1 //===------ RegAllocPBQP.cpp ---- PBQP Register Allocator -------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains a Partitioned Boolean Quadratic Programming (PBQP) based 11 // register allocator for LLVM. This allocator works by constructing a PBQP 12 // problem representing the register allocation problem under consideration, 13 // solving this using a PBQP solver, and mapping the solution back to a 14 // register assignment. If any variables are selected for spilling then spill 15 // code is inserted and the process repeated. 16 // 17 // The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned 18 // for register allocation. For more information on PBQP for register 19 // allocation, see the following papers: 20 // 21 // (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with 22 // PBQP. In Proceedings of the 7th Joint Modular Languages Conference 23 // (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361. 24 // 25 // (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular 26 // architectures. In Proceedings of the Joint Conference on Languages, 27 // Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York, 28 // NY, USA, 139-148. 29 // 30 //===----------------------------------------------------------------------===// 31 32 #include "llvm/CodeGen/RegAllocPBQP.h" 33 #include "RegisterCoalescer.h" 34 #include "Spiller.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/CodeGen/CalcSpillWeights.h" 37 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 38 #include "llvm/CodeGen/LiveRangeEdit.h" 39 #include "llvm/CodeGen/LiveStackAnalysis.h" 40 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 41 #include "llvm/CodeGen/MachineDominators.h" 42 #include "llvm/CodeGen/MachineFunctionPass.h" 43 #include "llvm/CodeGen/MachineLoopInfo.h" 44 #include "llvm/CodeGen/MachineRegisterInfo.h" 45 #include "llvm/CodeGen/RegAllocRegistry.h" 46 #include "llvm/CodeGen/VirtRegMap.h" 47 #include "llvm/IR/Module.h" 48 #include "llvm/Support/Debug.h" 49 #include "llvm/Support/FileSystem.h" 50 #include "llvm/Support/raw_ostream.h" 51 #include "llvm/Target/TargetInstrInfo.h" 52 #include "llvm/Target/TargetSubtargetInfo.h" 53 #include <limits> 54 #include <memory> 55 #include <queue> 56 #include <set> 57 #include <sstream> 58 #include <vector> 59 60 using namespace llvm; 61 62 #define DEBUG_TYPE "regalloc" 63 64 static RegisterRegAlloc 65 RegisterPBQPRepAlloc("pbqp", "PBQP register allocator", 66 createDefaultPBQPRegisterAllocator); 67 68 static cl::opt<bool> 69 PBQPCoalescing("pbqp-coalescing", 70 cl::desc("Attempt coalescing during PBQP register allocation."), 71 cl::init(false), cl::Hidden); 72 73 #ifndef NDEBUG 74 static cl::opt<bool> 75 PBQPDumpGraphs("pbqp-dump-graphs", 76 cl::desc("Dump graphs for each function/round in the compilation unit."), 77 cl::init(false), cl::Hidden); 78 #endif 79 80 namespace { 81 82 /// 83 /// PBQP based allocators solve the register allocation problem by mapping 84 /// register allocation problems to Partitioned Boolean Quadratic 85 /// Programming problems. 86 class RegAllocPBQP : public MachineFunctionPass { 87 public: 88 89 static char ID; 90 91 /// Construct a PBQP register allocator. 92 RegAllocPBQP(char *cPassID = nullptr) 93 : MachineFunctionPass(ID), customPassID(cPassID) { 94 initializeSlotIndexesPass(*PassRegistry::getPassRegistry()); 95 initializeLiveIntervalsPass(*PassRegistry::getPassRegistry()); 96 initializeLiveStacksPass(*PassRegistry::getPassRegistry()); 97 initializeVirtRegMapPass(*PassRegistry::getPassRegistry()); 98 } 99 100 /// Return the pass name. 101 const char* getPassName() const override { 102 return "PBQP Register Allocator"; 103 } 104 105 /// PBQP analysis usage. 