1 //===------ RegAllocPBQP.cpp ---- PBQP Register Allocator -------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains a Partitioned Boolean Quadratic Programming (PBQP) based 11 // register allocator for LLVM. This allocator works by constructing a PBQP 12 // problem representing the register allocation problem under consideration, 13 // solving this using a PBQP solver, and mapping the solution back to a 14 // register assignment. If any variables are selected for spilling then spill 15 // code is inserted and the process repeated. 16 // 17 // The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned 18 // for register allocation. For more information on PBQP for register 19 // allocation, see the following papers: 20 // 21 // (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with 22 // PBQP. In Proceedings of the 7th Joint Modular Languages Conference 23 // (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361. 24 // 25 // (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular 26 // architectures. In Proceedings of the Joint Conference on Languages, 27 // Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York, 28 // NY, USA, 139-148. 29 // 30 //===----------------------------------------------------------------------===// 31 32 #define DEBUG_TYPE "regalloc" 33 34 #include "LiveRangeEdit.h" 35 #include "RenderMachineFunction.h" 36 #include "Spiller.h" 37 #include "Splitter.h" 38 #include "VirtRegMap.h" 39 #include "RegisterCoalescer.h" 40 #include "llvm/CodeGen/CalcSpillWeights.h" 41 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 42 #include "llvm/CodeGen/LiveStackAnalysis.h" 43 #include "llvm/CodeGen/RegAllocPBQP.h" 44 #include "llvm/CodeGen/MachineFunctionPass.h" 45 #include "llvm/CodeGen/MachineLoopInfo.h" 46 #include "llvm/CodeGen/MachineRegisterInfo.h" 47 #include "llvm/CodeGen/PBQP/HeuristicSolver.h" 48 #include "llvm/CodeGen/PBQP/Graph.h" 49 #include "llvm/CodeGen/PBQP/Heuristics/Briggs.h" 50 #include "llvm/CodeGen/RegAllocRegistry.h" 51 #include "llvm/Support/Debug.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include "llvm/Target/TargetInstrInfo.h" 54 #include "llvm/Target/TargetMachine.h" 55 #include <limits> 56 #include <memory> 57 #include <set> 58 #include <vector> 59 60 using namespace llvm; 61 62 static RegisterRegAlloc 63 registerPBQPRepAlloc("pbqp", "PBQP register allocator", 64 createDefaultPBQPRegisterAllocator); 65 66 static cl::opt<bool> 67 pbqpCoalescing("pbqp-coalescing", 68 cl::desc("Attempt coalescing during PBQP register allocation."), 69 cl::init(false), cl::Hidden); 70 71 static cl::opt<bool> 72 pbqpPreSplitting("pbqp-pre-splitting", 73 cl::desc("Pre-split before PBQP register allocation."), 74 cl::init(false), cl::Hidden); 75 76 namespace { 77 78 /// 79 /// PBQP based allocators solve the register allocation problem by mapping 80 /// register allocation problems to Partitioned Boolean Quadratic 81 /// Programming problems. 82 class RegAllocPBQP : public MachineFunctionPass { 83 public: 84 85 static char ID; 86 87 /// Construct a PBQP register allocator. 