1 //===------ RegAllocPBQP.cpp ---- PBQP Register Allocator -------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains a Partitioned Boolean Quadratic Programming (PBQP) based 11 // register allocator for LLVM. This allocator works by constructing a PBQP 12 // problem representing the register allocation problem under consideration, 13 // solving this using a PBQP solver, and mapping the solution back to a 14 // register assignment. If any variables are selected for spilling then spill 15 // code is inserted and the process repeated. 16 // 17 // The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned 18 // for register allocation. For more information on PBQP for register 19 // allocation, see the following papers: 20 // 21 // (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with 22 // PBQP. In Proceedings of the 7th Joint Modular Languages Conference 23 // (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361. 24 // 25 // (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular 26 // architectures. In Proceedings of the Joint Conference on Languages, 27 // Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York, 28 // NY, USA, 139-148. 29 // 30 //===----------------------------------------------------------------------===// 31 32 #define DEBUG_TYPE "regalloc" 33 34 #include "LiveRangeEdit.h" 35 #include "RenderMachineFunction.h" 36 #include "Spiller.h" 37 #include "VirtRegMap.h" 38 #include "RegisterCoalescer.h" 39 #include "llvm/Analysis/AliasAnalysis.h" 40 #include "llvm/CodeGen/CalcSpillWeights.h" 41 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 42 #include "llvm/CodeGen/LiveStackAnalysis.h" 43 #include "llvm/CodeGen/RegAllocPBQP.h" 44 #include "llvm/CodeGen/MachineDominators.h" 45 #include "llvm/CodeGen/MachineFunctionPass.h" 46 #include "llvm/CodeGen/MachineLoopInfo.h" 47 #include "llvm/CodeGen/MachineRegisterInfo.h" 48 #include "llvm/CodeGen/PBQP/HeuristicSolver.h" 49 #include "llvm/CodeGen/PBQP/Graph.h" 50 #include "llvm/CodeGen/PBQP/Heuristics/Briggs.h" 51 #include "llvm/CodeGen/RegAllocRegistry.h" 52 #include "llvm/Support/Debug.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include "llvm/Target/TargetInstrInfo.h" 55 #include "llvm/Target/TargetMachine.h" 56 #include <limits> 57 #include <memory> 58 #include <set> 59 #include <vector> 60 61 using namespace llvm; 62 63 static RegisterRegAlloc 64 registerPBQPRepAlloc("pbqp", "PBQP register allocator", 65 createDefaultPBQPRegisterAllocator); 66 67 static cl::opt<bool> 68 pbqpCoalescing("pbqp-coalescing", 69 cl::desc("Attempt coalescing during PBQP register allocation."), 70 cl::init(false), cl::Hidden); 71 72 namespace { 73 74 /// 75 /// PBQP based allocators solve the register allocation problem by mapping 76 /// register allocation problems to Partitioned Boolean Quadratic 77 /// Programming problems. 78 class RegAllocPBQP : public MachineFunctionPass { 79 public: 80 81 static char ID; 82 83 /// Construct a PBQP register allocator. 