1 //===------ RegAllocPBQP.cpp ---- PBQP Register Allocator -------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains a Partitioned Boolean Quadratic Programming (PBQP) based
11 // register allocator for LLVM. This allocator works by constructing a PBQP
12 // problem representing the register allocation problem under consideration,
13 // solving this using a PBQP solver, and mapping the solution back to a
14 // register assignment. If any variables are selected for spilling then spill
15 // code is inserted and the process repeated.
16 //
17 // The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned
18 // for register allocation. For more information on PBQP for register
19 // allocation, see the following papers:
20 //
21 //   (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with
22 //   PBQP. In Proceedings of the 7th Joint Modular Languages Conference
23 //   (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361.
24 //
25 //   (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular
26 //   architectures. In Proceedings of the Joint Conference on Languages,
27 //   Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York,
28 //   NY, USA, 139-148.
29 //
30 //===----------------------------------------------------------------------===//
31 
32 #include "llvm/CodeGen/RegAllocPBQP.h"
33 #include "RegisterCoalescer.h"
34 #include "Spiller.h"
35 #include "llvm/Analysis/AliasAnalysis.h"
36 #include "llvm/CodeGen/CalcSpillWeights.h"
37 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
38 #include "llvm/CodeGen/LiveRangeEdit.h"
39 #include "llvm/CodeGen/LiveStackAnalysis.h"
40 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
41 #include "llvm/CodeGen/MachineDominators.h"
42 #include "llvm/CodeGen/MachineFunctionPass.h"
43 #include "llvm/CodeGen/MachineLoopInfo.h"
44 #include "llvm/CodeGen/MachineRegisterInfo.h"
45 #include "llvm/CodeGen/RegAllocRegistry.h"
46 #include "llvm/CodeGen/VirtRegMap.h"
47 #include "llvm/IR/Module.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/FileSystem.h"
50 #include "llvm/Support/Printable.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include "llvm/Target/TargetInstrInfo.h"
53 #include "llvm/Target/TargetSubtargetInfo.h"
54 #include <limits>
55 #include <memory>
56 #include <queue>
57 #include <set>
58 #include <sstream>
59 #include <vector>
60 
61 using namespace llvm;
62 
63 #define DEBUG_TYPE "regalloc"
64 
65 static RegisterRegAlloc
66 RegisterPBQPRepAlloc("pbqp", "PBQP register allocator",
67                        createDefaultPBQPRegisterAllocator);
68 
69 static cl::opt<bool>
70 PBQPCoalescing("pbqp-coalescing",
71                 cl::desc("Attempt coalescing during PBQP register allocation."),
72                 cl::init(false), cl::Hidden);
73 
74 #ifndef NDEBUG
75 static cl::opt<bool>
76 PBQPDumpGraphs("pbqp-dump-graphs",
77                cl::desc("Dump graphs for each function/round in the compilation unit."),
78                cl::init(false), cl::Hidden);
79 #endif
80 
81 namespace {
82 
83 ///
84 /// PBQP based allocators solve the register allocation problem by mapping
85 /// register allocation problems to Partitioned Boolean Quadratic
86 /// Programming problems.
87 class RegAllocPBQP : public MachineFunctionPass {
88 public:
89 
90   static char ID;
91 
92   /// Construct a PBQP register allocator.
93   RegAllocPBQP(char *cPassID = nullptr)
94       : MachineFunctionPass(ID), customPassID(cPassID) {
95     initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
96     initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
97     initializeLiveStacksPass(*PassRegistry::getPassRegistry());
98     initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
99   }
100 
101   /// Return the pass name.
102   const char* getPassName() const override {
103     return "PBQP Register Allocator";
104   }
105 
106   /// PBQP analysis usage.
107   void getAnalysisUsage(AnalysisUsage &au) const override;
108 
109   /// Perform register allocation
110   bool runOnMachineFunction(MachineFunction &MF) override;
111 
112   MachineFunctionProperties getRequiredProperties() const override {
113     return MachineFunctionProperties().set(
114         MachineFunctionProperties::Property::NoPHIs);
115   }
116 
117 private:
118 
119   typedef std::map<const LiveInterval*, unsigned> LI2NodeMap;
120   typedef std::vector<const LiveInterval*> Node2LIMap;
121   typedef std::vector<unsigned> AllowedSet;
122   typedef std::vector<AllowedSet> AllowedSetMap;
123   typedef std::pair<unsigned, unsigned> RegPair;
124   typedef std::map<RegPair, PBQP::PBQPNum> CoalesceMap;
125   typedef std::set<unsigned> RegSet;
126 
127   char *customPassID;
128 
129   RegSet VRegsToAlloc, EmptyIntervalVRegs;
130 
131   /// Inst which is a def of an original reg and whose defs are already all
132   /// dead after remat is saved in DeadRemats. The deletion of such inst is
133   /// postponed till all the allocations are done, so its remat expr is
134   /// always available for the remat of all the siblings of the original reg.
