1 //===- RegAllocPBQP.cpp ---- PBQP Register Allocator ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a Partitioned Boolean Quadratic Programming (PBQP) based 10 // register allocator for LLVM. This allocator works by constructing a PBQP 11 // problem representing the register allocation problem under consideration, 12 // solving this using a PBQP solver, and mapping the solution back to a 13 // register assignment. If any variables are selected for spilling then spill 14 // code is inserted and the process repeated. 15 // 16 // The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned 17 // for register allocation. For more information on PBQP for register 18 // allocation, see the following papers: 19 // 20 // (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with 21 // PBQP. In Proceedings of the 7th Joint Modular Languages Conference 22 // (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361. 23 // 24 // (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular 25 // architectures. In Proceedings of the Joint Conference on Languages, 26 // Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York, 27 // NY, USA, 139-148. 28 // 29 //===----------------------------------------------------------------------===// 30 31 #include "llvm/CodeGen/RegAllocPBQP.h" 32 #include "RegisterCoalescer.h" 33 #include "llvm/ADT/ArrayRef.h" 34 #include "llvm/ADT/BitVector.h" 35 #include "llvm/ADT/DenseMap.h" 36 #include "llvm/ADT/DenseSet.h" 37 #include "llvm/ADT/STLExtras.h" 38 #include "llvm/ADT/SmallPtrSet.h" 39 #include "llvm/ADT/SmallVector.h" 40 #include "llvm/ADT/StringRef.h" 41 #include "llvm/Analysis/AliasAnalysis.h" 42 #include "llvm/CodeGen/CalcSpillWeights.h" 43 #include "llvm/CodeGen/LiveInterval.h" 44 #include "llvm/CodeGen/LiveIntervals.h" 45 #include "llvm/CodeGen/LiveRangeEdit.h" 46 #include "llvm/CodeGen/LiveStacks.h" 47 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 48 #include "llvm/CodeGen/MachineDominators.h" 49 #include "llvm/CodeGen/MachineFunction.h" 50 #include "llvm/CodeGen/MachineFunctionPass.h" 51 #include "llvm/CodeGen/MachineInstr.h" 52 #include "llvm/CodeGen/MachineLoopInfo.h" 53 #include "llvm/CodeGen/MachineRegisterInfo.h" 54 #include "llvm/CodeGen/PBQP/Graph.h" 55 #include "llvm/CodeGen/PBQP/Math.h" 56 #include "llvm/CodeGen/PBQP/Solution.h" 57 #include "llvm/CodeGen/PBQPRAConstraint.h" 58 #include "llvm/CodeGen/RegAllocRegistry.h" 59 #include "llvm/CodeGen/SlotIndexes.h" 60 #include "llvm/CodeGen/Spiller.h" 61 #include "llvm/CodeGen/TargetRegisterInfo.h" 62 #include "llvm/CodeGen/TargetSubtargetInfo.h" 63 #include "llvm/CodeGen/VirtRegMap.h" 64 #include "llvm/Config/llvm-config.h" 65 #include "llvm/IR/Function.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/MC/MCRegisterInfo.h" 68 #include "llvm/Pass.h" 69 #include "llvm/Support/CommandLine.h" 70 #include "llvm/Support/Compiler.h" 71 #include "llvm/Support/Debug.h" 72 #include "llvm/Support/FileSystem.h" 73 #include "llvm/Support/Printable.h" 74 #include "llvm/Support/raw_ostream.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cstddef> 78 #include <limits> 79 #include <map> 80 #include <memory> 81 #include <queue> 82 #include <set> 83 #include <sstream> 84 #include <string> 85 #include <system_error> 86 #include <tuple> 87 #include <utility> 88 #include <vector> 89 90 using namespace llvm; 91 92 #define DEBUG_TYPE "regalloc" 93 94 static RegisterRegAlloc 95 RegisterPBQPRepAlloc("pbqp", "PBQP register allocator", 96 createDefaultPBQPRegisterAllocator); 97 98 static cl::opt<bool> 99 PBQPCoalescing("pbqp-coalescing", 100 cl::desc("Attempt coalescing during PBQP register allocation."), 101 cl::init(false), cl::Hidden); 102 103 #ifndef NDEBUG 104 static cl::opt<bool> 105 PBQPDumpGraphs("pbqp-dump-graphs", 106 cl::desc("Dump graphs for each function/round in the compilation unit."), 107 cl::init(false), cl::Hidden); 108 #endif 109 110 namespace { 111 112 /// 113 /// PBQP based allocators solve the register allocation problem by mapping 114 /// register allocation problems to Partitioned Boolean Quadratic 115 /// Programming problems. 116 class RegAllocPBQP : public MachineFunctionPass { 117 public: 118 static char ID; 119 120 /// Construct a PBQP register allocator. 