84 RegAllocPBQP(std::auto_ptr<PBQPBuilder> b, char *cPassID=0) 85 : MachineFunctionPass(ID), builder(b), customPassID(cPassID) { 86 initializeSlotIndexesPass(*PassRegistry::getPassRegistry()); 87 initializeLiveIntervalsPass(*PassRegistry::getPassRegistry()); 88 initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry()); 89 initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry()); 90 initializeLiveStacksPass(*PassRegistry::getPassRegistry()); 91 initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry()); 92 initializeVirtRegMapPass(*PassRegistry::getPassRegistry()); 93 initializeRenderMachineFunctionPass(*PassRegistry::getPassRegistry()); 94 } 95 96 /// Return the pass name. 97 virtual const char* getPassName() const { 98 return "PBQP Register Allocator"; 99 } 100 101 /// PBQP analysis usage. 102 virtual void getAnalysisUsage(AnalysisUsage &au) const; 103 104 /// Perform register allocation 105 virtual bool runOnMachineFunction(MachineFunction &MF); 106 107 private: 108 109 typedef std::map<const LiveInterval*, unsigned> LI2NodeMap; 110 typedef std::vector<const LiveInterval*> Node2LIMap; 111 typedef std::vector<unsigned> AllowedSet; 112 typedef std::vector<AllowedSet> AllowedSetMap; 113 typedef std::pair<unsigned, unsigned> RegPair; 114 typedef std::map<RegPair, PBQP::PBQPNum> CoalesceMap; 115 typedef std::vector<PBQP::Graph::NodeItr> NodeVector; 116 typedef std::set<unsigned> RegSet; 117 118 119 std::auto_ptr<PBQPBuilder> builder; 120 121 char *customPassID; 122 123 MachineFunction *mf; 124 const TargetMachine *tm; 125 const TargetRegisterInfo *tri; 126 const TargetInstrInfo *tii; 127 const MachineLoopInfo *loopInfo; 128 MachineRegisterInfo *mri; 129 RenderMachineFunction *rmf; 130 131 std::auto_ptr<Spiller> spiller; 132 LiveIntervals *lis; 133 LiveStacks *lss; 134 VirtRegMap *vrm; 135 136 RegSet vregsToAlloc, emptyIntervalVRegs; 137 138 /// \brief Finds the initial set of vreg intervals to allocate. 139 void findVRegIntervalsToAlloc(); 140 141 /// \brief Given a solved PBQP problem maps this solution back to a register 142 /// assignment. 143 bool mapPBQPToRegAlloc(const PBQPRAProblem &problem, 144 const PBQP::Solution &solution); 145 146 /// \brief Postprocessing before final spilling. Sets basic block "live in" 147 /// variables. 148 void finalizeAlloc() const; 149 150 }; 151 152 char RegAllocPBQP::ID = 0; 153 154 } // End anonymous namespace. 155 156 unsigned PBQPRAProblem::getVRegForNode(PBQP::Graph::ConstNodeItr node) const { 157 Node2VReg::const_iterator vregItr = node2VReg.find(node); 158 assert(vregItr != node2VReg.end() && "No vreg for node."); 159 return vregItr->second; 160 } 161 162 PBQP::Graph::NodeItr PBQPRAProblem::getNodeForVReg(unsigned vreg) const { 163 VReg2Node::const_iterator nodeItr = vreg2Node.find(vreg); 164 assert(nodeItr != vreg2Node.end() && "No node for vreg."); 165 return nodeItr->second; 166 167 } 168 169 const PBQPRAProblem::AllowedSet& 170 PBQPRAProblem::getAllowedSet(unsigned vreg) const { 171 AllowedSetMap::const_iterator allowedSetItr = allowedSets.find(vreg); 172 assert(allowedSetItr != allowedSets.end() && "No pregs for vreg."); 173 const AllowedSet &allowedSet = allowedSetItr->second; 174 return allowedSet; 175 } 176 177 unsigned PBQPRAProblem::getPRegForOption(unsigned vreg, unsigned option) const { 178 assert(isPRegOption(vreg, option) && "Not a preg option."); 179 180 const