106 void getAnalysisUsage(AnalysisUsage &au) const override; 107 108 /// Perform register allocation 109 bool runOnMachineFunction(MachineFunction &MF) override; 110 111 private: 112 113 typedef std::map<const LiveInterval*, unsigned> LI2NodeMap; 114 typedef std::vector<const LiveInterval*> Node2LIMap; 115 typedef std::vector<unsigned> AllowedSet; 116 typedef std::vector<AllowedSet> AllowedSetMap; 117 typedef std::pair<unsigned, unsigned> RegPair; 118 typedef std::map<RegPair, PBQP::PBQPNum> CoalesceMap; 119 typedef std::set<unsigned> RegSet; 120 121 char *customPassID; 122 123 RegSet VRegsToAlloc, EmptyIntervalVRegs; 124 125 /// \brief Finds the initial set of vreg intervals to allocate. 126 void findVRegIntervalsToAlloc(const MachineFunction &MF, LiveIntervals &LIS); 127 128 /// \brief Constructs an initial graph. 129 void initializeGraph(PBQPRAGraph &G, VirtRegMap &VRM, Spiller &VRegSpiller); 130 131 /// \brief Spill the given VReg. 132 void spillVReg(unsigned VReg, SmallVectorImpl<unsigned> &NewIntervals, 133 MachineFunction &MF, LiveIntervals &LIS, VirtRegMap &VRM, 134 Spiller &VRegSpiller); 135 136 /// \brief Given a solved PBQP problem maps this solution back to a register 137 /// assignment. 138 bool mapPBQPToRegAlloc(const PBQPRAGraph &G, 139 const PBQP::Solution &Solution, 140 VirtRegMap &VRM, 141 Spiller &VRegSpiller); 142 143 /// \brief Postprocessing before final spilling. Sets basic block "live in" 144 /// variables. 145 void finalizeAlloc(MachineFunction &MF, LiveIntervals &LIS, 146 VirtRegMap &VRM) const; 147 148 }; 149 150 char RegAllocPBQP::ID = 0; 151 152 /// @brief Set spill costs for each node in the PBQP reg-alloc graph. 153 class SpillCosts : public PBQPRAConstraint { 154 public: 155 void apply(PBQPRAGraph &G) override { 156 LiveIntervals &LIS = G.getMetadata().LIS; 157 158 // A minimum spill costs, so that register constraints can can be set 159 // without normalization in the [0.0:MinSpillCost( interval. 160 const PBQP::PBQPNum MinSpillCost = 10.0; 161 162 for (auto NId : G.nodeIds()) { 163 PBQP::PBQPNum SpillCost = 164 LIS.getInterval(G.getNodeMetadata(NId).getVReg()).weight; 165 if (SpillCost == 0.0) 166 SpillCost = std::numeric_limits<PBQP::PBQPNum>::min(); 167 else 168 SpillCost += MinSpillCost; 169 PBQPRAGraph::RawVector NodeCosts(G.getNodeCosts(NId)); 170 NodeCosts[PBQP::RegAlloc::getSpillOptionIdx()] = SpillCost; 171 G.setNodeCosts(NId, std::move(NodeCosts)); 172 } 173 } 174 }; 175 176 /// @brief Add interference edges between overlapping vregs. 177 class Interference : public PBQPRAConstraint { 178 private: 179 180 typedef const PBQP::RegAlloc::AllowedRegVector* AllowedRegVecPtr; 181 typedef std::pair<AllowedRegVecPtr, AllowedRegVecPtr> IMatrixKey; 182 typedef DenseMap<IMatrixKey, PBQPRAGraph::MatrixPtr> IMatrixCache; 183 184 // Holds (Interval, CurrentSegmentID, and NodeId). The first two are required 185 // for the fast interference graph construction algorithm. The last is there 186 // to save us from looking up node ids via the VRegToNode map in the graph 187 // metadata. 188 typedef std::tuple<LiveInterval*, size_t, PBQP::GraphBase::NodeId> 189 IntervalInfo; 190 191 static SlotIndex getStartPoint(const IntervalInfo &I) { 192 return std::get<0>(I)->segments[std::get<1>(I)].start; 193 } 194 195 static SlotIndex getEndPoint(const IntervalInfo &I) { 196 return std::get<0>(I)->segments[std::get<1>(I)].end; 197 } 198 199 static PBQP::GraphBase::NodeId getNodeId(const IntervalInfo &I) { 200 return std::get<2>(I); 201 } 202 203 static bool lowestStartPoint(const IntervalInfo &I1, 204 const IntervalInfo &I2) { 205 // Condition reversed because priority queue has the *highest* element at 206 // the front, rather than the lowest. 