135   SmallPtrSet<MachineInstr *, 32> DeadRemats;
136 
137   /// \brief Finds the initial set of vreg intervals to allocate.
138   void findVRegIntervalsToAlloc(const MachineFunction &MF, LiveIntervals &LIS);
139 
140   /// \brief Constructs an initial graph.
141   void initializeGraph(PBQPRAGraph &G, VirtRegMap &VRM, Spiller &VRegSpiller);
142 
143   /// \brief Spill the given VReg.
144   void spillVReg(unsigned VReg, SmallVectorImpl<unsigned> &NewIntervals,
145                  MachineFunction &MF, LiveIntervals &LIS, VirtRegMap &VRM,
146                  Spiller &VRegSpiller);
147 
148   /// \brief Given a solved PBQP problem maps this solution back to a register
149   /// assignment.
150   bool mapPBQPToRegAlloc(const PBQPRAGraph &G,
151                          const PBQP::Solution &Solution,
152                          VirtRegMap &VRM,
153                          Spiller &VRegSpiller);
154 
155   /// \brief Postprocessing before final spilling. Sets basic block "live in"
156   /// variables.
157   void finalizeAlloc(MachineFunction &MF, LiveIntervals &LIS,
158                      VirtRegMap &VRM) const;
159 
160   void postOptimization(Spiller &VRegSpiller, LiveIntervals &LIS);
161 };
162 
163 char RegAllocPBQP::ID = 0;
164 
165 /// @brief Set spill costs for each node in the PBQP reg-alloc graph.
166 class SpillCosts : public PBQPRAConstraint {
167 public:
168   void apply(PBQPRAGraph &G) override {
169     LiveIntervals &LIS = G.getMetadata().LIS;
170 
171     // A minimum spill costs, so that register constraints can can be set
172     // without normalization in the [0.0:MinSpillCost( interval.
173     const PBQP::PBQPNum MinSpillCost = 10.0;
174 
175     for (auto NId : G.nodeIds()) {
176       PBQP::PBQPNum SpillCost =
177         LIS.getInterval(G.getNodeMetadata(NId).getVReg()).weight;
178       if (SpillCost == 0.0)
179         SpillCost = std::numeric_limits<PBQP::PBQPNum>::min();
180       else
181         SpillCost += MinSpillCost;
182       PBQPRAGraph::RawVector NodeCosts(G.getNodeCosts(NId));
183       NodeCosts[PBQP::RegAlloc::getSpillOptionIdx()] = SpillCost;
184       G.setNodeCosts(NId, std::move(NodeCosts));
185     }
186   }
187 };
188 
189 /// @brief Add interference edges between overlapping vregs.
190 class Interference : public PBQPRAConstraint {
191 private:
192 
193   typedef const PBQP::RegAlloc::AllowedRegVector* AllowedRegVecPtr;
194   typedef std::pair<AllowedRegVecPtr, AllowedRegVecPtr> IKey;
195   typedef DenseMap<IKey, PBQPRAGraph::MatrixPtr> IMatrixCache;
196   typedef DenseSet<IKey> DisjointAllowedRegsCache;
197   typedef std::pair<PBQP::GraphBase::NodeId, PBQP::GraphBase::NodeId> IEdgeKey;
198   typedef DenseSet<IEdgeKey> IEdgeCache;
199 
200   bool haveDisjointAllowedRegs(const PBQPRAGraph &G, PBQPRAGraph::NodeId NId,
201                                PBQPRAGraph::NodeId MId,
202                                const DisjointAllowedRegsCache &D) const {
203     const auto *NRegs = &G.getNodeMetadata(NId).getAllowedRegs();
204     const auto *MRegs = &G.getNodeMetadata(MId).getAllowedRegs();
205 
206     if (NRegs == MRegs)
207       return false;
208 
209     if (NRegs < MRegs)
210       return D.count(IKey(NRegs, MRegs)) > 0;
211 
212     return D.count(IKey(MRegs, NRegs)) > 0;
213   }
214 
215   void setDisjointAllowedRegs(const PBQPRAGraph &G, PBQPRAGraph::NodeId NId,
216                               PBQPRAGraph::NodeId MId,
217                               DisjointAllowedRegsCache &D) {
218     const auto *NRegs = &G.getNodeMetadata(NId).getAllowedRegs();
219     const auto *MRegs = &G.getNodeMetadata(MId).getAllowedRegs();
220 
221     assert(NRegs != MRegs && "AllowedRegs can not be disjoint with itself");
222 
223     if (NRegs < MRegs)
224       D.insert(IKey(NRegs, MRegs));
225     else
226       D.insert(IKey(MRegs, NRegs));
227   }
228 
229   // Holds (Interval, CurrentSegmentID, and NodeId). The first two are required
230   // for the fast interference graph construction algorithm. The last is there
231   // to save us from looking up node ids via the VRegToNode map in the graph
232   // metadata.
