1 //===-- SafeStack.cpp - Safe Stack Insertion ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass splits the stack into the safe stack (kept as-is for LLVM backend) 11 // and the unsafe stack (explicitly allocated and managed through the runtime 12 // support library). 13 // 14 // http://clang.llvm.org/docs/SafeStack.html 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "SafeStackColoring.h" 19 #include "SafeStackLayout.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/Analysis/BranchProbabilityInfo.h" 23 #include "llvm/Analysis/ScalarEvolution.h" 24 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 25 #include "llvm/CodeGen/Passes.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DIBuilder.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/IRBuilder.h" 32 #include "llvm/IR/InstIterator.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/MDBuilder.h" 37 #include "llvm/IR/Module.h" 38 #include "llvm/Pass.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/Format.h" 42 #include "llvm/Support/MathExtras.h" 43 #include "llvm/Support/raw_os_ostream.h" 44 #include "llvm/Target/TargetLowering.h" 45 #include "llvm/Target/TargetSubtargetInfo.h" 46 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 47 #include "llvm/Transforms/Utils/Local.h" 48 #include "llvm/Transforms/Utils/ModuleUtils.h" 49 50 using namespace llvm; 51 using namespace llvm::safestack; 52 53 #define DEBUG_TYPE "safestack" 54 55 enum UnsafeStackPtrStorageVal { ThreadLocalUSP, SingleThreadUSP }; 56 57 static cl::opt<UnsafeStackPtrStorageVal> USPStorage("safe-stack-usp-storage", 58 cl::Hidden, cl::init(ThreadLocalUSP), 59 cl::desc("Type of storage for the unsafe stack pointer"), 60 cl::values(clEnumValN(ThreadLocalUSP, "thread-local", 61 "Thread-local storage"), 62 clEnumValN(SingleThreadUSP, "single-thread", 63 "Non-thread-local storage"))); 64 65 namespace llvm { 66 67 STATISTIC(NumFunctions, "Total number of functions"); 68 STATISTIC(NumUnsafeStackFunctions, "Number of functions with unsafe stack"); 69 STATISTIC(NumUnsafeStackRestorePointsFunctions, 70 "Number of functions that use setjmp or exceptions"); 71 72 STATISTIC(NumAllocas, "Total number of allocas"); 73 STATISTIC(NumUnsafeStaticAllocas, "Number of unsafe static allocas"); 74 STATISTIC(NumUnsafeDynamicAllocas, "Number of unsafe dynamic allocas"); 75 STATISTIC(NumUnsafeByValArguments, "Number of unsafe byval arguments"); 76 STATISTIC(NumUnsafeStackRestorePoints, "Number of setjmps and landingpads"); 77 78 } // namespace llvm 79 80 namespace { 81 82 /// Rewrite an SCEV expression for a memory access address to an expression that 83 /// represents offset from the given alloca. 84 /// 85 /// The implementation simply replaces all mentions of the alloca with zero. 86 class AllocaOffsetRewriter : public SCEVRewriteVisitor<AllocaOffsetRewriter> { 87 const Value *AllocaPtr; 88 89 public: 90 AllocaOffsetRewriter(ScalarEvolution &SE, const Value *AllocaPtr) 91 : SCEVRewriteVisitor(SE), AllocaPtr(AllocaPtr) {} 92 93 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 94 if (Expr->getValue() == AllocaPtr) 95 return SE.getZero(Expr->getType()); 96 return Expr; 97 } 98 }; 99 100 /// The SafeStack pass splits the stack of each function into the safe 101 /// stack, which is only accessed through memory safe dereferences (as 102 /// determined statically), and the unsafe stack, which contains all 103 /// local variables that are accessed in ways that we can't prove to 104 /// be safe. 105 class SafeStack : public FunctionPass { 106 const TargetMachine *TM; 107 const TargetLoweringBase *TL; 108 const DataLayout *DL; 109 ScalarEvolution *SE; 110 111 Type *StackPtrTy; 112 Type *IntPtrTy; 113 Type *Int32Ty; 114 Type *Int8Ty; 115 116 Value *UnsafeStackPtr = nullptr; 117 118 /// Unsafe stack alignment. Each stack frame must ensure that the stack is 119 /// aligned to this value. We need to re-align the unsafe stack if the 120 /// alignment of any object on the stack exceeds this value. 