1 //===- RegAllocPBQP.cpp ---- PBQP Register Allocator ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains a Partitioned Boolean Quadratic Programming (PBQP) based 11 // register allocator for LLVM. This allocator works by constructing a PBQP 12 // problem representing the register allocation problem under consideration, 13 // solving this using a PBQP solver, and mapping the solution back to a 14 // register assignment. If any variables are selected for spilling then spill 15 // code is inserted and the process repeated. 16 // 17 // The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned 18 // for register allocation. For more information on PBQP for register 19 // allocation, see the following papers: 20 // 21 // (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with 22 // PBQP. In Proceedings of the 7th Joint Modular Languages Conference 23 // (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361. 24 // 25 // (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular 26 // architectures. In Proceedings of the Joint Conference on Languages, 27 // Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York, 28 // NY, USA, 139-148. 29 // 30 //===----------------------------------------------------------------------===// 31 32 #include "RegisterCoalescer.h" 33 #include "Spiller.h" 34 #include "llvm/ADT/ArrayRef.h" 35 #include "llvm/ADT/BitVector.h" 36 #include "llvm/ADT/DenseMap.h" 37 #include "llvm/ADT/DenseSet.h" 38 #include "llvm/ADT/SmallPtrSet.h" 39 #include "llvm/ADT/SmallVector.h" 40 #include "llvm/ADT/STLExtras.h" 41 #include "llvm/ADT/StringRef.h" 42 #include "llvm/Analysis/AliasAnalysis.h" 43 #include "llvm/CodeGen/CalcSpillWeights.h" 44 #include "llvm/CodeGen/LiveInterval.h" 45 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 46 #include "llvm/CodeGen/LiveRangeEdit.h" 47 #include "llvm/CodeGen/LiveStackAnalysis.h" 48 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 49 #include "llvm/CodeGen/MachineDominators.h" 50 #include "llvm/CodeGen/MachineFunction.h" 51 #include "llvm/CodeGen/MachineFunctionPass.h" 52 #include "llvm/CodeGen/MachineLoopInfo.h" 53 #include "llvm/CodeGen/MachineRegisterInfo.h" 54 #include "llvm/CodeGen/PBQP/Graph.h" 55 #include "llvm/CodeGen/PBQP/Solution.h" 56 #include "llvm/CodeGen/PBQPRAConstraint.h" 57 #include "llvm/CodeGen/RegAllocPBQP.h" 58 #include "llvm/CodeGen/RegAllocRegistry.h" 59 #include "llvm/CodeGen/SlotIndexes.h" 60 #include "llvm/CodeGen/VirtRegMap.h" 61 #include "llvm/IR/Function.h" 62 #include "llvm/IR/Module.h" 63 #include "llvm/MC/MCRegisterInfo.h" 64 #include "llvm/Pass.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/Debug.h" 68 #include "llvm/Support/FileSystem.h" 69 #include "llvm/Support/Printable.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include "llvm/Target/TargetRegisterInfo.h" 72 #include "llvm/Target/TargetSubtargetInfo.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cstddef> 76 #include <limits> 77 #include <map> 78 #include <memory> 79 #include <queue> 80 #include <set> 81 #include <sstream> 82 #include <string> 83 #include <system_error> 84 #include <tuple> 85 #include <vector> 86 #include <utility> 87 88 using namespace llvm; 89 90 #define DEBUG_TYPE "regalloc" 91 92 static RegisterRegAlloc 93 RegisterPBQPRepAlloc("pbqp", "PBQP register allocator", 94 createDefaultPBQPRegisterAllocator); 95 96 static cl::opt<bool> 97 PBQPCoalescing("pbqp-coalescing", 98 cl::desc("Attempt coalescing during PBQP register allocation."), 99 cl::init(false), cl::Hidden); 100 101 #ifndef NDEBUG 102 static cl::opt<bool> 103 PBQPDumpGraphs("pbqp-dump-graphs", 104 cl::desc("Dump graphs for each function/round in the compilation unit."), 105 cl::init(false), cl::Hidden); 106 #endif 107 108 namespace { 109 110 /// 111 /// PBQP based allocators solve the register allocation problem by mapping 112 /// register allocation problems to Partitioned Boolean Quadratic 113 /// Programming problems. 114 class RegAllocPBQP : public MachineFunctionPass { 115 public: 116 static char ID; 117 118 /// Construct a PBQP register allocator. 