AllowedSet& allowedSet = getAllowedSet(vreg); 181 assert(option <= allowedSet.size() && "Option outside allowed set."); 182 return allowedSet[option - 1]; 183 } 184 185 std::auto_ptr<PBQPRAProblem> PBQPBuilder::build(MachineFunction *mf, 186 const LiveIntervals *lis, 187 const MachineLoopInfo *loopInfo, 188 const RegSet &vregs) { 189 190 typedef std::vector<const LiveInterval*> LIVector; 191 192 MachineRegisterInfo *mri = &mf->getRegInfo(); 193 const TargetRegisterInfo *tri = mf->getTarget().getRegisterInfo(); 194 195 std::auto_ptr<PBQPRAProblem> p(new PBQPRAProblem()); 196 PBQP::Graph &g = p->getGraph(); 197 RegSet pregs; 198 199 // Collect the set of preg intervals, record that they're used in the MF. 200 for (LiveIntervals::const_iterator itr = lis->begin(), end = lis->end(); 201 itr != end; ++itr) { 202 if (TargetRegisterInfo::isPhysicalRegister(itr->first)) { 203 pregs.insert(itr->first); 204 mri->setPhysRegUsed(itr->first); 205 } 206 } 207 208 BitVector reservedRegs = tri->getReservedRegs(*mf); 209 210 // Iterate over vregs. 211 for (RegSet::const_iterator vregItr = vregs.begin(), vregEnd = vregs.end(); 212 vregItr != vregEnd; ++vregItr) { 213 unsigned vreg = *vregItr; 214 const TargetRegisterClass *trc = mri->getRegClass(vreg); 215 const LiveInterval *vregLI = &lis->getInterval(vreg); 216 217 // Compute an initial allowed set for the current vreg. 218 typedef std::vector<unsigned> VRAllowed; 219 VRAllowed vrAllowed; 220 ArrayRef<unsigned> rawOrder = trc->getRawAllocationOrder(*mf); 221 for (unsigned i = 0; i != rawOrder.size(); ++i) { 222 unsigned preg = rawOrder[i]; 223 if (!reservedRegs.test(preg)) { 224 vrAllowed.push_back(preg); 225 } 226 } 227 228 // Remove any physical registers which overlap. 229 for (RegSet::const_iterator pregItr = pregs.begin(), 230 pregEnd = pregs.end(); 231 pregItr != pregEnd; ++pregItr) { 232 unsigned preg = *pregItr; 233 const LiveInterval *pregLI = &lis->getInterval(preg); 234 235 if (pregLI->empty()) { 236 continue; 237 } 238 239 if (!vregLI->overlaps(*pregLI)) { 240 continue; 241 } 242 243 // Remove the register from the allowed set. 244 VRAllowed::iterator eraseItr = 245 std::find(vrAllowed.begin(), vrAllowed.end(), preg); 246 247 if (eraseItr != vrAllowed.end()) { 248 vrAllowed.erase(eraseItr); 249 } 250 251 // Also remove any aliases. 252 const unsigned *aliasItr = tri->getAliasSet(preg); 253 if (aliasItr != 0) { 254 for (; *aliasItr != 0; ++aliasItr) { 255 VRAllowed::iterator eraseItr = 256 std::find(vrAllowed.begin(), vrAllowed.end(), *aliasItr); 257 258 if (eraseItr != vrAllowed.end()) { 259 vrAllowed.erase(eraseItr); 260 } 261 } 262 } 263 } 264 265 // Construct the node. 266 PBQP::Graph::NodeItr node = 267 g.addNode(PBQP::Vector(vrAllowed.size() + 1, 0)); 268 269 // Record the mapping and allowed set in the problem. 270 p->recordVReg(vreg, node, vrAllowed.begin(), vrAllowed.end()); 271 272 PBQP::PBQPNum spillCost = (vregLI->weight != 0.0) ? 