1 //===-- SafeStack.cpp - Safe Stack Insertion ------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass splits the stack into the safe stack (kept as-is for LLVM backend)
11 // and the unsafe stack (explicitly allocated and managed through the runtime
12 // support library).
13 //
14 // http://clang.llvm.org/docs/SafeStack.html
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/ADT/Triple.h"
20 #include "llvm/Analysis/ScalarEvolution.h"
21 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
22 #include "llvm/CodeGen/Passes.h"
23 #include "llvm/CodeGen/Passes.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DIBuilder.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/IRBuilder.h"
30 #include "llvm/IR/InstIterator.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/Pass.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/Format.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/raw_os_ostream.h"
41 #include "llvm/Target/TargetLowering.h"
42 #include "llvm/Target/TargetSubtargetInfo.h"
43 #include "llvm/Transforms/Utils/Local.h"
44 #include "llvm/Transforms/Utils/ModuleUtils.h"
45 
46 using namespace llvm;
47 
48 #define DEBUG_TYPE "safestack"
49 
50 enum UnsafeStackPtrStorageVal { ThreadLocalUSP, SingleThreadUSP };
51 
52 static cl::opt<UnsafeStackPtrStorageVal> USPStorage("safe-stack-usp-storage",
53     cl::Hidden, cl::init(ThreadLocalUSP),
54     cl::desc("Type of storage for the unsafe stack pointer"),
55     cl::values(clEnumValN(ThreadLocalUSP, "thread-local",
56                           "Thread-local storage"),
57                clEnumValN(SingleThreadUSP, "single-thread",
58                           "Non-thread-local storage"),
59                clEnumValEnd));
60 
61 namespace llvm {
62 
63 STATISTIC(NumFunctions, "Total number of functions");
64 STATISTIC(NumUnsafeStackFunctions, "Number of functions with unsafe stack");
65 STATISTIC(NumUnsafeStackRestorePointsFunctions,
66           "Number of functions that use setjmp or exceptions");
67 
68 STATISTIC(NumAllocas, "Total number of allocas");
69 STATISTIC(NumUnsafeStaticAllocas, "Number of unsafe static allocas");
70 STATISTIC(NumUnsafeDynamicAllocas, "Number of unsafe dynamic allocas");
71 STATISTIC(NumUnsafeByValArguments, "Number of unsafe byval arguments");
72 STATISTIC(NumUnsafeStackRestorePoints, "Number of setjmps and landingpads");
73 
74 } // namespace llvm
75 
76 namespace {
77 
78 /// Rewrite an SCEV expression for a memory access address to an expression that
79 /// represents offset from the given alloca.
80 ///
81 /// The implementation simply replaces all mentions of the alloca with zero.
82 class AllocaOffsetRewriter : public SCEVRewriteVisitor<AllocaOffsetRewriter> {
83   const Value *AllocaPtr;
84 
85 public:
86   AllocaOffsetRewriter(ScalarEvolution &SE, const Value *AllocaPtr)
87       : SCEVRewriteVisitor(SE), AllocaPtr(AllocaPtr) {}
88 
89   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
90     if (Expr->getValue() == AllocaPtr)
91       return SE.getZero(Expr->getType());
92     return Expr;
93   }
94 };
95 
96 /// The SafeStack pass splits the stack of each function into the safe
97 /// stack, which is only accessed through memory safe dereferences (as
98 /// determined statically), and the unsafe stack, which contains all
99 /// local variables that are accessed in ways that we can't prove to
100 /// be safe.
101 class SafeStack : public FunctionPass {
102   const TargetMachine *TM;
103   const TargetLoweringBase *TL;
104   const DataLayout *DL;
105   ScalarEvolution *SE;
106 
107   Type *StackPtrTy;
108   Type *IntPtrTy;
109   Type *Int32Ty;
110   Type *Int8Ty;
111 
112   Value *UnsafeStackPtr = nullptr;
113 
114   /// Unsafe stack alignment. Each stack frame must ensure that the stack is
115   /// aligned to this value. We need to re-align the unsafe stack if the
116   /// alignment of any object on the stack exceeds this value.
117   ///
118   /// 16 seems like a reasonable upper bound on the alignment of objects that we
119   /// might expect to appear on the stack on most common targets.
