1 //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the RAGreedy function pass for register allocation in 10 // optimized builds. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RegAllocGreedy.h" 15 #include "AllocationOrder.h" 16 #include "InterferenceCache.h" 17 #include "LiveDebugVariables.h" 18 #include "RegAllocBase.h" 19 #include "RegAllocEvictionAdvisor.h" 20 #include "SpillPlacement.h" 21 #include "SplitKit.h" 22 #include "llvm/ADT/ArrayRef.h" 23 #include "llvm/ADT/BitVector.h" 24 #include "llvm/ADT/IndexedMap.h" 25 #include "llvm/ADT/SetVector.h" 26 #include "llvm/ADT/SmallPtrSet.h" 27 #include "llvm/ADT/SmallSet.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/ADT/StringRef.h" 31 #include "llvm/Analysis/AliasAnalysis.h" 32 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 33 #include "llvm/CodeGen/CalcSpillWeights.h" 34 #include "llvm/CodeGen/EdgeBundles.h" 35 #include "llvm/CodeGen/LiveInterval.h" 36 #include "llvm/CodeGen/LiveIntervalUnion.h" 37 #include "llvm/CodeGen/LiveIntervals.h" 38 #include "llvm/CodeGen/LiveRangeEdit.h" 39 #include "llvm/CodeGen/LiveRegMatrix.h" 40 #include "llvm/CodeGen/LiveStacks.h" 41 #include "llvm/CodeGen/MachineBasicBlock.h" 42 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 43 #include "llvm/CodeGen/MachineDominators.h" 44 #include "llvm/CodeGen/MachineFrameInfo.h" 45 #include "llvm/CodeGen/MachineFunction.h" 46 #include "llvm/CodeGen/MachineFunctionPass.h" 47 #include "llvm/CodeGen/MachineInstr.h" 48 #include "llvm/CodeGen/MachineLoopInfo.h" 49 #include "llvm/CodeGen/MachineOperand.h" 50 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 51 #include "llvm/CodeGen/MachineRegisterInfo.h" 52 #include "llvm/CodeGen/RegAllocRegistry.h" 53 #include "llvm/CodeGen/RegisterClassInfo.h" 54 #include "llvm/CodeGen/SlotIndexes.h" 55 #include "llvm/CodeGen/Spiller.h" 56 #include "llvm/CodeGen/TargetInstrInfo.h" 57 #include "llvm/CodeGen/TargetRegisterInfo.h" 58 #include "llvm/CodeGen/TargetSubtargetInfo.h" 59 #include "llvm/CodeGen/VirtRegMap.h" 60 #include "llvm/IR/DebugInfoMetadata.h" 61 #include "llvm/IR/Function.h" 62 #include "llvm/IR/LLVMContext.h" 63 #include "llvm/InitializePasses.h" 64 #include "llvm/MC/MCRegisterInfo.h" 65 #include "llvm/Pass.h" 66 #include "llvm/Support/BlockFrequency.h" 67 #include "llvm/Support/BranchProbability.h" 68 #include "llvm/Support/CommandLine.h" 69 #include "llvm/Support/Debug.h" 70 #include "llvm/Support/MathExtras.h" 71 #include "llvm/Support/Timer.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cstdint> 76 #include <utility> 77 78 using namespace llvm; 79 80 #define DEBUG_TYPE "regalloc" 81 82 STATISTIC(NumGlobalSplits, "Number of split global live ranges"); 83 STATISTIC(NumLocalSplits, "Number of split local live ranges"); 84 STATISTIC(NumEvicted, "Number of interferences evicted"); 85 86 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode( 87 "split-spill-mode", cl::Hidden, 88 cl::desc("Spill mode for splitting live ranges"), 89 cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"), 90 clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"), 91 clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")), 92 cl::init(SplitEditor::SM_Speed)); 93 94 static cl::opt<unsigned> 95 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden, 96 cl::desc("Last chance recoloring max depth"), 97 cl::init(5)); 98 99 static cl::opt<unsigned> LastChanceRecoloringMaxInterference( 100 "lcr-max-interf", cl::Hidden, 101 cl::desc("Last chance recoloring maximum number of considered" 102 " interference at a time"), 103 cl::init(8)); 104 105 static cl::opt<bool> ExhaustiveSearch( 106 "exhaustive-register-search", cl::NotHidden, 107 cl::desc("Exhaustive Search for registers bypassing the depth " 108 "and interference cutoffs of last chance recoloring"), 109 cl::Hidden); 110 111 static cl::opt<bool> EnableDeferredSpilling( 112 "enable-deferred-spilling", cl::Hidden, 113 cl::desc("Instead of spilling a variable right away, defer the actual " 114 "code insertion to the end of the allocation. That way the " 115 "allocator might still find a suitable coloring for this " 116 "variable because of other evicted variables."), 117 cl::init(false)); 118 119 // FIXME: Find a good default for this flag and remove the flag. 120 static cl::opt<unsigned> 121 CSRFirstTimeCost("regalloc-csr-first-time-cost", 122 cl::desc("Cost for first time use of callee-saved register."), 123 cl::init(0), cl::Hidden); 124 125 static cl::opt<unsigned long> GrowRegionComplexityBudget( 126 "grow-region-complexity-budget", 127 cl::desc("growRegion() does not scale with the number of BB edges, so " 128 "limit its budget and bail out once we reach the limit."), 129 cl::init(10000), cl::Hidden); 130 131 static cl::opt<bool> GreedyRegClassPriorityTrumpsGlobalness( 132 "greedy-regclass-priority-trumps-globalness", 133 cl::desc("Change the greedy register allocator's live range priority " 134 "calculation to make the AllocationPriority of the register class " 135 "more important then whether the range is global"), 136 cl::Hidden); 137 138 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator", 139 createGreedyRegisterAllocator); 140 141 char RAGreedy::ID = 0; 142 char &llvm::RAGreedyID = RAGreedy::ID; 143 144 INITIALIZE_PASS_BEGIN(RAGreedy, "greedy", 145 "Greedy Register Allocator", false, false) 146 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables) 147 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 148 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 149 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer) 150 INITIALIZE_PASS_DEPENDENCY(MachineScheduler) 151 INITIALIZE_PASS_DEPENDENCY(LiveStacks) 152 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 153 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 154 INITIALIZE_PASS_DEPENDENCY(VirtRegMap) 155 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix) 156 INITIALIZE_PASS_DEPENDENCY(EdgeBundles) 157 INITIALIZE_PASS_DEPENDENCY(SpillPlacement) 158 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass) 159 INITIALIZE_PASS_DEPENDENCY(RegAllocEvictionAdvisorAnalysis) 160 INITIALIZE_PASS_END(RAGreedy, "greedy", 161 "Greedy Register Allocator", false, false) 162 163 #ifndef NDEBUG 164 const char *const RAGreedy::StageName[] = { 165 "RS_New", 166 "RS_Assign", 167 "RS_Split", 168 "RS_Split2", 169 "RS_Spill", 170 "RS_Memory", 171 "RS_Done" 172 }; 173 #endif 174 175 // Hysteresis to use when comparing floats. 176 // This helps stabilize decisions based on float comparisons. 177 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875 178 179 FunctionPass* llvm::createGreedyRegisterAllocator() { 180 return new RAGreedy(); 181 } 182 183 namespace llvm { 184 FunctionPass* createGreedyRegisterAllocator( 185 std::function<bool(const TargetRegisterInfo &TRI, 186 const TargetRegisterClass &RC)> Ftor); 187 188 } 189 190 FunctionPass* llvm::createGreedyRegisterAllocator( 191 std::function<bool(const TargetRegisterInfo &TRI, 192 const TargetRegisterClass &RC)> Ftor) { 193 return new RAGreedy(Ftor); 194 } 195 196 RAGreedy::RAGreedy(RegClassFilterFunc F): 197 MachineFunctionPass(ID), 198 RegAllocBase(F) { 199 } 200 201 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const { 202 AU.setPreservesCFG(); 203 AU.addRequired<MachineBlockFrequencyInfo>(); 204 AU.addPreserved<MachineBlockFrequencyInfo>(); 205 AU.addRequired<AAResultsWrapperPass>(); 206 AU.addPreserved<AAResultsWrapperPass>(); 207 AU.addRequired<LiveIntervals>(); 208 AU.addPreserved<LiveIntervals>(); 209 AU.addRequired<SlotIndexes>(); 210 AU.addPreserved<SlotIndexes>(); 211 AU.addRequired<LiveDebugVariables>(); 212 AU.addPreserved<LiveDebugVariables>(); 213 AU.addRequired<LiveStacks>(); 214 AU.addPreserved<LiveStacks>(); 215 AU.addRequired<MachineDominatorTree>(); 216 AU.addPreserved<MachineDominatorTree>(); 217 AU.addRequired<MachineLoopInfo>(); 218 AU.addPreserved<MachineLoopInfo>(); 219 AU.addRequired<VirtRegMap>(); 220 AU.addPreserved<VirtRegMap>(); 221 AU.addRequired<LiveRegMatrix>(); 222 AU.addPreserved<LiveRegMatrix>(); 223 AU.addRequired<EdgeBundles>(); 224 AU.addRequired<SpillPlacement>(); 225 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 226 AU.addRequired<RegAllocEvictionAdvisorAnalysis>(); 227 MachineFunctionPass::getAnalysisUsage(AU); 228 } 229 230 //===----------------------------------------------------------------------===// 231 // LiveRangeEdit delegate methods 232 //===----------------------------------------------------------------------===// 233 234 bool RAGreedy::LRE_CanEraseVirtReg(Register VirtReg) { 235 LiveInterval &LI = LIS->getInterval(VirtReg); 236 if (VRM->hasPhys(VirtReg)) { 237 Matrix->unassign(LI); 238 aboutToRemoveInterval(LI); 239 return true; 240 } 241 // Unassigned virtreg is probably in the priority queue. 242 // RegAllocBase will erase it after dequeueing. 243 // Nonetheless, clear the live-range so that the debug 244 // dump will show the right state for that VirtReg. 245 LI.clear(); 246 return false; 247 } 248 249 void RAGreedy::LRE_WillShrinkVirtReg(Register VirtReg) { 250 if (!VRM->hasPhys(VirtReg)) 251 return; 252 253 // Register is assigned, put it back on the queue for reassignment. 254 LiveInterval &LI = LIS->getInterval(VirtReg); 255 Matrix->unassign(LI); 256 RegAllocBase::enqueue(&LI); 257 } 258 259 void RAGreedy::LRE_DidCloneVirtReg(Register New, Register Old) { 260 ExtraInfo->LRE_DidCloneVirtReg(New, Old); 261 } 262 263 void RAGreedy::ExtraRegInfo::LRE_DidCloneVirtReg(Register New, Register Old) { 264 // Cloning a register we haven't even heard about yet? Just ignore it. 265 if (!Info.inBounds(Old)) 266 return; 267 268 // LRE may clone a virtual register because dead code elimination causes it to 269 // be split into connected components. The new components are much smaller 270 // than the original, so they should get a new chance at being assigned. 271 // same stage as the parent. 272 Info[Old].Stage = RS_Assign; 273 Info.grow(New.id()); 274 Info[New] = Info[Old]; 275 } 276 277 void RAGreedy::releaseMemory() { 278 SpillerInstance.reset(); 279 GlobalCand.clear(); 280 } 281 282 void RAGreedy::enqueueImpl(const LiveInterval *LI) { enqueue(Queue, LI); } 283 284 void RAGreedy::enqueue(PQueue &CurQueue, const LiveInterval *LI) { 285 // Prioritize live ranges by size, assigning larger ranges first. 286 // The queue holds (size, reg) pairs. 287 const unsigned Size = LI->getSize(); 288 const Register Reg = LI->reg(); 289 assert(Reg.isVirtual() && "Can only enqueue virtual registers"); 290 unsigned Prio; 291 292 auto Stage = ExtraInfo->getOrInitStage(Reg); 293 if (Stage == RS_New) { 294 Stage = RS_Assign; 295 ExtraInfo->setStage(Reg, Stage); 296 } 297 if (Stage == RS_Split) { 298 // Unsplit ranges that couldn't be allocated immediately are deferred until 299 // everything else has been allocated. 300 Prio = Size; 301 } else if (Stage == RS_Memory) { 302 // Memory operand should be considered last. 303 // Change the priority such that Memory operand are assigned in 304 // the reverse order that they came in. 305 // TODO: Make this a member variable and probably do something about hints. 306 static unsigned MemOp = 0; 307 Prio = MemOp++; 308 } else { 309 // Giant live ranges fall back to the global assignment heuristic, which 310 // prevents excessive spilling in pathological cases. 311 bool ReverseLocal = TRI->reverseLocalAssignment(); 312 const TargetRegisterClass &RC = *MRI->getRegClass(Reg); 313 bool ForceGlobal = 314 !ReverseLocal && (Size / SlotIndex::InstrDist) > 315 (2 * RegClassInfo.getNumAllocatableRegs(&RC)); 316 unsigned GlobalBit = 0; 317 318 if (Stage == RS_Assign && !ForceGlobal && !LI->empty() && 319 LIS->intervalIsInOneMBB(*LI)) { 320 // Allocate original local ranges in linear instruction order. Since they 321 // are singly defined, this produces optimal coloring in the absence of 322 // global interference and other constraints. 323 if (!ReverseLocal) 324 Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex()); 325 else { 326 // Allocating bottom up may allow many short LRGs to be assigned first 327 // to one of the cheap registers. This could be much faster for very 328 // large blocks on targets with many physical registers. 