207 return getStartPoint(I1) > getStartPoint(I2); 208 } 209 210 static bool lowestEndPoint(const IntervalInfo &I1, 211 const IntervalInfo &I2) { 212 SlotIndex E1 = getEndPoint(I1); 213 SlotIndex E2 = getEndPoint(I2); 214 215 if (E1 < E2) 216 return true; 217 218 if (E1 > E2) 219 return false; 220 221 // If two intervals end at the same point, we need a way to break the tie or 222 // the set will assume they're actually equal and refuse to insert a 223 // "duplicate". Just compare the vregs - fast and guaranteed unique. 224 return std::get<0>(I1)->reg < std::get<0>(I2)->reg; 225 } 226 227 static bool isAtLastSegment(const IntervalInfo &I) { 228 return std::get<1>(I) == std::get<0>(I)->size() - 1; 229 } 230 231 static IntervalInfo nextSegment(const IntervalInfo &I) { 232 return std::make_tuple(std::get<0>(I), std::get<1>(I) + 1, std::get<2>(I)); 233 } 234 235 public: 236 237 void apply(PBQPRAGraph &G) override { 238 // The following is loosely based on the linear scan algorithm introduced in 239 // "Linear Scan Register Allocation" by Poletto and Sarkar. This version 240 // isn't linear, because the size of the active set isn't bound by the 241 // number of registers, but rather the size of the largest clique in the 242 // graph. Still, we expect this to be better than N^2. 243 LiveIntervals &LIS = G.getMetadata().LIS; 244 245 // Interferenc matrices are incredibly regular - they're only a function of 246 // the allowed sets, so we cache them to avoid the overhead of constructing 247 // and uniquing them. 248 IMatrixCache C; 249 250 typedef std::set<IntervalInfo, decltype(&lowestEndPoint)> IntervalSet; 251 typedef std::priority_queue<IntervalInfo, std::vector<IntervalInfo>, 252 decltype(&lowestStartPoint)> IntervalQueue; 253 IntervalSet Active(lowestEndPoint); 254 IntervalQueue Inactive(lowestStartPoint); 255 256 // Start by building the inactive set. 257 for (auto NId : G.nodeIds()) { 258 unsigned VReg = G.getNodeMetadata(NId).getVReg(); 259 LiveInterval &LI = LIS.getInterval(VReg); 260 assert(!LI.empty() && "PBQP graph contains node for empty interval"); 261 Inactive.push(std::make_tuple(&LI, 0, NId)); 262 } 263 264 while (!Inactive.empty()) { 265 // Tentatively grab the "next" interval - this choice may be overriden 266 // below. 267 IntervalInfo Cur = Inactive.top(); 268 269 // Retire any active intervals that end before Cur starts. 270 IntervalSet::iterator RetireItr = Active.begin(); 271 while (RetireItr != Active.end() && 272 (getEndPoint(*RetireItr) <= getStartPoint(Cur))) { 273 // If this interval has subsequent segments, add the next one to the 274 // inactive list. 275 if (!isAtLastSegment(*RetireItr)) 276 Inactive.push(nextSegment(*RetireItr)); 277 278 ++RetireItr; 279 } 280 Active.erase(Active.begin(), RetireItr); 281 282 // One of the newly retired segments may actually start before the 283 // Cur segment, so re-grab the front of the inactive list. 284 Cur = Inactive.top(); 285 Inactive.pop(); 286 287 // At this point we know that Cur overlaps all active intervals. Add the 288 // interference edges. 289 PBQP::GraphBase::NodeId NId = getNodeId(Cur); 290 for (const auto &A : Active) { 291 PBQP::GraphBase::NodeId MId = getNodeId(A); 292 293 // Check that we haven't already added this edge 294 // FIXME: findEdge is expensive in the worst case (O(max_clique(G))). 295 // It might be better to replace this with a local bit-matrix. 