121 RegAllocPBQP(char *cPassID = nullptr) 122 : MachineFunctionPass(ID), customPassID(cPassID) { 123 initializeSlotIndexesPass(*PassRegistry::getPassRegistry()); 124 initializeLiveIntervalsPass(*PassRegistry::getPassRegistry()); 125 initializeLiveStacksPass(*PassRegistry::getPassRegistry()); 126 initializeVirtRegMapPass(*PassRegistry::getPassRegistry()); 127 } 128 129 /// Return the pass name. 130 StringRef getPassName() const override { return "PBQP Register Allocator"; } 131 132 /// PBQP analysis usage. 133 void getAnalysisUsage(AnalysisUsage &au) const override; 134 135 /// Perform register allocation 136 bool runOnMachineFunction(MachineFunction &MF) override; 137 138 MachineFunctionProperties getRequiredProperties() const override { 139 return MachineFunctionProperties().set( 140 MachineFunctionProperties::Property::NoPHIs); 141 } 142 143 MachineFunctionProperties getClearedProperties() const override { 144 return MachineFunctionProperties().set( 145 MachineFunctionProperties::Property::IsSSA); 146 } 147 148 private: 149 using LI2NodeMap = std::map<const LiveInterval *, unsigned>; 150 using Node2LIMap = std::vector<const LiveInterval *>; 151 using AllowedSet = std::vector<unsigned>; 152 using AllowedSetMap = std::vector<AllowedSet>; 153 using RegPair = std::pair<unsigned, unsigned>; 154 using CoalesceMap = std::map<RegPair, PBQP::PBQPNum>; 155 using RegSet = std::set<Register>; 156 157 char *customPassID; 158 159 RegSet VRegsToAlloc, EmptyIntervalVRegs; 160 161 /// Inst which is a def of an original reg and whose defs are already all 162 /// dead after remat is saved in DeadRemats. The deletion of such inst is 163 /// postponed till all the allocations are done, so its remat expr is 164 /// always available for the remat of all the siblings of the original reg. 165 SmallPtrSet<MachineInstr *, 32> DeadRemats; 166 167 /// Finds the initial set of vreg intervals to allocate. 168 void findVRegIntervalsToAlloc(const MachineFunction &MF, LiveIntervals &LIS); 169 170 /// Constructs an initial graph. 171 void initializeGraph(PBQPRAGraph &G, VirtRegMap &VRM, Spiller &VRegSpiller); 172 173 /// Spill the given VReg. 174 void spillVReg(Register VReg, SmallVectorImpl<Register> &NewIntervals, 175 MachineFunction &MF, LiveIntervals &LIS, VirtRegMap &VRM, 176 Spiller &VRegSpiller); 177 178 /// Given a solved PBQP problem maps this solution back to a register 179 /// assignment. 180 bool mapPBQPToRegAlloc(const PBQPRAGraph &G, 181 const PBQP::Solution &Solution, 182 VirtRegMap &VRM, 183 Spiller &VRegSpiller); 184 185 /// Postprocessing before final spilling. Sets basic block "live in" 186 /// variables. 187 void finalizeAlloc(MachineFunction &MF, LiveIntervals &LIS, 188 VirtRegMap &VRM) const; 189 190 void postOptimization(Spiller &VRegSpiller, LiveIntervals &LIS); 191 }; 192 193 char RegAllocPBQP::ID = 0; 194 195 /// Set spill costs for each node in the PBQP reg-alloc graph. 196 class SpillCosts : public PBQPRAConstraint { 197 public: 198 void apply(PBQPRAGraph &G) override { 199 LiveIntervals &LIS = G.getMetadata().LIS; 200 201 // A minimum spill costs, so that register constraints can can be set 202 // without normalization in the [0.0:MinSpillCost( interval. 203 const PBQP::PBQPNum MinSpillCost = 10.0; 204 205 for (auto NId : G.nodeIds()) { 206 PBQP::PBQPNum SpillCost = 207 LIS.getInterval(G.getNodeMetadata(NId).getVReg()).weight(); 208 if (SpillCost == 0.0) 209 SpillCost = std::numeric_limits<PBQP::PBQPNum>::min(); 210 else 211 SpillCost += MinSpillCost; 212 PBQPRAGraph::RawVector NodeCosts(G.getNodeCosts(NId)); 213 NodeCosts[PBQP::RegAlloc::getSpillOptionIdx()] = SpillCost; 214 G.setNodeCosts(NId, std::move(NodeCosts)); 215 } 216 } 217 }; 218 219 /// Add interference edges between overlapping vregs. 