1 //===------ RegAllocPBQP.cpp ---- PBQP Register Allocator -------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains a Partitioned Boolean Quadratic Programming (PBQP) based 11 // register allocator for LLVM. This allocator works by constructing a PBQP 12 // problem representing the register allocation problem under consideration, 13 // solving this using a PBQP solver, and mapping the solution back to a 14 // register assignment. If any variables are selected for spilling then spill 15 // code is inserted and the process repeated. 16 // 17 // The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned 18 // for register allocation. For more information on PBQP for register 19 // allocation, see the following papers: 20 // 21 // (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with 22 // PBQP. In Proceedings of the 7th Joint Modular Languages Conference 23 // (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361. 24 // 25 // (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular 26 // architectures. In Proceedings of the Joint Conference on Languages, 27 // Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York, 28 // NY, USA, 139-148. 29 // 30 //===----------------------------------------------------------------------===// 31 32 #include "llvm/CodeGen/RegAllocPBQP.h" 33 #include "RegisterCoalescer.h" 34 #include "Spiller.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/CodeGen/CalcSpillWeights.h" 37 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 38 #include "llvm/CodeGen/LiveRangeEdit.h" 39 #include "llvm/CodeGen/LiveStackAnalysis.h" 40 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 41 #include "llvm/CodeGen/MachineDominators.h" 42 #include "llvm/CodeGen/MachineFunctionPass.h" 43 #include "llvm/CodeGen/MachineLoopInfo.h" 44 #include "llvm/CodeGen/MachineRegisterInfo.h" 45 #include "llvm/CodeGen/RegAllocRegistry.h" 46 #include "llvm/CodeGen/VirtRegMap.h" 47 #include "llvm/IR/Module.h" 48 #include "llvm/Support/Debug.h" 49 #include "llvm/Support/FileSystem.h" 50 #include "llvm/Support/Printable.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include "llvm/Target/TargetInstrInfo.h" 53 #include "llvm/Target/TargetSubtargetInfo.h" 54 #include <limits> 55 #include <memory> 56 #include <queue> 57 #include <set> 58 #include <sstream> 59 #include <vector> 60 61 using namespace llvm; 62 63 #define DEBUG_TYPE "regalloc" 64 65 static RegisterRegAlloc 66 RegisterPBQPRepAlloc("pbqp", "PBQP register allocator", 67 createDefaultPBQPRegisterAllocator); 68 69 static cl::opt<bool> 70 PBQPCoalescing("pbqp-coalescing", 71 cl::desc("Attempt coalescing during PBQP register allocation."), 72 cl::init(false), cl::Hidden); 73 74 #ifndef NDEBUG 75 static cl::opt<bool> 76 PBQPDumpGraphs("pbqp-dump-graphs", 77 cl::desc("Dump graphs for each function/round in the compilation unit."), 78 cl::init(false), cl::Hidden); 79 #endif 80 81 namespace { 82 83 /// 84 /// PBQP based allocators solve the register allocation problem by mapping 85 /// register allocation problems to Partitioned Boolean Quadratic 86 /// Programming problems. 87 class RegAllocPBQP : public MachineFunctionPass { 88 public: 89 90 static char ID; 91 92 /// Construct a PBQP register allocator. 93 RegAllocPBQP(char *cPassID = nullptr) 94 : MachineFunctionPass(ID), customPassID(cPassID) { 95 initializeSlotIndexesPass(*PassRegistry::getPassRegistry()); 96 initializeLiveIntervalsPass(*PassRegistry::getPassRegistry()); 97 initializeLiveStacksPass(*PassRegistry::getPassRegistry()); 98 initializeVirtRegMapPass(*PassRegistry::getPassRegistry()); 99 } 100 101 /// Return the pass name. 102 const char* getPassName() const override { 103 return "PBQP Register Allocator"; 104 } 105 106 /// PBQP analysis usage. 