233   typedef std::tuple<LiveInterval*, size_t, PBQP::GraphBase::NodeId>
234     IntervalInfo;
235 
236   static SlotIndex getStartPoint(const IntervalInfo &I) {
237     return std::get<0>(I)->segments[std::get<1>(I)].start;
238   }
239 
240   static SlotIndex getEndPoint(const IntervalInfo &I) {
241     return std::get<0>(I)->segments[std::get<1>(I)].end;
242   }
243 
244   static PBQP::GraphBase::NodeId getNodeId(const IntervalInfo &I) {
245     return std::get<2>(I);
246   }
247 
248   static bool lowestStartPoint(const IntervalInfo &I1,
249                                const IntervalInfo &I2) {
250     // Condition reversed because priority queue has the *highest* element at
251     // the front, rather than the lowest.
252     return getStartPoint(I1) > getStartPoint(I2);
253   }
254 
255   static bool lowestEndPoint(const IntervalInfo &I1,
256                              const IntervalInfo &I2) {
257     SlotIndex E1 = getEndPoint(I1);
258     SlotIndex E2 = getEndPoint(I2);
259 
260     if (E1 < E2)
261       return true;
262 
263     if (E1 > E2)
264       return false;
265 
266     // If two intervals end at the same point, we need a way to break the tie or
267     // the set will assume they're actually equal and refuse to insert a
268     // "duplicate". Just compare the vregs - fast and guaranteed unique.
269     return std::get<0>(I1)->reg < std::get<0>(I2)->reg;
270   }
271 
272   static bool isAtLastSegment(const IntervalInfo &I) {
273     return std::get<1>(I) == std::get<0>(I)->size() - 1;
274   }
275 
276   static IntervalInfo nextSegment(const IntervalInfo &I) {
277     return std::make_tuple(std::get<0>(I), std::get<1>(I) + 1, std::get<2>(I));
278   }
279 
280 public:
281 
282   void apply(PBQPRAGraph &G) override {
283     // The following is loosely based on the linear scan algorithm introduced in
284     // "Linear Scan Register Allocation" by Poletto and Sarkar. This version
285     // isn't linear, because the size of the active set isn't bound by the
286     // number of registers, but rather the size of the largest clique in the
287     // graph. Still, we expect this to be better than N^2.
288     LiveIntervals &LIS = G.getMetadata().LIS;
289 
290     // Interferenc matrices are incredibly regular - they're only a function of
291     // the allowed sets, so we cache them to avoid the overhead of constructing
292     // and uniquing them.
293     IMatrixCache C;
294 
295     // Finding an edge is expensive in the worst case (O(max_clique(G))). So
296     // cache locally edges we have already seen.
297     IEdgeCache EC;
298 
299     // Cache known disjoint allowed registers pairs
300     DisjointAllowedRegsCache D;
301 
302     typedef std::set<IntervalInfo, decltype(&lowestEndPoint)> IntervalSet;
303     typedef std::priority_queue<IntervalInfo, std::vector<IntervalInfo>,
304                                 decltype(&lowestStartPoint)> IntervalQueue;
305     IntervalSet Active(lowestEndPoint);
306     IntervalQueue Inactive(lowestStartPoint);
307 
308     // Start by building the inactive set.
309     for (auto NId : G.nodeIds()) {
310       unsigned VReg = G.getNodeMetadata(NId).getVReg();
311       LiveInterval &LI = LIS.getInterval(VReg);
312       assert(!LI.empty() && "PBQP graph contains node for empty interval");
313       Inactive.push(std::make_tuple(&LI, 0, NId));
314     }
315 
316     while (!Inactive.empty()) {
317       // Tentatively grab the "next" interval - this choice may be overriden
318       // below.
319       IntervalInfo Cur = Inactive.top();
320 
321       // Retire any active intervals that end before Cur starts.
322       IntervalSet::iterator RetireItr = Active.begin();
323       while (RetireItr != Active.end() &&
324              (getEndPoint(*RetireItr) <= getStartPoint(Cur))) {
325         // If this interval has subsequent segments, add the next one to the
326         // inactive list.
327         if (!isAtLastSegment(*RetireItr))
328           Inactive.push(nextSegment(*RetireItr));
329 
330         ++RetireItr;
331       }
332       Active.erase(Active.begin(), RetireItr);
333 
334       // One of the newly retired segments may actually start before the
335       // Cur segment, so re-grab the front of the inactive list.
336       Cur = Inactive.top();
337       Inactive.pop();
338 
339       // At this point we know that Cur overlaps all active intervals. Add the
340       // interference edges.
341       PBQP::GraphBase::NodeId NId = getNodeId(Cur);
342       for (const auto &A : Active) {
343         PBQP::GraphBase::NodeId MId = getNodeId(A);
344 
345         // Do not add an edge when the nodes' allowed registers do not
346         // intersect: there is obviously no interference.
347         if (haveDisjointAllowedRegs(G, NId, MId, D))
348           continue;
349 
350         // Check that we haven't already added this edge
351         IEdgeKey EK(std::min(NId, MId), std::max(NId, MId));
352         if (EC.count(EK))
353           continue;
354 
355         // This is a new edge - add it to the graph.
