1 //===-- RegAllocGreedy.cpp - greedy register allocator --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the RAGreedy function pass for register allocation in 11 // optimized builds. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "regalloc" 16 #include "AllocationOrder.h" 17 #include "InterferenceCache.h" 18 #include "LiveDebugVariables.h" 19 #include "LiveRangeEdit.h" 20 #include "RegAllocBase.h" 21 #include "Spiller.h" 22 #include "SpillPlacement.h" 23 #include "SplitKit.h" 24 #include "VirtRegMap.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Function.h" 28 #include "llvm/PassAnalysisSupport.h" 29 #include "llvm/CodeGen/CalcSpillWeights.h" 30 #include "llvm/CodeGen/EdgeBundles.h" 31 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 32 #include "llvm/CodeGen/LiveStackAnalysis.h" 33 #include "llvm/CodeGen/MachineDominators.h" 34 #include "llvm/CodeGen/MachineFunctionPass.h" 35 #include "llvm/CodeGen/MachineLoopInfo.h" 36 #include "llvm/CodeGen/MachineRegisterInfo.h" 37 #include "llvm/CodeGen/Passes.h" 38 #include "llvm/CodeGen/RegAllocRegistry.h" 39 #include "llvm/Target/TargetOptions.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include "llvm/Support/Timer.h" 45 46 #include <queue> 47 48 using namespace llvm; 49 50 STATISTIC(NumGlobalSplits, "Number of split global live ranges"); 51 STATISTIC(NumLocalSplits, "Number of split local live ranges"); 52 STATISTIC(NumEvicted, "Number of interferences evicted"); 53 54 static cl::opt<SplitEditor::ComplementSpillMode> 55 SplitSpillMode("split-spill-mode", cl::Hidden, 56 cl::desc("Spill mode for splitting live ranges"), 57 cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"), 58 clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"), 59 clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed"), 60 clEnumValEnd), 61 cl::init(SplitEditor::SM_Partition)); 62 63 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator", 64 createGreedyRegisterAllocator); 65 66 namespace { 67 class RAGreedy : public MachineFunctionPass, 68 public RegAllocBase, 69 private LiveRangeEdit::Delegate { 70 71 // context 72 MachineFunction *MF; 73 74 // analyses 75 SlotIndexes *Indexes; 76 LiveStacks *LS; 77 MachineDominatorTree *DomTree; 78 MachineLoopInfo *Loops; 79 EdgeBundles *Bundles; 80 SpillPlacement *SpillPlacer; 81 LiveDebugVariables *DebugVars; 82 83 // state 84 std::auto_ptr<Spiller> SpillerInstance; 85 std::priority_queue<std::pair<unsigned, unsigned> > Queue; 86 unsigned NextCascade; 87 88 // Live ranges pass through a number of stages as we try to allocate them. 89 // Some of the stages may also create new live ranges: 90 // 91 // - Region splitting. 92 // - Per-block splitting. 93 // - Local splitting. 94 // - Spilling. 95 // 96 // Ranges produced by one of the stages skip the previous stages when they are 97 // dequeued. This improves performance because we can skip interference checks 98 // that are unlikely to give any results. It also guarantees that the live 99 // range splitting algorithm terminates, something that is otherwise hard to 100 // ensure. 101 enum LiveRangeStage { 102 /// Newly created live range that has never been queued. 103 RS_New, 104 105 /// Only attempt assignment and eviction. Then requeue as RS_Split. 106 RS_Assign, 107 108 /// Attempt live range splitting if assignment is impossible. 109 RS_Split, 110 111 /// Attempt more aggressive live range splitting that is guaranteed to make 112 /// progress. This is used for split products that may not be making 113 /// progress. 114 RS_Split2, 115 116 /// Live range will be spilled. No more splitting will be attempted. 117 RS_Spill, 118 119 /// There is nothing more we can do to this live range. Abort compilation 120 /// if it can't be assigned. 121 RS_Done 122 }; 123 124 static const char *const StageName[]; 125 126 // RegInfo - Keep additional information about each live range. 127 struct RegInfo { 128 LiveRangeStage Stage; 129 130 // Cascade - Eviction loop prevention. See canEvictInterference(). 131 unsigned Cascade; 132 133 RegInfo() : Stage(RS_New), Cascade(0) {} 134 }; 135 136 IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo; 137 138 LiveRangeStage getStage(const LiveInterval &VirtReg) const { 139 return ExtraRegInfo[VirtReg.reg].Stage; 140 } 141 142 void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) { 143 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 144 ExtraRegInfo[VirtReg.reg].Stage = Stage; 145 } 146 147 template<typename Iterator> 148 void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) { 149 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 150 for (;Begin != End; ++Begin) { 151 unsigned Reg = (*Begin)->reg; 152 if (ExtraRegInfo[Reg].Stage == RS_New) 153 ExtraRegInfo[Reg].Stage = NewStage; 154 } 155 } 156 157 /// Cost of evicting interference. 158 struct EvictionCost { 159 unsigned BrokenHints; ///< Total number of broken hints. 160 float MaxWeight; ///< Maximum spill weight evicted. 161 162 EvictionCost(unsigned B = 0) : BrokenHints(B), MaxWeight(0) {} 163 164 bool operator<(const EvictionCost &O) const { 165 if (BrokenHints != O.BrokenHints) 166 return BrokenHints < O.BrokenHints; 167 return MaxWeight < O.MaxWeight; 168 } 169 }; 170 171 // splitting state. 172 std::auto_ptr<SplitAnalysis> SA; 173 std::auto_ptr<SplitEditor> SE; 174 175 /// Cached per-block interference maps 176 InterferenceCache IntfCache; 177 178 /// All basic blocks where the current register has uses. 179 SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints; 180 181 /// Global live range splitting candidate info. 182 struct GlobalSplitCandidate { 183 // Register intended for assignment, or 0. 184 unsigned PhysReg; 185 186 // SplitKit interval index for this candidate. 187 unsigned IntvIdx; 188 189 // Interference for PhysReg. 190 InterferenceCache::Cursor Intf; 191 192 // Bundles where this candidate should be live. 193 BitVector LiveBundles; 194 SmallVector<unsigned, 8> ActiveBlocks; 195 196 void reset(InterferenceCache &Cache, unsigned Reg) { 197 PhysReg = Reg; 198 IntvIdx = 0; 199 Intf.setPhysReg(Cache, Reg); 200 LiveBundles.clear(); 201 ActiveBlocks.clear(); 202 } 203 204 // Set B[i] = C for every live bundle where B[i] was NoCand. 205 unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) { 206 unsigned Count = 0; 207 for (int i = LiveBundles.find_first(); i >= 0; 208 i = LiveBundles.find_next(i)) 209 if (B[i] == NoCand) { 210 B[i] = C; 211 Count++; 212 } 213 return Count; 214 } 215 }; 216 217 /// Candidate info for for each PhysReg in AllocationOrder. 218 /// This vector never shrinks, but grows to the size of the largest register 219 /// class. 220 SmallVector<GlobalSplitCandidate, 32> GlobalCand; 221 222 enum { NoCand = ~0u }; 223 224 /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to 225 /// NoCand which indicates the stack interval. 226 SmallVector<unsigned, 32> BundleCand; 227 228 public: 229 RAGreedy(); 230 231 /// Return the pass name. 232 virtual const char* getPassName() const { 233 return "Greedy Register Allocator"; 234 } 235 236 /// RAGreedy analysis usage. 237 virtual void getAnalysisUsage(AnalysisUsage &AU) const; 238 virtual void releaseMemory(); 239 virtual Spiller &spiller() { return *SpillerInstance; } 240 virtual void enqueue(LiveInterval *LI); 241 virtual LiveInterval *dequeue(); 242 virtual unsigned selectOrSplit(LiveInterval&, 243 SmallVectorImpl<LiveInterval*>&); 244 245 /// Perform register allocation. 