273 vregLI->weight : std::numeric_limits<PBQP::PBQPNum>::min(); 274 275 addSpillCosts(g.getNodeCosts(node), spillCost); 276 } 277 278 for (RegSet::const_iterator vr1Itr = vregs.begin(), vrEnd = vregs.end(); 279 vr1Itr != vrEnd; ++vr1Itr) { 280 unsigned vr1 = *vr1Itr; 281 const LiveInterval &l1 = lis->getInterval(vr1); 282 const PBQPRAProblem::AllowedSet &vr1Allowed = p->getAllowedSet(vr1); 283 284 for (RegSet::const_iterator vr2Itr = llvm::next(vr1Itr); 285 vr2Itr != vrEnd; ++vr2Itr) { 286 unsigned vr2 = *vr2Itr; 287 const LiveInterval &l2 = lis->getInterval(vr2); 288 const PBQPRAProblem::AllowedSet &vr2Allowed = p->getAllowedSet(vr2); 289 290 assert(!l2.empty() && "Empty interval in vreg set?"); 291 if (l1.overlaps(l2)) { 292 PBQP::Graph::EdgeItr edge = 293 g.addEdge(p->getNodeForVReg(vr1), p->getNodeForVReg(vr2), 294 PBQP::Matrix(vr1Allowed.size()+1, vr2Allowed.size()+1, 0)); 295 296 addInterferenceCosts(g.getEdgeCosts(edge), vr1Allowed, vr2Allowed, tri); 297 } 298 } 299 } 300 301 return p; 302 } 303 304 void PBQPBuilder::addSpillCosts(PBQP::Vector &costVec, 305 PBQP::PBQPNum spillCost) { 306 costVec[0] = spillCost; 307 } 308 309 void PBQPBuilder::addInterferenceCosts( 310 PBQP::Matrix &costMat, 311 const PBQPRAProblem::AllowedSet &vr1Allowed, 312 const PBQPRAProblem::AllowedSet &vr2Allowed, 313 const TargetRegisterInfo *tri) { 314 assert(costMat.getRows() == vr1Allowed.size() + 1 && "Matrix height mismatch."); 315 assert(costMat.getCols() == vr2Allowed.size() + 1 && "Matrix width mismatch."); 316 317 for (unsigned i = 0; i != vr1Allowed.size(); ++i) { 318 unsigned preg1 = vr1Allowed[i]; 319 320 for (unsigned j = 0; j != vr2Allowed.size(); ++j) { 321 unsigned preg2 = vr2Allowed[j]; 322 323 if (tri->regsOverlap(preg1, preg2)) { 324 costMat[i + 1][j + 1] = std::numeric_limits<PBQP::PBQPNum>::infinity(); 325 } 326 } 327 } 328 } 329 330 std::auto_ptr<PBQPRAProblem> PBQPBuilderWithCoalescing::build( 331 MachineFunction *mf, 332 const LiveIntervals *lis, 333 const MachineLoopInfo *loopInfo, 334 const RegSet &vregs) { 335 336 std::auto_ptr<PBQPRAProblem> p = PBQPBuilder::build(mf, lis, loopInfo, vregs); 337 PBQP::Graph &g = p->getGraph(); 338 339 const TargetMachine &tm = mf->getTarget(); 340 CoalescerPair cp(*tm.getInstrInfo(), *tm.getRegisterInfo()); 341 342 // Scan the machine function and add a coalescing cost whenever CoalescerPair 343 // gives the Ok. 344 for (MachineFunction::const_iterator mbbItr = mf->begin(), 345 mbbEnd = mf->end(); 346 mbbItr != mbbEnd; ++mbbItr) { 347 const MachineBasicBlock *mbb = &*mbbItr; 348 349 for (MachineBasicBlock::const_iterator miItr = mbb->begin(), 350 miEnd = mbb->end(); 351 miItr != miEnd; ++miItr) { 352 const MachineInstr *mi = &*miItr; 353 354 if (!cp.setRegisters(mi)) { 355 continue; // Not coalescable. 356 } 357 358 if (cp.getSrcReg() == cp.getDstReg()) { 359 continue; // Already coalesced. 360 } 361 362 unsigned dst = cp.getDstReg(), 363 src = cp.getSrcReg(); 364 365 const float copyFactor = 0.5; // Cost of copy relative to load. Current 366 // value plucked randomly out of the air. 367 368 PBQP::PBQPNum cBenefit = 369 copyFactor * LiveIntervals::getSpillWeight(false, true, 370 loopInfo->getLoopDepth(mbb)); 371 372 if (cp.isPhys()) { 373 if (!lis->isAllocatable(dst)) { 374 continue; 375 } 376 377 const PBQPRAProblem::AllowedSet &allowed = p->getAllowedSet(src); 378 unsigned pregOpt = 0; 379 while (pregOpt < allowed.size() && allowed[pregOpt] != dst) { 380 ++pregOpt; 381 } 382 if (pregOpt < allowed.size()) { 383 ++pregOpt; // +1 to account for spill option. 