329 Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex()); 330 } 331 } else { 332 // Allocate global and split ranges in long->short order. Long ranges that 333 // don't fit should be spilled (or split) ASAP so they don't create 334 // interference. Mark a bit to prioritize global above local ranges. 335 Prio = Size; 336 GlobalBit = 1; 337 } 338 if (RegClassPriorityTrumpsGlobalness) 339 Prio |= RC.AllocationPriority << 25 | GlobalBit << 24; 340 else 341 Prio |= GlobalBit << 29 | RC.AllocationPriority << 24; 342 343 // Mark a higher bit to prioritize global and local above RS_Split. 344 Prio |= (1u << 31); 345 346 // Boost ranges that have a physical register hint. 347 if (VRM->hasKnownPreference(Reg)) 348 Prio |= (1u << 30); 349 } 350 // The virtual register number is a tie breaker for same-sized ranges. 351 // Give lower vreg numbers higher priority to assign them first. 352 CurQueue.push(std::make_pair(Prio, ~Reg)); 353 } 354 355 const LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); } 356 357 const LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) { 358 if (CurQueue.empty()) 359 return nullptr; 360 LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second); 361 CurQueue.pop(); 362 return LI; 363 } 364 365 //===----------------------------------------------------------------------===// 366 // Direct Assignment 367 //===----------------------------------------------------------------------===// 368 369 /// tryAssign - Try to assign VirtReg to an available register. 370 MCRegister RAGreedy::tryAssign(const LiveInterval &VirtReg, 371 AllocationOrder &Order, 372 SmallVectorImpl<Register> &NewVRegs, 373 const SmallVirtRegSet &FixedRegisters) { 374 MCRegister PhysReg; 375 for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) { 376 assert(*I); 377 if (!Matrix->checkInterference(VirtReg, *I)) { 378 if (I.isHint()) 379 return *I; 380 else 381 PhysReg = *I; 382 } 383 } 384 if (!PhysReg.isValid()) 385 return PhysReg; 386 387 // PhysReg is available, but there may be a better choice. 388 389 // If we missed a simple hint, try to cheaply evict interference from the 390 // preferred register. 391 if (Register Hint = MRI->getSimpleHint(VirtReg.reg())) 392 if (Order.isHint(Hint)) { 393 MCRegister PhysHint = Hint.asMCReg(); 394 LLVM_DEBUG(dbgs() << "missed hint " << printReg(PhysHint, TRI) << '\n'); 395 396 if (EvictAdvisor->canEvictHintInterference(VirtReg, PhysHint, 397 FixedRegisters)) { 398 evictInterference(VirtReg, PhysHint, NewVRegs); 399 return PhysHint; 400 } 401 // Record the missed hint, we may be able to recover 402 // at the end if the surrounding allocation changed. 403 SetOfBrokenHints.insert(&VirtReg); 404 } 405 406 // Try to evict interference from a cheaper alternative. 407 uint8_t Cost = RegCosts[PhysReg]; 408 409 // Most registers have 0 additional cost. 410 if (!Cost) 411 return PhysReg; 412 413 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is available at cost " 414 << (unsigned)Cost << '\n'); 415 MCRegister CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost, FixedRegisters); 416 return CheapReg ? CheapReg : PhysReg; 417 } 418 419 //===----------------------------------------------------------------------===// 420 // Interference eviction 421 //===----------------------------------------------------------------------===// 422 423 Register RegAllocEvictionAdvisor::canReassign(const LiveInterval &VirtReg, 424 Register PrevReg) const { 425 auto Order = 426 AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix); 427 MCRegister PhysReg; 428 for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) { 429 if ((*I).id() == PrevReg.id()) 430 continue; 431 432 MCRegUnitIterator Units(*I, TRI); 433 for (; Units.isValid(); ++Units) { 434 // Instantiate a "subquery", not to be confused with the Queries array. 435 LiveIntervalUnion::Query subQ(VirtReg, Matrix->getLiveUnions()[*Units]); 436 if (subQ.checkInterference()) 437 break; 438 } 439 // If no units have interference, break out with the current PhysReg. 440 if (!Units.isValid()) 441 PhysReg = *I; 442 } 443 if (PhysReg) 444 LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg << " from " 445 << printReg(PrevReg, TRI) << " to " 446 << printReg(PhysReg, TRI) << '\n'); 447 return PhysReg; 448 } 449 450 /// evictInterference - Evict any interferring registers that prevent VirtReg 451 /// from being assigned to Physreg. This assumes that canEvictInterference 452 /// returned true. 453 void RAGreedy::evictInterference(const LiveInterval &VirtReg, 454 MCRegister PhysReg, 455 SmallVectorImpl<Register> &NewVRegs) { 456 // Make sure that VirtReg has a cascade number, and assign that cascade 457 // number to every evicted register. These live ranges than then only be 458 // evicted by a newer cascade, preventing infinite loops. 459 unsigned Cascade = ExtraInfo->getOrAssignNewCascade(VirtReg.reg()); 460 461 LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg, TRI) 462 << " interference: Cascade " << Cascade << '\n'); 463 464 // Collect all interfering virtregs first. 465 SmallVector<const LiveInterval *, 8> Intfs; 466 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 467 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 468 // We usually have the interfering VRegs cached so collectInterferingVRegs() 469 // should be fast, we may need to recalculate if when different physregs 470 // overlap the same register unit so we had different SubRanges queried 471 // against it. 472 ArrayRef<const LiveInterval *> IVR = Q.interferingVRegs(); 473 Intfs.append(IVR.begin(), IVR.end()); 474 } 475 476 // Evict them second. This will invalidate the queries. 477 for (const LiveInterval *Intf : Intfs) { 478 // The same VirtReg may be present in multiple RegUnits. Skip duplicates. 479 if (!VRM->hasPhys(Intf->reg())) 480 continue; 481 482 LastEvicted.addEviction(PhysReg, VirtReg.reg(), Intf->reg()); 483 484 Matrix->unassign(*Intf); 485 assert((ExtraInfo->getCascade(Intf->reg()) < Cascade || 486 VirtReg.isSpillable() < Intf->isSpillable()) && 487 "Cannot decrease cascade number, illegal eviction"); 488 ExtraInfo->setCascade(Intf->reg(), Cascade); 489 ++NumEvicted; 490 NewVRegs.push_back(Intf->reg()); 491 } 492 } 493 494 /// Returns true if the given \p PhysReg is a callee saved register and has not 495 /// been used for allocation yet. 496 bool RegAllocEvictionAdvisor::isUnusedCalleeSavedReg(MCRegister PhysReg) const { 497 MCRegister CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg); 498 if (!CSR) 499 return false; 500 501 return !Matrix->isPhysRegUsed(PhysReg); 502 } 503 504 Optional<unsigned> 505 RegAllocEvictionAdvisor::getOrderLimit(const LiveInterval &VirtReg, 506 const AllocationOrder &Order, 507 unsigned CostPerUseLimit) const { 508 unsigned OrderLimit = Order.getOrder().size(); 509 510 if (CostPerUseLimit < uint8_t(~0u)) { 511 // Check of any registers in RC are below CostPerUseLimit. 512 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg()); 513 uint8_t MinCost = RegClassInfo.getMinCost(RC); 514 if (MinCost >= CostPerUseLimit) { 515 LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = " 516 << MinCost << ", no cheaper registers to be found.\n"); 517 return None; 518 } 519 520 // It is normal for register classes to have a long tail of registers with 521 // the same cost. We don't need to look at them if they're too expensive. 522 if (RegCosts[Order.getOrder().back()] >= CostPerUseLimit) { 523 OrderLimit = RegClassInfo.getLastCostChange(RC); 524 LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit 525 << " regs.\n"); 526 } 527 } 528 return OrderLimit; 529 } 530 531 bool RegAllocEvictionAdvisor::canAllocatePhysReg(unsigned CostPerUseLimit, 532 MCRegister PhysReg) const { 533 if (RegCosts[PhysReg] >= CostPerUseLimit) 534 return false; 535 // The first use of a callee-saved register in a function has cost 1. 536 // Don't start using a CSR when the CostPerUseLimit is low. 537 if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) { 538 LLVM_DEBUG( 539 dbgs() << printReg(PhysReg, TRI) << " would clobber CSR " 540 << printReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI) 541 << '\n'); 542 return false; 543 } 544 return true; 545 } 546 547 /// tryEvict - Try to evict all interferences for a physreg. 548 /// @param VirtReg Currently unassigned virtual register. 549 /// @param Order Physregs to try. 550 /// @return Physreg to assign VirtReg, or 0. 551 MCRegister RAGreedy::tryEvict(const LiveInterval &VirtReg, 552 AllocationOrder &Order, 553 SmallVectorImpl<Register> &NewVRegs, 554 uint8_t CostPerUseLimit, 555 const SmallVirtRegSet &FixedRegisters) { 556 NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription, 557 TimePassesIsEnabled); 558 559 MCRegister BestPhys = EvictAdvisor->tryFindEvictionCandidate( 560 VirtReg, Order, CostPerUseLimit, FixedRegisters); 561 if (BestPhys.isValid()) 562 evictInterference(VirtReg, BestPhys, NewVRegs); 563 return BestPhys; 564 } 565 566 //===----------------------------------------------------------------------===// 567 // Region Splitting 568 //===----------------------------------------------------------------------===// 569 570 /// addSplitConstraints - Fill out the SplitConstraints vector based on the 571 /// interference pattern in Physreg and its aliases. Add the constraints to 572 /// SpillPlacement and return the static cost of this split in Cost, assuming 573 /// that all preferences in SplitConstraints are met. 574 /// Return false if there are no bundles with positive bias. 575 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf, 576 BlockFrequency &Cost) { 577 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 578 579 // Reset interference dependent info. 580 SplitConstraints.resize(UseBlocks.size()); 581 BlockFrequency StaticCost = 0; 582 for (unsigned I = 0; I != UseBlocks.size(); ++I) { 583 const SplitAnalysis::BlockInfo &BI = UseBlocks[I]; 584 SpillPlacement::BlockConstraint &BC = SplitConstraints[I]; 585 586 BC.Number = BI.MBB->getNumber(); 587 Intf.moveToBlock(BC.Number); 588 BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare; 589 BC.Exit = (BI.LiveOut && 590 !LIS->getInstructionFromIndex(BI.LastInstr)->isImplicitDef()) 591 ? SpillPlacement::PrefReg 592 : SpillPlacement::DontCare; 593 BC.ChangesValue = BI.FirstDef.isValid(); 594 595 if (!Intf.hasInterference()) 596 continue; 597 598 // Number of spill code instructions to insert. 599 unsigned Ins = 0; 600 601 // Interference for the live-in value. 602 if (BI.LiveIn) { 603 if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) { 604 BC.Entry = SpillPlacement::MustSpill; 605 ++Ins; 606 } else if (Intf.first() < BI.FirstInstr) { 607 BC.Entry = SpillPlacement::PrefSpill; 608 ++Ins; 609 } else if (Intf.first() < BI.LastInstr) { 610 ++Ins; 611 } 612 613 // Abort if the spill cannot be inserted at the MBB' start 614 if (((BC.Entry == SpillPlacement::MustSpill) || 615 (BC.Entry == SpillPlacement::PrefSpill)) && 616 SlotIndex::isEarlierInstr(BI.FirstInstr, 617 SA->getFirstSplitPoint(BC.Number))) 618 return false; 619 } 620 621 // Interference for the live-out value. 622 if (BI.LiveOut) { 623 if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) { 624 BC.Exit = SpillPlacement::MustSpill; 625 ++Ins; 626 } else if (Intf.last() > BI.LastInstr) { 627 BC.Exit = SpillPlacement::PrefSpill; 628 ++Ins; 629 } else if (Intf.last() > BI.FirstInstr) { 630 ++Ins; 631 } 632 } 633 634 // Accumulate the total frequency of inserted spill code. 635 while (Ins--) 636 StaticCost += SpillPlacer->getBlockFrequency(BC.Number); 637 } 638 Cost = StaticCost; 639 640 // Add constraints for use-blocks. Note that these are the only constraints 641 // that may add a positive bias, it is downhill from here. 642 SpillPlacer->addConstraints(SplitConstraints); 643 return SpillPlacer->scanActiveBundles(); 644 } 645 646 /// addThroughConstraints - Add constraints and links to SpillPlacer from the 647 /// live-through blocks in Blocks. 