1 //===------ RegAllocPBQP.cpp ---- PBQP Register Allocator -------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains a Partitioned Boolean Quadratic Programming (PBQP) based
11 // register allocator for LLVM. This allocator works by constructing a PBQP
12 // problem representing the register allocation problem under consideration,
13 // solving this using a PBQP solver, and mapping the solution back to a
14 // register assignment. If any variables are selected for spilling then spill
15 // code is inserted and the process repeated.
16 //
17 // The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned
18 // for register allocation. For more information on PBQP for register
19 // allocation, see the following papers:
20 //
21 //   (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with
22 //   PBQP. In Proceedings of the 7th Joint Modular Languages Conference
23 //   (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361.
24 //
25 //   (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular
26 //   architectures. In Proceedings of the Joint Conference on Languages,
27 //   Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York,
28 //   NY, USA, 139-148.
29 //
30 //===----------------------------------------------------------------------===//
31 
32 #define DEBUG_TYPE "regalloc"
33 
34 #include "RenderMachineFunction.h"
35 #include "Splitter.h"
36 #include "VirtRegMap.h"
37 #include "VirtRegRewriter.h"
38 #include "llvm/CodeGen/CalcSpillWeights.h"
39 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
40 #include "llvm/CodeGen/LiveStackAnalysis.h"
41 #include "llvm/CodeGen/RegAllocPBQP.h"
42 #include "llvm/CodeGen/MachineFunctionPass.h"
43 #include "llvm/CodeGen/MachineLoopInfo.h"
44 #include "llvm/CodeGen/MachineRegisterInfo.h"
45 #include "llvm/CodeGen/PBQP/HeuristicSolver.h"
46 #include "llvm/CodeGen/PBQP/Graph.h"
47 #include "llvm/CodeGen/PBQP/Heuristics/Briggs.h"
48 #include "llvm/CodeGen/RegAllocRegistry.h"
49 #include "llvm/CodeGen/RegisterCoalescer.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include "llvm/Target/TargetInstrInfo.h"
53 #include "llvm/Target/TargetMachine.h"
54 #include <limits>
55 #include <memory>
56 #include <set>
57 #include <vector>
58 
59 using namespace llvm;
60 
61 static RegisterRegAlloc
62 registerPBQPRepAlloc("pbqp", "PBQP register allocator",
63                        createDefaultPBQPRegisterAllocator);
64 
65 static cl::opt<bool>
66 pbqpCoalescing("pbqp-coalescing",
67                 cl::desc("Attempt coalescing during PBQP register allocation."),
68                 cl::init(false), cl::Hidden);
69 
70 static cl::opt<bool>
71 pbqpPreSplitting("pbqp-pre-splitting",
72                  cl::desc("Pre-split before PBQP register allocation."),
73                  cl::init(false), cl::Hidden);
74 
75 namespace {
76 
77 ///
78 /// PBQP based allocators solve the register allocation problem by mapping
79 /// register allocation problems to Partitioned Boolean Quadratic
80 /// Programming problems.
81 class RegAllocPBQP : public MachineFunctionPass {
82 public:
83 
84   static char ID;
85 
86   /// Construct a PBQP register allocator.
87   RegAllocPBQP(std::auto_ptr<PBQPBuilder> b)
88       : MachineFunctionPass(ID), builder(b) {
89     initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
90     initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
91     initializeRegisterCoalescerAnalysisGroup(*PassRegistry::getPassRegistry());
92     initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
93     initializeLiveStacksPass(*PassRegistry::getPassRegistry());
94     initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
95     initializeLoopSplitterPass(*PassRegistry::getPassRegistry());
96     initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
97     initializeRenderMachineFunctionPass(*PassRegistry::getPassRegistry());
98   }
99 
100   /// Return the pass name.
101   virtual const char* getPassName() const {
102     return "PBQP Register Allocator";
103   }
104 
105   /// PBQP analysis usage.