121 /// 122 /// 16 seems like a reasonable upper bound on the alignment of objects that we 123 /// might expect to appear on the stack on most common targets. 124 enum { StackAlignment = 16 }; 125 126 /// \brief Build a value representing a pointer to the unsafe stack pointer. 127 Value *getOrCreateUnsafeStackPtr(IRBuilder<> &IRB, Function &F); 128 129 /// \brief Return the value of the stack canary. 130 Value *getStackGuard(IRBuilder<> &IRB, Function &F); 131 132 /// \brief Load stack guard from the frame and check if it has changed. 133 void checkStackGuard(IRBuilder<> &IRB, Function &F, ReturnInst &RI, 134 AllocaInst *StackGuardSlot, Value *StackGuard); 135 136 /// \brief Find all static allocas, dynamic allocas, return instructions and 137 /// stack restore points (exception unwind blocks and setjmp calls) in the 138 /// given function and append them to the respective vectors. 139 void findInsts(Function &F, SmallVectorImpl<AllocaInst *> &StaticAllocas, 140 SmallVectorImpl<AllocaInst *> &DynamicAllocas, 141 SmallVectorImpl<Argument *> &ByValArguments, 142 SmallVectorImpl<ReturnInst *> &Returns, 143 SmallVectorImpl<Instruction *> &StackRestorePoints); 144 145 /// \brief Calculate the allocation size of a given alloca. Returns 0 if the 146 /// size can not be statically determined. 147 uint64_t getStaticAllocaAllocationSize(const AllocaInst* AI); 148 149 /// \brief Allocate space for all static allocas in \p StaticAllocas, 150 /// replace allocas with pointers into the unsafe stack and generate code to 151 /// restore the stack pointer before all return instructions in \p Returns. 152 /// 153 /// \returns A pointer to the top of the unsafe stack after all unsafe static 154 /// allocas are allocated. 155 Value *moveStaticAllocasToUnsafeStack(IRBuilder<> &IRB, Function &F, 156 ArrayRef<AllocaInst *> StaticAllocas, 157 ArrayRef<Argument *> ByValArguments, 158 ArrayRef<ReturnInst *> Returns, 159 Instruction *BasePointer, 160 AllocaInst *StackGuardSlot); 161 162 /// \brief Generate code to restore the stack after all stack restore points 163 /// in \p StackRestorePoints. 164 /// 165 /// \returns A local variable in which to maintain the dynamic top of the 166 /// unsafe stack if needed. 167 AllocaInst * 168 createStackRestorePoints(IRBuilder<> &IRB, Function &F, 169 ArrayRef<Instruction *> StackRestorePoints, 170 Value *StaticTop, bool NeedDynamicTop); 171 172 /// \brief Replace all allocas in \p DynamicAllocas with code to allocate 173 /// space dynamically on the unsafe stack and store the dynamic unsafe stack 174 /// top to \p DynamicTop if non-null. 175 void moveDynamicAllocasToUnsafeStack(Function &F, Value *UnsafeStackPtr, 176 AllocaInst *DynamicTop, 177 ArrayRef<AllocaInst *> DynamicAllocas); 178 179 bool IsSafeStackAlloca(const Value *AllocaPtr, uint64_t AllocaSize); 180 181 bool IsMemIntrinsicSafe(const MemIntrinsic *MI, const Use &U, 182 const Value *AllocaPtr, uint64_t AllocaSize); 183 bool IsAccessSafe(Value *Addr, uint64_t Size, const Value *AllocaPtr, 184 uint64_t AllocaSize); 185 186 public: 187 static char ID; // Pass identification, replacement for typeid. 188 SafeStack(const TargetMachine *TM) 189 : FunctionPass(ID), TM(TM), TL(nullptr), DL(nullptr) { 190 initializeSafeStackPass(*PassRegistry::getPassRegistry()); 191 } 192 SafeStack() : SafeStack(nullptr) {} 193 194 void getAnalysisUsage(AnalysisUsage &AU) const override { 195 AU.addRequired<ScalarEvolutionWrapperPass>(); 196 } 197 198 bool doInitialization(Module &M) override { 199 DL = &M.getDataLayout(); 200 201 StackPtrTy = Type::getInt8PtrTy(M.getContext()); 202 IntPtrTy = DL->getIntPtrType(M.getContext()); 203 Int32Ty = Type::getInt32Ty(M.getContext()); 204 Int8Ty = Type::getInt8Ty(M.getContext()); 205 206 return false; 207 } 208 209 bool runOnFunction(Function &F) override; 210 }; // class SafeStack 211 212 uint64_t SafeStack::getStaticAllocaAllocationSize(const