1 //===------ RegAllocPBQP.cpp ---- PBQP Register Allocator -------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains a Partitioned Boolean Quadratic Programming (PBQP) based 11 // register allocator for LLVM. This allocator works by constructing a PBQP 12 // problem representing the register allocation problem under consideration, 13 // solving this using a PBQP solver, and mapping the solution back to a 14 // register assignment. If any variables are selected for spilling then spill 15 // code is inserted and the process repeated. 16 // 17 // The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned 18 // for register allocation. For more information on PBQP for register 19 // allocation, see the following papers: 20 // 21 // (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with 22 // PBQP. In Proceedings of the 7th Joint Modular Languages Conference 23 // (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361. 24 // 25 // (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular 26 // architectures. In Proceedings of the Joint Conference on Languages, 27 // Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York, 28 // NY, USA, 139-148. 29 // 30 //===----------------------------------------------------------------------===// 31 32 #include "llvm/CodeGen/RegAllocPBQP.h" 33 #include "RegisterCoalescer.h" 34 #include "Spiller.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/CodeGen/CalcSpillWeights.h" 37 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 38 #include "llvm/CodeGen/LiveRangeEdit.h" 39 #include "llvm/CodeGen/LiveStackAnalysis.h" 40 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 41 #include "llvm/CodeGen/MachineDominators.h" 42 #include "llvm/CodeGen/MachineFunctionPass.h" 43 #include "llvm/CodeGen/MachineLoopInfo.h" 44 #include "llvm/CodeGen/MachineRegisterInfo.h" 45 #include "llvm/CodeGen/RegAllocRegistry.h" 46 #include "llvm/CodeGen/VirtRegMap.h" 47 #include "llvm/IR/Module.h" 48 #include "llvm/Support/Debug.h" 49 #include "llvm/Support/FileSystem.h" 50 #include "llvm/Support/raw_ostream.h" 51 #include "llvm/Target/TargetInstrInfo.h" 52 #include "llvm/Target/TargetSubtargetInfo.h" 53 #include <limits> 54 #include <memory> 55 #include <queue> 56 #include <set> 57 #include <sstream> 58 #include <vector> 59 60 using namespace llvm; 61 62 #define DEBUG_TYPE "regalloc" 63 64 static RegisterRegAlloc 65 RegisterPBQPRepAlloc("pbqp", "PBQP register allocator", 66 createDefaultPBQPRegisterAllocator); 67 68 static cl::opt<bool> 69 PBQPCoalescing("pbqp-coalescing", 70 cl::desc("Attempt coalescing during PBQP register allocation."), 71 cl::init(false), cl::Hidden); 72 73 #ifndef NDEBUG 74 static cl::opt<bool> 75 PBQPDumpGraphs("pbqp-dump-graphs", 76 cl::desc("Dump graphs for each function/round in the compilation unit."), 77 cl::init(false), cl::Hidden); 78 #endif 79 80 namespace { 81 82 /// 83 /// PBQP based allocators solve the register allocation problem by mapping 84 /// register allocation problems to Partitioned Boolean Quadratic 85 /// Programming problems. 86 class RegAllocPBQP : public MachineFunctionPass { 87 public: 88 89 static char ID; 90 91 /// Construct a PBQP register allocator. 92 RegAllocPBQP(char *cPassID = nullptr) 93 : MachineFunctionPass(ID), customPassID(cPassID) { 94 initializeSlotIndexesPass(*PassRegistry::getPassRegistry()); 95 initializeLiveIntervalsPass(*PassRegistry::getPassRegistry()); 96 initializeLiveStacksPass(*PassRegistry::getPassRegistry()); 97 initializeVirtRegMapPass(*PassRegistry::getPassRegistry()); 98 } 99 100 /// Return the pass name. 101 const char* getPassName() const override { 102 return "PBQP Register Allocator"; 103 } 104 105 /// PBQP analysis usage. 