1 //===-- SafeStack.cpp - Safe Stack Insertion ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass splits the stack into the safe stack (kept as-is for LLVM backend) 11 // and the unsafe stack (explicitly allocated and managed through the runtime 12 // support library). 13 // 14 // http://clang.llvm.org/docs/SafeStack.html 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "SafeStackColoring.h" 19 #include "SafeStackLayout.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/Analysis/BranchProbabilityInfo.h" 23 #include "llvm/Analysis/ScalarEvolution.h" 24 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 25 #include "llvm/CodeGen/Passes.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DIBuilder.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/IRBuilder.h" 32 #include "llvm/IR/InstIterator.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/MDBuilder.h" 37 #include "llvm/IR/Module.h" 38 #include "llvm/Pass.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/Format.h" 42 #include "llvm/Support/MathExtras.h" 43 #include "llvm/Support/raw_os_ostream.h" 44 #include "llvm/Target/TargetLowering.h" 45 #include "llvm/Target/TargetSubtargetInfo.h" 46 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 47 #include "llvm/Transforms/Utils/Local.h" 48 #include "llvm/Transforms/Utils/ModuleUtils.h" 49 50 using namespace llvm; 51 using namespace llvm::safestack; 52 53 #define DEBUG_TYPE "safestack" 54 55 namespace llvm { 56 57 STATISTIC(NumFunctions, "Total number of functions"); 58 STATISTIC(NumUnsafeStackFunctions, "Number of functions with unsafe stack"); 59 STATISTIC(NumUnsafeStackRestorePointsFunctions, 60 "Number of functions that use setjmp or exceptions"); 61 62 STATISTIC(NumAllocas, "Total number of allocas"); 63 STATISTIC(NumUnsafeStaticAllocas, "Number of unsafe static allocas"); 64 STATISTIC(NumUnsafeDynamicAllocas, "Number of unsafe dynamic allocas"); 65 STATISTIC(NumUnsafeByValArguments, "Number of unsafe byval arguments"); 66 STATISTIC(NumUnsafeStackRestorePoints, "Number of setjmps and landingpads"); 67 68 } // namespace llvm 69 70 namespace { 71 72 /// Rewrite an SCEV expression for a memory access address to an expression that 73 /// represents offset from the given alloca. 74 /// 75 /// The implementation simply replaces all mentions of the alloca with zero. 76 class AllocaOffsetRewriter : public SCEVRewriteVisitor<AllocaOffsetRewriter> { 77 const Value *AllocaPtr; 78 79 public: 80 AllocaOffsetRewriter(ScalarEvolution &SE, const Value *AllocaPtr) 81 : SCEVRewriteVisitor(SE), AllocaPtr(AllocaPtr) {} 82 83 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 84 if (Expr->getValue() == AllocaPtr) 85 return SE.getZero(Expr->getType()); 86 return Expr; 87 } 88 }; 89 90 /// The SafeStack pass splits the stack of each function into the safe 91 /// stack, which is only accessed through memory safe dereferences (as 92 /// determined statically), and the unsafe stack, which contains all 93 /// local variables that are accessed in ways that we can't prove to 94 /// be safe. 95 class SafeStack : public FunctionPass { 96 const TargetMachine *TM; 97 const TargetLoweringBase *TL; 98 const DataLayout *DL; 99 ScalarEvolution *SE; 100 101 Type *StackPtrTy; 102 Type *IntPtrTy; 103 Type *Int32Ty; 104 Type *Int8Ty; 105 106 Value *UnsafeStackPtr = nullptr; 107 108 /// Unsafe stack alignment. Each stack frame must ensure that the stack is 109 /// aligned to this value. We need to re-align the unsafe stack if the 110 /// alignment of any object on the stack exceeds this value. 111 /// 112 /// 16 seems like a reasonable upper bound on the alignment of objects that we 113 /// might expect to appear on the stack on most common targets. 