296 if (G.findEdge(NId, MId) != PBQPRAGraph::invalidEdgeId()) 297 continue; 298 299 // This is a new edge - add it to the graph. 300 createInterferenceEdge(G, NId, MId, C); 301 } 302 303 // Finally, add Cur to the Active set. 304 Active.insert(Cur); 305 } 306 } 307 308 private: 309 310 void createInterferenceEdge(PBQPRAGraph &G, PBQPRAGraph::NodeId NId, 311 PBQPRAGraph::NodeId MId, IMatrixCache &C) { 312 313 const TargetRegisterInfo &TRI = 314 *G.getMetadata().MF.getSubtarget().getRegisterInfo(); 315 316 const auto &NRegs = G.getNodeMetadata(NId).getAllowedRegs(); 317 const auto &MRegs = G.getNodeMetadata(MId).getAllowedRegs(); 318 319 // Try looking the edge costs up in the IMatrixCache first. 320 IMatrixKey K(&NRegs, &MRegs); 321 IMatrixCache::iterator I = C.find(K); 322 if (I != C.end()) { 323 G.addEdgeBypassingCostAllocator(NId, MId, I->second); 324 return; 325 } 326 327 PBQPRAGraph::RawMatrix M(NRegs.size() + 1, MRegs.size() + 1, 0); 328 for (unsigned I = 0; I != NRegs.size(); ++I) { 329 unsigned PRegN = NRegs[I]; 330 for (unsigned J = 0; J != MRegs.size(); ++J) { 331 unsigned PRegM = MRegs[J]; 332 if (TRI.regsOverlap(PRegN, PRegM)) 333 M[I + 1][J + 1] = std::numeric_limits<PBQP::PBQPNum>::infinity(); 334 } 335 } 336 337 PBQPRAGraph::EdgeId EId = G.addEdge(NId, MId, std::move(M)); 338 C[K] = G.getEdgeCostsPtr(EId); 339 } 340 }; 341 342 343 class Coalescing : public PBQPRAConstraint { 344 public: 345 void apply(PBQPRAGraph &G) override { 346 MachineFunction &MF = G.getMetadata().MF; 347 MachineBlockFrequencyInfo &MBFI = G.getMetadata().MBFI; 348 CoalescerPair CP(*MF.getSubtarget().getRegisterInfo()); 349 350 // Scan the machine function and add a coalescing cost whenever CoalescerPair 351 // gives the Ok. 352 for (const auto &MBB : MF) { 353 for (const auto &MI : MBB) { 354 355 // Skip not-coalescable or already coalesced copies. 356 if (!CP.setRegisters(&MI) || CP.getSrcReg() == CP.getDstReg()) 357 continue; 358 359 unsigned DstReg = CP.getDstReg(); 360 unsigned SrcReg = CP.getSrcReg(); 361 362 const float Scale = 1.0f / MBFI.getEntryFreq(); 363 PBQP::PBQPNum CBenefit = MBFI.getBlockFreq(&MBB).getFrequency() * Scale; 364 365 if (CP.isPhys()) { 366 if (!MF.getRegInfo().isAllocatable(DstReg)) 367 continue; 368 369 PBQPRAGraph::NodeId NId = G.getMetadata().getNodeIdForVReg(SrcReg); 370 371 const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed = 372 G.getNodeMetadata(NId).getAllowedRegs(); 373 374 unsigned PRegOpt = 0; 375 while (PRegOpt < Allowed.size() && Allowed[PRegOpt] != DstReg) 376 ++PRegOpt; 377 378 if (PRegOpt < Allowed.size()) { 379 PBQPRAGraph::RawVector NewCosts(G.getNodeCosts(NId)); 380 NewCosts[PRegOpt + 1] -= CBenefit; 381 G.setNodeCosts(NId, std::move(NewCosts)); 382 } 383 } else { 384 PBQPRAGraph::NodeId N1Id = G.getMetadata().getNodeIdForVReg(DstReg); 385 PBQPRAGraph::NodeId N2Id = G.getMetadata().getNodeIdForVReg(SrcReg); 386 const PBQPRAGraph::NodeMetadata::AllowedRegVector *Allowed1 = 387 &G.getNodeMetadata(N1Id).getAllowedRegs(); 388 const PBQPRAGraph::NodeMetadata::AllowedRegVector *Allowed2 = 389 &G.getNodeMetadata(N2Id).getAllowedRegs(); 390 391 PBQPRAGraph::EdgeId EId = G.findEdge(N1Id, N2Id); 392 if (EId == G.invalidEdgeId()) { 393 PBQPRAGraph::RawMatrix Costs(Allowed1->size() + 1, 394 Allowed2->size() + 1, 0); 395 addVirtRegCoalesce(Costs, *Allowed1, *Allowed2, CBenefit); 396 G.addEdge(N1Id, N2Id, std::move(Costs)); 397 } else { 398 if (G.getEdgeNode1Id(EId) == N2Id) { 399 std::swap(N1Id, N2Id); 400 std::swap(Allowed1, Allowed2); 401 } 402 PBQPRAGraph::RawMatrix