107 void getAnalysisUsage(AnalysisUsage &au) const override; 108 109 /// Perform register allocation 110 bool runOnMachineFunction(MachineFunction &MF) override; 111 112 MachineFunctionProperties getRequiredProperties() const override { 113 return MachineFunctionProperties().set( 114 MachineFunctionProperties::Property::NoPHIs); 115 } 116 117 private: 118 119 typedef std::map<const LiveInterval*, unsigned> LI2NodeMap; 120 typedef std::vector<const LiveInterval*> Node2LIMap; 121 typedef std::vector<unsigned> AllowedSet; 122 typedef std::vector<AllowedSet> AllowedSetMap; 123 typedef std::pair<unsigned, unsigned> RegPair; 124 typedef std::map<RegPair, PBQP::PBQPNum> CoalesceMap; 125 typedef std::set<unsigned> RegSet; 126 127 char *customPassID; 128 129 RegSet VRegsToAlloc, EmptyIntervalVRegs; 130 131 /// Inst which is a def of an original reg and whose defs are already all 132 /// dead after remat is saved in DeadRemats. The deletion of such inst is 133 /// postponed till all the allocations are done, so its remat expr is 134 /// always available for the remat of all the siblings of the original reg. 135 SmallPtrSet<MachineInstr *, 32> DeadRemats; 136 137 /// \brief Finds the initial set of vreg intervals to allocate. 138 void findVRegIntervalsToAlloc(const MachineFunction &MF, LiveIntervals &LIS); 139 140 /// \brief Constructs an initial graph. 141 void initializeGraph(PBQPRAGraph &G, VirtRegMap &VRM, Spiller &VRegSpiller); 142 143 /// \brief Spill the given VReg. 144 void spillVReg(unsigned VReg, SmallVectorImpl<unsigned> &NewIntervals, 145 MachineFunction &MF, LiveIntervals &LIS, VirtRegMap &VRM, 146 Spiller &VRegSpiller); 147 148 /// \brief Given a solved PBQP problem maps this solution back to a register 149 /// assignment. 150 bool mapPBQPToRegAlloc(const PBQPRAGraph &G, 151 const PBQP::Solution &Solution, 152 VirtRegMap &VRM, 153 Spiller &VRegSpiller); 154 155 /// \brief Postprocessing before final spilling. Sets basic block "live in" 156 /// variables. 157 void finalizeAlloc(MachineFunction &MF, LiveIntervals &LIS, 158 VirtRegMap &VRM) const; 159 160 void postOptimization(Spiller &VRegSpiller, LiveIntervals &LIS); 161 }; 162 163 char RegAllocPBQP::ID = 0; 164 165 /// @brief Set spill costs for each node in the PBQP reg-alloc graph. 166 class SpillCosts : public PBQPRAConstraint { 167 public: 168 void apply(PBQPRAGraph &G) override { 169 LiveIntervals &LIS = G.getMetadata().LIS; 170 171 // A minimum spill costs, so that register constraints can can be set 172 // without normalization in the [0.0:MinSpillCost( interval. 173 const PBQP::PBQPNum MinSpillCost = 10.0; 174 175 for (auto NId : G.nodeIds()) { 176 PBQP::PBQPNum SpillCost = 177 LIS.getInterval(G.getNodeMetadata(NId).getVReg()).weight; 178 if (SpillCost == 0.0) 179 SpillCost = std::numeric_limits<PBQP::PBQPNum>::min(); 180 else 181 SpillCost += MinSpillCost; 182 PBQPRAGraph::RawVector NodeCosts(G.getNodeCosts(NId)); 183 NodeCosts[PBQP::RegAlloc::getSpillOptionIdx()] = SpillCost; 184 G.setNodeCosts(NId, std::move(NodeCosts)); 185 } 186 } 187 }; 188 189 /// @brief Add interference edges between overlapping vregs. 190 class Interference : public PBQPRAConstraint { 191 private: 192 193 typedef const PBQP::RegAlloc::AllowedRegVector* AllowedRegVecPtr; 194 typedef std::pair<AllowedRegVecPtr, AllowedRegVecPtr> IKey; 195 typedef DenseMap<IKey, PBQPRAGraph::MatrixPtr> IMatrixCache; 196 typedef DenseSet<IKey> DisjointAllowedRegsCache; 197 typedef std::pair<PBQP::GraphBase::NodeId, PBQP::GraphBase::NodeId> IEdgeKey; 198 typedef DenseSet<IEdgeKey> IEdgeCache; 199 200 bool haveDisjointAllowedRegs(const PBQPRAGraph &G, PBQPRAGraph::NodeId NId, 201 PBQPRAGraph::NodeId MId, 202 const DisjointAllowedRegsCache &D) const { 203 const auto *NRegs = &G.getNodeMetadata(NId).getAllowedRegs(); 204 const auto *MRegs = &G.getNodeMetadata(MId).getAllowedRegs(); 205 206 if (NRegs == MRegs) 207 return false; 208 209 if (NRegs < MRegs) 210 return D.count(IKey(NRegs, MRegs)) > 0; 211 212 return D.count(IKey(MRegs, NRegs)) > 0; 213 } 214 215 void setDisjointAllowedRegs(const PBQPRAGraph &G, PBQPRAGraph::NodeId NId, 216 