); 669 Instruction *SI = IRB.CreateStore(II->getArgOperand(0), UnsafeStackPtr); 670 SI->takeName(II); 671 assert(II->use_empty()); 672 II->eraseFromParent(); 673 } 674 } 675 } 676 } 677 678 bool SafeStack::run() { 679 assert(F.hasFnAttribute(Attribute::SafeStack) && 680 "Can't run SafeStack on a function without the attribute"); 681 assert(!F.isDeclaration() && "Can't run SafeStack on a function declaration"); 682 683 ++NumFunctions; 684 685 SmallVector<AllocaInst *, 16> StaticAllocas; 686 SmallVector<AllocaInst *, 4> DynamicAllocas; 687 SmallVector<Argument *, 4> ByValArguments; 688 SmallVector<ReturnInst *, 4> Returns; 689 690 // Collect all points where stack gets unwound and needs to be restored 691 // This is only necessary because the runtime (setjmp and unwind code) is 692 // not aware of the unsafe stack and won't unwind/restore it properly. 693 // To work around this problem without changing the runtime, we insert 694 // instrumentation to restore the unsafe stack pointer when necessary. 695 SmallVector<Instruction *, 4> StackRestorePoints; 696 697 // Find all static and dynamic alloca instructions that must be moved to the 698 // unsafe stack, all return instructions and stack restore points. 699 findInsts(F, StaticAllocas, DynamicAllocas, ByValArguments, Returns, 700 StackRestorePoints); 701 702 if (StaticAllocas.empty() && DynamicAllocas.empty() && 703 ByValArguments.empty() && StackRestorePoints.empty()) 704 return false; // Nothing to do in this function. 705 706 if (!StaticAllocas.empty() || !DynamicAllocas.empty() || 707 !ByValArguments.empty()) 708 ++NumUnsafeStackFunctions; // This function has the unsafe stack. 709 710 if (!StackRestorePoints.empty()) 711 ++NumUnsafeStackRestorePointsFunctions; 712 713 IRBuilder<> IRB(&F.front(), F.begin()->getFirstInsertionPt()); 714 UnsafeStackPtr = TL.getSafeStackPointerLocation(IRB); 715 716 // Load the current stack pointer (we'll also use it as a base pointer). 717 // FIXME: use a dedicated register for it ? 718 Instruction *BasePointer = 719 IRB.CreateLoad(UnsafeStackPtr, false, "unsafe_stack_ptr"); 720 assert(BasePointer->getType() == StackPtrTy); 721 722 AllocaInst *StackGuardSlot = nullptr; 723 // FIXME: implement weaker forms of stack protector. 724 if (F.hasFnAttribute(Attribute::StackProtect) || 725 F.hasFnAttribute(Attribute::StackProtectStrong) || 726 F.hasFnAttribute(Attribute::StackProtectReq)) { 727 Value *StackGuard = getStackGuard(IRB, F); 728 StackGuardSlot = IRB.CreateAlloca(StackPtrTy, nullptr); 729 IRB.CreateStore(StackGuard, StackGuardSlot); 730 731 for (ReturnInst *RI : Returns) { 732 IRBuilder<> IRBRet(RI); 733 checkStackGuard(IRBRet, F, *RI, StackGuardSlot, StackGuard); 734 } 735 } 736 737 // The top of the unsafe stack after all unsafe static allocas are 738 // allocated. 739 Value *StaticTop = 740 moveStaticAllocasToUnsafeStack(IRB, F, StaticAllocas, ByValArguments, 741 Returns, BasePointer, StackGuardSlot); 742 743 // Safe stack object that stores the current unsafe stack top. It is updated 744 // as unsafe dynamic (non-constant-sized) allocas are allocated and freed. 745 // This is only needed if we need to restore stack pointer after longjmp 746 // or exceptions, and we have dynamic allocations. 747 // FIXME: a better alternative might be to store the unsafe stack pointer 748 // before setjmp / invoke instructions. 749 AllocaInst *DynamicTop = createStackRestorePoints( 750 IRB, F, StackRestorePoints, StaticTop, !DynamicAllocas.empty()); 751 752 // Handle dynamic allocas. 753 moveDynamicAllocasToUnsafeStack(F, UnsafeStackPtr, DynamicTop, 754 DynamicAllocas); 755 756 // Restore the unsafe stack pointer before each return. 757 for (ReturnInst *RI : Returns) { 758 IRB.SetInsertPoint(RI); 759 IRB.CreateStore(BasePointer, UnsafeStackPtr); 760 } 761 762 DEBUG(dbgs() << "[SafeStack] safestack applied\n"); 763 return true; 764 } 765 766 class SafeStackLegacyPass : public FunctionPass { 767 const TargetMachine *TM; 768 769 public: 770 static char ID; // Pass identification, replacement for typeid.. 771 SafeStackLegacyPass() : FunctionPass(ID), TM(nullptr) { 772 initializeSafeStackLegacyPassPass(*PassRegistry::getPassRegistry()); 773 } 774 775 void getAnalysisUsage(AnalysisUsage &AU) const override { 776 AU.addRequired<TargetPassConfig>(); 777 AU.addRequired<TargetLibraryInfoWrapperPass>(); 778 AU.addRequired<AssumptionCacheTracker>(); 779 } 780 781 bool runOnFunction(Function &F) override { 782 DEBUG(dbgs() << "[SafeStack] Function: " << F.getName() << "\n"); 783 784 if (!F.hasFnAttribute(Attribute::SafeStack)) { 785 DEBUG(dbgs() << "[SafeStack] safestack is not requested" 786 " for this function\n"); 787 return false; 788 } 789 790 if (F.isDeclaration()) { 791 DEBUG(dbgs() << "[SafeStack] function definition" 792 " is not available\n"); 793 return false; 794 } 795 796 TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>(); 797 auto *TL = TM->getSubtargetImpl(F)->getTargetLowering(); 798 if (!TL) 799 report_fatal_error("TargetLowering instance is required"); 800 801 auto *DL = &F.getParent()->getDataLayout(); 802 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 803 auto &ACT = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 804 805 // Compute DT and LI only for functions that have the attribute. 806 // This is only useful because the legacy pass manager doesn't let us 807 // compute analyzes lazily. 808 // In the backend pipeline, nothing preserves DT before SafeStack, so we 809 // would otherwise always compute it wastefully, even if there is no 810 // function with the safestack attribute. 811 DominatorTree DT(F); 812 LoopInfo LI(DT); 813 814 ScalarEvolution SE(F, TLI, ACT, DT, LI); 815 816 return SafeStack(F, *TL, *DL, SE).run(); 817 } 818 }; 819 820 } // anonymous namespace 821 822 char SafeStackLegacyPass::ID = 0; 823 INITIALIZE_PASS_BEGIN(SafeStackLegacyPass, DEBUG_TYPE, 824 "Safe Stack instrumentation pass", false, false) 825 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 826 INITIALIZE_PASS_END(SafeStackLegacyPass, DEBUG_TYPE, 827 "Safe Stack instrumentation pass", false, false) 828 829 FunctionPass *llvm::createSafeStackPass() { return new SafeStackLegacyPass(); } 830