220 class Interference : public PBQPRAConstraint { 221 private: 222 using AllowedRegVecPtr = const PBQP::RegAlloc::AllowedRegVector *; 223 using IKey = std::pair<AllowedRegVecPtr, AllowedRegVecPtr>; 224 using IMatrixCache = DenseMap<IKey, PBQPRAGraph::MatrixPtr>; 225 using DisjointAllowedRegsCache = DenseSet<IKey>; 226 using IEdgeKey = std::pair<PBQP::GraphBase::NodeId, PBQP::GraphBase::NodeId>; 227 using IEdgeCache = DenseSet<IEdgeKey>; 228 229 bool haveDisjointAllowedRegs(const PBQPRAGraph &G, PBQPRAGraph::NodeId NId, 230 PBQPRAGraph::NodeId MId, 231 const DisjointAllowedRegsCache &D) const { 232 const auto *NRegs = &G.getNodeMetadata(NId).getAllowedRegs(); 233 const auto *MRegs = &G.getNodeMetadata(MId).getAllowedRegs(); 234 235 if (NRegs == MRegs) 236 return false; 237 238 if (NRegs < MRegs) 239 return D.count(IKey(NRegs, MRegs)) > 0; 240 241 return D.count(IKey(MRegs, NRegs)) > 0; 242 } 243 244 void setDisjointAllowedRegs(const PBQPRAGraph &G, PBQPRAGraph::NodeId NId, 245 PBQPRAGraph::NodeId MId, 246 DisjointAllowedRegsCache &D) { 247 const auto *NRegs = &G.getNodeMetadata(NId).getAllowedRegs(); 248 const auto *MRegs = &G.getNodeMetadata(MId).getAllowedRegs(); 249 250 assert(NRegs != MRegs && "AllowedRegs can not be disjoint with itself"); 251 252 if (NRegs < MRegs) 253 D.insert(IKey(NRegs, MRegs)); 254 else 255 D.insert(IKey(MRegs, NRegs)); 256 } 257 258 // Holds (Interval, CurrentSegmentID, and NodeId). The first two are required 259 // for the fast interference graph construction algorithm. The last is there 260 // to save us from looking up node ids via the VRegToNode map in the graph 261 // metadata. 262 using IntervalInfo = 263 std::tuple<LiveInterval*, size_t, PBQP::GraphBase::NodeId>; 264 265 static SlotIndex getStartPoint(const IntervalInfo &I) { 266 return std::get<0>(I)->segments[std::get<1>(I)].start; 267 } 268 269 static SlotIndex getEndPoint(const IntervalInfo &I) { 270 return std::get<0>(I)->segments[std::get<1>(I)].end; 271 } 272 273 static PBQP::GraphBase::NodeId getNodeId(const IntervalInfo &I) { 274 return std::get<2>(I); 275 } 276 277 static bool lowestStartPoint(const IntervalInfo &I1, 278 const IntervalInfo &I2) { 279 // Condition reversed because priority queue has the *highest* element at 280 // the front, rather than the lowest. 281 return getStartPoint(I1) > getStartPoint(I2); 282 } 283 284 static bool lowestEndPoint(const IntervalInfo &I1, 285 const IntervalInfo &I2) { 286 SlotIndex E1 = getEndPoint(I1); 287 SlotIndex E2 = getEndPoint(I2); 288 289 if (E1 < E2) 290 return true; 291 292 if (E1 > E2) 293 return false; 294 295 // If two intervals end at the same point, we need a way to break the tie or 296 // the set will assume they're actually equal and refuse to insert a 297 // "duplicate". Just compare the vregs - fast and guaranteed unique. 298 return std::get<0>(I1)->reg() < std::get<0>(I2)->reg(); 299 } 300 301 static bool isAtLastSegment(const IntervalInfo &I) { 302 return std::get<1>(I) == std::get<0>(I)->size() - 1; 303 } 304 305 static IntervalInfo nextSegment(const IntervalInfo &I) { 306 return std::make_tuple(std::get<0>(I), std::get<1>(I) + 1, std::get<2>(I)); 307 } 308 309 public: 310 void apply(PBQPRAGraph &G) override { 311 // The following is loosely based on the linear scan algorithm introduced in 312 // "Linear Scan Register Allocation" by Poletto and Sarkar. This version 313 // isn't linear, because the size of the active set isn't bound by the 314 // number of registers, but rather the size of the largest clique in the 315 // graph. Still, we expect this to be better than N^2. 316 LiveIntervals &LIS = G.getMetadata().LIS; 317 318 // Interferenc matrices are incredibly regular - they're only a function of 319 // the allowed sets, so we cache them to avoid the overhead of constructing 320 // and uniquing them. 321 IMatrixCache C; 322 323 // Finding an edge is expensive in the worst case (O(max_clique(G))). So 324 // cache locally edges we have already seen. 325 IEdgeCache EC; 326 327 // Cache known disjoint allowed registers pairs 328 DisjointAllowedRegsCache D; 329 330 using IntervalSet = std::set<IntervalInfo, decltype(&lowestEndPoint)>; 331 using IntervalQueue = 332 std::priority_queue<IntervalInfo, std::vector<IntervalInfo>, 333 decltype(&lowestStartPoint)>; 334 IntervalSet Active(lowestEndPoint); 335 IntervalQueue Inactive(lowestStartPoint); 336 337 // Start by building the inactive set. 338 for (auto NId : G.nodeIds()) { 339 Register VReg = G.getNodeMetadata(NId).getVReg(); 340 LiveInterval &LI = LIS.getInterval(VReg); 341 assert(!LI.empty() && "PBQP graph contains node for empty interval"); 342 Inactive.push(std::make_tuple(&LI, 0, NId)); 343 } 344 345 while (!Inactive.empty()) { 346 // Tentatively grab the "next" interval - this choice may be overriden 347 // below. 