106 void getAnalysisUsage(AnalysisUsage &au) const override; 107 108 /// Perform register allocation 109 bool runOnMachineFunction(MachineFunction &MF) override; 110 111 private: 112 113 typedef std::map<const LiveInterval*, unsigned> LI2NodeMap; 114 typedef std::vector<const LiveInterval*> Node2LIMap; 115 typedef std::vector<unsigned> AllowedSet; 116 typedef std::vector<AllowedSet> AllowedSetMap; 117 typedef std::pair<unsigned, unsigned> RegPair; 118 typedef std::map<RegPair, PBQP::PBQPNum> CoalesceMap; 119 typedef std::set<unsigned> RegSet; 120 121 char *customPassID; 122 123 RegSet VRegsToAlloc, EmptyIntervalVRegs; 124 125 /// \brief Finds the initial set of vreg intervals to allocate. 126 void findVRegIntervalsToAlloc(const MachineFunction &MF, LiveIntervals &LIS); 127 128 /// \brief Constructs an initial graph. 129 void initializeGraph(PBQPRAGraph &G, VirtRegMap &VRM, Spiller &VRegSpiller); 130 131 /// \brief Spill the given VReg. 132 void spillVReg(unsigned VReg, SmallVectorImpl<unsigned> &NewIntervals, 133 MachineFunction &MF, LiveIntervals &LIS, VirtRegMap &VRM, 134 Spiller &VRegSpiller); 135 136 /// \brief Given a solved PBQP problem maps this solution back to a register 137 /// assignment. 138 bool mapPBQPToRegAlloc(const PBQPRAGraph &G, 139 const PBQP::Solution &Solution, 140 VirtRegMap &VRM, 141 Spiller &VRegSpiller); 142 143 /// \brief Postprocessing before final spilling. Sets basic block "live in" 144 /// variables. 145 void finalizeAlloc(MachineFunction &MF, LiveIntervals &LIS, 146 VirtRegMap &VRM) const; 147 148 }; 149 150 char RegAllocPBQP::ID = 0; 151 152 /// @brief Set spill costs for each node in the PBQP reg-alloc graph. 153 class SpillCosts : public PBQPRAConstraint { 154 public: 155 void apply(PBQPRAGraph &G) override { 156 LiveIntervals &LIS = G.getMetadata().LIS; 157 158 // A minimum spill costs, so that register constraints can can be set 159 // without normalization in the [0.0:MinSpillCost( interval. 160 const PBQP::PBQPNum MinSpillCost = 10.0; 161 162 for (auto NId : G.nodeIds()) { 163 PBQP::PBQPNum SpillCost = 164 LIS.getInterval(G.getNodeMetadata(NId).getVReg()).weight; 165 if (SpillCost == 0.0) 166 SpillCost = std::numeric_limits<PBQP::PBQPNum>::min(); 167 else 168 SpillCost += MinSpillCost; 169 PBQPRAGraph::RawVector NodeCosts(G.getNodeCosts(NId)); 170 NodeCosts[PBQP::RegAlloc::getSpillOptionIdx()] = SpillCost; 171 G.setNodeCosts(NId, std::move(NodeCosts)); 172 } 173 } 174 }; 175 176 /// @brief Add interference edges between overlapping vregs. 177 class Interference : public PBQPRAConstraint { 178 private: 179 180 typedef const PBQP::RegAlloc::AllowedRegVector* AllowedRegVecPtr; 181 typedef std::pair<AllowedRegVecPtr, AllowedRegVecPtr> IKey; 182 typedef DenseMap<IKey, PBQPRAGraph::MatrixPtr> IMatrixCache; 183 typedef DenseSet<IKey> DisjointAllowedRegsCache; 184 185 bool haveDisjointAllowedRegs(const PBQPRAGraph &G, PBQPRAGraph::NodeId NId, 186 PBQPRAGraph::NodeId MId, 187 const DisjointAllowedRegsCache &D) const { 188 const auto *NRegs = &G.getNodeMetadata(NId).getAllowedRegs(); 189 const auto *MRegs = &G.getNodeMetadata(MId).getAllowedRegs(); 190 191 if (NRegs == MRegs) 192 return false; 193 194 if (NRegs < MRegs) 195 return D.count(IKey(NRegs, MRegs)) > 0; 196 197 return D.count(IKey(MRegs, NRegs)) > 0; 198 } 199 200 void setDisjointAllowedRegs(const PBQPRAGraph &G, PBQPRAGraph::NodeId NId, 201 PBQPRAGraph::NodeId MId, 202 DisjointAllowedRegsCache &D) { 203 const auto *NRegs = &G.getNodeMetadata(NId).getAllowedRegs(); 204 const auto *MRegs = &G.getNodeMetadata(MId).getAllowedRegs(); 205 206 assert(NRegs != MRegs && "AllowedRegs can not be disjoint with itself"); 207 208 if (NRegs < MRegs) 209 D.insert(IKey(NRegs, MRegs)); 210 else 211 D.insert(IKey(MRegs, NRegs)); 212 } 213 214 // Holds (Interval, CurrentSegmentID, and NodeId). The first two are required 215 // for the fast interference graph construction algorithm. The last is there 216 // to save us from looking up node ids via the VRegToNode map in the graph 217 // metadata. 