1 //===-- SafeStack.cpp - Safe Stack Insertion ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass splits the stack into the safe stack (kept as-is for LLVM backend) 11 // and the unsafe stack (explicitly allocated and managed through the runtime 12 // support library). 13 // 14 // http://clang.llvm.org/docs/SafeStack.html 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/ADT/Triple.h" 20 #include "llvm/Analysis/ScalarEvolution.h" 21 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 22 #include "llvm/CodeGen/Passes.h" 23 #include "llvm/CodeGen/Passes.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/DIBuilder.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/IRBuilder.h" 30 #include "llvm/IR/InstIterator.h" 31 #include "llvm/IR/Instructions.h" 32 #include "llvm/IR/IntrinsicInst.h" 33 #include "llvm/IR/Intrinsics.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/Pass.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/Format.h" 39 #include "llvm/Support/MathExtras.h" 40 #include "llvm/Support/raw_os_ostream.h" 41 #include "llvm/Target/TargetLowering.h" 42 #include "llvm/Target/TargetSubtargetInfo.h" 43 #include "llvm/Transforms/Utils/Local.h" 44 #include "llvm/Transforms/Utils/ModuleUtils.h" 45 46 using namespace llvm; 47 48 #define DEBUG_TYPE "safestack" 49 50 enum UnsafeStackPtrStorageVal { ThreadLocalUSP, SingleThreadUSP }; 51 52 static cl::opt<UnsafeStackPtrStorageVal> USPStorage("safe-stack-usp-storage", 53 cl::Hidden, cl::init(ThreadLocalUSP), 54 cl::desc("Type of storage for the unsafe stack pointer"), 55 cl::values(clEnumValN(ThreadLocalUSP, "thread-local", 56 "Thread-local storage"), 57 clEnumValN(SingleThreadUSP, "single-thread", 58 "Non-thread-local storage"), 59 clEnumValEnd)); 60 61 namespace llvm { 62 63 STATISTIC(NumFunctions, "Total number of functions"); 64 STATISTIC(NumUnsafeStackFunctions, "Number of functions with unsafe stack"); 65 STATISTIC(NumUnsafeStackRestorePointsFunctions, 66 "Number of functions that use setjmp or exceptions"); 67 68 STATISTIC(NumAllocas, "Total number of allocas"); 69 STATISTIC(NumUnsafeStaticAllocas, "Number of unsafe static allocas"); 70 STATISTIC(NumUnsafeDynamicAllocas, "Number of unsafe dynamic allocas"); 71 STATISTIC(NumUnsafeByValArguments, "Number of unsafe byval arguments"); 72 STATISTIC(NumUnsafeStackRestorePoints, "Number of setjmps and landingpads"); 73 74 } // namespace llvm 75 76 namespace { 77 78 /// Rewrite an SCEV expression for a memory access address to an expression that 79 /// represents offset from the given alloca. 80 /// 81 /// The implementation simply replaces all mentions of the alloca with zero. 82 class AllocaOffsetRewriter : public SCEVRewriteVisitor<AllocaOffsetRewriter> { 83 const Value *AllocaPtr; 84 85 public: 86 AllocaOffsetRewriter(ScalarEvolution &SE, const Value *AllocaPtr) 87 : SCEVRewriteVisitor(SE), AllocaPtr(AllocaPtr) {} 88 89 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 90 if (Expr->getValue() == AllocaPtr) 91 return SE.getZero(Expr->getType()); 92 return Expr; 93 } 94 }; 95 96 /// The SafeStack pass splits the stack of each function into the safe 97 /// stack, which is only accessed through memory safe dereferences (as 98 /// determined statically), and the unsafe stack, which contains all 99 /// local variables that are accessed in ways that we can't prove to 100 /// be safe. 101 class SafeStack : public FunctionPass { 102 const TargetMachine *TM; 103 const TargetLoweringBase *TL; 104 const DataLayout *DL; 105 ScalarEvolution *SE; 106 107 Type *StackPtrTy; 108 Type *IntPtrTy; 109 Type *Int32Ty; 110 Type *Int8Ty; 111 112 Value *UnsafeStackPtr = nullptr; 113 114 /// Unsafe stack alignment. Each stack frame must ensure that the stack is 115 /// aligned to this value. We need to re-align the unsafe stack if the 116 /// alignment of any object on the stack exceeds this value. 