Costs(G.getEdgeCosts(EId)); 403 addVirtRegCoalesce(Costs, *Allowed1, *Allowed2, CBenefit); 404 G.setEdgeCosts(EId, std::move(Costs)); 405 } 406 } 407 } 408 } 409 } 410 411 private: 412 413 void addVirtRegCoalesce( 414 PBQPRAGraph::RawMatrix &CostMat, 415 const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed1, 416 const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed2, 417 PBQP::PBQPNum Benefit) { 418 assert(CostMat.getRows() == Allowed1.size() + 1 && "Size mismatch."); 419 assert(CostMat.getCols() == Allowed2.size() + 1 && "Size mismatch."); 420 for (unsigned I = 0; I != Allowed1.size(); ++I) { 421 unsigned PReg1 = Allowed1[I]; 422 for (unsigned J = 0; J != Allowed2.size(); ++J) { 423 unsigned PReg2 = Allowed2[J]; 424 if (PReg1 == PReg2) 425 CostMat[I + 1][J + 1] -= Benefit; 426 } 427 } 428 } 429 430 }; 431 432 } // End anonymous namespace. 433 434 // Out-of-line destructor/anchor for PBQPRAConstraint. 435 PBQPRAConstraint::~PBQPRAConstraint() {} 436 void PBQPRAConstraint::anchor() {} 437 void PBQPRAConstraintList::anchor() {} 438 439 void RegAllocPBQP::getAnalysisUsage(AnalysisUsage &au) const { 440 au.setPreservesCFG(); 441 au.addRequired<AliasAnalysis>(); 442 au.addPreserved<AliasAnalysis>(); 443 au.addRequired<SlotIndexes>(); 444 au.addPreserved<SlotIndexes>(); 445 au.addRequired<LiveIntervals>(); 446 au.addPreserved<LiveIntervals>(); 447 //au.addRequiredID(SplitCriticalEdgesID); 448 if (customPassID) 449 au.addRequiredID(*customPassID); 450 au.addRequired<LiveStacks>(); 451 au.addPreserved<LiveStacks>(); 452 au.addRequired<MachineBlockFrequencyInfo>(); 453 au.addPreserved<MachineBlockFrequencyInfo>(); 454 au.addRequired<MachineLoopInfo>(); 455 au.addPreserved<MachineLoopInfo>(); 456 au.addRequired<MachineDominatorTree>(); 457 au.addPreserved<MachineDominatorTree>(); 458 au.addRequired<VirtRegMap>(); 459 au.addPreserved<VirtRegMap>(); 460 MachineFunctionPass::getAnalysisUsage(au); 461 } 462 463 void RegAllocPBQP::findVRegIntervalsToAlloc(const MachineFunction &MF, 464 LiveIntervals &LIS) { 465 const MachineRegisterInfo &MRI = MF.getRegInfo(); 466 467 // Iterate over all live ranges. 468 for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) { 469 unsigned Reg = TargetRegisterInfo::index2VirtReg(I); 470 if (MRI.reg_nodbg_empty(Reg)) 471 continue; 472 LiveInterval &LI = LIS.getInterval(Reg); 473 474 // If this live interval is non-empty we will use pbqp to allocate it. 475 // Empty intervals we allocate in a simple post-processing stage in 476 // finalizeAlloc. 477 if (!LI.empty()) { 478 VRegsToAlloc.insert(LI.reg); 479 } else { 480 EmptyIntervalVRegs.insert(LI.reg); 481 } 482 } 483 } 484 485 static bool isACalleeSavedRegister(unsigned reg, const TargetRegisterInfo &TRI, 486 const MachineFunction &MF) { 487 const MCPhysReg *CSR = TRI.getCalleeSavedRegs(&MF); 488 for (unsigned i = 0; CSR[i] != 0; ++i) 489 if (TRI.regsOverlap(reg, CSR[i])) 490 return true; 491 return false; 492 } 493 494 void RegAllocPBQP::initializeGraph(PBQPRAGraph &G, VirtRegMap &VRM, 495 Spiller &VRegSpiller) { 496 MachineFunction &MF = G.getMetadata().MF; 497 498 LiveIntervals &LIS = G.getMetadata().LIS; 499 const MachineRegisterInfo &MRI = G.getMetadata().MF.getRegInfo(); 500 const TargetRegisterInfo &TRI = 501 *G.getMetadata().MF.getSubtarget().getRegisterInfo(); 502 503 std::vector<unsigned> Worklist(VRegsToAlloc.begin(), VRegsToAlloc.end()); 504 505 while (!Worklist.empty()) { 506 unsigned VReg = Worklist.back(); 507 Worklist.pop_back(); 508 509 const TargetRegisterClass *TRC = MRI.getRegClass(VReg); 510 LiveInterval &VRegLI = LIS.getInterval(VReg); 511 512 // Record any overlaps with regmask operands. 