1 //===-- SafeStack.cpp - Safe Stack Insertion ------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass splits the stack into the safe stack (kept as-is for LLVM backend)
11 // and the unsafe stack (explicitly allocated and managed through the runtime
12 // support library).
13 //
14 // http://clang.llvm.org/docs/SafeStack.html
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/ADT/Triple.h"
20 #include "llvm/Analysis/BranchProbabilityInfo.h"
21 #include "llvm/Analysis/ScalarEvolution.h"
22 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
23 #include "llvm/CodeGen/Passes.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DIBuilder.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/IRBuilder.h"
30 #include "llvm/IR/InstIterator.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/MDBuilder.h"
35 #include "llvm/IR/Module.h"
36 #include "llvm/Pass.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/Format.h"
40 #include "llvm/Support/MathExtras.h"
41 #include "llvm/Support/raw_os_ostream.h"
42 #include "llvm/Target/TargetLowering.h"
43 #include "llvm/Target/TargetSubtargetInfo.h"
44 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
45 #include "llvm/Transforms/Utils/Local.h"
46 #include "llvm/Transforms/Utils/ModuleUtils.h"
47 
48 using namespace llvm;
49 
50 #define DEBUG_TYPE "safestack"
51 
52 enum UnsafeStackPtrStorageVal { ThreadLocalUSP, SingleThreadUSP };
53 
54 static cl::opt<UnsafeStackPtrStorageVal> USPStorage("safe-stack-usp-storage",
55     cl::Hidden, cl::init(ThreadLocalUSP),
56     cl::desc("Type of storage for the unsafe stack pointer"),
57     cl::values(clEnumValN(ThreadLocalUSP, "thread-local",
58                           "Thread-local storage"),
59                clEnumValN(SingleThreadUSP, "single-thread",
60                           "Non-thread-local storage"),
61                clEnumValEnd));
62 
63 namespace llvm {
64 
65 STATISTIC(NumFunctions, "Total number of functions");
66 STATISTIC(NumUnsafeStackFunctions, "Number of functions with unsafe stack");
67 STATISTIC(NumUnsafeStackRestorePointsFunctions,
68           "Number of functions that use setjmp or exceptions");
69 
70 STATISTIC(NumAllocas, "Total number of allocas");
71 STATISTIC(NumUnsafeStaticAllocas, "Number of unsafe static allocas");
72 STATISTIC(NumUnsafeDynamicAllocas, "Number of unsafe dynamic allocas");
73 STATISTIC(NumUnsafeByValArguments, "Number of unsafe byval arguments");
74 STATISTIC(NumUnsafeStackRestorePoints, "Number of setjmps and landingpads");
75 
76 } // namespace llvm
77 
78 namespace {
79 
80 /// Rewrite an SCEV expression for a memory access address to an expression that
81 /// represents offset from the given alloca.
82 ///
83 /// The implementation simply replaces all mentions of the alloca with zero.
84 class AllocaOffsetRewriter : public SCEVRewriteVisitor<AllocaOffsetRewriter> {
85   const Value *AllocaPtr;
86 
87 public:
88   AllocaOffsetRewriter(ScalarEvolution &SE, const Value *AllocaPtr)
89       : SCEVRewriteVisitor(SE), AllocaPtr(AllocaPtr) {}
90 
91   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
92     if (Expr->getValue() == AllocaPtr)
93       return SE.getZero(Expr->getType());
94     return Expr;
95   }
96 };
97 
98 /// The SafeStack pass splits the stack of each function into the safe
99 /// stack, which is only accessed through memory safe dereferences (as
100 /// determined statically), and the unsafe stack, which contains all
101 /// local variables that are accessed in ways that we can't prove to
102 /// be safe.
103 class SafeStack : public FunctionPass {
104   const TargetMachine *TM;
105   const TargetLoweringBase *TL;
106   const DataLayout *DL;
107   ScalarEvolution *SE;
108 
109   Type *StackPtrTy;
110   Type *IntPtrTy;
111   Type *Int32Ty;
112   Type *Int8Ty;
113 
114   Value *UnsafeStackPtr = nullptr;
115 
116   /// Unsafe stack alignment. Each stack frame must ensure that the stack is
117   /// aligned to this value. We need to re-align the unsafe stack if the
118   /// alignment of any object on the stack exceeds this value.
119   ///
120   /// 16 seems like a reasonable upper bound on the alignment of objects that we
121   /// might expect to appear on the stack on most common targets.
122   enum { StackAlignment = 16 };
123 
124   /// \brief Build a value representing a pointer to the unsafe stack pointer.
125   Value *getOrCreateUnsafeStackPtr(IRBuilder<> &IRB, Function &F);
126 
127   /// \brief Return the value of the stack canary.
128   Value *getStackGuard(IRBuilder<> &IRB, Function &F);
129 
130   /// \brief Load stack guard from the frame and check if it has changed.