119 RegAllocPBQP(char *cPassID = nullptr) 120 : MachineFunctionPass(ID), customPassID(cPassID) { 121 initializeSlotIndexesPass(*PassRegistry::getPassRegistry()); 122 initializeLiveIntervalsPass(*PassRegistry::getPassRegistry()); 123 initializeLiveStacksPass(*PassRegistry::getPassRegistry()); 124 initializeVirtRegMapPass(*PassRegistry::getPassRegistry()); 125 } 126 127 /// Return the pass name. 128 StringRef getPassName() const override { return "PBQP Register Allocator"; } 129 130 /// PBQP analysis usage. 131 void getAnalysisUsage(AnalysisUsage &au) const override; 132 133 /// Perform register allocation 134 bool runOnMachineFunction(MachineFunction &MF) override; 135 136 MachineFunctionProperties getRequiredProperties() const override { 137 return MachineFunctionProperties().set( 138 MachineFunctionProperties::Property::NoPHIs); 139 } 140 141 private: 142 typedef std::map<const LiveInterval*, unsigned> LI2NodeMap; 143 typedef std::vector<const LiveInterval*> Node2LIMap; 144 typedef std::vector<unsigned> AllowedSet; 145 typedef std::vector<AllowedSet> AllowedSetMap; 146 typedef std::pair<unsigned, unsigned> RegPair; 147 typedef std::map<RegPair, PBQP::PBQPNum> CoalesceMap; 148 typedef std::set<unsigned> RegSet; 149 150 char *customPassID; 151 152 RegSet VRegsToAlloc, EmptyIntervalVRegs; 153 154 /// Inst which is a def of an original reg and whose defs are already all 155 /// dead after remat is saved in DeadRemats. The deletion of such inst is 156 /// postponed till all the allocations are done, so its remat expr is 157 /// always available for the remat of all the siblings of the original reg. 158 SmallPtrSet<MachineInstr *, 32> DeadRemats; 159 160 /// \brief Finds the initial set of vreg intervals to allocate. 161 void findVRegIntervalsToAlloc(const MachineFunction &MF, LiveIntervals &LIS); 162 163 /// \brief Constructs an initial graph. 164 void initializeGraph(PBQPRAGraph &G, VirtRegMap &VRM, Spiller &VRegSpiller); 165 166 /// \brief Spill the given VReg. 167 void spillVReg(unsigned VReg, SmallVectorImpl<unsigned> &NewIntervals, 168 MachineFunction &MF, LiveIntervals &LIS, VirtRegMap &VRM, 169 Spiller &VRegSpiller); 170 171 /// \brief Given a solved PBQP problem maps this solution back to a register 172 /// assignment. 173 bool mapPBQPToRegAlloc(const PBQPRAGraph &G, 174 const PBQP::Solution &Solution, 175 VirtRegMap &VRM, 176 Spiller &VRegSpiller); 177 178 /// \brief Postprocessing before final spilling. Sets basic block "live in" 179 /// variables. 180 void finalizeAlloc(MachineFunction &MF, LiveIntervals &LIS, 181 VirtRegMap &VRM) const; 182 183 void postOptimization(Spiller &VRegSpiller, LiveIntervals &LIS); 184 }; 185 186 char RegAllocPBQP::ID = 0; 187 188 /// @brief Set spill costs for each node in the PBQP reg-alloc graph. 189 class SpillCosts : public PBQPRAConstraint { 190 public: 191 void apply(PBQPRAGraph &G) override { 192 LiveIntervals &LIS = G.getMetadata().LIS; 193 194 // A minimum spill costs, so that register constraints can can be set 195 // without normalization in the [0.0:MinSpillCost( interval. 196 const PBQP::PBQPNum MinSpillCost = 10.0; 197 198 for (auto NId : G.nodeIds()) { 199 PBQP::PBQPNum SpillCost = 200 LIS.getInterval(G.getNodeMetadata(NId).getVReg()).weight; 201 if (SpillCost == 0.0) 202 SpillCost = std::numeric_limits<PBQP::PBQPNum>::min(); 203 else 204 SpillCost += MinSpillCost; 205 PBQPRAGraph::RawVector NodeCosts(G.getNodeCosts(NId)); 206 NodeCosts[PBQP::RegAlloc::getSpillOptionIdx()] = SpillCost; 207 G.setNodeCosts(NId, std::move(NodeCosts)); 208 } 209 } 210 }; 211 212 /// @brief Add interference edges between overlapping vregs. 