1 //===-- SafeStack.cpp - Safe Stack Insertion ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass splits the stack into the safe stack (kept as-is for LLVM backend) 11 // and the unsafe stack (explicitly allocated and managed through the runtime 12 // support library). 13 // 14 // http://clang.llvm.org/docs/SafeStack.html 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "SafeStackColoring.h" 19 #include "SafeStackLayout.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/Analysis/BranchProbabilityInfo.h" 23 #include "llvm/Analysis/ScalarEvolution.h" 24 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 25 #include "llvm/CodeGen/Passes.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DIBuilder.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/IRBuilder.h" 32 #include "llvm/IR/InstIterator.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/MDBuilder.h" 37 #include "llvm/IR/Module.h" 38 #include "llvm/Pass.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/Format.h" 42 #include "llvm/Support/MathExtras.h" 43 #include "llvm/Support/raw_os_ostream.h" 44 #include "llvm/Target/TargetLowering.h" 45 #include "llvm/Target/TargetSubtargetInfo.h" 46 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 47 #include "llvm/Transforms/Utils/Local.h" 48 #include "llvm/Transforms/Utils/ModuleUtils.h" 49 50 using namespace llvm; 51 using namespace llvm::safestack; 52 53 #define DEBUG_TYPE "safestack" 54 55 enum UnsafeStackPtrStorageVal { ThreadLocalUSP, SingleThreadUSP }; 56 57 static cl::opt<UnsafeStackPtrStorageVal> USPStorage("safe-stack-usp-storage", 58 cl::Hidden, cl::init(ThreadLocalUSP), 59 cl::desc("Type of storage for the unsafe stack pointer"), 60 cl::values(clEnumValN(ThreadLocalUSP, "thread-local", 61 "Thread-local storage"), 62 clEnumValN(SingleThreadUSP, "single-thread", 63 "Non-thread-local storage"))); 64 65 namespace llvm { 66 67 STATISTIC(NumFunctions, "Total number of functions"); 68 STATISTIC(NumUnsafeStackFunctions, "Number of functions with unsafe stack"); 69 STATISTIC(NumUnsafeStackRestorePointsFunctions, 70 "Number of functions that use setjmp or exceptions"); 71 72 STATISTIC(NumAllocas, "Total number of allocas"); 73 STATISTIC(NumUnsafeStaticAllocas, "Number of unsafe static allocas"); 74 STATISTIC(NumUnsafeDynamicAllocas, "Number of unsafe dynamic allocas"); 75 STATISTIC(NumUnsafeByValArguments, "Number of unsafe byval arguments"); 76 STATISTIC(NumUnsafeStackRestorePoints, "Number of setjmps and landingpads"); 77 78 } // namespace llvm 79 80 namespace { 81 82 /// Rewrite an SCEV expression for a memory access address to an expression that 83 /// represents offset from the given alloca. 84 /// 85 /// The implementation simply replaces all mentions of the alloca with zero. 86 class AllocaOffsetRewriter : public SCEVRewriteVisitor<AllocaOffsetRewriter> { 87 const Value *AllocaPtr; 88 89 public: 90 AllocaOffsetRewriter(ScalarEvolution &SE, const Value *AllocaPtr) 91 : SCEVRewriteVisitor(SE), AllocaPtr(AllocaPtr) {} 92 93 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 94 if (Expr->getValue() == AllocaPtr) 95 return SE.getZero(Expr->getType()); 96 return Expr; 97 } 98 }; 99 100 /// The SafeStack pass splits the stack of each function into the safe 101 /// stack, which is only accessed through memory safe dereferences (as 102 /// determined statically), and the unsafe stack, which contains all 103 /// local variables that are accessed in ways that we can't prove to 104 /// be safe. 105 class SafeStack : public FunctionPass { 106 const TargetMachine *TM; 107 const TargetLoweringBase *TL; 108 const DataLayout *DL; 109 ScalarEvolution *SE; 110 111 Type *StackPtrTy; 112 Type *IntPtrTy; 113 Type *Int32Ty; 114 Type *Int8Ty; 115 116 Value *UnsafeStackPtr = nullptr; 117 118 /// Unsafe stack alignment. Each stack frame must ensure that the stack is 119 /// aligned to this value. We need to re-align the unsafe stack if the 120 /// alignment of any object on the stack exceeds this value. 