117 /// 118 /// 16 seems like a reasonable upper bound on the alignment of objects that we 119 /// might expect to appear on the stack on most common targets. 120 enum { StackAlignment = 16 }; 121 122 /// \brief Build a value representing a pointer to the unsafe stack pointer. 123 Value *getOrCreateUnsafeStackPtr(IRBuilder<> &IRB, Function &F); 124 125 /// \brief Find all static allocas, dynamic allocas, return instructions and 126 /// stack restore points (exception unwind blocks and setjmp calls) in the 127 /// given function and append them to the respective vectors. 128 void findInsts(Function &F, SmallVectorImpl<AllocaInst *> &StaticAllocas, 129 SmallVectorImpl<AllocaInst *> &DynamicAllocas, 130 SmallVectorImpl<Argument *> &ByValArguments, 131 SmallVectorImpl<ReturnInst *> &Returns, 132 SmallVectorImpl<Instruction *> &StackRestorePoints); 133 134 /// \brief Calculate the allocation size of a given alloca. Returns 0 if the 135 /// size can not be statically determined. 136 uint64_t getStaticAllocaAllocationSize(const AllocaInst* AI); 137 138 /// \brief Allocate space for all static allocas in \p StaticAllocas, 139 /// replace allocas with pointers into the unsafe stack and generate code to 140 /// restore the stack pointer before all return instructions in \p Returns. 141 /// 142 /// \returns A pointer to the top of the unsafe stack after all unsafe static 143 /// allocas are allocated. 144 Value *moveStaticAllocasToUnsafeStack(IRBuilder<> &IRB, Function &F, 145 ArrayRef<AllocaInst *> StaticAllocas, 146 ArrayRef<Argument *> ByValArguments, 147 ArrayRef<ReturnInst *> Returns, 148 Instruction *BasePointer); 149 150 /// \brief Generate code to restore the stack after all stack restore points 151 /// in \p StackRestorePoints. 152 /// 153 /// \returns A local variable in which to maintain the dynamic top of the 154 /// unsafe stack if needed. 155 AllocaInst * 156 createStackRestorePoints(IRBuilder<> &IRB, Function &F, 157 ArrayRef<Instruction *> StackRestorePoints, 158 Value *StaticTop, bool NeedDynamicTop); 159 160 /// \brief Replace all allocas in \p DynamicAllocas with code to allocate 161 /// space dynamically on the unsafe stack and store the dynamic unsafe stack 162 /// top to \p DynamicTop if non-null. 163 void moveDynamicAllocasToUnsafeStack(Function &F, Value *UnsafeStackPtr, 164 AllocaInst *DynamicTop, 165 ArrayRef<AllocaInst *> DynamicAllocas); 166 167 bool IsSafeStackAlloca(const Value *AllocaPtr, uint64_t AllocaSize); 168 169 bool IsMemIntrinsicSafe(const MemIntrinsic *MI, const Use &U, 170 const Value *AllocaPtr, uint64_t AllocaSize); 171 bool IsAccessSafe(Value *Addr, uint64_t Size, const Value *AllocaPtr, 172 uint64_t AllocaSize); 173 174 public: 175 static char ID; // Pass identification, replacement for typeid. 