114 enum { StackAlignment = 16 }; 115 116 /// \brief Return the value of the stack canary. 117 Value *getStackGuard(IRBuilder<> &IRB, Function &F); 118 119 /// \brief Load stack guard from the frame and check if it has changed. 120 void checkStackGuard(IRBuilder<> &IRB, Function &F, ReturnInst &RI, 121 AllocaInst *StackGuardSlot, Value *StackGuard); 122 123 /// \brief Find all static allocas, dynamic allocas, return instructions and 124 /// stack restore points (exception unwind blocks and setjmp calls) in the 125 /// given function and append them to the respective vectors. 126 void findInsts(Function &F, SmallVectorImpl<AllocaInst *> &StaticAllocas, 127 SmallVectorImpl<AllocaInst *> &DynamicAllocas, 128 SmallVectorImpl<Argument *> &ByValArguments, 129 SmallVectorImpl<ReturnInst *> &Returns, 130 SmallVectorImpl<Instruction *> &StackRestorePoints); 131 132 /// \brief Calculate the allocation size of a given alloca. Returns 0 if the 133 /// size can not be statically determined. 134 uint64_t getStaticAllocaAllocationSize(const AllocaInst* AI); 135 136 /// \brief Allocate space for all static allocas in \p StaticAllocas, 137 /// replace allocas with pointers into the unsafe stack and generate code to 138 /// restore the stack pointer before all return instructions in \p Returns. 139 /// 140 /// \returns A pointer to the top of the unsafe stack after all unsafe static 141 /// allocas are allocated. 142 Value *moveStaticAllocasToUnsafeStack(IRBuilder<> &IRB, Function &F, 143 ArrayRef<AllocaInst *> StaticAllocas, 144 ArrayRef<Argument *> ByValArguments, 145 ArrayRef<ReturnInst *> Returns, 146 Instruction *BasePointer, 147 AllocaInst *StackGuardSlot); 148 149 /// \brief Generate code to restore the stack after all stack restore points 150 /// in \p StackRestorePoints. 151 /// 152 /// \returns A local variable in which to maintain the dynamic top of the 153 /// unsafe stack if needed. 154 AllocaInst * 155 createStackRestorePoints(IRBuilder<> &IRB, Function &F, 156 ArrayRef<Instruction *> StackRestorePoints, 157 Value *StaticTop, bool NeedDynamicTop); 158 159 /// \brief Replace all allocas in \p DynamicAllocas with code to allocate 160 /// space dynamically on the unsafe stack and store the dynamic unsafe stack 161 /// top to \p DynamicTop if non-null. 162 void moveDynamicAllocasToUnsafeStack(Function &F, Value *UnsafeStackPtr, 163 AllocaInst *DynamicTop, 164 ArrayRef<AllocaInst *> DynamicAllocas); 165 166 bool IsSafeStackAlloca(const Value *AllocaPtr, uint64_t AllocaSize); 167 168 bool IsMemIntrinsicSafe(const MemIntrinsic *MI, const Use &U, 169 const Value *AllocaPtr, uint64_t AllocaSize); 170 bool IsAccessSafe(Value *Addr, uint64_t Size, const Value *AllocaPtr, 171 uint64_t AllocaSize); 172 173 public: 174 static char ID; // Pass identification, replacement for typeid. 175 SafeStack(const TargetMachine *TM) 176 : FunctionPass(ID), TM(TM), TL(nullptr), DL(nullptr) { 177 initializeSafeStackPass(*PassRegistry::getPassRegistry()); 178 } 179 SafeStack() : SafeStack(nullptr) {} 180 181 void getAnalysisUsage(AnalysisUsage &AU) const override { 182 AU.addRequired<ScalarEvolutionWrapperPass>(); 183 } 184 185 bool doInitialization(Module &M) override { 186 DL = &M.getDataLayout(); 187 188 StackPtrTy = Type::getInt8PtrTy(M.getContext()); 189 IntPtrTy = DL->getIntPtrType(M.getContext()); 190 Int32Ty = Type::getInt32Ty(M.getContext()); 191 Int8Ty = Type::getInt8Ty(M.getContext()); 192 193 return false; 194 } 195 196 bool runOnFunction(Function &F) override; 197 }; // class SafeStack 198 199 uint64_t SafeStack::getStaticAllocaAllocationSize(const AllocaInst* AI) { 200 uint64_t Size = DL->getTypeAllocSize(AI->getAllocatedType()); 