131   void checkStackGuard(IRBuilder<> &IRB, Function &F, ReturnInst &RI,
132                        AllocaInst *StackGuardSlot, Value *StackGuard);
133 
134   /// \brief Find all static allocas, dynamic allocas, return instructions and
135   /// stack restore points (exception unwind blocks and setjmp calls) in the
136   /// given function and append them to the respective vectors.
137   void findInsts(Function &F, SmallVectorImpl<AllocaInst *> &StaticAllocas,
138                  SmallVectorImpl<AllocaInst *> &DynamicAllocas,
139                  SmallVectorImpl<Argument *> &ByValArguments,
140                  SmallVectorImpl<ReturnInst *> &Returns,
141                  SmallVectorImpl<Instruction *> &StackRestorePoints);
142 
143   /// \brief Calculate the allocation size of a given alloca. Returns 0 if the
144   /// size can not be statically determined.
145   uint64_t getStaticAllocaAllocationSize(const AllocaInst* AI);
146 
147   /// \brief Allocate space for all static allocas in \p StaticAllocas,
148   /// replace allocas with pointers into the unsafe stack and generate code to
149   /// restore the stack pointer before all return instructions in \p Returns.
150   ///
151   /// \returns A pointer to the top of the unsafe stack after all unsafe static
152   /// allocas are allocated.
153   Value *moveStaticAllocasToUnsafeStack(IRBuilder<> &IRB, Function &F,
154                                         ArrayRef<AllocaInst *> StaticAllocas,
155                                         ArrayRef<Argument *> ByValArguments,
156                                         ArrayRef<ReturnInst *> Returns,
157                                         Instruction *BasePointer,
158                                         AllocaInst *StackGuardSlot);
159 
160   /// \brief Generate code to restore the stack after all stack restore points
161   /// in \p StackRestorePoints.
162   ///
163   /// \returns A local variable in which to maintain the dynamic top of the
164   /// unsafe stack if needed.
165   AllocaInst *
166   createStackRestorePoints(IRBuilder<> &IRB, Function &F,
167                            ArrayRef<Instruction *> StackRestorePoints,
168                            Value *StaticTop, bool NeedDynamicTop);
169 
170   /// \brief Replace all allocas in \p DynamicAllocas with code to allocate
171   /// space dynamically on the unsafe stack and store the dynamic unsafe stack
172   /// top to \p DynamicTop if non-null.
173   void moveDynamicAllocasToUnsafeStack(Function &F, Value *UnsafeStackPtr,
174                                        AllocaInst *DynamicTop,
175                                        ArrayRef<AllocaInst *> DynamicAllocas);
176 
177   bool IsSafeStackAlloca(const Value *AllocaPtr, uint64_t AllocaSize);
178 
179   bool IsMemIntrinsicSafe(const MemIntrinsic *MI, const Use &U,
180                           const Value *AllocaPtr, uint64_t AllocaSize);
181   bool IsAccessSafe(Value *Addr, uint64_t Size, const Value *AllocaPtr,
182                     uint64_t AllocaSize);
183 
184 public:
185   static char ID; // Pass identification, replacement for typeid.
186   SafeStack(const TargetMachine *TM)
187       : FunctionPass(ID), TM(TM), TL(nullptr), DL(nullptr) {
188     initializeSafeStackPass(*PassRegistry::getPassRegistry());
189   }
190   SafeStack() : SafeStack(nullptr) {}
191 
192   void getAnalysisUsage(AnalysisUsage &AU) const override {
193     AU.addRequired<ScalarEvolutionWrapperPass>();
194   }
195 
196   bool doInitialization(Module &M) override {
197     DL = &M.getDataLayout();
198 
199     StackPtrTy = Type::getInt8PtrTy(M.getContext());
200     IntPtrTy = DL->getIntPtrType(M.getContext());
201     Int32Ty = Type::getInt32Ty(M.getContext());
202     Int8Ty = Type::getInt8Ty(M.getContext());
203 
204     return false;
205   }
206 
207   bool runOnFunction(Function &F) override;
208 }; // class SafeStack
209 
210 uint64_t SafeStack::getStaticAllocaAllocationSize(const AllocaInst* AI) {
211   uint64_t Size = DL->getTypeAllocSize(AI->getAllocatedType());
212   if (AI->isArrayAllocation()) {
213     auto C = dyn_cast<ConstantInt>(AI->getArraySize());
214     if (!C)
215       return 0;
216     Size *= C->getZExtValue();
217   }
218   return Size;
219 }
220 
221 bool SafeStack::IsAccessSafe(Value *Addr, uint64_t AccessSize,
222                              const Value *AllocaPtr, uint64_t AllocaSize) {
223   AllocaOffsetRewriter Rewriter(*SE, AllocaPtr);
224   const SCEV *Expr = Rewriter.visit(SE->getSCEV(Addr));
225 
226   uint64_t BitWidth = SE->getTypeSizeInBits(Expr->getType());
227   ConstantRange AccessStartRange = SE->getUnsignedRange(Expr);
228   ConstantRange SizeRange =
229       ConstantRange(APInt(BitWidth, 0), APInt(BitWidth, AccessSize));