213 class Interference : public PBQPRAConstraint { 214 private: 215 typedef const PBQP::RegAlloc::AllowedRegVector* AllowedRegVecPtr; 216 typedef std::pair<AllowedRegVecPtr, AllowedRegVecPtr> IKey; 217 typedef DenseMap<IKey, PBQPRAGraph::MatrixPtr> IMatrixCache; 218 typedef DenseSet<IKey> DisjointAllowedRegsCache; 219 typedef std::pair<PBQP::GraphBase::NodeId, PBQP::GraphBase::NodeId> IEdgeKey; 220 typedef DenseSet<IEdgeKey> IEdgeCache; 221 222 bool haveDisjointAllowedRegs(const PBQPRAGraph &G, PBQPRAGraph::NodeId NId, 223 PBQPRAGraph::NodeId MId, 224 const DisjointAllowedRegsCache &D) const { 225 const auto *NRegs = &G.getNodeMetadata(NId).getAllowedRegs(); 226 const auto *MRegs = &G.getNodeMetadata(MId).getAllowedRegs(); 227 228 if (NRegs == MRegs) 229 return false; 230 231 if (NRegs < MRegs) 232 return D.count(IKey(NRegs, MRegs)) > 0; 233 234 return D.count(IKey(MRegs, NRegs)) > 0; 235 } 236 237 void setDisjointAllowedRegs(const PBQPRAGraph &G, PBQPRAGraph::NodeId NId, 238 PBQPRAGraph::NodeId MId, 239 DisjointAllowedRegsCache &D) { 240 const auto *NRegs = &G.getNodeMetadata(NId).getAllowedRegs(); 241 const auto *MRegs = &G.getNodeMetadata(MId).getAllowedRegs(); 242 243 assert(NRegs != MRegs && "AllowedRegs can not be disjoint with itself"); 244 245 if (NRegs < MRegs) 246 D.insert(IKey(NRegs, MRegs)); 247 else 248 D.insert(IKey(MRegs, NRegs)); 249 } 250 251 // Holds (Interval, CurrentSegmentID, and NodeId). The first two are required 252 // for the fast interference graph construction algorithm. The last is there 253 // to save us from looking up node ids via the VRegToNode map in the graph 254 // metadata. 255 typedef std::tuple<LiveInterval*, size_t, PBQP::GraphBase::NodeId> 256 IntervalInfo; 257 258 static SlotIndex getStartPoint(const IntervalInfo &I) { 259 return std::get<0>(I)->segments[std::get<1>(I)].start; 260 } 261 262 static SlotIndex getEndPoint(const IntervalInfo &I) { 263 return std::get<0>(I)->segments[std::get<1>(I)].end; 264 } 265 266 static PBQP::GraphBase::NodeId getNodeId(const IntervalInfo &I) { 267 return std::get<2>(I); 268 } 269 270 static bool lowestStartPoint(const IntervalInfo &I1, 271 const IntervalInfo &I2) { 272 // Condition reversed because priority queue has the *highest* element at 273 // the front, rather than the lowest. 274 return getStartPoint(I1) > getStartPoint(I2); 275 } 276 277 static bool lowestEndPoint(const IntervalInfo &I1, 278 const IntervalInfo &I2) { 279 SlotIndex E1 = getEndPoint(I1); 280 SlotIndex E2 = getEndPoint(I2); 281 282 if (E1 < E2) 283 return true; 284 285 if (E1 > E2) 286 return false; 287 288 // If two intervals end at the same point, we need a way to break the tie or 289 // the set will assume they're actually equal and refuse to insert a 290 // "duplicate". Just compare the vregs - fast and guaranteed unique. 291 return std::get<0>(I1)->reg < std::get<0>(I2)->reg; 292 } 293 294 static bool isAtLastSegment(const IntervalInfo &I) { 295 return std::get<1>(I) == std::get<0>(I)->size() - 1; 296 } 297 298 static IntervalInfo nextSegment(const IntervalInfo &I) { 299 return std::make_tuple(std::get<0>(I), std::get<1>(I) + 1, std::get<2>(I)); 300 } 301 302 public: 303 void apply(PBQPRAGraph &G) override { 304 // The following is loosely based on the linear scan algorithm introduced in 305 // "Linear Scan Register Allocation" by Poletto and Sarkar. This version 306 // isn't linear, because the size of the active set isn't bound by the 307 // number of registers, but rather the size of the largest clique in the 308 // graph. Still, we expect this to be better than N^2. 309 LiveIntervals &LIS = G.getMetadata().LIS; 310 311 // Interferenc matrices are incredibly regular - they're only a function of 312 // the allowed sets, so we cache them to avoid the overhead of constructing 313 // and uniquing them. 314 IMatrixCache C; 315 316 // Finding an edge is expensive in the worst case (O(max_clique(G))). So 317 // cache locally edges we have already seen. 318 IEdgeCache EC; 319 320 // Cache known disjoint allowed registers pairs 321 DisjointAllowedRegsCache D; 322 323 typedef std::set<IntervalInfo, decltype(&lowestEndPoint)> IntervalSet; 324 typedef std::priority_queue<IntervalInfo, std::vector<IntervalInfo>, 325 decltype(&lowestStartPoint)> IntervalQueue; 326 IntervalSet Active(lowestEndPoint); 327 IntervalQueue Inactive(lowestStartPoint); 328 329 // Start by building the inactive set. 330 for (auto NId : G.nodeIds()) { 331 unsigned VReg = G.getNodeMetadata(NId).getVReg(); 332 LiveInterval &LI = LIS.getInterval(VReg); 333 assert(!LI.empty() && "PBQP graph contains node for empty interval"); 334 Inactive.push(std::make_tuple(&LI, 0, NId)); 335 } 336 337 while (!Inactive.empty()) { 338 // Tentatively grab the "next" interval - this choice may be overriden 339 // below. 