384 PBQP::Graph::NodeItr node = p->getNodeForVReg(src); 385 addPhysRegCoalesce(g.getNodeCosts(node), pregOpt, cBenefit); 386 } 387 } else { 388 const PBQPRAProblem::AllowedSet *allowed1 = &p->getAllowedSet(dst); 389 const PBQPRAProblem::AllowedSet *allowed2 = &p->getAllowedSet(src); 390 PBQP::Graph::NodeItr node1 = p->getNodeForVReg(dst); 391 PBQP::Graph::NodeItr node2 = p->getNodeForVReg(src); 392 PBQP::Graph::EdgeItr edge = g.findEdge(node1, node2); 393 if (edge == g.edgesEnd()) { 394 edge = g.addEdge(node1, node2, PBQP::Matrix(allowed1->size() + 1, 395 allowed2->size() + 1, 396 0)); 397 } else { 398 if (g.getEdgeNode1(edge) == node2) { 399 std::swap(node1, node2); 400 std::swap(allowed1, allowed2); 401 } 402 } 403 404 addVirtRegCoalesce(g.getEdgeCosts(edge), *allowed1, *allowed2, 405 cBenefit); 406 } 407 } 408 } 409 410 return p; 411 } 412 413 void PBQPBuilderWithCoalescing::addPhysRegCoalesce(PBQP::Vector &costVec, 414 unsigned pregOption, 415 PBQP::PBQPNum benefit) { 416 costVec[pregOption] += -benefit; 417 } 418 419 void PBQPBuilderWithCoalescing::addVirtRegCoalesce( 420 PBQP::Matrix &costMat, 421 const PBQPRAProblem::AllowedSet &vr1Allowed, 422 const PBQPRAProblem::AllowedSet &vr2Allowed, 423 PBQP::PBQPNum benefit) { 424 425 assert(costMat.getRows() == vr1Allowed.size() + 1 && "Size mismatch."); 426 assert(costMat.getCols() == vr2Allowed.size() + 1 && "Size mismatch."); 427 428 for (unsigned i = 0; i != vr1Allowed.size(); ++i) { 429 unsigned preg1 = vr1Allowed[i]; 430 for (unsigned j = 0; j != vr2Allowed.size(); ++j) { 431 unsigned preg2 = vr2Allowed[j]; 432 433 if (preg1 == preg2) { 434 costMat[i + 1][j + 1] += -benefit; 435 } 436 } 437 } 438 } 439 440 441 void RegAllocPBQP::getAnalysisUsage(AnalysisUsage &au) const { 442 au.setPreservesCFG(); 443 au.addRequired<AliasAnalysis>(); 444 au.addPreserved<AliasAnalysis>(); 445 au.addRequired<SlotIndexes>(); 446 au.addPreserved<SlotIndexes>(); 447 au.addRequired<LiveIntervals>(); 448 //au.addRequiredID(SplitCriticalEdgesID); 449 au.addRequiredID(RegisterCoalescerPassID); 450 if (customPassID) 451 au.addRequiredID(*customPassID); 452 au.addRequired<CalculateSpillWeights>(); 453 au.addRequired<LiveStacks>(); 454 au.addPreserved<LiveStacks>(); 455 au.addRequired<MachineDominatorTree>(); 456 au.addPreserved<MachineDominatorTree>(); 457 au.addRequired<MachineLoopInfo>(); 458 au.addPreserved<MachineLoopInfo>(); 459 au.addRequired<VirtRegMap>(); 460 au.addRequired<RenderMachineFunction>(); 461 MachineFunctionPass::getAnalysisUsage(au); 462 } 463 464 void RegAllocPBQP::findVRegIntervalsToAlloc() { 465 466 // Iterate over all live ranges. 467 for (LiveIntervals::iterator itr = lis->begin(), end = lis->end(); 468 itr != end; ++itr) { 469 470 // Ignore physical ones. 471 if (TargetRegisterInfo::isPhysicalRegister(itr->first)) 472 continue; 473 474 LiveInterval *li = itr->second; 475 476 // If this live interval is non-empty we will use pbqp to allocate it. 477 // Empty intervals we allocate in a simple post-processing stage in 478 // finalizeAlloc. 