648 bool RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf, 649 ArrayRef<unsigned> Blocks) { 650 const unsigned GroupSize = 8; 651 SpillPlacement::BlockConstraint BCS[GroupSize]; 652 unsigned TBS[GroupSize]; 653 unsigned B = 0, T = 0; 654 655 for (unsigned Number : Blocks) { 656 Intf.moveToBlock(Number); 657 658 if (!Intf.hasInterference()) { 659 assert(T < GroupSize && "Array overflow"); 660 TBS[T] = Number; 661 if (++T == GroupSize) { 662 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 663 T = 0; 664 } 665 continue; 666 } 667 668 assert(B < GroupSize && "Array overflow"); 669 BCS[B].Number = Number; 670 671 // Abort if the spill cannot be inserted at the MBB' start 672 MachineBasicBlock *MBB = MF->getBlockNumbered(Number); 673 auto FirstNonDebugInstr = MBB->getFirstNonDebugInstr(); 674 if (FirstNonDebugInstr != MBB->end() && 675 SlotIndex::isEarlierInstr(LIS->getInstructionIndex(*FirstNonDebugInstr), 676 SA->getFirstSplitPoint(Number))) 677 return false; 678 // Interference for the live-in value. 679 if (Intf.first() <= Indexes->getMBBStartIdx(Number)) 680 BCS[B].Entry = SpillPlacement::MustSpill; 681 else 682 BCS[B].Entry = SpillPlacement::PrefSpill; 683 684 // Interference for the live-out value. 685 if (Intf.last() >= SA->getLastSplitPoint(Number)) 686 BCS[B].Exit = SpillPlacement::MustSpill; 687 else 688 BCS[B].Exit = SpillPlacement::PrefSpill; 689 690 if (++B == GroupSize) { 691 SpillPlacer->addConstraints(makeArrayRef(BCS, B)); 692 B = 0; 693 } 694 } 695 696 SpillPlacer->addConstraints(makeArrayRef(BCS, B)); 697 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 698 return true; 699 } 700 701 bool RAGreedy::growRegion(GlobalSplitCandidate &Cand) { 702 // Keep track of through blocks that have not been added to SpillPlacer. 703 BitVector Todo = SA->getThroughBlocks(); 704 SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks; 705 unsigned AddedTo = 0; 706 #ifndef NDEBUG 707 unsigned Visited = 0; 708 #endif 709 710 unsigned long Budget = GrowRegionComplexityBudget; 711 while (true) { 712 ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive(); 713 // Find new through blocks in the periphery of PrefRegBundles. 714 for (unsigned Bundle : NewBundles) { 715 // Look at all blocks connected to Bundle in the full graph. 716 ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle); 717 // Limit compilation time by bailing out after we use all our budget. 718 if (Blocks.size() >= Budget) 719 return false; 720 Budget -= Blocks.size(); 721 for (unsigned Block : Blocks) { 722 if (!Todo.test(Block)) 723 continue; 724 Todo.reset(Block); 725 // This is a new through block. Add it to SpillPlacer later. 726 ActiveBlocks.push_back(Block); 727 #ifndef NDEBUG 728 ++Visited; 729 #endif 730 } 731 } 732 // Any new blocks to add? 733 if (ActiveBlocks.size() == AddedTo) 734 break; 735 736 // Compute through constraints from the interference, or assume that all 737 // through blocks prefer spilling when forming compact regions. 738 auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo); 739 if (Cand.PhysReg) { 740 if (!addThroughConstraints(Cand.Intf, NewBlocks)) 741 return false; 742 } else 743 // Provide a strong negative bias on through blocks to prevent unwanted 744 // liveness on loop backedges. 745 SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true); 746 AddedTo = ActiveBlocks.size(); 747 748 // Perhaps iterating can enable more bundles? 749 SpillPlacer->iterate(); 750 } 751 LLVM_DEBUG(dbgs() << ", v=" << Visited); 752 return true; 753 } 754 755 /// calcCompactRegion - Compute the set of edge bundles that should be live 756 /// when splitting the current live range into compact regions. Compact 757 /// regions can be computed without looking at interference. They are the 758 /// regions formed by removing all the live-through blocks from the live range. 759 /// 760 /// Returns false if the current live range is already compact, or if the 761 /// compact regions would form single block regions anyway. 762 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) { 763 // Without any through blocks, the live range is already compact. 764 if (!SA->getNumThroughBlocks()) 765 return false; 766 767 // Compact regions don't correspond to any physreg. 768 Cand.reset(IntfCache, MCRegister::NoRegister); 769 770 LLVM_DEBUG(dbgs() << "Compact region bundles"); 771 772 // Use the spill placer to determine the live bundles. GrowRegion pretends 773 // that all the through blocks have interference when PhysReg is unset. 774 SpillPlacer->prepare(Cand.LiveBundles); 775 776 // The static split cost will be zero since Cand.Intf reports no interference. 777 BlockFrequency Cost; 778 if (!addSplitConstraints(Cand.Intf, Cost)) { 779 LLVM_DEBUG(dbgs() << ", none.\n"); 780 return false; 781 } 782 783 if (!growRegion(Cand)) { 784 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n"); 785 return false; 786 } 787 788 SpillPlacer->finish(); 789 790 if (!Cand.LiveBundles.any()) { 791 LLVM_DEBUG(dbgs() << ", none.\n"); 792 return false; 793 } 794 795 LLVM_DEBUG({ 796 for (int I : Cand.LiveBundles.set_bits()) 797 dbgs() << " EB#" << I; 798 dbgs() << ".\n"; 799 }); 800 return true; 801 } 802 803 /// calcSpillCost - Compute how expensive it would be to split the live range in 804 /// SA around all use blocks instead of forming bundle regions. 805 BlockFrequency RAGreedy::calcSpillCost() { 806 BlockFrequency Cost = 0; 807 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 808 for (const SplitAnalysis::BlockInfo &BI : UseBlocks) { 809 unsigned Number = BI.MBB->getNumber(); 810 // We normally only need one spill instruction - a load or a store. 811 Cost += SpillPlacer->getBlockFrequency(Number); 812 813 // Unless the value is redefined in the block. 814 if (BI.LiveIn && BI.LiveOut && BI.FirstDef) 815 Cost += SpillPlacer->getBlockFrequency(Number); 816 } 817 return Cost; 818 } 819 820 /// calcGlobalSplitCost - Return the global split cost of following the split 821 /// pattern in LiveBundles. This cost should be added to the local cost of the 822 /// interference pattern in SplitConstraints. 823 /// 824 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand, 825 const AllocationOrder &Order) { 826 BlockFrequency GlobalCost = 0; 827 const BitVector &LiveBundles = Cand.LiveBundles; 828 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 829 for (unsigned I = 0; I != UseBlocks.size(); ++I) { 830 const SplitAnalysis::BlockInfo &BI = UseBlocks[I]; 831 SpillPlacement::BlockConstraint &BC = SplitConstraints[I]; 832 bool RegIn = LiveBundles[Bundles->getBundle(BC.Number, false)]; 833 bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)]; 834 unsigned Ins = 0; 835 836 Cand.Intf.moveToBlock(BC.Number); 837 838 if (BI.LiveIn) 839 Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg); 840 if (BI.LiveOut) 841 Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg); 842 while (Ins--) 843 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 844 } 845 846 for (unsigned Number : Cand.ActiveBlocks) { 847 bool RegIn = LiveBundles[Bundles->getBundle(Number, false)]; 848 bool RegOut = LiveBundles[Bundles->getBundle(Number, true)]; 849 if (!RegIn && !RegOut) 850 continue; 851 if (RegIn && RegOut) { 852 // We need double spill code if this block has interference. 853 Cand.Intf.moveToBlock(Number); 854 if (Cand.Intf.hasInterference()) { 855 GlobalCost += SpillPlacer->getBlockFrequency(Number); 856 GlobalCost += SpillPlacer->getBlockFrequency(Number); 857 } 858 continue; 859 } 860 // live-in / stack-out or stack-in live-out. 861 GlobalCost += SpillPlacer->getBlockFrequency(Number); 862 } 863 return GlobalCost; 864 } 865 866 /// splitAroundRegion - Split the current live range around the regions 867 /// determined by BundleCand and GlobalCand. 868 /// 869 /// Before calling this function, GlobalCand and BundleCand must be initialized 870 /// so each bundle is assigned to a valid candidate, or NoCand for the 871 /// stack-bound bundles. The shared SA/SE SplitAnalysis and SplitEditor 872 /// objects must be initialized for the current live range, and intervals 873 /// created for the used candidates. 874 /// 875 /// @param LREdit The LiveRangeEdit object handling the current split. 876 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value 877 /// must appear in this list. 878 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit, 879 ArrayRef<unsigned> UsedCands) { 880 // These are the intervals created for new global ranges. We may create more 881 // intervals for local ranges. 882 const unsigned NumGlobalIntvs = LREdit.size(); 883 LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs 884 << " globals.\n"); 885 assert(NumGlobalIntvs && "No global intervals configured"); 886 887 // Isolate even single instructions when dealing with a proper sub-class. 888 // That guarantees register class inflation for the stack interval because it 889 // is all copies. 890 Register Reg = SA->getParent().reg(); 891 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 892 893 // First handle all the blocks with uses. 894 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 895 for (const SplitAnalysis::BlockInfo &BI : UseBlocks) { 896 unsigned Number = BI.MBB->getNumber(); 897 unsigned IntvIn = 0, IntvOut = 0; 898 SlotIndex IntfIn, IntfOut; 899 if (BI.LiveIn) { 900 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)]; 901 if (CandIn != NoCand) { 902 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 903 IntvIn = Cand.IntvIdx; 904 Cand.Intf.moveToBlock(Number); 905 IntfIn = Cand.Intf.first(); 906 } 907 } 908 if (BI.LiveOut) { 909 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)]; 910 if (CandOut != NoCand) { 911 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 912 IntvOut = Cand.IntvIdx; 913 Cand.Intf.moveToBlock(Number); 914 IntfOut = Cand.Intf.last(); 915 } 916 } 917 918 // Create separate intervals for isolated blocks with multiple uses. 919 if (!IntvIn && !IntvOut) { 920 LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " isolated.\n"); 921 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 922 SE->splitSingleBlock(BI); 923 continue; 924 } 925 926 if (IntvIn && IntvOut) 927 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 928 else if (IntvIn) 929 SE->splitRegInBlock(BI, IntvIn, IntfIn); 930 else 931 SE->splitRegOutBlock(BI, IntvOut, IntfOut); 932 } 933 934 // Handle live-through blocks. The relevant live-through blocks are stored in 935 // the ActiveBlocks list with each candidate. We need to filter out 936 // duplicates. 937 BitVector Todo = SA->getThroughBlocks(); 938 for (unsigned UsedCand : UsedCands) { 939 ArrayRef<unsigned> Blocks = GlobalCand[UsedCand].ActiveBlocks; 940 for (unsigned Number : Blocks) { 941 if (!Todo.test(Number)) 942 continue; 943 Todo.reset(Number); 944 945 unsigned IntvIn = 0, IntvOut = 0; 946 SlotIndex IntfIn, IntfOut; 947 948 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)]; 949 if (CandIn != NoCand) { 950 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 951 IntvIn = Cand.IntvIdx; 952 Cand.Intf.moveToBlock(Number); 953 IntfIn = Cand.Intf.first(); 954 } 955 956 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)]; 957 if (CandOut != NoCand) { 958 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 959 IntvOut = Cand.IntvIdx; 960 Cand.Intf.moveToBlock(Number); 961 IntfOut = Cand.Intf.last(); 962 } 963 if (!IntvIn && !IntvOut) 964 continue; 965 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 966 } 967 } 968 969 ++NumGlobalSplits; 970 971 SmallVector<unsigned, 8> IntvMap; 972 SE->finish(&IntvMap); 973 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 974 975 unsigned OrigBlocks = SA->getNumLiveBlocks(); 976 977 // Sort out the new intervals created by splitting. We get four kinds: 978 // - Remainder intervals should not be split again. 979 // - Candidate intervals can be assigned to Cand.PhysReg. 980 // - Block-local splits are candidates for local splitting. 981 // - DCE leftovers should go back on the queue. 982 for (unsigned I = 0, E = LREdit.size(); I != E; ++I) { 983 const LiveInterval &Reg = LIS->getInterval(LREdit.get(I)); 984 985 // Ignore old intervals from DCE. 986 if (ExtraInfo->getOrInitStage(Reg.reg()) != RS_New) 987 continue; 988 989 // Remainder interval. Don't try splitting again, spill if it doesn't 990 // allocate. 