340 IntervalInfo Cur = Inactive.top(); 341 342 // Retire any active intervals that end before Cur starts. 343 IntervalSet::iterator RetireItr = Active.begin(); 344 while (RetireItr != Active.end() && 345 (getEndPoint(*RetireItr) <= getStartPoint(Cur))) { 346 // If this interval has subsequent segments, add the next one to the 347 // inactive list. 348 if (!isAtLastSegment(*RetireItr)) 349 Inactive.push(nextSegment(*RetireItr)); 350 351 ++RetireItr; 352 } 353 Active.erase(Active.begin(), RetireItr); 354 355 // One of the newly retired segments may actually start before the 356 // Cur segment, so re-grab the front of the inactive list. 357 Cur = Inactive.top(); 358 Inactive.pop(); 359 360 // At this point we know that Cur overlaps all active intervals. Add the 361 // interference edges. 362 PBQP::GraphBase::NodeId NId = getNodeId(Cur); 363 for (const auto &A : Active) { 364 PBQP::GraphBase::NodeId MId = getNodeId(A); 365 366 // Do not add an edge when the nodes' allowed registers do not 367 // intersect: there is obviously no interference. 368 if (haveDisjointAllowedRegs(G, NId, MId, D)) 369 continue; 370 371 // Check that we haven't already added this edge 372 IEdgeKey EK(std::min(NId, MId), std::max(NId, MId)); 373 if (EC.count(EK)) 374 continue; 375 376 // This is a new edge - add it to the graph. 377 if (!createInterferenceEdge(G, NId, MId, C)) 378 setDisjointAllowedRegs(G, NId, MId, D); 379 else 380 EC.insert(EK); 381 } 382 383 // Finally, add Cur to the Active set. 384 Active.insert(Cur); 385 } 386 } 387 388 private: 389 // Create an Interference edge and add it to the graph, unless it is 390 // a null matrix, meaning the nodes' allowed registers do not have any 391 // interference. This case occurs frequently between integer and floating 392 // point registers for example. 393 // return true iff both nodes interferes. 394 bool createInterferenceEdge(PBQPRAGraph &G, 395 PBQPRAGraph::NodeId NId, PBQPRAGraph::NodeId MId, 396 IMatrixCache &C) { 397 const TargetRegisterInfo &TRI = 398 *G.getMetadata().MF.getSubtarget().getRegisterInfo(); 399 const auto &NRegs = G.getNodeMetadata(NId).getAllowedRegs(); 400 const auto &MRegs = G.getNodeMetadata(MId).getAllowedRegs(); 401 402 // Try looking the edge costs up in the IMatrixCache first. 403 IKey K(&NRegs, &MRegs); 404 IMatrixCache::iterator I = C.find(K); 405 if (I != C.end()) { 406 G.addEdgeBypassingCostAllocator(NId, MId, I->second); 407 return true; 408 } 409 410 PBQPRAGraph::RawMatrix M(NRegs.size() + 1, MRegs.size() + 1, 0); 411 bool NodesInterfere = false; 412 for (unsigned I = 0; I != NRegs.size(); ++I) { 413 unsigned PRegN = NRegs[I]; 414 for (unsigned J = 0; J != MRegs.size(); ++J) { 415 unsigned PRegM = MRegs[J]; 416 if (TRI.regsOverlap(PRegN, PRegM)) { 417 M[I + 1][J + 1] = std::numeric_limits<PBQP::PBQPNum>::infinity(); 418 NodesInterfere = true; 419 } 420 } 421 } 422 423 if (!NodesInterfere) 424 return false; 425 426 PBQPRAGraph::EdgeId EId = G.addEdge(NId, MId, std::move(M)); 427 C[K] = G.getEdgeCostsPtr(EId); 428 429 return true; 430 } 431 }; 432 433 class Coalescing : public PBQPRAConstraint { 434 public: 435 void apply(PBQPRAGraph &G) override { 436 MachineFunction &MF = G.getMetadata().MF; 437 MachineBlockFrequencyInfo &MBFI = G.getMetadata().MBFI; 438 CoalescerPair CP(*MF.getSubtarget().getRegisterInfo()); 439 440 // Scan the machine function and add a coalescing cost whenever CoalescerPair 441 // gives the Ok. 442 for (const auto &MBB : MF) { 443 for (const auto &MI : MBB) { 444 // Skip not-coalescable or already coalesced copies. 