1 //===------ RegAllocPBQP.cpp ---- PBQP Register Allocator -------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains a Partitioned Boolean Quadratic Programming (PBQP) based 11 // register allocator for LLVM. This allocator works by constructing a PBQP 12 // problem representing the register allocation problem under consideration, 13 // solving this using a PBQP solver, and mapping the solution back to a 14 // register assignment. If any variables are selected for spilling then spill 15 // code is inserted and the process repeated. 16 // 17 // The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned 18 // for register allocation. For more information on PBQP for register 19 // allocation, see the following papers: 20 // 21 // (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with 22 // PBQP. In Proceedings of the 7th Joint Modular Languages Conference 23 // (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361. 24 // 25 // (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular 26 // architectures. In Proceedings of the Joint Conference on Languages, 27 // Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York, 28 // NY, USA, 139-148. 29 // 30 //===----------------------------------------------------------------------===// 31 32 #include "llvm/CodeGen/RegAllocPBQP.h" 33 #include "RegisterCoalescer.h" 34 #include "Spiller.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/CodeGen/CalcSpillWeights.h" 37 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 38 #include "llvm/CodeGen/LiveRangeEdit.h" 39 #include "llvm/CodeGen/LiveStackAnalysis.h" 40 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 41 #include "llvm/CodeGen/MachineDominators.h" 42 #include "llvm/CodeGen/MachineFunctionPass.h" 43 #include "llvm/CodeGen/MachineLoopInfo.h" 44 #include "llvm/CodeGen/MachineRegisterInfo.h" 45 #include "llvm/CodeGen/RegAllocRegistry.h" 46 #include "llvm/CodeGen/VirtRegMap.h" 47 #include "llvm/IR/Module.h" 48 #include "llvm/Support/Debug.h" 49 #include "llvm/Support/FileSystem.h" 50 #include "llvm/Support/Printable.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include "llvm/Target/TargetInstrInfo.h" 53 #include "llvm/Target/TargetSubtargetInfo.h" 54 #include <limits> 55 #include <memory> 56 #include <queue> 57 #include <set> 58 #include <sstream> 59 #include <vector> 60 61 using namespace llvm; 62 63 #define DEBUG_TYPE "regalloc" 64 65 static RegisterRegAlloc 66 RegisterPBQPRepAlloc("pbqp", "PBQP register allocator", 67 createDefaultPBQPRegisterAllocator); 68 69 static cl::opt<bool> 70 PBQPCoalescing("pbqp-coalescing", 71 cl::desc("Attempt coalescing during PBQP register allocation."), 72 cl::init(false), cl::Hidden); 73 74 #ifndef NDEBUG 75 static cl::opt<bool> 76 PBQPDumpGraphs("pbqp-dump-graphs", 77 cl::desc("Dump graphs for each function/round in the compilation unit."), 78 cl::init(false), cl::Hidden); 79 #endif 80 81 namespace { 82 83 /// 84 /// PBQP based allocators solve the register allocation problem by mapping 85 /// register allocation problems to Partitioned Boolean Quadratic 86 /// Programming problems. 87 class RegAllocPBQP : public MachineFunctionPass { 88 public: 89 90 static char ID; 91 92 /// Construct a PBQP register allocator. 93 RegAllocPBQP(char *cPassID = nullptr) 94 : MachineFunctionPass(ID), customPassID(cPassID) { 95 initializeSlotIndexesPass(*PassRegistry::getPassRegistry()); 96 initializeLiveIntervalsPass(*PassRegistry::getPassRegistry()); 97 initializeLiveStacksPass(*PassRegistry::getPassRegistry()); 98 initializeVirtRegMapPass(*PassRegistry::getPassRegistry()); 99 } 100 101 /// Return the pass name. 102 StringRef getPassName() const override { return "PBQP Register Allocator"; } 103 104 /// PBQP analysis usage. 