348 IntervalInfo Cur = Inactive.top(); 349 350 // Retire any active intervals that end before Cur starts. 351 IntervalSet::iterator RetireItr = Active.begin(); 352 while (RetireItr != Active.end() && 353 (getEndPoint(*RetireItr) <= getStartPoint(Cur))) { 354 // If this interval has subsequent segments, add the next one to the 355 // inactive list. 356 if (!isAtLastSegment(*RetireItr)) 357 Inactive.push(nextSegment(*RetireItr)); 358 359 ++RetireItr; 360 } 361 Active.erase(Active.begin(), RetireItr); 362 363 // One of the newly retired segments may actually start before the 364 // Cur segment, so re-grab the front of the inactive list. 365 Cur = Inactive.top(); 366 Inactive.pop(); 367 368 // At this point we know that Cur overlaps all active intervals. Add the 369 // interference edges. 370 PBQP::GraphBase::NodeId NId = getNodeId(Cur); 371 for (const auto &A : Active) { 372 PBQP::GraphBase::NodeId MId = getNodeId(A); 373 374 // Do not add an edge when the nodes' allowed registers do not 375 // intersect: there is obviously no interference. 376 if (haveDisjointAllowedRegs(G, NId, MId, D)) 377 continue; 378 379 // Check that we haven't already added this edge 380 IEdgeKey EK(std::min(NId, MId), std::max(NId, MId)); 381 if (EC.count(EK)) 382 continue; 383 384 // This is a new edge - add it to the graph. 385 if (!createInterferenceEdge(G, NId, MId, C)) 386 setDisjointAllowedRegs(G, NId, MId, D); 387 else 388 EC.insert(EK); 389 } 390 391 // Finally, add Cur to the Active set. 392 Active.insert(Cur); 393 } 394 } 395 396 private: 397 // Create an Interference edge and add it to the graph, unless it is 398 // a null matrix, meaning the nodes' allowed registers do not have any 399 // interference. This case occurs frequently between integer and floating 400 // point registers for example. 401 // return true iff both nodes interferes. 402 bool createInterferenceEdge(PBQPRAGraph &G, 403 PBQPRAGraph::NodeId NId, PBQPRAGraph::NodeId MId, 404 IMatrixCache &C) { 405 const TargetRegisterInfo &TRI = 406 *G.getMetadata().MF.getSubtarget().getRegisterInfo(); 407 const auto &NRegs = G.getNodeMetadata(NId).getAllowedRegs(); 408 const auto &MRegs = G.getNodeMetadata(MId).getAllowedRegs(); 409 410 // Try looking the edge costs up in the IMatrixCache first. 411 IKey K(&NRegs, &MRegs); 412 IMatrixCache::iterator I = C.find(K); 413 if (I != C.end()) { 414 G.addEdgeBypassingCostAllocator(NId, MId, I->second); 415 return true; 416 } 417 418 PBQPRAGraph::RawMatrix M(NRegs.size() + 1, MRegs.size() + 1, 0); 419 bool NodesInterfere = false; 420 for (unsigned I = 0; I != NRegs.size(); ++I) { 421 MCRegister PRegN = NRegs[I]; 422 for (unsigned J = 0; J != MRegs.size(); ++J) { 423 MCRegister PRegM = MRegs[J]; 424 if (TRI.regsOverlap(PRegN, PRegM)) { 425 M[I + 1][J + 1] = std::numeric_limits<PBQP::PBQPNum>::infinity(); 426 NodesInterfere = true; 427 } 428 } 429 } 430 431 if (!NodesInterfere) 432 return false; 433 434 PBQPRAGraph::EdgeId EId = G.addEdge(NId, MId, std::move(M)); 435 C[K] = G.getEdgeCostsPtr(EId); 436 437 return true; 438 } 439 }; 440 441 class Coalescing : public PBQPRAConstraint { 442 public: 443 void apply(PBQPRAGraph &G) override { 444 MachineFunction &MF = G.getMetadata().MF; 445 MachineBlockFrequencyInfo &MBFI = G.getMetadata().MBFI; 446 CoalescerPair CP(*MF.getSubtarget().getRegisterInfo()); 447 448 // Scan the machine function and add a coalescing cost whenever CoalescerPair 449 // gives the Ok. 450 for (const auto &MBB : MF) { 451 for (const auto &MI : MBB) { 452 // Skip not-coalescable or already coalesced copies. 