121 /// 122 /// 16 seems like a reasonable upper bound on the alignment of objects that we 123 /// might expect to appear on the stack on most common targets. 124 enum { StackAlignment = 16 }; 125 126 /// \brief Build a value representing a pointer to the unsafe stack pointer. 127 Value *getOrCreateUnsafeStackPtr(IRBuilder<> &IRB, Function &F); 128 129 /// \brief Return the value of the stack canary. 130 Value *getStackGuard(IRBuilder<> &IRB, Function &F); 131 132 /// \brief Load stack guard from the frame and check if it has changed. 133 void checkStackGuard(IRBuilder<> &IRB, Function &F, ReturnInst &RI, 134 AllocaInst *StackGuardSlot, Value *StackGuard); 135 136 /// \brief Find all static allocas, dynamic allocas, return instructions and 137 /// stack restore points (exception unwind blocks and setjmp calls) in the 138 /// given function and append them to the respective vectors. 139 void findInsts(Function &F, SmallVectorImpl<AllocaInst *> &StaticAllocas, 140 SmallVectorImpl<AllocaInst *> &DynamicAllocas, 141 SmallVectorImpl<Argument *> &ByValArguments, 142 SmallVectorImpl<ReturnInst *> &Returns, 143 SmallVectorImpl<Instruction *> &StackRestorePoints); 144 145 /// \brief Calculate the allocation size of a given alloca. Returns 0 if the 146 /// size can not be statically determined. 147 uint64_t getStaticAllocaAllocationSize(const AllocaInst* AI); 148 149 /// \brief Allocate space for all static allocas in \p StaticAllocas, 150 /// replace allocas with pointers into the unsafe stack and generate code to 151 /// restore the stack pointer before all return instructions in \p Returns. 152 /// 153 /// \returns A pointer to the top of the unsafe stack after all unsafe static 154 /// allocas are allocated. 155 Value *moveStaticAllocasToUnsafeStack(IRBuilder<> &IRB, Function &F, 156 ArrayRef<AllocaInst *> StaticAllocas, 157 ArrayRef<Argument *> ByValArguments, 158 ArrayRef<ReturnInst *> Returns, 159 Instruction *BasePointer, 160 AllocaInst *StackGuardSlot); 161 162 /// \brief Generate code to restore the stack after all stack restore points 163 /// in \p StackRestorePoints. 164 /// 165 /// \returns A local variable in which to maintain the dynamic top of the 166 /// unsafe stack if needed. 167 AllocaInst * 168 createStackRestorePoints(IRBuilder<> &IRB, Function &F, 169 ArrayRef<Instruction *> StackRestorePoints, 170 Value *StaticTop, bool NeedDynamicTop); 171 172 /// \brief Replace all allocas in \p DynamicAllocas with code to allocate 173 /// space dynamically on the unsafe stack and store the dynamic unsafe stack 174 /// top to \p DynamicTop if non-null. 175 void moveDynamicAllocasToUnsafeStack(Function &F, Value *UnsafeStackPtr, 176 AllocaInst *DynamicTop, 177 ArrayRef<AllocaInst *> DynamicAllocas); 178 179 bool IsSafeStackAlloca(const Value *AllocaPtr, uint64_t AllocaSize); 180 181 bool IsMemIntrinsicSafe(const MemIntrinsic *MI, const Use &U, 182 const Value *AllocaPtr, uint64_t AllocaSize); 183 bool IsAccessSafe(Value *Addr, uint64_t Size, const Value *AllocaPtr, 184 uint64_t AllocaSize); 185 186 public: 187 static char ID; // Pass identification, replacement for typeid. 188 SafeStack(const TargetMachine *TM) 189 : FunctionPass(ID), TM(TM), TL(nullptr), DL(nullptr) { 190 initializeSafeStackPass(*PassRegistry::getPassRegistry()); 191 } 192 SafeStack() : SafeStack(nullptr) {} 193 194 void getAnalysisUsage(AnalysisUsage &AU) const override { 195 AU.addRequired<ScalarEvolutionWrapperPass>(); 196 } 197 198 bool doInitialization(Module &M) override { 199 DL = &M.getDataLayout(); 200 201 StackPtrTy = Type::getInt8PtrTy(M.getContext()); 202 IntPtrTy = DL->getIntPtrType(M.getContext()); 203 Int32Ty = Type::getInt32Ty(M.getContext()); 204 Int8Ty = Type::getInt8Ty(M.getContext()); 205 206 return false; 207 } 208 209 bool runOnFunction(Function &F) override; 210 }; // class SafeStack 211 212 uint64_t SafeStack::getStaticAllocaAllocationSize(const