176 SafeStack(const TargetMachine *TM) 177 : FunctionPass(ID), TM(TM), TL(nullptr), DL(nullptr) { 178 initializeSafeStackPass(*PassRegistry::getPassRegistry()); 179 } 180 SafeStack() : SafeStack(nullptr) {} 181 182 void getAnalysisUsage(AnalysisUsage &AU) const override { 183 AU.addRequired<ScalarEvolutionWrapperPass>(); 184 } 185 186 bool doInitialization(Module &M) override { 187 DL = &M.getDataLayout(); 188 189 StackPtrTy = Type::getInt8PtrTy(M.getContext()); 190 IntPtrTy = DL->getIntPtrType(M.getContext()); 191 Int32Ty = Type::getInt32Ty(M.getContext()); 192 Int8Ty = Type::getInt8Ty(M.getContext()); 193 194 return false; 195 } 196 197 bool runOnFunction(Function &F) override; 198 }; // class SafeStack 199 200 uint64_t SafeStack::getStaticAllocaAllocationSize(const AllocaInst* AI) { 201 uint64_t Size = DL->getTypeAllocSize(AI->getAllocatedType()); 202 if (AI->isArrayAllocation()) { 203 auto C = dyn_cast<ConstantInt>(AI->getArraySize()); 204 if (!C) 205 return 0; 206 Size *= C->getZExtValue(); 207 } 208 return Size; 209 } 210 211 bool SafeStack::IsAccessSafe(Value *Addr, uint64_t AccessSize, 212 const Value *AllocaPtr, uint64_t AllocaSize) { 213 AllocaOffsetRewriter Rewriter(*SE, AllocaPtr); 214 const SCEV *Expr = Rewriter.visit(SE->getSCEV(Addr)); 215 216 uint64_t BitWidth = SE->getTypeSizeInBits(Expr->getType()); 217 ConstantRange AccessStartRange = SE->getUnsignedRange(Expr); 218 ConstantRange SizeRange = 219 ConstantRange(APInt(BitWidth, 0), APInt(BitWidth, AccessSize)); 220 ConstantRange AccessRange = AccessStartRange.add(SizeRange); 221 ConstantRange AllocaRange = 222 ConstantRange(APInt(BitWidth, 0), APInt(BitWidth, AllocaSize)); 223 bool Safe = AllocaRange.contains(AccessRange); 224 225 DEBUG(dbgs() << "[SafeStack] " 226 << (isa<AllocaInst>(AllocaPtr) ? "Alloca " : "ByValArgument ") 227 << *AllocaPtr << "\n" 228 << " Access " << *Addr << "\n" 229 << " SCEV " << *Expr 230 << " U: " << SE->getUnsignedRange(Expr) 231 << ", S: " << SE->getSignedRange(Expr) << "\n" 232 << " Range " << AccessRange << "\n" 233 << " AllocaRange " << AllocaRange << "\n" 234 << " " << (Safe ? "safe" : "unsafe") << "\n"); 235 236 return Safe; 237 } 238 239 bool SafeStack::IsMemIntrinsicSafe(const MemIntrinsic *MI, const Use &U, 240 const Value *AllocaPtr, 241 uint64_t AllocaSize) { 242 // All MemIntrinsics have destination address in Arg0 and size in Arg2. 243 if (MI->getRawDest() != U) return true; 244 const auto *Len = dyn_cast<ConstantInt>(MI->getLength()); 245 // Non-constant size => unsafe. FIXME: try SCEV getRange. 246 if (!Len) return false; 247 return IsAccessSafe(U, Len->getZExtValue(), AllocaPtr, AllocaSize); 248 } 249 250 /// Check whether a given allocation must be put on the safe 251 /// stack or not. The function analyzes all uses of AI and checks whether it is 252 /// only accessed in a memory safe way (as decided statically). 253 bool SafeStack::IsSafeStackAlloca(const Value *AllocaPtr, uint64_t AllocaSize) { 254 // Go through all uses of this alloca and check whether all accesses to the 255 // allocated object are statically known to be memory safe and, hence, the 256 // object can be placed on the safe stack. 257 SmallPtrSet<const Value *, 16> Visited; 258 SmallVector<const Value *, 8> WorkList; 259 WorkList.push_back(AllocaPtr); 260 261 // A DFS search through all uses of the alloca in bitcasts/PHI/GEPs/etc. 262 while (!WorkList.empty()) { 263 const Value *V = WorkList.pop_back_val(); 264 for (const Use &UI : V->uses()) { 265 auto I = cast<const Instruction>(UI.getUser()); 266 assert(V == UI.get()); 267 268 switch (I->getOpcode()) { 269 case Instruction::Load: { 270 if (!IsAccessSafe(UI, DL->getTypeStoreSize(I->getType()), AllocaPtr, 271 AllocaSize)) 272 return false; 273 break; 274 } 275 case Instruction::VAArg: 276 // "va-arg" from a pointer is safe. 277 break; 278 case Instruction::Store: { 279 if (V == I->getOperand(0)) { 280 // Stored the pointer - conservatively assume it may be unsafe. 