PBQPRAGraph::NodeId MId, 217 DisjointAllowedRegsCache &D) { 218 const auto *NRegs = &G.getNodeMetadata(NId).getAllowedRegs(); 219 const auto *MRegs = &G.getNodeMetadata(MId).getAllowedRegs(); 220 221 assert(NRegs != MRegs && "AllowedRegs can not be disjoint with itself"); 222 223 if (NRegs < MRegs) 224 D.insert(IKey(NRegs, MRegs)); 225 else 226 D.insert(IKey(MRegs, NRegs)); 227 } 228 229 // Holds (Interval, CurrentSegmentID, and NodeId). The first two are required 230 // for the fast interference graph construction algorithm. The last is there 231 // to save us from looking up node ids via the VRegToNode map in the graph 232 // metadata. 233 typedef std::tuple<LiveInterval*, size_t, PBQP::GraphBase::NodeId> 234 IntervalInfo; 235 236 static SlotIndex getStartPoint(const IntervalInfo &I) { 237 return std::get<0>(I)->segments[std::get<1>(I)].start; 238 } 239 240 static SlotIndex getEndPoint(const IntervalInfo &I) { 241 return std::get<0>(I)->segments[std::get<1>(I)].end; 242 } 243 244 static PBQP::GraphBase::NodeId getNodeId(const IntervalInfo &I) { 245 return std::get<2>(I); 246 } 247 248 static bool lowestStartPoint(const IntervalInfo &I1, 249 const IntervalInfo &I2) { 250 // Condition reversed because priority queue has the *highest* element at 251 // the front, rather than the lowest. 252 return getStartPoint(I1) > getStartPoint(I2); 253 } 254 255 static bool lowestEndPoint(const IntervalInfo &I1, 256 const IntervalInfo &I2) { 257 SlotIndex E1 = getEndPoint(I1); 258 SlotIndex E2 = getEndPoint(I2); 259 260 if (E1 < E2) 261 return true; 262 263 if (E1 > E2) 264 return false; 265 266 // If two intervals end at the same point, we need a way to break the tie or 267 // the set will assume they're actually equal and refuse to insert a 268 // "duplicate". Just compare the vregs - fast and guaranteed unique. 269 return std::get<0>(I1)->reg < std::get<0>(I2)->reg; 270 } 271 272 static bool isAtLastSegment(const IntervalInfo &I) { 273 return std::get<1>(I) == std::get<0>(I)->size() - 1; 274 } 275 276 static IntervalInfo nextSegment(const IntervalInfo &I) { 277 return std::make_tuple(std::get<0>(I), std::get<1>(I) + 1, std::get<2>(I)); 278 } 279 280 public: 281 282 void apply(PBQPRAGraph &G) override { 283 // The following is loosely based on the linear scan algorithm introduced in 284 // "Linear Scan Register Allocation" by Poletto and Sarkar. This version 285 // isn't linear, because the size of the active set isn't bound by the 286 // number of registers, but rather the size of the largest clique in the 287 // graph. Still, we expect this to be better than N^2. 288 LiveIntervals &LIS = G.getMetadata().LIS; 289 290 // Interferenc matrices are incredibly regular - they're only a function of 291 // the allowed sets, so we cache them to avoid the overhead of constructing 292 // and uniquing them. 293 IMatrixCache C; 294 295 // Finding an edge is expensive in the worst case (O(max_clique(G))). So 296 // cache locally edges we have already seen. 297 IEdgeCache EC; 298 299 // Cache known disjoint allowed registers pairs 300 DisjointAllowedRegsCache D; 301 302 typedef std::set<IntervalInfo, decltype(&lowestEndPoint)> IntervalSet; 303 typedef std::priority_queue<IntervalInfo, std::vector<IntervalInfo>, 304 decltype(&lowestStartPoint)> IntervalQueue; 305 IntervalSet Active(lowestEndPoint); 306 IntervalQueue Inactive(lowestStartPoint); 307 308 // Start by building the inactive set. 309 for (auto NId : G.nodeIds()) { 310 unsigned VReg = G.getNodeMetadata(NId).getVReg(); 311 LiveInterval &LI = LIS.getInterval(VReg); 312 assert(!LI.empty() && "PBQP graph contains node for empty interval"); 313 Inactive.push(std::make_tuple(&LI, 0, NId)); 314 } 315 316 while (!Inactive.empty()) { 317 // Tentatively grab the "next" interval - this choice may be overriden 318 // below. 319 IntervalInfo Cur = Inactive.top(); 320 321 // Retire any active intervals that end before Cur starts. 