AllocaInst* AI) { 213 uint64_t Size = DL->getTypeAllocSize(AI->getAllocatedType()); 214 if (AI->isArrayAllocation()) { 215 auto C = dyn_cast<ConstantInt>(AI->getArraySize()); 216 if (!C) 217 return 0; 218 Size *= C->getZExtValue(); 219 } 220 return Size; 221 } 222 223 bool SafeStack::IsAccessSafe(Value *Addr, uint64_t AccessSize, 224 const Value *AllocaPtr, uint64_t AllocaSize) { 225 AllocaOffsetRewriter Rewriter(*SE, AllocaPtr); 226 const SCEV *Expr = Rewriter.visit(SE->getSCEV(Addr)); 227 228 uint64_t BitWidth = SE->getTypeSizeInBits(Expr->getType()); 229 ConstantRange AccessStartRange = SE->getUnsignedRange(Expr); 230 ConstantRange SizeRange = 231 ConstantRange(APInt(BitWidth, 0), APInt(BitWidth, AccessSize)); 232 ConstantRange AccessRange = AccessStartRange.add(SizeRange); 233 ConstantRange AllocaRange = 234 ConstantRange(APInt(BitWidth, 0), APInt(BitWidth, AllocaSize)); 235 bool Safe = AllocaRange.contains(AccessRange); 236 237 DEBUG(dbgs() << "[SafeStack] " 238 << (isa<AllocaInst>(AllocaPtr) ? "Alloca " : "ByValArgument ") 239 << *AllocaPtr << "\n" 240 << " Access " << *Addr << "\n" 241 << " SCEV " << *Expr 242 << " U: " << SE->getUnsignedRange(Expr) 243 << ", S: " << SE->getSignedRange(Expr) << "\n" 244 << " Range " << AccessRange << "\n" 245 << " AllocaRange " << AllocaRange << "\n" 246 << " " << (Safe ? "safe" : "unsafe") << "\n"); 247 248 return Safe; 249 } 250 251 bool SafeStack::IsMemIntrinsicSafe(const MemIntrinsic *MI, const Use &U, 252 const Value *AllocaPtr, 253 uint64_t AllocaSize) { 254 // All MemIntrinsics have destination address in Arg0 and size in Arg2. 255 if (MI->getRawDest() != U) return true; 256 const auto *Len = dyn_cast<ConstantInt>(MI->getLength()); 257 // Non-constant size => unsafe. FIXME: try SCEV getRange. 258 if (!Len) return false; 259 return IsAccessSafe(U, Len->getZExtValue(), AllocaPtr, AllocaSize); 260 } 261 262 /// Check whether a given allocation must be put on the safe 263 /// stack or not. The function analyzes all uses of AI and checks whether it is 264 /// only accessed in a memory safe way (as decided statically). 265 bool SafeStack::IsSafeStackAlloca(const Value *AllocaPtr, uint64_t AllocaSize) { 266 // Go through all uses of this alloca and check whether all accesses to the 267 // allocated object are statically known to be memory safe and, hence, the 268 // object can be placed on the safe stack. 269 SmallPtrSet<const Value *, 16> Visited; 270 SmallVector<const Value *, 8> WorkList; 271 WorkList.push_back(AllocaPtr); 272 273 // A DFS search through all uses of the alloca in bitcasts/PHI/GEPs/etc. 274 while (!WorkList.empty()) { 275 const Value *V = WorkList.pop_back_val(); 276 for (const Use &UI : V->uses()) { 277 auto I = cast<const Instruction>(UI.getUser()); 278 assert(V == UI.get()); 279 280 switch (I->getOpcode()) { 281 case Instruction::Load: { 282 if (!IsAccessSafe(UI, DL->getTypeStoreSize(I->getType()), AllocaPtr, 283 AllocaSize)) 284 return false; 285 break; 286 } 287 case Instruction::VAArg: 288 // "va-arg" from a pointer is safe. 289 break; 290 case Instruction::Store: { 291 if (V == I->getOperand(0)) { 292 // Stored the pointer - conservatively assume it may be unsafe. 293 DEBUG(dbgs() << "[SafeStack] Unsafe alloca: " << *AllocaPtr 294 << "\n store of address: " << *I << "\n"); 295 return false; 296 } 297 298 if (!IsAccessSafe(UI, DL->getTypeStoreSize(I->getOperand(0)->getType()), 299 AllocaPtr, AllocaSize)) 300 return false; 301 break; 302 } 303 case Instruction::Ret: { 304 // Information leak. 305 return false; 306 } 307 308 case Instruction::Call: 309 case Instruction::Invoke: { 310 ImmutableCallSite CS(I); 311 312 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 313 if (II->getIntrinsicID() == Intrinsic::lifetime_start || 314 II->getIntrinsicID() == Intrinsic::lifetime_end) 315 continue; 316 } 317 318 if (const MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) { 319 if (!IsMemIntrinsicSafe(MI, UI, AllocaPtr, AllocaSize)) { 