201 if (AI->isArrayAllocation()) { 202 auto C = dyn_cast<ConstantInt>(AI->getArraySize()); 203 if (!C) 204 return 0; 205 Size *= C->getZExtValue(); 206 } 207 return Size; 208 } 209 210 bool SafeStack::IsAccessSafe(Value *Addr, uint64_t AccessSize, 211 const Value *AllocaPtr, uint64_t AllocaSize) { 212 AllocaOffsetRewriter Rewriter(*SE, AllocaPtr); 213 const SCEV *Expr = Rewriter.visit(SE->getSCEV(Addr)); 214 215 uint64_t BitWidth = SE->getTypeSizeInBits(Expr->getType()); 216 ConstantRange AccessStartRange = SE->getUnsignedRange(Expr); 217 ConstantRange SizeRange = 218 ConstantRange(APInt(BitWidth, 0), APInt(BitWidth, AccessSize)); 219 ConstantRange AccessRange = AccessStartRange.add(SizeRange); 220 ConstantRange AllocaRange = 221 ConstantRange(APInt(BitWidth, 0), APInt(BitWidth, AllocaSize)); 222 bool Safe = AllocaRange.contains(AccessRange); 223 224 DEBUG(dbgs() << "[SafeStack] " 225 << (isa<AllocaInst>(AllocaPtr) ? "Alloca " : "ByValArgument ") 226 << *AllocaPtr << "\n" 227 << " Access " << *Addr << "\n" 228 << " SCEV " << *Expr 229 << " U: " << SE->getUnsignedRange(Expr) 230 << ", S: " << SE->getSignedRange(Expr) << "\n" 231 << " Range " << AccessRange << "\n" 232 << " AllocaRange " << AllocaRange << "\n" 233 << " " << (Safe ? "safe" : "unsafe") << "\n"); 234 235 return Safe; 236 } 237 238 bool SafeStack::IsMemIntrinsicSafe(const MemIntrinsic *MI, const Use &U, 239 const Value *AllocaPtr, 240 uint64_t AllocaSize) { 241 // All MemIntrinsics have destination address in Arg0 and size in Arg2. 242 if (MI->getRawDest() != U) return true; 243 const auto *Len = dyn_cast<ConstantInt>(MI->getLength()); 244 // Non-constant size => unsafe. FIXME: try SCEV getRange. 245 if (!Len) return false; 246 return IsAccessSafe(U, Len->getZExtValue(), AllocaPtr, AllocaSize); 247 } 248 249 /// Check whether a given allocation must be put on the safe 250 /// stack or not. The function analyzes all uses of AI and checks whether it is 251 /// only accessed in a memory safe way (as decided statically). 252 bool SafeStack::IsSafeStackAlloca(const Value *AllocaPtr, uint64_t AllocaSize) { 253 // Go through all uses of this alloca and check whether all accesses to the 254 // allocated object are statically known to be memory safe and, hence, the 255 // object can be placed on the safe stack. 256 SmallPtrSet<const Value *, 16> Visited; 257 SmallVector<const Value *, 8> WorkList; 258 WorkList.push_back(AllocaPtr); 259 260 // A DFS search through all uses of the alloca in bitcasts/PHI/GEPs/etc. 261 while (!WorkList.empty()) { 262 const Value *V = WorkList.pop_back_val(); 263 for (const Use &UI : V->uses()) { 264 auto I = cast<const Instruction>(UI.getUser()); 265 assert(V == UI.get()); 266 267 switch (I->getOpcode()) { 268 case Instruction::Load: { 269 if (!IsAccessSafe(UI, DL->getTypeStoreSize(I->getType()), AllocaPtr, 270 AllocaSize)) 271 return false; 272 break; 273 } 274 case Instruction::VAArg: 275 // "va-arg" from a pointer is safe. 276 break; 277 case Instruction::Store: { 278 if (V == I->getOperand(0)) { 279 // Stored the pointer - conservatively assume it may be unsafe. 280 DEBUG(dbgs() << "[SafeStack] Unsafe alloca: " << *AllocaPtr 281 << "\n store of address: " << *I << "\n"); 282 return false; 283 } 284 285 if (!IsAccessSafe(UI, DL->getTypeStoreSize(I->getOperand(0)->getType()), 286 AllocaPtr, AllocaSize)) 287 return false; 288 break; 289 } 290 case Instruction::Ret: { 291 // Information leak. 292 return false; 293 } 294 295 case Instruction::Call: 296 case Instruction::Invoke: { 297 ImmutableCallSite CS(I); 298 299 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 300 if (II->getIntrinsicID() == Intrinsic::lifetime_start || 301 II->getIntrinsicID() == Intrinsic::lifetime_end) 302 continue; 303 } 304 305 if (const MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) { 306 if (!IsMemIntrinsicSafe(MI, UI, AllocaPtr, AllocaSize)) { 307 DEBUG(dbgs() << "[SafeStack] Unsafe alloca: " << *AllocaPtr 308 << "\n unsafe memintrinsic: " << *I 309 << "\n"); 310 return false; 311 } 312 continue; 313 } 314 315 // LLVM 'nocapture' attribute is only set for arguments whose address 316 // is not stored, passed around, or used in any other non-trivial way. 317 // We assume that passing a pointer to an object as a 'nocapture 318 // readnone' argument is safe. 319 // FIXME: a more precise solution would require an interprocedural 320 // analysis here, which would look at all uses of an argument inside 321 // the function being called. 322 ImmutableCallSite::arg_iterator B = CS.arg_begin(), E = CS.arg_end(); 323 for (ImmutableCallSite::arg_iterator A = B; A != E; ++A) 324 if (A->get() == V) 325 if (!(CS.doesNotCapture(A - B) && (CS.doesNotAccessMemory(A - B) || 326 CS.doesNotAccessMemory()))) { 327 DEBUG(dbgs() << "[SafeStack] Unsafe alloca: " << *AllocaPtr 328 << "\n unsafe call: " << *I << "\n"); 329 return false; 330 } 331 continue; 332 } 333 334 default: 335 if (Visited.insert(I).second) 336 WorkList.push_back(cast<const Instruction>(I)); 337 } 338 } 339 } 340 341 // All uses of the alloca are safe, we can place it on the safe stack. 342 return true; 343 } 344 345 Value *SafeStack::getStackGuard(IRBuilder<> &IRB, Function &F) { 346 Value *StackGuardVar = TL->getIRStackGuard(IRB); 347 if (!StackGuardVar) 348 StackGuardVar = 349 F.getParent()->getOrInsertGlobal("__stack_chk_guard", StackPtrTy); 350 return IRB.CreateLoad(StackGuardVar, "StackGuard"); 351 } 352 353 void SafeStack::findInsts(Function &F, 354 SmallVectorImpl<AllocaInst *> &StaticAllocas, 355 SmallVectorImpl<AllocaInst *> &DynamicAllocas, 356 SmallVectorImpl<Argument *> &ByValArguments, 357 SmallVectorImpl<ReturnInst *> &Returns, 358 SmallVectorImpl<Instruction *> &StackRestorePoints) { 359 for (Instruction &I : instructions(&F)) { 360 if (auto AI = dyn_cast<AllocaInst>(&I)) { 361 ++NumAllocas; 362 363 uint64_t Size = getStaticAllocaAllocationSize(AI); 364 if (IsSafeStackAlloca(AI, Size)) 365 continue; 366 367 if (AI->isStaticAlloca()) { 368 ++NumUnsafeStaticAllocas; 369 StaticAllocas.push_back(AI); 370 } else { 371 ++NumUnsafeDynamicAllocas; 372 DynamicAllocas.push_back(AI); 373 } 374 } else if (auto RI = dyn_cast<ReturnInst>(&I)) { 375 Returns.push_back(RI); 376 } else if (auto CI = dyn_cast<CallInst>(&I)) { 377 // setjmps require stack restore. 378 if (CI->getCalledFunction() && CI->canReturnTwice()) 379 StackRestorePoints.push_back(CI); 380 } else if (auto LP = dyn_cast<LandingPadInst>(&I)) { 381 // Exception landing pads require stack restore. 382 StackRestorePoints.push_back(LP); 383 } else if (auto II = dyn_cast<IntrinsicInst>(&I)) { 384 if (II->getIntrinsicID() == Intrinsic::gcroot) 385 llvm::report_fatal_error( 386 "gcroot intrinsic not compatible with safestack attribute"); 387 } 388 } 389 for (Argument &Arg : F.args()) { 390 if (!Arg.hasByValAttr()) 391 continue; 392 uint64_t Size = 393 DL->getTypeStoreSize(Arg.getType()->getPointerElementType()); 394 if (IsSafeStackAlloca(&Arg, Size)) 395 continue; 396 397 ++NumUnsafeByValArguments; 398 ByValArguments.push_back(&Arg); 399 } 400 } 401 402 AllocaInst * 403 SafeStack::createStackRestorePoints(IRBuilder<> &IRB, Function &F, 404 ArrayRef<Instruction *> StackRestorePoints, 405 Value *StaticTop, bool NeedDynamicTop) { 406 assert(StaticTop && "The stack top isn't set."); 407 408 if (StackRestorePoints.empty()) 409 return nullptr; 410 411 // We need the current value of the shadow stack pointer to restore 412 // after longjmp or exception catching. 