445 if (!CP.setRegisters(&MI) || CP.getSrcReg() == CP.getDstReg()) 446 continue; 447 448 unsigned DstReg = CP.getDstReg(); 449 unsigned SrcReg = CP.getSrcReg(); 450 451 const float Scale = 1.0f / MBFI.getEntryFreq(); 452 PBQP::PBQPNum CBenefit = MBFI.getBlockFreq(&MBB).getFrequency() * Scale; 453 454 if (CP.isPhys()) { 455 if (!MF.getRegInfo().isAllocatable(DstReg)) 456 continue; 457 458 PBQPRAGraph::NodeId NId = G.getMetadata().getNodeIdForVReg(SrcReg); 459 460 const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed = 461 G.getNodeMetadata(NId).getAllowedRegs(); 462 463 unsigned PRegOpt = 0; 464 while (PRegOpt < Allowed.size() && Allowed[PRegOpt] != DstReg) 465 ++PRegOpt; 466 467 if (PRegOpt < Allowed.size()) { 468 PBQPRAGraph::RawVector NewCosts(G.getNodeCosts(NId)); 469 NewCosts[PRegOpt + 1] -= CBenefit; 470 G.setNodeCosts(NId, std::move(NewCosts)); 471 } 472 } else { 473 PBQPRAGraph::NodeId N1Id = G.getMetadata().getNodeIdForVReg(DstReg); 474 PBQPRAGraph::NodeId N2Id = G.getMetadata().getNodeIdForVReg(SrcReg); 475 const PBQPRAGraph::NodeMetadata::AllowedRegVector *Allowed1 = 476 &G.getNodeMetadata(N1Id).getAllowedRegs(); 477 const PBQPRAGraph::NodeMetadata::AllowedRegVector *Allowed2 = 478 &G.getNodeMetadata(N2Id).getAllowedRegs(); 479 480 PBQPRAGraph::EdgeId EId = G.findEdge(N1Id, N2Id); 481 if (EId == G.invalidEdgeId()) { 482 PBQPRAGraph::RawMatrix Costs(Allowed1->size() + 1, 483 Allowed2->size() + 1, 0); 484 addVirtRegCoalesce(Costs, *Allowed1, *Allowed2, CBenefit); 485 G.addEdge(N1Id, N2Id, std::move(Costs)); 486 } else { 487 if (G.getEdgeNode1Id(EId) == N2Id) { 488 std::swap(N1Id, N2Id); 489 std::swap(Allowed1, Allowed2); 490 } 491 PBQPRAGraph::RawMatrix Costs(G.getEdgeCosts(EId)); 492 addVirtRegCoalesce(Costs, *Allowed1, *Allowed2, CBenefit); 493 G.updateEdgeCosts(EId, std::move(Costs)); 494 } 495 } 496 } 497 } 498 } 499 500 private: 501 void addVirtRegCoalesce( 502 PBQPRAGraph::RawMatrix &CostMat, 503 const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed1, 504 const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed2, 505 PBQP::PBQPNum Benefit) { 506 assert(CostMat.getRows() == Allowed1.size() + 1 && "Size mismatch."); 507 assert(CostMat.getCols() == Allowed2.size() + 1 && "Size mismatch."); 508 for (unsigned I = 0; I != Allowed1.size(); ++I) { 509 unsigned PReg1 = Allowed1[I]; 510 for (unsigned J = 0; J != Allowed2.size(); ++J) { 511 unsigned PReg2 = Allowed2[J]; 512 if (PReg1 == PReg2) 513 CostMat[I + 1][J + 1] -= Benefit; 514 } 515 } 516 } 517 }; 518 519 } // end anonymous namespace 520 521 // Out-of-line destructor/anchor for PBQPRAConstraint. 522 PBQPRAConstraint::~PBQPRAConstraint() = default; 523 524 void PBQPRAConstraint::anchor() {} 525 526 void PBQPRAConstraintList::anchor() {} 527 528 void RegAllocPBQP::getAnalysisUsage(AnalysisUsage &au) const { 529 au.setPreservesCFG(); 530 au.addRequired<AAResultsWrapperPass>(); 531 au.addPreserved<AAResultsWrapperPass>(); 532 au.addRequired<SlotIndexes>(); 533 au.addPreserved<SlotIndexes>(); 534 au.addRequired<LiveIntervals>(); 535 au.addPreserved<LiveIntervals>(); 536 //au.addRequiredID(SplitCriticalEdgesID); 537 if (customPassID) 538 au.addRequiredID(*customPassID); 539 au.addRequired<LiveStacks>(); 540 au.addPreserved<LiveStacks>(); 541 au.addRequired<MachineBlockFrequencyInfo>(); 542 au.addPreserved<MachineBlockFrequencyInfo>(); 543 au.addRequired<MachineLoopInfo>(); 544 au.addPreserved<MachineLoopInfo>(); 545 au.addRequired<MachineDominatorTree>(); 546 au.addPreserved<MachineDominatorTree>(); 547 au.addRequired<VirtRegMap>(); 548 au.addPreserved<VirtRegMap>(); 549 MachineFunctionPass::getAnalysisUsage(au); 550 } 551 552 void RegAllocPBQP::findVRegIntervalsToAlloc(const MachineFunction &MF, 553 LiveIntervals &LIS) { 554 const MachineRegisterInfo &MRI = MF.getRegInfo(); 555 556 // Iterate over all live ranges. 557 for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) { 558 unsigned Reg = TargetRegisterInfo::index2VirtReg(I); 559 if (MRI.reg_nodbg_empty(Reg)) 560 continue; 561 LiveInterval &LI = LIS.getInterval(Reg); 562 563 // If this live interval is non-empty we will use pbqp to allocate it. 564 // Empty intervals we allocate in a simple post-processing stage in 565 // finalizeAlloc. 