88 RegAllocPBQP(std::auto_ptr<PBQPBuilder> b, char *cPassID=0) 89 : MachineFunctionPass(ID), builder(b), customPassID(cPassID) { 90 initializeSlotIndexesPass(*PassRegistry::getPassRegistry()); 91 initializeLiveIntervalsPass(*PassRegistry::getPassRegistry()); 92 initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry()); 93 initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry()); 94 initializeLiveStacksPass(*PassRegistry::getPassRegistry()); 95 initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry()); 96 initializeLoopSplitterPass(*PassRegistry::getPassRegistry()); 97 initializeVirtRegMapPass(*PassRegistry::getPassRegistry()); 98 initializeRenderMachineFunctionPass(*PassRegistry::getPassRegistry()); 99 } 100 101 /// Return the pass name. 102 virtual const char* getPassName() const { 103 return "PBQP Register Allocator"; 104 } 105 106 /// PBQP analysis usage. 107 virtual void getAnalysisUsage(AnalysisUsage &au) const; 108 109 /// Perform register allocation 110 virtual bool runOnMachineFunction(MachineFunction &MF); 111 112 private: 113 114 typedef std::map<const LiveInterval*, unsigned> LI2NodeMap; 115 typedef std::vector<const LiveInterval*> Node2LIMap; 116 typedef std::vector<unsigned> AllowedSet; 117 typedef std::vector<AllowedSet> AllowedSetMap; 118 typedef std::pair<unsigned, unsigned> RegPair; 119 typedef std::map<RegPair, PBQP::PBQPNum> CoalesceMap; 120 typedef std::vector<PBQP::Graph::NodeItr> NodeVector; 121 typedef std::set<unsigned> RegSet; 122 123 124 std::auto_ptr<PBQPBuilder> builder; 125 126 char *customPassID; 127 128 MachineFunction *mf; 129 const TargetMachine *tm; 130 const TargetRegisterInfo *tri; 131 const TargetInstrInfo *tii; 132 const MachineLoopInfo *loopInfo; 133 MachineRegisterInfo *mri; 134 RenderMachineFunction *rmf; 135 136 std::auto_ptr<Spiller> spiller; 137 LiveIntervals *lis; 138 LiveStacks *lss; 139 VirtRegMap *vrm; 140 141 RegSet vregsToAlloc, emptyIntervalVRegs; 142 143 /// \brief Finds the initial set of vreg intervals to allocate. 144 void findVRegIntervalsToAlloc(); 145 146 /// \brief Given a solved PBQP problem maps this solution back to a register 147 /// assignment. 148 bool mapPBQPToRegAlloc(const PBQPRAProblem &problem, 149 const PBQP::Solution &solution); 150 151 /// \brief Postprocessing before final spilling. Sets basic block "live in" 152 /// variables. 153 void finalizeAlloc() const; 154 155 }; 156 157 char RegAllocPBQP::ID = 0; 158 159 } // End anonymous namespace. 160 161 unsigned PBQPRAProblem::getVRegForNode(PBQP::Graph::ConstNodeItr node) const { 162 Node2VReg::const_iterator vregItr = node2VReg.find(node); 163 assert(vregItr != node2VReg.end() && "No vreg for node."); 164 return vregItr->second; 165 } 166 167 PBQP::Graph::NodeItr PBQPRAProblem::getNodeForVReg(unsigned vreg) const { 168 VReg2Node::const_iterator nodeItr = vreg2Node.find(vreg); 169 assert(nodeItr != vreg2Node.end() && "No node for vreg."); 170 return nodeItr->second; 171 172 } 173 174 const PBQPRAProblem::AllowedSet& 175 PBQPRAProblem::getAllowedSet(unsigned vreg) const { 176 AllowedSetMap::const_iterator allowedSetItr = allowedSets.find(vreg); 177 assert(allowedSetItr != allowedSets.end() && "No pregs for vreg."); 178 const AllowedSet &allowedSet = allowedSetItr->second; 179 return allowedSet; 180 } 181 182 unsigned