356         if (!createInterferenceEdge(G, NId, MId, C))
357           setDisjointAllowedRegs(G, NId, MId, D);
358         else
359           EC.insert(EK);
360       }
361 
362       // Finally, add Cur to the Active set.
363       Active.insert(Cur);
364     }
365   }
366 
367 private:
368 
369   // Create an Interference edge and add it to the graph, unless it is
370   // a null matrix, meaning the nodes' allowed registers do not have any
371   // interference. This case occurs frequently between integer and floating
372   // point registers for example.
373   // return true iff both nodes interferes.
374   bool createInterferenceEdge(PBQPRAGraph &G,
375                               PBQPRAGraph::NodeId NId, PBQPRAGraph::NodeId MId,
376                               IMatrixCache &C) {
377 
378     const TargetRegisterInfo &TRI =
379         *G.getMetadata().MF.getSubtarget().getRegisterInfo();
380     const auto &NRegs = G.getNodeMetadata(NId).getAllowedRegs();
381     const auto &MRegs = G.getNodeMetadata(MId).getAllowedRegs();
382 
383     // Try looking the edge costs up in the IMatrixCache first.
384     IKey K(&NRegs, &MRegs);
385     IMatrixCache::iterator I = C.find(K);
386     if (I != C.end()) {
387       G.addEdgeBypassingCostAllocator(NId, MId, I->second);
388       return true;
389     }
390 
391     PBQPRAGraph::RawMatrix M(NRegs.size() + 1, MRegs.size() + 1, 0);
392     bool NodesInterfere = false;
393     for (unsigned I = 0; I != NRegs.size(); ++I) {
394       unsigned PRegN = NRegs[I];
395       for (unsigned J = 0; J != MRegs.size(); ++J) {
396         unsigned PRegM = MRegs[J];
397         if (TRI.regsOverlap(PRegN, PRegM)) {
398           M[I + 1][J + 1] = std::numeric_limits<PBQP::PBQPNum>::infinity();
399           NodesInterfere = true;
400         }
401       }
402     }
403 
404     if (!NodesInterfere)
405       return false;
406 
407     PBQPRAGraph::EdgeId EId = G.addEdge(NId, MId, std::move(M));
408     C[K] = G.getEdgeCostsPtr(EId);
409 
410     return true;
411   }
412 };
413 
414 
415 class Coalescing : public PBQPRAConstraint {
416 public:
417   void apply(PBQPRAGraph &G) override {
418     MachineFunction &MF = G.getMetadata().MF;
419     MachineBlockFrequencyInfo &MBFI = G.getMetadata().MBFI;
420     CoalescerPair CP(*MF.getSubtarget().getRegisterInfo());
421 
422     // Scan the machine function and add a coalescing cost whenever CoalescerPair
423     // gives the Ok.
424     for (const auto &MBB : MF) {
425       for (const auto &MI : MBB) {
426 
427         // Skip not-coalescable or already coalesced copies.
428         if (!CP.setRegisters(&MI) || CP.getSrcReg() == CP.getDstReg())
429           continue;
430 
431         unsigned DstReg = CP.getDstReg();
432         unsigned SrcReg = CP.getSrcReg();
433 
434         const float Scale = 1.0f / MBFI.getEntryFreq();
435         PBQP::PBQPNum CBenefit = MBFI.getBlockFreq(&MBB).getFrequency() * Scale;
436 
437         if (CP.isPhys()) {
438           if (!MF.getRegInfo().isAllocatable(DstReg))
439             continue;
440 
441           PBQPRAGraph::NodeId NId = G.getMetadata().getNodeIdForVReg(SrcReg);
442 
443           const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed =
444             G.getNodeMetadata(NId).getAllowedRegs();
445 
446           unsigned PRegOpt = 0;
447           while (PRegOpt < Allowed.size() && Allowed[PRegOpt] != DstReg)
448             ++PRegOpt;
449 
450           if (PRegOpt < Allowed.size()) {
451             PBQPRAGraph::RawVector NewCosts(G.getNodeCosts(NId));
452             NewCosts[PRegOpt + 1] -= CBenefit;
453             G.setNodeCosts(NId, std::move(NewCosts));
454           }
455         } else {
456           PBQPRAGraph::NodeId N1Id = G.getMetadata().getNodeIdForVReg(DstReg);
457           PBQPRAGraph::NodeId N2Id = G.getMetadata().getNodeIdForVReg(SrcReg);
458           const PBQPRAGraph::NodeMetadata::AllowedRegVector *Allowed1 =
459             &G.getNodeMetadata(N1Id).getAllowedRegs();
460           const PBQPRAGraph::NodeMetadata::AllowedRegVector *Allowed2 =
461             &G.getNodeMetadata(N2Id).getAllowedRegs();
462 
463           PBQPRAGraph::EdgeId EId = G.findEdge(N1Id, N2Id);
464           if (EId == G.invalidEdgeId()) {
465             PBQPRAGraph::RawMatrix Costs(Allowed1->size() + 1,
466                                          Allowed2->size() + 1, 0);
467             addVirtRegCoalesce(Costs, *Allowed1, *Allowed2, CBenefit);