AllocaInst* AI) { 213 uint64_t Size = DL->getTypeAllocSize(AI->getAllocatedType()); 214 if (AI->isArrayAllocation()) { 215 auto C = dyn_cast<ConstantInt>(AI->getArraySize()); 216 if (!C) 217 return 0; 218 Size *= C->getZExtValue(); 219 } 220 return Size; 221 } 222 223 bool SafeStack::IsAccessSafe(Value *Addr, uint64_t AccessSize, 224 const Value *AllocaPtr, uint64_t AllocaSize) { 225 AllocaOffsetRewriter Rewriter(*SE, AllocaPtr); 226 const SCEV *Expr = Rewriter.visit(SE->getSCEV(Addr)); 227 228 uint64_t BitWidth = SE->getTypeSizeInBits(Expr->getType()); 229 ConstantRange AccessStartRange = SE->getUnsignedRange(Expr); 230 ConstantRange SizeRange = 231 ConstantRange(APInt(BitWidth, 0), APInt(BitWidth, AccessSize)); 232 ConstantRange AccessRange = AccessStartRange.add(SizeRange); 233 ConstantRange AllocaRange = 234 ConstantRange(APInt(BitWidth, 0), APInt(BitWidth, AllocaSize)); 235 bool Safe = AllocaRange.contains(AccessRange); 236 237 DEBUG(dbgs() << "[SafeStack] " 238 << (isa<AllocaInst>(AllocaPtr) ? "Alloca " : "ByValArgument ") 239 << *AllocaPtr << "\n" 240 << " Access " << *Addr << "\n" 241 << " SCEV " << *Expr 242 << " U: " << SE->getUnsignedRange(Expr) 243 << ", S: " << SE->getSignedRange(Expr) << "\n" 244 << " Range " << AccessRange << "\n" 245 << " AllocaRange " << AllocaRange << "\n" 246 << " " << (Safe ? "safe" : "unsafe") << "\n"); 247 248 return Safe; 249 } 250 251 bool SafeStack::IsMemIntrinsicSafe(const MemIntrinsic *MI, const Use &U, 252 const Value *AllocaPtr, 253 uint64_t AllocaSize) { 254 // All MemIntrinsics have destination address in Arg0 and size in Arg2. 255 if (MI->getRawDest() != U) return true; 256 const auto *Len = dyn_cast<ConstantInt>(MI->getLength()); 257 // Non-constant size => unsafe. FIXME: try SCEV getRange. 258 if (!Len) return false; 259 return IsAccessSafe(U, Len->getZExtValue(), AllocaPtr, AllocaSize); 260 } 261 262 /// Check whether a given allocation must be put on the safe 263 /// stack or not. The function analyzes all uses of AI and checks whether it is 264 /// only accessed in a memory safe way (as decided statically). 265 bool SafeStack::IsSafeStackAlloca(const Value *AllocaPtr, uint64_t AllocaSize) { 266 // Go through all uses of this alloca and check whether all accesses to the 267 // allocated object are statically known to be memory safe and, hence, the 268 // object can be placed on the safe stack. 269 SmallPtrSet<const Value *, 16> Visited; 270 SmallVector<const Value *, 8> WorkList; 271 WorkList.push_back(AllocaPtr); 272 273 // A DFS search through all uses of the alloca in bitcasts/PHI/GEPs/etc. 274 while (!WorkList.empty()) { 275 const Value *V = WorkList.pop_back_val(); 276 for (const Use &UI : V->uses()) { 277 auto I = cast<const Instruction>(UI.getUser()); 278 assert(V == UI.get()); 279 280 switch (I->getOpcode()) { 281 case Instruction::Load: { 282 if (!IsAccessSafe(UI, DL->getTypeStoreSize(I->getType()), AllocaPtr, 283 AllocaSize)) 284 return false; 285 break; 286 } 287 case Instruction::VAArg: 288 // "va-arg" from a pointer is safe. 289 break; 290 case Instruction::Store: { 291 if (V == I->getOperand(0)) { 292 // Stored the pointer - conservatively assume it may be unsafe. 293 DEBUG(dbgs() << "[SafeStack] Unsafe alloca: " << *AllocaPtr 294 << "\n store of address: " << *I << "\n"); 295 return false; 296 } 297 298 if (!IsAccessSafe(UI, DL->getTypeStoreSize(I->getOperand(0)->getType()), 299 AllocaPtr, AllocaSize)) 300 return false; 301 break; 302 } 303 case Instruction::Ret: { 304 // Information leak. 305 return false; 306 } 307 308 case Instruction::Call: 309 case Instruction::Invoke: { 310 ImmutableCallSite CS(I); 311 312 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 313 if (II->getIntrinsicID() == Intrinsic::lifetime_start || 314 II->getIntrinsicID() == Intrinsic::lifetime_end) 315 continue; 316 } 317 318 if (const MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) { 319 if (!IsMemIntrinsicSafe(MI, UI, AllocaPtr, AllocaSize)) { 