230   ConstantRange AccessRange = AccessStartRange.add(SizeRange);
231   ConstantRange AllocaRange =
232       ConstantRange(APInt(BitWidth, 0), APInt(BitWidth, AllocaSize));
233   bool Safe = AllocaRange.contains(AccessRange);
234 
235   DEBUG(dbgs() << "[SafeStack] "
236                << (isa<AllocaInst>(AllocaPtr) ? "Alloca " : "ByValArgument ")
237                << *AllocaPtr << "\n"
238                << "            Access " << *Addr << "\n"
239                << "            SCEV " << *Expr
240                << " U: " << SE->getUnsignedRange(Expr)
241                << ", S: " << SE->getSignedRange(Expr) << "\n"
242                << "            Range " << AccessRange << "\n"
243                << "            AllocaRange " << AllocaRange << "\n"
244                << "            " << (Safe ? "safe" : "unsafe") << "\n");
245 
246   return Safe;
247 }
248 
249 bool SafeStack::IsMemIntrinsicSafe(const MemIntrinsic *MI, const Use &U,
250                                    const Value *AllocaPtr,
251                                    uint64_t AllocaSize) {
252   // All MemIntrinsics have destination address in Arg0 and size in Arg2.
253   if (MI->getRawDest() != U) return true;
254   const auto *Len = dyn_cast<ConstantInt>(MI->getLength());
255   // Non-constant size => unsafe. FIXME: try SCEV getRange.
256   if (!Len) return false;
257   return IsAccessSafe(U, Len->getZExtValue(), AllocaPtr, AllocaSize);
258 }
259 
260 /// Check whether a given allocation must be put on the safe
261 /// stack or not. The function analyzes all uses of AI and checks whether it is
262 /// only accessed in a memory safe way (as decided statically).
263 bool SafeStack::IsSafeStackAlloca(const Value *AllocaPtr, uint64_t AllocaSize) {
264   // Go through all uses of this alloca and check whether all accesses to the
265   // allocated object are statically known to be memory safe and, hence, the
266   // object can be placed on the safe stack.
267   SmallPtrSet<const Value *, 16> Visited;
268   SmallVector<const Value *, 8> WorkList;
269   WorkList.push_back(AllocaPtr);
270 
271   // A DFS search through all uses of the alloca in bitcasts/PHI/GEPs/etc.
272   while (!WorkList.empty()) {
273     const Value *V = WorkList.pop_back_val();
274     for (const Use &UI : V->uses()) {
275       auto I = cast<const Instruction>(UI.getUser());
276       assert(V == UI.get());
277 
278       switch (I->getOpcode()) {
279       case Instruction::Load: {
280         if (!IsAccessSafe(UI, DL->getTypeStoreSize(I->getType()), AllocaPtr,
281                           AllocaSize))
282           return false;
283         break;
284       }
285       case Instruction::VAArg:
286         // "va-arg" from a pointer is safe.
287         break;
288       case Instruction::Store: {
289         if (V == I->getOperand(0)) {
290           // Stored the pointer - conservatively assume it may be unsafe.
291           DEBUG(dbgs() << "[SafeStack] Unsafe alloca: " << *AllocaPtr
292                        << "\n            store of address: " << *I << "\n");
293           return false;
294         }
295 
296         if (!IsAccessSafe(UI, DL->getTypeStoreSize(I->getOperand(0)->getType()),
297                           AllocaPtr, AllocaSize))
298           return false;
299         break;
300       }
301       case Instruction::Ret: {
302         // Information leak.
303         return false;
304       }
305 
306       case Instruction::Call:
307       case Instruction::Invoke: {
308         ImmutableCallSite CS(I);
309 
310         if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
311           if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
312               II->getIntrinsicID() == Intrinsic::lifetime_end)
313             continue;
314         }
315 
316         if (const MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) {
317           if (!IsMemIntrinsicSafe(MI, UI, AllocaPtr, AllocaSize)) {
318             DEBUG(dbgs() << "[SafeStack] Unsafe alloca: " << *AllocaPtr
319                          << "\n            unsafe memintrinsic: " << *I
320                          << "\n");
321             return false;
322           }
323           continue;
324         }
325 
326         // LLVM 'nocapture' attribute is only set for arguments whose address
327         // is not stored, passed around, or used in any other non-trivial way.
328         // We assume that passing a pointer to an object as a 'nocapture
329         // readnone' argument is safe.
330         // FIXME: a more precise solution would require an interprocedural
331         // analysis here, which would look at all uses of an argument inside
332         // the function being called.