468             G.addEdge(N1Id, N2Id, std::move(Costs));
469           } else {
470             if (G.getEdgeNode1Id(EId) == N2Id) {
471               std::swap(N1Id, N2Id);
472               std::swap(Allowed1, Allowed2);
473             }
474             PBQPRAGraph::RawMatrix Costs(G.getEdgeCosts(EId));
475             addVirtRegCoalesce(Costs, *Allowed1, *Allowed2, CBenefit);
476             G.updateEdgeCosts(EId, std::move(Costs));
477           }
478         }
479       }
480     }
481   }
482 
483 private:
484 
485   void addVirtRegCoalesce(
486                     PBQPRAGraph::RawMatrix &CostMat,
487                     const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed1,
488                     const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed2,
489                     PBQP::PBQPNum Benefit) {
490     assert(CostMat.getRows() == Allowed1.size() + 1 && "Size mismatch.");
491     assert(CostMat.getCols() == Allowed2.size() + 1 && "Size mismatch.");
492     for (unsigned I = 0; I != Allowed1.size(); ++I) {
493       unsigned PReg1 = Allowed1[I];
494       for (unsigned J = 0; J != Allowed2.size(); ++J) {
495         unsigned PReg2 = Allowed2[J];
496         if (PReg1 == PReg2)
497           CostMat[I + 1][J + 1] -= Benefit;
498       }
499     }
500   }
501 
502 };
503 
504 } // End anonymous namespace.
505 
506 // Out-of-line destructor/anchor for PBQPRAConstraint.
507 PBQPRAConstraint::~PBQPRAConstraint() {}
508 void PBQPRAConstraint::anchor() {}
509 void PBQPRAConstraintList::anchor() {}
510 
511 void RegAllocPBQP::getAnalysisUsage(AnalysisUsage &au) const {
512   au.setPreservesCFG();
513   au.addRequired<AAResultsWrapperPass>();
514   au.addPreserved<AAResultsWrapperPass>();
515   au.addRequired<SlotIndexes>();
516   au.addPreserved<SlotIndexes>();
517   au.addRequired<LiveIntervals>();
518   au.addPreserved<LiveIntervals>();
519   //au.addRequiredID(SplitCriticalEdgesID);
520   if (customPassID)
521     au.addRequiredID(*customPassID);
522   au.addRequired<LiveStacks>();
523   au.addPreserved<LiveStacks>();
524   au.addRequired<MachineBlockFrequencyInfo>();
525   au.addPreserved<MachineBlockFrequencyInfo>();
526   au.addRequired<MachineLoopInfo>();
527   au.addPreserved<MachineLoopInfo>();
528   au.addRequired<MachineDominatorTree>();
529   au.addPreserved<MachineDominatorTree>();
530   au.addRequired<VirtRegMap>();
531   au.addPreserved<VirtRegMap>();
532   MachineFunctionPass::getAnalysisUsage(au);
533 }
534 
535 void RegAllocPBQP::findVRegIntervalsToAlloc(const MachineFunction &MF,
536                                             LiveIntervals &LIS) {
537   const MachineRegisterInfo &MRI = MF.getRegInfo();
538 
539   // Iterate over all live ranges.
540   for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
541     unsigned Reg = TargetRegisterInfo::index2VirtReg(I);
542     if (MRI.reg_nodbg_empty(Reg))
543       continue;
544     LiveInterval &LI = LIS.getInterval(Reg);
545 
546     // If this live interval is non-empty we will use pbqp to allocate it.
547     // Empty intervals we allocate in a simple post-processing stage in
548     // finalizeAlloc.
549     if (!LI.empty()) {
550       VRegsToAlloc.insert(LI.reg);
551     } else {
552       EmptyIntervalVRegs.insert(LI.reg);
553     }
554   }
555 }
556 
557 static bool isACalleeSavedRegister(unsigned reg, const TargetRegisterInfo &TRI,
558                                    const MachineFunction &MF) {
559   const MCPhysReg *CSR = TRI.getCalleeSavedRegs(&MF);
560   for (unsigned i = 0; CSR[i] != 0; ++i)
561     if (TRI.regsOverlap(reg, CSR[i]))
562       return true;
563   return false;
564 }
565 
566 void RegAllocPBQP::initializeGraph(PBQPRAGraph &G, VirtRegMap &VRM,
567                                    Spiller &VRegSpiller) {
568   MachineFunction &MF = G.getMetadata().MF;
569 
570   LiveIntervals &LIS = G.getMetadata().LIS;
571   const MachineRegisterInfo &MRI = G.getMetadata().MF.getRegInfo();
572   const TargetRegisterInfo &TRI =
573       *G.getMetadata().MF.getSubtarget().getRegisterInfo();
574 
575   std::vector<unsigned> Worklist(VRegsToAlloc.begin(), VRegsToAlloc.end());
576 
577   while (!Worklist.empty()) {
578     unsigned VReg = Worklist.back();
579     Worklist.pop_back();
580 
581     const TargetRegisterClass *TRC = MRI.getRegClass(VReg);
582     LiveInterval &VRegLI = LIS.getInterval(VReg);
583 
584     // Record any overlaps with regmask operands.