322 IntervalSet::iterator RetireItr = Active.begin(); 323 while (RetireItr != Active.end() && 324 (getEndPoint(*RetireItr) <= getStartPoint(Cur))) { 325 // If this interval has subsequent segments, add the next one to the 326 // inactive list. 327 if (!isAtLastSegment(*RetireItr)) 328 Inactive.push(nextSegment(*RetireItr)); 329 330 ++RetireItr; 331 } 332 Active.erase(Active.begin(), RetireItr); 333 334 // One of the newly retired segments may actually start before the 335 // Cur segment, so re-grab the front of the inactive list. 336 Cur = Inactive.top(); 337 Inactive.pop(); 338 339 // At this point we know that Cur overlaps all active intervals. Add the 340 // interference edges. 341 PBQP::GraphBase::NodeId NId = getNodeId(Cur); 342 for (const auto &A : Active) { 343 PBQP::GraphBase::NodeId MId = getNodeId(A); 344 345 // Do not add an edge when the nodes' allowed registers do not 346 // intersect: there is obviously no interference. 347 if (haveDisjointAllowedRegs(G, NId, MId, D)) 348 continue; 349 350 // Check that we haven't already added this edge 351 IEdgeKey EK(std::min(NId, MId), std::max(NId, MId)); 352 if (EC.count(EK)) 353 continue; 354 355 // This is a new edge - add it to the graph. 356 if (!createInterferenceEdge(G, NId, MId, C)) 357 setDisjointAllowedRegs(G, NId, MId, D); 358 else 359 EC.insert(EK); 360 } 361 362 // Finally, add Cur to the Active set. 363 Active.insert(Cur); 364 } 365 } 366 367 private: 368 369 // Create an Interference edge and add it to the graph, unless it is 370 // a null matrix, meaning the nodes' allowed registers do not have any 371 // interference. This case occurs frequently between integer and floating 372 // point registers for example. 373 // return true iff both nodes interferes. 374 bool createInterferenceEdge(PBQPRAGraph &G, 375 PBQPRAGraph::NodeId NId, PBQPRAGraph::NodeId MId, 376 IMatrixCache &C) { 377 378 const TargetRegisterInfo &TRI = 379 *G.getMetadata().MF.getSubtarget().getRegisterInfo(); 380 const auto &NRegs = G.getNodeMetadata(NId).getAllowedRegs(); 381 const auto &MRegs = G.getNodeMetadata(MId).getAllowedRegs(); 382 383 // Try looking the edge costs up in the IMatrixCache first. 384 IKey K(&NRegs, &MRegs); 385 IMatrixCache::iterator I = C.find(K); 386 if (I != C.end()) { 387 G.addEdgeBypassingCostAllocator(NId, MId, I->second); 388 return true; 389 } 390 391 PBQPRAGraph::RawMatrix M(NRegs.size() + 1, MRegs.size() + 1, 0); 392 bool NodesInterfere = false; 393 for (unsigned I = 0; I != NRegs.size(); ++I) { 394 unsigned PRegN = NRegs[I]; 395 for (unsigned J = 0; J != MRegs.size(); ++J) { 396 unsigned PRegM = MRegs[J]; 397 if (TRI.regsOverlap(PRegN, PRegM)) { 398 M[I + 1][J + 1] = std::numeric_limits<PBQP::PBQPNum>::infinity(); 399 NodesInterfere = true; 400 } 401 } 402 } 403 404 if (!NodesInterfere) 405 return false; 406 407 PBQPRAGraph::EdgeId EId = G.addEdge(NId, MId, std::move(M)); 408 C[K] = G.getEdgeCostsPtr(EId); 409 410 return true; 411 } 412 }; 413 414 415 class Coalescing : public PBQPRAConstraint { 416 public: 417 void apply(PBQPRAGraph &G) override { 418 MachineFunction &MF = G.getMetadata().MF; 419 MachineBlockFrequencyInfo &MBFI = G.getMetadata().MBFI; 420 CoalescerPair CP(*MF.getSubtarget().getRegisterInfo()); 421 422 // Scan the machine function and add a coalescing cost whenever CoalescerPair 423 // gives the Ok. 424 for (const auto &MBB : MF) { 425 for (const auto &MI : MBB) { 426 427 // Skip not-coalescable or already coalesced copies. 