320 DEBUG(dbgs() << "[SafeStack] Unsafe alloca: " << *AllocaPtr 321 << "\n unsafe memintrinsic: " << *I 322 << "\n"); 323 return false; 324 } 325 continue; 326 } 327 328 // LLVM 'nocapture' attribute is only set for arguments whose address 329 // is not stored, passed around, or used in any other non-trivial way. 330 // We assume that passing a pointer to an object as a 'nocapture 331 // readnone' argument is safe. 332 // FIXME: a more precise solution would require an interprocedural 333 // analysis here, which would look at all uses of an argument inside 334 // the function being called. 335 ImmutableCallSite::arg_iterator B = CS.arg_begin(), E = CS.arg_end(); 336 for (ImmutableCallSite::arg_iterator A = B; A != E; ++A) 337 if (A->get() == V) 338 if (!(CS.doesNotCapture(A - B) && (CS.doesNotAccessMemory(A - B) || 339 CS.doesNotAccessMemory()))) { 340 DEBUG(dbgs() << "[SafeStack] Unsafe alloca: " << *AllocaPtr 341 << "\n unsafe call: " << *I << "\n"); 342 return false; 343 } 344 continue; 345 } 346 347 default: 348 if (Visited.insert(I).second) 349 WorkList.push_back(cast<const Instruction>(I)); 350 } 351 } 352 } 353 354 // All uses of the alloca are safe, we can place it on the safe stack. 355 return true; 356 } 357 358 Value *SafeStack::getOrCreateUnsafeStackPtr(IRBuilder<> &IRB, Function &F) { 359 // Check if there is a target-specific location for the unsafe stack pointer. 360 if (Value *V = TL->getSafeStackPointerLocation(IRB)) 361 return V; 362 363 // Otherwise, assume the target links with compiler-rt, which provides a 364 // thread-local variable with a magic name. 365 Module &M = *F.getParent(); 366 const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr"; 367 auto UnsafeStackPtr = 368 dyn_cast_or_null<GlobalVariable>(M.getNamedValue(UnsafeStackPtrVar)); 369 370 bool UseTLS = USPStorage == ThreadLocalUSP; 371 372 if (!UnsafeStackPtr) { 373 auto TLSModel = UseTLS ? 374 GlobalValue::InitialExecTLSModel : 375 GlobalValue::NotThreadLocal; 376 // The global variable is not defined yet, define it ourselves. 377 // We use the initial-exec TLS model because we do not support the 378 // variable living anywhere other than in the main executable. 379 UnsafeStackPtr = new GlobalVariable( 380 M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr, 381 UnsafeStackPtrVar, nullptr, TLSModel); 382 } else { 383 // The variable exists, check its type and attributes. 384 if (UnsafeStackPtr->getValueType() != StackPtrTy) 385 report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type"); 386 if (UseTLS != UnsafeStackPtr->isThreadLocal()) 387 report_fatal_error(Twine(UnsafeStackPtrVar) + " must " + 388 (UseTLS ? "" : "not ") + "be thread-local"); 389 } 390 return UnsafeStackPtr; 391 } 392 393 Value *SafeStack::getStackGuard(IRBuilder<> &IRB, Function &F) { 394 Value *StackGuardVar = TL->getIRStackGuard(IRB); 395 if (!StackGuardVar) 396 StackGuardVar = 397 F.getParent()->getOrInsertGlobal("__stack_chk_guard", StackPtrTy); 398 return IRB.CreateLoad(StackGuardVar, "StackGuard"); 399 } 400 401 void SafeStack::findInsts(Function &F, 402 SmallVectorImpl<AllocaInst *> &StaticAllocas, 403 SmallVectorImpl<AllocaInst *> &DynamicAllocas, 404 SmallVectorImpl<Argument *> &ByValArguments, 405 SmallVectorImpl<ReturnInst *> &Returns, 406 SmallVectorImpl<Instruction *> &StackRestorePoints) { 407 for (Instruction &I : instructions(&F)) { 408 if (auto AI = dyn_cast<AllocaInst>(&I)) { 409 ++NumAllocas; 410 411 uint64_t Size = getStaticAllocaAllocationSize(AI); 412 if (IsSafeStackAlloca(AI, Size)) 413 continue; 414 415 if (AI->isStaticAlloca()) { 416 ++NumUnsafeStaticAllocas; 417 StaticAllocas.push_back(AI); 418 } else { 419 ++NumUnsafeDynamicAllocas; 420 DynamicAllocas.push_back(AI); 421 } 422 } else if (auto RI = dyn_cast<ReturnInst>(&I)) { 423 Returns.push_back(RI); 424 } else if (auto CI = dyn_cast<CallInst>(&I)) { 425 // setjmps require stack restore. 