991 if (IntvMap[I] == 0) { 992 ExtraInfo->setStage(Reg, RS_Spill); 993 continue; 994 } 995 996 // Global intervals. Allow repeated splitting as long as the number of live 997 // blocks is strictly decreasing. 998 if (IntvMap[I] < NumGlobalIntvs) { 999 if (SA->countLiveBlocks(&Reg) >= OrigBlocks) { 1000 LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks 1001 << " blocks as original.\n"); 1002 // Don't allow repeated splitting as a safe guard against looping. 1003 ExtraInfo->setStage(Reg, RS_Split2); 1004 } 1005 continue; 1006 } 1007 1008 // Other intervals are treated as new. This includes local intervals created 1009 // for blocks with multiple uses, and anything created by DCE. 1010 } 1011 1012 if (VerifyEnabled) 1013 MF->verify(this, "After splitting live range around region"); 1014 } 1015 1016 MCRegister RAGreedy::tryRegionSplit(const LiveInterval &VirtReg, 1017 AllocationOrder &Order, 1018 SmallVectorImpl<Register> &NewVRegs) { 1019 if (!TRI->shouldRegionSplitForVirtReg(*MF, VirtReg)) 1020 return MCRegister::NoRegister; 1021 unsigned NumCands = 0; 1022 BlockFrequency SpillCost = calcSpillCost(); 1023 BlockFrequency BestCost; 1024 1025 // Check if we can split this live range around a compact region. 1026 bool HasCompact = calcCompactRegion(GlobalCand.front()); 1027 if (HasCompact) { 1028 // Yes, keep GlobalCand[0] as the compact region candidate. 1029 NumCands = 1; 1030 BestCost = BlockFrequency::getMaxFrequency(); 1031 } else { 1032 // No benefit from the compact region, our fallback will be per-block 1033 // splitting. Make sure we find a solution that is cheaper than spilling. 1034 BestCost = SpillCost; 1035 LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = "; 1036 MBFI->printBlockFreq(dbgs(), BestCost) << '\n'); 1037 } 1038 1039 unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost, 1040 NumCands, false /*IgnoreCSR*/); 1041 1042 // No solutions found, fall back to single block splitting. 1043 if (!HasCompact && BestCand == NoCand) 1044 return MCRegister::NoRegister; 1045 1046 return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs); 1047 } 1048 1049 unsigned RAGreedy::calculateRegionSplitCost(const LiveInterval &VirtReg, 1050 AllocationOrder &Order, 1051 BlockFrequency &BestCost, 1052 unsigned &NumCands, 1053 bool IgnoreCSR) { 1054 unsigned BestCand = NoCand; 1055 for (MCPhysReg PhysReg : Order) { 1056 assert(PhysReg); 1057 if (IgnoreCSR && EvictAdvisor->isUnusedCalleeSavedReg(PhysReg)) 1058 continue; 1059 1060 // Discard bad candidates before we run out of interference cache cursors. 1061 // This will only affect register classes with a lot of registers (>32). 1062 if (NumCands == IntfCache.getMaxCursors()) { 1063 unsigned WorstCount = ~0u; 1064 unsigned Worst = 0; 1065 for (unsigned CandIndex = 0; CandIndex != NumCands; ++CandIndex) { 1066 if (CandIndex == BestCand || !GlobalCand[CandIndex].PhysReg) 1067 continue; 1068 unsigned Count = GlobalCand[CandIndex].LiveBundles.count(); 1069 if (Count < WorstCount) { 1070 Worst = CandIndex; 1071 WorstCount = Count; 1072 } 1073 } 1074 --NumCands; 1075 GlobalCand[Worst] = GlobalCand[NumCands]; 1076 if (BestCand == NumCands) 1077 BestCand = Worst; 1078 } 1079 1080 if (GlobalCand.size() <= NumCands) 1081 GlobalCand.resize(NumCands+1); 1082 GlobalSplitCandidate &Cand = GlobalCand[NumCands]; 1083 Cand.reset(IntfCache, PhysReg); 1084 1085 SpillPlacer->prepare(Cand.LiveBundles); 1086 BlockFrequency Cost; 1087 if (!addSplitConstraints(Cand.Intf, Cost)) { 1088 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tno positive bundles\n"); 1089 continue; 1090 } 1091 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tstatic = "; 1092 MBFI->printBlockFreq(dbgs(), Cost)); 1093 if (Cost >= BestCost) { 1094 LLVM_DEBUG({ 1095 if (BestCand == NoCand) 1096 dbgs() << " worse than no bundles\n"; 1097 else 1098 dbgs() << " worse than " 1099 << printReg(GlobalCand[BestCand].PhysReg, TRI) << '\n'; 1100 }); 1101 continue; 1102 } 1103 if (!growRegion(Cand)) { 1104 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n"); 1105 continue; 1106 } 1107 1108 SpillPlacer->finish(); 1109 1110 // No live bundles, defer to splitSingleBlocks(). 1111 if (!Cand.LiveBundles.any()) { 1112 LLVM_DEBUG(dbgs() << " no bundles.\n"); 1113 continue; 1114 } 1115 1116 Cost += calcGlobalSplitCost(Cand, Order); 1117 LLVM_DEBUG({ 1118 dbgs() << ", total = "; 1119 MBFI->printBlockFreq(dbgs(), Cost) << " with bundles"; 1120 for (int I : Cand.LiveBundles.set_bits()) 1121 dbgs() << " EB#" << I; 1122 dbgs() << ".\n"; 1123 }); 1124 if (Cost < BestCost) { 1125 BestCand = NumCands; 1126 BestCost = Cost; 1127 } 1128 ++NumCands; 1129 } 1130 1131 return BestCand; 1132 } 1133 1134 unsigned RAGreedy::doRegionSplit(const LiveInterval &VirtReg, unsigned BestCand, 1135 bool HasCompact, 1136 SmallVectorImpl<Register> &NewVRegs) { 1137 SmallVector<unsigned, 8> UsedCands; 1138 // Prepare split editor. 1139 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1140 SE->reset(LREdit, SplitSpillMode); 1141 1142 // Assign all edge bundles to the preferred candidate, or NoCand. 1143 BundleCand.assign(Bundles->getNumBundles(), NoCand); 1144 1145 // Assign bundles for the best candidate region. 1146 if (BestCand != NoCand) { 1147 GlobalSplitCandidate &Cand = GlobalCand[BestCand]; 1148 if (unsigned B = Cand.getBundles(BundleCand, BestCand)) { 1149 UsedCands.push_back(BestCand); 1150 Cand.IntvIdx = SE->openIntv(); 1151 LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand.PhysReg, TRI) << " in " 1152 << B << " bundles, intv " << Cand.IntvIdx << ".\n"); 1153 (void)B; 1154 } 1155 } 1156 1157 // Assign bundles for the compact region. 1158 if (HasCompact) { 1159 GlobalSplitCandidate &Cand = GlobalCand.front(); 1160 assert(!Cand.PhysReg && "Compact region has no physreg"); 1161 if (unsigned B = Cand.getBundles(BundleCand, 0)) { 1162 UsedCands.push_back(0); 1163 Cand.IntvIdx = SE->openIntv(); 1164 LLVM_DEBUG(dbgs() << "Split for compact region in " << B 1165 << " bundles, intv " << Cand.IntvIdx << ".\n"); 1166 (void)B; 1167 } 1168 } 1169 1170 splitAroundRegion(LREdit, UsedCands); 1171 return 0; 1172 } 1173 1174 //===----------------------------------------------------------------------===// 1175 // Per-Block Splitting 1176 //===----------------------------------------------------------------------===// 1177 1178 /// tryBlockSplit - Split a global live range around every block with uses. This 1179 /// creates a lot of local live ranges, that will be split by tryLocalSplit if 1180 /// they don't allocate. 1181 unsigned RAGreedy::tryBlockSplit(const LiveInterval &VirtReg, 1182 AllocationOrder &Order, 1183 SmallVectorImpl<Register> &NewVRegs) { 1184 assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed"); 1185 Register Reg = VirtReg.reg(); 1186 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 1187 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1188 SE->reset(LREdit, SplitSpillMode); 1189 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1190 for (const SplitAnalysis::BlockInfo &BI : UseBlocks) { 1191 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 1192 SE->splitSingleBlock(BI); 1193 } 1194 // No blocks were split. 1195 if (LREdit.empty()) 1196 return 0; 1197 1198 // We did split for some blocks. 1199 SmallVector<unsigned, 8> IntvMap; 1200 SE->finish(&IntvMap); 1201 1202 // Tell LiveDebugVariables about the new ranges. 1203 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 1204 1205 // Sort out the new intervals created by splitting. The remainder interval 1206 // goes straight to spilling, the new local ranges get to stay RS_New. 1207 for (unsigned I = 0, E = LREdit.size(); I != E; ++I) { 1208 const LiveInterval &LI = LIS->getInterval(LREdit.get(I)); 1209 if (ExtraInfo->getOrInitStage(LI.reg()) == RS_New && IntvMap[I] == 0) 1210 ExtraInfo->setStage(LI, RS_Spill); 1211 } 1212 1213 if (VerifyEnabled) 1214 MF->verify(this, "After splitting live range around basic blocks"); 1215 return 0; 1216 } 1217 1218 //===----------------------------------------------------------------------===// 1219 // Per-Instruction Splitting 1220 //===----------------------------------------------------------------------===// 1221 1222 /// Get the number of allocatable registers that match the constraints of \p Reg 1223 /// on \p MI and that are also in \p SuperRC. 1224 static unsigned getNumAllocatableRegsForConstraints( 1225 const MachineInstr *MI, Register Reg, const TargetRegisterClass *SuperRC, 1226 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI, 1227 const RegisterClassInfo &RCI) { 1228 assert(SuperRC && "Invalid register class"); 1229 1230 const TargetRegisterClass *ConstrainedRC = 1231 MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI, 1232 /* ExploreBundle */ true); 1233 if (!ConstrainedRC) 1234 return 0; 1235 return RCI.getNumAllocatableRegs(ConstrainedRC); 1236 } 1237 1238 /// tryInstructionSplit - Split a live range around individual instructions. 1239 /// This is normally not worthwhile since the spiller is doing essentially the 1240 /// same thing. However, when the live range is in a constrained register 1241 /// class, it may help to insert copies such that parts of the live range can 1242 /// be moved to a larger register class. 1243 /// 1244 /// This is similar to spilling to a larger register class. 1245 unsigned RAGreedy::tryInstructionSplit(const LiveInterval &VirtReg, 1246 AllocationOrder &Order, 1247 SmallVectorImpl<Register> &NewVRegs) { 1248 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg()); 1249 // There is no point to this if there are no larger sub-classes. 1250 if (!RegClassInfo.isProperSubClass(CurRC)) 1251 return 0; 1252 1253 // Always enable split spill mode, since we're effectively spilling to a 1254 // register. 1255 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1256 SE->reset(LREdit, SplitEditor::SM_Size); 1257 1258 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 1259 if (Uses.size() <= 1) 1260 return 0; 1261 1262 LLVM_DEBUG(dbgs() << "Split around " << Uses.size() 1263 << " individual instrs.\n"); 1264 1265 const TargetRegisterClass *SuperRC = 1266 TRI->getLargestLegalSuperClass(CurRC, *MF); 1267 unsigned SuperRCNumAllocatableRegs = 1268 RegClassInfo.getNumAllocatableRegs(SuperRC); 1269 // Split around every non-copy instruction if this split will relax 1270 // the constraints on the virtual register. 1271 // Otherwise, splitting just inserts uncoalescable copies that do not help 1272 // the allocation. 1273 for (const SlotIndex Use : Uses) { 1274 if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Use)) 1275 if (MI->isFullCopy() || 1276 SuperRCNumAllocatableRegs == 1277 getNumAllocatableRegsForConstraints(MI, VirtReg.reg(), SuperRC, 1278 TII, TRI, RegClassInfo)) { 1279 LLVM_DEBUG(dbgs() << " skip:\t" << Use << '\t' << *MI); 1280 continue; 1281 } 1282 SE->openIntv(); 1283 SlotIndex SegStart = SE->enterIntvBefore(Use); 1284 SlotIndex SegStop = SE->leaveIntvAfter(Use); 1285 SE->useIntv(SegStart, SegStop); 1286 } 1287 1288 if (LREdit.empty()) { 1289 LLVM_DEBUG(dbgs() << "All uses were copies.\n"); 1290 return 0; 1291 } 1292 1293 SmallVector<unsigned, 8> IntvMap; 1294 SE->finish(&IntvMap); 1295 DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS); 1296 // Assign all new registers to RS_Spill. This was the last chance. 1297 ExtraInfo->setStage(LREdit.begin(), LREdit.end(), RS_Spill); 1298 return 0; 1299 } 1300 1301 //===----------------------------------------------------------------------===// 1302 // Local Splitting 1303 //===----------------------------------------------------------------------===// 1304 1305 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted 1306 /// in order to use PhysReg between two entries in SA->UseSlots. 1307 /// 1308 /// GapWeight[I] represents the gap between UseSlots[I] and UseSlots[I + 1]. 