320 DEBUG(dbgs() << "[SafeStack] Unsafe alloca: " << *AllocaPtr 321 << "\n unsafe memintrinsic: " << *I 322 << "\n"); 323 return false; 324 } 325 continue; 326 } 327 328 // LLVM 'nocapture' attribute is only set for arguments whose address 329 // is not stored, passed around, or used in any other non-trivial way. 330 // We assume that passing a pointer to an object as a 'nocapture 331 // readnone' argument is safe. 332 // FIXME: a more precise solution would require an interprocedural 333 // analysis here, which would look at all uses of an argument inside 334 // the function being called. 335 ImmutableCallSite::arg_iterator B = CS.arg_begin(), E = CS.arg_end(); 336 for (ImmutableCallSite::arg_iterator A = B; A != E; ++A) 337 if (A->get() == V) 338 if (!(CS.doesNotCapture(A - B) && (CS.doesNotAccessMemory(A - B) || 339 CS.doesNotAccessMemory()))) { 340 DEBUG(dbgs() << "[SafeStack] Unsafe alloca: " << *AllocaPtr 341 << "\n unsafe call: " << *I << "\n"); 342 return false; 343 } 344 continue; 345 } 346 347 default: 348 if (Visited.insert(I).second) 349 WorkList.push_back(cast<const Instruction>(I)); 350 } 351 } 352 } 353 354 // All uses of the alloca are safe, we can place it on the safe stack. 355 return true; 356 } 357 358 Value *SafeStack::getOrCreateUnsafeStackPtr(IRBuilder<> &IRB, Function &F) { 359 // Check if there is a target-specific location for the unsafe stack pointer. 360 if (TL) 361 if (Value *V = TL->getSafeStackPointerLocation(IRB)) 362 return V; 363 364 // Otherwise, assume the target links with compiler-rt, which provides a 365 // thread-local variable with a magic name. 366 Module &M = *F.getParent(); 367 const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr"; 368 auto UnsafeStackPtr = 369 dyn_cast_or_null<GlobalVariable>(M.getNamedValue(UnsafeStackPtrVar)); 370 371 bool UseTLS = USPStorage == ThreadLocalUSP; 372 373 if (!UnsafeStackPtr) { 374 auto TLSModel = UseTLS ? 375 GlobalValue::InitialExecTLSModel : 376 GlobalValue::NotThreadLocal; 377 // The global variable is not defined yet, define it ourselves. 378 // We use the initial-exec TLS model because we do not support the 379 // variable living anywhere other than in the main executable. 380 UnsafeStackPtr = new GlobalVariable( 381 M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr, 382 UnsafeStackPtrVar, nullptr, TLSModel); 383 } else { 384 // The variable exists, check its type and attributes. 385 if (UnsafeStackPtr->getValueType() != StackPtrTy) 386 report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type"); 387 if (UseTLS != UnsafeStackPtr->isThreadLocal()) 388 report_fatal_error(Twine(UnsafeStackPtrVar) + " must " + 389 (UseTLS ? "" : "not ") + "be thread-local"); 390 } 391 return UnsafeStackPtr; 392 } 393 394 Value *SafeStack::getStackGuard(IRBuilder<> &IRB, Function &F) { 395 Value *StackGuardVar = nullptr; 396 if (TL) 397 StackGuardVar = TL->getIRStackGuard(IRB); 398 if (!StackGuardVar) 399 StackGuardVar = 400 F.getParent()->getOrInsertGlobal("__stack_chk_guard", StackPtrTy); 401 return IRB.CreateLoad(StackGuardVar, "StackGuard"); 402 } 403 404 void SafeStack::findInsts(Function &F, 405 SmallVectorImpl<AllocaInst *> &StaticAllocas, 406 SmallVectorImpl<AllocaInst *> &DynamicAllocas, 407 SmallVectorImpl<Argument *> &ByValArguments, 408 SmallVectorImpl<ReturnInst *> &Returns, 409 SmallVectorImpl<Instruction *> &StackRestorePoints) { 410 for (Instruction &I : instructions(&F)) { 411 if (auto AI = dyn_cast<AllocaInst>(&I)) { 412 ++NumAllocas; 413 414 uint64_t Size = getStaticAllocaAllocationSize(AI); 415 if (IsSafeStackAlloca(AI, Size)) 416 continue; 417 418 if (AI->isStaticAlloca()) { 419 ++NumUnsafeStaticAllocas; 420 StaticAllocas.push_back(AI); 421 } else { 422 ++NumUnsafeDynamicAllocas; 423 DynamicAllocas.push_back(AI); 424 } 425 } else if (auto RI = dyn_cast<ReturnInst>(&I)) { 426 Returns.push_back(RI); 427 } else if (auto CI = dyn_cast<CallInst>(&I)) { 428 // setjmps require stack restore. 