120   enum { StackAlignment = 16 };
121 
122   /// \brief Build a value representing a pointer to the unsafe stack pointer.
123   Value *getOrCreateUnsafeStackPtr(IRBuilder<> &IRB, Function &F);
124 
125   /// \brief Find all static allocas, dynamic allocas, return instructions and
126   /// stack restore points (exception unwind blocks and setjmp calls) in the
127   /// given function and append them to the respective vectors.
128   void findInsts(Function &F, SmallVectorImpl<AllocaInst *> &StaticAllocas,
129                  SmallVectorImpl<AllocaInst *> &DynamicAllocas,
130                  SmallVectorImpl<Argument *> &ByValArguments,
131                  SmallVectorImpl<ReturnInst *> &Returns,
132                  SmallVectorImpl<Instruction *> &StackRestorePoints);
133 
134   /// \brief Calculate the allocation size of a given alloca. Returns 0 if the
135   /// size can not be statically determined.
136   uint64_t getStaticAllocaAllocationSize(const AllocaInst* AI);
137 
138   /// \brief Allocate space for all static allocas in \p StaticAllocas,
139   /// replace allocas with pointers into the unsafe stack and generate code to
140   /// restore the stack pointer before all return instructions in \p Returns.
141   ///
142   /// \returns A pointer to the top of the unsafe stack after all unsafe static
143   /// allocas are allocated.
144   Value *moveStaticAllocasToUnsafeStack(IRBuilder<> &IRB, Function &F,
145                                         ArrayRef<AllocaInst *> StaticAllocas,
146                                         ArrayRef<Argument *> ByValArguments,
147                                         ArrayRef<ReturnInst *> Returns,
148                                         Instruction *BasePointer);
149 
150   /// \brief Generate code to restore the stack after all stack restore points
151   /// in \p StackRestorePoints.
152   ///
153   /// \returns A local variable in which to maintain the dynamic top of the
154   /// unsafe stack if needed.
155   AllocaInst *
156   createStackRestorePoints(IRBuilder<> &IRB, Function &F,
157                            ArrayRef<Instruction *> StackRestorePoints,
158                            Value *StaticTop, bool NeedDynamicTop);
159 
160   /// \brief Replace all allocas in \p DynamicAllocas with code to allocate
161   /// space dynamically on the unsafe stack and store the dynamic unsafe stack
162   /// top to \p DynamicTop if non-null.
163   void moveDynamicAllocasToUnsafeStack(Function &F, Value *UnsafeStackPtr,
164                                        AllocaInst *DynamicTop,
165                                        ArrayRef<AllocaInst *> DynamicAllocas);
166 
167   bool IsSafeStackAlloca(const Value *AllocaPtr, uint64_t AllocaSize);
168 
169   bool IsMemIntrinsicSafe(const MemIntrinsic *MI, const Use &U,
170                           const Value *AllocaPtr, uint64_t AllocaSize);
171   bool IsAccessSafe(Value *Addr, uint64_t Size, const Value *AllocaPtr,
172                     uint64_t AllocaSize);
173 
174 public:
175   static char ID; // Pass identification, replacement for typeid.