333         ImmutableCallSite::arg_iterator B = CS.arg_begin(), E = CS.arg_end();
334         for (ImmutableCallSite::arg_iterator A = B; A != E; ++A)
335           if (A->get() == V)
336             if (!(CS.doesNotCapture(A - B) && (CS.doesNotAccessMemory(A - B) ||
337                                                CS.doesNotAccessMemory()))) {
338               DEBUG(dbgs() << "[SafeStack] Unsafe alloca: " << *AllocaPtr
339                            << "\n            unsafe call: " << *I << "\n");
340               return false;
341             }
342         continue;
343       }
344 
345       default:
346         if (Visited.insert(I).second)
347           WorkList.push_back(cast<const Instruction>(I));
348       }
349     }
350   }
351 
352   // All uses of the alloca are safe, we can place it on the safe stack.
353   return true;
354 }
355 
356 Value *SafeStack::getOrCreateUnsafeStackPtr(IRBuilder<> &IRB, Function &F) {
357   // Check if there is a target-specific location for the unsafe stack pointer.
358   if (TL)
359     if (Value *V = TL->getSafeStackPointerLocation(IRB))
360       return V;
361 
362   // Otherwise, assume the target links with compiler-rt, which provides a
363   // thread-local variable with a magic name.
364   Module &M = *F.getParent();
365   const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr";
366   auto UnsafeStackPtr =
367       dyn_cast_or_null<GlobalVariable>(M.getNamedValue(UnsafeStackPtrVar));
368 
369   bool UseTLS = USPStorage == ThreadLocalUSP;
370 
371   if (!UnsafeStackPtr) {
372     auto TLSModel = UseTLS ?
373         GlobalValue::InitialExecTLSModel :
374         GlobalValue::NotThreadLocal;
375     // The global variable is not defined yet, define it ourselves.
376     // We use the initial-exec TLS model because we do not support the
377     // variable living anywhere other than in the main executable.
378     UnsafeStackPtr = new GlobalVariable(
379         M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr,
380         UnsafeStackPtrVar, nullptr, TLSModel);
381   } else {
382     // The variable exists, check its type and attributes.
383     if (UnsafeStackPtr->getValueType() != StackPtrTy)
384       report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type");
385     if (UseTLS != UnsafeStackPtr->isThreadLocal())
386       report_fatal_error(Twine(UnsafeStackPtrVar) + " must " +
387                          (UseTLS ? "" : "not ") + "be thread-local");
388   }
389   return UnsafeStackPtr;
390 }
391 
392 Value *SafeStack::getStackGuard(IRBuilder<> &IRB, Function &F) {
393   Value *StackGuardVar = nullptr;
394   if (TL)
395     StackGuardVar = TL->getIRStackGuard(IRB);
396   if (!StackGuardVar)
397     StackGuardVar =
398         F.getParent()->getOrInsertGlobal("__stack_chk_guard", StackPtrTy);
399   return IRB.CreateLoad(StackGuardVar, "StackGuard");
400 }
401 
402 void SafeStack::findInsts(Function &F,
403                           SmallVectorImpl<AllocaInst *> &StaticAllocas,
404                           SmallVectorImpl<AllocaInst *> &DynamicAllocas,
405                           SmallVectorImpl<Argument *> &ByValArguments,
406                           SmallVectorImpl<ReturnInst *> &Returns,
407                           SmallVectorImpl<Instruction *> &StackRestorePoints) {
408   for (Instruction &I : instructions(&F)) {
409     if (auto AI = dyn_cast<AllocaInst>(&I)) {
410       ++NumAllocas;
411 
412       uint64_t Size = getStaticAllocaAllocationSize(AI);
413       if (IsSafeStackAlloca(AI, Size))
414         continue;
415 
416       if (AI->isStaticAlloca()) {
417         ++NumUnsafeStaticAllocas;
418         StaticAllocas.push_back(AI);
419       } else {
420         ++NumUnsafeDynamicAllocas;
421         DynamicAllocas.push_back(AI);
422       }
423     } else if (auto RI = dyn_cast<ReturnInst>(&I)) {
424       Returns.push_back(RI);
425     } else if (auto CI = dyn_cast<CallInst>(&I)) {
426       // setjmps require stack restore.
427       if (CI->getCalledFunction() && CI->canReturnTwice())
428         StackRestorePoints.push_back(CI);
429     } else if (auto LP = dyn_cast<LandingPadInst>(&I)) {
430       // Exception landing pads require stack restore.