218 typedef std::tuple<LiveInterval*, size_t, PBQP::GraphBase::NodeId> 219 IntervalInfo; 220 221 static SlotIndex getStartPoint(const IntervalInfo &I) { 222 return std::get<0>(I)->segments[std::get<1>(I)].start; 223 } 224 225 static SlotIndex getEndPoint(const IntervalInfo &I) { 226 return std::get<0>(I)->segments[std::get<1>(I)].end; 227 } 228 229 static PBQP::GraphBase::NodeId getNodeId(const IntervalInfo &I) { 230 return std::get<2>(I); 231 } 232 233 static bool lowestStartPoint(const IntervalInfo &I1, 234 const IntervalInfo &I2) { 235 // Condition reversed because priority queue has the *highest* element at 236 // the front, rather than the lowest. 237 return getStartPoint(I1) > getStartPoint(I2); 238 } 239 240 static bool lowestEndPoint(const IntervalInfo &I1, 241 const IntervalInfo &I2) { 242 SlotIndex E1 = getEndPoint(I1); 243 SlotIndex E2 = getEndPoint(I2); 244 245 if (E1 < E2) 246 return true; 247 248 if (E1 > E2) 249 return false; 250 251 // If two intervals end at the same point, we need a way to break the tie or 252 // the set will assume they're actually equal and refuse to insert a 253 // "duplicate". Just compare the vregs - fast and guaranteed unique. 254 return std::get<0>(I1)->reg < std::get<0>(I2)->reg; 255 } 256 257 static bool isAtLastSegment(const IntervalInfo &I) { 258 return std::get<1>(I) == std::get<0>(I)->size() - 1; 259 } 260 261 static IntervalInfo nextSegment(const IntervalInfo &I) { 262 return std::make_tuple(std::get<0>(I), std::get<1>(I) + 1, std::get<2>(I)); 263 } 264 265 public: 266 267 void apply(PBQPRAGraph &G) override { 268 // The following is loosely based on the linear scan algorithm introduced in 269 // "Linear Scan Register Allocation" by Poletto and Sarkar. This version 270 // isn't linear, because the size of the active set isn't bound by the 271 // number of registers, but rather the size of the largest clique in the 272 // graph. Still, we expect this to be better than N^2. 273 LiveIntervals &LIS = G.getMetadata().LIS; 274 275 // Interferenc matrices are incredibly regular - they're only a function of 276 // the allowed sets, so we cache them to avoid the overhead of constructing 277 // and uniquing them. 278 IMatrixCache C; 279 280 // Cache known disjoint allowed registers pairs 281 DisjointAllowedRegsCache D; 282 283 typedef std::set<IntervalInfo, decltype(&lowestEndPoint)> IntervalSet; 284 typedef std::priority_queue<IntervalInfo, std::vector<IntervalInfo>, 285 decltype(&lowestStartPoint)> IntervalQueue; 286 IntervalSet Active(lowestEndPoint); 287 IntervalQueue Inactive(lowestStartPoint); 288 289 // Start by building the inactive set. 290 for (auto NId : G.nodeIds()) { 291 unsigned VReg = G.getNodeMetadata(NId).getVReg(); 292 LiveInterval &LI = LIS.getInterval(VReg); 293 assert(!LI.empty() && "PBQP graph contains node for empty interval"); 294 Inactive.push(std::make_tuple(&LI, 0, NId)); 295 } 296 297 while (!Inactive.empty()) { 298 // Tentatively grab the "next" interval - this choice may be overriden 299 // below. 300 IntervalInfo Cur = Inactive.top(); 301 302 // Retire any active intervals that end before Cur starts. 303 IntervalSet::iterator RetireItr = Active.begin(); 304 while (RetireItr != Active.end() && 305 (getEndPoint(*RetireItr) <= getStartPoint(Cur))) { 306 // If this interval has subsequent segments, add the next one to the 307 // inactive list. 308 if (!isAtLastSegment(*RetireItr)) 309 Inactive.push(nextSegment(*RetireItr)); 310 311 ++RetireItr; 312 } 313 Active.erase(Active.begin(), RetireItr); 314 315 // One of the newly retired segments may actually start before the 316 // Cur segment, so re-grab the front of the inactive list. 317 Cur = Inactive.top(); 318 Inactive.pop(); 319 320 // At this point we know that Cur overlaps all active intervals. Add the 321 // interference edges. 