513 BitVector RegMaskOverlaps; 514 LIS.checkRegMaskInterference(VRegLI, RegMaskOverlaps); 515 516 // Compute an initial allowed set for the current vreg. 517 std::vector<unsigned> VRegAllowed; 518 ArrayRef<MCPhysReg> RawPRegOrder = TRC->getRawAllocationOrder(MF); 519 for (unsigned I = 0; I != RawPRegOrder.size(); ++I) { 520 unsigned PReg = RawPRegOrder[I]; 521 if (MRI.isReserved(PReg)) 522 continue; 523 524 // vregLI crosses a regmask operand that clobbers preg. 525 if (!RegMaskOverlaps.empty() && !RegMaskOverlaps.test(PReg)) 526 continue; 527 528 // vregLI overlaps fixed regunit interference. 529 bool Interference = false; 530 for (MCRegUnitIterator Units(PReg, &TRI); Units.isValid(); ++Units) { 531 if (VRegLI.overlaps(LIS.getRegUnit(*Units))) { 532 Interference = true; 533 break; 534 } 535 } 536 if (Interference) 537 continue; 538 539 // preg is usable for this virtual register. 540 VRegAllowed.push_back(PReg); 541 } 542 543 // Check for vregs that have no allowed registers. These should be 544 // pre-spilled and the new vregs added to the worklist. 545 if (VRegAllowed.empty()) { 546 SmallVector<unsigned, 8> NewVRegs; 547 spillVReg(VReg, NewVRegs, MF, LIS, VRM, VRegSpiller); 548 for (auto NewVReg : NewVRegs) 549 Worklist.push_back(NewVReg); 550 continue; 551 } 552 553 PBQPRAGraph::RawVector NodeCosts(VRegAllowed.size() + 1, 0); 554 555 // Tweak cost of callee saved registers, as using then force spilling and 556 // restoring them. This would only happen in the prologue / epilogue though. 557 for (unsigned i = 0; i != VRegAllowed.size(); ++i) 558 if (isACalleeSavedRegister(VRegAllowed[i], TRI, MF)) 559 NodeCosts[1 + i] += 1.0; 560 561 PBQPRAGraph::NodeId NId = G.addNode(std::move(NodeCosts)); 562 G.getNodeMetadata(NId).setVReg(VReg); 563 G.getNodeMetadata(NId).setAllowedRegs( 564 G.getMetadata().getAllowedRegs(std::move(VRegAllowed))); 565 G.getMetadata().setNodeIdForVReg(VReg, NId); 566 } 567 } 568 569 void RegAllocPBQP::spillVReg(unsigned VReg, 570 SmallVectorImpl<unsigned> &NewIntervals, 571 MachineFunction &MF, LiveIntervals &LIS, 572 VirtRegMap &VRM, Spiller &VRegSpiller) { 573 574 VRegsToAlloc.erase(VReg); 575 LiveRangeEdit LRE(&LIS.getInterval(VReg), NewIntervals, MF, LIS, &VRM); 576 VRegSpiller.spill(LRE); 577 578 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 579 (void)TRI; 580 DEBUG(dbgs() << "VREG " << PrintReg(VReg, &TRI) << " -> SPILLED (Cost: " 581 << LRE.getParent().weight << ", New vregs: "); 582 583 // Copy any newly inserted live intervals into the list of regs to 584 // allocate. 585 for (LiveRangeEdit::iterator I = LRE.begin(), E = LRE.end(); 586 I != E; ++I) { 587 const LiveInterval &LI = LIS.getInterval(*I); 588 assert(!LI.empty() && "Empty spill range."); 589 DEBUG(dbgs() << PrintReg(LI.reg, &TRI) << " "); 590 VRegsToAlloc.insert(LI.reg); 591 } 592 593 DEBUG(dbgs() << ")\n"); 594 } 595 596 bool RegAllocPBQP::mapPBQPToRegAlloc(const PBQPRAGraph &G, 597 const PBQP::Solution &Solution, 598 VirtRegMap &VRM, 599 Spiller &VRegSpiller) { 600 MachineFunction &MF = G.getMetadata().MF; 601 LiveIntervals &LIS = G.getMetadata().LIS; 602 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 603 (void)TRI; 604 605 // Set to true if we have any spills 606 bool AnotherRoundNeeded = false; 607 608 // Clear the existing allocation. 609 VRM.clearAllVirt(); 610 611 // Iterate over the nodes mapping the PBQP solution to a register 612 // assignment. 