429 if (CI->getCalledFunction() && CI->canReturnTwice()) 430 StackRestorePoints.push_back(CI); 431 } else if (auto LP = dyn_cast<LandingPadInst>(&I)) { 432 // Exception landing pads require stack restore. 433 StackRestorePoints.push_back(LP); 434 } else if (auto II = dyn_cast<IntrinsicInst>(&I)) { 435 if (II->getIntrinsicID() == Intrinsic::gcroot) 436 llvm::report_fatal_error( 437 "gcroot intrinsic not compatible with safestack attribute"); 438 } 439 } 440 for (Argument &Arg : F.args()) { 441 if (!Arg.hasByValAttr()) 442 continue; 443 uint64_t Size = 444 DL->getTypeStoreSize(Arg.getType()->getPointerElementType()); 445 if (IsSafeStackAlloca(&Arg, Size)) 446 continue; 447 448 ++NumUnsafeByValArguments; 449 ByValArguments.push_back(&Arg); 450 } 451 } 452 453 AllocaInst * 454 SafeStack::createStackRestorePoints(IRBuilder<> &IRB, Function &F, 455 ArrayRef<Instruction *> StackRestorePoints, 456 Value *StaticTop, bool NeedDynamicTop) { 457 assert(StaticTop && "The stack top isn't set."); 458 459 if (StackRestorePoints.empty()) 460 return nullptr; 461 462 // We need the current value of the shadow stack pointer to restore 463 // after longjmp or exception catching. 464 465 // FIXME: On some platforms this could be handled by the longjmp/exception 466 // runtime itself. 467 468 AllocaInst *DynamicTop = nullptr; 469 if (NeedDynamicTop) { 470 // If we also have dynamic alloca's, the stack pointer value changes 471 // throughout the function. For now we store it in an alloca. 472 DynamicTop = IRB.CreateAlloca(StackPtrTy, /*ArraySize=*/nullptr, 473 "unsafe_stack_dynamic_ptr"); 474 IRB.CreateStore(StaticTop, DynamicTop); 475 } 476 477 // Restore current stack pointer after longjmp/exception catch. 478 for (Instruction *I : StackRestorePoints) { 479 ++NumUnsafeStackRestorePoints; 480 481 IRB.SetInsertPoint(I->getNextNode()); 482 Value *CurrentTop = DynamicTop ? IRB.CreateLoad(DynamicTop) : StaticTop; 483 IRB.CreateStore(CurrentTop, UnsafeStackPtr); 484 } 485 486 return DynamicTop; 487 } 488 489 void SafeStack::checkStackGuard(IRBuilder<> &IRB, Function &F, ReturnInst &RI, 490 AllocaInst *StackGuardSlot, Value *StackGuard) { 491 Value *V = IRB.CreateLoad(StackGuardSlot); 492 Value *Cmp = IRB.CreateICmpNE(StackGuard, V); 493 494 auto SuccessProb = BranchProbabilityInfo::getBranchProbStackProtector(true); 495 auto FailureProb = BranchProbabilityInfo::getBranchProbStackProtector(false); 496 MDNode *Weights = MDBuilder(F.getContext()) 497 .createBranchWeights(SuccessProb.getNumerator(), 498 FailureProb.getNumerator()); 499 Instruction *CheckTerm = 500 SplitBlockAndInsertIfThen(Cmp, &RI, 501 /* Unreachable */ true, Weights); 502 IRBuilder<> IRBFail(CheckTerm); 503 // FIXME: respect -fsanitize-trap / -ftrap-function here? 504 Constant *StackChkFail = F.getParent()->getOrInsertFunction( 505 "__stack_chk_fail", IRB.getVoidTy(), nullptr); 506 IRBFail.CreateCall(StackChkFail, {}); 507 } 508 509 /// We explicitly compute and set the unsafe stack layout for all unsafe 510 /// static alloca instructions. We save the unsafe "base pointer" in the 511 /// prologue into a local variable and restore it in the epilogue. 512 Value *SafeStack::moveStaticAllocasToUnsafeStack( 513 IRBuilder<> &IRB, Function &F, ArrayRef<AllocaInst *> StaticAllocas, 514 ArrayRef<Argument *> ByValArguments, ArrayRef<ReturnInst *> Returns, 515 Instruction *BasePointer, AllocaInst *StackGuardSlot) { 516 if (StaticAllocas.empty() && ByValArguments.empty()) 517 return BasePointer; 518 519 DIBuilder DIB(*F.getParent()); 520 521 StackColoring SSC(F, StaticAllocas); 522 SSC.run(); 523 SSC.removeAllMarkers(); 524 525 // Unsafe stack always grows down. 526 StackLayout SSL(StackAlignment); 527 if (StackGuardSlot) { 528 Type *Ty = StackGuardSlot->getAllocatedType(); 529 unsigned Align = 530 std::max(DL->getPrefTypeAlignment(Ty), StackGuardSlot->getAlignment()); 531 SSL.addObject(StackGuardSlot, getStaticAllocaAllocationSize(StackGuardSlot), 532 Align, SSC.getFullLiveRange()); 533 } 534 535 for (Argument *Arg : ByValArguments) { 536 Type *Ty = Arg->getType()->getPointerElementType(); 537 uint64_t Size = DL->getTypeStoreSize(Ty); 538 if (Size == 0) 539 Size = 1; // Don't create zero-sized stack objects. 