426 if (CI->getCalledFunction() && CI->canReturnTwice()) 427 StackRestorePoints.push_back(CI); 428 } else if (auto LP = dyn_cast<LandingPadInst>(&I)) { 429 // Exception landing pads require stack restore. 430 StackRestorePoints.push_back(LP); 431 } else if (auto II = dyn_cast<IntrinsicInst>(&I)) { 432 if (II->getIntrinsicID() == Intrinsic::gcroot) 433 llvm::report_fatal_error( 434 "gcroot intrinsic not compatible with safestack attribute"); 435 } 436 } 437 for (Argument &Arg : F.args()) { 438 if (!Arg.hasByValAttr()) 439 continue; 440 uint64_t Size = 441 DL->getTypeStoreSize(Arg.getType()->getPointerElementType()); 442 if (IsSafeStackAlloca(&Arg, Size)) 443 continue; 444 445 ++NumUnsafeByValArguments; 446 ByValArguments.push_back(&Arg); 447 } 448 } 449 450 AllocaInst * 451 SafeStack::createStackRestorePoints(IRBuilder<> &IRB, Function &F, 452 ArrayRef<Instruction *> StackRestorePoints, 453 Value *StaticTop, bool NeedDynamicTop) { 454 assert(StaticTop && "The stack top isn't set."); 455 456 if (StackRestorePoints.empty()) 457 return nullptr; 458 459 // We need the current value of the shadow stack pointer to restore 460 // after longjmp or exception catching. 461 462 // FIXME: On some platforms this could be handled by the longjmp/exception 463 // runtime itself. 464 465 AllocaInst *DynamicTop = nullptr; 466 if (NeedDynamicTop) { 467 // If we also have dynamic alloca's, the stack pointer value changes 468 // throughout the function. For now we store it in an alloca. 469 DynamicTop = IRB.CreateAlloca(StackPtrTy, /*ArraySize=*/nullptr, 470 "unsafe_stack_dynamic_ptr"); 471 IRB.CreateStore(StaticTop, DynamicTop); 472 } 473 474 // Restore current stack pointer after longjmp/exception catch. 475 for (Instruction *I : StackRestorePoints) { 476 ++NumUnsafeStackRestorePoints; 477 478 IRB.SetInsertPoint(I->getNextNode()); 479 Value *CurrentTop = DynamicTop ? IRB.CreateLoad(DynamicTop) : StaticTop; 480 IRB.CreateStore(CurrentTop, UnsafeStackPtr); 481 } 482 483 return DynamicTop; 484 } 485 486 void SafeStack::checkStackGuard(IRBuilder<> &IRB, Function &F, ReturnInst &RI, 487 AllocaInst *StackGuardSlot, Value *StackGuard) { 488 Value *V = IRB.CreateLoad(StackGuardSlot); 489 Value *Cmp = IRB.CreateICmpNE(StackGuard, V); 490 491 auto SuccessProb = BranchProbabilityInfo::getBranchProbStackProtector(true); 492 auto FailureProb = BranchProbabilityInfo::getBranchProbStackProtector(false); 493 MDNode *Weights = MDBuilder(F.getContext()) 494 .createBranchWeights(SuccessProb.getNumerator(), 495 FailureProb.getNumerator()); 496 Instruction *CheckTerm = 497 SplitBlockAndInsertIfThen(Cmp, &RI, 498 /* Unreachable */ true, Weights); 499 IRBuilder<> IRBFail(CheckTerm); 500 // FIXME: respect -fsanitize-trap / -ftrap-function here? 501 Constant *StackChkFail = F.getParent()->getOrInsertFunction( 502 "__stack_chk_fail", IRB.getVoidTy(), nullptr); 503 IRBFail.CreateCall(StackChkFail, {}); 504 } 505 506 /// We explicitly compute and set the unsafe stack layout for all unsafe 507 /// static alloca instructions. We save the unsafe "base pointer" in the 508 /// prologue into a local variable and restore it in the epilogue. 509 Value *SafeStack::moveStaticAllocasToUnsafeStack( 510 IRBuilder<> &IRB, Function &F, ArrayRef<AllocaInst *> StaticAllocas, 511 ArrayRef<Argument *> ByValArguments, ArrayRef<ReturnInst *> Returns, 512 Instruction *BasePointer, AllocaInst *StackGuardSlot) { 513 if (StaticAllocas.empty() && ByValArguments.empty()) 514 return BasePointer; 515 516 DIBuilder DIB(*F.getParent()); 517 518 StackColoring SSC(F, StaticAllocas); 519 SSC.run(); 520 SSC.removeAllMarkers(); 521 522 // Unsafe stack always grows down. 523 StackLayout SSL(StackAlignment); 524 if (StackGuardSlot) { 525 Type *Ty = StackGuardSlot->getAllocatedType(); 526 unsigned Align = 527 std::max(DL->getPrefTypeAlignment(Ty), StackGuardSlot->getAlignment()); 528 SSL.addObject(StackGuardSlot, getStaticAllocaAllocationSize(StackGuardSlot), 529 Align, SSC.getFullLiveRange()); 530 } 531 532 for (Argument *Arg : ByValArguments) { 533 Type *Ty = Arg->getType()->getPointerElementType(); 534 uint64_t Size = DL->getTypeStoreSize(Ty); 535 if (Size == 0) 536 Size = 1; // Don't create zero-sized stack objects. 