106   virtual void getAnalysisUsage(AnalysisUsage &au) const;
107 
108   /// Perform register allocation
109   virtual bool runOnMachineFunction(MachineFunction &MF);
110 
111 private:
112 
113   typedef std::map<const LiveInterval*, unsigned> LI2NodeMap;
114   typedef std::vector<const LiveInterval*> Node2LIMap;
115   typedef std::vector<unsigned> AllowedSet;
116   typedef std::vector<AllowedSet> AllowedSetMap;
117   typedef std::pair<unsigned, unsigned> RegPair;
118   typedef std::map<RegPair, PBQP::PBQPNum> CoalesceMap;
119   typedef std::vector<PBQP::Graph::NodeItr> NodeVector;
120   typedef std::set<unsigned> RegSet;
121 
122 
123   std::auto_ptr<PBQPBuilder> builder;
124 
125   MachineFunction *mf;
126   const TargetMachine *tm;
127   const TargetRegisterInfo *tri;
128   const TargetInstrInfo *tii;
129   const MachineLoopInfo *loopInfo;
130   MachineRegisterInfo *mri;
131   RenderMachineFunction *rmf;
132 
133   LiveIntervals *lis;
134   LiveStacks *lss;
135   VirtRegMap *vrm;
136 
137   RegSet vregsToAlloc, emptyIntervalVRegs;
138 
139   /// \brief Finds the initial set of vreg intervals to allocate.
140   void findVRegIntervalsToAlloc();
141 
142   /// \brief Adds a stack interval if the given live interval has been
143   /// spilled. Used to support stack slot coloring.
144   void addStackInterval(const LiveInterval *spilled,MachineRegisterInfo* mri);
145 
146   /// \brief Given a solved PBQP problem maps this solution back to a register
147   /// assignment.
148   bool mapPBQPToRegAlloc(const PBQPRAProblem &problem,
149                          const PBQP::Solution &solution);
150 
151   /// \brief Postprocessing before final spilling. Sets basic block "live in"
152   /// variables.
153   void finalizeAlloc() const;
154 
155 };
156 
157 char RegAllocPBQP::ID = 0;
158 
159 } // End anonymous namespace.
160 
161 unsigned PBQPRAProblem::getVRegForNode(PBQP::Graph::ConstNodeItr node) const {
162   Node2VReg::const_iterator vregItr = node2VReg.find(node);
163   assert(vregItr != node2VReg.end() && "No vreg for node.");
164   return vregItr->second;
165 }
166 
167 PBQP::Graph::NodeItr PBQPRAProblem::getNodeForVReg(unsigned vreg) const {
168   VReg2Node::const_iterator nodeItr = vreg2Node.find(vreg);
169   assert(nodeItr != vreg2Node.end() && "No node for vreg.");
170   return nodeItr->second;
171 
172 }
173 
174 const PBQPRAProblem::AllowedSet&
175   PBQPRAProblem::getAllowedSet(unsigned vreg) const {
176   AllowedSetMap::const_iterator allowedSetItr = allowedSets.find(vreg);
177   assert(allowedSetItr != allowedSets.end() && "No pregs for vreg.");
178   const AllowedSet &allowedSet = allowedSetItr->second;
179   return allowedSet;
180 }
181 
182 unsigned PBQPRAProblem::getPRegForOption(unsigned vreg, unsigned option) const {
183   assert(isPRegOption(vreg, option) && "Not a preg option.");
184 
185   const AllowedSet& allowedSet = getAllowedSet(vreg);
186   assert(option <= allowedSet.size() && "Option outside allowed set.");
187   return allowedSet[option - 1];
188 }
189 
190 std::auto_ptr<PBQPRAProblem> PBQPBuilder::build(MachineFunction *mf,
191                                                 const LiveIntervals *lis,
192                                                 const MachineLoopInfo *loopInfo,
193                                                 const RegSet &vregs) {
194 
195   typedef std::vector<const LiveInterval*> LIVector;
196 
197   MachineRegisterInfo *mri = &mf->getRegInfo();
198   const TargetRegisterInfo *tri = mf->getTarget().getRegisterInfo();
199 
200   std::auto_ptr<PBQPRAProblem> p(new PBQPRAProblem());
201   PBQP::Graph &g = p->getGraph();
202   RegSet pregs;
203 
204   // Collect the set of preg intervals, record that they're used in the MF.
205   for (LiveIntervals::const_iterator itr = lis->begin(), end = lis->end();
206        itr != end; ++itr) {
207     if (TargetRegisterInfo::isPhysicalRegister(itr->first)) {
208       pregs.insert(itr->first);
209       mri->setPhysRegUsed(itr->first);
210     }
211   }
212 
213   BitVector reservedRegs = tri->getReservedRegs(*mf);
214 
215   // Iterate over vregs.