566 if (!LI.empty()) { 567 VRegsToAlloc.insert(LI.reg); 568 } else { 569 EmptyIntervalVRegs.insert(LI.reg); 570 } 571 } 572 } 573 574 static bool isACalleeSavedRegister(unsigned reg, const TargetRegisterInfo &TRI, 575 const MachineFunction &MF) { 576 const MCPhysReg *CSR = MF.getRegInfo().getCalleeSavedRegs(); 577 for (unsigned i = 0; CSR[i] != 0; ++i) 578 if (TRI.regsOverlap(reg, CSR[i])) 579 return true; 580 return false; 581 } 582 583 void RegAllocPBQP::initializeGraph(PBQPRAGraph &G, VirtRegMap &VRM, 584 Spiller &VRegSpiller) { 585 MachineFunction &MF = G.getMetadata().MF; 586 587 LiveIntervals &LIS = G.getMetadata().LIS; 588 const MachineRegisterInfo &MRI = G.getMetadata().MF.getRegInfo(); 589 const TargetRegisterInfo &TRI = 590 *G.getMetadata().MF.getSubtarget().getRegisterInfo(); 591 592 std::vector<unsigned> Worklist(VRegsToAlloc.begin(), VRegsToAlloc.end()); 593 594 while (!Worklist.empty()) { 595 unsigned VReg = Worklist.back(); 596 Worklist.pop_back(); 597 598 const TargetRegisterClass *TRC = MRI.getRegClass(VReg); 599 LiveInterval &VRegLI = LIS.getInterval(VReg); 600 601 // Record any overlaps with regmask operands. 602 BitVector RegMaskOverlaps; 603 LIS.checkRegMaskInterference(VRegLI, RegMaskOverlaps); 604 605 // Compute an initial allowed set for the current vreg. 606 std::vector<unsigned> VRegAllowed; 607 ArrayRef<MCPhysReg> RawPRegOrder = TRC->getRawAllocationOrder(MF); 608 for (unsigned I = 0; I != RawPRegOrder.size(); ++I) { 609 unsigned PReg = RawPRegOrder[I]; 610 if (MRI.isReserved(PReg)) 611 continue; 612 613 // vregLI crosses a regmask operand that clobbers preg. 614 if (!RegMaskOverlaps.empty() && !RegMaskOverlaps.test(PReg)) 615 continue; 616 617 // vregLI overlaps fixed regunit interference. 618 bool Interference = false; 619 for (MCRegUnitIterator Units(PReg, &TRI); Units.isValid(); ++Units) { 620 if (VRegLI.overlaps(LIS.getRegUnit(*Units))) { 621 Interference = true; 622 break; 623 } 624 } 625 if (Interference) 626 continue; 627 628 // preg is usable for this virtual register. 629 VRegAllowed.push_back(PReg); 630 } 631 632 // Check for vregs that have no allowed registers. These should be 633 // pre-spilled and the new vregs added to the worklist. 634 if (VRegAllowed.empty()) { 635 SmallVector<unsigned, 8> NewVRegs; 636 spillVReg(VReg, NewVRegs, MF, LIS, VRM, VRegSpiller); 637 Worklist.insert(Worklist.end(), NewVRegs.begin(), NewVRegs.end()); 638 continue; 639 } 640 641 PBQPRAGraph::RawVector NodeCosts(VRegAllowed.size() + 1, 0); 642 643 // Tweak cost of callee saved registers, as using then force spilling and 644 // restoring them. This would only happen in the prologue / epilogue though. 645 for (unsigned i = 0; i != VRegAllowed.size(); ++i) 646 if (isACalleeSavedRegister(VRegAllowed[i], TRI, MF)) 647 NodeCosts[1 + i] += 1.0; 648 649 PBQPRAGraph::NodeId NId = G.addNode(std::move(NodeCosts)); 650 G.getNodeMetadata(NId).setVReg(VReg); 651 G.getNodeMetadata(NId).setAllowedRegs( 652 G.getMetadata().getAllowedRegs(std::move(VRegAllowed))); 653 G.getMetadata().setNodeIdForVReg(VReg, NId); 654 } 655 } 656 657 void RegAllocPBQP::spillVReg(unsigned VReg, 658 SmallVectorImpl<unsigned> &NewIntervals, 659 MachineFunction &MF, LiveIntervals &LIS, 660 VirtRegMap &VRM, Spiller &VRegSpiller) { 661 662 VRegsToAlloc.erase(VReg); 663 LiveRangeEdit LRE(&LIS.getInterval(VReg), NewIntervals, MF, LIS, &VRM, 664 nullptr, &DeadRemats); 665 VRegSpiller.spill(LRE); 666 667 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 668 (void)TRI; 669 DEBUG(dbgs() << "VREG " << PrintReg(VReg, &TRI) << " -> SPILLED (Cost: " 670 << LRE.getParent().weight << ", New vregs: "); 671 672 // Copy any newly inserted live intervals into the list of regs to 673 // allocate. 