413 414 // FIXME: On some platforms this could be handled by the longjmp/exception 415 // runtime itself. 416 417 AllocaInst *DynamicTop = nullptr; 418 if (NeedDynamicTop) { 419 // If we also have dynamic alloca's, the stack pointer value changes 420 // throughout the function. For now we store it in an alloca. 421 DynamicTop = IRB.CreateAlloca(StackPtrTy, /*ArraySize=*/nullptr, 422 "unsafe_stack_dynamic_ptr"); 423 IRB.CreateStore(StaticTop, DynamicTop); 424 } 425 426 // Restore current stack pointer after longjmp/exception catch. 427 for (Instruction *I : StackRestorePoints) { 428 ++NumUnsafeStackRestorePoints; 429 430 IRB.SetInsertPoint(I->getNextNode()); 431 Value *CurrentTop = DynamicTop ? IRB.CreateLoad(DynamicTop) : StaticTop; 432 IRB.CreateStore(CurrentTop, UnsafeStackPtr); 433 } 434 435 return DynamicTop; 436 } 437 438 void SafeStack::checkStackGuard(IRBuilder<> &IRB, Function &F, ReturnInst &RI, 439 AllocaInst *StackGuardSlot, Value *StackGuard) { 440 Value *V = IRB.CreateLoad(StackGuardSlot); 441 Value *Cmp = IRB.CreateICmpNE(StackGuard, V); 442 443 auto SuccessProb = BranchProbabilityInfo::getBranchProbStackProtector(true); 444 auto FailureProb = BranchProbabilityInfo::getBranchProbStackProtector(false); 445 MDNode *Weights = MDBuilder(F.getContext()) 446 .createBranchWeights(SuccessProb.getNumerator(), 447 FailureProb.getNumerator()); 448 Instruction *CheckTerm = 449 SplitBlockAndInsertIfThen(Cmp, &RI, 450 /* Unreachable */ true, Weights); 451 IRBuilder<> IRBFail(CheckTerm); 452 // FIXME: respect -fsanitize-trap / -ftrap-function here? 453 Constant *StackChkFail = F.getParent()->getOrInsertFunction( 454 "__stack_chk_fail", IRB.getVoidTy(), nullptr); 455 IRBFail.CreateCall(StackChkFail, {}); 456 } 457 458 /// We explicitly compute and set the unsafe stack layout for all unsafe 459 /// static alloca instructions. We save the unsafe "base pointer" in the 460 /// prologue into a local variable and restore it in the epilogue. 461 Value *SafeStack::moveStaticAllocasToUnsafeStack( 462 IRBuilder<> &IRB, Function &F, ArrayRef<AllocaInst *> StaticAllocas, 463 ArrayRef<Argument *> ByValArguments, ArrayRef<ReturnInst *> Returns, 464 Instruction *BasePointer, AllocaInst *StackGuardSlot) { 465 if (StaticAllocas.empty() && ByValArguments.empty()) 466 return BasePointer; 467 468 DIBuilder DIB(*F.getParent()); 469 470 StackColoring SSC(F, StaticAllocas); 471 SSC.run(); 472 SSC.removeAllMarkers(); 473 474 // Unsafe stack always grows down. 475 StackLayout SSL(StackAlignment); 476 if (StackGuardSlot) { 477 Type *Ty = StackGuardSlot->getAllocatedType(); 478 unsigned Align = 479 std::max(DL->getPrefTypeAlignment(Ty), StackGuardSlot->getAlignment()); 480 SSL.addObject(StackGuardSlot, getStaticAllocaAllocationSize(StackGuardSlot), 481 Align, SSC.getFullLiveRange()); 482 } 483 484 for (Argument *Arg : ByValArguments) { 485 Type *Ty = Arg->getType()->getPointerElementType(); 486 uint64_t Size = DL->getTypeStoreSize(Ty); 487 if (Size == 0) 488 Size = 1; // Don't create zero-sized stack objects. 489 490 // Ensure the object is properly aligned. 491 unsigned Align = std::max((unsigned)DL->getPrefTypeAlignment(Ty), 492 Arg->getParamAlignment()); 493 SSL.addObject(Arg, Size, Align, SSC.getFullLiveRange()); 494 } 495 496 for (AllocaInst *AI : StaticAllocas) { 497 Type *Ty = AI->getAllocatedType(); 498 uint64_t Size = getStaticAllocaAllocationSize(AI); 499 if (Size == 0) 500 Size = 1; // Don't create zero-sized stack objects. 501 502 // Ensure the object is properly aligned. 