105 void getAnalysisUsage(AnalysisUsage &au) const override; 106 107 /// Perform register allocation 108 bool runOnMachineFunction(MachineFunction &MF) override; 109 110 MachineFunctionProperties getRequiredProperties() const override { 111 return MachineFunctionProperties().set( 112 MachineFunctionProperties::Property::NoPHIs); 113 } 114 115 private: 116 117 typedef std::map<const LiveInterval*, unsigned> LI2NodeMap; 118 typedef std::vector<const LiveInterval*> Node2LIMap; 119 typedef std::vector<unsigned> AllowedSet; 120 typedef std::vector<AllowedSet> AllowedSetMap; 121 typedef std::pair<unsigned, unsigned> RegPair; 122 typedef std::map<RegPair, PBQP::PBQPNum> CoalesceMap; 123 typedef std::set<unsigned> RegSet; 124 125 char *customPassID; 126 127 RegSet VRegsToAlloc, EmptyIntervalVRegs; 128 129 /// Inst which is a def of an original reg and whose defs are already all 130 /// dead after remat is saved in DeadRemats. The deletion of such inst is 131 /// postponed till all the allocations are done, so its remat expr is 132 /// always available for the remat of all the siblings of the original reg. 133 SmallPtrSet<MachineInstr *, 32> DeadRemats; 134 135 /// \brief Finds the initial set of vreg intervals to allocate. 136 void findVRegIntervalsToAlloc(const MachineFunction &MF, LiveIntervals &LIS); 137 138 /// \brief Constructs an initial graph. 139 void initializeGraph(PBQPRAGraph &G, VirtRegMap &VRM, Spiller &VRegSpiller); 140 141 /// \brief Spill the given VReg. 142 void spillVReg(unsigned VReg, SmallVectorImpl<unsigned> &NewIntervals, 143 MachineFunction &MF, LiveIntervals &LIS, VirtRegMap &VRM, 144 Spiller &VRegSpiller); 145 146 /// \brief Given a solved PBQP problem maps this solution back to a register 147 /// assignment. 148 bool mapPBQPToRegAlloc(const PBQPRAGraph &G, 149 const PBQP::Solution &Solution, 150 VirtRegMap &VRM, 151 Spiller &VRegSpiller); 152 153 /// \brief Postprocessing before final spilling. Sets basic block "live in" 154 /// variables. 155 void finalizeAlloc(MachineFunction &MF, LiveIntervals &LIS, 156 VirtRegMap &VRM) const; 157 158 void postOptimization(Spiller &VRegSpiller, LiveIntervals &LIS); 159 }; 160 161 char RegAllocPBQP::ID = 0; 162 163 /// @brief Set spill costs for each node in the PBQP reg-alloc graph. 164 class SpillCosts : public PBQPRAConstraint { 165 public: 166 void apply(PBQPRAGraph &G) override { 167 LiveIntervals &LIS = G.getMetadata().LIS; 168 169 // A minimum spill costs, so that register constraints can can be set 170 // without normalization in the [0.0:MinSpillCost( interval. 171 const PBQP::PBQPNum MinSpillCost = 10.0; 172 173 for (auto NId : G.nodeIds()) { 174 PBQP::PBQPNum SpillCost = 175 LIS.getInterval(G.getNodeMetadata(NId).getVReg()).weight; 176 if (SpillCost == 0.0) 177 SpillCost = std::numeric_limits<PBQP::PBQPNum>::min(); 178 else 179 SpillCost += MinSpillCost; 180 PBQPRAGraph::RawVector NodeCosts(G.getNodeCosts(NId)); 181 NodeCosts[PBQP::RegAlloc::getSpillOptionIdx()] = SpillCost; 182 G.setNodeCosts(NId, std::move(NodeCosts)); 183 } 184 } 185 }; 186 187 /// @brief Add interference edges between overlapping vregs. 188 class Interference : public PBQPRAConstraint { 189 private: 190 191 typedef const PBQP::RegAlloc::AllowedRegVector* AllowedRegVecPtr; 192 typedef std::pair<AllowedRegVecPtr, AllowedRegVecPtr> IKey; 193 typedef DenseMap<IKey, PBQPRAGraph::MatrixPtr> IMatrixCache; 194 typedef DenseSet<IKey> DisjointAllowedRegsCache; 195 typedef std::pair<PBQP::GraphBase::NodeId, PBQP::GraphBase::NodeId> IEdgeKey; 196 typedef DenseSet<IEdgeKey> IEdgeCache; 197 198 bool haveDisjointAllowedRegs(const PBQPRAGraph &G, PBQPRAGraph::NodeId NId, 199 PBQPRAGraph::NodeId MId, 200 const DisjointAllowedRegsCache &D) const { 201 const auto *NRegs = &G.getNodeMetadata(NId).getAllowedRegs(); 202 const auto *MRegs = &G.getNodeMetadata(MId).getAllowedRegs(); 203 204 if (NRegs == MRegs) 205 return false; 206 207 if (NRegs < MRegs) 208 return D.count(IKey(NRegs, MRegs)) > 0; 209 210 return D.count(IKey(MRegs, NRegs)) > 0; 211 } 212 213 void setDisjointAllowedRegs(const PBQPRAGraph &G, PBQPRAGraph::NodeId NId, 214 PBQPRAGraph::NodeId