540 541 // Ensure the object is properly aligned. 542 unsigned Align = std::max((unsigned)DL->getPrefTypeAlignment(Ty), 543 Arg->getParamAlignment()); 544 SSL.addObject(Arg, Size, Align, SSC.getFullLiveRange()); 545 } 546 547 for (AllocaInst *AI : StaticAllocas) { 548 Type *Ty = AI->getAllocatedType(); 549 uint64_t Size = getStaticAllocaAllocationSize(AI); 550 if (Size == 0) 551 Size = 1; // Don't create zero-sized stack objects. 552 553 // Ensure the object is properly aligned. 554 unsigned Align = 555 std::max((unsigned)DL->getPrefTypeAlignment(Ty), AI->getAlignment()); 556 557 SSL.addObject(AI, Size, Align, SSC.getLiveRange(AI)); 558 } 559 560 SSL.computeLayout(); 561 unsigned FrameAlignment = SSL.getFrameAlignment(); 562 563 // FIXME: tell SSL that we start at a less-then-MaxAlignment aligned location 564 // (AlignmentSkew). 565 if (FrameAlignment > StackAlignment) { 566 // Re-align the base pointer according to the max requested alignment. 567 assert(isPowerOf2_32(FrameAlignment)); 568 IRB.SetInsertPoint(BasePointer->getNextNode()); 569 BasePointer = cast<Instruction>(IRB.CreateIntToPtr( 570 IRB.CreateAnd(IRB.CreatePtrToInt(BasePointer, IntPtrTy), 571 ConstantInt::get(IntPtrTy, ~uint64_t(FrameAlignment - 1))), 572 StackPtrTy)); 573 } 574 575 IRB.SetInsertPoint(BasePointer->getNextNode()); 576 577 if (StackGuardSlot) { 578 unsigned Offset = SSL.getObjectOffset(StackGuardSlot); 579 Value *Off = IRB.CreateGEP(BasePointer, // BasePointer is i8* 580 ConstantInt::get(Int32Ty, -Offset)); 581 Value *NewAI = 582 IRB.CreateBitCast(Off, StackGuardSlot->getType(), "StackGuardSlot"); 583 584 // Replace alloc with the new location. 585 StackGuardSlot->replaceAllUsesWith(NewAI); 586 StackGuardSlot->eraseFromParent(); 587 } 588 589 for (Argument *Arg : ByValArguments) { 590 unsigned Offset = SSL.getObjectOffset(Arg); 591 Type *Ty = Arg->getType()->getPointerElementType(); 592 593 uint64_t Size = DL->getTypeStoreSize(Ty); 594 if (Size == 0) 595 Size = 1; // Don't create zero-sized stack objects. 596 597 Value *Off = IRB.CreateGEP(BasePointer, // BasePointer is i8* 598 ConstantInt::get(Int32Ty, -Offset)); 599 Value *NewArg = IRB.CreateBitCast(Off, Arg->getType(), 600 Arg->getName() + ".unsafe-byval"); 601 602 // Replace alloc with the new location. 603 replaceDbgDeclare(Arg, BasePointer, BasePointer->getNextNode(), DIB, 604 /*Deref=*/true, -Offset); 605 Arg->replaceAllUsesWith(NewArg); 606 IRB.SetInsertPoint(cast<Instruction>(NewArg)->getNextNode()); 607 IRB.CreateMemCpy(Off, Arg, Size, Arg->getParamAlignment()); 608 } 609 610 // Allocate space for every unsafe static AllocaInst on the unsafe stack. 611 for (AllocaInst *AI : StaticAllocas) { 612 IRB.SetInsertPoint(AI); 613 unsigned Offset = SSL.getObjectOffset(AI); 614 615 uint64_t Size = getStaticAllocaAllocationSize(AI); 616 if (Size == 0) 617 Size = 1; // Don't create zero-sized stack objects. 618 619 replaceDbgDeclareForAlloca(AI, BasePointer, DIB, /*Deref=*/true, -Offset); 620 replaceDbgValueForAlloca(AI, BasePointer, DIB, -Offset); 621 622 // Replace uses of the alloca with the new location. 623 // Insert address calculation close to each use to work around PR27844. 624 std::string Name = std::string(AI->getName()) + ".unsafe"; 625 while (!AI->use_empty()) { 626 Use &U = *AI->use_begin(); 627 Instruction *User = cast<Instruction>(U.getUser()); 628 629 Instruction *InsertBefore; 630 if (auto *PHI = dyn_cast<PHINode>(User)) 631 InsertBefore = PHI->getIncomingBlock(U)->getTerminator(); 632 else 633 InsertBefore = User; 634 635 IRBuilder<> IRBUser(InsertBefore); 636 Value *Off = IRBUser.CreateGEP(BasePointer, // BasePointer is i8* 637 ConstantInt::get(Int32Ty, -Offset)); 638 Value *Replacement = IRBUser.CreateBitCast(Off, AI->getType(), Name); 639 640 if (auto *PHI = dyn_cast<PHINode>(User)) { 641 // PHI nodes may have multiple incoming edges from the same BB (why??), 642 // all must be updated at once with the same incoming value. 