246 virtual bool runOnMachineFunction(MachineFunction &mf); 247 248 static char ID; 249 250 private: 251 void LRE_WillEraseInstruction(MachineInstr*); 252 bool LRE_CanEraseVirtReg(unsigned); 253 void LRE_WillShrinkVirtReg(unsigned); 254 void LRE_DidCloneVirtReg(unsigned, unsigned); 255 256 float calcSpillCost(); 257 bool addSplitConstraints(InterferenceCache::Cursor, float&); 258 void addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>); 259 void growRegion(GlobalSplitCandidate &Cand); 260 float calcGlobalSplitCost(GlobalSplitCandidate&); 261 bool calcCompactRegion(GlobalSplitCandidate&); 262 void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>); 263 void calcGapWeights(unsigned, SmallVectorImpl<float>&); 264 bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool); 265 bool canEvictInterference(LiveInterval&, unsigned, bool, EvictionCost&); 266 void evictInterference(LiveInterval&, unsigned, 267 SmallVectorImpl<LiveInterval*>&); 268 269 unsigned tryAssign(LiveInterval&, AllocationOrder&, 270 SmallVectorImpl<LiveInterval*>&); 271 unsigned tryEvict(LiveInterval&, AllocationOrder&, 272 SmallVectorImpl<LiveInterval*>&, unsigned = ~0u); 273 unsigned tryRegionSplit(LiveInterval&, AllocationOrder&, 274 SmallVectorImpl<LiveInterval*>&); 275 unsigned tryBlockSplit(LiveInterval&, AllocationOrder&, 276 SmallVectorImpl<LiveInterval*>&); 277 unsigned tryLocalSplit(LiveInterval&, AllocationOrder&, 278 SmallVectorImpl<LiveInterval*>&); 279 unsigned trySplit(LiveInterval&, AllocationOrder&, 280 SmallVectorImpl<LiveInterval*>&); 281 }; 282 } // end anonymous namespace 283 284 char RAGreedy::ID = 0; 285 286 #ifndef NDEBUG 287 const char *const RAGreedy::StageName[] = { 288 "RS_New", 289 "RS_Assign", 290 "RS_Split", 291 "RS_Split2", 292 "RS_Spill", 293 "RS_Done" 294 }; 295 #endif 296 297 // Hysteresis to use when comparing floats. 298 // This helps stabilize decisions based on float comparisons. 299 const float Hysteresis = 0.98f; 300 301 302 FunctionPass* llvm::createGreedyRegisterAllocator() { 303 return new RAGreedy(); 304 } 305 306 RAGreedy::RAGreedy(): MachineFunctionPass(ID) { 307 initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry()); 308 initializeSlotIndexesPass(*PassRegistry::getPassRegistry()); 309 initializeLiveIntervalsPass(*PassRegistry::getPassRegistry()); 310 initializeSlotIndexesPass(*PassRegistry::getPassRegistry()); 311 initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry()); 312 initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry()); 313 initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry()); 314 initializeLiveStacksPass(*PassRegistry::getPassRegistry()); 315 initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry()); 316 initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry()); 317 initializeVirtRegMapPass(*PassRegistry::getPassRegistry()); 318 initializeEdgeBundlesPass(*PassRegistry::getPassRegistry()); 319 initializeSpillPlacementPass(*PassRegistry::getPassRegistry()); 320 } 321 322 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const { 323 AU.setPreservesCFG(); 324 AU.addRequired<AliasAnalysis>(); 325 AU.addPreserved<AliasAnalysis>(); 326 AU.addRequired<LiveIntervals>(); 327 AU.addRequired<SlotIndexes>(); 328 AU.addPreserved<SlotIndexes>(); 329 AU.addRequired<LiveDebugVariables>(); 330 AU.addPreserved<LiveDebugVariables>(); 331 if (StrongPHIElim) 332 AU.addRequiredID(StrongPHIEliminationID); 333 AU.addRequiredTransitiveID(RegisterCoalescerPassID); 334 AU.addRequired<CalculateSpillWeights>(); 335 AU.addRequired<LiveStacks>(); 336 AU.addPreserved<LiveStacks>(); 337 AU.addRequired<MachineDominatorTree>(); 338 AU.addPreserved<MachineDominatorTree>(); 339 AU.addRequired<MachineLoopInfo>(); 340 AU.addPreserved<MachineLoopInfo>(); 341 AU.addRequired<VirtRegMap>(); 342 AU.addPreserved<VirtRegMap>(); 343 AU.addRequired<EdgeBundles>(); 344 AU.addRequired<SpillPlacement>(); 345 MachineFunctionPass::getAnalysisUsage(AU); 346 } 347 348 349 //===----------------------------------------------------------------------===// 350 // LiveRangeEdit delegate methods 351 //===----------------------------------------------------------------------===// 352 353 void RAGreedy::LRE_WillEraseInstruction(MachineInstr *MI) { 354 // LRE itself will remove from SlotIndexes and parent basic block. 355 VRM->RemoveMachineInstrFromMaps(MI); 356 } 357 358 bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) { 359 if (unsigned PhysReg = VRM->getPhys(VirtReg)) { 360 unassign(LIS->getInterval(VirtReg), PhysReg); 361 return true; 362 } 363 // Unassigned virtreg is probably in the priority queue. 364 // RegAllocBase will erase it after dequeueing. 365 return false; 366 } 367 368 void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) { 369 unsigned PhysReg = VRM->getPhys(VirtReg); 370 if (!PhysReg) 371 return; 372 373 // Register is assigned, put it back on the queue for reassignment. 374 LiveInterval &LI = LIS->getInterval(VirtReg); 375 unassign(LI, PhysReg); 376 enqueue(&LI); 377 } 378 379 void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) { 380 // LRE may clone a virtual register because dead code elimination causes it to 381 // be split into connected components. The new components are much smaller 382 // than the original, so they should get a new chance at being assigned. 383 // same stage as the parent. 384 ExtraRegInfo[Old].Stage = RS_Assign; 385 ExtraRegInfo.grow(New); 386 ExtraRegInfo[New] = ExtraRegInfo[Old]; 387 } 388 389 void RAGreedy::releaseMemory() { 390 SpillerInstance.reset(0); 391 ExtraRegInfo.clear(); 392 GlobalCand.clear(); 393 RegAllocBase::releaseMemory(); 394 } 395 396 void RAGreedy::enqueue(LiveInterval *LI) { 397 // Prioritize live ranges by size, assigning larger ranges first. 398 // The queue holds (size, reg) pairs. 399 const unsigned Size = LI->getSize(); 400 const unsigned Reg = LI->reg; 401 assert(TargetRegisterInfo::isVirtualRegister(Reg) && 402 "Can only enqueue virtual registers"); 403 unsigned Prio; 404 405 ExtraRegInfo.grow(Reg); 406 if (ExtraRegInfo[Reg].Stage == RS_New) 407 ExtraRegInfo[Reg].Stage = RS_Assign; 408 409 if (ExtraRegInfo[Reg].Stage == RS_Split) { 410 // Unsplit ranges that couldn't be allocated immediately are deferred until 411 // everything else has been allocated. 412 Prio = Size; 413 } else { 414 // Everything is allocated in long->short order. Long ranges that don't fit 415 // should be spilled (or split) ASAP so they don't create interference. 416 Prio = (1u << 31) + Size; 417 418 // Boost ranges that have a physical register hint. 419 if (TargetRegisterInfo::isPhysicalRegister(VRM->getRegAllocPref(Reg))) 420 Prio |= (1u << 30); 421 } 422 423 Queue.push(std::make_pair(Prio, Reg)); 424 } 425 426 LiveInterval *RAGreedy::dequeue() { 427 if (Queue.empty()) 428 return 0; 429 LiveInterval *LI = &LIS->getInterval(Queue.top().second); 430 Queue.pop(); 431 return LI; 432 } 433 434 435 //===----------------------------------------------------------------------===// 436 // Direct Assignment 437 //===----------------------------------------------------------------------===// 438 439 /// tryAssign - Try to assign VirtReg to an available register. 440 unsigned RAGreedy::tryAssign(LiveInterval &VirtReg, 441 AllocationOrder &Order, 442 SmallVectorImpl<LiveInterval*> &NewVRegs) { 443 Order.rewind(); 444 unsigned PhysReg; 445 while ((PhysReg = Order.next())) 446 if (!checkPhysRegInterference(VirtReg, PhysReg)) 447 break; 448 if (!PhysReg || Order.isHint(PhysReg)) 449 return PhysReg; 450 451 // PhysReg is available, but there may be a better choice. 