322 PBQP::GraphBase::NodeId NId = getNodeId(Cur); 323 for (const auto &A : Active) { 324 PBQP::GraphBase::NodeId MId = getNodeId(A); 325 326 // Do not add an edge when the nodes' allowed registers do not 327 // intersect: there is obviously no interference. 328 if (haveDisjointAllowedRegs(G, NId, MId, D)) 329 continue; 330 331 // Check that we haven't already added this edge 332 // FIXME: findEdge is expensive in the worst case (O(max_clique(G))). 333 // It might be better to replace this with a local bit-matrix. 334 if (G.findEdge(NId, MId) != PBQPRAGraph::invalidEdgeId()) 335 continue; 336 337 // This is a new edge - add it to the graph. 338 if (!createInterferenceEdge(G, NId, MId, C)) 339 setDisjointAllowedRegs(G, NId, MId, D); 340 } 341 342 // Finally, add Cur to the Active set. 343 Active.insert(Cur); 344 } 345 } 346 347 private: 348 349 // Create an Interference edge and add it to the graph, unless it is 350 // a null matrix, meaning the nodes' allowed registers do not have any 351 // interference. This case occurs frequently between integer and floating 352 // point registers for example. 353 // return true iff both nodes interferes. 354 bool createInterferenceEdge(PBQPRAGraph &G, 355 PBQPRAGraph::NodeId NId, PBQPRAGraph::NodeId MId, 356 IMatrixCache &C) { 357 358 const TargetRegisterInfo &TRI = 359 *G.getMetadata().MF.getSubtarget().getRegisterInfo(); 360 const auto &NRegs = G.getNodeMetadata(NId).getAllowedRegs(); 361 const auto &MRegs = G.getNodeMetadata(MId).getAllowedRegs(); 362 363 // Try looking the edge costs up in the IMatrixCache first. 364 IKey K(&NRegs, &MRegs); 365 IMatrixCache::iterator I = C.find(K); 366 if (I != C.end()) { 367 G.addEdgeBypassingCostAllocator(NId, MId, I->second); 368 return true; 369 } 370 371 PBQPRAGraph::RawMatrix M(NRegs.size() + 1, MRegs.size() + 1, 0); 372 bool NodesInterfere = false; 373 for (unsigned I = 0; I != NRegs.size(); ++I) { 374 unsigned PRegN = NRegs[I]; 375 for (unsigned J = 0; J != MRegs.size(); ++J) { 376 unsigned PRegM = MRegs[J]; 377 if (TRI.regsOverlap(PRegN, PRegM)) { 378 M[I + 1][J + 1] = std::numeric_limits<PBQP::PBQPNum>::infinity(); 379 NodesInterfere = true; 380 } 381 } 382 } 383 384 if (!NodesInterfere) 385 return false; 386 387 PBQPRAGraph::EdgeId EId = G.addEdge(NId, MId, std::move(M)); 388 C[K] = G.getEdgeCostsPtr(EId); 389 390 return true; 391 } 392 }; 393 394 395 class Coalescing : public PBQPRAConstraint { 396 public: 397 void apply(PBQPRAGraph &G) override { 398 MachineFunction &MF = G.getMetadata().MF; 399 MachineBlockFrequencyInfo &MBFI = G.getMetadata().MBFI; 400 CoalescerPair CP(*MF.getSubtarget().getRegisterInfo()); 401 402 // Scan the machine function and add a coalescing cost whenever CoalescerPair 403 // gives the Ok. 404 for (const auto &MBB : MF) { 405 for (const auto &MI : MBB) { 406 407 // Skip not-coalescable or already coalesced copies. 408 if (!CP.setRegisters(&MI) || CP.getSrcReg() == CP.getDstReg()) 409 continue; 410 411 unsigned DstReg = CP.getDstReg(); 412 unsigned SrcReg = CP.getSrcReg(); 413 414 const float Scale = 1.0f / MBFI.getEntryFreq(); 415 PBQP::PBQPNum CBenefit = MBFI.getBlockFreq(&MBB).getFrequency() * Scale; 416 417 if (CP.isPhys()) { 418 if (!MF.getRegInfo().isAllocatable(DstReg)) 419 continue; 420 421 PBQPRAGraph::NodeId NId = G.getMetadata().getNodeIdForVReg(SrcReg); 422 423 const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed = 424 G.getNodeMetadata(NId).getAllowedRegs(); 425 426 unsigned PRegOpt = 0; 427 while (PRegOpt < Allowed.size() && Allowed[PRegOpt] != DstReg) 428 ++PRegOpt; 429 430 if (PRegOpt < Allowed.size()) { 431 PBQPRAGraph::RawVector NewCosts(G.getNodeCosts(NId)); 432 NewCosts[PRegOpt + 1] -= CBenefit; 433 