PBQPRAProblem::getPRegForOption(unsigned vreg, unsigned option) const { 183 assert(isPRegOption(vreg, option) && "Not a preg option."); 184 185 const AllowedSet& allowedSet = getAllowedSet(vreg); 186 assert(option <= allowedSet.size() && "Option outside allowed set."); 187 return allowedSet[option - 1]; 188 } 189 190 std::auto_ptr<PBQPRAProblem> PBQPBuilder::build(MachineFunction *mf, 191 const LiveIntervals *lis, 192 const MachineLoopInfo *loopInfo, 193 const RegSet &vregs) { 194 195 typedef std::vector<const LiveInterval*> LIVector; 196 197 MachineRegisterInfo *mri = &mf->getRegInfo(); 198 const TargetRegisterInfo *tri = mf->getTarget().getRegisterInfo(); 199 200 std::auto_ptr<PBQPRAProblem> p(new PBQPRAProblem()); 201 PBQP::Graph &g = p->getGraph(); 202 RegSet pregs; 203 204 // Collect the set of preg intervals, record that they're used in the MF. 205 for (LiveIntervals::const_iterator itr = lis->begin(), end = lis->end(); 206 itr != end; ++itr) { 207 if (TargetRegisterInfo::isPhysicalRegister(itr->first)) { 208 pregs.insert(itr->first); 209 mri->setPhysRegUsed(itr->first); 210 } 211 } 212 213 BitVector reservedRegs = tri->getReservedRegs(*mf); 214 215 // Iterate over vregs. 216 for (RegSet::const_iterator vregItr = vregs.begin(), vregEnd = vregs.end(); 217 vregItr != vregEnd; ++vregItr) { 218 unsigned vreg = *vregItr; 219 const TargetRegisterClass *trc = mri->getRegClass(vreg); 220 const LiveInterval *vregLI = &lis->getInterval(vreg); 221 222 // Compute an initial allowed set for the current vreg. 223 typedef std::vector<unsigned> VRAllowed; 224 VRAllowed vrAllowed; 225 ArrayRef<unsigned> rawOrder = trc->getRawAllocationOrder(*mf); 226 for (unsigned i = 0; i != rawOrder.size(); ++i) { 227 unsigned preg = rawOrder[i]; 228 if (!reservedRegs.test(preg)) { 229 vrAllowed.push_back(preg); 230 } 231 } 232 233 // Remove any physical registers which overlap. 234 for (RegSet::const_iterator pregItr = pregs.begin(), 235 pregEnd = pregs.end(); 236 pregItr != pregEnd; ++pregItr) { 237 unsigned preg = *pregItr; 238 const LiveInterval *pregLI = &lis->getInterval(preg); 239 240 if (pregLI->empty()) { 241 continue; 242 } 243 244 if (!vregLI->overlaps(*pregLI)) { 245 continue; 246 } 247 248 // Remove the register from the allowed set. 249 VRAllowed::iterator eraseItr = 250 std::find(vrAllowed.begin(), vrAllowed.end(), preg); 251 252 if (eraseItr != vrAllowed.end()) { 253 vrAllowed.erase(eraseItr); 254 } 255 256 // Also remove any aliases. 257 const unsigned *aliasItr = tri->getAliasSet(preg); 258 if (aliasItr != 0) { 259 for (; *aliasItr != 0; ++aliasItr) { 260 VRAllowed::iterator eraseItr = 261 std::find(vrAllowed.begin(), vrAllowed.end(), *aliasItr); 262 263 if (eraseItr != vrAllowed.end()) { 264 vrAllowed.erase(eraseItr); 265 } 266 } 267 } 268 } 269 270 // Construct the node. 271 PBQP::Graph::NodeItr node = 272 g.addNode(PBQP::Vector(vrAllowed.size() + 1, 0)); 273 274 // Record the mapping and allowed set in the problem. 275 p->recordVReg(vreg, node, vrAllowed.begin(), vrAllowed.end()); 276 277 PBQP::PBQPNum spillCost = (vregLI->weight != 0.0) ? 