428 if (!CP.setRegisters(&MI) || CP.getSrcReg() == CP.getDstReg()) 429 continue; 430 431 unsigned DstReg = CP.getDstReg(); 432 unsigned SrcReg = CP.getSrcReg(); 433 434 const float Scale = 1.0f / MBFI.getEntryFreq(); 435 PBQP::PBQPNum CBenefit = MBFI.getBlockFreq(&MBB).getFrequency() * Scale; 436 437 if (CP.isPhys()) { 438 if (!MF.getRegInfo().isAllocatable(DstReg)) 439 continue; 440 441 PBQPRAGraph::NodeId NId = G.getMetadata().getNodeIdForVReg(SrcReg); 442 443 const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed = 444 G.getNodeMetadata(NId).getAllowedRegs(); 445 446 unsigned PRegOpt = 0; 447 while (PRegOpt < Allowed.size() && Allowed[PRegOpt] != DstReg) 448 ++PRegOpt; 449 450 if (PRegOpt < Allowed.size()) { 451 PBQPRAGraph::RawVector NewCosts(G.getNodeCosts(NId)); 452 NewCosts[PRegOpt + 1] -= CBenefit; 453 G.setNodeCosts(NId, std::move(NewCosts)); 454 } 455 } else { 456 PBQPRAGraph::NodeId N1Id = G.getMetadata().getNodeIdForVReg(DstReg); 457 PBQPRAGraph::NodeId N2Id = G.getMetadata().getNodeIdForVReg(SrcReg); 458 const PBQPRAGraph::NodeMetadata::AllowedRegVector *Allowed1 = 459 &G.getNodeMetadata(N1Id).getAllowedRegs(); 460 const PBQPRAGraph::NodeMetadata::AllowedRegVector *Allowed2 = 461 &G.getNodeMetadata(N2Id).getAllowedRegs(); 462 463 PBQPRAGraph::EdgeId EId = G.findEdge(N1Id, N2Id); 464 if (EId == G.invalidEdgeId()) { 465 PBQPRAGraph::RawMatrix Costs(Allowed1->size() + 1, 466 Allowed2->size() + 1, 0); 467 addVirtRegCoalesce(Costs, *Allowed1, *Allowed2, CBenefit); 468 G.addEdge(N1Id, N2Id, std::move(Costs)); 469 } else { 470 if (G.getEdgeNode1Id(EId) == N2Id) { 471 std::swap(N1Id, N2Id); 472 std::swap(Allowed1, Allowed2); 473 } 474 PBQPRAGraph::RawMatrix Costs(G.getEdgeCosts(EId)); 475 addVirtRegCoalesce(Costs, *Allowed1, *Allowed2, CBenefit); 476 G.updateEdgeCosts(EId, std::move(Costs)); 477 } 478 } 479 } 480 } 481 } 482 483 private: 484 485 void addVirtRegCoalesce( 486 PBQPRAGraph::RawMatrix &CostMat, 487 const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed1, 488 const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed2, 489 PBQP::PBQPNum Benefit) { 490 assert(CostMat.getRows() == Allowed1.size() + 1 && "Size mismatch."); 491 assert(CostMat.getCols() == Allowed2.size() + 1 && "Size mismatch."); 492 for (unsigned I = 0; I != Allowed1.size(); ++I) { 493 unsigned PReg1 = Allowed1[I]; 494 for (unsigned J = 0; J != Allowed2.size(); ++J) { 495 unsigned PReg2 = Allowed2[J]; 496 if (PReg1 == PReg2) 497 CostMat[I + 1][J + 1] -= Benefit; 498 } 499 } 500 } 501 502 }; 503 504 } // End anonymous namespace. 505 506 // Out-of-line destructor/anchor for PBQPRAConstraint. 507 PBQPRAConstraint::~PBQPRAConstraint() {} 508 void PBQPRAConstraint::anchor() {} 509 void PBQPRAConstraintList::anchor() {} 510 511 void RegAllocPBQP::getAnalysisUsage(AnalysisUsage &au) const { 512 au.setPreservesCFG(); 513 au.addRequired<AAResultsWrapperPass>(); 514 au.addPreserved<AAResultsWrapperPass>(); 515 au.addRequired<SlotIndexes>(); 516 au.addPreserved<SlotIndexes>(); 517 au.addRequired<LiveIntervals>(); 518 au.addPreserved<LiveIntervals>(); 519 //au.addRequiredID(SplitCriticalEdgesID); 520 if (customPassID) 521 au.addRequiredID(*customPassID); 522 au.addRequired<LiveStacks>(); 523 au.addPreserved<LiveStacks>(); 524 au.addRequired<MachineBlockFrequencyInfo>(); 525 au.addPreserved<MachineBlockFrequencyInfo>(); 526 au.addRequired<MachineLoopInfo>(); 527 au.addPreserved<MachineLoopInfo>(); 528 au.addRequired<MachineDominatorTree>(); 529 au.addPreserved<MachineDominatorTree>(); 530 au.addRequired<VirtRegMap>(); 531 au.addPreserved<VirtRegMap>(); 532 MachineFunctionPass::getAnalysisUsage(au); 533 } 534 535 void RegAllocPBQP::findVRegIntervalsToAlloc(const MachineFunction &MF, 536 LiveIntervals &LIS) { 537 const MachineRegisterInfo &MRI = MF.getRegInfo(); 538 539 // Iterate over all live ranges. 540 for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) { 541 unsigned Reg = TargetRegisterInfo::index2VirtReg(I); 542 if (MRI.reg_nodbg_empty(Reg)) 543 continue; 544 LiveInterval &LI = LIS.getInterval(Reg); 545 546 // If this live interval is non-empty we will use pbqp to allocate it. 547 // Empty intervals we allocate in a simple post-processing stage in 548 // finalizeAlloc. 