479 if (!li->empty()) { 480 vregsToAlloc.insert(li->reg); 481 } else { 482 emptyIntervalVRegs.insert(li->reg); 483 } 484 } 485 } 486 487 bool RegAllocPBQP::mapPBQPToRegAlloc(const PBQPRAProblem &problem, 488 const PBQP::Solution &solution) { 489 // Set to true if we have any spills 490 bool anotherRoundNeeded = false; 491 492 // Clear the existing allocation. 493 vrm->clearAllVirt(); 494 495 const PBQP::Graph &g = problem.getGraph(); 496 // Iterate over the nodes mapping the PBQP solution to a register 497 // assignment. 498 for (PBQP::Graph::ConstNodeItr node = g.nodesBegin(), 499 nodeEnd = g.nodesEnd(); 500 node != nodeEnd; ++node) { 501 unsigned vreg = problem.getVRegForNode(node); 502 unsigned alloc = solution.getSelection(node); 503 504 if (problem.isPRegOption(vreg, alloc)) { 505 unsigned preg = problem.getPRegForOption(vreg, alloc); 506 DEBUG(dbgs() << "VREG " << vreg << " -> " << tri->getName(preg) << "\n"); 507 assert(preg != 0 && "Invalid preg selected."); 508 vrm->assignVirt2Phys(vreg, preg); 509 } else if (problem.isSpillOption(vreg, alloc)) { 510 vregsToAlloc.erase(vreg); 511 SmallVector<LiveInterval*, 8> newSpills; 512 LiveRangeEdit LRE(lis->getInterval(vreg), newSpills); 513 spiller->spill(LRE); 514 515 DEBUG(dbgs() << "VREG " << vreg << " -> SPILLED (Cost: " 516 << LRE.getParent().weight << ", New vregs: "); 517 518 // Copy any newly inserted live intervals into the list of regs to 519 // allocate. 520 for (LiveRangeEdit::iterator itr = LRE.begin(), end = LRE.end(); 521 itr != end; ++itr) { 522 assert(!(*itr)->empty() && "Empty spill range."); 523 DEBUG(dbgs() << (*itr)->reg << " "); 524 vregsToAlloc.insert((*itr)->reg); 525 } 526 527 DEBUG(dbgs() << ")\n"); 528 529 // We need another round if spill intervals were added. 530 anotherRoundNeeded |= !LRE.empty(); 531 } else { 532 assert(false && "Unknown allocation option."); 533 } 534 } 535 536 return !anotherRoundNeeded; 537 } 538 539 540 void RegAllocPBQP::finalizeAlloc() const { 541 typedef LiveIntervals::iterator LIIterator; 542 typedef LiveInterval::Ranges::const_iterator LRIterator; 543 544 // First allocate registers for the empty intervals. 545 for (RegSet::const_iterator 546 itr = emptyIntervalVRegs.begin(), end = emptyIntervalVRegs.end(); 547 itr != end; ++itr) { 548 LiveInterval *li = &lis->getInterval(*itr); 549 550 unsigned physReg = vrm->getRegAllocPref(li->reg); 551 552 if (physReg == 0) { 553 const TargetRegisterClass *liRC = mri->getRegClass(li->reg); 554 physReg = liRC->getRawAllocationOrder(*mf).front(); 555 } 556 557 vrm->assignVirt2Phys(li->reg, physReg); 558 } 559 560 // Finally iterate over the basic blocks to compute and set the live-in sets. 561 SmallVector<MachineBasicBlock*, 8> liveInMBBs; 562 MachineBasicBlock *entryMBB = &*mf->begin(); 563 564 for (LIIterator liItr = lis->begin(), liEnd = lis->end(); 565 liItr != liEnd; ++liItr) { 566 567 const LiveInterval *li = liItr->second; 568 unsigned reg = 0; 569 570 // Get the physical register for this interval 571 if (TargetRegisterInfo::isPhysicalRegister(li->reg)) { 572 reg = li->reg; 573 } else if (vrm->isAssignedReg(li->reg)) { 574 reg = vrm->getPhys(li->reg); 575 } else { 576 // Ranges which are assigned a stack slot only are ignored. 