176   SafeStack(const TargetMachine *TM)
177       : FunctionPass(ID), TM(TM), TL(nullptr), DL(nullptr) {
178     initializeSafeStackPass(*PassRegistry::getPassRegistry());
179   }
180   SafeStack() : SafeStack(nullptr) {}
181 
182   void getAnalysisUsage(AnalysisUsage &AU) const override {
183     AU.addRequired<ScalarEvolutionWrapperPass>();
184   }
185 
186   bool doInitialization(Module &M) override {
187     DL = &M.getDataLayout();
188 
189     StackPtrTy = Type::getInt8PtrTy(M.getContext());
190     IntPtrTy = DL->getIntPtrType(M.getContext());
191     Int32Ty = Type::getInt32Ty(M.getContext());
192     Int8Ty = Type::getInt8Ty(M.getContext());
193 
194     return false;
195   }
196 
197   bool runOnFunction(Function &F) override;
198 }; // class SafeStack
199 
200 uint64_t SafeStack::getStaticAllocaAllocationSize(const AllocaInst* AI) {
201   uint64_t Size = DL->getTypeAllocSize(AI->getAllocatedType());
202   if (AI->isArrayAllocation()) {
203     auto C = dyn_cast<ConstantInt>(AI->getArraySize());
204     if (!C)
205       return 0;
206     Size *= C->getZExtValue();
207   }
208   return Size;
209 }
210 
211 bool SafeStack::IsAccessSafe(Value *Addr, uint64_t AccessSize,
212                              const Value *AllocaPtr, uint64_t AllocaSize) {
213   AllocaOffsetRewriter Rewriter(*SE, AllocaPtr);
214   const SCEV *Expr = Rewriter.visit(SE->getSCEV(Addr));
215 
216   uint64_t BitWidth = SE->getTypeSizeInBits(Expr->getType());
217   ConstantRange AccessStartRange = SE->getUnsignedRange(Expr);
218   ConstantRange SizeRange =
219       ConstantRange(APInt(BitWidth, 0), APInt(BitWidth, AccessSize));
220   ConstantRange AccessRange = AccessStartRange.add(SizeRange);
221   ConstantRange AllocaRange =
222       ConstantRange(APInt(BitWidth, 0), APInt(BitWidth, AllocaSize));
223   bool Safe = AllocaRange.contains(AccessRange);
224 
225   DEBUG(dbgs() << "[SafeStack] "
226                << (isa<AllocaInst>(AllocaPtr) ? "Alloca " : "ByValArgument ")
227                << *AllocaPtr << "\n"
228                << "            Access " << *Addr << "\n"
229                << "            SCEV " << *Expr
230                << " U: " << SE->getUnsignedRange(Expr)
231                << ", S: " << SE->getSignedRange(Expr) << "\n"
232                << "            Range " << AccessRange << "\n"
233                << "            AllocaRange " << AllocaRange << "\n"
234                << "            " << (Safe ? "safe" : "unsafe") << "\n");
235 
236   return Safe;
237 }
238 
239 bool SafeStack::IsMemIntrinsicSafe(const MemIntrinsic *MI, const Use &U,
240                                    const Value *AllocaPtr,
241                                    uint64_t AllocaSize) {
242   // All MemIntrinsics have destination address in Arg0 and size in Arg2.
243   if (MI->getRawDest() != U) return true;
244   const auto *Len = dyn_cast<ConstantInt>(MI->getLength());
245   // Non-constant size => unsafe. FIXME: try SCEV getRange.
246   if (!Len) return false;
247   return IsAccessSafe(U, Len->getZExtValue(), AllocaPtr, AllocaSize);
248 }
249 
250 /// Check whether a given allocation must be put on the safe
251 /// stack or not. The function analyzes all uses of AI and checks whether it is
252 /// only accessed in a memory safe way (as decided statically).
253 bool SafeStack::IsSafeStackAlloca(const Value *AllocaPtr, uint64_t AllocaSize) {
254   // Go through all uses of this alloca and check whether all accesses to the
255   // allocated object are statically known to be memory safe and, hence, the
256   // object can be placed on the safe stack.
257   SmallPtrSet<const Value *, 16> Visited;
258   SmallVector<const Value *, 8> WorkList;
259   WorkList.push_back(AllocaPtr);
260 
261   // A DFS search through all uses of the alloca in bitcasts/PHI/GEPs/etc.
262   while (!WorkList.empty()) {
263     const Value *V = WorkList.pop_back_val();
264     for (const Use &UI : V->uses()) {
265       auto I = cast<const Instruction>(UI.getUser());
266       assert(V == UI.get());
267 
268       switch (I->getOpcode()) {
269       case Instruction::Load: {
270         if (!IsAccessSafe(UI, DL->getTypeStoreSize(I->getType()), AllocaPtr,
271                           AllocaSize))
272           return false;
273         break;
274       }
275       case Instruction::VAArg:
276         // "va-arg" from a pointer is safe.
277         break;
278       case Instruction::Store: {
279         if (V == I->getOperand(0)) {
280           // Stored the pointer - conservatively assume it may be unsafe.
281           DEBUG(dbgs() << "[SafeStack] Unsafe alloca: " << *AllocaPtr
282                        << "\n            store of address: " << *I << "\n");
283           return false;
284         }
285 
286         if (!IsAccessSafe(UI, DL->getTypeStoreSize(I->getOperand(0)->getType()),
287                           AllocaPtr, AllocaSize))
288           return false;
289         break;
290       }
291       case Instruction::Ret: {
292         // Information leak.