MId, 215 DisjointAllowedRegsCache &D) { 216 const auto *NRegs = &G.getNodeMetadata(NId).getAllowedRegs(); 217 const auto *MRegs = &G.getNodeMetadata(MId).getAllowedRegs(); 218 219 assert(NRegs != MRegs && "AllowedRegs can not be disjoint with itself"); 220 221 if (NRegs < MRegs) 222 D.insert(IKey(NRegs, MRegs)); 223 else 224 D.insert(IKey(MRegs, NRegs)); 225 } 226 227 // Holds (Interval, CurrentSegmentID, and NodeId). The first two are required 228 // for the fast interference graph construction algorithm. The last is there 229 // to save us from looking up node ids via the VRegToNode map in the graph 230 // metadata. 231 typedef std::tuple<LiveInterval*, size_t, PBQP::GraphBase::NodeId> 232 IntervalInfo; 233 234 static SlotIndex getStartPoint(const IntervalInfo &I) { 235 return std::get<0>(I)->segments[std::get<1>(I)].start; 236 } 237 238 static SlotIndex getEndPoint(const IntervalInfo &I) { 239 return std::get<0>(I)->segments[std::get<1>(I)].end; 240 } 241 242 static PBQP::GraphBase::NodeId getNodeId(const IntervalInfo &I) { 243 return std::get<2>(I); 244 } 245 246 static bool lowestStartPoint(const IntervalInfo &I1, 247 const IntervalInfo &I2) { 248 // Condition reversed because priority queue has the *highest* element at 249 // the front, rather than the lowest. 250 return getStartPoint(I1) > getStartPoint(I2); 251 } 252 253 static bool lowestEndPoint(const IntervalInfo &I1, 254 const IntervalInfo &I2) { 255 SlotIndex E1 = getEndPoint(I1); 256 SlotIndex E2 = getEndPoint(I2); 257 258 if (E1 < E2) 259 return true; 260 261 if (E1 > E2) 262 return false; 263 264 // If two intervals end at the same point, we need a way to break the tie or 265 // the set will assume they're actually equal and refuse to insert a 266 // "duplicate". Just compare the vregs - fast and guaranteed unique. 267 return std::get<0>(I1)->reg < std::get<0>(I2)->reg; 268 } 269 270 static bool isAtLastSegment(const IntervalInfo &I) { 271 return std::get<1>(I) == std::get<0>(I)->size() - 1; 272 } 273 274 static IntervalInfo nextSegment(const IntervalInfo &I) { 275 return std::make_tuple(std::get<0>(I), std::get<1>(I) + 1, std::get<2>(I)); 276 } 277 278 public: 279 280 void apply(PBQPRAGraph &G) override { 281 // The following is loosely based on the linear scan algorithm introduced in 282 // "Linear Scan Register Allocation" by Poletto and Sarkar. This version 283 // isn't linear, because the size of the active set isn't bound by the 284 // number of registers, but rather the size of the largest clique in the 285 // graph. Still, we expect this to be better than N^2. 286 LiveIntervals &LIS = G.getMetadata().LIS; 287 288 // Interferenc matrices are incredibly regular - they're only a function of 289 // the allowed sets, so we cache them to avoid the overhead of constructing 290 // and uniquing them. 291 IMatrixCache C; 292 293 // Finding an edge is expensive in the worst case (O(max_clique(G))). So 294 // cache locally edges we have already seen. 295 IEdgeCache EC; 296 297 // Cache known disjoint allowed registers pairs 298 DisjointAllowedRegsCache D; 299 300 typedef std::set<IntervalInfo, decltype(&lowestEndPoint)> IntervalSet; 301 typedef std::priority_queue<IntervalInfo, std::vector<IntervalInfo>, 302 decltype(&lowestStartPoint)> IntervalQueue; 303 IntervalSet Active(lowestEndPoint); 304 IntervalQueue Inactive(lowestStartPoint); 305 306 // Start by building the inactive set. 307 for (auto NId : G.nodeIds()) { 308 unsigned VReg = G.getNodeMetadata(NId).getVReg(); 309 LiveInterval &LI = LIS.getInterval(VReg); 310 assert(!LI.empty() && "PBQP graph contains node for empty interval"); 311 Inactive.push(std::make_tuple(&LI, 0, NId)); 312 } 313 314 while (!Inactive.empty()) { 315 // Tentatively grab the "next" interval - this choice may be overriden 316 // below. 317 IntervalInfo Cur = Inactive.top(); 318 319 // Retire any active intervals that end before Cur starts. 