577 continue; 578 } 579 580 if (reg == 0) { 581 // Filter out zero regs - they're for intervals that were spilled. 582 continue; 583 } 584 585 // Iterate over the ranges of the current interval... 586 for (LRIterator lrItr = li->begin(), lrEnd = li->end(); 587 lrItr != lrEnd; ++lrItr) { 588 589 // Find the set of basic blocks which this range is live into... 590 if (lis->findLiveInMBBs(lrItr->start, lrItr->end, liveInMBBs)) { 591 // And add the physreg for this interval to their live-in sets. 592 for (unsigned i = 0; i != liveInMBBs.size(); ++i) { 593 if (liveInMBBs[i] != entryMBB) { 594 if (!liveInMBBs[i]->isLiveIn(reg)) { 595 liveInMBBs[i]->addLiveIn(reg); 596 } 597 } 598 } 599 liveInMBBs.clear(); 600 } 601 } 602 } 603 604 } 605 606 bool RegAllocPBQP::runOnMachineFunction(MachineFunction &MF) { 607 608 mf = &MF; 609 tm = &mf->getTarget(); 610 tri = tm->getRegisterInfo(); 611 tii = tm->getInstrInfo(); 612 mri = &mf->getRegInfo(); 613 614 lis = &getAnalysis<LiveIntervals>(); 615 lss = &getAnalysis<LiveStacks>(); 616 loopInfo = &getAnalysis<MachineLoopInfo>(); 617 rmf = &getAnalysis<RenderMachineFunction>(); 618 619 vrm = &getAnalysis<VirtRegMap>(); 620 spiller.reset(createInlineSpiller(*this, MF, *vrm)); 621 622 623 DEBUG(dbgs() << "PBQP Register Allocating for " << mf->getFunction()->getName() << "\n"); 624 625 // Allocator main loop: 626 // 627 // * Map current regalloc problem to a PBQP problem 628 // * Solve the PBQP problem 629 // * Map the solution back to a register allocation 630 // * Spill if necessary 631 // 632 // This process is continued till no more spills are generated. 633 634 // Find the vreg intervals in need of allocation. 635 findVRegIntervalsToAlloc(); 636 637 // If there are non-empty intervals allocate them using pbqp. 638 if (!vregsToAlloc.empty()) { 639 640 bool pbqpAllocComplete = false; 641 unsigned round = 0; 642 643 while (!pbqpAllocComplete) { 644 DEBUG(dbgs() << " PBQP Regalloc round " << round << ":\n"); 645 646 std::auto_ptr<PBQPRAProblem> problem = 647 builder->build(mf, lis, loopInfo, vregsToAlloc); 648 PBQP::Solution solution = 649 PBQP::HeuristicSolver<PBQP::Heuristics::Briggs>::solve( 650 problem->getGraph()); 651 652 pbqpAllocComplete = mapPBQPToRegAlloc(*problem, solution); 653 654 ++round; 655 } 656 } 657 658 // Finalise allocation, allocate empty ranges. 659 finalizeAlloc(); 660 661 rmf->renderMachineFunction("After PBQP register allocation.", vrm); 662 663 vregsToAlloc.clear(); 664 emptyIntervalVRegs.clear(); 665 666 DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *vrm << "\n"); 667 668 // Run rewriter 669 vrm->rewrite(lis->getSlotIndexes()); 670 671 return true; 672 } 673 674 FunctionPass* llvm::createPBQPRegisterAllocator( 675 std::auto_ptr<PBQPBuilder> builder, 676 char *customPassID) { 677 return new RegAllocPBQP(builder, customPassID); 678 } 679 680 FunctionPass* llvm::createDefaultPBQPRegisterAllocator() { 681 if (pbqpCoalescing) { 682 return createPBQPRegisterAllocator( 683 std::auto_ptr<PBQPBuilder>(new PBQPBuilderWithCoalescing())); 684 } // else 685 return createPBQPRegisterAllocator( 686 std::auto_ptr<PBQPBuilder>(new PBQPBuilder())); 687 } 688 689 #undef DEBUG_TYPE 690