431       StackRestorePoints.push_back(LP);
432     } else if (auto II = dyn_cast<IntrinsicInst>(&I)) {
433       if (II->getIntrinsicID() == Intrinsic::gcroot)
434         llvm::report_fatal_error(
435             "gcroot intrinsic not compatible with safestack attribute");
436     }
437   }
438   for (Argument &Arg : F.args()) {
439     if (!Arg.hasByValAttr())
440       continue;
441     uint64_t Size =
442         DL->getTypeStoreSize(Arg.getType()->getPointerElementType());
443     if (IsSafeStackAlloca(&Arg, Size))
444       continue;
445 
446     ++NumUnsafeByValArguments;
447     ByValArguments.push_back(&Arg);
448   }
449 }
450 
451 AllocaInst *
452 SafeStack::createStackRestorePoints(IRBuilder<> &IRB, Function &F,
453                                     ArrayRef<Instruction *> StackRestorePoints,
454                                     Value *StaticTop, bool NeedDynamicTop) {
455   assert(StaticTop && "The stack top isn't set.");
456 
457   if (StackRestorePoints.empty())
458     return nullptr;
459 
460   // We need the current value of the shadow stack pointer to restore
461   // after longjmp or exception catching.
462 
463   // FIXME: On some platforms this could be handled by the longjmp/exception
464   // runtime itself.
465 
466   AllocaInst *DynamicTop = nullptr;
467   if (NeedDynamicTop) {
468     // If we also have dynamic alloca's, the stack pointer value changes
469     // throughout the function. For now we store it in an alloca.
470     DynamicTop = IRB.CreateAlloca(StackPtrTy, /*ArraySize=*/nullptr,
471                                   "unsafe_stack_dynamic_ptr");
472     IRB.CreateStore(StaticTop, DynamicTop);
473   }
474 
475   // Restore current stack pointer after longjmp/exception catch.
476   for (Instruction *I : StackRestorePoints) {
477     ++NumUnsafeStackRestorePoints;
478 
479     IRB.SetInsertPoint(I->getNextNode());
480     Value *CurrentTop = DynamicTop ? IRB.CreateLoad(DynamicTop) : StaticTop;
481     IRB.CreateStore(CurrentTop, UnsafeStackPtr);
482   }
483 
484   return DynamicTop;
485 }
486 
487 void SafeStack::checkStackGuard(IRBuilder<> &IRB, Function &F, ReturnInst &RI,
488                                 AllocaInst *StackGuardSlot, Value *StackGuard) {
489   Value *V = IRB.CreateLoad(StackGuardSlot);
490   Value *Cmp = IRB.CreateICmpNE(StackGuard, V);
491 
492   auto SuccessProb = BranchProbabilityInfo::getBranchProbStackProtector(true);
493   auto FailureProb = BranchProbabilityInfo::getBranchProbStackProtector(false);
494   MDNode *Weights = MDBuilder(F.getContext())
495                         .createBranchWeights(SuccessProb.getNumerator(),
496                                              FailureProb.getNumerator());
497   Instruction *CheckTerm =
498       SplitBlockAndInsertIfThen(Cmp, &RI,
499                                 /* Unreachable */ true, Weights);
500   IRBuilder<> IRBFail(CheckTerm);
501   // FIXME: respect -fsanitize-trap / -ftrap-function here?
502   Constant *StackChkFail = F.getParent()->getOrInsertFunction(
503       "__stack_chk_fail", IRB.getVoidTy(), nullptr);
504   IRBFail.CreateCall(StackChkFail, {});
505 }
506 
507 /// We explicitly compute and set the unsafe stack layout for all unsafe
508 /// static alloca instructions. We save the unsafe "base pointer" in the
509 /// prologue into a local variable and restore it in the epilogue.
510 Value *SafeStack::moveStaticAllocasToUnsafeStack(
511     IRBuilder<> &IRB, Function &F, ArrayRef<AllocaInst *> StaticAllocas,
512     ArrayRef<Argument *> ByValArguments, ArrayRef<ReturnInst *> Returns,
513     Instruction *BasePointer, AllocaInst *StackGuardSlot) {
514   if (StaticAllocas.empty() && ByValArguments.empty())
515     return BasePointer;
516 
517   DIBuilder DIB(*F.getParent());
518 
519   // Compute maximum alignment among static objects on the unsafe stack.
520   unsigned MaxAlignment = 0;
521   for (Argument *Arg : ByValArguments) {
522     Type *Ty = Arg->getType()->getPointerElementType();
523     unsigned Align = std::max((unsigned)DL->getPrefTypeAlignment(Ty),
524                               Arg->getParamAlignment());
525     if (Align > MaxAlignment)
526       MaxAlignment = Align;
527   }
528   for (AllocaInst *AI : StaticAllocas) {
529     Type *Ty = AI->getAllocatedType();
530     unsigned Align =
531         std::max((unsigned)DL->getPrefTypeAlignment(Ty), AI->getAlignment());
532     if (Align > MaxAlignment)
533       MaxAlignment = Align;
534   }
535 
536   if (MaxAlignment > StackAlignment) {
537     // Re-align the base pointer according to the max requested alignment.