453 if (!CP.setRegisters(&MI) || CP.getSrcReg() == CP.getDstReg()) 454 continue; 455 456 Register DstReg = CP.getDstReg(); 457 Register SrcReg = CP.getSrcReg(); 458 459 PBQP::PBQPNum CBenefit = MBFI.getBlockFreqRelativeToEntryBlock(&MBB); 460 461 if (CP.isPhys()) { 462 if (!MF.getRegInfo().isAllocatable(DstReg)) 463 continue; 464 465 PBQPRAGraph::NodeId NId = G.getMetadata().getNodeIdForVReg(SrcReg); 466 467 const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed = 468 G.getNodeMetadata(NId).getAllowedRegs(); 469 470 unsigned PRegOpt = 0; 471 while (PRegOpt < Allowed.size() && Allowed[PRegOpt].id() != DstReg) 472 ++PRegOpt; 473 474 if (PRegOpt < Allowed.size()) { 475 PBQPRAGraph::RawVector NewCosts(G.getNodeCosts(NId)); 476 NewCosts[PRegOpt + 1] -= CBenefit; 477 G.setNodeCosts(NId, std::move(NewCosts)); 478 } 479 } else { 480 PBQPRAGraph::NodeId N1Id = G.getMetadata().getNodeIdForVReg(DstReg); 481 PBQPRAGraph::NodeId N2Id = G.getMetadata().getNodeIdForVReg(SrcReg); 482 const PBQPRAGraph::NodeMetadata::AllowedRegVector *Allowed1 = 483 &G.getNodeMetadata(N1Id).getAllowedRegs(); 484 const PBQPRAGraph::NodeMetadata::AllowedRegVector *Allowed2 = 485 &G.getNodeMetadata(N2Id).getAllowedRegs(); 486 487 PBQPRAGraph::EdgeId EId = G.findEdge(N1Id, N2Id); 488 if (EId == G.invalidEdgeId()) { 489 PBQPRAGraph::RawMatrix Costs(Allowed1->size() + 1, 490 Allowed2->size() + 1, 0); 491 addVirtRegCoalesce(Costs, *Allowed1, *Allowed2, CBenefit); 492 G.addEdge(N1Id, N2Id, std::move(Costs)); 493 } else { 494 if (G.getEdgeNode1Id(EId) == N2Id) { 495 std::swap(N1Id, N2Id); 496 std::swap(Allowed1, Allowed2); 497 } 498 PBQPRAGraph::RawMatrix Costs(G.getEdgeCosts(EId)); 499 addVirtRegCoalesce(Costs, *Allowed1, *Allowed2, CBenefit); 500 G.updateEdgeCosts(EId, std::move(Costs)); 501 } 502 } 503 } 504 } 505 } 506 507 private: 508 void addVirtRegCoalesce( 509 PBQPRAGraph::RawMatrix &CostMat, 510 const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed1, 511 const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed2, 512 PBQP::PBQPNum Benefit) { 513 assert(CostMat.getRows() == Allowed1.size() + 1 && "Size mismatch."); 514 assert(CostMat.getCols() == Allowed2.size() + 1 && "Size mismatch."); 515 for (unsigned I = 0; I != Allowed1.size(); ++I) { 516 MCRegister PReg1 = Allowed1[I]; 517 for (unsigned J = 0; J != Allowed2.size(); ++J) { 518 MCRegister PReg2 = Allowed2[J]; 519 if (PReg1 == PReg2) 520 CostMat[I + 1][J + 1] -= Benefit; 521 } 522 } 523 } 524 }; 525 526 /// PBQP-specific implementation of weight normalization. 527 class PBQPVirtRegAuxInfo final : public VirtRegAuxInfo { 528 float normalize(float UseDefFreq, unsigned Size, unsigned NumInstr) override { 529 // All intervals have a spill weight that is mostly proportional to the 530 // number of uses, with uses in loops having a bigger weight. 531 return NumInstr * VirtRegAuxInfo::normalize(UseDefFreq, Size, 1); 532 } 533 534 public: 535 PBQPVirtRegAuxInfo(MachineFunction &MF, LiveIntervals &LIS, VirtRegMap &VRM, 536 const MachineLoopInfo &Loops, 537 const MachineBlockFrequencyInfo &MBFI) 538 : VirtRegAuxInfo(MF, LIS, VRM, Loops, MBFI) {} 539 }; 540 } // end anonymous namespace 541 542 // Out-of-line destructor/anchor for PBQPRAConstraint. 543 PBQPRAConstraint::~PBQPRAConstraint() = default; 544 545 void PBQPRAConstraint::anchor() {} 546 547 void PBQPRAConstraintList::anchor() {} 548 549 void RegAllocPBQP::getAnalysisUsage(AnalysisUsage &au) const { 550 au.setPreservesCFG(); 551 au.addRequired<AAResultsWrapperPass>(); 552 au.addPreserved<AAResultsWrapperPass>(); 553 au.addRequired<SlotIndexes>(); 554 au.addPreserved<SlotIndexes>(); 555 au.addRequired<LiveIntervals>(); 556 au.addPreserved<LiveIntervals>(); 557 //au.addRequiredID(SplitCriticalEdgesID); 558 if (customPassID) 559 au.addRequiredID(*customPassID); 560 au.addRequired<LiveStacks>(); 561 au.addPreserved<LiveStacks>(); 562 au.addRequired<MachineBlockFrequencyInfo>(); 563 au.addPreserved<MachineBlockFrequencyInfo>(); 564 au.addRequired<MachineLoopInfo>(); 565 au.addPreserved<MachineLoopInfo>(); 566 au.addRequired<MachineDominatorTree>(); 567 au.addPreserved<MachineDominatorTree>(); 568 au.addRequired<VirtRegMap>(); 569 au.addPreserved<VirtRegMap>(); 570 MachineFunctionPass::getAnalysisUsage(au); 571 } 572 573 void RegAllocPBQP::findVRegIntervalsToAlloc(const MachineFunction &MF, 574 LiveIntervals &LIS) { 575 const MachineRegisterInfo &MRI = MF.getRegInfo(); 576 577 // Iterate over all live ranges. 