G.setNodeCosts(NId, std::move(NewCosts)); 434 } 435 } else { 436 PBQPRAGraph::NodeId N1Id = G.getMetadata().getNodeIdForVReg(DstReg); 437 PBQPRAGraph::NodeId N2Id = G.getMetadata().getNodeIdForVReg(SrcReg); 438 const PBQPRAGraph::NodeMetadata::AllowedRegVector *Allowed1 = 439 &G.getNodeMetadata(N1Id).getAllowedRegs(); 440 const PBQPRAGraph::NodeMetadata::AllowedRegVector *Allowed2 = 441 &G.getNodeMetadata(N2Id).getAllowedRegs(); 442 443 PBQPRAGraph::EdgeId EId = G.findEdge(N1Id, N2Id); 444 if (EId == G.invalidEdgeId()) { 445 PBQPRAGraph::RawMatrix Costs(Allowed1->size() + 1, 446 Allowed2->size() + 1, 0); 447 addVirtRegCoalesce(Costs, *Allowed1, *Allowed2, CBenefit); 448 G.addEdge(N1Id, N2Id, std::move(Costs)); 449 } else { 450 if (G.getEdgeNode1Id(EId) == N2Id) { 451 std::swap(N1Id, N2Id); 452 std::swap(Allowed1, Allowed2); 453 } 454 PBQPRAGraph::RawMatrix Costs(G.getEdgeCosts(EId)); 455 addVirtRegCoalesce(Costs, *Allowed1, *Allowed2, CBenefit); 456 G.updateEdgeCosts(EId, std::move(Costs)); 457 } 458 } 459 } 460 } 461 } 462 463 private: 464 465 void addVirtRegCoalesce( 466 PBQPRAGraph::RawMatrix &CostMat, 467 const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed1, 468 const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed2, 469 PBQP::PBQPNum Benefit) { 470 assert(CostMat.getRows() == Allowed1.size() + 1 && "Size mismatch."); 471 assert(CostMat.getCols() == Allowed2.size() + 1 && "Size mismatch."); 472 for (unsigned I = 0; I != Allowed1.size(); ++I) { 473 unsigned PReg1 = Allowed1[I]; 474 for (unsigned J = 0; J != Allowed2.size(); ++J) { 475 unsigned PReg2 = Allowed2[J]; 476 if (PReg1 == PReg2) 477 CostMat[I + 1][J + 1] -= Benefit; 478 } 479 } 480 } 481 482 }; 483 484 } // End anonymous namespace. 485 486 // Out-of-line destructor/anchor for PBQPRAConstraint. 487 PBQPRAConstraint::~PBQPRAConstraint() {} 488 void PBQPRAConstraint::anchor() {} 489 void PBQPRAConstraintList::anchor() {} 490 491 void RegAllocPBQP::getAnalysisUsage(AnalysisUsage &au) const { 492 au.setPreservesCFG(); 493 au.addRequired<AliasAnalysis>(); 494 au.addPreserved<AliasAnalysis>(); 495 au.addRequired<SlotIndexes>(); 496 au.addPreserved<SlotIndexes>(); 497 au.addRequired<LiveIntervals>(); 498 au.addPreserved<LiveIntervals>(); 499 //au.addRequiredID(SplitCriticalEdgesID); 500 if (customPassID) 501 au.addRequiredID(*customPassID); 502 au.addRequired<LiveStacks>(); 503 au.addPreserved<LiveStacks>(); 504 au.addRequired<MachineBlockFrequencyInfo>(); 505 au.addPreserved<MachineBlockFrequencyInfo>(); 506 au.addRequired<MachineLoopInfo>(); 507 au.addPreserved<MachineLoopInfo>(); 508 au.addRequired<MachineDominatorTree>(); 509 au.addPreserved<MachineDominatorTree>(); 510 au.addRequired<VirtRegMap>(); 511 au.addPreserved<VirtRegMap>(); 512 MachineFunctionPass::getAnalysisUsage(au); 513 } 514 515 void RegAllocPBQP::findVRegIntervalsToAlloc(const MachineFunction &MF, 516 LiveIntervals &LIS) { 517 const MachineRegisterInfo &MRI = MF.getRegInfo(); 518 519 // Iterate over all live ranges. 520 for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) { 521 unsigned Reg = TargetRegisterInfo::index2VirtReg(I); 522 if (MRI.reg_nodbg_empty(Reg)) 523 continue; 524 LiveInterval &LI = LIS.getInterval(Reg); 525 526 // If this live interval is non-empty we will use pbqp to allocate it. 527 // Empty intervals we allocate in a simple post-processing stage in 528 // finalizeAlloc. 