538     assert(isPowerOf2_32(MaxAlignment));
539     IRB.SetInsertPoint(BasePointer->getNextNode());
540     BasePointer = cast<Instruction>(IRB.CreateIntToPtr(
541         IRB.CreateAnd(IRB.CreatePtrToInt(BasePointer, IntPtrTy),
542                       ConstantInt::get(IntPtrTy, ~uint64_t(MaxAlignment - 1))),
543         StackPtrTy));
544   }
545 
546   int64_t StaticOffset = 0; // Current stack top.
547   IRB.SetInsertPoint(BasePointer->getNextNode());
548 
549   if (StackGuardSlot) {
550     StaticOffset += getStaticAllocaAllocationSize(StackGuardSlot);
551     Value *Off = IRB.CreateGEP(BasePointer, // BasePointer is i8*
552                                ConstantInt::get(Int32Ty, -StaticOffset));
553     Value *NewAI =
554         IRB.CreateBitCast(Off, StackGuardSlot->getType(), "StackGuardSlot");
555 
556     // Replace alloc with the new location.
557     StackGuardSlot->replaceAllUsesWith(NewAI);
558     StackGuardSlot->eraseFromParent();
559   }
560 
561   for (Argument *Arg : ByValArguments) {
562     Type *Ty = Arg->getType()->getPointerElementType();
563 
564     uint64_t Size = DL->getTypeStoreSize(Ty);
565     if (Size == 0)
566       Size = 1; // Don't create zero-sized stack objects.
567 
568     // Ensure the object is properly aligned.
569     unsigned Align = std::max((unsigned)DL->getPrefTypeAlignment(Ty),
570                               Arg->getParamAlignment());
571 
572     // Add alignment.
573     // NOTE: we ensure that BasePointer itself is aligned to >= Align.
574     StaticOffset += Size;
575     StaticOffset = alignTo(StaticOffset, Align);
576 
577     Value *Off = IRB.CreateGEP(BasePointer, // BasePointer is i8*
578                                ConstantInt::get(Int32Ty, -StaticOffset));
579     Value *NewArg = IRB.CreateBitCast(Off, Arg->getType(),
580                                      Arg->getName() + ".unsafe-byval");
581 
582     // Replace alloc with the new location.
583     replaceDbgDeclare(Arg, BasePointer, BasePointer->getNextNode(), DIB,
584                       /*Deref=*/true, -StaticOffset);
585     Arg->replaceAllUsesWith(NewArg);
586     IRB.SetInsertPoint(cast<Instruction>(NewArg)->getNextNode());
587     IRB.CreateMemCpy(Off, Arg, Size, Arg->getParamAlignment());
588   }
589 
590   // Allocate space for every unsafe static AllocaInst on the unsafe stack.
591   for (AllocaInst *AI : StaticAllocas) {
592     IRB.SetInsertPoint(AI);
593 
594     Type *Ty = AI->getAllocatedType();
595     uint64_t Size = getStaticAllocaAllocationSize(AI);
596     if (Size == 0)
597       Size = 1; // Don't create zero-sized stack objects.
598 
599     // Ensure the object is properly aligned.
600     unsigned Align =
601         std::max((unsigned)DL->getPrefTypeAlignment(Ty), AI->getAlignment());
602 
603     // Add alignment.
604     // NOTE: we ensure that BasePointer itself is aligned to >= Align.
605     StaticOffset += Size;
606     StaticOffset = alignTo(StaticOffset, Align);
607 
608     replaceDbgDeclareForAlloca(AI, BasePointer, DIB, /*Deref=*/true, -StaticOffset);
609     replaceDbgValueForAlloca(AI, BasePointer, DIB, -StaticOffset);
610 
611     // Replace uses of the alloca with the new location.
612     // Insert address calculation close to each use to work around PR27844.
613     std::string Name = std::string(AI->getName()) + ".unsafe";
614     while (!AI->use_empty()) {
615       Use &U = *AI->use_begin();
616       Instruction *User = cast<Instruction>(U.getUser());
617 
618       Instruction *InsertBefore;
619       if (auto *PHI = dyn_cast<PHINode>(User))
620         InsertBefore = PHI->getIncomingBlock(U)->getTerminator();
621       else
622         InsertBefore = User;
623 
624       IRBuilder<> IRBUser(InsertBefore);
625       Value *Off = IRBUser.CreateGEP(BasePointer, // BasePointer is i8*
626                                      ConstantInt::get(Int32Ty, -StaticOffset));
627       Value *Replacement = IRBUser.CreateBitCast(Off, AI->getType(), Name);
628 
629       if (auto *PHI = dyn_cast<PHINode>(User)) {
630         // PHI nodes may have multiple incoming edges from the same BB (why??),
631         // all must be updated at once with the same incoming value.