452 453 // If we missed a simple hint, try to cheaply evict interference from the 454 // preferred register. 455 if (unsigned Hint = MRI->getSimpleHint(VirtReg.reg)) 456 if (Order.isHint(Hint)) { 457 DEBUG(dbgs() << "missed hint " << PrintReg(Hint, TRI) << '\n'); 458 EvictionCost MaxCost(1); 459 if (canEvictInterference(VirtReg, Hint, true, MaxCost)) { 460 evictInterference(VirtReg, Hint, NewVRegs); 461 return Hint; 462 } 463 } 464 465 // Try to evict interference from a cheaper alternative. 466 unsigned Cost = TRI->getCostPerUse(PhysReg); 467 468 // Most registers have 0 additional cost. 469 if (!Cost) 470 return PhysReg; 471 472 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is available at cost " << Cost 473 << '\n'); 474 unsigned CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost); 475 return CheapReg ? CheapReg : PhysReg; 476 } 477 478 479 //===----------------------------------------------------------------------===// 480 // Interference eviction 481 //===----------------------------------------------------------------------===// 482 483 /// shouldEvict - determine if A should evict the assigned live range B. The 484 /// eviction policy defined by this function together with the allocation order 485 /// defined by enqueue() decides which registers ultimately end up being split 486 /// and spilled. 487 /// 488 /// Cascade numbers are used to prevent infinite loops if this function is a 489 /// cyclic relation. 490 /// 491 /// @param A The live range to be assigned. 492 /// @param IsHint True when A is about to be assigned to its preferred 493 /// register. 494 /// @param B The live range to be evicted. 495 /// @param BreaksHint True when B is already assigned to its preferred register. 496 bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint, 497 LiveInterval &B, bool BreaksHint) { 498 bool CanSplit = getStage(B) < RS_Spill; 499 500 // Be fairly aggressive about following hints as long as the evictee can be 501 // split. 502 if (CanSplit && IsHint && !BreaksHint) 503 return true; 504 505 return A.weight > B.weight; 506 } 507 508 /// canEvictInterference - Return true if all interferences between VirtReg and 509 /// PhysReg can be evicted. When OnlyCheap is set, don't do anything 510 /// 511 /// @param VirtReg Live range that is about to be assigned. 512 /// @param PhysReg Desired register for assignment. 513 /// @prarm IsHint True when PhysReg is VirtReg's preferred register. 514 /// @param MaxCost Only look for cheaper candidates and update with new cost 515 /// when returning true. 516 /// @returns True when interference can be evicted cheaper than MaxCost. 517 bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg, 518 bool IsHint, EvictionCost &MaxCost) { 519 // Find VirtReg's cascade number. This will be unassigned if VirtReg was never 520 // involved in an eviction before. If a cascade number was assigned, deny 521 // evicting anything with the same or a newer cascade number. This prevents 522 // infinite eviction loops. 523 // 524 // This works out so a register without a cascade number is allowed to evict 525 // anything, and it can be evicted by anything. 526 unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade; 527 if (!Cascade) 528 Cascade = NextCascade; 529 530 EvictionCost Cost; 531 for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) { 532 LiveIntervalUnion::Query &Q = query(VirtReg, *AliasI); 533 // If there is 10 or more interferences, chances are one is heavier. 534 if (Q.collectInterferingVRegs(10) >= 10) 535 return false; 536 537 // Check if any interfering live range is heavier than MaxWeight. 538 for (unsigned i = Q.interferingVRegs().size(); i; --i) { 539 LiveInterval *Intf = Q.interferingVRegs()[i - 1]; 540 if (TargetRegisterInfo::isPhysicalRegister(Intf->reg)) 541 return false; 542 // Never evict spill products. They cannot split or spill. 543 if (getStage(*Intf) == RS_Done) 544 return false; 545 // Once a live range becomes small enough, it is urgent that we find a 546 // register for it. This is indicated by an infinite spill weight. These 547 // urgent live ranges get to evict almost anything. 548 bool Urgent = !VirtReg.isSpillable() && Intf->isSpillable(); 549 // Only evict older cascades or live ranges without a cascade. 550 unsigned IntfCascade = ExtraRegInfo[Intf->reg].Cascade; 551 if (Cascade <= IntfCascade) { 552 if (!Urgent) 553 return false; 554 // We permit breaking cascades for urgent evictions. It should be the 555 // last resort, though, so make it really expensive. 556 Cost.BrokenHints += 10; 557 } 558 // Would this break a satisfied hint? 559 bool BreaksHint = VRM->hasPreferredPhys(Intf->reg); 560 // Update eviction cost. 561 Cost.BrokenHints += BreaksHint; 562 Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight); 563 // Abort if this would be too expensive. 564 if (!(Cost < MaxCost)) 565 return false; 566 // Finally, apply the eviction policy for non-urgent evictions. 567 if (!Urgent && !shouldEvict(VirtReg, IsHint, *Intf, BreaksHint)) 568 return false; 569 } 570 } 571 MaxCost = Cost; 572 return true; 573 } 574 575 /// evictInterference - Evict any interferring registers that prevent VirtReg 576 /// from being assigned to Physreg. This assumes that canEvictInterference 577 /// returned true. 578 void RAGreedy::evictInterference(LiveInterval &VirtReg, unsigned PhysReg, 579 SmallVectorImpl<LiveInterval*> &NewVRegs) { 580 // Make sure that VirtReg has a cascade number, and assign that cascade 581 // number to every evicted register. These live ranges than then only be 582 // evicted by a newer cascade, preventing infinite loops. 583 unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade; 584 if (!Cascade) 585 Cascade = ExtraRegInfo[VirtReg.reg].Cascade = NextCascade++; 586 587 DEBUG(dbgs() << "evicting " << PrintReg(PhysReg, TRI) 588 << " interference: Cascade " << Cascade << '\n'); 589 for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) { 590 LiveIntervalUnion::Query &Q = query(VirtReg, *AliasI); 591 assert(Q.seenAllInterferences() && "Didn't check all interfererences."); 592 for (unsigned i = 0, e = Q.interferingVRegs().size(); i != e; ++i) { 593 LiveInterval *Intf = Q.interferingVRegs()[i]; 594 unassign(*Intf, VRM->getPhys(Intf->reg)); 595 assert((ExtraRegInfo[Intf->reg].Cascade < Cascade || 596 VirtReg.isSpillable() < Intf->isSpillable()) && 597 "Cannot decrease cascade number, illegal eviction"); 598 ExtraRegInfo[Intf->reg].Cascade = Cascade; 599 ++NumEvicted; 600 NewVRegs.push_back(Intf); 601 } 602 } 603 } 604 605 /// tryEvict - Try to evict all interferences for a physreg. 606 /// @param VirtReg Currently unassigned virtual register. 607 /// @param Order Physregs to try. 608 /// @return Physreg to assign VirtReg, or 0. 609 unsigned RAGreedy::tryEvict(LiveInterval &VirtReg, 610 AllocationOrder &Order, 611 SmallVectorImpl<LiveInterval*> &NewVRegs, 612 unsigned CostPerUseLimit) { 613 NamedRegionTimer T("Evict", TimerGroupName, TimePassesIsEnabled); 614 615 // Keep track of the cheapest interference seen so far. 616 EvictionCost BestCost(~0u); 617 unsigned BestPhys = 0; 618 619 // When we are just looking for a reduced cost per use, don't break any 620 // hints, and only evict smaller spill weights. 