674 for (LiveRangeEdit::iterator I = LRE.begin(), E = LRE.end(); 675 I != E; ++I) { 676 const LiveInterval &LI = LIS.getInterval(*I); 677 assert(!LI.empty() && "Empty spill range."); 678 DEBUG(dbgs() << PrintReg(LI.reg, &TRI) << " "); 679 VRegsToAlloc.insert(LI.reg); 680 } 681 682 DEBUG(dbgs() << ")\n"); 683 } 684 685 bool RegAllocPBQP::mapPBQPToRegAlloc(const PBQPRAGraph &G, 686 const PBQP::Solution &Solution, 687 VirtRegMap &VRM, 688 Spiller &VRegSpiller) { 689 MachineFunction &MF = G.getMetadata().MF; 690 LiveIntervals &LIS = G.getMetadata().LIS; 691 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 692 (void)TRI; 693 694 // Set to true if we have any spills 695 bool AnotherRoundNeeded = false; 696 697 // Clear the existing allocation. 698 VRM.clearAllVirt(); 699 700 // Iterate over the nodes mapping the PBQP solution to a register 701 // assignment. 702 for (auto NId : G.nodeIds()) { 703 unsigned VReg = G.getNodeMetadata(NId).getVReg(); 704 unsigned AllocOption = Solution.getSelection(NId); 705 706 if (AllocOption != PBQP::RegAlloc::getSpillOptionIdx()) { 707 unsigned PReg = G.getNodeMetadata(NId).getAllowedRegs()[AllocOption - 1]; 708 DEBUG(dbgs() << "VREG " << PrintReg(VReg, &TRI) << " -> " 709 << TRI.getName(PReg) << "\n"); 710 assert(PReg != 0 && "Invalid preg selected."); 711 VRM.assignVirt2Phys(VReg, PReg); 712 } else { 713 // Spill VReg. If this introduces new intervals we'll need another round 714 // of allocation. 715 SmallVector<unsigned, 8> NewVRegs; 716 spillVReg(VReg, NewVRegs, MF, LIS, VRM, VRegSpiller); 717 AnotherRoundNeeded |= !NewVRegs.empty(); 718 } 719 } 720 721 return !AnotherRoundNeeded; 722 } 723 724 void RegAllocPBQP::finalizeAlloc(MachineFunction &MF, 725 LiveIntervals &LIS, 726 VirtRegMap &VRM) const { 727 MachineRegisterInfo &MRI = MF.getRegInfo(); 728 729 // First allocate registers for the empty intervals. 730 for (RegSet::const_iterator 731 I = EmptyIntervalVRegs.begin(), E = EmptyIntervalVRegs.end(); 732 I != E; ++I) { 733 LiveInterval &LI = LIS.getInterval(*I); 734 735 unsigned PReg = MRI.getSimpleHint(LI.reg); 736 737 if (PReg == 0) { 738 const TargetRegisterClass &RC = *MRI.getRegClass(LI.reg); 739 PReg = RC.getRawAllocationOrder(MF).front(); 740 } 741 742 VRM.assignVirt2Phys(LI.reg, PReg); 743 } 744 } 745 746 void RegAllocPBQP::postOptimization(Spiller &VRegSpiller, LiveIntervals &LIS) { 747 VRegSpiller.postOptimization(); 748 /// Remove dead defs because of rematerialization. 749 for (auto DeadInst : DeadRemats) { 750 LIS.RemoveMachineInstrFromMaps(*DeadInst); 751 DeadInst->eraseFromParent(); 752 } 753 DeadRemats.clear(); 754 } 755 756 static inline float normalizePBQPSpillWeight(float UseDefFreq, unsigned Size, 757 unsigned NumInstr) { 758 // All intervals have a spill weight that is mostly proportional to the number 759 // of uses, with uses in loops having a bigger weight. 760 return NumInstr * normalizeSpillWeight(UseDefFreq, Size, 1); 761 } 762 763 bool RegAllocPBQP::runOnMachineFunction(MachineFunction &MF) { 764 LiveIntervals &LIS = getAnalysis<LiveIntervals>(); 765 MachineBlockFrequencyInfo &MBFI = 766 getAnalysis<MachineBlockFrequencyInfo>(); 767 768 VirtRegMap &VRM = getAnalysis<VirtRegMap>(); 769 770 calculateSpillWeightsAndHints(LIS, MF, &VRM, getAnalysis<MachineLoopInfo>(), 771 MBFI, normalizePBQPSpillWeight); 772 773 std::unique_ptr<Spiller> VRegSpiller(createInlineSpiller(*this, MF, VRM)); 774 775 MF.getRegInfo().freezeReservedRegs(MF); 776 777 DEBUG(dbgs() << "PBQP Register Allocating for " << MF.getName() << "\n"); 778 779 // Allocator main loop: 780 // 781 // * Map current regalloc problem to a PBQP problem 782 // * Solve the PBQP problem 783 // * Map the solution back to a register allocation 784 // * Spill if necessary 785 // 786 // This process is continued till no more spills are generated. 787 788 // Find the vreg intervals in need of allocation. 