549 if (!LI.empty()) { 550 VRegsToAlloc.insert(LI.reg); 551 } else { 552 EmptyIntervalVRegs.insert(LI.reg); 553 } 554 } 555 } 556 557 static bool isACalleeSavedRegister(unsigned reg, const TargetRegisterInfo &TRI, 558 const MachineFunction &MF) { 559 const MCPhysReg *CSR = TRI.getCalleeSavedRegs(&MF); 560 for (unsigned i = 0; CSR[i] != 0; ++i) 561 if (TRI.regsOverlap(reg, CSR[i])) 562 return true; 563 return false; 564 } 565 566 void RegAllocPBQP::initializeGraph(PBQPRAGraph &G, VirtRegMap &VRM, 567 Spiller &VRegSpiller) { 568 MachineFunction &MF = G.getMetadata().MF; 569 570 LiveIntervals &LIS = G.getMetadata().LIS; 571 const MachineRegisterInfo &MRI = G.getMetadata().MF.getRegInfo(); 572 const TargetRegisterInfo &TRI = 573 *G.getMetadata().MF.getSubtarget().getRegisterInfo(); 574 575 std::vector<unsigned> Worklist(VRegsToAlloc.begin(), VRegsToAlloc.end()); 576 577 while (!Worklist.empty()) { 578 unsigned VReg = Worklist.back(); 579 Worklist.pop_back(); 580 581 const TargetRegisterClass *TRC = MRI.getRegClass(VReg); 582 LiveInterval &VRegLI = LIS.getInterval(VReg); 583 584 // Record any overlaps with regmask operands. 585 BitVector RegMaskOverlaps; 586 LIS.checkRegMaskInterference(VRegLI, RegMaskOverlaps); 587 588 // Compute an initial allowed set for the current vreg. 589 std::vector<unsigned> VRegAllowed; 590 ArrayRef<MCPhysReg> RawPRegOrder = TRC->getRawAllocationOrder(MF); 591 for (unsigned I = 0; I != RawPRegOrder.size(); ++I) { 592 unsigned PReg = RawPRegOrder[I]; 593 if (MRI.isReserved(PReg)) 594 continue; 595 596 // vregLI crosses a regmask operand that clobbers preg. 597 if (!RegMaskOverlaps.empty() && !RegMaskOverlaps.test(PReg)) 598 continue; 599 600 // vregLI overlaps fixed regunit interference. 601 bool Interference = false; 602 for (MCRegUnitIterator Units(PReg, &TRI); Units.isValid(); ++Units) { 603 if (VRegLI.overlaps(LIS.getRegUnit(*Units))) { 604 Interference = true; 605 break; 606 } 607 } 608 if (Interference) 609 continue; 610 611 // preg is usable for this virtual register. 612 VRegAllowed.push_back(PReg); 613 } 614 615 // Check for vregs that have no allowed registers. These should be 616 // pre-spilled and the new vregs added to the worklist. 617 if (VRegAllowed.empty()) { 618 SmallVector<unsigned, 8> NewVRegs; 619 spillVReg(VReg, NewVRegs, MF, LIS, VRM, VRegSpiller); 620 Worklist.insert(Worklist.end(), NewVRegs.begin(), NewVRegs.end()); 621 continue; 622 } 623 624 PBQPRAGraph::RawVector NodeCosts(VRegAllowed.size() + 1, 0); 625 626 // Tweak cost of callee saved registers, as using then force spilling and 627 // restoring them. This would only happen in the prologue / epilogue though. 628 for (unsigned i = 0; i != VRegAllowed.size(); ++i) 629 if (isACalleeSavedRegister(VRegAllowed[i], TRI, MF)) 630 NodeCosts[1 + i] += 1.0; 631 632 PBQPRAGraph::NodeId NId = G.addNode(std::move(NodeCosts)); 633 G.getNodeMetadata(NId).setVReg(VReg); 634 G.getNodeMetadata(NId).setAllowedRegs( 635 G.getMetadata().getAllowedRegs(std::move(VRegAllowed))); 636 G.getMetadata().setNodeIdForVReg(VReg, NId); 637 } 638 } 639 640 void RegAllocPBQP::spillVReg(unsigned VReg, 641 SmallVectorImpl<unsigned> &NewIntervals, 642 MachineFunction &MF, LiveIntervals &LIS, 643 VirtRegMap &VRM, Spiller &VRegSpiller) { 644 645 VRegsToAlloc.erase(VReg); 646 LiveRangeEdit LRE(&LIS.getInterval(VReg), NewIntervals, MF, LIS, &VRM, 647 nullptr, &DeadRemats); 648 VRegSpiller.spill(LRE); 649 650 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 651 (void)TRI; 652 DEBUG(dbgs() << "VREG " << PrintReg(VReg, &TRI) << " -> SPILLED (Cost: " 653 << LRE.getParent().weight << ", New vregs: "); 654 655 // Copy any newly inserted live intervals into the list of regs to 656 // allocate. 657 for (LiveRangeEdit::iterator I = LRE.begin(), E = LRE.end(); 658 I != E; ++I) { 659 const LiveInterval &LI = LIS.getInterval(*I); 660 assert(!LI.empty() && "Empty spill range."); 661 DEBUG(dbgs() << PrintReg(LI.reg, &TRI) << " "); 662 VRegsToAlloc.insert(LI.reg); 663 } 664 665 DEBUG(dbgs() << ")\n"); 666 } 667 668 bool RegAllocPBQP::mapPBQPToRegAlloc(const PBQPRAGraph &G, 669 const PBQP::Solution &Solution, 670 VirtRegMap &VRM, 671 Spiller &VRegSpiller) { 672 MachineFunction &MF = G.getMetadata().MF; 673 LiveIntervals &LIS = G.getMetadata().LIS; 674 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 675 (void)TRI; 676 677 // Set to true if we have any spills 678 bool AnotherRoundNeeded = false; 679 680 // Clear the existing allocation. 