281 DEBUG(dbgs() << "[SafeStack] Unsafe alloca: " << *AllocaPtr 282 << "\n store of address: " << *I << "\n"); 283 return false; 284 } 285 286 if (!IsAccessSafe(UI, DL->getTypeStoreSize(I->getOperand(0)->getType()), 287 AllocaPtr, AllocaSize)) 288 return false; 289 break; 290 } 291 case Instruction::Ret: { 292 // Information leak. 293 return false; 294 } 295 296 case Instruction::Call: 297 case Instruction::Invoke: { 298 ImmutableCallSite CS(I); 299 300 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 301 if (II->getIntrinsicID() == Intrinsic::lifetime_start || 302 II->getIntrinsicID() == Intrinsic::lifetime_end) 303 continue; 304 } 305 306 if (const MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) { 307 if (!IsMemIntrinsicSafe(MI, UI, AllocaPtr, AllocaSize)) { 308 DEBUG(dbgs() << "[SafeStack] Unsafe alloca: " << *AllocaPtr 309 << "\n unsafe memintrinsic: " << *I 310 << "\n"); 311 return false; 312 } 313 continue; 314 } 315 316 // LLVM 'nocapture' attribute is only set for arguments whose address 317 // is not stored, passed around, or used in any other non-trivial way. 318 // We assume that passing a pointer to an object as a 'nocapture 319 // readnone' argument is safe. 320 // FIXME: a more precise solution would require an interprocedural 321 // analysis here, which would look at all uses of an argument inside 322 // the function being called. 323 ImmutableCallSite::arg_iterator B = CS.arg_begin(), E = CS.arg_end(); 324 for (ImmutableCallSite::arg_iterator A = B; A != E; ++A) 325 if (A->get() == V) 326 if (!(CS.doesNotCapture(A - B) && (CS.doesNotAccessMemory(A - B) || 327 CS.doesNotAccessMemory()))) { 328 DEBUG(dbgs() << "[SafeStack] Unsafe alloca: " << *AllocaPtr 329 << "\n unsafe call: " << *I << "\n"); 330 return false; 331 } 332 continue; 333 } 334 335 default: 336 if (Visited.insert(I).second) 337 WorkList.push_back(cast<const Instruction>(I)); 338 } 339 } 340 } 341 342 // All uses of the alloca are safe, we can place it on the safe stack. 343 return true; 344 } 345 346 Value *SafeStack::getOrCreateUnsafeStackPtr(IRBuilder<> &IRB, Function &F) { 347 // Check if there is a target-specific location for the unsafe stack pointer. 348 if (TL) 349 if (Value *V = TL->getSafeStackPointerLocation(IRB)) 350 return V; 351 352 // Otherwise, assume the target links with compiler-rt, which provides a 353 // thread-local variable with a magic name. 354 Module &M = *F.getParent(); 355 const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr"; 356 auto UnsafeStackPtr = 357 dyn_cast_or_null<GlobalVariable>(M.getNamedValue(UnsafeStackPtrVar)); 358 359 bool UseTLS = USPStorage == ThreadLocalUSP; 360 361 if (!UnsafeStackPtr) { 362 auto TLSModel = UseTLS ? 363 GlobalValue::InitialExecTLSModel : 364 GlobalValue::NotThreadLocal; 365 // The global variable is not defined yet, define it ourselves. 366 // We use the initial-exec TLS model because we do not support the 367 // variable living anywhere other than in the main executable. 368 UnsafeStackPtr = new GlobalVariable( 369 M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr, 370 UnsafeStackPtrVar, nullptr, TLSModel); 371 } else { 372 // The variable exists, check its type and attributes. 