216   for (RegSet::const_iterator vregItr = vregs.begin(), vregEnd = vregs.end();
217        vregItr != vregEnd; ++vregItr) {
218     unsigned vreg = *vregItr;
219     const TargetRegisterClass *trc = mri->getRegClass(vreg);
220     const LiveInterval *vregLI = &lis->getInterval(vreg);
221 
222     // Compute an initial allowed set for the current vreg.
223     typedef std::vector<unsigned> VRAllowed;
224     VRAllowed vrAllowed;
225     for (TargetRegisterClass::iterator aoItr = trc->allocation_order_begin(*mf),
226                                        aoEnd = trc->allocation_order_end(*mf);
227          aoItr != aoEnd; ++aoItr) {
228       unsigned preg = *aoItr;
229       if (!reservedRegs.test(preg)) {
230         vrAllowed.push_back(preg);
231       }
232     }
233 
234     // Remove any physical registers which overlap.
235     for (RegSet::const_iterator pregItr = pregs.begin(),
236                                 pregEnd = pregs.end();
237          pregItr != pregEnd; ++pregItr) {
238       unsigned preg = *pregItr;
239       const LiveInterval *pregLI = &lis->getInterval(preg);
240 
241       if (pregLI->empty()) {
242         continue;
243       }
244 
245       if (!vregLI->overlaps(*pregLI)) {
246         continue;
247       }
248 
249       // Remove the register from the allowed set.
250       VRAllowed::iterator eraseItr =
251         std::find(vrAllowed.begin(), vrAllowed.end(), preg);
252 
253       if (eraseItr != vrAllowed.end()) {
254         vrAllowed.erase(eraseItr);
255       }
256 
257       // Also remove any aliases.
258       const unsigned *aliasItr = tri->getAliasSet(preg);
259       if (aliasItr != 0) {
260         for (; *aliasItr != 0; ++aliasItr) {
261           VRAllowed::iterator eraseItr =
262             std::find(vrAllowed.begin(), vrAllowed.end(), *aliasItr);
263 
264           if (eraseItr != vrAllowed.end()) {
265             vrAllowed.erase(eraseItr);
266           }
267         }
268       }
269     }
270 
271     // Construct the node.
272     PBQP::Graph::NodeItr node =
273       g.addNode(PBQP::Vector(vrAllowed.size() + 1, 0));
274 
275     // Record the mapping and allowed set in the problem.
276     p->recordVReg(vreg, node, vrAllowed.begin(), vrAllowed.end());
277 
278     PBQP::PBQPNum spillCost = (vregLI->weight != 0.0) ?
279         vregLI->weight : std::numeric_limits<PBQP::PBQPNum>::min();
280 
281     addSpillCosts(g.getNodeCosts(node), spillCost);
282   }
283 
284   for (RegSet::const_iterator vr1Itr = vregs.begin(), vrEnd = vregs.end();
285          vr1Itr != vrEnd; ++vr1Itr) {
286     unsigned vr1 = *vr1Itr;
287     const LiveInterval &l1 = lis->getInterval(vr1);
288     const PBQPRAProblem::AllowedSet &vr1Allowed = p->getAllowedSet(vr1);
289 
290     for (RegSet::const_iterator vr2Itr = llvm::next(vr1Itr);
291          vr2Itr != vrEnd; ++vr2Itr) {
292       unsigned vr2 = *vr2Itr;
293       const LiveInterval &l2 = lis->getInterval(vr2);
294       const PBQPRAProblem::AllowedSet &vr2Allowed = p->getAllowedSet(vr2);
295 
296       assert(!l2.empty() && "Empty interval in vreg set?");
297       if (l1.overlaps(l2)) {
298         PBQP::Graph::EdgeItr edge =
299           g.addEdge(p->getNodeForVReg(vr1), p->getNodeForVReg(vr2),
300                     PBQP::Matrix(vr1Allowed.size()+1, vr2Allowed.size()+1, 0));
301 
302         addInterferenceCosts(g.getEdgeCosts(edge), vr1Allowed, vr2Allowed, tri);