293         return false;
294       }
295 
296       case Instruction::Call:
297       case Instruction::Invoke: {
298         ImmutableCallSite CS(I);
299 
300         if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
301           if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
302               II->getIntrinsicID() == Intrinsic::lifetime_end)
303             continue;
304         }
305 
306         if (const MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) {
307           if (!IsMemIntrinsicSafe(MI, UI, AllocaPtr, AllocaSize)) {
308             DEBUG(dbgs() << "[SafeStack] Unsafe alloca: " << *AllocaPtr
309                          << "\n            unsafe memintrinsic: " << *I
310                          << "\n");
311             return false;
312           }
313           continue;
314         }
315 
316         // LLVM 'nocapture' attribute is only set for arguments whose address
317         // is not stored, passed around, or used in any other non-trivial way.
318         // We assume that passing a pointer to an object as a 'nocapture
319         // readnone' argument is safe.
320         // FIXME: a more precise solution would require an interprocedural
321         // analysis here, which would look at all uses of an argument inside
322         // the function being called.
323         ImmutableCallSite::arg_iterator B = CS.arg_begin(), E = CS.arg_end();
324         for (ImmutableCallSite::arg_iterator A = B; A != E; ++A)
325           if (A->get() == V)
326             if (!(CS.doesNotCapture(A - B) && (CS.doesNotAccessMemory(A - B) ||
327                                                CS.doesNotAccessMemory()))) {
328               DEBUG(dbgs() << "[SafeStack] Unsafe alloca: " << *AllocaPtr
329                            << "\n            unsafe call: " << *I << "\n");
330               return false;
331             }
332         continue;
333       }
334 
335       default:
336         if (Visited.insert(I).second)
337           WorkList.push_back(cast<const Instruction>(I));
338       }
339     }
340   }
341 
342   // All uses of the alloca are safe, we can place it on the safe stack.
343   return true;
344 }
345 
346 Value *SafeStack::getOrCreateUnsafeStackPtr(IRBuilder<> &IRB, Function &F) {
347   // Check if there is a target-specific location for the unsafe stack pointer.
348   if (TL)
349     if (Value *V = TL->getSafeStackPointerLocation(IRB))
350       return V;
351 
352   // Otherwise, assume the target links with compiler-rt, which provides a
353   // thread-local variable with a magic name.
354   Module &M = *F.getParent();
355   const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr";
356   auto UnsafeStackPtr =
357       dyn_cast_or_null<GlobalVariable>(M.getNamedValue(UnsafeStackPtrVar));
358 
359   bool UseTLS = USPStorage == ThreadLocalUSP;
360 
361   if (!UnsafeStackPtr) {
362     auto TLSModel = UseTLS ?
363         GlobalValue::InitialExecTLSModel :
364         GlobalValue::NotThreadLocal;
365     // The global variable is not defined yet, define it ourselves.
366     // We use the initial-exec TLS model because we do not support the
367     // variable living anywhere other than in the main executable.
368     UnsafeStackPtr = new GlobalVariable(
369         M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr,
370         UnsafeStackPtrVar, nullptr, TLSModel);
371   } else {
372     // The variable exists, check its type and attributes.
373     if (UnsafeStackPtr->getValueType() != StackPtrTy)
374       report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type");
375     if (UseTLS != UnsafeStackPtr->isThreadLocal())
376       report_fatal_error(Twine(UnsafeStackPtrVar) + " must " +
377                          (UseTLS ? "" : "not ") + "be thread-local");
378   }
379   return UnsafeStackPtr;
380 }
381 
382 void SafeStack::findInsts(Function &F,
383                           SmallVectorImpl<AllocaInst *> &StaticAllocas,
384                           SmallVectorImpl<AllocaInst *> &DynamicAllocas,
385                           SmallVectorImpl<Argument *> &ByValArguments,
386                           SmallVectorImpl<ReturnInst *> &Returns,
387                           SmallVectorImpl<Instruction *> &StackRestorePoints) {
388   for (Instruction &I : instructions(&F)) {
389     if (auto AI = dyn_cast<AllocaInst>(&I)) {
390       ++NumAllocas;
391 
392       uint64_t Size = getStaticAllocaAllocationSize(AI);
393       if (IsSafeStackAlloca(AI, Size))
394         continue;
395 
396       if (AI->isStaticAlloca()) {
397         ++NumUnsafeStaticAllocas;
398         StaticAllocas.push_back(AI);
399       } else {
400         ++NumUnsafeDynamicAllocas;
401         DynamicAllocas.push_back(AI);
402       }
403     } else if (auto RI = dyn_cast<ReturnInst>(&I)) {
404       Returns.push_back(RI);
405     } else if (auto CI = dyn_cast<CallInst>(&I)) {
406       // setjmps require stack restore.