373 if (UnsafeStackPtr->getValueType() != StackPtrTy) 374 report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type"); 375 if (UseTLS != UnsafeStackPtr->isThreadLocal()) 376 report_fatal_error(Twine(UnsafeStackPtrVar) + " must " + 377 (UseTLS ? "" : "not ") + "be thread-local"); 378 } 379 return UnsafeStackPtr; 380 } 381 382 void SafeStack::findInsts(Function &F, 383 SmallVectorImpl<AllocaInst *> &StaticAllocas, 384 SmallVectorImpl<AllocaInst *> &DynamicAllocas, 385 SmallVectorImpl<Argument *> &ByValArguments, 386 SmallVectorImpl<ReturnInst *> &Returns, 387 SmallVectorImpl<Instruction *> &StackRestorePoints) { 388 for (Instruction &I : instructions(&F)) { 389 if (auto AI = dyn_cast<AllocaInst>(&I)) { 390 ++NumAllocas; 391 392 uint64_t Size = getStaticAllocaAllocationSize(AI); 393 if (IsSafeStackAlloca(AI, Size)) 394 continue; 395 396 if (AI->isStaticAlloca()) { 397 ++NumUnsafeStaticAllocas; 398 StaticAllocas.push_back(AI); 399 } else { 400 ++NumUnsafeDynamicAllocas; 401 DynamicAllocas.push_back(AI); 402 } 403 } else if (auto RI = dyn_cast<ReturnInst>(&I)) { 404 Returns.push_back(RI); 405 } else if (auto CI = dyn_cast<CallInst>(&I)) { 406 // setjmps require stack restore. 407 if (CI->getCalledFunction() && CI->canReturnTwice()) 408 StackRestorePoints.push_back(CI); 409 } else if (auto LP = dyn_cast<LandingPadInst>(&I)) { 410 // Exception landing pads require stack restore. 411 StackRestorePoints.push_back(LP); 412 } else if (auto II = dyn_cast<IntrinsicInst>(&I)) { 413 if (II->getIntrinsicID() == Intrinsic::gcroot) 414 llvm::report_fatal_error( 415 "gcroot intrinsic not compatible with safestack attribute"); 416 } 417 } 418 for (Argument &Arg : F.args()) { 419 if (!Arg.hasByValAttr()) 420 continue; 421 uint64_t Size = 422 DL->getTypeStoreSize(Arg.getType()->getPointerElementType()); 423 if (IsSafeStackAlloca(&Arg, Size)) 424 continue; 425 426 ++NumUnsafeByValArguments; 427 ByValArguments.push_back(&Arg); 428 } 429 } 430 431 AllocaInst * 432 SafeStack::createStackRestorePoints(IRBuilder<> &IRB, Function &F, 433 ArrayRef<Instruction *> StackRestorePoints, 434 Value *StaticTop, bool NeedDynamicTop) { 435 assert(StaticTop && "The stack top isn't set."); 436 437 if (StackRestorePoints.empty()) 438 return nullptr; 439 440 // We need the current value of the shadow stack pointer to restore 441 // after longjmp or exception catching. 442 443 // FIXME: On some platforms this could be handled by the longjmp/exception 444 // runtime itself. 445 446 AllocaInst *DynamicTop = nullptr; 447 if (NeedDynamicTop) { 448 // If we also have dynamic alloca's, the stack pointer value changes 449 // throughout the function. For now we store it in an alloca. 450 DynamicTop = IRB.CreateAlloca(StackPtrTy, /*ArraySize=*/nullptr, 451 "unsafe_stack_dynamic_ptr"); 452 IRB.CreateStore(StaticTop, DynamicTop); 453 } 454 455 // Restore current stack pointer after longjmp/exception catch. 456 for (Instruction *I : StackRestorePoints) { 457 ++NumUnsafeStackRestorePoints; 458 459 IRB.SetInsertPoint(I->getNextNode()); 460 Value *CurrentTop = DynamicTop ? IRB.CreateLoad(DynamicTop) : StaticTop; 461 IRB.CreateStore(CurrentTop, UnsafeStackPtr); 462 } 463 464 return DynamicTop; 465 } 466 467 /// We explicitly compute and set the unsafe stack layout for all unsafe 468 /// static alloca instructions. We save the unsafe "base pointer" in the 469 /// prologue into a local variable and restore it in the epilogue. 470 Value *SafeStack::moveStaticAllocasToUnsafeStack( 471 IRBuilder<> &IRB, Function &F, ArrayRef<AllocaInst *> StaticAllocas, 472 ArrayRef<Argument *> ByValArguments, ArrayRef<ReturnInst *> Returns, 473 Instruction *BasePointer) { 474 if (StaticAllocas.empty() && ByValArguments.empty()) 475 return BasePointer; 476 477 DIBuilder DIB(*F.getParent()); 478 479 // Compute maximum alignment among static objects on the unsafe stack. 