303       }
304     }
305   }
306 
307   return p;
308 }
309 
310 void PBQPBuilder::addSpillCosts(PBQP::Vector &costVec,
311                                 PBQP::PBQPNum spillCost) {
312   costVec[0] = spillCost;
313 }
314 
315 void PBQPBuilder::addInterferenceCosts(
316                                     PBQP::Matrix &costMat,
317                                     const PBQPRAProblem::AllowedSet &vr1Allowed,
318                                     const PBQPRAProblem::AllowedSet &vr2Allowed,
319                                     const TargetRegisterInfo *tri) {
320   assert(costMat.getRows() == vr1Allowed.size() + 1 && "Matrix height mismatch.");
321   assert(costMat.getCols() == vr2Allowed.size() + 1 && "Matrix width mismatch.");
322 
323   for (unsigned i = 0; i != vr1Allowed.size(); ++i) {
324     unsigned preg1 = vr1Allowed[i];
325 
326     for (unsigned j = 0; j != vr2Allowed.size(); ++j) {
327       unsigned preg2 = vr2Allowed[j];
328 
329       if (tri->regsOverlap(preg1, preg2)) {
330         costMat[i + 1][j + 1] = std::numeric_limits<PBQP::PBQPNum>::infinity();
331       }
332     }
333   }
334 }
335 
336 std::auto_ptr<PBQPRAProblem> PBQPBuilderWithCoalescing::build(
337                                                 MachineFunction *mf,
338                                                 const LiveIntervals *lis,
339                                                 const MachineLoopInfo *loopInfo,
340                                                 const RegSet &vregs) {
341 
342   std::auto_ptr<PBQPRAProblem> p = PBQPBuilder::build(mf, lis, loopInfo, vregs);
343   PBQP::Graph &g = p->getGraph();
344 
345   const TargetMachine &tm = mf->getTarget();
346   CoalescerPair cp(*tm.getInstrInfo(), *tm.getRegisterInfo());
347 
348   // Scan the machine function and add a coalescing cost whenever CoalescerPair
349   // gives the Ok.
350   for (MachineFunction::const_iterator mbbItr = mf->begin(),
351                                        mbbEnd = mf->end();
352        mbbItr != mbbEnd; ++mbbItr) {
353     const MachineBasicBlock *mbb = &*mbbItr;
354 
355     for (MachineBasicBlock::const_iterator miItr = mbb->begin(),
356                                            miEnd = mbb->end();
357          miItr != miEnd; ++miItr) {
358       const MachineInstr *mi = &*miItr;
359 
360       if (!cp.setRegisters(mi)) {
361         continue; // Not coalescable.
362       }
363 
364       if (cp.getSrcReg() == cp.getDstReg()) {
365         continue; // Already coalesced.
366       }
367 
368       unsigned dst = cp.getDstReg(),
369                src = cp.getSrcReg();
370 
371       const float copyFactor = 0.5; // Cost of copy relative to load. Current
372       // value plucked randomly out of the air.
373 
374       PBQP::PBQPNum cBenefit =
375         copyFactor * LiveIntervals::getSpillWeight(false, true,
376                                                    loopInfo->getLoopDepth(mbb));
377 
378       if (cp.isPhys()) {
379         if (!lis->isAllocatable(dst)) {
380           continue;
381         }
382 
383         const PBQPRAProblem::AllowedSet &allowed = p->getAllowedSet(src);
384         unsigned pregOpt = 0;
385         while (pregOpt < allowed.size() && allowed[pregOpt] != dst) {
386           ++pregOpt;
387         }
388         if (pregOpt < allowed.size()) {
389           ++pregOpt; // +1 to account for spill option.