407       if (CI->getCalledFunction() && CI->canReturnTwice())
408         StackRestorePoints.push_back(CI);
409     } else if (auto LP = dyn_cast<LandingPadInst>(&I)) {
410       // Exception landing pads require stack restore.
411       StackRestorePoints.push_back(LP);
412     } else if (auto II = dyn_cast<IntrinsicInst>(&I)) {
413       if (II->getIntrinsicID() == Intrinsic::gcroot)
414         llvm::report_fatal_error(
415             "gcroot intrinsic not compatible with safestack attribute");
416     }
417   }
418   for (Argument &Arg : F.args()) {
419     if (!Arg.hasByValAttr())
420       continue;
421     uint64_t Size =
422         DL->getTypeStoreSize(Arg.getType()->getPointerElementType());
423     if (IsSafeStackAlloca(&Arg, Size))
424       continue;
425 
426     ++NumUnsafeByValArguments;
427     ByValArguments.push_back(&Arg);
428   }
429 }
430 
431 AllocaInst *
432 SafeStack::createStackRestorePoints(IRBuilder<> &IRB, Function &F,
433                                     ArrayRef<Instruction *> StackRestorePoints,
434                                     Value *StaticTop, bool NeedDynamicTop) {
435   assert(StaticTop && "The stack top isn't set.");
436 
437   if (StackRestorePoints.empty())
438     return nullptr;
439 
440   // We need the current value of the shadow stack pointer to restore
441   // after longjmp or exception catching.
442 
443   // FIXME: On some platforms this could be handled by the longjmp/exception
444   // runtime itself.
445 
446   AllocaInst *DynamicTop = nullptr;
447   if (NeedDynamicTop) {
448     // If we also have dynamic alloca's, the stack pointer value changes
449     // throughout the function. For now we store it in an alloca.
450     DynamicTop = IRB.CreateAlloca(StackPtrTy, /*ArraySize=*/nullptr,
451                                   "unsafe_stack_dynamic_ptr");
452     IRB.CreateStore(StaticTop, DynamicTop);
453   }
454 
455   // Restore current stack pointer after longjmp/exception catch.
456   for (Instruction *I : StackRestorePoints) {
457     ++NumUnsafeStackRestorePoints;
458 
459     IRB.SetInsertPoint(I->getNextNode());
460     Value *CurrentTop = DynamicTop ? IRB.CreateLoad(DynamicTop) : StaticTop;
461     IRB.CreateStore(CurrentTop, UnsafeStackPtr);
462   }
463 
464   return DynamicTop;
465 }
466 
467 /// We explicitly compute and set the unsafe stack layout for all unsafe
468 /// static alloca instructions. We save the unsafe "base pointer" in the
469 /// prologue into a local variable and restore it in the epilogue.
470 Value *SafeStack::moveStaticAllocasToUnsafeStack(
471     IRBuilder<> &IRB, Function &F, ArrayRef<AllocaInst *> StaticAllocas,
472     ArrayRef<Argument *> ByValArguments, ArrayRef<ReturnInst *> Returns,
473     Instruction *BasePointer) {
474   if (StaticAllocas.empty() && ByValArguments.empty())
475     return BasePointer;
476 
477   DIBuilder DIB(*F.getParent());
478 
479   // Compute maximum alignment among static objects on the unsafe stack.
480   unsigned MaxAlignment = 0;
481   for (Argument *Arg : ByValArguments) {
482     Type *Ty = Arg->getType()->getPointerElementType();
483     unsigned Align = std::max((unsigned)DL->getPrefTypeAlignment(Ty),
484                               Arg->getParamAlignment());
485     if (Align > MaxAlignment)
486       MaxAlignment = Align;
487   }
488   for (AllocaInst *AI : StaticAllocas) {
489     Type *Ty = AI->getAllocatedType();
490     unsigned Align =
491         std::max((unsigned)DL->getPrefTypeAlignment(Ty), AI->getAlignment());
492     if (Align > MaxAlignment)
493       MaxAlignment = Align;
494   }
495 
496   if (MaxAlignment > StackAlignment) {
497     // Re-align the base pointer according to the max requested alignment.