643 auto *BB = PHI->getIncomingBlock(U); 644 for (unsigned I = 0; I < PHI->getNumIncomingValues(); ++I) 645 if (PHI->getIncomingBlock(I) == BB) 646 PHI->setIncomingValue(I, Replacement); 647 } else { 648 U.set(Replacement); 649 } 650 } 651 652 AI->eraseFromParent(); 653 } 654 655 // Re-align BasePointer so that our callees would see it aligned as 656 // expected. 657 // FIXME: no need to update BasePointer in leaf functions. 658 unsigned FrameSize = alignTo(SSL.getFrameSize(), StackAlignment); 659 660 // Update shadow stack pointer in the function epilogue. 661 IRB.SetInsertPoint(BasePointer->getNextNode()); 662 663 Value *StaticTop = 664 IRB.CreateGEP(BasePointer, ConstantInt::get(Int32Ty, -FrameSize), 665 "unsafe_stack_static_top"); 666 IRB.CreateStore(StaticTop, UnsafeStackPtr); 667 return StaticTop; 668 } 669 670 void SafeStack::moveDynamicAllocasToUnsafeStack( 671 Function &F, Value *UnsafeStackPtr, AllocaInst *DynamicTop, 672 ArrayRef<AllocaInst *> DynamicAllocas) { 673 DIBuilder DIB(*F.getParent()); 674 675 for (AllocaInst *AI : DynamicAllocas) { 676 IRBuilder<> IRB(AI); 677 678 // Compute the new SP value (after AI). 679 Value *ArraySize = AI->getArraySize(); 680 if (ArraySize->getType() != IntPtrTy) 681 ArraySize = IRB.CreateIntCast(ArraySize, IntPtrTy, false); 682 683 Type *Ty = AI->getAllocatedType(); 684 uint64_t TySize = DL->getTypeAllocSize(Ty); 685 Value *Size = IRB.CreateMul(ArraySize, ConstantInt::get(IntPtrTy, TySize)); 686 687 Value *SP = IRB.CreatePtrToInt(IRB.CreateLoad(UnsafeStackPtr), IntPtrTy); 688 SP = IRB.CreateSub(SP, Size); 689 690 // Align the SP value to satisfy the AllocaInst, type and stack alignments. 691 unsigned Align = std::max( 692 std::max((unsigned)DL->getPrefTypeAlignment(Ty), AI->getAlignment()), 693 (unsigned)StackAlignment); 694 695 assert(isPowerOf2_32(Align)); 696 Value *NewTop = IRB.CreateIntToPtr( 697 IRB.CreateAnd(SP, ConstantInt::get(IntPtrTy, ~uint64_t(Align - 1))), 698 StackPtrTy); 699 700 // Save the stack pointer. 701 IRB.CreateStore(NewTop, UnsafeStackPtr); 702 if (DynamicTop) 703 IRB.CreateStore(NewTop, DynamicTop); 704 705 Value *NewAI = IRB.CreatePointerCast(NewTop, AI->getType()); 706 if (AI->hasName() && isa<Instruction>(NewAI)) 707 NewAI->takeName(AI); 708 709 replaceDbgDeclareForAlloca(AI, NewAI, DIB, /*Deref=*/true); 710 AI->replaceAllUsesWith(NewAI); 711 AI->eraseFromParent(); 712 } 713 714 if (!DynamicAllocas.empty()) { 715 // Now go through the instructions again, replacing stacksave/stackrestore. 716 for (inst_iterator It = inst_begin(&F), Ie = inst_end(&F); It != Ie;) { 717 Instruction *I = &*(It++); 718 auto II = dyn_cast<IntrinsicInst>(I); 719 if (!II) 720 continue; 721 722 if (II->getIntrinsicID() == Intrinsic::stacksave) { 723 IRBuilder<> IRB(II); 724 Instruction *LI = IRB.CreateLoad(UnsafeStackPtr); 725 LI->takeName(II); 726 II->replaceAllUsesWith(LI); 727 II->eraseFromParent(); 728 } else if (II->getIntrinsicID() == Intrinsic::stackrestore) { 729 IRBuilder<> IRB(II); 730 Instruction *SI = IRB.CreateStore(II->getArgOperand(0), UnsafeStackPtr); 731 SI->takeName(II); 732 assert(II->use_empty()); 733 II->eraseFromParent(); 734 } 735 } 736 } 737 } 738 739 bool SafeStack::runOnFunction(Function &F) { 740 DEBUG(dbgs() << "[SafeStack] Function: " << F.getName() << "\n"); 741 742 if (!F.hasFnAttribute(Attribute::SafeStack)) { 743 DEBUG(dbgs() << "[SafeStack] safestack is not requested" 744 " for this function\n"); 745 return false; 746 } 747 748 if (F.isDeclaration()) { 749 DEBUG(dbgs() << "[SafeStack] function definition" 750 " is not available\n"); 751 return false; 752 } 753 754 TL = TM ? TM->getSubtargetImpl(F)->getTargetLowering() : nullptr; 755 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 756 757 ++NumFunctions; 758 759 SmallVector<AllocaInst *, 16> StaticAllocas; 760 SmallVector<AllocaInst *, 4> DynamicAllocas; 761 SmallVector<Argument *, 4> ByValArguments; 762 SmallVector<ReturnInst *, 4> Returns; 763 764 // Collect all points where stack gets unwound and needs to be restored 765 // This is only necessary because the runtime (setjmp and unwind code) is 766 // not aware of the unsafe stack and won't unwind/restore it prorerly. 