537 538 // Ensure the object is properly aligned. 539 unsigned Align = std::max((unsigned)DL->getPrefTypeAlignment(Ty), 540 Arg->getParamAlignment()); 541 SSL.addObject(Arg, Size, Align, SSC.getFullLiveRange()); 542 } 543 544 for (AllocaInst *AI : StaticAllocas) { 545 Type *Ty = AI->getAllocatedType(); 546 uint64_t Size = getStaticAllocaAllocationSize(AI); 547 if (Size == 0) 548 Size = 1; // Don't create zero-sized stack objects. 549 550 // Ensure the object is properly aligned. 551 unsigned Align = 552 std::max((unsigned)DL->getPrefTypeAlignment(Ty), AI->getAlignment()); 553 554 SSL.addObject(AI, Size, Align, SSC.getLiveRange(AI)); 555 } 556 557 SSL.computeLayout(); 558 unsigned FrameAlignment = SSL.getFrameAlignment(); 559 560 // FIXME: tell SSL that we start at a less-then-MaxAlignment aligned location 561 // (AlignmentSkew). 562 if (FrameAlignment > StackAlignment) { 563 // Re-align the base pointer according to the max requested alignment. 564 assert(isPowerOf2_32(FrameAlignment)); 565 IRB.SetInsertPoint(BasePointer->getNextNode()); 566 BasePointer = cast<Instruction>(IRB.CreateIntToPtr( 567 IRB.CreateAnd(IRB.CreatePtrToInt(BasePointer, IntPtrTy), 568 ConstantInt::get(IntPtrTy, ~uint64_t(FrameAlignment - 1))), 569 StackPtrTy)); 570 } 571 572 IRB.SetInsertPoint(BasePointer->getNextNode()); 573 574 if (StackGuardSlot) { 575 unsigned Offset = SSL.getObjectOffset(StackGuardSlot); 576 Value *Off = IRB.CreateGEP(BasePointer, // BasePointer is i8* 577 ConstantInt::get(Int32Ty, -Offset)); 578 Value *NewAI = 579 IRB.CreateBitCast(Off, StackGuardSlot->getType(), "StackGuardSlot"); 580 581 // Replace alloc with the new location. 582 StackGuardSlot->replaceAllUsesWith(NewAI); 583 StackGuardSlot->eraseFromParent(); 584 } 585 586 for (Argument *Arg : ByValArguments) { 587 unsigned Offset = SSL.getObjectOffset(Arg); 588 Type *Ty = Arg->getType()->getPointerElementType(); 589 590 uint64_t Size = DL->getTypeStoreSize(Ty); 591 if (Size == 0) 592 Size = 1; // Don't create zero-sized stack objects. 593 594 Value *Off = IRB.CreateGEP(BasePointer, // BasePointer is i8* 595 ConstantInt::get(Int32Ty, -Offset)); 596 Value *NewArg = IRB.CreateBitCast(Off, Arg->getType(), 597 Arg->getName() + ".unsafe-byval"); 598 599 // Replace alloc with the new location. 600 replaceDbgDeclare(Arg, BasePointer, BasePointer->getNextNode(), DIB, 601 /*Deref=*/true, -Offset); 602 Arg->replaceAllUsesWith(NewArg); 603 IRB.SetInsertPoint(cast<Instruction>(NewArg)->getNextNode()); 604 IRB.CreateMemCpy(Off, Arg, Size, Arg->getParamAlignment()); 605 } 606 607 // Allocate space for every unsafe static AllocaInst on the unsafe stack. 608 for (AllocaInst *AI : StaticAllocas) { 609 IRB.SetInsertPoint(AI); 610 unsigned Offset = SSL.getObjectOffset(AI); 611 612 uint64_t Size = getStaticAllocaAllocationSize(AI); 613 if (Size == 0) 614 Size = 1; // Don't create zero-sized stack objects. 615 616 replaceDbgDeclareForAlloca(AI, BasePointer, DIB, /*Deref=*/true, -Offset); 617 replaceDbgValueForAlloca(AI, BasePointer, DIB, -Offset); 618 619 // Replace uses of the alloca with the new location. 620 // Insert address calculation close to each use to work around PR27844. 621 std::string Name = std::string(AI->getName()) + ".unsafe"; 622 while (!AI->use_empty()) { 623 Use &U = *AI->use_begin(); 624 Instruction *User = cast<Instruction>(U.getUser()); 625 626 Instruction *InsertBefore; 627 if (auto *PHI = dyn_cast<PHINode>(User)) 628 InsertBefore = PHI->getIncomingBlock(U)->getTerminator(); 629 else 630 InsertBefore = User; 631 632 IRBuilder<> IRBUser(InsertBefore); 633 Value *Off = IRBUser.CreateGEP(BasePointer, // BasePointer is i8* 634 ConstantInt::get(Int32Ty, -Offset)); 635 Value *Replacement = IRBUser.CreateBitCast(Off, AI->getType(), Name); 636 637 if (auto *PHI = dyn_cast<PHINode>(User)) { 638 // PHI nodes may have multiple incoming edges from the same BB (why??), 639 // all must be updated at once with the same incoming value. 