632         auto *BB = PHI->getIncomingBlock(U);
633         for (unsigned I = 0; I < PHI->getNumIncomingValues(); ++I)
634           if (PHI->getIncomingBlock(I) == BB)
635             PHI->setIncomingValue(I, Replacement);
636       } else {
637         U.set(Replacement);
638       }
639     }
640 
641     AI->eraseFromParent();
642   }
643 
644   // Re-align BasePointer so that our callees would see it aligned as
645   // expected.
646   // FIXME: no need to update BasePointer in leaf functions.
647   StaticOffset = alignTo(StaticOffset, StackAlignment);
648 
649   // Update shadow stack pointer in the function epilogue.
650   IRB.SetInsertPoint(BasePointer->getNextNode());
651 
652   Value *StaticTop =
653       IRB.CreateGEP(BasePointer, ConstantInt::get(Int32Ty, -StaticOffset),
654                     "unsafe_stack_static_top");
655   IRB.CreateStore(StaticTop, UnsafeStackPtr);
656   return StaticTop;
657 }
658 
659 void SafeStack::moveDynamicAllocasToUnsafeStack(
660     Function &F, Value *UnsafeStackPtr, AllocaInst *DynamicTop,
661     ArrayRef<AllocaInst *> DynamicAllocas) {
662   DIBuilder DIB(*F.getParent());
663 
664   for (AllocaInst *AI : DynamicAllocas) {
665     IRBuilder<> IRB(AI);
666 
667     // Compute the new SP value (after AI).
668     Value *ArraySize = AI->getArraySize();
669     if (ArraySize->getType() != IntPtrTy)
670       ArraySize = IRB.CreateIntCast(ArraySize, IntPtrTy, false);
671 
672     Type *Ty = AI->getAllocatedType();
673     uint64_t TySize = DL->getTypeAllocSize(Ty);
674     Value *Size = IRB.CreateMul(ArraySize, ConstantInt::get(IntPtrTy, TySize));
675 
676     Value *SP = IRB.CreatePtrToInt(IRB.CreateLoad(UnsafeStackPtr), IntPtrTy);
677     SP = IRB.CreateSub(SP, Size);
678 
679     // Align the SP value to satisfy the AllocaInst, type and stack alignments.
680     unsigned Align = std::max(
681         std::max((unsigned)DL->getPrefTypeAlignment(Ty), AI->getAlignment()),
682         (unsigned)StackAlignment);
683 
684     assert(isPowerOf2_32(Align));
685     Value *NewTop = IRB.CreateIntToPtr(
686         IRB.CreateAnd(SP, ConstantInt::get(IntPtrTy, ~uint64_t(Align - 1))),
687         StackPtrTy);
688 
689     // Save the stack pointer.
690     IRB.CreateStore(NewTop, UnsafeStackPtr);
691     if (DynamicTop)
692       IRB.CreateStore(NewTop, DynamicTop);
693 
694     Value *NewAI = IRB.CreatePointerCast(NewTop, AI->getType());
695     if (AI->hasName() && isa<Instruction>(NewAI))
696       NewAI->takeName(AI);
697 
698     replaceDbgDeclareForAlloca(AI, NewAI, DIB, /*Deref=*/true);
699     AI->replaceAllUsesWith(NewAI);
700     AI->eraseFromParent();
701   }
702 
703   if (!DynamicAllocas.empty()) {
704     // Now go through the instructions again, replacing stacksave/stackrestore.
705     for (inst_iterator It = inst_begin(&F), Ie = inst_end(&F); It != Ie;) {
706       Instruction *I = &*(It++);
707       auto II = dyn_cast<IntrinsicInst>(I);
708       if (!II)
709         continue;
710 
711       if (II->getIntrinsicID() == Intrinsic::stacksave) {
712         IRBuilder<> IRB(II);
713         Instruction *LI = IRB.CreateLoad(UnsafeStackPtr);
714         LI->takeName(II);
715         II->replaceAllUsesWith(LI);
716         II->eraseFromParent();
717       } else if (II->getIntrinsicID() == Intrinsic::stackrestore) {
718         IRBuilder<> IRB(II);
719         Instruction *SI = IRB.CreateStore(II->getArgOperand(0), UnsafeStackPtr);
720         SI->takeName(II);
721         assert(II->use_empty());
722         II->eraseFromParent();
723       }
724     }
725   }
726 }
727 
728 bool SafeStack::runOnFunction(Function &F) {
729   DEBUG(dbgs() << "[SafeStack] Function: " << F.getName() << "\n");
730 
731   if (!F.hasFnAttribute(Attribute::SafeStack)) {
732     DEBUG(dbgs() << "[SafeStack]     safestack is not requested"
733                     " for this function\n");
734     return false;
735   }
736 
737   if (F.isDeclaration()) {
738     DEBUG(dbgs() << "[SafeStack]     function definition"
739                     " is not available\n");
740     return false;
741   }
742 
743   TL = TM ? TM->getSubtargetImpl(F)->getTargetLowering() : nullptr;
744   SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
745 
746   ++NumFunctions;
747 
748   SmallVector<AllocaInst *, 16> StaticAllocas;
749   SmallVector<AllocaInst *, 4> DynamicAllocas;
750   SmallVector<Argument *, 4> ByValArguments;
751   SmallVector<ReturnInst *, 4> Returns;
752 
753   // Collect all points where stack gets unwound and needs to be restored
754   // This is only necessary because the runtime (setjmp and unwind code) is
755   // not aware of the unsafe stack and won't unwind/restore it prorerly.