503 unsigned Align = 504 std::max((unsigned)DL->getPrefTypeAlignment(Ty), AI->getAlignment()); 505 506 SSL.addObject(AI, Size, Align, SSC.getLiveRange(AI)); 507 } 508 509 SSL.computeLayout(); 510 unsigned FrameAlignment = SSL.getFrameAlignment(); 511 512 // FIXME: tell SSL that we start at a less-then-MaxAlignment aligned location 513 // (AlignmentSkew). 514 if (FrameAlignment > StackAlignment) { 515 // Re-align the base pointer according to the max requested alignment. 516 assert(isPowerOf2_32(FrameAlignment)); 517 IRB.SetInsertPoint(BasePointer->getNextNode()); 518 BasePointer = cast<Instruction>(IRB.CreateIntToPtr( 519 IRB.CreateAnd(IRB.CreatePtrToInt(BasePointer, IntPtrTy), 520 ConstantInt::get(IntPtrTy, ~uint64_t(FrameAlignment - 1))), 521 StackPtrTy)); 522 } 523 524 IRB.SetInsertPoint(BasePointer->getNextNode()); 525 526 if (StackGuardSlot) { 527 unsigned Offset = SSL.getObjectOffset(StackGuardSlot); 528 Value *Off = IRB.CreateGEP(BasePointer, // BasePointer is i8* 529 ConstantInt::get(Int32Ty, -Offset)); 530 Value *NewAI = 531 IRB.CreateBitCast(Off, StackGuardSlot->getType(), "StackGuardSlot"); 532 533 // Replace alloc with the new location. 534 StackGuardSlot->replaceAllUsesWith(NewAI); 535 StackGuardSlot->eraseFromParent(); 536 } 537 538 for (Argument *Arg : ByValArguments) { 539 unsigned Offset = SSL.getObjectOffset(Arg); 540 Type *Ty = Arg->getType()->getPointerElementType(); 541 542 uint64_t Size = DL->getTypeStoreSize(Ty); 543 if (Size == 0) 544 Size = 1; // Don't create zero-sized stack objects. 545 546 Value *Off = IRB.CreateGEP(BasePointer, // BasePointer is i8* 547 ConstantInt::get(Int32Ty, -Offset)); 548 Value *NewArg = IRB.CreateBitCast(Off, Arg->getType(), 549 Arg->getName() + ".unsafe-byval"); 550 551 // Replace alloc with the new location. 552 replaceDbgDeclare(Arg, BasePointer, BasePointer->getNextNode(), DIB, 553 /*Deref=*/true, -Offset); 554 Arg->replaceAllUsesWith(NewArg); 555 IRB.SetInsertPoint(cast<Instruction>(NewArg)->getNextNode()); 556 IRB.CreateMemCpy(Off, Arg, Size, Arg->getParamAlignment()); 557 } 558 559 // Allocate space for every unsafe static AllocaInst on the unsafe stack. 560 for (AllocaInst *AI : StaticAllocas) { 561 IRB.SetInsertPoint(AI); 562 unsigned Offset = SSL.getObjectOffset(AI); 563 564 uint64_t Size = getStaticAllocaAllocationSize(AI); 565 if (Size == 0) 566 Size = 1; // Don't create zero-sized stack objects. 567 568 replaceDbgDeclareForAlloca(AI, BasePointer, DIB, /*Deref=*/true, -Offset); 569 replaceDbgValueForAlloca(AI, BasePointer, DIB, -Offset); 570 571 // Replace uses of the alloca with the new location. 572 // Insert address calculation close to each use to work around PR27844. 573 std::string Name = std::string(AI->getName()) + ".unsafe"; 574 while (!AI->use_empty()) { 575 Use &U = *AI->use_begin(); 576 Instruction *User = cast<Instruction>(U.getUser()); 577 578 Instruction *InsertBefore; 579 if (auto *PHI = dyn_cast<PHINode>(User)) 580 InsertBefore = PHI->getIncomingBlock(U)->getTerminator(); 581 else 582 InsertBefore = User; 583 584 IRBuilder<> IRBUser(InsertBefore); 585 Value *Off = IRBUser.CreateGEP(BasePointer, // BasePointer is i8* 586 ConstantInt::get(Int32Ty, -Offset)); 587 Value *Replacement = IRBUser.CreateBitCast(Off, AI->getType(), Name); 588 589 if (auto *PHI = dyn_cast<PHINode>(User)) { 590 // PHI nodes may have multiple incoming edges from the same BB (why??), 591 // all must be updated at once with the same incoming value. 592 auto *BB = PHI->getIncomingBlock(U); 593 for (unsigned I = 0; I < PHI->getNumIncomingValues(); ++I) 594 if (PHI->getIncomingBlock(I) == BB) 595 PHI->setIncomingValue(I, Replacement); 596 } else { 597 U.set(Replacement); 598 } 599 } 600 601 AI->eraseFromParent(); 602 } 603 604 // Re-align BasePointer so that our callees would see it aligned as 605 // expected. 