320 IntervalSet::iterator RetireItr = Active.begin(); 321 while (RetireItr != Active.end() && 322 (getEndPoint(*RetireItr) <= getStartPoint(Cur))) { 323 // If this interval has subsequent segments, add the next one to the 324 // inactive list. 325 if (!isAtLastSegment(*RetireItr)) 326 Inactive.push(nextSegment(*RetireItr)); 327 328 ++RetireItr; 329 } 330 Active.erase(Active.begin(), RetireItr); 331 332 // One of the newly retired segments may actually start before the 333 // Cur segment, so re-grab the front of the inactive list. 334 Cur = Inactive.top(); 335 Inactive.pop(); 336 337 // At this point we know that Cur overlaps all active intervals. Add the 338 // interference edges. 339 PBQP::GraphBase::NodeId NId = getNodeId(Cur); 340 for (const auto &A : Active) { 341 PBQP::GraphBase::NodeId MId = getNodeId(A); 342 343 // Do not add an edge when the nodes' allowed registers do not 344 // intersect: there is obviously no interference. 345 if (haveDisjointAllowedRegs(G, NId, MId, D)) 346 continue; 347 348 // Check that we haven't already added this edge 349 IEdgeKey EK(std::min(NId, MId), std::max(NId, MId)); 350 if (EC.count(EK)) 351 continue; 352 353 // This is a new edge - add it to the graph. 354 if (!createInterferenceEdge(G, NId, MId, C)) 355 setDisjointAllowedRegs(G, NId, MId, D); 356 else 357 EC.insert(EK); 358 } 359 360 // Finally, add Cur to the Active set. 361 Active.insert(Cur); 362 } 363 } 364 365 private: 366 367 // Create an Interference edge and add it to the graph, unless it is 368 // a null matrix, meaning the nodes' allowed registers do not have any 369 // interference. This case occurs frequently between integer and floating 370 // point registers for example. 371 // return true iff both nodes interferes. 372 bool createInterferenceEdge(PBQPRAGraph &G, 373 PBQPRAGraph::NodeId NId, PBQPRAGraph::NodeId MId, 374 IMatrixCache &C) { 375 376 const TargetRegisterInfo &TRI = 377 *G.getMetadata().MF.getSubtarget().getRegisterInfo(); 378 const auto &NRegs = G.getNodeMetadata(NId).getAllowedRegs(); 379 const auto &MRegs = G.getNodeMetadata(MId).getAllowedRegs(); 380 381 // Try looking the edge costs up in the IMatrixCache first. 382 IKey K(&NRegs, &MRegs); 383 IMatrixCache::iterator I = C.find(K); 384 if (I != C.end()) { 385 G.addEdgeBypassingCostAllocator(NId, MId, I->second); 386 return true; 387 } 388 389 PBQPRAGraph::RawMatrix M(NRegs.size() + 1, MRegs.size() + 1, 0); 390 bool NodesInterfere = false; 391 for (unsigned I = 0; I != NRegs.size(); ++I) { 392 unsigned PRegN = NRegs[I]; 393 for (unsigned J = 0; J != MRegs.size(); ++J) { 394 unsigned PRegM = MRegs[J]; 395 if (TRI.regsOverlap(PRegN, PRegM)) { 396 M[I + 1][J + 1] = std::numeric_limits<PBQP::PBQPNum>::infinity(); 397 NodesInterfere = true; 398 } 399 } 400 } 401 402 if (!NodesInterfere) 403 return false; 404 405 PBQPRAGraph::EdgeId EId = G.addEdge(NId, MId, std::move(M)); 406 C[K] = G.getEdgeCostsPtr(EId); 407 408 return true; 409 } 410 }; 411 412 413 class Coalescing : public PBQPRAConstraint { 414 public: 415 void apply(PBQPRAGraph &G) override { 416 MachineFunction &MF = G.getMetadata().MF; 417 MachineBlockFrequencyInfo &MBFI = G.getMetadata().MBFI; 418 CoalescerPair CP(*MF.getSubtarget().getRegisterInfo()); 419 420 // Scan the machine function and add a coalescing cost whenever CoalescerPair 421 // gives the Ok. 422 for (const auto &MBB : MF) { 423 for (const auto &MI : MBB) { 424 425 // Skip not-coalescable or already coalesced copies. 