578 for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) { 579 Register Reg = Register::index2VirtReg(I); 580 if (MRI.reg_nodbg_empty(Reg)) 581 continue; 582 VRegsToAlloc.insert(Reg); 583 } 584 } 585 586 static bool isACalleeSavedRegister(MCRegister Reg, 587 const TargetRegisterInfo &TRI, 588 const MachineFunction &MF) { 589 const MCPhysReg *CSR = MF.getRegInfo().getCalleeSavedRegs(); 590 for (unsigned i = 0; CSR[i] != 0; ++i) 591 if (TRI.regsOverlap(Reg, CSR[i])) 592 return true; 593 return false; 594 } 595 596 void RegAllocPBQP::initializeGraph(PBQPRAGraph &G, VirtRegMap &VRM, 597 Spiller &VRegSpiller) { 598 MachineFunction &MF = G.getMetadata().MF; 599 600 LiveIntervals &LIS = G.getMetadata().LIS; 601 const MachineRegisterInfo &MRI = G.getMetadata().MF.getRegInfo(); 602 const TargetRegisterInfo &TRI = 603 *G.getMetadata().MF.getSubtarget().getRegisterInfo(); 604 605 std::vector<Register> Worklist(VRegsToAlloc.begin(), VRegsToAlloc.end()); 606 607 std::map<Register, std::vector<MCRegister>> VRegAllowedMap; 608 609 while (!Worklist.empty()) { 610 Register VReg = Worklist.back(); 611 Worklist.pop_back(); 612 613 LiveInterval &VRegLI = LIS.getInterval(VReg); 614 615 // If this is an empty interval move it to the EmptyIntervalVRegs set then 616 // continue. 617 if (VRegLI.empty()) { 618 EmptyIntervalVRegs.insert(VRegLI.reg()); 619 VRegsToAlloc.erase(VRegLI.reg()); 620 continue; 621 } 622 623 const TargetRegisterClass *TRC = MRI.getRegClass(VReg); 624 625 // Record any overlaps with regmask operands. 626 BitVector RegMaskOverlaps; 627 LIS.checkRegMaskInterference(VRegLI, RegMaskOverlaps); 628 629 // Compute an initial allowed set for the current vreg. 630 std::vector<MCRegister> VRegAllowed; 631 ArrayRef<MCPhysReg> RawPRegOrder = TRC->getRawAllocationOrder(MF); 632 for (unsigned I = 0; I != RawPRegOrder.size(); ++I) { 633 MCRegister PReg(RawPRegOrder[I]); 634 if (MRI.isReserved(PReg)) 635 continue; 636 637 // vregLI crosses a regmask operand that clobbers preg. 638 if (!RegMaskOverlaps.empty() && !RegMaskOverlaps.test(PReg)) 639 continue; 640 641 // vregLI overlaps fixed regunit interference. 642 bool Interference = false; 643 for (MCRegUnitIterator Units(PReg, &TRI); Units.isValid(); ++Units) { 644 if (VRegLI.overlaps(LIS.getRegUnit(*Units))) { 645 Interference = true; 646 break; 647 } 648 } 649 if (Interference) 650 continue; 651 652 // preg is usable for this virtual register. 653 VRegAllowed.push_back(PReg); 654 } 655 656 // Check for vregs that have no allowed registers. These should be 657 // pre-spilled and the new vregs added to the worklist. 658 if (VRegAllowed.empty()) { 659 SmallVector<Register, 8> NewVRegs; 660 spillVReg(VReg, NewVRegs, MF, LIS, VRM, VRegSpiller); 661 Worklist.insert(Worklist.end(), NewVRegs.begin(), NewVRegs.end()); 662 continue; 663 } else 664 VRegAllowedMap[VReg] = std::move(VRegAllowed); 665 } 666 667 for (auto &KV : VRegAllowedMap) { 668 auto VReg = KV.first; 669 670 // Move empty intervals to the EmptyIntervalVReg set. 671 if (LIS.getInterval(VReg).empty()) { 672 EmptyIntervalVRegs.insert(VReg); 673 VRegsToAlloc.erase(VReg); 674 continue; 675 } 676 677 auto &VRegAllowed = KV.second; 678 679 PBQPRAGraph::RawVector NodeCosts(VRegAllowed.size() + 1, 0); 680 681 // Tweak cost of callee saved registers, as using then force spilling and 682 // restoring them. This would only happen in the prologue / epilogue though. 683 for (unsigned i = 0; i != VRegAllowed.size(); ++i) 684 if (isACalleeSavedRegister(VRegAllowed[i], TRI, MF)) 685 NodeCosts[1 + i] += 1.0; 686 687 PBQPRAGraph::NodeId NId = G.addNode(std::move(NodeCosts)); 688 G.getNodeMetadata(NId).setVReg(VReg); 689 G.getNodeMetadata(NId).setAllowedRegs( 690 G.getMetadata().getAllowedRegs(std::move(VRegAllowed))); 691 G.getMetadata().setNodeIdForVReg(VReg, NId); 692 } 693 } 694 695 void RegAllocPBQP::spillVReg(Register VReg, 696 SmallVectorImpl<Register> &NewIntervals, 697 MachineFunction &MF, LiveIntervals &LIS, 698 VirtRegMap &VRM, Spiller &VRegSpiller) { 699 VRegsToAlloc.erase(VReg); 700 LiveRangeEdit LRE(&LIS.getInterval(VReg), NewIntervals, MF, LIS, &VRM, 701 nullptr, &DeadRemats); 702 VRegSpiller.spill(LRE); 703 704 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 705 (void)TRI; 706 LLVM_DEBUG(dbgs() << "VREG " << printReg(VReg, &TRI) << " -> SPILLED (Cost: " 707 << LRE.getParent().weight() << ", New vregs: "); 708 709 // Copy any newly inserted live intervals into the list of regs to 710 // allocate. 