498     assert(isPowerOf2_32(MaxAlignment));
499     IRB.SetInsertPoint(BasePointer->getNextNode());
500     BasePointer = cast<Instruction>(IRB.CreateIntToPtr(
501         IRB.CreateAnd(IRB.CreatePtrToInt(BasePointer, IntPtrTy),
502                       ConstantInt::get(IntPtrTy, ~uint64_t(MaxAlignment - 1))),
503         StackPtrTy));
504   }
505 
506   int64_t StaticOffset = 0; // Current stack top.
507   IRB.SetInsertPoint(BasePointer->getNextNode());
508 
509   for (Argument *Arg : ByValArguments) {
510     Type *Ty = Arg->getType()->getPointerElementType();
511 
512     uint64_t Size = DL->getTypeStoreSize(Ty);
513     if (Size == 0)
514       Size = 1; // Don't create zero-sized stack objects.
515 
516     // Ensure the object is properly aligned.
517     unsigned Align = std::max((unsigned)DL->getPrefTypeAlignment(Ty),
518                               Arg->getParamAlignment());
519 
520     // Add alignment.
521     // NOTE: we ensure that BasePointer itself is aligned to >= Align.
522     StaticOffset += Size;
523     StaticOffset = alignTo(StaticOffset, Align);
524 
525     Value *Off = IRB.CreateGEP(BasePointer, // BasePointer is i8*
526                                ConstantInt::get(Int32Ty, -StaticOffset));
527     Value *NewArg = IRB.CreateBitCast(Off, Arg->getType(),
528                                      Arg->getName() + ".unsafe-byval");
529 
530     // Replace alloc with the new location.
531     replaceDbgDeclare(Arg, BasePointer, BasePointer->getNextNode(), DIB,
532                       /*Deref=*/true, -StaticOffset);
533     Arg->replaceAllUsesWith(NewArg);
534     IRB.SetInsertPoint(cast<Instruction>(NewArg)->getNextNode());
535     IRB.CreateMemCpy(Off, Arg, Size, Arg->getParamAlignment());
536   }
537 
538   // Allocate space for every unsafe static AllocaInst on the unsafe stack.
539   for (AllocaInst *AI : StaticAllocas) {
540     IRB.SetInsertPoint(AI);
541 
542     Type *Ty = AI->getAllocatedType();
543     uint64_t Size = getStaticAllocaAllocationSize(AI);
544     if (Size == 0)
545       Size = 1; // Don't create zero-sized stack objects.
546 
547     // Ensure the object is properly aligned.
548     unsigned Align =
549         std::max((unsigned)DL->getPrefTypeAlignment(Ty), AI->getAlignment());
550 
551     // Add alignment.
552     // NOTE: we ensure that BasePointer itself is aligned to >= Align.
553     StaticOffset += Size;
554     StaticOffset = alignTo(StaticOffset, Align);
555 
556     Value *Off = IRB.CreateGEP(BasePointer, // BasePointer is i8*
557                                ConstantInt::get(Int32Ty, -StaticOffset));
558     Value *NewAI = IRB.CreateBitCast(Off, AI->getType(), AI->getName());
559     if (AI->hasName() && isa<Instruction>(NewAI))
560       cast<Instruction>(NewAI)->takeName(AI);
561 
562     // Replace alloc with the new location.
563     replaceDbgDeclareForAlloca(AI, BasePointer, DIB, /*Deref=*/true, -StaticOffset);
564     AI->replaceAllUsesWith(NewAI);
565     AI->eraseFromParent();
566   }
567 
568   // Re-align BasePointer so that our callees would see it aligned as
569   // expected.
570   // FIXME: no need to update BasePointer in leaf functions.
571   StaticOffset = alignTo(StaticOffset, StackAlignment);
572 
573   // Update shadow stack pointer in the function epilogue.