426 if (!CP.setRegisters(&MI) || CP.getSrcReg() == CP.getDstReg()) 427 continue; 428 429 unsigned DstReg = CP.getDstReg(); 430 unsigned SrcReg = CP.getSrcReg(); 431 432 const float Scale = 1.0f / MBFI.getEntryFreq(); 433 PBQP::PBQPNum CBenefit = MBFI.getBlockFreq(&MBB).getFrequency() * Scale; 434 435 if (CP.isPhys()) { 436 if (!MF.getRegInfo().isAllocatable(DstReg)) 437 continue; 438 439 PBQPRAGraph::NodeId NId = G.getMetadata().getNodeIdForVReg(SrcReg); 440 441 const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed = 442 G.getNodeMetadata(NId).getAllowedRegs(); 443 444 unsigned PRegOpt = 0; 445 while (PRegOpt < Allowed.size() && Allowed[PRegOpt] != DstReg) 446 ++PRegOpt; 447 448 if (PRegOpt < Allowed.size()) { 449 PBQPRAGraph::RawVector NewCosts(G.getNodeCosts(NId)); 450 NewCosts[PRegOpt + 1] -= CBenefit; 451 G.setNodeCosts(NId, std::move(NewCosts)); 452 } 453 } else { 454 PBQPRAGraph::NodeId N1Id = G.getMetadata().getNodeIdForVReg(DstReg); 455 PBQPRAGraph::NodeId N2Id = G.getMetadata().getNodeIdForVReg(SrcReg); 456 const PBQPRAGraph::NodeMetadata::AllowedRegVector *Allowed1 = 457 &G.getNodeMetadata(N1Id).getAllowedRegs(); 458 const PBQPRAGraph::NodeMetadata::AllowedRegVector *Allowed2 = 459 &G.getNodeMetadata(N2Id).getAllowedRegs(); 460 461 PBQPRAGraph::EdgeId EId = G.findEdge(N1Id, N2Id); 462 if (EId == G.invalidEdgeId()) { 463 PBQPRAGraph::RawMatrix Costs(Allowed1->size() + 1, 464 Allowed2->size() + 1, 0); 465 addVirtRegCoalesce(Costs, *Allowed1, *Allowed2, CBenefit); 466 G.addEdge(N1Id, N2Id, std::move(Costs)); 467 } else { 468 if (G.getEdgeNode1Id(EId) == N2Id) { 469 std::swap(N1Id, N2Id); 470 std::swap(Allowed1, Allowed2); 471 } 472 PBQPRAGraph::RawMatrix Costs(G.getEdgeCosts(EId)); 473 addVirtRegCoalesce(Costs, *Allowed1, *Allowed2, CBenefit); 474 G.updateEdgeCosts(EId, std::move(Costs)); 475 } 476 } 477 } 478 } 479 } 480 481 private: 482 483 void addVirtRegCoalesce( 484 PBQPRAGraph::RawMatrix &CostMat, 485 const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed1, 486 const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed2, 487 PBQP::PBQPNum Benefit) { 488 assert(CostMat.getRows() == Allowed1.size() + 1 && "Size mismatch."); 489 assert(CostMat.getCols() == Allowed2.size() + 1 && "Size mismatch."); 490 for (unsigned I = 0; I != Allowed1.size(); ++I) { 491 unsigned PReg1 = Allowed1[I]; 492 for (unsigned J = 0; J != Allowed2.size(); ++J) { 493 unsigned PReg2 = Allowed2[J]; 494 if (PReg1 == PReg2) 495 CostMat[I + 1][J + 1] -= Benefit; 496 } 497 } 498 } 499 500 }; 501 502 } // End anonymous namespace. 503 504 // Out-of-line destructor/anchor for PBQPRAConstraint. 505 PBQPRAConstraint::~PBQPRAConstraint() {} 506 void PBQPRAConstraint::anchor() {} 507 void PBQPRAConstraintList::anchor() {} 508 509 void RegAllocPBQP::getAnalysisUsage(AnalysisUsage &au) const { 510 au.setPreservesCFG(); 511 au.addRequired<AAResultsWrapperPass>(); 512 au.addPreserved<AAResultsWrapperPass>(); 513 au.addRequired<SlotIndexes>(); 514 au.addPreserved<SlotIndexes>(); 515 au.addRequired<LiveIntervals>(); 516 au.addPreserved<LiveIntervals>(); 517 //au.addRequiredID(SplitCriticalEdgesID); 518 if (customPassID) 519 au.addRequiredID(*customPassID); 520 au.addRequired<LiveStacks>(); 521 au.addPreserved<LiveStacks>(); 522 au.addRequired<MachineBlockFrequencyInfo>(); 523 au.addPreserved<MachineBlockFrequencyInfo>(); 524 au.addRequired<MachineLoopInfo>(); 525 au.addPreserved<MachineLoopInfo>(); 526 au.addRequired<MachineDominatorTree>(); 527 au.addPreserved<MachineDominatorTree>(); 528 au.addRequired<VirtRegMap>(); 529 au.addPreserved<VirtRegMap>(); 530 MachineFunctionPass::getAnalysisUsage(au); 531 } 532 533 void RegAllocPBQP::findVRegIntervalsToAlloc(const MachineFunction &MF, 534 LiveIntervals &LIS) { 535 const MachineRegisterInfo &MRI = MF.getRegInfo(); 536 537 // Iterate over all live ranges. 538 for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) { 539 unsigned Reg = TargetRegisterInfo::index2VirtReg(I); 540 if (MRI.reg_nodbg_empty(Reg)) 541 continue; 542 LiveInterval &LI = LIS.getInterval(Reg); 543 544 // If this live interval is non-empty we will use pbqp to allocate it. 545 // Empty intervals we allocate in a simple post-processing stage in 546 // finalizeAlloc. 