621 if (CostPerUseLimit < ~0u) { 622 BestCost.BrokenHints = 0; 623 BestCost.MaxWeight = VirtReg.weight; 624 } 625 626 Order.rewind(); 627 while (unsigned PhysReg = Order.next()) { 628 if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit) 629 continue; 630 // The first use of a callee-saved register in a function has cost 1. 631 // Don't start using a CSR when the CostPerUseLimit is low. 632 if (CostPerUseLimit == 1) 633 if (unsigned CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg)) 634 if (!MRI->isPhysRegUsed(CSR)) { 635 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " would clobber CSR " 636 << PrintReg(CSR, TRI) << '\n'); 637 continue; 638 } 639 640 if (!canEvictInterference(VirtReg, PhysReg, false, BestCost)) 641 continue; 642 643 // Best so far. 644 BestPhys = PhysReg; 645 646 // Stop if the hint can be used. 647 if (Order.isHint(PhysReg)) 648 break; 649 } 650 651 if (!BestPhys) 652 return 0; 653 654 evictInterference(VirtReg, BestPhys, NewVRegs); 655 return BestPhys; 656 } 657 658 659 //===----------------------------------------------------------------------===// 660 // Region Splitting 661 //===----------------------------------------------------------------------===// 662 663 /// addSplitConstraints - Fill out the SplitConstraints vector based on the 664 /// interference pattern in Physreg and its aliases. Add the constraints to 665 /// SpillPlacement and return the static cost of this split in Cost, assuming 666 /// that all preferences in SplitConstraints are met. 667 /// Return false if there are no bundles with positive bias. 668 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf, 669 float &Cost) { 670 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 671 672 // Reset interference dependent info. 673 SplitConstraints.resize(UseBlocks.size()); 674 float StaticCost = 0; 675 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 676 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 677 SpillPlacement::BlockConstraint &BC = SplitConstraints[i]; 678 679 BC.Number = BI.MBB->getNumber(); 680 Intf.moveToBlock(BC.Number); 681 BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare; 682 BC.Exit = BI.LiveOut ? SpillPlacement::PrefReg : SpillPlacement::DontCare; 683 BC.ChangesValue = BI.FirstDef; 684 685 if (!Intf.hasInterference()) 686 continue; 687 688 // Number of spill code instructions to insert. 689 unsigned Ins = 0; 690 691 // Interference for the live-in value. 692 if (BI.LiveIn) { 693 if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) 694 BC.Entry = SpillPlacement::MustSpill, ++Ins; 695 else if (Intf.first() < BI.FirstInstr) 696 BC.Entry = SpillPlacement::PrefSpill, ++Ins; 697 else if (Intf.first() < BI.LastInstr) 698 ++Ins; 699 } 700 701 // Interference for the live-out value. 702 if (BI.LiveOut) { 703 if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) 704 BC.Exit = SpillPlacement::MustSpill, ++Ins; 705 else if (Intf.last() > BI.LastInstr) 706 BC.Exit = SpillPlacement::PrefSpill, ++Ins; 707 else if (Intf.last() > BI.FirstInstr) 708 ++Ins; 709 } 710 711 // Accumulate the total frequency of inserted spill code. 712 if (Ins) 713 StaticCost += Ins * SpillPlacer->getBlockFrequency(BC.Number); 714 } 715 Cost = StaticCost; 716 717 // Add constraints for use-blocks. Note that these are the only constraints 718 // that may add a positive bias, it is downhill from here. 719 SpillPlacer->addConstraints(SplitConstraints); 720 return SpillPlacer->scanActiveBundles(); 721 } 722 723 724 /// addThroughConstraints - Add constraints and links to SpillPlacer from the 725 /// live-through blocks in Blocks. 726 void RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf, 727 ArrayRef<unsigned> Blocks) { 728 const unsigned GroupSize = 8; 729 SpillPlacement::BlockConstraint BCS[GroupSize]; 730 unsigned TBS[GroupSize]; 731 unsigned B = 0, T = 0; 732 733 for (unsigned i = 0; i != Blocks.size(); ++i) { 734 unsigned Number = Blocks[i]; 735 Intf.moveToBlock(Number); 736 737 if (!Intf.hasInterference()) { 738 assert(T < GroupSize && "Array overflow"); 739 TBS[T] = Number; 740 if (++T == GroupSize) { 741 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 742 T = 0; 743 } 744 continue; 745 } 746 747 assert(B < GroupSize && "Array overflow"); 748 BCS[B].Number = Number; 749 750 // Interference for the live-in value. 751 if (Intf.first() <= Indexes->getMBBStartIdx(Number)) 752 BCS[B].Entry = SpillPlacement::MustSpill; 753 else 754 BCS[B].Entry = SpillPlacement::PrefSpill; 755 756 // Interference for the live-out value. 757 if (Intf.last() >= SA->getLastSplitPoint(Number)) 758 BCS[B].Exit = SpillPlacement::MustSpill; 759 else 760 BCS[B].Exit = SpillPlacement::PrefSpill; 761 762 if (++B == GroupSize) { 763 ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B); 764 SpillPlacer->addConstraints(Array); 765 B = 0; 766 } 767 } 768 769 ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B); 770 SpillPlacer->addConstraints(Array); 771 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 772 } 773 774 void RAGreedy::growRegion(GlobalSplitCandidate &Cand) { 775 // Keep track of through blocks that have not been added to SpillPlacer. 776 BitVector Todo = SA->getThroughBlocks(); 777 SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks; 778 unsigned AddedTo = 0; 779 #ifndef NDEBUG 780 unsigned Visited = 0; 781 #endif 782 783 for (;;) { 784 ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive(); 785 // Find new through blocks in the periphery of PrefRegBundles. 786 for (int i = 0, e = NewBundles.size(); i != e; ++i) { 787 unsigned Bundle = NewBundles[i]; 788 // Look at all blocks connected to Bundle in the full graph. 789 ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle); 790 for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end(); 791 I != E; ++I) { 792 unsigned Block = *I; 793 if (!Todo.test(Block)) 794 continue; 795 Todo.reset(Block); 796 // This is a new through block. Add it to SpillPlacer later. 797 ActiveBlocks.push_back(Block); 798 #ifndef NDEBUG 799 ++Visited; 800 #endif 801 } 802 } 803 // Any new blocks to add? 804 if (ActiveBlocks.size() == AddedTo) 805 break; 806 807 // Compute through constraints from the interference, or assume that all 808 // through blocks prefer spilling when forming compact regions. 809 ArrayRef<unsigned> NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo); 810 if (Cand.PhysReg) 811 addThroughConstraints(Cand.Intf, NewBlocks); 812 else 813 // Provide a strong negative bias on through blocks to prevent unwanted 814 // liveness on loop backedges. 815 SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true); 816 AddedTo = ActiveBlocks.size(); 817 818 // Perhaps iterating can enable more bundles? 819 SpillPlacer->iterate(); 820 } 821 DEBUG(dbgs() << ", v=" << Visited); 822 } 823 824 /// calcCompactRegion - Compute the set of edge bundles that should be live 825 /// when splitting the current live range into compact regions. Compact 826 /// regions can be computed without looking at interference. They are the 827 /// regions formed by removing all the live-through blocks from the live range. 828 /// 829 /// Returns false if the current live range is already compact, or if the 830 /// compact regions would form single block regions anyway. 831 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) { 832 // Without any through blocks, the live range is already compact. 833 if (!SA->getNumThroughBlocks()) 834 return false; 835 836 // Compact regions don't correspond to any physreg. 