606 // FIXME: no need to update BasePointer in leaf functions. 607 unsigned FrameSize = alignTo(SSL.getFrameSize(), StackAlignment); 608 609 // Update shadow stack pointer in the function epilogue. 610 IRB.SetInsertPoint(BasePointer->getNextNode()); 611 612 Value *StaticTop = 613 IRB.CreateGEP(BasePointer, ConstantInt::get(Int32Ty, -FrameSize), 614 "unsafe_stack_static_top"); 615 IRB.CreateStore(StaticTop, UnsafeStackPtr); 616 return StaticTop; 617 } 618 619 void SafeStack::moveDynamicAllocasToUnsafeStack( 620 Function &F, Value *UnsafeStackPtr, AllocaInst *DynamicTop, 621 ArrayRef<AllocaInst *> DynamicAllocas) { 622 DIBuilder DIB(*F.getParent()); 623 624 for (AllocaInst *AI : DynamicAllocas) { 625 IRBuilder<> IRB(AI); 626 627 // Compute the new SP value (after AI). 628 Value *ArraySize = AI->getArraySize(); 629 if (ArraySize->getType() != IntPtrTy) 630 ArraySize = IRB.CreateIntCast(ArraySize, IntPtrTy, false); 631 632 Type *Ty = AI->getAllocatedType(); 633 uint64_t TySize = DL->getTypeAllocSize(Ty); 634 Value *Size = IRB.CreateMul(ArraySize, ConstantInt::get(IntPtrTy, TySize)); 635 636 Value *SP = IRB.CreatePtrToInt(IRB.CreateLoad(UnsafeStackPtr), IntPtrTy); 637 SP = IRB.CreateSub(SP, Size); 638 639 // Align the SP value to satisfy the AllocaInst, type and stack alignments. 640 unsigned Align = std::max( 641 std::max((unsigned)DL->getPrefTypeAlignment(Ty), AI->getAlignment()), 642 (unsigned)StackAlignment); 643 644 assert(isPowerOf2_32(Align)); 645 Value *NewTop = IRB.CreateIntToPtr( 646 IRB.CreateAnd(SP, ConstantInt::get(IntPtrTy, ~uint64_t(Align - 1))), 647 StackPtrTy); 648 649 // Save the stack pointer. 650 IRB.CreateStore(NewTop, UnsafeStackPtr); 651 if (DynamicTop) 652 IRB.CreateStore(NewTop, DynamicTop); 653 654 Value *NewAI = IRB.CreatePointerCast(NewTop, AI->getType()); 655 if (AI->hasName() && isa<Instruction>(NewAI)) 656 NewAI->takeName(AI); 657 658 replaceDbgDeclareForAlloca(AI, NewAI, DIB, /*Deref=*/true); 659 AI->replaceAllUsesWith(NewAI); 660 AI->eraseFromParent(); 661 } 662 663 if (!DynamicAllocas.empty()) { 664 // Now go through the instructions again, replacing stacksave/stackrestore. 665 for (inst_iterator It = inst_begin(&F), Ie = inst_end(&F); It != Ie;) { 666 Instruction *I = &*(It++); 667 auto II = dyn_cast<IntrinsicInst>(I); 668 if (!II) 669 continue; 670 671 if (II->getIntrinsicID() == Intrinsic::stacksave) { 672 IRBuilder<> IRB(II); 673 Instruction *LI = IRB.CreateLoad(UnsafeStackPtr); 674 LI->takeName(II); 675 II->replaceAllUsesWith(LI); 676 II->eraseFromParent(); 677 } else if (II->getIntrinsicID() == Intrinsic::stackrestore) { 678 IRBuilder<> IRB(II); 679 Instruction *SI = IRB.CreateStore(II->getArgOperand(0), UnsafeStackPtr); 680 SI->takeName(II); 681 assert(II->use_empty()); 682 II->eraseFromParent(); 683 } 684 } 685 } 686 } 687 688 bool SafeStack::runOnFunction(Function &F) { 689 DEBUG(dbgs() << "[SafeStack] Function: " << F.getName() << "\n"); 690 691 if (!F.hasFnAttribute(Attribute::SafeStack)) { 692 DEBUG(dbgs() << "[SafeStack] safestack is not requested" 693 " for this function\n"); 694 return false; 695 } 696 697 if (F.isDeclaration()) { 698 DEBUG(dbgs() << "[SafeStack] function definition" 699 " is not available\n"); 700 return false; 701 } 702 703 if (!TM) 704 report_fatal_error("Target machine is required"); 705 TL = TM->getSubtargetImpl(F)->getTargetLowering(); 706 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 707 708 ++NumFunctions; 709 710 SmallVector<AllocaInst *, 16> StaticAllocas; 711 SmallVector<AllocaInst *, 4> DynamicAllocas; 712 SmallVector<Argument *, 4> ByValArguments; 713 SmallVector<ReturnInst *, 4> Returns; 714 715 // Collect all points where stack gets unwound and needs to be restored 716 // This is only necessary because the runtime (setjmp and unwind code) is 717 // not aware of the unsafe stack and won't unwind/restore it properly. 