480 unsigned MaxAlignment = 0; 481 for (Argument *Arg : ByValArguments) { 482 Type *Ty = Arg->getType()->getPointerElementType(); 483 unsigned Align = std::max((unsigned)DL->getPrefTypeAlignment(Ty), 484 Arg->getParamAlignment()); 485 if (Align > MaxAlignment) 486 MaxAlignment = Align; 487 } 488 for (AllocaInst *AI : StaticAllocas) { 489 Type *Ty = AI->getAllocatedType(); 490 unsigned Align = 491 std::max((unsigned)DL->getPrefTypeAlignment(Ty), AI->getAlignment()); 492 if (Align > MaxAlignment) 493 MaxAlignment = Align; 494 } 495 496 if (MaxAlignment > StackAlignment) { 497 // Re-align the base pointer according to the max requested alignment. 498 assert(isPowerOf2_32(MaxAlignment)); 499 IRB.SetInsertPoint(BasePointer->getNextNode()); 500 BasePointer = cast<Instruction>(IRB.CreateIntToPtr( 501 IRB.CreateAnd(IRB.CreatePtrToInt(BasePointer, IntPtrTy), 502 ConstantInt::get(IntPtrTy, ~uint64_t(MaxAlignment - 1))), 503 StackPtrTy)); 504 } 505 506 int64_t StaticOffset = 0; // Current stack top. 507 IRB.SetInsertPoint(BasePointer->getNextNode()); 508 509 for (Argument *Arg : ByValArguments) { 510 Type *Ty = Arg->getType()->getPointerElementType(); 511 512 uint64_t Size = DL->getTypeStoreSize(Ty); 513 if (Size == 0) 514 Size = 1; // Don't create zero-sized stack objects. 515 516 // Ensure the object is properly aligned. 517 unsigned Align = std::max((unsigned)DL->getPrefTypeAlignment(Ty), 518 Arg->getParamAlignment()); 519 520 // Add alignment. 521 // NOTE: we ensure that BasePointer itself is aligned to >= Align. 522 StaticOffset += Size; 523 StaticOffset = alignTo(StaticOffset, Align); 524 525 Value *Off = IRB.CreateGEP(BasePointer, // BasePointer is i8* 526 ConstantInt::get(Int32Ty, -StaticOffset)); 527 Value *NewArg = IRB.CreateBitCast(Off, Arg->getType(), 528 Arg->getName() + ".unsafe-byval"); 529 530 // Replace alloc with the new location. 531 replaceDbgDeclare(Arg, BasePointer, BasePointer->getNextNode(), DIB, 532 /*Deref=*/true, -StaticOffset); 533 Arg->replaceAllUsesWith(NewArg); 534 IRB.SetInsertPoint(cast<Instruction>(NewArg)->getNextNode()); 535 IRB.CreateMemCpy(Off, Arg, Size, Arg->getParamAlignment()); 536 } 537 538 // Allocate space for every unsafe static AllocaInst on the unsafe stack. 539 for (AllocaInst *AI : StaticAllocas) { 540 IRB.SetInsertPoint(AI); 541 542 Type *Ty = AI->getAllocatedType(); 543 uint64_t Size = getStaticAllocaAllocationSize(AI); 544 if (Size == 0) 545 Size = 1; // Don't create zero-sized stack objects. 546 547 // Ensure the object is properly aligned. 548 unsigned Align = 549 std::max((unsigned)DL->getPrefTypeAlignment(Ty), AI->getAlignment()); 550 551 // Add alignment. 552 // NOTE: we ensure that BasePointer itself is aligned to >= Align. 553 StaticOffset += Size; 554 StaticOffset = alignTo(StaticOffset, Align); 555 556 Value *Off = IRB.CreateGEP(BasePointer, // BasePointer is i8* 557 ConstantInt::get(Int32Ty, -StaticOffset)); 558 Value *NewAI = IRB.CreateBitCast(Off, AI->getType(), AI->getName()); 559 if (AI->hasName() && isa<Instruction>(NewAI)) 560 cast<Instruction>(NewAI)->takeName(AI); 561 562 // Replace alloc with the new location. 563 replaceDbgDeclareForAlloca(AI, BasePointer, DIB, /*Deref=*/true, -StaticOffset); 564 AI->replaceAllUsesWith(NewAI); 565 AI->eraseFromParent(); 566 } 567 568 // Re-align BasePointer so that our callees would see it aligned as 569 // expected. 