789 findVRegIntervalsToAlloc(MF, LIS); 790 791 #ifndef NDEBUG 792 const Function &F = *MF.getFunction(); 793 std::string FullyQualifiedName = 794 F.getParent()->getModuleIdentifier() + "." + F.getName().str(); 795 #endif 796 797 // If there are non-empty intervals allocate them using pbqp. 798 if (!VRegsToAlloc.empty()) { 799 const TargetSubtargetInfo &Subtarget = MF.getSubtarget(); 800 std::unique_ptr<PBQPRAConstraintList> ConstraintsRoot = 801 llvm::make_unique<PBQPRAConstraintList>(); 802 ConstraintsRoot->addConstraint(llvm::make_unique<SpillCosts>()); 803 ConstraintsRoot->addConstraint(llvm::make_unique<Interference>()); 804 if (PBQPCoalescing) 805 ConstraintsRoot->addConstraint(llvm::make_unique<Coalescing>()); 806 ConstraintsRoot->addConstraint(Subtarget.getCustomPBQPConstraints()); 807 808 bool PBQPAllocComplete = false; 809 unsigned Round = 0; 810 811 while (!PBQPAllocComplete) { 812 DEBUG(dbgs() << " PBQP Regalloc round " << Round << ":\n"); 813 814 PBQPRAGraph G(PBQPRAGraph::GraphMetadata(MF, LIS, MBFI)); 815 initializeGraph(G, VRM, *VRegSpiller); 816 ConstraintsRoot->apply(G); 817 818 #ifndef NDEBUG 819 if (PBQPDumpGraphs) { 820 std::ostringstream RS; 821 RS << Round; 822 std::string GraphFileName = FullyQualifiedName + "." + RS.str() + 823 ".pbqpgraph"; 824 std::error_code EC; 825 raw_fd_ostream OS(GraphFileName, EC, sys::fs::F_Text); 826 DEBUG(dbgs() << "Dumping graph for round " << Round << " to \"" 827 << GraphFileName << "\"\n"); 828 G.dump(OS); 829 } 830 #endif 831 832 PBQP::Solution Solution = PBQP::RegAlloc::solve(G); 833 PBQPAllocComplete = mapPBQPToRegAlloc(G, Solution, VRM, *VRegSpiller); 834 ++Round; 835 } 836 } 837 838 // Finalise allocation, allocate empty ranges. 839 finalizeAlloc(MF, LIS, VRM); 840 postOptimization(*VRegSpiller, LIS); 841 VRegsToAlloc.clear(); 842 EmptyIntervalVRegs.clear(); 843 844 DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << VRM << "\n"); 845 846 return true; 847 } 848 849 /// Create Printable object for node and register info. 850 static Printable PrintNodeInfo(PBQP::RegAlloc::PBQPRAGraph::NodeId NId, 851 const PBQP::RegAlloc::PBQPRAGraph &G) { 852 return Printable([NId, &G](raw_ostream &OS) { 853 const MachineRegisterInfo &MRI = G.getMetadata().MF.getRegInfo(); 854 const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo(); 855 unsigned VReg = G.getNodeMetadata(NId).getVReg(); 856 const char *RegClassName = TRI->getRegClassName(MRI.getRegClass(VReg)); 857 OS << NId << " (" << RegClassName << ':' << PrintReg(VReg, TRI) << ')'; 858 }); 859 } 860 861 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 862 LLVM_DUMP_METHOD void PBQP::RegAlloc::PBQPRAGraph::dump(raw_ostream &OS) const { 863 for (auto NId : nodeIds()) { 864 const Vector &Costs = getNodeCosts(NId); 865 assert(Costs.getLength() != 0 && "Empty vector in graph."); 866 OS << PrintNodeInfo(NId, *this) << ": " << Costs << '\n'; 867 } 868 OS << '\n'; 869 870 for (auto EId : edgeIds()) { 871 NodeId N1Id = getEdgeNode1Id(EId); 872 NodeId N2Id = getEdgeNode2Id(EId); 873 assert(N1Id != N2Id && "PBQP graphs should not have self-edges."); 874 const Matrix &M = getEdgeCosts(EId); 875 assert(M.getRows() != 0 && "No rows in matrix."); 876 assert(M.getCols() != 0 && "No cols in matrix."); 877 OS << PrintNodeInfo(N1Id, *this) << ' ' << M.getRows() << " rows / "; 878 OS << PrintNodeInfo(N2Id, *this) << ' ' << M.getCols() << " cols:\n"; 879 OS << M << '\n'; 880 } 881 } 882 883 LLVM_DUMP_METHOD void PBQP::RegAlloc::PBQPRAGraph::dump() const { 884 dump(dbgs()); 885 } 886 #endif 887 888 void PBQP::RegAlloc::PBQPRAGraph::printDot(raw_ostream &OS) const { 889 OS << "graph {\n"; 890 for (auto NId : nodeIds()) { 891 OS << " node" << NId << " [ label=\"" 892 << PrintNodeInfo(NId, *this) << "\\n" 893 << getNodeCosts(NId) << "\" ]\n"; 894 } 895 896 OS << " edge [ len=" << nodeIds().size() << " ]\n"; 897 for (auto EId : edgeIds()) { 898 OS << " node" << getEdgeNode1Id(EId) 899 << " -- node" << getEdgeNode2Id(EId) 900 << " [ label=\""; 901 const Matrix &EdgeCosts = getEdgeCosts(EId); 902 for (unsigned i = 0; i < EdgeCosts.getRows(); ++i) { 903 OS << EdgeCosts.getRowAsVector(i) << "\\n"; 904 } 905 OS << "\" ]\n"; 906 } 907 OS << "}\n"; 908 } 909 910 FunctionPass *llvm::createPBQPRegisterAllocator(char *customPassID) { 911 return new RegAllocPBQP(customPassID); 912 } 913 914 FunctionPass* llvm::createDefaultPBQPRegisterAllocator() { 915 return createPBQPRegisterAllocator(); 916 } 917 918 #undef DEBUG_TYPE 919