837 Cand.reset(IntfCache, 0); 838 839 DEBUG(dbgs() << "Compact region bundles"); 840 841 // Use the spill placer to determine the live bundles. GrowRegion pretends 842 // that all the through blocks have interference when PhysReg is unset. 843 SpillPlacer->prepare(Cand.LiveBundles); 844 845 // The static split cost will be zero since Cand.Intf reports no interference. 846 float Cost; 847 if (!addSplitConstraints(Cand.Intf, Cost)) { 848 DEBUG(dbgs() << ", none.\n"); 849 return false; 850 } 851 852 growRegion(Cand); 853 SpillPlacer->finish(); 854 855 if (!Cand.LiveBundles.any()) { 856 DEBUG(dbgs() << ", none.\n"); 857 return false; 858 } 859 860 DEBUG({ 861 for (int i = Cand.LiveBundles.find_first(); i>=0; 862 i = Cand.LiveBundles.find_next(i)) 863 dbgs() << " EB#" << i; 864 dbgs() << ".\n"; 865 }); 866 return true; 867 } 868 869 /// calcSpillCost - Compute how expensive it would be to split the live range in 870 /// SA around all use blocks instead of forming bundle regions. 871 float RAGreedy::calcSpillCost() { 872 float Cost = 0; 873 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 874 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 875 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 876 unsigned Number = BI.MBB->getNumber(); 877 // We normally only need one spill instruction - a load or a store. 878 Cost += SpillPlacer->getBlockFrequency(Number); 879 880 // Unless the value is redefined in the block. 881 if (BI.LiveIn && BI.LiveOut && BI.FirstDef) 882 Cost += SpillPlacer->getBlockFrequency(Number); 883 } 884 return Cost; 885 } 886 887 /// calcGlobalSplitCost - Return the global split cost of following the split 888 /// pattern in LiveBundles. This cost should be added to the local cost of the 889 /// interference pattern in SplitConstraints. 890 /// 891 float RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand) { 892 float GlobalCost = 0; 893 const BitVector &LiveBundles = Cand.LiveBundles; 894 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 895 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 896 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 897 SpillPlacement::BlockConstraint &BC = SplitConstraints[i]; 898 bool RegIn = LiveBundles[Bundles->getBundle(BC.Number, 0)]; 899 bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, 1)]; 900 unsigned Ins = 0; 901 902 if (BI.LiveIn) 903 Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg); 904 if (BI.LiveOut) 905 Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg); 906 if (Ins) 907 GlobalCost += Ins * SpillPlacer->getBlockFrequency(BC.Number); 908 } 909 910 for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) { 911 unsigned Number = Cand.ActiveBlocks[i]; 912 bool RegIn = LiveBundles[Bundles->getBundle(Number, 0)]; 913 bool RegOut = LiveBundles[Bundles->getBundle(Number, 1)]; 914 if (!RegIn && !RegOut) 915 continue; 916 if (RegIn && RegOut) { 917 // We need double spill code if this block has interference. 918 Cand.Intf.moveToBlock(Number); 919 if (Cand.Intf.hasInterference()) 920 GlobalCost += 2*SpillPlacer->getBlockFrequency(Number); 921 continue; 922 } 923 // live-in / stack-out or stack-in live-out. 924 GlobalCost += SpillPlacer->getBlockFrequency(Number); 925 } 926 return GlobalCost; 927 } 928 929 /// splitAroundRegion - Split the current live range around the regions 930 /// determined by BundleCand and GlobalCand. 931 /// 932 /// Before calling this function, GlobalCand and BundleCand must be initialized 933 /// so each bundle is assigned to a valid candidate, or NoCand for the 934 /// stack-bound bundles. The shared SA/SE SplitAnalysis and SplitEditor 935 /// objects must be initialized for the current live range, and intervals 936 /// created for the used candidates. 937 /// 938 /// @param LREdit The LiveRangeEdit object handling the current split. 939 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value 940 /// must appear in this list. 941 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit, 942 ArrayRef<unsigned> UsedCands) { 943 // These are the intervals created for new global ranges. We may create more 944 // intervals for local ranges. 945 const unsigned NumGlobalIntvs = LREdit.size(); 946 DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs << " globals.\n"); 947 assert(NumGlobalIntvs && "No global intervals configured"); 948 949 // Isolate even single instructions when dealing with a proper sub-class. 950 // That guarantees register class inflation for the stack interval because it 951 // is all copies. 952 unsigned Reg = SA->getParent().reg; 953 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 954 955 // First handle all the blocks with uses. 956 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 957 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 958 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 959 unsigned Number = BI.MBB->getNumber(); 960 unsigned IntvIn = 0, IntvOut = 0; 961 SlotIndex IntfIn, IntfOut; 962 if (BI.LiveIn) { 963 unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)]; 964 if (CandIn != NoCand) { 965 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 966 IntvIn = Cand.IntvIdx; 967 Cand.Intf.moveToBlock(Number); 968 IntfIn = Cand.Intf.first(); 969 } 970 } 971 if (BI.LiveOut) { 972 unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)]; 973 if (CandOut != NoCand) { 974 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 975 IntvOut = Cand.IntvIdx; 976 Cand.Intf.moveToBlock(Number); 977 IntfOut = Cand.Intf.last(); 978 } 979 } 980 981 // Create separate intervals for isolated blocks with multiple uses. 982 if (!IntvIn && !IntvOut) { 983 DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " isolated.\n"); 984 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 985 SE->splitSingleBlock(BI); 986 continue; 987 } 988 989 if (IntvIn && IntvOut) 990 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 991 else if (IntvIn) 992 SE->splitRegInBlock(BI, IntvIn, IntfIn); 993 else 994 SE->splitRegOutBlock(BI, IntvOut, IntfOut); 995 } 996 997 // Handle live-through blocks. The relevant live-through blocks are stored in 998 // the ActiveBlocks list with each candidate. We need to filter out 999 // duplicates. 1000 BitVector Todo = SA->getThroughBlocks(); 1001 for (unsigned c = 0; c != UsedCands.size(); ++c) { 1002 ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks; 1003 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { 1004 unsigned Number = Blocks[i]; 1005 if (!Todo.test(Number)) 1006 continue; 1007 Todo.reset(Number); 1008 1009 unsigned IntvIn = 0, IntvOut = 0; 1010 SlotIndex IntfIn, IntfOut; 1011 1012 unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)]; 1013 if (CandIn != NoCand) { 1014 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 1015 IntvIn = Cand.IntvIdx; 1016 Cand.Intf.moveToBlock(Number); 1017 IntfIn = Cand.Intf.first(); 1018 } 1019 1020 unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)]; 1021 if (CandOut != NoCand) { 1022 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 1023 IntvOut = Cand.IntvIdx; 1024 Cand.Intf.moveToBlock(Number); 1025 IntfOut = Cand.Intf.last(); 1026 } 1027 if (!IntvIn && !IntvOut) 1028 continue; 1029 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1030 } 1031 } 1032 1033 ++NumGlobalSplits; 1034 1035 SmallVector<unsigned, 8> IntvMap; 1036 SE->finish(&IntvMap); 1037 DebugVars->splitRegister(Reg, LREdit.regs()); 1038 1039 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 1040 unsigned OrigBlocks = SA->getNumLiveBlocks(); 1041 1042 // Sort out the new intervals created by splitting. We get four kinds: 1043 // - Remainder intervals should not be split again. 