278 vregLI->weight : std::numeric_limits<PBQP::PBQPNum>::min(); 279 280 addSpillCosts(g.getNodeCosts(node), spillCost); 281 } 282 283 for (RegSet::const_iterator vr1Itr = vregs.begin(), vrEnd = vregs.end(); 284 vr1Itr != vrEnd; ++vr1Itr) { 285 unsigned vr1 = *vr1Itr; 286 const LiveInterval &l1 = lis->getInterval(vr1); 287 const PBQPRAProblem::AllowedSet &vr1Allowed = p->getAllowedSet(vr1); 288 289 for (RegSet::const_iterator vr2Itr = llvm::next(vr1Itr); 290 vr2Itr != vrEnd; ++vr2Itr) { 291 unsigned vr2 = *vr2Itr; 292 const LiveInterval &l2 = lis->getInterval(vr2); 293 const PBQPRAProblem::AllowedSet &vr2Allowed = p->getAllowedSet(vr2); 294 295 assert(!l2.empty() && "Empty interval in vreg set?"); 296 if (l1.overlaps(l2)) { 297 PBQP::Graph::EdgeItr edge = 298 g.addEdge(p->getNodeForVReg(vr1), p->getNodeForVReg(vr2), 299 PBQP::Matrix(vr1Allowed.size()+1, vr2Allowed.size()+1, 0)); 300 301 addInterferenceCosts(g.getEdgeCosts(edge), vr1Allowed, vr2Allowed, tri); 302 } 303 } 304 } 305 306 return p; 307 } 308 309 void PBQPBuilder::addSpillCosts(PBQP::Vector &costVec, 310 PBQP::PBQPNum spillCost) { 311 costVec[0] = spillCost; 312 } 313 314 void PBQPBuilder::addInterferenceCosts( 315 PBQP::Matrix &costMat, 316 const PBQPRAProblem::AllowedSet &vr1Allowed, 317 const PBQPRAProblem::AllowedSet &vr2Allowed, 318 const TargetRegisterInfo *tri) { 319 assert(costMat.getRows() == vr1Allowed.size() + 1 && "Matrix height mismatch."); 320 assert(costMat.getCols() == vr2Allowed.size() + 1 && "Matrix width mismatch."); 321 322 for (unsigned i = 0; i != vr1Allowed.size(); ++i) { 323 unsigned preg1 = vr1Allowed[i]; 324 325 for (unsigned j = 0; j != vr2Allowed.size(); ++j) { 326 unsigned preg2 = vr2Allowed[j]; 327 328 if (tri->regsOverlap(preg1, preg2)) { 329 costMat[i + 1][j + 1] = std::numeric_limits<PBQP::PBQPNum>::infinity(); 330 } 331 } 332 } 333 } 334 335 std::auto_ptr<PBQPRAProblem> PBQPBuilderWithCoalescing::build( 336 MachineFunction *mf, 337 const LiveIntervals *lis, 338 const MachineLoopInfo *loopInfo, 339 const RegSet &vregs) { 340 341 std::auto_ptr<PBQPRAProblem> p = PBQPBuilder::build(mf, lis, loopInfo, vregs); 342 PBQP::Graph &g = p->getGraph(); 343 344 const TargetMachine &tm = mf->getTarget(); 345 CoalescerPair cp(*tm.getInstrInfo(), *tm.getRegisterInfo()); 346 347 // Scan the machine function and add a coalescing cost whenever CoalescerPair 348 // gives the Ok. 349 for (MachineFunction::const_iterator mbbItr = mf->begin(), 350 mbbEnd = mf->end(); 351 mbbItr != mbbEnd; ++mbbItr) { 352 const MachineBasicBlock *mbb = &*mbbItr; 353 354 for (MachineBasicBlock::const_iterator miItr = mbb->begin(), 355 miEnd = mbb->end(); 356 miItr != miEnd; ++miItr) { 357 const MachineInstr *mi = &*miItr; 358 359 if (!cp.setRegisters(mi)) { 360 continue; // Not coalescable. 361 } 362 363 if (cp.getSrcReg() == cp.getDstReg()) { 364 continue; // Already coalesced. 365 } 366 367 unsigned dst = cp.getDstReg(), 368 src = cp.getSrcReg(); 369 370 const float copyFactor = 0.5; // Cost of copy relative to load. Current 371 // value plucked randomly out of the air. 372 373 PBQP::PBQPNum cBenefit = 374 copyFactor * LiveIntervals::getSpillWeight(false, true, 375 loopInfo->getLoopDepth(mbb)); 376 377 if (cp.isPhys()) { 378 if (!lis->isAllocatable(dst)) { 379 continue; 380 } 381 382 const PBQPRAProblem::AllowedSet &allowed = p->getAllowedSet(src); 383 unsigned pregOpt = 0; 384 while (pregOpt < allowed.size() && allowed[pregOpt] != dst) { 385 ++pregOpt; 386 } 387 if (pregOpt < allowed.size()) { 388 ++pregOpt; // +1 to account for spill option. 