547 if (!LI.empty()) { 548 VRegsToAlloc.insert(LI.reg); 549 } else { 550 EmptyIntervalVRegs.insert(LI.reg); 551 } 552 } 553 } 554 555 static bool isACalleeSavedRegister(unsigned reg, const TargetRegisterInfo &TRI, 556 const MachineFunction &MF) { 557 const MCPhysReg *CSR = TRI.getCalleeSavedRegs(&MF); 558 for (unsigned i = 0; CSR[i] != 0; ++i) 559 if (TRI.regsOverlap(reg, CSR[i])) 560 return true; 561 return false; 562 } 563 564 void RegAllocPBQP::initializeGraph(PBQPRAGraph &G, VirtRegMap &VRM, 565 Spiller &VRegSpiller) { 566 MachineFunction &MF = G.getMetadata().MF; 567 568 LiveIntervals &LIS = G.getMetadata().LIS; 569 const MachineRegisterInfo &MRI = G.getMetadata().MF.getRegInfo(); 570 const TargetRegisterInfo &TRI = 571 *G.getMetadata().MF.getSubtarget().getRegisterInfo(); 572 573 std::vector<unsigned> Worklist(VRegsToAlloc.begin(), VRegsToAlloc.end()); 574 575 while (!Worklist.empty()) { 576 unsigned VReg = Worklist.back(); 577 Worklist.pop_back(); 578 579 const TargetRegisterClass *TRC = MRI.getRegClass(VReg); 580 LiveInterval &VRegLI = LIS.getInterval(VReg); 581 582 // Record any overlaps with regmask operands. 583 BitVector RegMaskOverlaps; 584 LIS.checkRegMaskInterference(VRegLI, RegMaskOverlaps); 585 586 // Compute an initial allowed set for the current vreg. 587 std::vector<unsigned> VRegAllowed; 588 ArrayRef<MCPhysReg> RawPRegOrder = TRC->getRawAllocationOrder(MF); 589 for (unsigned I = 0; I != RawPRegOrder.size(); ++I) { 590 unsigned PReg = RawPRegOrder[I]; 591 if (MRI.isReserved(PReg)) 592 continue; 593 594 // vregLI crosses a regmask operand that clobbers preg. 595 if (!RegMaskOverlaps.empty() && !RegMaskOverlaps.test(PReg)) 596 continue; 597 598 // vregLI overlaps fixed regunit interference. 599 bool Interference = false; 600 for (MCRegUnitIterator Units(PReg, &TRI); Units.isValid(); ++Units) { 601 if (VRegLI.overlaps(LIS.getRegUnit(*Units))) { 602 Interference = true; 603 break; 604 } 605 } 606 if (Interference) 607 continue; 608 609 // preg is usable for this virtual register. 610 VRegAllowed.push_back(PReg); 611 } 612 613 // Check for vregs that have no allowed registers. These should be 614 // pre-spilled and the new vregs added to the worklist. 615 if (VRegAllowed.empty()) { 616 SmallVector<unsigned, 8> NewVRegs; 617 spillVReg(VReg, NewVRegs, MF, LIS, VRM, VRegSpiller); 618 Worklist.insert(Worklist.end(), NewVRegs.begin(), NewVRegs.end()); 619 continue; 620 } 621 622 PBQPRAGraph::RawVector NodeCosts(VRegAllowed.size() + 1, 0); 623 624 // Tweak cost of callee saved registers, as using then force spilling and 625 // restoring them. This would only happen in the prologue / epilogue though. 626 for (unsigned i = 0; i != VRegAllowed.size(); ++i) 627 if (isACalleeSavedRegister(VRegAllowed[i], TRI, MF)) 628 NodeCosts[1 + i] += 1.0; 629 630 PBQPRAGraph::NodeId NId = G.addNode(std::move(NodeCosts)); 631 G.getNodeMetadata(NId).setVReg(VReg); 632 G.getNodeMetadata(NId).setAllowedRegs( 633 G.getMetadata().getAllowedRegs(std::move(VRegAllowed))); 634 G.getMetadata().setNodeIdForVReg(VReg, NId); 635 } 636 } 637 638 void RegAllocPBQP::spillVReg(unsigned VReg, 639 SmallVectorImpl<unsigned> &NewIntervals, 640 MachineFunction &MF, LiveIntervals &LIS, 641 VirtRegMap &VRM, Spiller &VRegSpiller) { 642 643 VRegsToAlloc.erase(VReg); 644 LiveRangeEdit LRE(&LIS.getInterval(VReg), NewIntervals, MF, LIS, &VRM, 645 nullptr, &DeadRemats); 646 VRegSpiller.spill(LRE); 647 648 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 649 (void)TRI; 650 DEBUG(dbgs() << "VREG " << PrintReg(VReg, &TRI) << " -> SPILLED (Cost: " 651 << LRE.getParent().weight << ", New vregs: "); 652 653 // Copy any newly inserted live intervals into the list of regs to 654 // allocate. 655 for (LiveRangeEdit::iterator I = LRE.begin(), E = LRE.end(); 656 I != E; ++I) { 657 const LiveInterval &LI = LIS.getInterval(*I); 658 assert(!LI.empty() && "Empty spill range."); 659 DEBUG(dbgs() << PrintReg(LI.reg, &TRI) << " "); 660 VRegsToAlloc.insert(LI.reg); 661 } 662 663 DEBUG(dbgs() << ")\n"); 664 } 665 666 bool RegAllocPBQP::mapPBQPToRegAlloc(const PBQPRAGraph &G, 667 const PBQP::Solution &Solution, 668 VirtRegMap &VRM, 669 Spiller &VRegSpiller) { 670 MachineFunction &MF = G.getMetadata().MF; 671 LiveIntervals &LIS = G.getMetadata().LIS; 672 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 673 (void)TRI; 674 675 // Set to true if we have any spills 676 bool AnotherRoundNeeded = false; 677 678 // Clear the existing allocation. 