529 if (!LI.empty()) { 530 VRegsToAlloc.insert(LI.reg); 531 } else { 532 EmptyIntervalVRegs.insert(LI.reg); 533 } 534 } 535 } 536 537 static bool isACalleeSavedRegister(unsigned reg, const TargetRegisterInfo &TRI, 538 const MachineFunction &MF) { 539 const MCPhysReg *CSR = TRI.getCalleeSavedRegs(&MF); 540 for (unsigned i = 0; CSR[i] != 0; ++i) 541 if (TRI.regsOverlap(reg, CSR[i])) 542 return true; 543 return false; 544 } 545 546 void RegAllocPBQP::initializeGraph(PBQPRAGraph &G, VirtRegMap &VRM, 547 Spiller &VRegSpiller) { 548 MachineFunction &MF = G.getMetadata().MF; 549 550 LiveIntervals &LIS = G.getMetadata().LIS; 551 const MachineRegisterInfo &MRI = G.getMetadata().MF.getRegInfo(); 552 const TargetRegisterInfo &TRI = 553 *G.getMetadata().MF.getSubtarget().getRegisterInfo(); 554 555 std::vector<unsigned> Worklist(VRegsToAlloc.begin(), VRegsToAlloc.end()); 556 557 while (!Worklist.empty()) { 558 unsigned VReg = Worklist.back(); 559 Worklist.pop_back(); 560 561 const TargetRegisterClass *TRC = MRI.getRegClass(VReg); 562 LiveInterval &VRegLI = LIS.getInterval(VReg); 563 564 // Record any overlaps with regmask operands. 565 BitVector RegMaskOverlaps; 566 LIS.checkRegMaskInterference(VRegLI, RegMaskOverlaps); 567 568 // Compute an initial allowed set for the current vreg. 569 std::vector<unsigned> VRegAllowed; 570 ArrayRef<MCPhysReg> RawPRegOrder = TRC->getRawAllocationOrder(MF); 571 for (unsigned I = 0; I != RawPRegOrder.size(); ++I) { 572 unsigned PReg = RawPRegOrder[I]; 573 if (MRI.isReserved(PReg)) 574 continue; 575 576 // vregLI crosses a regmask operand that clobbers preg. 577 if (!RegMaskOverlaps.empty() && !RegMaskOverlaps.test(PReg)) 578 continue; 579 580 // vregLI overlaps fixed regunit interference. 581 bool Interference = false; 582 for (MCRegUnitIterator Units(PReg, &TRI); Units.isValid(); ++Units) { 583 if (VRegLI.overlaps(LIS.getRegUnit(*Units))) { 584 Interference = true; 585 break; 586 } 587 } 588 if (Interference) 589 continue; 590 591 // preg is usable for this virtual register. 592 VRegAllowed.push_back(PReg); 593 } 594 595 // Check for vregs that have no allowed registers. These should be 596 // pre-spilled and the new vregs added to the worklist. 597 if (VRegAllowed.empty()) { 598 SmallVector<unsigned, 8> NewVRegs; 599 spillVReg(VReg, NewVRegs, MF, LIS, VRM, VRegSpiller); 600 Worklist.insert(Worklist.end(), NewVRegs.begin(), NewVRegs.end()); 601 continue; 602 } 603 604 PBQPRAGraph::RawVector NodeCosts(VRegAllowed.size() + 1, 0); 605 606 // Tweak cost of callee saved registers, as using then force spilling and 607 // restoring them. This would only happen in the prologue / epilogue though. 608 for (unsigned i = 0; i != VRegAllowed.size(); ++i) 609 if (isACalleeSavedRegister(VRegAllowed[i], TRI, MF)) 610 NodeCosts[1 + i] += 1.0; 611 612 PBQPRAGraph::NodeId NId = G.addNode(std::move(NodeCosts)); 613 G.getNodeMetadata(NId).setVReg(VReg); 614 G.getNodeMetadata(NId).setAllowedRegs( 615 G.getMetadata().getAllowedRegs(std::move(VRegAllowed))); 616 G.getMetadata().setNodeIdForVReg(VReg, NId); 617 } 618 } 619 620 void RegAllocPBQP::spillVReg(unsigned VReg, 621 SmallVectorImpl<unsigned> &NewIntervals, 622 MachineFunction &MF, LiveIntervals &LIS, 623 VirtRegMap &VRM, Spiller &VRegSpiller) { 624 625 VRegsToAlloc.erase(VReg); 626 LiveRangeEdit LRE(&LIS.getInterval(VReg), NewIntervals, MF, LIS, &VRM); 627 VRegSpiller.spill(LRE); 628 629 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 630 (void)TRI; 631 DEBUG(dbgs() << "VREG " << PrintReg(VReg, &TRI) << " -> SPILLED (Cost: " 632 << LRE.getParent().weight << ", New vregs: "); 633 634 // Copy any newly inserted live intervals into the list of regs to 635 // allocate. 636 for (LiveRangeEdit::iterator I = LRE.begin(), E = LRE.end(); 637 I != E; ++I) { 638 const LiveInterval &LI = LIS.getInterval(*I); 639 assert(!LI.empty() && "Empty spill range."); 640 DEBUG(dbgs() << PrintReg(LI.reg, &TRI) << " "); 641 VRegsToAlloc.insert(LI.reg); 642 } 643 644 DEBUG(dbgs() << ")\n"); 645 } 646 647 bool RegAllocPBQP::mapPBQPToRegAlloc(const PBQPRAGraph &G, 648 const PBQP::Solution &Solution, 649 VirtRegMap &VRM, 650 Spiller &VRegSpiller) { 651 MachineFunction &MF = G.getMetadata().MF; 652 LiveIntervals &LIS = G.getMetadata().LIS; 653 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 654 (void)TRI; 655 656 // Set to true if we have any spills 657 bool AnotherRoundNeeded = false; 658 659 // Clear the existing allocation. 