1309 /// 1310 void RAGreedy::calcGapWeights(MCRegister PhysReg, 1311 SmallVectorImpl<float> &GapWeight) { 1312 assert(SA->getUseBlocks().size() == 1 && "Not a local interval"); 1313 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 1314 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 1315 const unsigned NumGaps = Uses.size()-1; 1316 1317 // Start and end points for the interference check. 1318 SlotIndex StartIdx = 1319 BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr; 1320 SlotIndex StopIdx = 1321 BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr; 1322 1323 GapWeight.assign(NumGaps, 0.0f); 1324 1325 // Add interference from each overlapping register. 1326 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 1327 if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units) 1328 .checkInterference()) 1329 continue; 1330 1331 // We know that VirtReg is a continuous interval from FirstInstr to 1332 // LastInstr, so we don't need InterferenceQuery. 1333 // 1334 // Interference that overlaps an instruction is counted in both gaps 1335 // surrounding the instruction. The exception is interference before 1336 // StartIdx and after StopIdx. 1337 // 1338 LiveIntervalUnion::SegmentIter IntI = 1339 Matrix->getLiveUnions()[*Units] .find(StartIdx); 1340 for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) { 1341 // Skip the gaps before IntI. 1342 while (Uses[Gap+1].getBoundaryIndex() < IntI.start()) 1343 if (++Gap == NumGaps) 1344 break; 1345 if (Gap == NumGaps) 1346 break; 1347 1348 // Update the gaps covered by IntI. 1349 const float weight = IntI.value()->weight(); 1350 for (; Gap != NumGaps; ++Gap) { 1351 GapWeight[Gap] = std::max(GapWeight[Gap], weight); 1352 if (Uses[Gap+1].getBaseIndex() >= IntI.stop()) 1353 break; 1354 } 1355 if (Gap == NumGaps) 1356 break; 1357 } 1358 } 1359 1360 // Add fixed interference. 1361 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 1362 const LiveRange &LR = LIS->getRegUnit(*Units); 1363 LiveRange::const_iterator I = LR.find(StartIdx); 1364 LiveRange::const_iterator E = LR.end(); 1365 1366 // Same loop as above. Mark any overlapped gaps as HUGE_VALF. 1367 for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) { 1368 while (Uses[Gap+1].getBoundaryIndex() < I->start) 1369 if (++Gap == NumGaps) 1370 break; 1371 if (Gap == NumGaps) 1372 break; 1373 1374 for (; Gap != NumGaps; ++Gap) { 1375 GapWeight[Gap] = huge_valf; 1376 if (Uses[Gap+1].getBaseIndex() >= I->end) 1377 break; 1378 } 1379 if (Gap == NumGaps) 1380 break; 1381 } 1382 } 1383 } 1384 1385 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only 1386 /// basic block. 1387 /// 1388 unsigned RAGreedy::tryLocalSplit(const LiveInterval &VirtReg, 1389 AllocationOrder &Order, 1390 SmallVectorImpl<Register> &NewVRegs) { 1391 // TODO: the function currently only handles a single UseBlock; it should be 1392 // possible to generalize. 1393 if (SA->getUseBlocks().size() != 1) 1394 return 0; 1395 1396 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 1397 1398 // Note that it is possible to have an interval that is live-in or live-out 1399 // while only covering a single block - A phi-def can use undef values from 1400 // predecessors, and the block could be a single-block loop. 1401 // We don't bother doing anything clever about such a case, we simply assume 1402 // that the interval is continuous from FirstInstr to LastInstr. We should 1403 // make sure that we don't do anything illegal to such an interval, though. 1404 1405 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 1406 if (Uses.size() <= 2) 1407 return 0; 1408 const unsigned NumGaps = Uses.size()-1; 1409 1410 LLVM_DEBUG({ 1411 dbgs() << "tryLocalSplit: "; 1412 for (const auto &Use : Uses) 1413 dbgs() << ' ' << Use; 1414 dbgs() << '\n'; 1415 }); 1416 1417 // If VirtReg is live across any register mask operands, compute a list of 1418 // gaps with register masks. 1419 SmallVector<unsigned, 8> RegMaskGaps; 1420 if (Matrix->checkRegMaskInterference(VirtReg)) { 1421 // Get regmask slots for the whole block. 1422 ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber()); 1423 LLVM_DEBUG(dbgs() << RMS.size() << " regmasks in block:"); 1424 // Constrain to VirtReg's live range. 1425 unsigned RI = 1426 llvm::lower_bound(RMS, Uses.front().getRegSlot()) - RMS.begin(); 1427 unsigned RE = RMS.size(); 1428 for (unsigned I = 0; I != NumGaps && RI != RE; ++I) { 1429 // Look for Uses[I] <= RMS <= Uses[I + 1]. 1430 assert(!SlotIndex::isEarlierInstr(RMS[RI], Uses[I])); 1431 if (SlotIndex::isEarlierInstr(Uses[I + 1], RMS[RI])) 1432 continue; 1433 // Skip a regmask on the same instruction as the last use. It doesn't 1434 // overlap the live range. 1435 if (SlotIndex::isSameInstr(Uses[I + 1], RMS[RI]) && I + 1 == NumGaps) 1436 break; 1437 LLVM_DEBUG(dbgs() << ' ' << RMS[RI] << ':' << Uses[I] << '-' 1438 << Uses[I + 1]); 1439 RegMaskGaps.push_back(I); 1440 // Advance ri to the next gap. A regmask on one of the uses counts in 1441 // both gaps. 1442 while (RI != RE && SlotIndex::isEarlierInstr(RMS[RI], Uses[I + 1])) 1443 ++RI; 1444 } 1445 LLVM_DEBUG(dbgs() << '\n'); 1446 } 1447 1448 // Since we allow local split results to be split again, there is a risk of 1449 // creating infinite loops. It is tempting to require that the new live 1450 // ranges have less instructions than the original. That would guarantee 1451 // convergence, but it is too strict. A live range with 3 instructions can be 1452 // split 2+3 (including the COPY), and we want to allow that. 1453 // 1454 // Instead we use these rules: 1455 // 1456 // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the 1457 // noop split, of course). 1458 // 2. Require progress be made for ranges with getStage() == RS_Split2. All 1459 // the new ranges must have fewer instructions than before the split. 1460 // 3. New ranges with the same number of instructions are marked RS_Split2, 1461 // smaller ranges are marked RS_New. 1462 // 1463 // These rules allow a 3 -> 2+3 split once, which we need. They also prevent 1464 // excessive splitting and infinite loops. 1465 // 1466 bool ProgressRequired = ExtraInfo->getStage(VirtReg) >= RS_Split2; 1467 1468 // Best split candidate. 1469 unsigned BestBefore = NumGaps; 1470 unsigned BestAfter = 0; 1471 float BestDiff = 0; 1472 1473 const float blockFreq = 1474 SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() * 1475 (1.0f / MBFI->getEntryFreq()); 1476 SmallVector<float, 8> GapWeight; 1477 1478 for (MCPhysReg PhysReg : Order) { 1479 assert(PhysReg); 1480 // Keep track of the largest spill weight that would need to be evicted in 1481 // order to make use of PhysReg between UseSlots[I] and UseSlots[I + 1]. 1482 calcGapWeights(PhysReg, GapWeight); 1483 1484 // Remove any gaps with regmask clobbers. 1485 if (Matrix->checkRegMaskInterference(VirtReg, PhysReg)) 1486 for (unsigned I = 0, E = RegMaskGaps.size(); I != E; ++I) 1487 GapWeight[RegMaskGaps[I]] = huge_valf; 1488 1489 // Try to find the best sequence of gaps to close. 1490 // The new spill weight must be larger than any gap interference. 1491 1492 // We will split before Uses[SplitBefore] and after Uses[SplitAfter]. 1493 unsigned SplitBefore = 0, SplitAfter = 1; 1494 1495 // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]). 1496 // It is the spill weight that needs to be evicted. 1497 float MaxGap = GapWeight[0]; 1498 1499 while (true) { 1500 // Live before/after split? 1501 const bool LiveBefore = SplitBefore != 0 || BI.LiveIn; 1502 const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut; 1503 1504 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << ' ' << Uses[SplitBefore] 1505 << '-' << Uses[SplitAfter] << " I=" << MaxGap); 1506 1507 // Stop before the interval gets so big we wouldn't be making progress. 1508 if (!LiveBefore && !LiveAfter) { 1509 LLVM_DEBUG(dbgs() << " all\n"); 1510 break; 1511 } 1512 // Should the interval be extended or shrunk? 1513 bool Shrink = true; 1514 1515 // How many gaps would the new range have? 1516 unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter; 1517 1518 // Legally, without causing looping? 1519 bool Legal = !ProgressRequired || NewGaps < NumGaps; 1520 1521 if (Legal && MaxGap < huge_valf) { 1522 // Estimate the new spill weight. Each instruction reads or writes the 1523 // register. Conservatively assume there are no read-modify-write 1524 // instructions. 1525 // 1526 // Try to guess the size of the new interval. 1527 const float EstWeight = normalizeSpillWeight( 1528 blockFreq * (NewGaps + 1), 1529 Uses[SplitBefore].distance(Uses[SplitAfter]) + 1530 (LiveBefore + LiveAfter) * SlotIndex::InstrDist, 1531 1); 1532 // Would this split be possible to allocate? 1533 // Never allocate all gaps, we wouldn't be making progress. 1534 LLVM_DEBUG(dbgs() << " w=" << EstWeight); 1535 if (EstWeight * Hysteresis >= MaxGap) { 1536 Shrink = false; 1537 float Diff = EstWeight - MaxGap; 1538 if (Diff > BestDiff) { 1539 LLVM_DEBUG(dbgs() << " (best)"); 1540 BestDiff = Hysteresis * Diff; 1541 BestBefore = SplitBefore; 1542 BestAfter = SplitAfter; 1543 } 1544 } 1545 } 1546 1547 // Try to shrink. 1548 if (Shrink) { 1549 if (++SplitBefore < SplitAfter) { 1550 LLVM_DEBUG(dbgs() << " shrink\n"); 1551 // Recompute the max when necessary. 1552 if (GapWeight[SplitBefore - 1] >= MaxGap) { 1553 MaxGap = GapWeight[SplitBefore]; 1554 for (unsigned I = SplitBefore + 1; I != SplitAfter; ++I) 1555 MaxGap = std::max(MaxGap, GapWeight[I]); 1556 } 1557 continue; 1558 } 1559 MaxGap = 0; 1560 } 1561 1562 // Try to extend the interval. 1563 if (SplitAfter >= NumGaps) { 1564 LLVM_DEBUG(dbgs() << " end\n"); 1565 break; 1566 } 1567 1568 LLVM_DEBUG(dbgs() << " extend\n"); 1569 MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]); 1570 } 1571 } 1572 1573 // Didn't find any candidates? 1574 if (BestBefore == NumGaps) 1575 return 0; 1576 1577 LLVM_DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] << '-' 1578 << Uses[BestAfter] << ", " << BestDiff << ", " 1579 << (BestAfter - BestBefore + 1) << " instrs\n"); 1580 1581 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1582 SE->reset(LREdit); 1583 1584 SE->openIntv(); 1585 SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]); 1586 SlotIndex SegStop = SE->leaveIntvAfter(Uses[BestAfter]); 1587 SE->useIntv(SegStart, SegStop); 1588 SmallVector<unsigned, 8> IntvMap; 1589 SE->finish(&IntvMap); 1590 DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS); 1591 // If the new range has the same number of instructions as before, mark it as 1592 // RS_Split2 so the next split will be forced to make progress. Otherwise, 1593 // leave the new intervals as RS_New so they can compete. 1594 bool LiveBefore = BestBefore != 0 || BI.LiveIn; 1595 bool LiveAfter = BestAfter != NumGaps || BI.LiveOut; 1596 unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter; 1597 if (NewGaps >= NumGaps) { 1598 LLVM_DEBUG(dbgs() << "Tagging non-progress ranges:"); 1599 assert(!ProgressRequired && "Didn't make progress when it was required."); 1600 for (unsigned I = 0, E = IntvMap.size(); I != E; ++I) 1601 if (IntvMap[I] == 1) { 1602 ExtraInfo->setStage(LIS->getInterval(LREdit.get(I)), RS_Split2); 1603 LLVM_DEBUG(dbgs() << ' ' << printReg(LREdit.get(I))); 1604 } 1605 LLVM_DEBUG(dbgs() << '\n'); 1606 } 1607 ++NumLocalSplits; 1608 1609 return 0; 1610 } 1611 1612 //===----------------------------------------------------------------------===// 1613 // Live Range Splitting 1614 //===----------------------------------------------------------------------===// 1615 1616 /// trySplit - Try to split VirtReg or one of its interferences, making it 1617 /// assignable. 1618 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs. 1619 unsigned RAGreedy::trySplit(const LiveInterval &VirtReg, AllocationOrder &Order, 1620 SmallVectorImpl<Register> &NewVRegs, 1621 const SmallVirtRegSet &FixedRegisters) { 1622 // Ranges must be Split2 or less. 1623 if (ExtraInfo->getStage(VirtReg) >= RS_Spill) 1624 return 0; 1625 1626 // Local intervals are handled separately. 