767 // To work around this problem without changing the runtime, we insert 768 // instrumentation to restore the unsafe stack pointer when necessary. 769 SmallVector<Instruction *, 4> StackRestorePoints; 770 771 // Find all static and dynamic alloca instructions that must be moved to the 772 // unsafe stack, all return instructions and stack restore points. 773 findInsts(F, StaticAllocas, DynamicAllocas, ByValArguments, Returns, 774 StackRestorePoints); 775 776 if (StaticAllocas.empty() && DynamicAllocas.empty() && 777 ByValArguments.empty() && StackRestorePoints.empty()) 778 return false; // Nothing to do in this function. 779 780 if (!StaticAllocas.empty() || !DynamicAllocas.empty() || 781 !ByValArguments.empty()) 782 ++NumUnsafeStackFunctions; // This function has the unsafe stack. 783 784 if (!StackRestorePoints.empty()) 785 ++NumUnsafeStackRestorePointsFunctions; 786 787 IRBuilder<> IRB(&F.front(), F.begin()->getFirstInsertionPt()); 788 UnsafeStackPtr = getOrCreateUnsafeStackPtr(IRB, F); 789 790 // Load the current stack pointer (we'll also use it as a base pointer). 791 // FIXME: use a dedicated register for it ? 792 Instruction *BasePointer = 793 IRB.CreateLoad(UnsafeStackPtr, false, "unsafe_stack_ptr"); 794 assert(BasePointer->getType() == StackPtrTy); 795 796 AllocaInst *StackGuardSlot = nullptr; 797 // FIXME: implement weaker forms of stack protector. 798 if (F.hasFnAttribute(Attribute::StackProtect) || 799 F.hasFnAttribute(Attribute::StackProtectStrong) || 800 F.hasFnAttribute(Attribute::StackProtectReq)) { 801 Value *StackGuard = getStackGuard(IRB, F); 802 StackGuardSlot = IRB.CreateAlloca(StackPtrTy, nullptr); 803 IRB.CreateStore(StackGuard, StackGuardSlot); 804 805 for (ReturnInst *RI : Returns) { 806 IRBuilder<> IRBRet(RI); 807 checkStackGuard(IRBRet, F, *RI, StackGuardSlot, StackGuard); 808 } 809 } 810 811 // The top of the unsafe stack after all unsafe static allocas are 812 // allocated. 813 Value *StaticTop = 814 moveStaticAllocasToUnsafeStack(IRB, F, StaticAllocas, ByValArguments, 815 Returns, BasePointer, StackGuardSlot); 816 817 // Safe stack object that stores the current unsafe stack top. It is updated 818 // as unsafe dynamic (non-constant-sized) allocas are allocated and freed. 819 // This is only needed if we need to restore stack pointer after longjmp 820 // or exceptions, and we have dynamic allocations. 821 // FIXME: a better alternative might be to store the unsafe stack pointer 822 // before setjmp / invoke instructions. 823 AllocaInst *DynamicTop = createStackRestorePoints( 824 IRB, F, StackRestorePoints, StaticTop, !DynamicAllocas.empty()); 825 826 // Handle dynamic allocas. 827 moveDynamicAllocasToUnsafeStack(F, UnsafeStackPtr, DynamicTop, 828 DynamicAllocas); 829 830 // Restore the unsafe stack pointer before each return. 831 for (ReturnInst *RI : Returns) { 832 IRB.SetInsertPoint(RI); 833 IRB.CreateStore(BasePointer, UnsafeStackPtr); 834 } 835 836 DEBUG(dbgs() << "[SafeStack] safestack applied\n"); 837 return true; 838 } 839 840 } // anonymous namespace 841 842 char SafeStack::ID = 0; 843 INITIALIZE_TM_PASS_BEGIN(SafeStack, "safe-stack", 844 "Safe Stack instrumentation pass", false, false) 845 INITIALIZE_TM_PASS_END(SafeStack, "safe-stack", 846 "Safe Stack instrumentation pass", false, false) 847 848 FunctionPass *llvm::createSafeStackPass(const llvm::TargetMachine *TM) { 849 return new SafeStack(TM); 850 } 851