613 for (auto NId : G.nodeIds()) { 614 unsigned VReg = G.getNodeMetadata(NId).getVReg(); 615 unsigned AllocOption = Solution.getSelection(NId); 616 617 if (AllocOption != PBQP::RegAlloc::getSpillOptionIdx()) { 618 unsigned PReg = G.getNodeMetadata(NId).getAllowedRegs()[AllocOption - 1]; 619 DEBUG(dbgs() << "VREG " << PrintReg(VReg, &TRI) << " -> " 620 << TRI.getName(PReg) << "\n"); 621 assert(PReg != 0 && "Invalid preg selected."); 622 VRM.assignVirt2Phys(VReg, PReg); 623 } else { 624 // Spill VReg. If this introduces new intervals we'll need another round 625 // of allocation. 626 SmallVector<unsigned, 8> NewVRegs; 627 spillVReg(VReg, NewVRegs, MF, LIS, VRM, VRegSpiller); 628 AnotherRoundNeeded |= !NewVRegs.empty(); 629 } 630 } 631 632 return !AnotherRoundNeeded; 633 } 634 635 void RegAllocPBQP::finalizeAlloc(MachineFunction &MF, 636 LiveIntervals &LIS, 637 VirtRegMap &VRM) const { 638 MachineRegisterInfo &MRI = MF.getRegInfo(); 639 640 // First allocate registers for the empty intervals. 641 for (RegSet::const_iterator 642 I = EmptyIntervalVRegs.begin(), E = EmptyIntervalVRegs.end(); 643 I != E; ++I) { 644 LiveInterval &LI = LIS.getInterval(*I); 645 646 unsigned PReg = MRI.getSimpleHint(LI.reg); 647 648 if (PReg == 0) { 649 const TargetRegisterClass &RC = *MRI.getRegClass(LI.reg); 650 PReg = RC.getRawAllocationOrder(MF).front(); 651 } 652 653 VRM.assignVirt2Phys(LI.reg, PReg); 654 } 655 } 656 657 static inline float normalizePBQPSpillWeight(float UseDefFreq, unsigned Size, 658 unsigned NumInstr) { 659 // All intervals have a spill weight that is mostly proportional to the number 660 // of uses, with uses in loops having a bigger weight. 661 return NumInstr * normalizeSpillWeight(UseDefFreq, Size, 1); 662 } 663 664 bool RegAllocPBQP::runOnMachineFunction(MachineFunction &MF) { 665 LiveIntervals &LIS = getAnalysis<LiveIntervals>(); 666 MachineBlockFrequencyInfo &MBFI = 667 getAnalysis<MachineBlockFrequencyInfo>(); 668 669 calculateSpillWeightsAndHints(LIS, MF, getAnalysis<MachineLoopInfo>(), MBFI, 670 normalizePBQPSpillWeight); 671 672 VirtRegMap &VRM = getAnalysis<VirtRegMap>(); 673 674 std::unique_ptr<Spiller> VRegSpiller(createInlineSpiller(*this, MF, VRM)); 675 676 MF.getRegInfo().freezeReservedRegs(MF); 677 678 DEBUG(dbgs() << "PBQP Register Allocating for " << MF.getName() << "\n"); 679 680 // Allocator main loop: 681 // 682 // * Map current regalloc problem to a PBQP problem 683 // * Solve the PBQP problem 684 // * Map the solution back to a register allocation 685 // * Spill if necessary 686 // 687 // This process is continued till no more spills are generated. 688 689 // Find the vreg intervals in need of allocation. 690 findVRegIntervalsToAlloc(MF, LIS); 691 692 #ifndef NDEBUG 693 const Function &F = *MF.getFunction(); 694 std::string FullyQualifiedName = 695 F.getParent()->getModuleIdentifier() + "." + F.getName().str(); 696 #endif 697 698 // If there are non-empty intervals allocate them using pbqp. 699 if (!VRegsToAlloc.empty()) { 700 701 const TargetSubtargetInfo &Subtarget = MF.getSubtarget(); 702 std::unique_ptr<PBQPRAConstraintList> ConstraintsRoot = 703 llvm::make_unique<PBQPRAConstraintList>(); 704 ConstraintsRoot->addConstraint(llvm::make_unique<SpillCosts>()); 705 ConstraintsRoot->addConstraint(llvm::make_unique<Interference>()); 706 if (PBQPCoalescing) 707 ConstraintsRoot->addConstraint(llvm::make_unique<Coalescing>()); 708 ConstraintsRoot->addConstraint(Subtarget.getCustomPBQPConstraints()); 709 710 bool PBQPAllocComplete = false; 711 unsigned Round = 0; 712 713 while (!PBQPAllocComplete) { 714 DEBUG(dbgs() << " PBQP Regalloc round " << Round << ":\n"); 715 716 PBQPRAGraph G(PBQPRAGraph::GraphMetadata(MF, LIS, MBFI)); 717 