679 VRM.clearAllVirt(); 680 681 // Iterate over the nodes mapping the PBQP solution to a register 682 // assignment. 683 for (auto NId : G.nodeIds()) { 684 unsigned VReg = G.getNodeMetadata(NId).getVReg(); 685 unsigned AllocOption = Solution.getSelection(NId); 686 687 if (AllocOption != PBQP::RegAlloc::getSpillOptionIdx()) { 688 unsigned PReg = G.getNodeMetadata(NId).getAllowedRegs()[AllocOption - 1]; 689 DEBUG(dbgs() << "VREG " << PrintReg(VReg, &TRI) << " -> " 690 << TRI.getName(PReg) << "\n"); 691 assert(PReg != 0 && "Invalid preg selected."); 692 VRM.assignVirt2Phys(VReg, PReg); 693 } else { 694 // Spill VReg. If this introduces new intervals we'll need another round 695 // of allocation. 696 SmallVector<unsigned, 8> NewVRegs; 697 spillVReg(VReg, NewVRegs, MF, LIS, VRM, VRegSpiller); 698 AnotherRoundNeeded |= !NewVRegs.empty(); 699 } 700 } 701 702 return !AnotherRoundNeeded; 703 } 704 705 void RegAllocPBQP::finalizeAlloc(MachineFunction &MF, 706 LiveIntervals &LIS, 707 VirtRegMap &VRM) const { 708 MachineRegisterInfo &MRI = MF.getRegInfo(); 709 710 // First allocate registers for the empty intervals. 711 for (RegSet::const_iterator 712 I = EmptyIntervalVRegs.begin(), E = EmptyIntervalVRegs.end(); 713 I != E; ++I) { 714 LiveInterval &LI = LIS.getInterval(*I); 715 716 unsigned PReg = MRI.getSimpleHint(LI.reg); 717 718 if (PReg == 0) { 719 const TargetRegisterClass &RC = *MRI.getRegClass(LI.reg); 720 PReg = RC.getRawAllocationOrder(MF).front(); 721 } 722 723 VRM.assignVirt2Phys(LI.reg, PReg); 724 } 725 } 726 727 void RegAllocPBQP::postOptimization(Spiller &VRegSpiller, LiveIntervals &LIS) { 728 VRegSpiller.postOptimization(); 729 /// Remove dead defs because of rematerialization. 730 for (auto DeadInst : DeadRemats) { 731 LIS.RemoveMachineInstrFromMaps(*DeadInst); 732 DeadInst->eraseFromParent(); 733 } 734 DeadRemats.clear(); 735 } 736 737 static inline float normalizePBQPSpillWeight(float UseDefFreq, unsigned Size, 738 unsigned NumInstr) { 739 // All intervals have a spill weight that is mostly proportional to the number 740 // of uses, with uses in loops having a bigger weight. 741 return NumInstr * normalizeSpillWeight(UseDefFreq, Size, 1); 742 } 743 744 bool RegAllocPBQP::runOnMachineFunction(MachineFunction &MF) { 745 LiveIntervals &LIS = getAnalysis<LiveIntervals>(); 746 MachineBlockFrequencyInfo &MBFI = 747 getAnalysis<MachineBlockFrequencyInfo>(); 748 749 VirtRegMap &VRM = getAnalysis<VirtRegMap>(); 750 751 calculateSpillWeightsAndHints(LIS, MF, &VRM, getAnalysis<MachineLoopInfo>(), 752 MBFI, normalizePBQPSpillWeight); 753 754 std::unique_ptr<Spiller> VRegSpiller(createInlineSpiller(*this, MF, VRM)); 755 756 MF.getRegInfo().freezeReservedRegs(MF); 757 758 DEBUG(dbgs() << "PBQP Register Allocating for " << MF.getName() << "\n"); 759 760 // Allocator main loop: 761 // 762 // * Map current regalloc problem to a PBQP problem 763 // * Solve the PBQP problem 764 // * Map the solution back to a register allocation 765 // * Spill if necessary 766 // 767 // This process is continued till no more spills are generated. 768 769 // Find the vreg intervals in need of allocation. 