718 // To work around this problem without changing the runtime, we insert 719 // instrumentation to restore the unsafe stack pointer when necessary. 720 SmallVector<Instruction *, 4> StackRestorePoints; 721 722 // Find all static and dynamic alloca instructions that must be moved to the 723 // unsafe stack, all return instructions and stack restore points. 724 findInsts(F, StaticAllocas, DynamicAllocas, ByValArguments, Returns, 725 StackRestorePoints); 726 727 if (StaticAllocas.empty() && DynamicAllocas.empty() && 728 ByValArguments.empty() && StackRestorePoints.empty()) 729 return false; // Nothing to do in this function. 730 731 if (!StaticAllocas.empty() || !DynamicAllocas.empty() || 732 !ByValArguments.empty()) 733 ++NumUnsafeStackFunctions; // This function has the unsafe stack. 734 735 if (!StackRestorePoints.empty()) 736 ++NumUnsafeStackRestorePointsFunctions; 737 738 IRBuilder<> IRB(&F.front(), F.begin()->getFirstInsertionPt()); 739 UnsafeStackPtr = TL->getSafeStackPointerLocation(IRB); 740 741 // Load the current stack pointer (we'll also use it as a base pointer). 742 // FIXME: use a dedicated register for it ? 743 Instruction *BasePointer = 744 IRB.CreateLoad(UnsafeStackPtr, false, "unsafe_stack_ptr"); 745 assert(BasePointer->getType() == StackPtrTy); 746 747 AllocaInst *StackGuardSlot = nullptr; 748 // FIXME: implement weaker forms of stack protector. 749 if (F.hasFnAttribute(Attribute::StackProtect) || 750 F.hasFnAttribute(Attribute::StackProtectStrong) || 751 F.hasFnAttribute(Attribute::StackProtectReq)) { 752 Value *StackGuard = getStackGuard(IRB, F); 753 StackGuardSlot = IRB.CreateAlloca(StackPtrTy, nullptr); 754 IRB.CreateStore(StackGuard, StackGuardSlot); 755 756 for (ReturnInst *RI : Returns) { 757 IRBuilder<> IRBRet(RI); 758 checkStackGuard(IRBRet, F, *RI, StackGuardSlot, StackGuard); 759 } 760 } 761 762 // The top of the unsafe stack after all unsafe static allocas are 763 // allocated. 764 Value *StaticTop = 765 moveStaticAllocasToUnsafeStack(IRB, F, StaticAllocas, ByValArguments, 766 Returns, BasePointer, StackGuardSlot); 767 768 // Safe stack object that stores the current unsafe stack top. It is updated 769 // as unsafe dynamic (non-constant-sized) allocas are allocated and freed. 770 // This is only needed if we need to restore stack pointer after longjmp 771 // or exceptions, and we have dynamic allocations. 772 // FIXME: a better alternative might be to store the unsafe stack pointer 773 // before setjmp / invoke instructions. 774 AllocaInst *DynamicTop = createStackRestorePoints( 775 IRB, F, StackRestorePoints, StaticTop, !DynamicAllocas.empty()); 776 777 // Handle dynamic allocas. 778 moveDynamicAllocasToUnsafeStack(F, UnsafeStackPtr, DynamicTop, 779 DynamicAllocas); 780 781 // Restore the unsafe stack pointer before each return. 782 for (ReturnInst *RI : Returns) { 783 IRB.SetInsertPoint(RI); 784 IRB.CreateStore(BasePointer, UnsafeStackPtr); 785 } 786 787 DEBUG(dbgs() << "[SafeStack] safestack applied\n"); 788 return true; 789 } 790 791 } // anonymous namespace 792 793 char SafeStack::ID = 0; 794 INITIALIZE_TM_PASS_BEGIN(SafeStack, "safe-stack", 795 "Safe Stack instrumentation pass", false, false) 796 INITIALIZE_TM_PASS_END(SafeStack, "safe-stack", 797 "Safe Stack instrumentation pass", false, false) 798 799 FunctionPass *llvm::createSafeStackPass(const llvm::TargetMachine *TM) { 800 return new SafeStack(TM); 801 } 802