1044 // - Candidate intervals can be assigned to Cand.PhysReg. 1045 // - Block-local splits are candidates for local splitting. 1046 // - DCE leftovers should go back on the queue. 1047 for (unsigned i = 0, e = LREdit.size(); i != e; ++i) { 1048 LiveInterval &Reg = *LREdit.get(i); 1049 1050 // Ignore old intervals from DCE. 1051 if (getStage(Reg) != RS_New) 1052 continue; 1053 1054 // Remainder interval. Don't try splitting again, spill if it doesn't 1055 // allocate. 1056 if (IntvMap[i] == 0) { 1057 setStage(Reg, RS_Spill); 1058 continue; 1059 } 1060 1061 // Global intervals. Allow repeated splitting as long as the number of live 1062 // blocks is strictly decreasing. 1063 if (IntvMap[i] < NumGlobalIntvs) { 1064 if (SA->countLiveBlocks(&Reg) >= OrigBlocks) { 1065 DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks 1066 << " blocks as original.\n"); 1067 // Don't allow repeated splitting as a safe guard against looping. 1068 setStage(Reg, RS_Split2); 1069 } 1070 continue; 1071 } 1072 1073 // Other intervals are treated as new. This includes local intervals created 1074 // for blocks with multiple uses, and anything created by DCE. 1075 } 1076 1077 if (VerifyEnabled) 1078 MF->verify(this, "After splitting live range around region"); 1079 } 1080 1081 unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order, 1082 SmallVectorImpl<LiveInterval*> &NewVRegs) { 1083 unsigned NumCands = 0; 1084 unsigned BestCand = NoCand; 1085 float BestCost; 1086 SmallVector<unsigned, 8> UsedCands; 1087 1088 // Check if we can split this live range around a compact region. 1089 bool HasCompact = calcCompactRegion(GlobalCand.front()); 1090 if (HasCompact) { 1091 // Yes, keep GlobalCand[0] as the compact region candidate. 1092 NumCands = 1; 1093 BestCost = HUGE_VALF; 1094 } else { 1095 // No benefit from the compact region, our fallback will be per-block 1096 // splitting. Make sure we find a solution that is cheaper than spilling. 1097 BestCost = Hysteresis * calcSpillCost(); 1098 DEBUG(dbgs() << "Cost of isolating all blocks = " << BestCost << '\n'); 1099 } 1100 1101 Order.rewind(); 1102 while (unsigned PhysReg = Order.next()) { 1103 // Discard bad candidates before we run out of interference cache cursors. 1104 // This will only affect register classes with a lot of registers (>32). 1105 if (NumCands == IntfCache.getMaxCursors()) { 1106 unsigned WorstCount = ~0u; 1107 unsigned Worst = 0; 1108 for (unsigned i = 0; i != NumCands; ++i) { 1109 if (i == BestCand || !GlobalCand[i].PhysReg) 1110 continue; 1111 unsigned Count = GlobalCand[i].LiveBundles.count(); 1112 if (Count < WorstCount) 1113 Worst = i, WorstCount = Count; 1114 } 1115 --NumCands; 1116 GlobalCand[Worst] = GlobalCand[NumCands]; 1117 } 1118 1119 if (GlobalCand.size() <= NumCands) 1120 GlobalCand.resize(NumCands+1); 1121 GlobalSplitCandidate &Cand = GlobalCand[NumCands]; 1122 Cand.reset(IntfCache, PhysReg); 1123 1124 SpillPlacer->prepare(Cand.LiveBundles); 1125 float Cost; 1126 if (!addSplitConstraints(Cand.Intf, Cost)) { 1127 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tno positive bundles\n"); 1128 continue; 1129 } 1130 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tstatic = " << Cost); 1131 if (Cost >= BestCost) { 1132 DEBUG({ 1133 if (BestCand == NoCand) 1134 dbgs() << " worse than no bundles\n"; 1135 else 1136 dbgs() << " worse than " 1137 << PrintReg(GlobalCand[BestCand].PhysReg, TRI) << '\n'; 1138 }); 1139 continue; 1140 } 1141 growRegion(Cand); 1142 1143 SpillPlacer->finish(); 1144 1145 // No live bundles, defer to splitSingleBlocks(). 1146 if (!Cand.LiveBundles.any()) { 1147 DEBUG(dbgs() << " no bundles.\n"); 1148 continue; 1149 } 1150 1151 Cost += calcGlobalSplitCost(Cand); 1152 DEBUG({ 1153 dbgs() << ", total = " << Cost << " with bundles"; 1154 for (int i = Cand.LiveBundles.find_first(); i>=0; 1155 i = Cand.LiveBundles.find_next(i)) 1156 dbgs() << " EB#" << i; 1157 dbgs() << ".\n"; 1158 }); 1159 if (Cost < BestCost) { 1160 BestCand = NumCands; 1161 BestCost = Hysteresis * Cost; // Prevent rounding effects. 1162 } 1163 ++NumCands; 1164 } 1165 1166 // No solutions found, fall back to single block splitting. 1167 if (!HasCompact && BestCand == NoCand) 1168 return 0; 1169 1170 // Prepare split editor. 1171 LiveRangeEdit LREdit(VirtReg, NewVRegs, this); 1172 SE->reset(LREdit, SplitSpillMode); 1173 1174 // Assign all edge bundles to the preferred candidate, or NoCand. 1175 BundleCand.assign(Bundles->getNumBundles(), NoCand); 1176 1177 // Assign bundles for the best candidate region. 1178 if (BestCand != NoCand) { 1179 GlobalSplitCandidate &Cand = GlobalCand[BestCand]; 1180 if (unsigned B = Cand.getBundles(BundleCand, BestCand)) { 1181 UsedCands.push_back(BestCand); 1182 Cand.IntvIdx = SE->openIntv(); 1183 DEBUG(dbgs() << "Split for " << PrintReg(Cand.PhysReg, TRI) << " in " 1184 << B << " bundles, intv " << Cand.IntvIdx << ".\n"); 1185 (void)B; 1186 } 1187 } 1188 1189 // Assign bundles for the compact region. 1190 if (HasCompact) { 1191 GlobalSplitCandidate &Cand = GlobalCand.front(); 1192 assert(!Cand.PhysReg && "Compact region has no physreg"); 1193 if (unsigned B = Cand.getBundles(BundleCand, 0)) { 1194 UsedCands.push_back(0); 1195 Cand.IntvIdx = SE->openIntv(); 1196 DEBUG(dbgs() << "Split for compact region in " << B << " bundles, intv " 1197 << Cand.IntvIdx << ".\n"); 1198 (void)B; 1199 } 1200 } 1201 1202 splitAroundRegion(LREdit, UsedCands); 1203 return 0; 1204 } 1205 1206 1207 //===----------------------------------------------------------------------===// 1208 // Per-Block Splitting 1209 //===----------------------------------------------------------------------===// 1210 1211 /// tryBlockSplit - Split a global live range around every block with uses. This 1212 /// creates a lot of local live ranges, that will be split by tryLocalSplit if 1213 /// they don't allocate. 1214 unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order, 1215 SmallVectorImpl<LiveInterval*> &NewVRegs) { 1216 assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed"); 1217 unsigned Reg = VirtReg.reg; 1218 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 1219 LiveRangeEdit LREdit(VirtReg, NewVRegs, this); 1220 SE->reset(LREdit, SplitSpillMode); 1221 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1222 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1223 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1224 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 1225 SE->splitSingleBlock(BI); 1226 } 1227 // No blocks were split. 1228 if (LREdit.empty()) 1229 return 0; 1230 1231 // We did split for some blocks. 1232 SmallVector<unsigned, 8> IntvMap; 1233 SE->finish(&IntvMap); 1234 1235 // Tell LiveDebugVariables about the new ranges. 1236 DebugVars->splitRegister(Reg, LREdit.regs()); 1237 1238 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 1239 1240 // Sort out the new intervals created by splitting. The remainder interval 1241 // goes straight to spilling, the new local ranges get to stay RS_New. 1242 for (unsigned i = 0, e = LREdit.size(); i != e; ++i) { 1243 LiveInterval &LI = *LREdit.get(i); 1244 if (getStage(LI) == RS_New && IntvMap[i] == 0) 1245 setStage(LI, RS_Spill); 1246 } 1247 1248 if (VerifyEnabled) 1249 MF->verify(this, "After splitting live range around basic blocks"); 1250 return 0; 1251 } 1252 1253 //===----------------------------------------------------------------------===// 1254 // Local Splitting 1255 //===----------------------------------------------------------------------===// 1256 1257 1258 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted 1259 /// in order to use PhysReg between two entries in SA->UseSlots. 