770 findVRegIntervalsToAlloc(MF, LIS); 771 772 #ifndef NDEBUG 773 const Function &F = *MF.getFunction(); 774 std::string FullyQualifiedName = 775 F.getParent()->getModuleIdentifier() + "." + F.getName().str(); 776 #endif 777 778 // If there are non-empty intervals allocate them using pbqp. 779 if (!VRegsToAlloc.empty()) { 780 781 const TargetSubtargetInfo &Subtarget = MF.getSubtarget(); 782 std::unique_ptr<PBQPRAConstraintList> ConstraintsRoot = 783 llvm::make_unique<PBQPRAConstraintList>(); 784 ConstraintsRoot->addConstraint(llvm::make_unique<SpillCosts>()); 785 ConstraintsRoot->addConstraint(llvm::make_unique<Interference>()); 786 if (PBQPCoalescing) 787 ConstraintsRoot->addConstraint(llvm::make_unique<Coalescing>()); 788 ConstraintsRoot->addConstraint(Subtarget.getCustomPBQPConstraints()); 789 790 bool PBQPAllocComplete = false; 791 unsigned Round = 0; 792 793 while (!PBQPAllocComplete) { 794 DEBUG(dbgs() << " PBQP Regalloc round " << Round << ":\n"); 795 796 PBQPRAGraph G(PBQPRAGraph::GraphMetadata(MF, LIS, MBFI)); 797 initializeGraph(G, VRM, *VRegSpiller); 798 ConstraintsRoot->apply(G); 799 800 #ifndef NDEBUG 801 if (PBQPDumpGraphs) { 802 std::ostringstream RS; 803 RS << Round; 804 std::string GraphFileName = FullyQualifiedName + "." + RS.str() + 805 ".pbqpgraph"; 806 std::error_code EC; 807 raw_fd_ostream OS(GraphFileName, EC, sys::fs::F_Text); 808 DEBUG(dbgs() << "Dumping graph for round " << Round << " to \"" 809 << GraphFileName << "\"\n"); 810 G.dump(OS); 811 } 812 #endif 813 814 PBQP::Solution Solution = PBQP::RegAlloc::solve(G); 815 PBQPAllocComplete = mapPBQPToRegAlloc(G, Solution, VRM, *VRegSpiller); 816 ++Round; 817 } 818 } 819 820 // Finalise allocation, allocate empty ranges. 821 finalizeAlloc(MF, LIS, VRM); 822 postOptimization(*VRegSpiller, LIS); 823 VRegsToAlloc.clear(); 824 EmptyIntervalVRegs.clear(); 825 826 DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << VRM << "\n"); 827 828 return true; 829 } 830 831 /// Create Printable object for node and register info. 832 static Printable PrintNodeInfo(PBQP::RegAlloc::PBQPRAGraph::NodeId NId, 833 const PBQP::RegAlloc::PBQPRAGraph &G) { 834 return Printable([NId, &G](raw_ostream &OS) { 835 const MachineRegisterInfo &MRI = G.getMetadata().MF.getRegInfo(); 836 const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo(); 837 unsigned VReg = G.getNodeMetadata(NId).getVReg(); 838 const char *RegClassName = TRI->getRegClassName(MRI.getRegClass(VReg)); 839 OS << NId << " (" << RegClassName << ':' << PrintReg(VReg, TRI) << ')'; 840 }); 841 } 842 843 void PBQP::RegAlloc::PBQPRAGraph::dump(raw_ostream &OS) const { 844 for (auto NId : nodeIds()) { 845 const Vector &Costs = getNodeCosts(NId); 846 assert(Costs.getLength() != 0 && "Empty vector in graph."); 847 OS << PrintNodeInfo(NId, *this) << ": " << Costs << '\n'; 848 } 849 OS << '\n'; 850 851 for (auto EId : edgeIds()) { 852 NodeId N1Id = getEdgeNode1Id(EId); 853 NodeId N2Id = getEdgeNode2Id(EId); 854 assert(N1Id != N2Id && "PBQP graphs should not have self-edges."); 855 const Matrix &M = getEdgeCosts(EId); 856 assert(M.getRows() != 0 && "No rows in matrix."); 857 assert(M.getCols() != 0 && "No cols in matrix."); 858 OS << PrintNodeInfo(N1Id, *this) << ' ' << M.getRows() << " rows / "; 859 OS << PrintNodeInfo(N2Id, *this) << ' ' << M.getCols() << " cols:\n"; 860 OS << M << '\n'; 861 } 862 } 863 864 LLVM_DUMP_METHOD void PBQP::RegAlloc::PBQPRAGraph::dump() const { dump(dbgs()); } 865 866 void PBQP::RegAlloc::PBQPRAGraph::printDot(raw_ostream &OS) const { 867 OS << "graph {\n"; 868 for (auto NId : nodeIds()) { 869 OS << " node" << NId << " [ label=\"" 870 << PrintNodeInfo(NId, *this) << "\\n" 871 << getNodeCosts(NId) << "\" ]\n"; 872 } 873 874 OS << " edge [ len=" << nodeIds().size() << " ]\n"; 875 for (auto EId : edgeIds()) { 876 OS << " node" << getEdgeNode1Id(EId) 877 << " -- node" << getEdgeNode2Id(EId) 878 << " [ label=\""; 879 const Matrix &EdgeCosts = getEdgeCosts(EId); 880 for (unsigned i = 0; i < EdgeCosts.getRows(); ++i) { 881 OS << EdgeCosts.getRowAsVector(i) << "\\n"; 882 } 883 OS << "\" ]\n"; 884 } 885 OS << "}\n"; 886 } 887 888 FunctionPass *llvm::createPBQPRegisterAllocator(char *customPassID) { 889 return new RegAllocPBQP(customPassID); 890 } 891 892 FunctionPass* llvm::createDefaultPBQPRegisterAllocator() { 893 return createPBQPRegisterAllocator(); 894 } 895 896 #undef DEBUG_TYPE 897