711 for (LiveRangeEdit::iterator I = LRE.begin(), E = LRE.end(); 712 I != E; ++I) { 713 const LiveInterval &LI = LIS.getInterval(*I); 714 assert(!LI.empty() && "Empty spill range."); 715 LLVM_DEBUG(dbgs() << printReg(LI.reg(), &TRI) << " "); 716 VRegsToAlloc.insert(LI.reg()); 717 } 718 719 LLVM_DEBUG(dbgs() << ")\n"); 720 } 721 722 bool RegAllocPBQP::mapPBQPToRegAlloc(const PBQPRAGraph &G, 723 const PBQP::Solution &Solution, 724 VirtRegMap &VRM, 725 Spiller &VRegSpiller) { 726 MachineFunction &MF = G.getMetadata().MF; 727 LiveIntervals &LIS = G.getMetadata().LIS; 728 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 729 (void)TRI; 730 731 // Set to true if we have any spills 732 bool AnotherRoundNeeded = false; 733 734 // Clear the existing allocation. 735 VRM.clearAllVirt(); 736 737 // Iterate over the nodes mapping the PBQP solution to a register 738 // assignment. 739 for (auto NId : G.nodeIds()) { 740 Register VReg = G.getNodeMetadata(NId).getVReg(); 741 unsigned AllocOpt = Solution.getSelection(NId); 742 743 if (AllocOpt != PBQP::RegAlloc::getSpillOptionIdx()) { 744 MCRegister PReg = G.getNodeMetadata(NId).getAllowedRegs()[AllocOpt - 1]; 745 LLVM_DEBUG(dbgs() << "VREG " << printReg(VReg, &TRI) << " -> " 746 << TRI.getName(PReg) << "\n"); 747 assert(PReg != 0 && "Invalid preg selected."); 748 VRM.assignVirt2Phys(VReg, PReg); 749 } else { 750 // Spill VReg. If this introduces new intervals we'll need another round 751 // of allocation. 752 SmallVector<Register, 8> NewVRegs; 753 spillVReg(VReg, NewVRegs, MF, LIS, VRM, VRegSpiller); 754 AnotherRoundNeeded |= !NewVRegs.empty(); 755 } 756 } 757 758 return !AnotherRoundNeeded; 759 } 760 761 void RegAllocPBQP::finalizeAlloc(MachineFunction &MF, 762 LiveIntervals &LIS, 763 VirtRegMap &VRM) const { 764 MachineRegisterInfo &MRI = MF.getRegInfo(); 765 766 // First allocate registers for the empty intervals. 767 for (RegSet::const_iterator 768 I = EmptyIntervalVRegs.begin(), E = EmptyIntervalVRegs.end(); 769 I != E; ++I) { 770 LiveInterval &LI = LIS.getInterval(*I); 771 772 Register PReg = MRI.getSimpleHint(LI.reg()); 773 774 if (PReg == 0) { 775 const TargetRegisterClass &RC = *MRI.getRegClass(LI.reg()); 776 const ArrayRef<MCPhysReg> RawPRegOrder = RC.getRawAllocationOrder(MF); 777 for (unsigned CandidateReg : RawPRegOrder) { 778 if (!VRM.getRegInfo().isReserved(CandidateReg)) { 779 PReg = CandidateReg; 780 break; 781 } 782 } 783 assert(PReg && 784 "No un-reserved physical registers in this register class"); 785 } 786 787 VRM.assignVirt2Phys(LI.reg(), PReg); 788 } 789 } 790 791 void RegAllocPBQP::postOptimization(Spiller &VRegSpiller, LiveIntervals &LIS) { 792 VRegSpiller.postOptimization(); 793 /// Remove dead defs because of rematerialization. 794 for (auto DeadInst : DeadRemats) { 795 LIS.RemoveMachineInstrFromMaps(*DeadInst); 796 DeadInst->eraseFromParent(); 797 } 798 DeadRemats.clear(); 799 } 800 801 bool RegAllocPBQP::runOnMachineFunction(MachineFunction &MF) { 802 LiveIntervals &LIS = getAnalysis<LiveIntervals>(); 803 MachineBlockFrequencyInfo &MBFI = 804 getAnalysis<MachineBlockFrequencyInfo>(); 805 806 VirtRegMap &VRM = getAnalysis<VirtRegMap>(); 807 808 PBQPVirtRegAuxInfo VRAI(MF, LIS, VRM, getAnalysis<MachineLoopInfo>(), MBFI); 809 VRAI.calculateSpillWeightsAndHints(); 810 811 std::unique_ptr<Spiller> VRegSpiller(createInlineSpiller(*this, MF, VRM)); 812 813 MF.getRegInfo().freezeReservedRegs(MF); 814 815 LLVM_DEBUG(dbgs() << "PBQP Register Allocating for " << MF.getName() << "\n"); 816 817 // Allocator main loop: 818 // 819 // * Map current regalloc problem to a PBQP problem 820 // * Solve the PBQP problem 821 // * Map the solution back to a register allocation 822 // * Spill if necessary 823 // 824 // This process is continued till no more spills are generated. 825 826 // Find the vreg intervals in need of allocation. 