1627 if (LIS->intervalIsInOneMBB(VirtReg)) { 1628 NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName, 1629 TimerGroupDescription, TimePassesIsEnabled); 1630 SA->analyze(&VirtReg); 1631 Register PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs); 1632 if (PhysReg || !NewVRegs.empty()) 1633 return PhysReg; 1634 return tryInstructionSplit(VirtReg, Order, NewVRegs); 1635 } 1636 1637 NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName, 1638 TimerGroupDescription, TimePassesIsEnabled); 1639 1640 SA->analyze(&VirtReg); 1641 1642 // First try to split around a region spanning multiple blocks. RS_Split2 1643 // ranges already made dubious progress with region splitting, so they go 1644 // straight to single block splitting. 1645 if (ExtraInfo->getStage(VirtReg) < RS_Split2) { 1646 MCRegister PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs); 1647 if (PhysReg || !NewVRegs.empty()) 1648 return PhysReg; 1649 } 1650 1651 // Then isolate blocks. 1652 return tryBlockSplit(VirtReg, Order, NewVRegs); 1653 } 1654 1655 //===----------------------------------------------------------------------===// 1656 // Last Chance Recoloring 1657 //===----------------------------------------------------------------------===// 1658 1659 /// Return true if \p reg has any tied def operand. 1660 static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg) { 1661 for (const MachineOperand &MO : MRI->def_operands(reg)) 1662 if (MO.isTied()) 1663 return true; 1664 1665 return false; 1666 } 1667 1668 /// Return true if the existing assignment of \p Intf overlaps, but is not the 1669 /// same, as \p PhysReg. 1670 static bool assignedRegPartiallyOverlaps(const TargetRegisterInfo &TRI, 1671 const VirtRegMap &VRM, 1672 MCRegister PhysReg, 1673 const LiveInterval &Intf) { 1674 MCRegister AssignedReg = VRM.getPhys(Intf.reg()); 1675 if (PhysReg == AssignedReg) 1676 return false; 1677 return TRI.regsOverlap(PhysReg, AssignedReg); 1678 } 1679 1680 /// mayRecolorAllInterferences - Check if the virtual registers that 1681 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be 1682 /// recolored to free \p PhysReg. 1683 /// When true is returned, \p RecoloringCandidates has been augmented with all 1684 /// the live intervals that need to be recolored in order to free \p PhysReg 1685 /// for \p VirtReg. 1686 /// \p FixedRegisters contains all the virtual registers that cannot be 1687 /// recolored. 1688 bool RAGreedy::mayRecolorAllInterferences( 1689 MCRegister PhysReg, const LiveInterval &VirtReg, 1690 SmallLISet &RecoloringCandidates, const SmallVirtRegSet &FixedRegisters) { 1691 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg()); 1692 1693 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 1694 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 1695 // If there is LastChanceRecoloringMaxInterference or more interferences, 1696 // chances are one would not be recolorable. 1697 if (Q.interferingVRegs(LastChanceRecoloringMaxInterference).size() >= 1698 LastChanceRecoloringMaxInterference && 1699 !ExhaustiveSearch) { 1700 LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n"); 1701 CutOffInfo |= CO_Interf; 1702 return false; 1703 } 1704 for (const LiveInterval *Intf : reverse(Q.interferingVRegs())) { 1705 // If Intf is done and sits on the same register class as VirtReg, it 1706 // would not be recolorable as it is in the same state as 1707 // VirtReg. However there are at least two exceptions. 1708 // 1709 // If VirtReg has tied defs and Intf doesn't, then 1710 // there is still a point in examining if it can be recolorable. 1711 // 1712 // Additionally, if the register class has overlapping tuple members, it 1713 // may still be recolorable using a different tuple. This is more likely 1714 // if the existing assignment aliases with the candidate. 1715 // 1716 if (((ExtraInfo->getStage(*Intf) == RS_Done && 1717 MRI->getRegClass(Intf->reg()) == CurRC && 1718 !assignedRegPartiallyOverlaps(*TRI, *VRM, PhysReg, *Intf)) && 1719 !(hasTiedDef(MRI, VirtReg.reg()) && 1720 !hasTiedDef(MRI, Intf->reg()))) || 1721 FixedRegisters.count(Intf->reg())) { 1722 LLVM_DEBUG( 1723 dbgs() << "Early abort: the interference is not recolorable.\n"); 1724 return false; 1725 } 1726 RecoloringCandidates.insert(Intf); 1727 } 1728 } 1729 return true; 1730 } 1731 1732 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring 1733 /// its interferences. 1734 /// Last chance recoloring chooses a color for \p VirtReg and recolors every 1735 /// virtual register that was using it. The recoloring process may recursively 1736 /// use the last chance recoloring. Therefore, when a virtual register has been 1737 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot 1738 /// be last-chance-recolored again during this recoloring "session". 1739 /// E.g., 1740 /// Let 1741 /// vA can use {R1, R2 } 1742 /// vB can use { R2, R3} 1743 /// vC can use {R1 } 1744 /// Where vA, vB, and vC cannot be split anymore (they are reloads for 1745 /// instance) and they all interfere. 1746 /// 1747 /// vA is assigned R1 1748 /// vB is assigned R2 1749 /// vC tries to evict vA but vA is already done. 1750 /// Regular register allocation fails. 1751 /// 1752 /// Last chance recoloring kicks in: 1753 /// vC does as if vA was evicted => vC uses R1. 1754 /// vC is marked as fixed. 1755 /// vA needs to find a color. 1756 /// None are available. 1757 /// vA cannot evict vC: vC is a fixed virtual register now. 1758 /// vA does as if vB was evicted => vA uses R2. 1759 /// vB needs to find a color. 1760 /// R3 is available. 1761 /// Recoloring => vC = R1, vA = R2, vB = R3 1762 /// 1763 /// \p Order defines the preferred allocation order for \p VirtReg. 1764 /// \p NewRegs will contain any new virtual register that have been created 1765 /// (split, spill) during the process and that must be assigned. 1766 /// \p FixedRegisters contains all the virtual registers that cannot be 1767 /// recolored. 1768 /// 1769 /// \p RecolorStack tracks the original assignments of successfully recolored 1770 /// registers. 1771 /// 1772 /// \p Depth gives the current depth of the last chance recoloring. 1773 /// \return a physical register that can be used for VirtReg or ~0u if none 1774 /// exists. 1775 unsigned RAGreedy::tryLastChanceRecoloring(const LiveInterval &VirtReg, 1776 AllocationOrder &Order, 1777 SmallVectorImpl<Register> &NewVRegs, 1778 SmallVirtRegSet &FixedRegisters, 1779 RecoloringStack &RecolorStack, 1780 unsigned Depth) { 1781 if (!TRI->shouldUseLastChanceRecoloringForVirtReg(*MF, VirtReg)) 1782 return ~0u; 1783 1784 LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n'); 1785 1786 const ssize_t EntryStackSize = RecolorStack.size(); 1787 1788 // Ranges must be Done. 1789 assert((ExtraInfo->getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) && 1790 "Last chance recoloring should really be last chance"); 1791 // Set the max depth to LastChanceRecoloringMaxDepth. 1792 // We may want to reconsider that if we end up with a too large search space 1793 // for target with hundreds of registers. 1794 // Indeed, in that case we may want to cut the search space earlier. 1795 if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) { 1796 LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n"); 1797 CutOffInfo |= CO_Depth; 1798 return ~0u; 1799 } 1800 1801 // Set of Live intervals that will need to be recolored. 1802 SmallLISet RecoloringCandidates; 1803 1804 // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in 1805 // this recoloring "session". 1806 assert(!FixedRegisters.count(VirtReg.reg())); 1807 FixedRegisters.insert(VirtReg.reg()); 1808 SmallVector<Register, 4> CurrentNewVRegs; 1809 1810 for (MCRegister PhysReg : Order) { 1811 assert(PhysReg.isValid()); 1812 LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg << " to " 1813 << printReg(PhysReg, TRI) << '\n'); 1814 RecoloringCandidates.clear(); 1815 CurrentNewVRegs.clear(); 1816 1817 // It is only possible to recolor virtual register interference. 1818 if (Matrix->checkInterference(VirtReg, PhysReg) > 1819 LiveRegMatrix::IK_VirtReg) { 1820 LLVM_DEBUG( 1821 dbgs() << "Some interferences are not with virtual registers.\n"); 1822 1823 continue; 1824 } 1825 1826 // Early give up on this PhysReg if it is obvious we cannot recolor all 1827 // the interferences. 1828 if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates, 1829 FixedRegisters)) { 1830 LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n"); 1831 continue; 1832 } 1833 1834 // RecoloringCandidates contains all the virtual registers that interfere 1835 // with VirtReg on PhysReg (or one of its aliases). Enqueue them for 1836 // recoloring and perform the actual recoloring. 1837 PQueue RecoloringQueue; 1838 for (const LiveInterval *RC : RecoloringCandidates) { 1839 Register ItVirtReg = RC->reg(); 1840 enqueue(RecoloringQueue, RC); 1841 assert(VRM->hasPhys(ItVirtReg) && 1842 "Interferences are supposed to be with allocated variables"); 1843 1844 // Record the current allocation. 1845 RecolorStack.push_back(std::make_pair(RC, VRM->getPhys(ItVirtReg))); 1846 1847 // unset the related struct. 1848 Matrix->unassign(*RC); 1849 } 1850 1851 // Do as if VirtReg was assigned to PhysReg so that the underlying 1852 // recoloring has the right information about the interferes and 1853 // available colors. 1854 Matrix->assign(VirtReg, PhysReg); 1855 1856 // Save the current recoloring state. 1857 // If we cannot recolor all the interferences, we will have to start again 1858 // at this point for the next physical register. 1859 SmallVirtRegSet SaveFixedRegisters(FixedRegisters); 1860 if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs, 1861 FixedRegisters, RecolorStack, Depth)) { 1862 // Push the queued vregs into the main queue. 1863 for (Register NewVReg : CurrentNewVRegs) 1864 NewVRegs.push_back(NewVReg); 1865 // Do not mess up with the global assignment process. 1866 // I.e., VirtReg must be unassigned. 1867 Matrix->unassign(VirtReg); 1868 return PhysReg; 1869 } 1870 1871 LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to " 1872 << printReg(PhysReg, TRI) << '\n'); 1873 1874 // The recoloring attempt failed, undo the changes. 1875 FixedRegisters = SaveFixedRegisters; 1876 Matrix->unassign(VirtReg); 1877 1878 // For a newly created vreg which is also in RecoloringCandidates, 1879 // don't add it to NewVRegs because its physical register will be restored 1880 // below. Other vregs in CurrentNewVRegs are created by calling 1881 // selectOrSplit and should be added into NewVRegs. 1882 for (Register &R : CurrentNewVRegs) { 1883 if (RecoloringCandidates.count(&LIS->getInterval(R))) 1884 continue; 1885 NewVRegs.push_back(R); 1886 } 1887 1888 // Roll back our unsuccessful recoloring. Also roll back any successful 1889 // recolorings in any recursive recoloring attempts, since it's possible 1890 // they would have introduced conflicts with assignments we will be 1891 // restoring further up the stack. Perform all unassignments prior to 1892 // reassigning, since sub-recolorings may have conflicted with the registers 1893 // we are going to restore to their original assignments. 1894 for (ssize_t I = RecolorStack.size() - 1; I >= EntryStackSize; --I) { 1895 const LiveInterval *LI; 1896 MCRegister PhysReg; 1897 std::tie(LI, PhysReg) = RecolorStack[I]; 1898 1899 if (VRM->hasPhys(LI->reg())) 1900 Matrix->unassign(*LI); 1901 } 1902 1903 for (size_t I = EntryStackSize; I != RecolorStack.size(); ++I) { 1904 const LiveInterval *LI; 1905 MCRegister PhysReg; 1906 std::tie(LI, PhysReg) = RecolorStack[I]; 1907 Matrix->assign(*LI, PhysReg); 1908 } 1909 1910 // Pop the stack of recoloring attempts. 1911 RecolorStack.resize(EntryStackSize); 1912 } 1913 1914 // Last chance recoloring did not worked either, give up. 1915 return ~0u; 1916 } 1917 1918 /// tryRecoloringCandidates - Try to assign a new color to every register 1919 /// in \RecoloringQueue. 1920 /// \p NewRegs will contain any new virtual register created during the 1921 /// recoloring process. 1922 /// \p FixedRegisters[in/out] contains all the registers that have been 1923 /// recolored. 1924 /// \return true if all virtual registers in RecoloringQueue were successfully 1925 /// recolored, false otherwise. 