574   IRB.SetInsertPoint(BasePointer->getNextNode());
575 
576   Value *StaticTop =
577       IRB.CreateGEP(BasePointer, ConstantInt::get(Int32Ty, -StaticOffset),
578                     "unsafe_stack_static_top");
579   IRB.CreateStore(StaticTop, UnsafeStackPtr);
580   return StaticTop;
581 }
582 
583 void SafeStack::moveDynamicAllocasToUnsafeStack(
584     Function &F, Value *UnsafeStackPtr, AllocaInst *DynamicTop,
585     ArrayRef<AllocaInst *> DynamicAllocas) {
586   DIBuilder DIB(*F.getParent());
587 
588   for (AllocaInst *AI : DynamicAllocas) {
589     IRBuilder<> IRB(AI);
590 
591     // Compute the new SP value (after AI).
592     Value *ArraySize = AI->getArraySize();
593     if (ArraySize->getType() != IntPtrTy)
594       ArraySize = IRB.CreateIntCast(ArraySize, IntPtrTy, false);
595 
596     Type *Ty = AI->getAllocatedType();
597     uint64_t TySize = DL->getTypeAllocSize(Ty);
598     Value *Size = IRB.CreateMul(ArraySize, ConstantInt::get(IntPtrTy, TySize));
599 
600     Value *SP = IRB.CreatePtrToInt(IRB.CreateLoad(UnsafeStackPtr), IntPtrTy);
601     SP = IRB.CreateSub(SP, Size);
602 
603     // Align the SP value to satisfy the AllocaInst, type and stack alignments.
604     unsigned Align = std::max(
605         std::max((unsigned)DL->getPrefTypeAlignment(Ty), AI->getAlignment()),
606         (unsigned)StackAlignment);
607 
608     assert(isPowerOf2_32(Align));
609     Value *NewTop = IRB.CreateIntToPtr(
610         IRB.CreateAnd(SP, ConstantInt::get(IntPtrTy, ~uint64_t(Align - 1))),
611         StackPtrTy);
612 
613     // Save the stack pointer.
614     IRB.CreateStore(NewTop, UnsafeStackPtr);
615     if (DynamicTop)
616       IRB.CreateStore(NewTop, DynamicTop);
617 
618     Value *NewAI = IRB.CreatePointerCast(NewTop, AI->getType());
619     if (AI->hasName() && isa<Instruction>(NewAI))
620       NewAI->takeName(AI);
621 
622     replaceDbgDeclareForAlloca(AI, NewAI, DIB, /*Deref=*/true);
623     AI->replaceAllUsesWith(NewAI);
624     AI->eraseFromParent();
625   }
626 
627   if (!DynamicAllocas.empty()) {
628     // Now go through the instructions again, replacing stacksave/stackrestore.
629     for (inst_iterator It = inst_begin(&F), Ie = inst_end(&F); It != Ie;) {
630       Instruction *I = &*(It++);
631       auto II = dyn_cast<IntrinsicInst>(I);
632       if (!II)
633         continue;
634 
635       if (II->getIntrinsicID() == Intrinsic::stacksave) {
636         IRBuilder<> IRB(II);
637         Instruction *LI = IRB.CreateLoad(UnsafeStackPtr);
638         LI->takeName(II);
639         II->replaceAllUsesWith(LI);
640         II->eraseFromParent();
641       } else if (II->getIntrinsicID() == Intrinsic::stackrestore) {
642         IRBuilder<> IRB(II);
643         Instruction *SI = IRB.CreateStore(II->getArgOperand(0), UnsafeStackPtr);
644         SI->takeName(II);
645         assert(II->use_empty());
646         II->eraseFromParent();
647       }
648     }
649   }
650 }
651 
652 bool SafeStack::runOnFunction(Function &F) {
653   DEBUG(dbgs() << "[SafeStack] Function: " << F.getName() << "\n");
654 
655   if (!F.hasFnAttribute(Attribute::SafeStack)) {
656     DEBUG(dbgs() << "[SafeStack]     safestack is not requested"
657                     " for this function\n");
658     return false;
659   }
660 
661   if (F.isDeclaration()) {
662     DEBUG(dbgs() << "[SafeStack]     function definition"
663                     " is not available\n");
664     return false;
665   }
666 
667   TL = TM ? TM->getSubtargetImpl(F)->getTargetLowering() : nullptr;
668   SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
669 
670   {
671     // Make sure the regular stack protector won't run on this function
672     // (safestack attribute takes precedence).