389 PBQP::Graph::NodeItr node = p->getNodeForVReg(src); 390 addPhysRegCoalesce(g.getNodeCosts(node), pregOpt, cBenefit); 391 } 392 } else { 393 const PBQPRAProblem::AllowedSet *allowed1 = &p->getAllowedSet(dst); 394 const PBQPRAProblem::AllowedSet *allowed2 = &p->getAllowedSet(src); 395 PBQP::Graph::NodeItr node1 = p->getNodeForVReg(dst); 396 PBQP::Graph::NodeItr node2 = p->getNodeForVReg(src); 397 PBQP::Graph::EdgeItr edge = g.findEdge(node1, node2); 398 if (edge == g.edgesEnd()) { 399 edge = g.addEdge(node1, node2, PBQP::Matrix(allowed1->size() + 1, 400 allowed2->size() + 1, 401 0)); 402 } else { 403 if (g.getEdgeNode1(edge) == node2) { 404 std::swap(node1, node2); 405 std::swap(allowed1, allowed2); 406 } 407 } 408 409 addVirtRegCoalesce(g.getEdgeCosts(edge), *allowed1, *allowed2, 410 cBenefit); 411 } 412 } 413 } 414 415 return p; 416 } 417 418 void PBQPBuilderWithCoalescing::addPhysRegCoalesce(PBQP::Vector &costVec, 419 unsigned pregOption, 420 PBQP::PBQPNum benefit) { 421 costVec[pregOption] += -benefit; 422 } 423 424 void PBQPBuilderWithCoalescing::addVirtRegCoalesce( 425 PBQP::Matrix &costMat, 426 const PBQPRAProblem::AllowedSet &vr1Allowed, 427 const PBQPRAProblem::AllowedSet &vr2Allowed, 428 PBQP::PBQPNum benefit) { 429 430 assert(costMat.getRows() == vr1Allowed.size() + 1 && "Size mismatch."); 431 assert(costMat.getCols() == vr2Allowed.size() + 1 && "Size mismatch."); 432 433 for (unsigned i = 0; i != vr1Allowed.size(); ++i) { 434 unsigned preg1 = vr1Allowed[i]; 435 for (unsigned j = 0; j != vr2Allowed.size(); ++j) { 436 unsigned preg2 = vr2Allowed[j]; 437 438 if (preg1 == preg2) { 439 costMat[i + 1][j + 1] += -benefit; 440 } 441 } 442 } 443 } 444 445 446 void RegAllocPBQP::getAnalysisUsage(AnalysisUsage &au) const { 447 au.addRequired<SlotIndexes>(); 448 au.addPreserved<SlotIndexes>(); 449 au.addRequired<LiveIntervals>(); 450 //au.addRequiredID(SplitCriticalEdgesID); 451 au.addRequiredID(RegisterCoalescerPassID); 452 if (customPassID) 453 au.addRequiredID(*customPassID); 454 au.addRequired<CalculateSpillWeights>(); 455 au.addRequired<LiveStacks>(); 456 au.addPreserved<LiveStacks>(); 457 au.addRequired<MachineLoopInfo>(); 458 au.addPreserved<MachineLoopInfo>(); 459 if (pbqpPreSplitting) 460 au.addRequired<LoopSplitter>(); 461 au.addRequired<VirtRegMap>(); 462 au.addRequired<RenderMachineFunction>(); 463 MachineFunctionPass::getAnalysisUsage(au); 464 } 465 466 void RegAllocPBQP::findVRegIntervalsToAlloc() { 467 468 // Iterate over all live ranges. 469 for (LiveIntervals::iterator itr = lis->begin(), end = lis->end(); 470 itr != end; ++itr) { 471 472 // Ignore physical ones. 473 if (TargetRegisterInfo::isPhysicalRegister(itr->first)) 474 continue; 475 476 LiveInterval *li = itr->second; 477 478 // If this live interval is non-empty we will use pbqp to allocate it. 479 // Empty intervals we allocate in a simple post-processing stage in 480 // finalizeAlloc. 