1926 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue, 1927 SmallVectorImpl<Register> &NewVRegs, 1928 SmallVirtRegSet &FixedRegisters, 1929 RecoloringStack &RecolorStack, 1930 unsigned Depth) { 1931 while (!RecoloringQueue.empty()) { 1932 const LiveInterval *LI = dequeue(RecoloringQueue); 1933 LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI << '\n'); 1934 MCRegister PhysReg = selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, 1935 RecolorStack, Depth + 1); 1936 // When splitting happens, the live-range may actually be empty. 1937 // In that case, this is okay to continue the recoloring even 1938 // if we did not find an alternative color for it. Indeed, 1939 // there will not be anything to color for LI in the end. 1940 if (PhysReg == ~0u || (!PhysReg && !LI->empty())) 1941 return false; 1942 1943 if (!PhysReg) { 1944 assert(LI->empty() && "Only empty live-range do not require a register"); 1945 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI 1946 << " succeeded. Empty LI.\n"); 1947 continue; 1948 } 1949 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI 1950 << " succeeded with: " << printReg(PhysReg, TRI) << '\n'); 1951 1952 Matrix->assign(*LI, PhysReg); 1953 FixedRegisters.insert(LI->reg()); 1954 } 1955 return true; 1956 } 1957 1958 //===----------------------------------------------------------------------===// 1959 // Main Entry Point 1960 //===----------------------------------------------------------------------===// 1961 1962 MCRegister RAGreedy::selectOrSplit(const LiveInterval &VirtReg, 1963 SmallVectorImpl<Register> &NewVRegs) { 1964 CutOffInfo = CO_None; 1965 LLVMContext &Ctx = MF->getFunction().getContext(); 1966 SmallVirtRegSet FixedRegisters; 1967 RecoloringStack RecolorStack; 1968 MCRegister Reg = 1969 selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters, RecolorStack); 1970 if (Reg == ~0U && (CutOffInfo != CO_None)) { 1971 uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf); 1972 if (CutOffEncountered == CO_Depth) 1973 Ctx.emitError("register allocation failed: maximum depth for recoloring " 1974 "reached. Use -fexhaustive-register-search to skip " 1975 "cutoffs"); 1976 else if (CutOffEncountered == CO_Interf) 1977 Ctx.emitError("register allocation failed: maximum interference for " 1978 "recoloring reached. Use -fexhaustive-register-search " 1979 "to skip cutoffs"); 1980 else if (CutOffEncountered == (CO_Depth | CO_Interf)) 1981 Ctx.emitError("register allocation failed: maximum interference and " 1982 "depth for recoloring reached. Use " 1983 "-fexhaustive-register-search to skip cutoffs"); 1984 } 1985 return Reg; 1986 } 1987 1988 /// Using a CSR for the first time has a cost because it causes push|pop 1989 /// to be added to prologue|epilogue. Splitting a cold section of the live 1990 /// range can have lower cost than using the CSR for the first time; 1991 /// Spilling a live range in the cold path can have lower cost than using 1992 /// the CSR for the first time. Returns the physical register if we decide 1993 /// to use the CSR; otherwise return 0. 1994 MCRegister RAGreedy::tryAssignCSRFirstTime( 1995 const LiveInterval &VirtReg, AllocationOrder &Order, MCRegister PhysReg, 1996 uint8_t &CostPerUseLimit, SmallVectorImpl<Register> &NewVRegs) { 1997 if (ExtraInfo->getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) { 1998 // We choose spill over using the CSR for the first time if the spill cost 1999 // is lower than CSRCost. 2000 SA->analyze(&VirtReg); 2001 if (calcSpillCost() >= CSRCost) 2002 return PhysReg; 2003 2004 // We are going to spill, set CostPerUseLimit to 1 to make sure that 2005 // we will not use a callee-saved register in tryEvict. 2006 CostPerUseLimit = 1; 2007 return 0; 2008 } 2009 if (ExtraInfo->getStage(VirtReg) < RS_Split) { 2010 // We choose pre-splitting over using the CSR for the first time if 2011 // the cost of splitting is lower than CSRCost. 2012 SA->analyze(&VirtReg); 2013 unsigned NumCands = 0; 2014 BlockFrequency BestCost = CSRCost; // Don't modify CSRCost. 2015 unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost, 2016 NumCands, true /*IgnoreCSR*/); 2017 if (BestCand == NoCand) 2018 // Use the CSR if we can't find a region split below CSRCost. 2019 return PhysReg; 2020 2021 // Perform the actual pre-splitting. 2022 doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs); 2023 return 0; 2024 } 2025 return PhysReg; 2026 } 2027 2028 void RAGreedy::aboutToRemoveInterval(const LiveInterval &LI) { 2029 // Do not keep invalid information around. 2030 SetOfBrokenHints.remove(&LI); 2031 } 2032 2033 void RAGreedy::initializeCSRCost() { 2034 // We use the larger one out of the command-line option and the value report 2035 // by TRI. 2036 CSRCost = BlockFrequency( 2037 std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost())); 2038 if (!CSRCost.getFrequency()) 2039 return; 2040 2041 // Raw cost is relative to Entry == 2^14; scale it appropriately. 2042 uint64_t ActualEntry = MBFI->getEntryFreq(); 2043 if (!ActualEntry) { 2044 CSRCost = 0; 2045 return; 2046 } 2047 uint64_t FixedEntry = 1 << 14; 2048 if (ActualEntry < FixedEntry) 2049 CSRCost *= BranchProbability(ActualEntry, FixedEntry); 2050 else if (ActualEntry <= UINT32_MAX) 2051 // Invert the fraction and divide. 2052 CSRCost /= BranchProbability(FixedEntry, ActualEntry); 2053 else 2054 // Can't use BranchProbability in general, since it takes 32-bit numbers. 2055 CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry); 2056 } 2057 2058 /// Collect the hint info for \p Reg. 2059 /// The results are stored into \p Out. 2060 /// \p Out is not cleared before being populated. 2061 void RAGreedy::collectHintInfo(Register Reg, HintsInfo &Out) { 2062 for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) { 2063 if (!Instr.isFullCopy()) 2064 continue; 2065 // Look for the other end of the copy. 2066 Register OtherReg = Instr.getOperand(0).getReg(); 2067 if (OtherReg == Reg) { 2068 OtherReg = Instr.getOperand(1).getReg(); 2069 if (OtherReg == Reg) 2070 continue; 2071 } 2072 // Get the current assignment. 2073 MCRegister OtherPhysReg = 2074 OtherReg.isPhysical() ? OtherReg.asMCReg() : VRM->getPhys(OtherReg); 2075 // Push the collected information. 2076 Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg, 2077 OtherPhysReg)); 2078 } 2079 } 2080 2081 /// Using the given \p List, compute the cost of the broken hints if 2082 /// \p PhysReg was used. 2083 /// \return The cost of \p List for \p PhysReg. 2084 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List, 2085 MCRegister PhysReg) { 2086 BlockFrequency Cost = 0; 2087 for (const HintInfo &Info : List) { 2088 if (Info.PhysReg != PhysReg) 2089 Cost += Info.Freq; 2090 } 2091 return Cost; 2092 } 2093 2094 /// Using the register assigned to \p VirtReg, try to recolor 2095 /// all the live ranges that are copy-related with \p VirtReg. 2096 /// The recoloring is then propagated to all the live-ranges that have 2097 /// been recolored and so on, until no more copies can be coalesced or 2098 /// it is not profitable. 2099 /// For a given live range, profitability is determined by the sum of the 2100 /// frequencies of the non-identity copies it would introduce with the old 2101 /// and new register. 2102 void RAGreedy::tryHintRecoloring(const LiveInterval &VirtReg) { 2103 // We have a broken hint, check if it is possible to fix it by 2104 // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted 2105 // some register and PhysReg may be available for the other live-ranges. 2106 SmallSet<Register, 4> Visited; 2107 SmallVector<unsigned, 2> RecoloringCandidates; 2108 HintsInfo Info; 2109 Register Reg = VirtReg.reg(); 2110 MCRegister PhysReg = VRM->getPhys(Reg); 2111 // Start the recoloring algorithm from the input live-interval, then 2112 // it will propagate to the ones that are copy-related with it. 2113 Visited.insert(Reg); 2114 RecoloringCandidates.push_back(Reg); 2115 2116 LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg, TRI) 2117 << '(' << printReg(PhysReg, TRI) << ")\n"); 2118 2119 do { 2120 Reg = RecoloringCandidates.pop_back_val(); 2121 2122 // We cannot recolor physical register. 2123 if (Register::isPhysicalRegister(Reg)) 2124 continue; 2125 2126 // This may be a skipped class 2127 if (!VRM->hasPhys(Reg)) { 2128 assert(!ShouldAllocateClass(*TRI, *MRI->getRegClass(Reg)) && 2129 "We have an unallocated variable which should have been handled"); 2130 continue; 2131 } 2132 2133 // Get the live interval mapped with this virtual register to be able 2134 // to check for the interference with the new color. 2135 LiveInterval &LI = LIS->getInterval(Reg); 2136 MCRegister CurrPhys = VRM->getPhys(Reg); 2137 // Check that the new color matches the register class constraints and 2138 // that it is free for this live range. 2139 if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) || 2140 Matrix->checkInterference(LI, PhysReg))) 2141 continue; 2142 2143 LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << '(' << printReg(CurrPhys, TRI) 2144 << ") is recolorable.\n"); 2145 2146 // Gather the hint info. 2147 Info.clear(); 2148 collectHintInfo(Reg, Info); 2149 // Check if recoloring the live-range will increase the cost of the 2150 // non-identity copies. 2151 if (CurrPhys != PhysReg) { 2152 LLVM_DEBUG(dbgs() << "Checking profitability:\n"); 2153 BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys); 2154 BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg); 2155 LLVM_DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency() 2156 << "\nNew Cost: " << NewCopiesCost.getFrequency() 2157 << '\n'); 2158 if (OldCopiesCost < NewCopiesCost) { 2159 LLVM_DEBUG(dbgs() << "=> Not profitable.\n"); 2160 continue; 2161 } 2162 // At this point, the cost is either cheaper or equal. If it is 2163 // equal, we consider this is profitable because it may expose 2164 // more recoloring opportunities. 2165 LLVM_DEBUG(dbgs() << "=> Profitable.\n"); 2166 // Recolor the live-range. 2167 Matrix->unassign(LI); 2168 Matrix->assign(LI, PhysReg); 2169 } 2170 // Push all copy-related live-ranges to keep reconciling the broken 2171 // hints. 2172 for (const HintInfo &HI : Info) { 2173 if (Visited.insert(HI.Reg).second) 2174 RecoloringCandidates.push_back(HI.Reg); 2175 } 2176 } while (!RecoloringCandidates.empty()); 2177 } 2178 2179 /// Try to recolor broken hints. 2180 /// Broken hints may be repaired by recoloring when an evicted variable 2181 /// freed up a register for a larger live-range. 2182 /// Consider the following example: 2183 /// BB1: 2184 /// a = 2185 /// b = 2186 /// BB2: 2187 /// ... 2188 /// = b 2189 /// = a 2190 /// Let us assume b gets split: 2191 /// BB1: 2192 /// a = 2193 /// b = 2194 /// BB2: 2195 /// c = b 2196 /// ... 2197 /// d = c 2198 /// = d 2199 /// = a 2200 /// Because of how the allocation work, b, c, and d may be assigned different 2201 /// colors. Now, if a gets evicted later: 2202 /// BB1: 2203 /// a = 2204 /// st a, SpillSlot 2205 /// b = 2206 /// BB2: 2207 /// c = b 2208 /// ... 2209 /// d = c 2210 /// = d 2211 /// e = ld SpillSlot 2212 /// = e 2213 /// This is likely that we can assign the same register for b, c, and d, 2214 /// getting rid of 2 copies. 2215 void RAGreedy::tryHintsRecoloring() { 2216 for (const LiveInterval *LI : SetOfBrokenHints) { 2217 assert(Register::isVirtualRegister(LI->reg()) && 2218 "Recoloring is possible only for virtual registers"); 2219 // Some dead defs may be around (e.g., because of debug uses). 2220 // Ignore those. 2221 if (!VRM->hasPhys(LI->reg())) 2222 continue; 2223 tryHintRecoloring(*LI); 2224 } 2225 } 2226 2227 MCRegister RAGreedy::selectOrSplitImpl(const LiveInterval &VirtReg, 2228 SmallVectorImpl<Register> &NewVRegs, 2229 SmallVirtRegSet &FixedRegisters, 2230 RecoloringStack &RecolorStack, 2231 unsigned Depth) { 2232 uint8_t CostPerUseLimit = uint8_t(~0u); 2233 // First try assigning a free register. 2234 auto Order = 2235 AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix); 2236 if (MCRegister PhysReg = 2237 tryAssign(VirtReg, Order, NewVRegs, FixedRegisters)) { 2238 // If VirtReg got an assignment, the eviction info is no longer relevant. 