673     AttrBuilder B;
674     B.addAttribute(Attribute::StackProtect)
675         .addAttribute(Attribute::StackProtectReq)
676         .addAttribute(Attribute::StackProtectStrong);
677     F.removeAttributes(
678         AttributeSet::FunctionIndex,
679         AttributeSet::get(F.getContext(), AttributeSet::FunctionIndex, B));
680   }
681 
682   ++NumFunctions;
683 
684   SmallVector<AllocaInst *, 16> StaticAllocas;
685   SmallVector<AllocaInst *, 4> DynamicAllocas;
686   SmallVector<Argument *, 4> ByValArguments;
687   SmallVector<ReturnInst *, 4> Returns;
688 
689   // Collect all points where stack gets unwound and needs to be restored
690   // This is only necessary because the runtime (setjmp and unwind code) is
691   // not aware of the unsafe stack and won't unwind/restore it prorerly.
692   // To work around this problem without changing the runtime, we insert
693   // instrumentation to restore the unsafe stack pointer when necessary.
694   SmallVector<Instruction *, 4> StackRestorePoints;
695 
696   // Find all static and dynamic alloca instructions that must be moved to the
697   // unsafe stack, all return instructions and stack restore points.
698   findInsts(F, StaticAllocas, DynamicAllocas, ByValArguments, Returns,
699             StackRestorePoints);
700 
701   if (StaticAllocas.empty() && DynamicAllocas.empty() &&
702       ByValArguments.empty() && StackRestorePoints.empty())
703     return false; // Nothing to do in this function.
704 
705   if (!StaticAllocas.empty() || !DynamicAllocas.empty() ||
706       !ByValArguments.empty())
707     ++NumUnsafeStackFunctions; // This function has the unsafe stack.
708 
709   if (!StackRestorePoints.empty())
710     ++NumUnsafeStackRestorePointsFunctions;
711 
712   IRBuilder<> IRB(&F.front(), F.begin()->getFirstInsertionPt());
713   UnsafeStackPtr = getOrCreateUnsafeStackPtr(IRB, F);
714 
715   // Load the current stack pointer (we'll also use it as a base pointer).
716   // FIXME: use a dedicated register for it ?
717   Instruction *BasePointer =
718     IRB.CreateLoad(UnsafeStackPtr, false, "unsafe_stack_ptr");
719   assert(BasePointer->getType() == StackPtrTy);
720 
721   // The top of the unsafe stack after all unsafe static allocas are allocated.
722   Value *StaticTop = moveStaticAllocasToUnsafeStack(IRB, F, StaticAllocas,
723                                                     ByValArguments, Returns,
724                                                     BasePointer);
725 
726   // Safe stack object that stores the current unsafe stack top. It is updated
727   // as unsafe dynamic (non-constant-sized) allocas are allocated and freed.
728   // This is only needed if we need to restore stack pointer after longjmp
729   // or exceptions, and we have dynamic allocations.
730   // FIXME: a better alternative might be to store the unsafe stack pointer
731   // before setjmp / invoke instructions.
732   AllocaInst *DynamicTop = createStackRestorePoints(
733       IRB, F, StackRestorePoints, StaticTop, !DynamicAllocas.empty());
734 
735   // Handle dynamic allocas.
736   moveDynamicAllocasToUnsafeStack(F, UnsafeStackPtr, DynamicTop,
737                                   DynamicAllocas);
738 
739   // Restore the unsafe stack pointer before each return.
740   for (ReturnInst *RI : Returns) {
741     IRB.SetInsertPoint(RI);
742     IRB.CreateStore(BasePointer, UnsafeStackPtr);
743   }
744 
745   DEBUG(dbgs() << "[SafeStack]     safestack applied\n");
746   return true;
747 }
748 
749 } // anonymous namespace
750 
751 char SafeStack::ID = 0;
752 INITIALIZE_TM_PASS_BEGIN(SafeStack, "safe-stack",
753                          "Safe Stack instrumentation pass", false, false)
754 INITIALIZE_TM_PASS_END(SafeStack, "safe-stack",
755                        "Safe Stack instrumentation pass", false, false)
756 
757 FunctionPass *llvm::createSafeStackPass(const llvm::TargetMachine *TM) {
758   return new SafeStack(TM);
759 }
760