570 // FIXME: no need to update BasePointer in leaf functions. 571 StaticOffset = alignTo(StaticOffset, StackAlignment); 572 573 // Update shadow stack pointer in the function epilogue. 574 IRB.SetInsertPoint(BasePointer->getNextNode()); 575 576 Value *StaticTop = 577 IRB.CreateGEP(BasePointer, ConstantInt::get(Int32Ty, -StaticOffset), 578 "unsafe_stack_static_top"); 579 IRB.CreateStore(StaticTop, UnsafeStackPtr); 580 return StaticTop; 581 } 582 583 void SafeStack::moveDynamicAllocasToUnsafeStack( 584 Function &F, Value *UnsafeStackPtr, AllocaInst *DynamicTop, 585 ArrayRef<AllocaInst *> DynamicAllocas) { 586 DIBuilder DIB(*F.getParent()); 587 588 for (AllocaInst *AI : DynamicAllocas) { 589 IRBuilder<> IRB(AI); 590 591 // Compute the new SP value (after AI). 592 Value *ArraySize = AI->getArraySize(); 593 if (ArraySize->getType() != IntPtrTy) 594 ArraySize = IRB.CreateIntCast(ArraySize, IntPtrTy, false); 595 596 Type *Ty = AI->getAllocatedType(); 597 uint64_t TySize = DL->getTypeAllocSize(Ty); 598 Value *Size = IRB.CreateMul(ArraySize, ConstantInt::get(IntPtrTy, TySize)); 599 600 Value *SP = IRB.CreatePtrToInt(IRB.CreateLoad(UnsafeStackPtr), IntPtrTy); 601 SP = IRB.CreateSub(SP, Size); 602 603 // Align the SP value to satisfy the AllocaInst, type and stack alignments. 604 unsigned Align = std::max( 605 std::max((unsigned)DL->getPrefTypeAlignment(Ty), AI->getAlignment()), 606 (unsigned)StackAlignment); 607 608 assert(isPowerOf2_32(Align)); 609 Value *NewTop = IRB.CreateIntToPtr( 610 IRB.CreateAnd(SP, ConstantInt::get(IntPtrTy, ~uint64_t(Align - 1))), 611 StackPtrTy); 612 613 // Save the stack pointer. 614 IRB.CreateStore(NewTop, UnsafeStackPtr); 615 if (DynamicTop) 616 IRB.CreateStore(NewTop, DynamicTop); 617 618 Value *NewAI = IRB.CreatePointerCast(NewTop, AI->getType()); 619 if (AI->hasName() && isa<Instruction>(NewAI)) 620 NewAI->takeName(AI); 621 622 replaceDbgDeclareForAlloca(AI, NewAI, DIB, /*Deref=*/true); 623 AI->replaceAllUsesWith(NewAI); 624 AI->eraseFromParent(); 625 } 626 627 if (!DynamicAllocas.empty()) { 628 // Now go through the instructions again, replacing stacksave/stackrestore. 629 for (inst_iterator It = inst_begin(&F), Ie = inst_end(&F); It != Ie;) { 630 Instruction *I = &*(It++); 631 auto II = dyn_cast<IntrinsicInst>(I); 632 if (!II) 633 continue; 634 635 if (II->getIntrinsicID() == Intrinsic::stacksave) { 636 IRBuilder<> IRB(II); 637 Instruction *LI = IRB.CreateLoad(UnsafeStackPtr); 638 LI->takeName(II); 639 II->replaceAllUsesWith(LI); 640 II->eraseFromParent(); 641 } else if (II->getIntrinsicID() == Intrinsic::stackrestore) { 642 IRBuilder<> IRB(II); 643 Instruction *SI = IRB.CreateStore(II->getArgOperand(0), UnsafeStackPtr); 644 SI->takeName(II); 645 assert(II->use_empty()); 646 II->eraseFromParent(); 647 } 648 } 649 } 650 } 651 652 bool SafeStack::runOnFunction(Function &F) { 653 DEBUG(dbgs() << "[SafeStack] Function: " << F.getName() << "\n"); 654 655 if (!F.hasFnAttribute(Attribute::SafeStack)) { 656 DEBUG(dbgs() << "[SafeStack] safestack is not requested" 657 " for this function\n"); 658 return false; 659 } 660 661 if (F.isDeclaration()) { 662 DEBUG(dbgs() << "[SafeStack] function definition" 663 " is not available\n"); 664 return false; 665 } 666 667 TL = TM ? TM->getSubtargetImpl(F)->getTargetLowering() : nullptr; 668 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 669 670 { 671 // Make sure the regular stack protector won't run on this function 672 // (safestack attribute takes precedence). 