390           PBQP::Graph::NodeItr node = p->getNodeForVReg(src);
391           addPhysRegCoalesce(g.getNodeCosts(node), pregOpt, cBenefit);
392         }
393       } else {
394         const PBQPRAProblem::AllowedSet *allowed1 = &p->getAllowedSet(dst);
395         const PBQPRAProblem::AllowedSet *allowed2 = &p->getAllowedSet(src);
396         PBQP::Graph::NodeItr node1 = p->getNodeForVReg(dst);
397         PBQP::Graph::NodeItr node2 = p->getNodeForVReg(src);
398         PBQP::Graph::EdgeItr edge = g.findEdge(node1, node2);
399         if (edge == g.edgesEnd()) {
400           edge = g.addEdge(node1, node2, PBQP::Matrix(allowed1->size() + 1,
401                                                       allowed2->size() + 1,
402                                                       0));
403         } else {
404           if (g.getEdgeNode1(edge) == node2) {
405             std::swap(node1, node2);
406             std::swap(allowed1, allowed2);
407           }
408         }
409 
410         addVirtRegCoalesce(g.getEdgeCosts(edge), *allowed1, *allowed2,
411                            cBenefit);
412       }
413     }
414   }
415 
416   return p;
417 }
418 
419 void PBQPBuilderWithCoalescing::addPhysRegCoalesce(PBQP::Vector &costVec,
420                                                    unsigned pregOption,
421                                                    PBQP::PBQPNum benefit) {
422   costVec[pregOption] += -benefit;
423 }
424 
425 void PBQPBuilderWithCoalescing::addVirtRegCoalesce(
426                                     PBQP::Matrix &costMat,
427                                     const PBQPRAProblem::AllowedSet &vr1Allowed,
428                                     const PBQPRAProblem::AllowedSet &vr2Allowed,
429                                     PBQP::PBQPNum benefit) {
430 
431   assert(costMat.getRows() == vr1Allowed.size() + 1 && "Size mismatch.");
432   assert(costMat.getCols() == vr2Allowed.size() + 1 && "Size mismatch.");
433 
434   for (unsigned i = 0; i != vr1Allowed.size(); ++i) {
435     unsigned preg1 = vr1Allowed[i];
436     for (unsigned j = 0; j != vr2Allowed.size(); ++j) {
437       unsigned preg2 = vr2Allowed[j];
438 
439       if (preg1 == preg2) {
440         costMat[i + 1][j + 1] += -benefit;
441       }
442     }
443   }
444 }
445 
446 
447 void RegAllocPBQP::getAnalysisUsage(AnalysisUsage &au) const {
448   au.addRequired<SlotIndexes>();
449   au.addPreserved<SlotIndexes>();
450   au.addRequired<LiveIntervals>();
451   //au.addRequiredID(SplitCriticalEdgesID);
452   au.addRequired<RegisterCoalescer>();
453   au.addRequired<CalculateSpillWeights>();
454   au.addRequired<LiveStacks>();
455   au.addPreserved<LiveStacks>();
456   au.addRequired<MachineLoopInfo>();
457   au.addPreserved<MachineLoopInfo>();
458   if (pbqpPreSplitting)
459     au.addRequired<LoopSplitter>();
460   au.addRequired<VirtRegMap>();
461   au.addRequired<RenderMachineFunction>();
462   MachineFunctionPass::getAnalysisUsage(au);
463 }
464 
465 void RegAllocPBQP::findVRegIntervalsToAlloc() {
466 
467   // Iterate over all live ranges.
468   for (LiveIntervals::iterator itr = lis->begin(), end = lis->end();
469        itr != end; ++itr) {
470 
471     // Ignore physical ones.
472     if (TargetRegisterInfo::isPhysicalRegister(itr->first))
473       continue;
474 
475     LiveInterval *li = itr->second;
476 
477     // If this live interval is non-empty we will use pbqp to allocate it.
478     // Empty intervals we allocate in a simple post-processing stage in
479     // finalizeAlloc.
480     if (!li->empty()) {
481       vregsToAlloc.insert(li->reg);
482     } else {
483       emptyIntervalVRegs.insert(li->reg);
484     }
485   }
486 }
487 
488 void RegAllocPBQP::addStackInterval(const LiveInterval *spilled,
489                                     MachineRegisterInfo* mri) {
490   int stackSlot = vrm->getStackSlot(spilled->reg);
491 
492   if (stackSlot == VirtRegMap::NO_STACK_SLOT) {
493     return;
494   }
495 
496   const TargetRegisterClass *RC = mri->getRegClass(spilled->reg);
497   LiveInterval &stackInterval = lss->getOrCreateInterval(stackSlot, RC);
498 
499   VNInfo *vni;
500   if (stackInterval.getNumValNums() != 0) {
501     vni = stackInterval.getValNumInfo(0);
502   } else {
503     vni = stackInterval.getNextValue(
504       SlotIndex(), 0, lss->getVNInfoAllocator());
505   }
506 
507   LiveInterval &rhsInterval = lis->getInterval(spilled->reg);
508   stackInterval.MergeRangesInAsValue(rhsInterval, vni);
509 }
510 
511 bool RegAllocPBQP::mapPBQPToRegAlloc(const PBQPRAProblem &problem,
512                                      const PBQP::Solution &solution) {
513   // Set to true if we have any spills
514   bool anotherRoundNeeded = false;
515 
516   // Clear the existing allocation.