681 VRM.clearAllVirt(); 682 683 // Iterate over the nodes mapping the PBQP solution to a register 684 // assignment. 685 for (auto NId : G.nodeIds()) { 686 unsigned VReg = G.getNodeMetadata(NId).getVReg(); 687 unsigned AllocOption = Solution.getSelection(NId); 688 689 if (AllocOption != PBQP::RegAlloc::getSpillOptionIdx()) { 690 unsigned PReg = G.getNodeMetadata(NId).getAllowedRegs()[AllocOption - 1]; 691 DEBUG(dbgs() << "VREG " << PrintReg(VReg, &TRI) << " -> " 692 << TRI.getName(PReg) << "\n"); 693 assert(PReg != 0 && "Invalid preg selected."); 694 VRM.assignVirt2Phys(VReg, PReg); 695 } else { 696 // Spill VReg. If this introduces new intervals we'll need another round 697 // of allocation. 698 SmallVector<unsigned, 8> NewVRegs; 699 spillVReg(VReg, NewVRegs, MF, LIS, VRM, VRegSpiller); 700 AnotherRoundNeeded |= !NewVRegs.empty(); 701 } 702 } 703 704 return !AnotherRoundNeeded; 705 } 706 707 void RegAllocPBQP::finalizeAlloc(MachineFunction &MF, 708 LiveIntervals &LIS, 709 VirtRegMap &VRM) const { 710 MachineRegisterInfo &MRI = MF.getRegInfo(); 711 712 // First allocate registers for the empty intervals. 713 for (RegSet::const_iterator 714 I = EmptyIntervalVRegs.begin(), E = EmptyIntervalVRegs.end(); 715 I != E; ++I) { 716 LiveInterval &LI = LIS.getInterval(*I); 717 718 unsigned PReg = MRI.getSimpleHint(LI.reg); 719 720 if (PReg == 0) { 721 const TargetRegisterClass &RC = *MRI.getRegClass(LI.reg); 722 PReg = RC.getRawAllocationOrder(MF).front(); 723 } 724 725 VRM.assignVirt2Phys(LI.reg, PReg); 726 } 727 } 728 729 void RegAllocPBQP::postOptimization(Spiller &VRegSpiller, LiveIntervals &LIS) { 730 VRegSpiller.postOptimization(); 731 /// Remove dead defs because of rematerialization. 732 for (auto DeadInst : DeadRemats) { 733 LIS.RemoveMachineInstrFromMaps(*DeadInst); 734 DeadInst->eraseFromParent(); 735 } 736 DeadRemats.clear(); 737 } 738 739 static inline float normalizePBQPSpillWeight(float UseDefFreq, unsigned Size, 740 unsigned NumInstr) { 741 // All intervals have a spill weight that is mostly proportional to the number 742 // of uses, with uses in loops having a bigger weight. 743 return NumInstr * normalizeSpillWeight(UseDefFreq, Size, 1); 744 } 745 746 bool RegAllocPBQP::runOnMachineFunction(MachineFunction &MF) { 747 LiveIntervals &LIS = getAnalysis<LiveIntervals>(); 748 MachineBlockFrequencyInfo &MBFI = 749 getAnalysis<MachineBlockFrequencyInfo>(); 750 751 VirtRegMap &VRM = getAnalysis<VirtRegMap>(); 752 753 calculateSpillWeightsAndHints(LIS, MF, &VRM, getAnalysis<MachineLoopInfo>(), 754 MBFI, normalizePBQPSpillWeight); 755 756 std::unique_ptr<Spiller> VRegSpiller(createInlineSpiller(*this, MF, VRM)); 757 758 MF.getRegInfo().freezeReservedRegs(MF); 759 760 DEBUG(dbgs() << "PBQP Register Allocating for " << MF.getName() << "\n"); 761 762 // Allocator main loop: 763 // 764 // * Map current regalloc problem to a PBQP problem 765 // * Solve the PBQP problem 766 // * Map the solution back to a register allocation 767 // * Spill if necessary 768 // 769 // This process is continued till no more spills are generated. 770 771 // Find the vreg intervals in need of allocation. 