1260 /// 1261 /// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1]. 1262 /// 1263 void RAGreedy::calcGapWeights(unsigned PhysReg, 1264 SmallVectorImpl<float> &GapWeight) { 1265 assert(SA->getUseBlocks().size() == 1 && "Not a local interval"); 1266 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 1267 const SmallVectorImpl<SlotIndex> &Uses = SA->UseSlots; 1268 const unsigned NumGaps = Uses.size()-1; 1269 1270 // Start and end points for the interference check. 1271 SlotIndex StartIdx = 1272 BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr; 1273 SlotIndex StopIdx = 1274 BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr; 1275 1276 GapWeight.assign(NumGaps, 0.0f); 1277 1278 // Add interference from each overlapping register. 1279 for (const unsigned *AI = TRI->getOverlaps(PhysReg); *AI; ++AI) { 1280 if (!query(const_cast<LiveInterval&>(SA->getParent()), *AI) 1281 .checkInterference()) 1282 continue; 1283 1284 // We know that VirtReg is a continuous interval from FirstInstr to 1285 // LastInstr, so we don't need InterferenceQuery. 1286 // 1287 // Interference that overlaps an instruction is counted in both gaps 1288 // surrounding the instruction. The exception is interference before 1289 // StartIdx and after StopIdx. 1290 // 1291 LiveIntervalUnion::SegmentIter IntI = PhysReg2LiveUnion[*AI].find(StartIdx); 1292 for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) { 1293 // Skip the gaps before IntI. 1294 while (Uses[Gap+1].getBoundaryIndex() < IntI.start()) 1295 if (++Gap == NumGaps) 1296 break; 1297 if (Gap == NumGaps) 1298 break; 1299 1300 // Update the gaps covered by IntI. 1301 const float weight = IntI.value()->weight; 1302 for (; Gap != NumGaps; ++Gap) { 1303 GapWeight[Gap] = std::max(GapWeight[Gap], weight); 1304 if (Uses[Gap+1].getBaseIndex() >= IntI.stop()) 1305 break; 1306 } 1307 if (Gap == NumGaps) 1308 break; 1309 } 1310 } 1311 } 1312 1313 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only 1314 /// basic block. 1315 /// 1316 unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order, 1317 SmallVectorImpl<LiveInterval*> &NewVRegs) { 1318 assert(SA->getUseBlocks().size() == 1 && "Not a local interval"); 1319 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 1320 1321 // Note that it is possible to have an interval that is live-in or live-out 1322 // while only covering a single block - A phi-def can use undef values from 1323 // predecessors, and the block could be a single-block loop. 1324 // We don't bother doing anything clever about such a case, we simply assume 1325 // that the interval is continuous from FirstInstr to LastInstr. We should 1326 // make sure that we don't do anything illegal to such an interval, though. 1327 1328 const SmallVectorImpl<SlotIndex> &Uses = SA->UseSlots; 1329 if (Uses.size() <= 2) 1330 return 0; 1331 const unsigned NumGaps = Uses.size()-1; 1332 1333 DEBUG({ 1334 dbgs() << "tryLocalSplit: "; 1335 for (unsigned i = 0, e = Uses.size(); i != e; ++i) 1336 dbgs() << ' ' << SA->UseSlots[i]; 1337 dbgs() << '\n'; 1338 }); 1339 1340 // Since we allow local split results to be split again, there is a risk of 1341 // creating infinite loops. It is tempting to require that the new live 1342 // ranges have less instructions than the original. That would guarantee 1343 // convergence, but it is too strict. A live range with 3 instructions can be 1344 // split 2+3 (including the COPY), and we want to allow that. 1345 // 1346 // Instead we use these rules: 1347 // 1348 // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the 1349 // noop split, of course). 1350 // 2. Require progress be made for ranges with getStage() == RS_Split2. All 1351 // the new ranges must have fewer instructions than before the split. 1352 // 3. New ranges with the same number of instructions are marked RS_Split2, 1353 // smaller ranges are marked RS_New. 1354 // 1355 // These rules allow a 3 -> 2+3 split once, which we need. They also prevent 1356 // excessive splitting and infinite loops. 1357 // 1358 bool ProgressRequired = getStage(VirtReg) >= RS_Split2; 1359 1360 // Best split candidate. 1361 unsigned BestBefore = NumGaps; 1362 unsigned BestAfter = 0; 1363 float BestDiff = 0; 1364 1365 const float blockFreq = SpillPlacer->getBlockFrequency(BI.MBB->getNumber()); 1366 SmallVector<float, 8> GapWeight; 1367 1368 Order.rewind(); 1369 while (unsigned PhysReg = Order.next()) { 1370 // Keep track of the largest spill weight that would need to be evicted in 1371 // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1]. 1372 calcGapWeights(PhysReg, GapWeight); 1373 1374 // Try to find the best sequence of gaps to close. 1375 // The new spill weight must be larger than any gap interference. 1376 1377 // We will split before Uses[SplitBefore] and after Uses[SplitAfter]. 1378 unsigned SplitBefore = 0, SplitAfter = 1; 1379 1380 // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]). 1381 // It is the spill weight that needs to be evicted. 1382 float MaxGap = GapWeight[0]; 1383 1384 for (;;) { 1385 // Live before/after split? 1386 const bool LiveBefore = SplitBefore != 0 || BI.LiveIn; 1387 const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut; 1388 1389 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << ' ' 1390 << Uses[SplitBefore] << '-' << Uses[SplitAfter] 1391 << " i=" << MaxGap); 1392 1393 // Stop before the interval gets so big we wouldn't be making progress. 1394 if (!LiveBefore && !LiveAfter) { 1395 DEBUG(dbgs() << " all\n"); 1396 break; 1397 } 1398 // Should the interval be extended or shrunk? 1399 bool Shrink = true; 1400 1401 // How many gaps would the new range have? 1402 unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter; 1403 1404 // Legally, without causing looping? 1405 bool Legal = !ProgressRequired || NewGaps < NumGaps; 1406 1407 if (Legal && MaxGap < HUGE_VALF) { 1408 // Estimate the new spill weight. Each instruction reads or writes the 1409 // register. Conservatively assume there are no read-modify-write 1410 // instructions. 1411 // 1412 // Try to guess the size of the new interval. 1413 const float EstWeight = normalizeSpillWeight(blockFreq * (NewGaps + 1), 1414 Uses[SplitBefore].distance(Uses[SplitAfter]) + 1415 (LiveBefore + LiveAfter)*SlotIndex::InstrDist); 1416 // Would this split be possible to allocate? 1417 // Never allocate all gaps, we wouldn't be making progress. 1418 DEBUG(dbgs() << " w=" << EstWeight); 1419 if (EstWeight * Hysteresis >= MaxGap) { 1420 Shrink = false; 1421 float Diff = EstWeight - MaxGap; 1422 if (Diff > BestDiff) { 1423 DEBUG(dbgs() << " (best)"); 1424 BestDiff = Hysteresis * Diff; 1425 BestBefore = SplitBefore; 1426 BestAfter = SplitAfter; 1427 } 1428 } 1429 } 1430 1431 // Try to shrink. 1432 if (Shrink) { 1433 if (++SplitBefore < SplitAfter) { 1434 DEBUG(dbgs() << " shrink\n"); 1435 // Recompute the max when necessary. 1436 if (GapWeight[SplitBefore - 1] >= MaxGap) { 1437 MaxGap = GapWeight[SplitBefore]; 1438 for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i) 1439 MaxGap = std::max(MaxGap, GapWeight[i]); 1440 } 1441 continue; 1442 } 1443 MaxGap = 0; 1444 } 1445 1446 // Try to extend the interval. 