517   vrm->clearAllVirt();
518 
519   const PBQP::Graph &g = problem.getGraph();
520   // Iterate over the nodes mapping the PBQP solution to a register
521   // assignment.
522   for (PBQP::Graph::ConstNodeItr node = g.nodesBegin(),
523                                  nodeEnd = g.nodesEnd();
524        node != nodeEnd; ++node) {
525     unsigned vreg = problem.getVRegForNode(node);
526     unsigned alloc = solution.getSelection(node);
527 
528     if (problem.isPRegOption(vreg, alloc)) {
529       unsigned preg = problem.getPRegForOption(vreg, alloc);
530       DEBUG(dbgs() << "VREG " << vreg << " -> " << tri->getName(preg) << "\n");
531       assert(preg != 0 && "Invalid preg selected.");
532       vrm->assignVirt2Phys(vreg, preg);
533     } else if (problem.isSpillOption(vreg, alloc)) {
534       vregsToAlloc.erase(vreg);
535       const LiveInterval* spillInterval = &lis->getInterval(vreg);
536       double oldWeight = spillInterval->weight;
537       rmf->rememberUseDefs(spillInterval);
538       std::vector<LiveInterval*> newSpills =
539         lis->addIntervalsForSpills(*spillInterval, 0, loopInfo, *vrm);
540       addStackInterval(spillInterval, mri);
541       rmf->rememberSpills(spillInterval, newSpills);
542 
543       (void) oldWeight;
544       DEBUG(dbgs() << "VREG " << vreg << " -> SPILLED (Cost: "
545                    << oldWeight << ", New vregs: ");
546 
547       // Copy any newly inserted live intervals into the list of regs to
548       // allocate.
549       for (std::vector<LiveInterval*>::const_iterator
550            itr = newSpills.begin(), end = newSpills.end();
551            itr != end; ++itr) {
552         assert(!(*itr)->empty() && "Empty spill range.");
553         DEBUG(dbgs() << (*itr)->reg << " ");
554         vregsToAlloc.insert((*itr)->reg);
555       }
556 
557       DEBUG(dbgs() << ")\n");
558 
559       // We need another round if spill intervals were added.
560       anotherRoundNeeded |= !newSpills.empty();
561     } else {
562       assert(false && "Unknown allocation option.");
563     }
564   }
565 
566   return !anotherRoundNeeded;
567 }
568 
569 
570 void RegAllocPBQP::finalizeAlloc() const {
571   typedef LiveIntervals::iterator LIIterator;
572   typedef LiveInterval::Ranges::const_iterator LRIterator;
573 
574   // First allocate registers for the empty intervals.
575   for (RegSet::const_iterator
576          itr = emptyIntervalVRegs.begin(), end = emptyIntervalVRegs.end();
577          itr != end; ++itr) {
578     LiveInterval *li = &lis->getInterval(*itr);
579 
580     unsigned physReg = vrm->getRegAllocPref(li->reg);
581 
582     if (physReg == 0) {
583       const TargetRegisterClass *liRC = mri->getRegClass(li->reg);
584       physReg = *liRC->allocation_order_begin(*mf);
585     }
586 
587     vrm->assignVirt2Phys(li->reg, physReg);
588   }
589 
590   // Finally iterate over the basic blocks to compute and set the live-in sets.
591   SmallVector<MachineBasicBlock*, 8> liveInMBBs;
592   MachineBasicBlock *entryMBB = &*mf->begin();
593 
594   for (LIIterator liItr = lis->begin(), liEnd = lis->end();
595        liItr != liEnd; ++liItr) {
596 
597     const LiveInterval *li = liItr->second;
598     unsigned reg = 0;
599 
600     // Get the physical register for this interval
601     if (TargetRegisterInfo::isPhysicalRegister(li->reg)) {
602       reg = li->reg;
603     } else if (vrm->isAssignedReg(li->reg)) {
604       reg = vrm->getPhys(li->reg);
605     } else {
606       // Ranges which are assigned a stack slot only are ignored.