640 auto *BB = PHI->getIncomingBlock(U); 641 for (unsigned I = 0; I < PHI->getNumIncomingValues(); ++I) 642 if (PHI->getIncomingBlock(I) == BB) 643 PHI->setIncomingValue(I, Replacement); 644 } else { 645 U.set(Replacement); 646 } 647 } 648 649 AI->eraseFromParent(); 650 } 651 652 // Re-align BasePointer so that our callees would see it aligned as 653 // expected. 654 // FIXME: no need to update BasePointer in leaf functions. 655 unsigned FrameSize = alignTo(SSL.getFrameSize(), StackAlignment); 656 657 // Update shadow stack pointer in the function epilogue. 658 IRB.SetInsertPoint(BasePointer->getNextNode()); 659 660 Value *StaticTop = 661 IRB.CreateGEP(BasePointer, ConstantInt::get(Int32Ty, -FrameSize), 662 "unsafe_stack_static_top"); 663 IRB.CreateStore(StaticTop, UnsafeStackPtr); 664 return StaticTop; 665 } 666 667 void SafeStack::moveDynamicAllocasToUnsafeStack( 668 Function &F, Value *UnsafeStackPtr, AllocaInst *DynamicTop, 669 ArrayRef<AllocaInst *> DynamicAllocas) { 670 DIBuilder DIB(*F.getParent()); 671 672 for (AllocaInst *AI : DynamicAllocas) { 673 IRBuilder<> IRB(AI); 674 675 // Compute the new SP value (after AI). 676 Value *ArraySize = AI->getArraySize(); 677 if (ArraySize->getType() != IntPtrTy) 678 ArraySize = IRB.CreateIntCast(ArraySize, IntPtrTy, false); 679 680 Type *Ty = AI->getAllocatedType(); 681 uint64_t TySize = DL->getTypeAllocSize(Ty); 682 Value *Size = IRB.CreateMul(ArraySize, ConstantInt::get(IntPtrTy, TySize)); 683 684 Value *SP = IRB.CreatePtrToInt(IRB.CreateLoad(UnsafeStackPtr), IntPtrTy); 685 SP = IRB.CreateSub(SP, Size); 686 687 // Align the SP value to satisfy the AllocaInst, type and stack alignments. 688 unsigned Align = std::max( 689 std::max((unsigned)DL->getPrefTypeAlignment(Ty), AI->getAlignment()), 690 (unsigned)StackAlignment); 691 692 assert(isPowerOf2_32(Align)); 693 Value *NewTop = IRB.CreateIntToPtr( 694 IRB.CreateAnd(SP, ConstantInt::get(IntPtrTy, ~uint64_t(Align - 1))), 695 StackPtrTy); 696 697 // Save the stack pointer. 698 IRB.CreateStore(NewTop, UnsafeStackPtr); 699 if (DynamicTop) 700 IRB.CreateStore(NewTop, DynamicTop); 701 702 Value *NewAI = IRB.CreatePointerCast(NewTop, AI->getType()); 703 if (AI->hasName() && isa<Instruction>(NewAI)) 704 NewAI->takeName(AI); 705 706 replaceDbgDeclareForAlloca(AI, NewAI, DIB, /*Deref=*/true); 707 AI->replaceAllUsesWith(NewAI); 708 AI->eraseFromParent(); 709 } 710 711 if (!DynamicAllocas.empty()) { 712 // Now go through the instructions again, replacing stacksave/stackrestore. 713 for (inst_iterator It = inst_begin(&F), Ie = inst_end(&F); It != Ie;) { 714 Instruction *I = &*(It++); 715 auto II = dyn_cast<IntrinsicInst>(I); 716 if (!II) 717 continue; 718 719 if (II->getIntrinsicID() == Intrinsic::stacksave) { 720 IRBuilder<> IRB(II); 721 Instruction *LI = IRB.CreateLoad(UnsafeStackPtr); 722 LI->takeName(II); 723 II->replaceAllUsesWith(LI); 724 II->eraseFromParent(); 725 } else if (II->getIntrinsicID() == Intrinsic::stackrestore) { 726 IRBuilder<> IRB(II); 727 Instruction *SI = IRB.CreateStore(II->getArgOperand(0), UnsafeStackPtr); 728 SI->takeName(II); 729 assert(II->use_empty()); 730 II->eraseFromParent(); 731 } 732 } 733 } 734 } 735 736 bool SafeStack::runOnFunction(Function &F) { 737 DEBUG(dbgs() << "[SafeStack] Function: " << F.getName() << "\n"); 738 739 if (!F.hasFnAttribute(Attribute::SafeStack)) { 740 DEBUG(dbgs() << "[SafeStack] safestack is not requested" 741 " for this function\n"); 742 return false; 743 } 744 745 if (F.isDeclaration()) { 746 DEBUG(dbgs() << "[SafeStack] function definition" 747 " is not available\n"); 748 return false; 749 } 750 751 if (!TM) 752 report_fatal_error("Target machine is required"); 753 TL = TM->getSubtargetImpl(F)->getTargetLowering(); 754 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 755 756 ++NumFunctions; 757 758 SmallVector<AllocaInst *, 16> StaticAllocas; 759 SmallVector<AllocaInst *, 4> DynamicAllocas; 760 SmallVector<Argument *, 4> ByValArguments; 761 SmallVector<ReturnInst *, 4> Returns; 762 763 // Collect all points where stack gets unwound and needs to be restored 764 // This is only necessary because the runtime (setjmp and unwind code) is 765 // not aware of the unsafe stack and won't unwind/restore it prorerly. 