481 if (!li->empty()) { 482 vregsToAlloc.insert(li->reg); 483 } else { 484 emptyIntervalVRegs.insert(li->reg); 485 } 486 } 487 } 488 489 bool RegAllocPBQP::mapPBQPToRegAlloc(const PBQPRAProblem &problem, 490 const PBQP::Solution &solution) { 491 // Set to true if we have any spills 492 bool anotherRoundNeeded = false; 493 494 // Clear the existing allocation. 495 vrm->clearAllVirt(); 496 497 const PBQP::Graph &g = problem.getGraph(); 498 // Iterate over the nodes mapping the PBQP solution to a register 499 // assignment. 500 for (PBQP::Graph::ConstNodeItr node = g.nodesBegin(), 501 nodeEnd = g.nodesEnd(); 502 node != nodeEnd; ++node) { 503 unsigned vreg = problem.getVRegForNode(node); 504 unsigned alloc = solution.getSelection(node); 505 506 if (problem.isPRegOption(vreg, alloc)) { 507 unsigned preg = problem.getPRegForOption(vreg, alloc); 508 DEBUG(dbgs() << "VREG " << vreg << " -> " << tri->getName(preg) << "\n"); 509 assert(preg != 0 && "Invalid preg selected."); 510 vrm->assignVirt2Phys(vreg, preg); 511 } else if (problem.isSpillOption(vreg, alloc)) { 512 vregsToAlloc.erase(vreg); 513 SmallVector<LiveInterval*, 8> newSpills; 514 LiveRangeEdit LRE(lis->getInterval(vreg), newSpills); 515 spiller->spill(LRE); 516 517 DEBUG(dbgs() << "VREG " << vreg << " -> SPILLED (Cost: " 518 << LRE.getParent().weight << ", New vregs: "); 519 520 // Copy any newly inserted live intervals into the list of regs to 521 // allocate. 522 for (LiveRangeEdit::iterator itr = LRE.begin(), end = LRE.end(); 523 itr != end; ++itr) { 524 assert(!(*itr)->empty() && "Empty spill range."); 525 DEBUG(dbgs() << (*itr)->reg << " "); 526 vregsToAlloc.insert((*itr)->reg); 527 } 528 529 DEBUG(dbgs() << ")\n"); 530 531 // We need another round if spill intervals were added. 532 anotherRoundNeeded |= !LRE.empty(); 533 } else { 534 assert(false && "Unknown allocation option."); 535 } 536 } 537 538 return !anotherRoundNeeded; 539 } 540 541 542 void RegAllocPBQP::finalizeAlloc() const { 543 typedef LiveIntervals::iterator LIIterator; 544 typedef LiveInterval::Ranges::const_iterator LRIterator; 545 546 // First allocate registers for the empty intervals. 547 for (RegSet::const_iterator 548 itr = emptyIntervalVRegs.begin(), end = emptyIntervalVRegs.end(); 549 itr != end; ++itr) { 550 LiveInterval *li = &lis->getInterval(*itr); 551 552 unsigned physReg = vrm->getRegAllocPref(li->reg); 553 554 if (physReg == 0) { 555 const TargetRegisterClass *liRC = mri->getRegClass(li->reg); 556 physReg = liRC->getRawAllocationOrder(*mf).front(); 557 } 558 559 vrm->assignVirt2Phys(li->reg, physReg); 560 } 561 562 // Finally iterate over the basic blocks to compute and set the live-in sets. 563 SmallVector<MachineBasicBlock*, 8> liveInMBBs; 564 MachineBasicBlock *entryMBB = &*mf->begin(); 565 566 for (LIIterator liItr = lis->begin(), liEnd = lis->end(); 567 liItr != liEnd; ++liItr) { 568 569 const LiveInterval *li = liItr->second; 570 unsigned reg = 0; 571 572 // Get the physical register for this interval 573 if (TargetRegisterInfo::isPhysicalRegister(li->reg)) { 574 reg = li->reg; 575 } else if (vrm->isAssignedReg(li->reg)) { 576 reg = vrm->getPhys(li->reg); 577 } else { 578 // Ranges which are assigned a stack slot only are ignored. 