initializeGraph(G, VRM, *VRegSpiller); 718 ConstraintsRoot->apply(G); 719 720 #ifndef NDEBUG 721 if (PBQPDumpGraphs) { 722 std::ostringstream RS; 723 RS << Round; 724 std::string GraphFileName = FullyQualifiedName + "." + RS.str() + 725 ".pbqpgraph"; 726 std::error_code EC; 727 raw_fd_ostream OS(GraphFileName, EC, sys::fs::F_Text); 728 DEBUG(dbgs() << "Dumping graph for round " << Round << " to \"" 729 << GraphFileName << "\"\n"); 730 G.dump(OS); 731 } 732 #endif 733 734 PBQP::Solution Solution = PBQP::RegAlloc::solve(G); 735 PBQPAllocComplete = mapPBQPToRegAlloc(G, Solution, VRM, *VRegSpiller); 736 ++Round; 737 } 738 } 739 740 // Finalise allocation, allocate empty ranges. 741 finalizeAlloc(MF, LIS, VRM); 742 VRegsToAlloc.clear(); 743 EmptyIntervalVRegs.clear(); 744 745 DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << VRM << "\n"); 746 747 return true; 748 } 749 750 namespace { 751 // A helper class for printing node and register info in a consistent way 752 class PrintNodeInfo { 753 public: 754 typedef PBQP::RegAlloc::PBQPRAGraph Graph; 755 typedef PBQP::RegAlloc::PBQPRAGraph::NodeId NodeId; 756 757 PrintNodeInfo(NodeId NId, const Graph &G) : G(G), NId(NId) {} 758 759 void print(raw_ostream &OS) const { 760 const MachineRegisterInfo &MRI = G.getMetadata().MF.getRegInfo(); 761 const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo(); 762 unsigned VReg = G.getNodeMetadata(NId).getVReg(); 763 const char *RegClassName = TRI->getRegClassName(MRI.getRegClass(VReg)); 764 OS << NId << " (" << RegClassName << ':' << PrintReg(VReg, TRI) << ')'; 765 } 766 767 private: 768 const Graph &G; 769 NodeId NId; 770 }; 771 772 inline raw_ostream &operator<<(raw_ostream &OS, const PrintNodeInfo &PR) { 773 PR.print(OS); 774 return OS; 775 } 776 } // anonymous namespace 777 778 void PBQP::RegAlloc::PBQPRAGraph::dump(raw_ostream &OS) const { 779 for (auto NId : nodeIds()) { 780 const Vector &Costs = getNodeCosts(NId); 781 assert(Costs.getLength() != 0 && "Empty vector in graph."); 782 OS << PrintNodeInfo(NId, *this) << ": " << Costs << '\n'; 783 } 784 OS << '\n'; 785 786 for (auto EId : edgeIds()) { 787 NodeId N1Id = getEdgeNode1Id(EId); 788 NodeId N2Id = getEdgeNode2Id(EId); 789 assert(N1Id != N2Id && "PBQP graphs should not have self-edges."); 790 const Matrix &M = getEdgeCosts(EId); 791 assert(M.getRows() != 0 && "No rows in matrix."); 792 assert(M.getCols() != 0 && "No cols in matrix."); 793 OS << PrintNodeInfo(N1Id, *this) << ' ' << M.getRows() << " rows / "; 794 OS << PrintNodeInfo(N2Id, *this) << ' ' << M.getCols() << " cols:\n"; 795 OS << M << '\n'; 796 } 797 } 798 799 void PBQP::RegAlloc::PBQPRAGraph::dump() const { dump(dbgs()); } 800 801 void PBQP::RegAlloc::PBQPRAGraph::printDot(raw_ostream &OS) const { 802 OS << "graph {\n"; 803 for (auto NId : nodeIds()) { 804 OS << " node" << NId << " [ label=\"" 805 << PrintNodeInfo(NId, *this) << "\\n" 806 << getNodeCosts(NId) << "\" ]\n"; 807 } 808 809 OS << " edge [ len=" << nodeIds().size() << " ]\n"; 810 for (auto EId : edgeIds()) { 811 OS << " node" << getEdgeNode1Id(EId) 812 << " -- node" << getEdgeNode2Id(EId) 813 << " [ label=\""; 814 const Matrix &EdgeCosts = getEdgeCosts(EId); 815 for (unsigned i = 0; i < EdgeCosts.getRows(); ++i) { 816 OS << EdgeCosts.getRowAsVector(i) << "\\n"; 817 } 818 OS << "\" ]\n"; 819 } 820 OS << "}\n"; 821 } 822 823 FunctionPass *llvm::createPBQPRegisterAllocator(char *customPassID) { 824 return new RegAllocPBQP(customPassID); 825 } 826 827 FunctionPass* llvm::createDefaultPBQPRegisterAllocator() { 828 return createPBQPRegisterAllocator(); 829 } 830 831 #undef DEBUG_TYPE 832