756   // To work around this problem without changing the runtime, we insert
757   // instrumentation to restore the unsafe stack pointer when necessary.
758   SmallVector<Instruction *, 4> StackRestorePoints;
759 
760   // Find all static and dynamic alloca instructions that must be moved to the
761   // unsafe stack, all return instructions and stack restore points.
762   findInsts(F, StaticAllocas, DynamicAllocas, ByValArguments, Returns,
763             StackRestorePoints);
764 
765   if (StaticAllocas.empty() && DynamicAllocas.empty() &&
766       ByValArguments.empty() && StackRestorePoints.empty())
767     return false; // Nothing to do in this function.
768 
769   if (!StaticAllocas.empty() || !DynamicAllocas.empty() ||
770       !ByValArguments.empty())
771     ++NumUnsafeStackFunctions; // This function has the unsafe stack.
772 
773   if (!StackRestorePoints.empty())
774     ++NumUnsafeStackRestorePointsFunctions;
775 
776   IRBuilder<> IRB(&F.front(), F.begin()->getFirstInsertionPt());
777   UnsafeStackPtr = getOrCreateUnsafeStackPtr(IRB, F);
778 
779   // Load the current stack pointer (we'll also use it as a base pointer).
780   // FIXME: use a dedicated register for it ?
781   Instruction *BasePointer =
782       IRB.CreateLoad(UnsafeStackPtr, false, "unsafe_stack_ptr");
783   assert(BasePointer->getType() == StackPtrTy);
784 
785   AllocaInst *StackGuardSlot = nullptr;
786   // FIXME: implement weaker forms of stack protector.
787   if (F.hasFnAttribute(Attribute::StackProtect) ||
788       F.hasFnAttribute(Attribute::StackProtectStrong) ||
789       F.hasFnAttribute(Attribute::StackProtectReq)) {
790     Value *StackGuard = getStackGuard(IRB, F);
791     StackGuardSlot = IRB.CreateAlloca(StackPtrTy, nullptr);
792     IRB.CreateStore(StackGuard, StackGuardSlot);
793 
794     for (ReturnInst *RI : Returns) {
795       IRBuilder<> IRBRet(RI);
796       checkStackGuard(IRBRet, F, *RI, StackGuardSlot, StackGuard);
797     }
798   }
799 
800   // The top of the unsafe stack after all unsafe static allocas are
801   // allocated.
802   Value *StaticTop =
803       moveStaticAllocasToUnsafeStack(IRB, F, StaticAllocas, ByValArguments,
804                                      Returns, BasePointer, StackGuardSlot);
805 
806   // Safe stack object that stores the current unsafe stack top. It is updated
807   // as unsafe dynamic (non-constant-sized) allocas are allocated and freed.
808   // This is only needed if we need to restore stack pointer after longjmp
809   // or exceptions, and we have dynamic allocations.
810   // FIXME: a better alternative might be to store the unsafe stack pointer
811   // before setjmp / invoke instructions.
812   AllocaInst *DynamicTop = createStackRestorePoints(
813       IRB, F, StackRestorePoints, StaticTop, !DynamicAllocas.empty());
814 
815   // Handle dynamic allocas.
816   moveDynamicAllocasToUnsafeStack(F, UnsafeStackPtr, DynamicTop,
817                                   DynamicAllocas);
818 
819   // Restore the unsafe stack pointer before each return.
820   for (ReturnInst *RI : Returns) {
821     IRB.SetInsertPoint(RI);
822     IRB.CreateStore(BasePointer, UnsafeStackPtr);
823   }
824 
825   DEBUG(dbgs() << "[SafeStack]     safestack applied\n");
826   return true;
827 }
828 
829 } // anonymous namespace
830 
831 char SafeStack::ID = 0;
832 INITIALIZE_TM_PASS_BEGIN(SafeStack, "safe-stack",
833                          "Safe Stack instrumentation pass", false, false)
834 INITIALIZE_TM_PASS_END(SafeStack, "safe-stack",
835                        "Safe Stack instrumentation pass", false, false)
836 
837 FunctionPass *llvm::createSafeStackPass(const llvm::TargetMachine *TM) {
838   return new SafeStack(TM);
839 }
840