607       continue;
608     }
609 
610     if (reg == 0) {
611       // Filter out zero regs - they're for intervals that were spilled.
612       continue;
613     }
614 
615     // Iterate over the ranges of the current interval...
616     for (LRIterator lrItr = li->begin(), lrEnd = li->end();
617          lrItr != lrEnd; ++lrItr) {
618 
619       // Find the set of basic blocks which this range is live into...
620       if (lis->findLiveInMBBs(lrItr->start, lrItr->end,  liveInMBBs)) {
621         // And add the physreg for this interval to their live-in sets.
622         for (unsigned i = 0; i != liveInMBBs.size(); ++i) {
623           if (liveInMBBs[i] != entryMBB) {
624             if (!liveInMBBs[i]->isLiveIn(reg)) {
625               liveInMBBs[i]->addLiveIn(reg);
626             }
627           }
628         }
629         liveInMBBs.clear();
630       }
631     }
632   }
633 
634 }
635 
636 bool RegAllocPBQP::runOnMachineFunction(MachineFunction &MF) {
637 
638   mf = &MF;
639   tm = &mf->getTarget();
640   tri = tm->getRegisterInfo();
641   tii = tm->getInstrInfo();
642   mri = &mf->getRegInfo();
643 
644   lis = &getAnalysis<LiveIntervals>();
645   lss = &getAnalysis<LiveStacks>();
646   loopInfo = &getAnalysis<MachineLoopInfo>();
647   rmf = &getAnalysis<RenderMachineFunction>();
648 
649   vrm = &getAnalysis<VirtRegMap>();
650 
651 
652   DEBUG(dbgs() << "PBQP Register Allocating for " << mf->getFunction()->getName() << "\n");
653 
654   // Allocator main loop:
655   //
656   // * Map current regalloc problem to a PBQP problem
657   // * Solve the PBQP problem
658   // * Map the solution back to a register allocation
659   // * Spill if necessary
660   //
661   // This process is continued till no more spills are generated.
662 
663   // Find the vreg intervals in need of allocation.
664   findVRegIntervalsToAlloc();
665 
666   // If there are non-empty intervals allocate them using pbqp.
667   if (!vregsToAlloc.empty()) {
668 
669     bool pbqpAllocComplete = false;
670     unsigned round = 0;
671 
672     while (!pbqpAllocComplete) {
673       DEBUG(dbgs() << "  PBQP Regalloc round " << round << ":\n");
674 
675       std::auto_ptr<PBQPRAProblem> problem =
676         builder->build(mf, lis, loopInfo, vregsToAlloc);
677       PBQP::Solution solution =
678         PBQP::HeuristicSolver<PBQP::Heuristics::Briggs>::solve(
679           problem->getGraph());
680 
681       pbqpAllocComplete = mapPBQPToRegAlloc(*problem, solution);
682 
683       ++round;
684     }
685   }
686 
687   // Finalise allocation, allocate empty ranges.
688   finalizeAlloc();
689 
690   rmf->renderMachineFunction("After PBQP register allocation.", vrm);
691 
692   vregsToAlloc.clear();
693   emptyIntervalVRegs.clear();
694 
695   DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *vrm << "\n");
696 
697   // Run rewriter
698   std::auto_ptr<VirtRegRewriter> rewriter(createVirtRegRewriter());
699 
700   rewriter->runOnMachineFunction(*mf, *vrm, lis);
701 
702   return true;
703 }
704 
705 FunctionPass* llvm::createPBQPRegisterAllocator(
706                                            std::auto_ptr<PBQPBuilder> builder) {
707   return new RegAllocPBQP(builder);
708 }
709 
710 FunctionPass* llvm::createDefaultPBQPRegisterAllocator() {
711   if (pbqpCoalescing) {
712     return createPBQPRegisterAllocator(
713              std::auto_ptr<PBQPBuilder>(new PBQPBuilderWithCoalescing()));
714   } // else
715   return createPBQPRegisterAllocator(
716            std::auto_ptr<PBQPBuilder>(new PBQPBuilder()));
717 }
718 
719 #undef DEBUG_TYPE
720