579 continue; 580 } 581 582 if (reg == 0) { 583 // Filter out zero regs - they're for intervals that were spilled. 584 continue; 585 } 586 587 // Iterate over the ranges of the current interval... 588 for (LRIterator lrItr = li->begin(), lrEnd = li->end(); 589 lrItr != lrEnd; ++lrItr) { 590 591 // Find the set of basic blocks which this range is live into... 592 if (lis->findLiveInMBBs(lrItr->start, lrItr->end, liveInMBBs)) { 593 // And add the physreg for this interval to their live-in sets. 594 for (unsigned i = 0; i != liveInMBBs.size(); ++i) { 595 if (liveInMBBs[i] != entryMBB) { 596 if (!liveInMBBs[i]->isLiveIn(reg)) { 597 liveInMBBs[i]->addLiveIn(reg); 598 } 599 } 600 } 601 liveInMBBs.clear(); 602 } 603 } 604 } 605 606 } 607 608 bool RegAllocPBQP::runOnMachineFunction(MachineFunction &MF) { 609 610 mf = &MF; 611 tm = &mf->getTarget(); 612 tri = tm->getRegisterInfo(); 613 tii = tm->getInstrInfo(); 614 mri = &mf->getRegInfo(); 615 616 lis = &getAnalysis<LiveIntervals>(); 617 lss = &getAnalysis<LiveStacks>(); 618 loopInfo = &getAnalysis<MachineLoopInfo>(); 619 rmf = &getAnalysis<RenderMachineFunction>(); 620 621 vrm = &getAnalysis<VirtRegMap>(); 622 spiller.reset(createInlineSpiller(*this, MF, *vrm)); 623 624 625 DEBUG(dbgs() << "PBQP Register Allocating for " << mf->getFunction()->getName() << "\n"); 626 627 // Allocator main loop: 628 // 629 // * Map current regalloc problem to a PBQP problem 630 // * Solve the PBQP problem 631 // * Map the solution back to a register allocation 632 // * Spill if necessary 633 // 634 // This process is continued till no more spills are generated. 635 636 // Find the vreg intervals in need of allocation. 637 findVRegIntervalsToAlloc(); 638 639 // If there are non-empty intervals allocate them using pbqp. 640 if (!vregsToAlloc.empty()) { 641 642 bool pbqpAllocComplete = false; 643 unsigned round = 0; 644 645 while (!pbqpAllocComplete) { 646 DEBUG(dbgs() << " PBQP Regalloc round " << round << ":\n"); 647 648 std::auto_ptr<PBQPRAProblem> problem = 649 builder->build(mf, lis, loopInfo, vregsToAlloc); 650 PBQP::Solution solution = 651 PBQP::HeuristicSolver<PBQP::Heuristics::Briggs>::solve( 652 problem->getGraph()); 653 654 pbqpAllocComplete = mapPBQPToRegAlloc(*problem, solution); 655 656 ++round; 657 } 658 } 659 660 // Finalise allocation, allocate empty ranges. 661 finalizeAlloc(); 662 663 rmf->renderMachineFunction("After PBQP register allocation.", vrm); 664 665 vregsToAlloc.clear(); 666 emptyIntervalVRegs.clear(); 667 668 DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *vrm << "\n"); 669 670 // Run rewriter 671 vrm->rewrite(lis->getSlotIndexes()); 672 673 return true; 674 } 675 676 FunctionPass* llvm::createPBQPRegisterAllocator( 677 std::auto_ptr<PBQPBuilder> builder, 678 char *customPassID) { 679 return new RegAllocPBQP(builder, customPassID); 680 } 681 682 FunctionPass* llvm::createDefaultPBQPRegisterAllocator() { 683 if (pbqpCoalescing) { 684 return createPBQPRegisterAllocator( 685 std::auto_ptr<PBQPBuilder>(new PBQPBuilderWithCoalescing())); 686 } // else 687 return createPBQPRegisterAllocator( 688 std::auto_ptr<PBQPBuilder>(new PBQPBuilder())); 689 } 690 691 #undef DEBUG_TYPE 692