772 findVRegIntervalsToAlloc(MF, LIS); 773 774 #ifndef NDEBUG 775 const Function &F = *MF.getFunction(); 776 std::string FullyQualifiedName = 777 F.getParent()->getModuleIdentifier() + "." + F.getName().str(); 778 #endif 779 780 // If there are non-empty intervals allocate them using pbqp. 781 if (!VRegsToAlloc.empty()) { 782 783 const TargetSubtargetInfo &Subtarget = MF.getSubtarget(); 784 std::unique_ptr<PBQPRAConstraintList> ConstraintsRoot = 785 llvm::make_unique<PBQPRAConstraintList>(); 786 ConstraintsRoot->addConstraint(llvm::make_unique<SpillCosts>()); 787 ConstraintsRoot->addConstraint(llvm::make_unique<Interference>()); 788 if (PBQPCoalescing) 789 ConstraintsRoot->addConstraint(llvm::make_unique<Coalescing>()); 790 ConstraintsRoot->addConstraint(Subtarget.getCustomPBQPConstraints()); 791 792 bool PBQPAllocComplete = false; 793 unsigned Round = 0; 794 795 while (!PBQPAllocComplete) { 796 DEBUG(dbgs() << " PBQP Regalloc round " << Round << ":\n"); 797 798 PBQPRAGraph G(PBQPRAGraph::GraphMetadata(MF, LIS, MBFI)); 799 initializeGraph(G, VRM, *VRegSpiller); 800 ConstraintsRoot->apply(G); 801 802 #ifndef NDEBUG 803 if (PBQPDumpGraphs) { 804 std::ostringstream RS; 805 RS << Round; 806 std::string GraphFileName = FullyQualifiedName + "." + RS.str() + 807 ".pbqpgraph"; 808 std::error_code EC; 809 raw_fd_ostream OS(GraphFileName, EC, sys::fs::F_Text); 810 DEBUG(dbgs() << "Dumping graph for round " << Round << " to \"" 811 << GraphFileName << "\"\n"); 812 G.dump(OS); 813 } 814 #endif 815 816 PBQP::Solution Solution = PBQP::RegAlloc::solve(G); 817 PBQPAllocComplete = mapPBQPToRegAlloc(G, Solution, VRM, *VRegSpiller); 818 ++Round; 819 } 820 } 821 822 // Finalise allocation, allocate empty ranges. 823 finalizeAlloc(MF, LIS, VRM); 824 postOptimization(*VRegSpiller, LIS); 825 VRegsToAlloc.clear(); 826 EmptyIntervalVRegs.clear(); 827 828 DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << VRM << "\n"); 829 830 return true; 831 } 832 833 /// Create Printable object for node and register info. 834 static Printable PrintNodeInfo(PBQP::RegAlloc::PBQPRAGraph::NodeId NId, 835 const PBQP::RegAlloc::PBQPRAGraph &G) { 836 return Printable([NId, &G](raw_ostream &OS) { 837 const MachineRegisterInfo &MRI = G.getMetadata().MF.getRegInfo(); 838 const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo(); 839 unsigned VReg = G.getNodeMetadata(NId).getVReg(); 840 const char *RegClassName = TRI->getRegClassName(MRI.getRegClass(VReg)); 841 OS << NId << " (" << RegClassName << ':' << PrintReg(VReg, TRI) << ')'; 842 }); 843 } 844 845 void PBQP::RegAlloc::PBQPRAGraph::dump(raw_ostream &OS) const { 846 for (auto NId : nodeIds()) { 847 const Vector &Costs = getNodeCosts(NId); 848 assert(Costs.getLength() != 0 && "Empty vector in graph."); 849 OS << PrintNodeInfo(NId, *this) << ": " << Costs << '\n'; 850 } 851 OS << '\n'; 852 853 for (auto EId : edgeIds()) { 854 NodeId N1Id = getEdgeNode1Id(EId); 855 NodeId N2Id = getEdgeNode2Id(EId); 856 assert(N1Id != N2Id && "PBQP graphs should not have self-edges."); 857 const Matrix &M = getEdgeCosts(EId); 858 assert(M.getRows() != 0 && "No rows in matrix."); 859 assert(M.getCols() != 0 && "No cols in matrix."); 860 OS << PrintNodeInfo(N1Id, *this) << ' ' << M.getRows() << " rows / "; 861 OS << PrintNodeInfo(N2Id, *this) << ' ' << M.getCols() << " cols:\n"; 862 OS << M << '\n'; 863 } 864 } 865 866 LLVM_DUMP_METHOD void PBQP::RegAlloc::PBQPRAGraph::dump() const { dump(dbgs()); } 867 868 void PBQP::RegAlloc::PBQPRAGraph::printDot(raw_ostream &OS) const { 869 OS << "graph {\n"; 870 for (auto NId : nodeIds()) { 871 OS << " node" << NId << " [ label=\"" 872 << PrintNodeInfo(NId, *this) << "\\n" 873 << getNodeCosts(NId) << "\" ]\n"; 874 } 875 876 OS << " edge [ len=" << nodeIds().size() << " ]\n"; 877 for (auto EId : edgeIds()) { 878 OS << " node" << getEdgeNode1Id(EId) 879 << " -- node" << getEdgeNode2Id(EId) 880 << " [ label=\""; 881 const Matrix &EdgeCosts = getEdgeCosts(EId); 882 for (unsigned i = 0; i < EdgeCosts.getRows(); ++i) { 883 OS << EdgeCosts.getRowAsVector(i) << "\\n"; 884 } 885 OS << "\" ]\n"; 886 } 887 OS << "}\n"; 888 } 889 890 FunctionPass *llvm::createPBQPRegisterAllocator(char *customPassID) { 891 return new RegAllocPBQP(customPassID); 892 } 893 894 FunctionPass* llvm::createDefaultPBQPRegisterAllocator() { 895 return createPBQPRegisterAllocator(); 896 } 897 898 #undef DEBUG_TYPE 899