585     BitVector RegMaskOverlaps;
586     LIS.checkRegMaskInterference(VRegLI, RegMaskOverlaps);
587 
588     // Compute an initial allowed set for the current vreg.
589     std::vector<unsigned> VRegAllowed;
590     ArrayRef<MCPhysReg> RawPRegOrder = TRC->getRawAllocationOrder(MF);
591     for (unsigned I = 0; I != RawPRegOrder.size(); ++I) {
592       unsigned PReg = RawPRegOrder[I];
593       if (MRI.isReserved(PReg))
594         continue;
595 
596       // vregLI crosses a regmask operand that clobbers preg.
597       if (!RegMaskOverlaps.empty() && !RegMaskOverlaps.test(PReg))
598         continue;
599 
600       // vregLI overlaps fixed regunit interference.
601       bool Interference = false;
602       for (MCRegUnitIterator Units(PReg, &TRI); Units.isValid(); ++Units) {
603         if (VRegLI.overlaps(LIS.getRegUnit(*Units))) {
604           Interference = true;
605           break;
606         }
607       }
608       if (Interference)
609         continue;
610 
611       // preg is usable for this virtual register.
612       VRegAllowed.push_back(PReg);
613     }
614 
615     // Check for vregs that have no allowed registers. These should be
616     // pre-spilled and the new vregs added to the worklist.
617     if (VRegAllowed.empty()) {
618       SmallVector<unsigned, 8> NewVRegs;
619       spillVReg(VReg, NewVRegs, MF, LIS, VRM, VRegSpiller);
620       Worklist.insert(Worklist.end(), NewVRegs.begin(), NewVRegs.end());
621       continue;
622     }
623 
624     PBQPRAGraph::RawVector NodeCosts(VRegAllowed.size() + 1, 0);
625 
626     // Tweak cost of callee saved registers, as using then force spilling and
627     // restoring them. This would only happen in the prologue / epilogue though.
628     for (unsigned i = 0; i != VRegAllowed.size(); ++i)
629       if (isACalleeSavedRegister(VRegAllowed[i], TRI, MF))
630         NodeCosts[1 + i] += 1.0;
631 
632     PBQPRAGraph::NodeId NId = G.addNode(std::move(NodeCosts));
633     G.getNodeMetadata(NId).setVReg(VReg);
634     G.getNodeMetadata(NId).setAllowedRegs(
635       G.getMetadata().getAllowedRegs(std::move(VRegAllowed)));
636     G.getMetadata().setNodeIdForVReg(VReg, NId);
637   }
638 }
639 
640 void RegAllocPBQP::spillVReg(unsigned VReg,
641                              SmallVectorImpl<unsigned> &NewIntervals,
642                              MachineFunction &MF, LiveIntervals &LIS,
643                              VirtRegMap &VRM, Spiller &VRegSpiller) {
644 
645   VRegsToAlloc.erase(VReg);
646   LiveRangeEdit LRE(&LIS.getInterval(VReg), NewIntervals, MF, LIS, &VRM,
647                     nullptr, &DeadRemats);
648   VRegSpiller.spill(LRE);
649 
650   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
651   (void)TRI;
652   DEBUG(dbgs() << "VREG " << PrintReg(VReg, &TRI) << " -> SPILLED (Cost: "
653                << LRE.getParent().weight << ", New vregs: ");
654 
655   // Copy any newly inserted live intervals into the list of regs to
656   // allocate.
657   for (LiveRangeEdit::iterator I = LRE.begin(), E = LRE.end();
658        I != E; ++I) {
659     const LiveInterval &LI = LIS.getInterval(*I);
660     assert(!LI.empty() && "Empty spill range.");
661     DEBUG(dbgs() << PrintReg(LI.reg, &TRI) << " ");
662     VRegsToAlloc.insert(LI.reg);
663   }
664 
665   DEBUG(dbgs() << ")\n");
666 }
667 
668 bool RegAllocPBQP::mapPBQPToRegAlloc(const PBQPRAGraph &G,
669                                      const PBQP::Solution &Solution,
670                                      VirtRegMap &VRM,
671                                      Spiller &VRegSpiller) {
672   MachineFunction &MF = G.getMetadata().MF;
673   LiveIntervals &LIS = G.getMetadata().LIS;
674   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
675   (void)TRI;
676 
677   // Set to true if we have any spills
678   bool AnotherRoundNeeded = false;
679 
680   // Clear the existing allocation.
681   VRM.clearAllVirt();
682 
683   // Iterate over the nodes mapping the PBQP solution to a register
684   // assignment.