766 // To work around this problem without changing the runtime, we insert 767 // instrumentation to restore the unsafe stack pointer when necessary. 768 SmallVector<Instruction *, 4> StackRestorePoints; 769 770 // Find all static and dynamic alloca instructions that must be moved to the 771 // unsafe stack, all return instructions and stack restore points. 772 findInsts(F, StaticAllocas, DynamicAllocas, ByValArguments, Returns, 773 StackRestorePoints); 774 775 if (StaticAllocas.empty() && DynamicAllocas.empty() && 776 ByValArguments.empty() && StackRestorePoints.empty()) 777 return false; // Nothing to do in this function. 778 779 if (!StaticAllocas.empty() || !DynamicAllocas.empty() || 780 !ByValArguments.empty()) 781 ++NumUnsafeStackFunctions; // This function has the unsafe stack. 782 783 if (!StackRestorePoints.empty()) 784 ++NumUnsafeStackRestorePointsFunctions; 785 786 IRBuilder<> IRB(&F.front(), F.begin()->getFirstInsertionPt()); 787 UnsafeStackPtr = getOrCreateUnsafeStackPtr(IRB, F); 788 789 // Load the current stack pointer (we'll also use it as a base pointer). 790 // FIXME: use a dedicated register for it ? 791 Instruction *BasePointer = 792 IRB.CreateLoad(UnsafeStackPtr, false, "unsafe_stack_ptr"); 793 assert(BasePointer->getType() == StackPtrTy); 794 795 AllocaInst *StackGuardSlot = nullptr; 796 // FIXME: implement weaker forms of stack protector. 797 if (F.hasFnAttribute(Attribute::StackProtect) || 798 F.hasFnAttribute(Attribute::StackProtectStrong) || 799 F.hasFnAttribute(Attribute::StackProtectReq)) { 800 Value *StackGuard = getStackGuard(IRB, F); 801 StackGuardSlot = IRB.CreateAlloca(StackPtrTy, nullptr); 802 IRB.CreateStore(StackGuard, StackGuardSlot); 803 804 for (ReturnInst *RI : Returns) { 805 IRBuilder<> IRBRet(RI); 806 checkStackGuard(IRBRet, F, *RI, StackGuardSlot, StackGuard); 807 } 808 } 809 810 // The top of the unsafe stack after all unsafe static allocas are 811 // allocated. 812 Value *StaticTop = 813 moveStaticAllocasToUnsafeStack(IRB, F, StaticAllocas, ByValArguments, 814 Returns, BasePointer, StackGuardSlot); 815 816 // Safe stack object that stores the current unsafe stack top. It is updated 817 // as unsafe dynamic (non-constant-sized) allocas are allocated and freed. 818 // This is only needed if we need to restore stack pointer after longjmp 819 // or exceptions, and we have dynamic allocations. 820 // FIXME: a better alternative might be to store the unsafe stack pointer 821 // before setjmp / invoke instructions. 822 AllocaInst *DynamicTop = createStackRestorePoints( 823 IRB, F, StackRestorePoints, StaticTop, !DynamicAllocas.empty()); 824 825 // Handle dynamic allocas. 826 moveDynamicAllocasToUnsafeStack(F, UnsafeStackPtr, DynamicTop, 827 DynamicAllocas); 828 829 // Restore the unsafe stack pointer before each return. 830 for (ReturnInst *RI : Returns) { 831 IRB.SetInsertPoint(RI); 832 IRB.CreateStore(BasePointer, UnsafeStackPtr); 833 } 834 835 DEBUG(dbgs() << "[SafeStack] safestack applied\n"); 836 return true; 837 } 838 839 } // anonymous namespace 840 841 char SafeStack::ID = 0; 842 INITIALIZE_TM_PASS_BEGIN(SafeStack, "safe-stack", 843 "Safe Stack instrumentation pass", false, false) 844 INITIALIZE_TM_PASS_END(SafeStack, "safe-stack", 845 "Safe Stack instrumentation pass", false, false) 846 847 FunctionPass *llvm::createSafeStackPass(const llvm::TargetMachine *TM) { 848 return new SafeStack(TM); 849 } 850