673 AttrBuilder B; 674 B.addAttribute(Attribute::StackProtect) 675 .addAttribute(Attribute::StackProtectReq) 676 .addAttribute(Attribute::StackProtectStrong); 677 F.removeAttributes( 678 AttributeSet::FunctionIndex, 679 AttributeSet::get(F.getContext(), AttributeSet::FunctionIndex, B)); 680 } 681 682 ++NumFunctions; 683 684 SmallVector<AllocaInst *, 16> StaticAllocas; 685 SmallVector<AllocaInst *, 4> DynamicAllocas; 686 SmallVector<Argument *, 4> ByValArguments; 687 SmallVector<ReturnInst *, 4> Returns; 688 689 // Collect all points where stack gets unwound and needs to be restored 690 // This is only necessary because the runtime (setjmp and unwind code) is 691 // not aware of the unsafe stack and won't unwind/restore it prorerly. 692 // To work around this problem without changing the runtime, we insert 693 // instrumentation to restore the unsafe stack pointer when necessary. 694 SmallVector<Instruction *, 4> StackRestorePoints; 695 696 // Find all static and dynamic alloca instructions that must be moved to the 697 // unsafe stack, all return instructions and stack restore points. 698 findInsts(F, StaticAllocas, DynamicAllocas, ByValArguments, Returns, 699 StackRestorePoints); 700 701 if (StaticAllocas.empty() && DynamicAllocas.empty() && 702 ByValArguments.empty() && StackRestorePoints.empty()) 703 return false; // Nothing to do in this function. 704 705 if (!StaticAllocas.empty() || !DynamicAllocas.empty() || 706 !ByValArguments.empty()) 707 ++NumUnsafeStackFunctions; // This function has the unsafe stack. 708 709 if (!StackRestorePoints.empty()) 710 ++NumUnsafeStackRestorePointsFunctions; 711 712 IRBuilder<> IRB(&F.front(), F.begin()->getFirstInsertionPt()); 713 UnsafeStackPtr = getOrCreateUnsafeStackPtr(IRB, F); 714 715 // Load the current stack pointer (we'll also use it as a base pointer). 716 // FIXME: use a dedicated register for it ? 717 Instruction *BasePointer = 718 IRB.CreateLoad(UnsafeStackPtr, false, "unsafe_stack_ptr"); 719 assert(BasePointer->getType() == StackPtrTy); 720 721 // The top of the unsafe stack after all unsafe static allocas are allocated. 722 Value *StaticTop = moveStaticAllocasToUnsafeStack(IRB, F, StaticAllocas, 723 ByValArguments, Returns, 724 BasePointer); 725 726 // Safe stack object that stores the current unsafe stack top. It is updated 727 // as unsafe dynamic (non-constant-sized) allocas are allocated and freed. 728 // This is only needed if we need to restore stack pointer after longjmp 729 // or exceptions, and we have dynamic allocations. 730 // FIXME: a better alternative might be to store the unsafe stack pointer 731 // before setjmp / invoke instructions. 732 AllocaInst *DynamicTop = createStackRestorePoints( 733 IRB, F, StackRestorePoints, StaticTop, !DynamicAllocas.empty()); 734 735 // Handle dynamic allocas. 736 moveDynamicAllocasToUnsafeStack(F, UnsafeStackPtr, DynamicTop, 737 DynamicAllocas); 738 739 // Restore the unsafe stack pointer before each return. 740 for (ReturnInst *RI : Returns) { 741 IRB.SetInsertPoint(RI); 742 IRB.CreateStore(BasePointer, UnsafeStackPtr); 743 } 744 745 DEBUG(dbgs() << "[SafeStack] safestack applied\n"); 746 return true; 747 } 748 749 } // anonymous namespace 750 751 char SafeStack::ID = 0; 752 INITIALIZE_TM_PASS_BEGIN(SafeStack, "safe-stack", 753 "Safe Stack instrumentation pass", false, false) 754 INITIALIZE_TM_PASS_END(SafeStack, "safe-stack", 755 "Safe Stack instrumentation pass", false, false) 756 757 FunctionPass *llvm::createSafeStackPass(const llvm::TargetMachine *TM) { 758 return new SafeStack(TM); 759 } 760