2239 LastEvicted.clearEvicteeInfo(VirtReg.reg()); 2240 // When NewVRegs is not empty, we may have made decisions such as evicting 2241 // a virtual register, go with the earlier decisions and use the physical 2242 // register. 2243 if (CSRCost.getFrequency() && 2244 EvictAdvisor->isUnusedCalleeSavedReg(PhysReg) && NewVRegs.empty()) { 2245 MCRegister CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg, 2246 CostPerUseLimit, NewVRegs); 2247 if (CSRReg || !NewVRegs.empty()) 2248 // Return now if we decide to use a CSR or create new vregs due to 2249 // pre-splitting. 2250 return CSRReg; 2251 } else 2252 return PhysReg; 2253 } 2254 2255 LiveRangeStage Stage = ExtraInfo->getStage(VirtReg); 2256 LLVM_DEBUG(dbgs() << StageName[Stage] << " Cascade " 2257 << ExtraInfo->getCascade(VirtReg.reg()) << '\n'); 2258 2259 // Try to evict a less worthy live range, but only for ranges from the primary 2260 // queue. The RS_Split ranges already failed to do this, and they should not 2261 // get a second chance until they have been split. 2262 if (Stage != RS_Split) 2263 if (Register PhysReg = 2264 tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit, 2265 FixedRegisters)) { 2266 Register Hint = MRI->getSimpleHint(VirtReg.reg()); 2267 // If VirtReg has a hint and that hint is broken record this 2268 // virtual register as a recoloring candidate for broken hint. 2269 // Indeed, since we evicted a variable in its neighborhood it is 2270 // likely we can at least partially recolor some of the 2271 // copy-related live-ranges. 2272 if (Hint && Hint != PhysReg) 2273 SetOfBrokenHints.insert(&VirtReg); 2274 // If VirtReg eviction someone, the eviction info for it as an evictee is 2275 // no longer relevant. 2276 LastEvicted.clearEvicteeInfo(VirtReg.reg()); 2277 return PhysReg; 2278 } 2279 2280 assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs"); 2281 2282 // The first time we see a live range, don't try to split or spill. 2283 // Wait until the second time, when all smaller ranges have been allocated. 2284 // This gives a better picture of the interference to split around. 2285 if (Stage < RS_Split) { 2286 ExtraInfo->setStage(VirtReg, RS_Split); 2287 LLVM_DEBUG(dbgs() << "wait for second round\n"); 2288 NewVRegs.push_back(VirtReg.reg()); 2289 return 0; 2290 } 2291 2292 if (Stage < RS_Spill) { 2293 // Try splitting VirtReg or interferences. 2294 unsigned NewVRegSizeBefore = NewVRegs.size(); 2295 Register PhysReg = trySplit(VirtReg, Order, NewVRegs, FixedRegisters); 2296 if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore)) { 2297 // If VirtReg got split, the eviction info is no longer relevant. 2298 LastEvicted.clearEvicteeInfo(VirtReg.reg()); 2299 return PhysReg; 2300 } 2301 } 2302 2303 // If we couldn't allocate a register from spilling, there is probably some 2304 // invalid inline assembly. The base class will report it. 2305 if (Stage >= RS_Done || !VirtReg.isSpillable()) { 2306 return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters, 2307 RecolorStack, Depth); 2308 } 2309 2310 // Finally spill VirtReg itself. 2311 if ((EnableDeferredSpilling || 2312 TRI->shouldUseDeferredSpillingForVirtReg(*MF, VirtReg)) && 2313 ExtraInfo->getStage(VirtReg) < RS_Memory) { 2314 // TODO: This is experimental and in particular, we do not model 2315 // the live range splitting done by spilling correctly. 2316 // We would need a deep integration with the spiller to do the 2317 // right thing here. Anyway, that is still good for early testing. 2318 ExtraInfo->setStage(VirtReg, RS_Memory); 2319 LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n"); 2320 NewVRegs.push_back(VirtReg.reg()); 2321 } else { 2322 NamedRegionTimer T("spill", "Spiller", TimerGroupName, 2323 TimerGroupDescription, TimePassesIsEnabled); 2324 LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2325 spiller().spill(LRE); 2326 ExtraInfo->setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done); 2327 2328 // Tell LiveDebugVariables about the new ranges. Ranges not being covered by 2329 // the new regs are kept in LDV (still mapping to the old register), until 2330 // we rewrite spilled locations in LDV at a later stage. 2331 DebugVars->splitRegister(VirtReg.reg(), LRE.regs(), *LIS); 2332 2333 if (VerifyEnabled) 2334 MF->verify(this, "After spilling"); 2335 } 2336 2337 // The live virtual register requesting allocation was spilled, so tell 2338 // the caller not to allocate anything during this round. 2339 return 0; 2340 } 2341 2342 void RAGreedy::RAGreedyStats::report(MachineOptimizationRemarkMissed &R) { 2343 using namespace ore; 2344 if (Spills) { 2345 R << NV("NumSpills", Spills) << " spills "; 2346 R << NV("TotalSpillsCost", SpillsCost) << " total spills cost "; 2347 } 2348 if (FoldedSpills) { 2349 R << NV("NumFoldedSpills", FoldedSpills) << " folded spills "; 2350 R << NV("TotalFoldedSpillsCost", FoldedSpillsCost) 2351 << " total folded spills cost "; 2352 } 2353 if (Reloads) { 2354 R << NV("NumReloads", Reloads) << " reloads "; 2355 R << NV("TotalReloadsCost", ReloadsCost) << " total reloads cost "; 2356 } 2357 if (FoldedReloads) { 2358 R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads "; 2359 R << NV("TotalFoldedReloadsCost", FoldedReloadsCost) 2360 << " total folded reloads cost "; 2361 } 2362 if (ZeroCostFoldedReloads) 2363 R << NV("NumZeroCostFoldedReloads", ZeroCostFoldedReloads) 2364 << " zero cost folded reloads "; 2365 if (Copies) { 2366 R << NV("NumVRCopies", Copies) << " virtual registers copies "; 2367 R << NV("TotalCopiesCost", CopiesCost) << " total copies cost "; 2368 } 2369 } 2370 2371 RAGreedy::RAGreedyStats RAGreedy::computeStats(MachineBasicBlock &MBB) { 2372 RAGreedyStats Stats; 2373 const MachineFrameInfo &MFI = MF->getFrameInfo(); 2374 int FI; 2375 2376 auto isSpillSlotAccess = [&MFI](const MachineMemOperand *A) { 2377 return MFI.isSpillSlotObjectIndex(cast<FixedStackPseudoSourceValue>( 2378 A->getPseudoValue())->getFrameIndex()); 2379 }; 2380 auto isPatchpointInstr = [](const MachineInstr &MI) { 2381 return MI.getOpcode() == TargetOpcode::PATCHPOINT || 2382 MI.getOpcode() == TargetOpcode::STACKMAP || 2383 MI.getOpcode() == TargetOpcode::STATEPOINT; 2384 }; 2385 for (MachineInstr &MI : MBB) { 2386 if (MI.isCopy()) { 2387 MachineOperand &Dest = MI.getOperand(0); 2388 MachineOperand &Src = MI.getOperand(1); 2389 if (Dest.isReg() && Src.isReg() && Dest.getReg().isVirtual() && 2390 Src.getReg().isVirtual()) 2391 ++Stats.Copies; 2392 continue; 2393 } 2394 2395 SmallVector<const MachineMemOperand *, 2> Accesses; 2396 if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) { 2397 ++Stats.Reloads; 2398 continue; 2399 } 2400 if (TII->isStoreToStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) { 2401 ++Stats.Spills; 2402 continue; 2403 } 2404 if (TII->hasLoadFromStackSlot(MI, Accesses) && 2405 llvm::any_of(Accesses, isSpillSlotAccess)) { 2406 if (!isPatchpointInstr(MI)) { 2407 Stats.FoldedReloads += Accesses.size(); 2408 continue; 2409 } 2410 // For statepoint there may be folded and zero cost folded stack reloads. 2411 std::pair<unsigned, unsigned> NonZeroCostRange = 2412 TII->getPatchpointUnfoldableRange(MI); 2413 SmallSet<unsigned, 16> FoldedReloads; 2414 SmallSet<unsigned, 16> ZeroCostFoldedReloads; 2415 for (unsigned Idx = 0, E = MI.getNumOperands(); Idx < E; ++Idx) { 2416 MachineOperand &MO = MI.getOperand(Idx); 2417 if (!MO.isFI() || !MFI.isSpillSlotObjectIndex(MO.getIndex())) 2418 continue; 2419 if (Idx >= NonZeroCostRange.first && Idx < NonZeroCostRange.second) 2420 FoldedReloads.insert(MO.getIndex()); 2421 else 2422 ZeroCostFoldedReloads.insert(MO.getIndex()); 2423 } 2424 // If stack slot is used in folded reload it is not zero cost then. 2425 for (unsigned Slot : FoldedReloads) 2426 ZeroCostFoldedReloads.erase(Slot); 2427 Stats.FoldedReloads += FoldedReloads.size(); 2428 Stats.ZeroCostFoldedReloads += ZeroCostFoldedReloads.size(); 2429 continue; 2430 } 2431 Accesses.clear(); 2432 if (TII->hasStoreToStackSlot(MI, Accesses) && 2433 llvm::any_of(Accesses, isSpillSlotAccess)) { 2434 Stats.FoldedSpills += Accesses.size(); 2435 } 2436 } 2437 // Set cost of collected statistic by multiplication to relative frequency of 2438 // this basic block. 2439 float RelFreq = MBFI->getBlockFreqRelativeToEntryBlock(&MBB); 2440 Stats.ReloadsCost = RelFreq * Stats.Reloads; 2441 Stats.FoldedReloadsCost = RelFreq * Stats.FoldedReloads; 2442 Stats.SpillsCost = RelFreq * Stats.Spills; 2443 Stats.FoldedSpillsCost = RelFreq * Stats.FoldedSpills; 2444 Stats.CopiesCost = RelFreq * Stats.Copies; 2445 return Stats; 2446 } 2447 2448 RAGreedy::RAGreedyStats RAGreedy::reportStats(MachineLoop *L) { 2449 RAGreedyStats Stats; 2450 2451 // Sum up the spill and reloads in subloops. 2452 for (MachineLoop *SubLoop : *L) 2453 Stats.add(reportStats(SubLoop)); 2454 2455 for (MachineBasicBlock *MBB : L->getBlocks()) 2456 // Handle blocks that were not included in subloops. 2457 if (Loops->getLoopFor(MBB) == L) 2458 Stats.add(computeStats(*MBB)); 2459 2460 if (!Stats.isEmpty()) { 2461 using namespace ore; 2462 2463 ORE->emit([&]() { 2464 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReloadCopies", 2465 L->getStartLoc(), L->getHeader()); 2466 Stats.report(R); 2467 R << "generated in loop"; 2468 return R; 2469 }); 2470 } 2471 return Stats; 2472 } 2473 2474 void RAGreedy::reportStats() { 2475 if (!ORE->allowExtraAnalysis(DEBUG_TYPE)) 2476 return; 2477 RAGreedyStats Stats; 2478 for (MachineLoop *L : *Loops) 2479 Stats.add(reportStats(L)); 2480 // Process non-loop blocks. 2481 for (MachineBasicBlock &MBB : *MF) 2482 if (!Loops->getLoopFor(&MBB)) 2483 Stats.add(computeStats(MBB)); 2484 if (!Stats.isEmpty()) { 2485 using namespace ore; 2486 2487 ORE->emit([&]() { 2488 DebugLoc Loc; 2489 if (auto *SP = MF->getFunction().getSubprogram()) 2490 Loc = DILocation::get(SP->getContext(), SP->getLine(), 1, SP); 2491 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "SpillReloadCopies", Loc, 2492 &MF->front()); 2493 Stats.report(R); 2494 R << "generated in function"; 2495 return R; 2496 }); 2497 } 2498 } 2499 2500 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) { 2501 LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n" 2502 << "********** Function: " << mf.getName() << '\n'); 2503 2504 MF = &mf; 2505 TII = MF->getSubtarget().getInstrInfo(); 2506 2507 if (VerifyEnabled) 2508 MF->verify(this, "Before greedy register allocator"); 2509 2510 RegAllocBase::init(getAnalysis<VirtRegMap>(), 2511 getAnalysis<LiveIntervals>(), 2512 getAnalysis<LiveRegMatrix>()); 2513 Indexes = &getAnalysis<SlotIndexes>(); 2514 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 2515 DomTree = &getAnalysis<MachineDominatorTree>(); 2516 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 2517 Loops = &getAnalysis<MachineLoopInfo>(); 2518 Bundles = &getAnalysis<EdgeBundles>(); 2519 SpillPlacer = &getAnalysis<SpillPlacement>(); 2520 DebugVars = &getAnalysis<LiveDebugVariables>(); 2521 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2522 2523 initializeCSRCost(); 2524 2525 RegCosts = TRI->getRegisterCosts(*MF); 2526 RegClassPriorityTrumpsGlobalness = 2527 GreedyRegClassPriorityTrumpsGlobalness.getNumOccurrences() 2528 ? GreedyRegClassPriorityTrumpsGlobalness 2529 : TRI->regClassPriorityTrumpsGlobalness(*MF); 2530 2531 ExtraInfo.emplace(); 2532 EvictAdvisor = 2533 getAnalysis<RegAllocEvictionAdvisorAnalysis>().getAdvisor(*MF, *this); 2534 2535 VRAI = std::make_unique<VirtRegAuxInfo>(*MF, *LIS, *VRM, *Loops, *MBFI); 2536 SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM, *VRAI)); 2537 2538 VRAI->calculateSpillWeightsAndHints(); 2539 2540 LLVM_DEBUG(LIS->dump()); 2541 2542 SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops)); 2543 SE.reset(new SplitEditor(*SA, *AA, *LIS, *VRM, *DomTree, *MBFI, *VRAI)); 2544 2545 IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI); 2546 GlobalCand.resize(32); // This will grow as needed. 2547 SetOfBrokenHints.clear(); 2548 LastEvicted.clear(); 2549 2550 allocatePhysRegs(); 2551 tryHintsRecoloring(); 2552 2553 if (VerifyEnabled) 2554 MF->verify(this, "Before post optimization"); 2555 postOptimization(); 2556 reportStats(); 2557 2558 releaseMemory(); 2559 return true; 2560 } 2561