685   for (auto NId : G.nodeIds()) {
686     unsigned VReg = G.getNodeMetadata(NId).getVReg();
687     unsigned AllocOption = Solution.getSelection(NId);
688 
689     if (AllocOption != PBQP::RegAlloc::getSpillOptionIdx()) {
690       unsigned PReg = G.getNodeMetadata(NId).getAllowedRegs()[AllocOption - 1];
691       DEBUG(dbgs() << "VREG " << PrintReg(VReg, &TRI) << " -> "
692             << TRI.getName(PReg) << "\n");
693       assert(PReg != 0 && "Invalid preg selected.");
694       VRM.assignVirt2Phys(VReg, PReg);
695     } else {
696       // Spill VReg. If this introduces new intervals we'll need another round
697       // of allocation.
698       SmallVector<unsigned, 8> NewVRegs;
699       spillVReg(VReg, NewVRegs, MF, LIS, VRM, VRegSpiller);
700       AnotherRoundNeeded |= !NewVRegs.empty();
701     }
702   }
703 
704   return !AnotherRoundNeeded;
705 }
706 
707 void RegAllocPBQP::finalizeAlloc(MachineFunction &MF,
708                                  LiveIntervals &LIS,
709                                  VirtRegMap &VRM) const {
710   MachineRegisterInfo &MRI = MF.getRegInfo();
711 
712   // First allocate registers for the empty intervals.
713   for (RegSet::const_iterator
714          I = EmptyIntervalVRegs.begin(), E = EmptyIntervalVRegs.end();
715          I != E; ++I) {
716     LiveInterval &LI = LIS.getInterval(*I);
717 
718     unsigned PReg = MRI.getSimpleHint(LI.reg);
719 
720     if (PReg == 0) {
721       const TargetRegisterClass &RC = *MRI.getRegClass(LI.reg);
722       PReg = RC.getRawAllocationOrder(MF).front();
723     }
724 
725     VRM.assignVirt2Phys(LI.reg, PReg);
726   }
727 }
728 
729 void RegAllocPBQP::postOptimization(Spiller &VRegSpiller, LiveIntervals &LIS) {
730   VRegSpiller.postOptimization();
731   /// Remove dead defs because of rematerialization.
732   for (auto DeadInst : DeadRemats) {
733     LIS.RemoveMachineInstrFromMaps(*DeadInst);
734     DeadInst->eraseFromParent();
735   }
736   DeadRemats.clear();
737 }
738 
739 static inline float normalizePBQPSpillWeight(float UseDefFreq, unsigned Size,
740                                          unsigned NumInstr) {
741   // All intervals have a spill weight that is mostly proportional to the number
742   // of uses, with uses in loops having a bigger weight.
743   return NumInstr * normalizeSpillWeight(UseDefFreq, Size, 1);
744 }
745 
746 bool RegAllocPBQP::runOnMachineFunction(MachineFunction &MF) {
747   LiveIntervals &LIS = getAnalysis<LiveIntervals>();
748   MachineBlockFrequencyInfo &MBFI =
749     getAnalysis<MachineBlockFrequencyInfo>();
750 
751   VirtRegMap &VRM = getAnalysis<VirtRegMap>();
752 
753   calculateSpillWeightsAndHints(LIS, MF, &VRM, getAnalysis<MachineLoopInfo>(),
754                                 MBFI, normalizePBQPSpillWeight);
755 
756   std::unique_ptr<Spiller> VRegSpiller(createInlineSpiller(*this, MF, VRM));
757 
758   MF.getRegInfo().freezeReservedRegs(MF);
759 
760   DEBUG(dbgs() << "PBQP Register Allocating for " << MF.getName() << "\n");
761 
762   // Allocator main loop:
763   //
764   // * Map current regalloc problem to a PBQP problem
765   // * Solve the PBQP problem
766   // * Map the solution back to a register allocation
767   // * Spill if necessary
768   //
769   // This process is continued till no more spills are generated.
770 
771   // Find the vreg intervals in need of allocation.
772   findVRegIntervalsToAlloc(MF, LIS);
773 
774 #ifndef NDEBUG
775   const Function &F = *MF.getFunction();
776   std::string FullyQualifiedName =
777     F.getParent()->getModuleIdentifier() + "." + F.getName().str();
778 #endif
779 
780   // If there are non-empty intervals allocate them using pbqp.