660 VRM.clearAllVirt(); 661 662 // Iterate over the nodes mapping the PBQP solution to a register 663 // assignment. 664 for (auto NId : G.nodeIds()) { 665 unsigned VReg = G.getNodeMetadata(NId).getVReg(); 666 unsigned AllocOption = Solution.getSelection(NId); 667 668 if (AllocOption != PBQP::RegAlloc::getSpillOptionIdx()) { 669 unsigned PReg = G.getNodeMetadata(NId).getAllowedRegs()[AllocOption - 1]; 670 DEBUG(dbgs() << "VREG " << PrintReg(VReg, &TRI) << " -> " 671 << TRI.getName(PReg) << "\n"); 672 assert(PReg != 0 && "Invalid preg selected."); 673 VRM.assignVirt2Phys(VReg, PReg); 674 } else { 675 // Spill VReg. If this introduces new intervals we'll need another round 676 // of allocation. 677 SmallVector<unsigned, 8> NewVRegs; 678 spillVReg(VReg, NewVRegs, MF, LIS, VRM, VRegSpiller); 679 AnotherRoundNeeded |= !NewVRegs.empty(); 680 } 681 } 682 683 return !AnotherRoundNeeded; 684 } 685 686 void RegAllocPBQP::finalizeAlloc(MachineFunction &MF, 687 LiveIntervals &LIS, 688 VirtRegMap &VRM) const { 689 MachineRegisterInfo &MRI = MF.getRegInfo(); 690 691 // First allocate registers for the empty intervals. 692 for (RegSet::const_iterator 693 I = EmptyIntervalVRegs.begin(), E = EmptyIntervalVRegs.end(); 694 I != E; ++I) { 695 LiveInterval &LI = LIS.getInterval(*I); 696 697 unsigned PReg = MRI.getSimpleHint(LI.reg); 698 699 if (PReg == 0) { 700 const TargetRegisterClass &RC = *MRI.getRegClass(LI.reg); 701 PReg = RC.getRawAllocationOrder(MF).front(); 702 } 703 704 VRM.assignVirt2Phys(LI.reg, PReg); 705 } 706 } 707 708 static inline float normalizePBQPSpillWeight(float UseDefFreq, unsigned Size, 709 unsigned NumInstr) { 710 // All intervals have a spill weight that is mostly proportional to the number 711 // of uses, with uses in loops having a bigger weight. 712 return NumInstr * normalizeSpillWeight(UseDefFreq, Size, 1); 713 } 714 715 bool RegAllocPBQP::runOnMachineFunction(MachineFunction &MF) { 716 LiveIntervals &LIS = getAnalysis<LiveIntervals>(); 717 MachineBlockFrequencyInfo &MBFI = 718 getAnalysis<MachineBlockFrequencyInfo>(); 719 720 calculateSpillWeightsAndHints(LIS, MF, getAnalysis<MachineLoopInfo>(), MBFI, 721 normalizePBQPSpillWeight); 722 723 VirtRegMap &VRM = getAnalysis<VirtRegMap>(); 724 725 std::unique_ptr<Spiller> VRegSpiller(createInlineSpiller(*this, MF, VRM)); 726 727 MF.getRegInfo().freezeReservedRegs(MF); 728 729 DEBUG(dbgs() << "PBQP Register Allocating for " << MF.getName() << "\n"); 730 731 // Allocator main loop: 732 // 733 // * Map current regalloc problem to a PBQP problem 734 // * Solve the PBQP problem 735 // * Map the solution back to a register allocation 736 // * Spill if necessary 737 // 738 // This process is continued till no more spills are generated. 739 740 // Find the vreg intervals in need of allocation. 741 findVRegIntervalsToAlloc(MF, LIS); 742 743 #ifndef NDEBUG 744 const Function &F = *MF.getFunction(); 745 std::string FullyQualifiedName = 746 F.getParent()->getModuleIdentifier() + "." + F.getName().str(); 747 #endif 748 749 // If there are non-empty intervals allocate them using pbqp. 750 if (!VRegsToAlloc.empty()) { 751 752 const TargetSubtargetInfo &Subtarget = MF.getSubtarget(); 753 std::unique_ptr<PBQPRAConstraintList> ConstraintsRoot = 754 llvm::make_unique<PBQPRAConstraintList>(); 755 ConstraintsRoot->addConstraint(llvm::make_unique<SpillCosts>()); 756 ConstraintsRoot->addConstraint(llvm::make_unique<Interference>()); 757 if (PBQPCoalescing) 758 ConstraintsRoot->addConstraint(llvm::make_unique<Coalescing>()); 759 ConstraintsRoot->addConstraint(Subtarget.getCustomPBQPConstraints()); 760 761 bool PBQPAllocComplete = false; 762 unsigned Round = 0; 763 764 while (!PBQPAllocComplete) { 765 DEBUG(dbgs() << " PBQP Regalloc round " << Round << ":\n"); 766 767 PBQPRAGraph G(PBQPRAGraph::GraphMetadata(MF, LIS, MBFI)); 768 initializeGraph(G, VRM, *VRegSpiller); 769 ConstraintsRoot->apply(G); 770 771 #ifndef NDEBUG 772 if (PBQPDumpGraphs) { 773 std::ostringstream RS; 774 RS << Round; 775 std::string GraphFileName = FullyQualifiedName + "." + RS.str() + 776 ".pbqpgraph"; 777 std::error_code EC; 778 raw_fd_ostream OS(GraphFileName, EC, sys::fs::F_Text); 779 DEBUG(dbgs() << "Dumping graph for round " << Round << " to \"" 780 << GraphFileName << "\"\n"); 781 G.dump(OS); 782 } 783 #endif 784 785 PBQP::Solution Solution = PBQP::RegAlloc::solve(G); 786 PBQPAllocComplete = mapPBQPToRegAlloc(G, Solution, VRM, *VRegSpiller); 787 ++Round; 788 } 789 } 790 791 // Finalise allocation, allocate empty ranges. 792 finalizeAlloc(MF, LIS, VRM); 793 VRegsToAlloc.clear(); 794 EmptyIntervalVRegs.clear(); 795 796 DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << VRM << "\n"); 797 798 return true; 799 } 800 801 namespace { 802 // A helper class for printing node and register info in a consistent way 803 class PrintNodeInfo { 804 public: 805 typedef PBQP::RegAlloc::PBQPRAGraph Graph; 806 typedef PBQP::RegAlloc::PBQPRAGraph::NodeId NodeId; 807 808 PrintNodeInfo(NodeId NId, const Graph &G) : G(G), NId(NId) {} 809 810 void print(raw_ostream &OS) const { 811 const MachineRegisterInfo &MRI = G.getMetadata().MF.getRegInfo(); 812 const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo(); 813 unsigned VReg = G.getNodeMetadata(NId).getVReg(); 814 const char *RegClassName = TRI->getRegClassName(MRI.getRegClass(VReg)); 815 OS << NId << " (" << RegClassName << ':' << PrintReg(VReg, TRI) << ')'; 816 } 817 818 private: 819 const Graph &G; 820 NodeId NId; 821 }; 822 823 inline raw_ostream &operator<<(raw_ostream &OS, const PrintNodeInfo &PR) { 824 PR.print(OS); 825 return OS; 826 } 827 } // anonymous namespace 828 829 void PBQP::RegAlloc::PBQPRAGraph::dump(raw_ostream &OS) const { 830 for (auto NId : nodeIds()) { 831 const Vector &Costs = getNodeCosts(NId); 832 assert(Costs.getLength() != 0 && "Empty vector in graph."); 833 OS << PrintNodeInfo(NId, *this) << ": " << Costs << '\n'; 834 } 835 OS << '\n'; 836 837 for (auto EId : edgeIds()) { 838 NodeId N1Id = getEdgeNode1Id(EId); 839 NodeId N2Id = getEdgeNode2Id(EId); 840 assert(N1Id != N2Id && "PBQP graphs should not have self-edges."); 841 const Matrix &M = getEdgeCosts(EId); 842 assert(M.getRows() != 0 && "No rows in matrix."); 843 assert(M.getCols() != 0 && "No cols in matrix."); 844 OS << PrintNodeInfo(N1Id, *this) << ' ' << M.getRows() << " rows / "; 845 OS << PrintNodeInfo(N2Id, *this) << ' ' << M.getCols() << " cols:\n"; 846 OS << M << '\n'; 847 } 848 } 849 850 void PBQP::RegAlloc::PBQPRAGraph::dump() const { dump(dbgs()); } 851 852 void PBQP::RegAlloc::PBQPRAGraph::printDot(raw_ostream &OS) const { 853 OS << "graph {\n"; 854 for (auto NId : nodeIds()) { 855 OS << " node" << NId << " [ label=\"" 856 << PrintNodeInfo(NId, *this) << "\\n" 857 << getNodeCosts(NId) << "\" ]\n"; 858 } 859 860 OS << " edge [ len=" << nodeIds().size() << " ]\n"; 861 for (auto EId : edgeIds()) { 862 OS << " node" << getEdgeNode1Id(EId) 863 << " -- node" << getEdgeNode2Id(EId) 864 << " [ label=\""; 865 const Matrix &EdgeCosts = getEdgeCosts(EId); 866 for (unsigned i = 0; i < EdgeCosts.getRows(); ++i) { 867 OS << EdgeCosts.getRowAsVector(i) << "\\n"; 868 } 869 OS << "\" ]\n"; 870 } 871 OS << "}\n"; 872 } 873 874 FunctionPass *llvm::createPBQPRegisterAllocator(char *customPassID) { 875 return new RegAllocPBQP(customPassID); 876 } 877 878 FunctionPass* llvm::createDefaultPBQPRegisterAllocator() { 879 return createPBQPRegisterAllocator(); 880 } 881 882 #undef DEBUG_TYPE 883