827 findVRegIntervalsToAlloc(MF, LIS); 828 829 #ifndef NDEBUG 830 const Function &F = MF.getFunction(); 831 std::string FullyQualifiedName = 832 F.getParent()->getModuleIdentifier() + "." + F.getName().str(); 833 #endif 834 835 // If there are non-empty intervals allocate them using pbqp. 836 if (!VRegsToAlloc.empty()) { 837 const TargetSubtargetInfo &Subtarget = MF.getSubtarget(); 838 std::unique_ptr<PBQPRAConstraintList> ConstraintsRoot = 839 std::make_unique<PBQPRAConstraintList>(); 840 ConstraintsRoot->addConstraint(std::make_unique<SpillCosts>()); 841 ConstraintsRoot->addConstraint(std::make_unique<Interference>()); 842 if (PBQPCoalescing) 843 ConstraintsRoot->addConstraint(std::make_unique<Coalescing>()); 844 ConstraintsRoot->addConstraint(Subtarget.getCustomPBQPConstraints()); 845 846 bool PBQPAllocComplete = false; 847 unsigned Round = 0; 848 849 while (!PBQPAllocComplete) { 850 LLVM_DEBUG(dbgs() << " PBQP Regalloc round " << Round << ":\n"); 851 852 PBQPRAGraph G(PBQPRAGraph::GraphMetadata(MF, LIS, MBFI)); 853 initializeGraph(G, VRM, *VRegSpiller); 854 ConstraintsRoot->apply(G); 855 856 #ifndef NDEBUG 857 if (PBQPDumpGraphs) { 858 std::ostringstream RS; 859 RS << Round; 860 std::string GraphFileName = FullyQualifiedName + "." + RS.str() + 861 ".pbqpgraph"; 862 std::error_code EC; 863 raw_fd_ostream OS(GraphFileName, EC, sys::fs::OF_Text); 864 LLVM_DEBUG(dbgs() << "Dumping graph for round " << Round << " to \"" 865 << GraphFileName << "\"\n"); 866 G.dump(OS); 867 } 868 #endif 869 870 PBQP::Solution Solution = PBQP::RegAlloc::solve(G); 871 PBQPAllocComplete = mapPBQPToRegAlloc(G, Solution, VRM, *VRegSpiller); 872 ++Round; 873 } 874 } 875 876 // Finalise allocation, allocate empty ranges. 877 finalizeAlloc(MF, LIS, VRM); 878 postOptimization(*VRegSpiller, LIS); 879 VRegsToAlloc.clear(); 880 EmptyIntervalVRegs.clear(); 881 882 LLVM_DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << VRM << "\n"); 883 884 return true; 885 } 886 887 /// Create Printable object for node and register info. 888 static Printable PrintNodeInfo(PBQP::RegAlloc::PBQPRAGraph::NodeId NId, 889 const PBQP::RegAlloc::PBQPRAGraph &G) { 890 return Printable([NId, &G](raw_ostream &OS) { 891 const MachineRegisterInfo &MRI = G.getMetadata().MF.getRegInfo(); 892 const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo(); 893 Register VReg = G.getNodeMetadata(NId).getVReg(); 894 const char *RegClassName = TRI->getRegClassName(MRI.getRegClass(VReg)); 895 OS << NId << " (" << RegClassName << ':' << printReg(VReg, TRI) << ')'; 896 }); 897 } 898 899 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 900 LLVM_DUMP_METHOD void PBQP::RegAlloc::PBQPRAGraph::dump(raw_ostream &OS) const { 901 for (auto NId : nodeIds()) { 902 const Vector &Costs = getNodeCosts(NId); 903 assert(Costs.getLength() != 0 && "Empty vector in graph."); 904 OS << PrintNodeInfo(NId, *this) << ": " << Costs << '\n'; 905 } 906 OS << '\n'; 907 908 for (auto EId : edgeIds()) { 909 NodeId N1Id = getEdgeNode1Id(EId); 910 NodeId N2Id = getEdgeNode2Id(EId); 911 assert(N1Id != N2Id && "PBQP graphs should not have self-edges."); 912 const Matrix &M = getEdgeCosts(EId); 913 assert(M.getRows() != 0 && "No rows in matrix."); 914 assert(M.getCols() != 0 && "No cols in matrix."); 915 OS << PrintNodeInfo(N1Id, *this) << ' ' << M.getRows() << " rows / "; 916 OS << PrintNodeInfo(N2Id, *this) << ' ' << M.getCols() << " cols:\n"; 917 OS << M << '\n'; 918 } 919 } 920 921 LLVM_DUMP_METHOD void PBQP::RegAlloc::PBQPRAGraph::dump() const { 922 dump(dbgs()); 923 } 924 #endif 925 926 void PBQP::RegAlloc::PBQPRAGraph::printDot(raw_ostream &OS) const { 927 OS << "graph {\n"; 928 for (auto NId : nodeIds()) { 929 OS << " node" << NId << " [ label=\"" 930 << PrintNodeInfo(NId, *this) << "\\n" 931 << getNodeCosts(NId) << "\" ]\n"; 932 } 933 934 OS << " edge [ len=" << nodeIds().size() << " ]\n"; 935 for (auto EId : edgeIds()) { 936 OS << " node" << getEdgeNode1Id(EId) 937 << " -- node" << getEdgeNode2Id(EId) 938 << " [ label=\""; 939 const Matrix &EdgeCosts = getEdgeCosts(EId); 940 for (unsigned i = 0; i < EdgeCosts.getRows(); ++i) { 941 OS << EdgeCosts.getRowAsVector(i) << "\\n"; 942 } 943 OS << "\" ]\n"; 944 } 945 OS << "}\n"; 946 } 947 948 FunctionPass *llvm::createPBQPRegisterAllocator(char *customPassID) { 949 return new RegAllocPBQP(customPassID); 950 } 951 952 FunctionPass* llvm::createDefaultPBQPRegisterAllocator() { 953 return createPBQPRegisterAllocator(); 954 } 955