781   if (!VRegsToAlloc.empty()) {
782 
783     const TargetSubtargetInfo &Subtarget = MF.getSubtarget();
784     std::unique_ptr<PBQPRAConstraintList> ConstraintsRoot =
785       llvm::make_unique<PBQPRAConstraintList>();
786     ConstraintsRoot->addConstraint(llvm::make_unique<SpillCosts>());
787     ConstraintsRoot->addConstraint(llvm::make_unique<Interference>());
788     if (PBQPCoalescing)
789       ConstraintsRoot->addConstraint(llvm::make_unique<Coalescing>());
790     ConstraintsRoot->addConstraint(Subtarget.getCustomPBQPConstraints());
791 
792     bool PBQPAllocComplete = false;
793     unsigned Round = 0;
794 
795     while (!PBQPAllocComplete) {
796       DEBUG(dbgs() << "  PBQP Regalloc round " << Round << ":\n");
797 
798       PBQPRAGraph G(PBQPRAGraph::GraphMetadata(MF, LIS, MBFI));
799       initializeGraph(G, VRM, *VRegSpiller);
800       ConstraintsRoot->apply(G);
801 
802 #ifndef NDEBUG
803       if (PBQPDumpGraphs) {
804         std::ostringstream RS;
805         RS << Round;
806         std::string GraphFileName = FullyQualifiedName + "." + RS.str() +
807                                     ".pbqpgraph";
808         std::error_code EC;
809         raw_fd_ostream OS(GraphFileName, EC, sys::fs::F_Text);
810         DEBUG(dbgs() << "Dumping graph for round " << Round << " to \""
811               << GraphFileName << "\"\n");
812         G.dump(OS);
813       }
814 #endif
815 
816       PBQP::Solution Solution = PBQP::RegAlloc::solve(G);
817       PBQPAllocComplete = mapPBQPToRegAlloc(G, Solution, VRM, *VRegSpiller);
818       ++Round;
819     }
820   }
821 
822   // Finalise allocation, allocate empty ranges.
823   finalizeAlloc(MF, LIS, VRM);
824   postOptimization(*VRegSpiller, LIS);
825   VRegsToAlloc.clear();
826   EmptyIntervalVRegs.clear();
827 
828   DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << VRM << "\n");
829 
830   return true;
831 }
832 
833 /// Create Printable object for node and register info.
834 static Printable PrintNodeInfo(PBQP::RegAlloc::PBQPRAGraph::NodeId NId,
835                                const PBQP::RegAlloc::PBQPRAGraph &G) {
836   return Printable([NId, &G](raw_ostream &OS) {
837     const MachineRegisterInfo &MRI = G.getMetadata().MF.getRegInfo();
838     const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo();
839     unsigned VReg = G.getNodeMetadata(NId).getVReg();
840     const char *RegClassName = TRI->getRegClassName(MRI.getRegClass(VReg));
841     OS << NId << " (" << RegClassName << ':' << PrintReg(VReg, TRI) << ')';
842   });
843 }
844 
845 void PBQP::RegAlloc::PBQPRAGraph::dump(raw_ostream &OS) const {
846   for (auto NId : nodeIds()) {
847     const Vector &Costs = getNodeCosts(NId);
848     assert(Costs.getLength() != 0 && "Empty vector in graph.");
849     OS << PrintNodeInfo(NId, *this) << ": " << Costs << '\n';
850   }
851   OS << '\n';
852 
853   for (auto EId : edgeIds()) {
854     NodeId N1Id = getEdgeNode1Id(EId);
855     NodeId N2Id = getEdgeNode2Id(EId);
856     assert(N1Id != N2Id && "PBQP graphs should not have self-edges.");
857     const Matrix &M = getEdgeCosts(EId);
858     assert(M.getRows() != 0 && "No rows in matrix.");
859     assert(M.getCols() != 0 && "No cols in matrix.");
860     OS << PrintNodeInfo(N1Id, *this) << ' ' << M.getRows() << " rows / ";
861     OS << PrintNodeInfo(N2Id, *this) << ' ' << M.getCols() << " cols:\n";
862     OS << M << '\n';
863   }
864 }
865 
866 LLVM_DUMP_METHOD void PBQP::RegAlloc::PBQPRAGraph::dump() const { dump(dbgs()); }
867 
868 void PBQP::RegAlloc::PBQPRAGraph::printDot(raw_ostream &OS) const {
869   OS << "graph {\n";
870   for (auto NId : nodeIds()) {
871     OS << "  node" << NId << " [ label=\""
872        << PrintNodeInfo(NId, *this) << "\\n"
873        << getNodeCosts(NId) << "\" ]\n";
874   }
875 
876   OS << "  edge [ len=" << nodeIds().size() << " ]\n";
877   for (auto EId : edgeIds()) {
878     OS << "  node" << getEdgeNode1Id(EId)
879        << " -- node" << getEdgeNode2Id(EId)
880        << " [ label=\"";
881     const Matrix &EdgeCosts = getEdgeCosts(EId);
882     for (unsigned i = 0; i < EdgeCosts.getRows(); ++i) {
883       OS << EdgeCosts.getRowAsVector(i) << "\\n";
884     }
885     OS << "\" ]\n";
886   }
887   OS << "}\n";
888 }
889 
890 FunctionPass *llvm::createPBQPRegisterAllocator(char *customPassID) {
891   return new RegAllocPBQP(customPassID);
892 }
893 
894 FunctionPass* llvm::createDefaultPBQPRegisterAllocator() {
895   return createPBQPRegisterAllocator();
896 }
897 
898 #undef DEBUG_TYPE
899