1447 if (SplitAfter >= NumGaps) { 1448 DEBUG(dbgs() << " end\n"); 1449 break; 1450 } 1451 1452 DEBUG(dbgs() << " extend\n"); 1453 MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]); 1454 } 1455 } 1456 1457 // Didn't find any candidates? 1458 if (BestBefore == NumGaps) 1459 return 0; 1460 1461 DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] 1462 << '-' << Uses[BestAfter] << ", " << BestDiff 1463 << ", " << (BestAfter - BestBefore + 1) << " instrs\n"); 1464 1465 LiveRangeEdit LREdit(VirtReg, NewVRegs, this); 1466 SE->reset(LREdit); 1467 1468 SE->openIntv(); 1469 SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]); 1470 SlotIndex SegStop = SE->leaveIntvAfter(Uses[BestAfter]); 1471 SE->useIntv(SegStart, SegStop); 1472 SmallVector<unsigned, 8> IntvMap; 1473 SE->finish(&IntvMap); 1474 DebugVars->splitRegister(VirtReg.reg, LREdit.regs()); 1475 1476 // If the new range has the same number of instructions as before, mark it as 1477 // RS_Split2 so the next split will be forced to make progress. Otherwise, 1478 // leave the new intervals as RS_New so they can compete. 1479 bool LiveBefore = BestBefore != 0 || BI.LiveIn; 1480 bool LiveAfter = BestAfter != NumGaps || BI.LiveOut; 1481 unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter; 1482 if (NewGaps >= NumGaps) { 1483 DEBUG(dbgs() << "Tagging non-progress ranges: "); 1484 assert(!ProgressRequired && "Didn't make progress when it was required."); 1485 for (unsigned i = 0, e = IntvMap.size(); i != e; ++i) 1486 if (IntvMap[i] == 1) { 1487 setStage(*LREdit.get(i), RS_Split2); 1488 DEBUG(dbgs() << PrintReg(LREdit.get(i)->reg)); 1489 } 1490 DEBUG(dbgs() << '\n'); 1491 } 1492 ++NumLocalSplits; 1493 1494 return 0; 1495 } 1496 1497 //===----------------------------------------------------------------------===// 1498 // Live Range Splitting 1499 //===----------------------------------------------------------------------===// 1500 1501 /// trySplit - Try to split VirtReg or one of its interferences, making it 1502 /// assignable. 1503 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs. 1504 unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order, 1505 SmallVectorImpl<LiveInterval*>&NewVRegs) { 1506 // Ranges must be Split2 or less. 1507 if (getStage(VirtReg) >= RS_Spill) 1508 return 0; 1509 1510 // Local intervals are handled separately. 1511 if (LIS->intervalIsInOneMBB(VirtReg)) { 1512 NamedRegionTimer T("Local Splitting", TimerGroupName, TimePassesIsEnabled); 1513 SA->analyze(&VirtReg); 1514 return tryLocalSplit(VirtReg, Order, NewVRegs); 1515 } 1516 1517 NamedRegionTimer T("Global Splitting", TimerGroupName, TimePassesIsEnabled); 1518 1519 SA->analyze(&VirtReg); 1520 1521 // FIXME: SplitAnalysis may repair broken live ranges coming from the 1522 // coalescer. That may cause the range to become allocatable which means that 1523 // tryRegionSplit won't be making progress. This check should be replaced with 1524 // an assertion when the coalescer is fixed. 1525 if (SA->didRepairRange()) { 1526 // VirtReg has changed, so all cached queries are invalid. 1527 invalidateVirtRegs(); 1528 if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs)) 1529 return PhysReg; 1530 } 1531 1532 // First try to split around a region spanning multiple blocks. RS_Split2 1533 // ranges already made dubious progress with region splitting, so they go 1534 // straight to single block splitting. 1535 if (getStage(VirtReg) < RS_Split2) { 1536 unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs); 1537 if (PhysReg || !NewVRegs.empty()) 1538 return PhysReg; 1539 } 1540 1541 // Then isolate blocks. 1542 return tryBlockSplit(VirtReg, Order, NewVRegs); 1543 } 1544 1545 1546 //===----------------------------------------------------------------------===// 1547 // Main Entry Point 1548 //===----------------------------------------------------------------------===// 1549 1550 unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg, 1551 SmallVectorImpl<LiveInterval*> &NewVRegs) { 1552 // First try assigning a free register. 1553 AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo); 1554 if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs)) 1555 return PhysReg; 1556 1557 LiveRangeStage Stage = getStage(VirtReg); 1558 DEBUG(dbgs() << StageName[Stage] 1559 << " Cascade " << ExtraRegInfo[VirtReg.reg].Cascade << '\n'); 1560 1561 // Try to evict a less worthy live range, but only for ranges from the primary 1562 // queue. The RS_Split ranges already failed to do this, and they should not 1563 // get a second chance until they have been split. 1564 if (Stage != RS_Split) 1565 if (unsigned PhysReg = tryEvict(VirtReg, Order, NewVRegs)) 1566 return PhysReg; 1567 1568 assert(NewVRegs.empty() && "Cannot append to existing NewVRegs"); 1569 1570 // The first time we see a live range, don't try to split or spill. 1571 // Wait until the second time, when all smaller ranges have been allocated. 1572 // This gives a better picture of the interference to split around. 1573 if (Stage < RS_Split) { 1574 setStage(VirtReg, RS_Split); 1575 DEBUG(dbgs() << "wait for second round\n"); 1576 NewVRegs.push_back(&VirtReg); 1577 return 0; 1578 } 1579 1580 // If we couldn't allocate a register from spilling, there is probably some 1581 // invalid inline assembly. The base class wil report it. 1582 if (Stage >= RS_Done || !VirtReg.isSpillable()) 1583 return ~0u; 1584 1585 // Try splitting VirtReg or interferences. 1586 unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs); 1587 if (PhysReg || !NewVRegs.empty()) 1588 return PhysReg; 1589 1590 // Finally spill VirtReg itself. 1591 NamedRegionTimer T("Spiller", TimerGroupName, TimePassesIsEnabled); 1592 LiveRangeEdit LRE(VirtReg, NewVRegs, this); 1593 spiller().spill(LRE); 1594 setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done); 1595 1596 if (VerifyEnabled) 1597 MF->verify(this, "After spilling"); 1598 1599 // The live virtual register requesting allocation was spilled, so tell 1600 // the caller not to allocate anything during this round. 1601 return 0; 1602 } 1603 1604 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) { 1605 DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n" 1606 << "********** Function: " 1607 << ((Value*)mf.getFunction())->getName() << '\n'); 1608 1609 MF = &mf; 1610 if (VerifyEnabled) 1611 MF->verify(this, "Before greedy register allocator"); 1612 1613 RegAllocBase::init(getAnalysis<VirtRegMap>(), getAnalysis<LiveIntervals>()); 1614 Indexes = &getAnalysis<SlotIndexes>(); 1615 DomTree = &getAnalysis<MachineDominatorTree>(); 1616 SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM)); 1617 Loops = &getAnalysis<MachineLoopInfo>(); 1618 Bundles = &getAnalysis<EdgeBundles>(); 1619 SpillPlacer = &getAnalysis<SpillPlacement>(); 1620 DebugVars = &getAnalysis<LiveDebugVariables>(); 1621 1622 SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops)); 1623 SE.reset(new SplitEditor(*SA, *LIS, *VRM, *DomTree)); 1624 ExtraRegInfo.clear(); 1625 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 1626 NextCascade = 1; 1627 IntfCache.init(MF, &PhysReg2LiveUnion[0], Indexes, TRI); 1628 GlobalCand.resize(32); // This will grow as needed. 1629 1630 allocatePhysRegs(); 1631 addMBBLiveIns(MF); 1632 LIS->addKillFlags(); 1633 1634 // Run rewriter 1635 { 1636 NamedRegionTimer T("Rewriter", TimerGroupName, TimePassesIsEnabled); 1637 VRM->rewrite(Indexes); 1638 } 1639 1640 // Write out new DBG_VALUE instructions. 1641 { 1642 NamedRegionTimer T("Emit Debug Info", TimerGroupName, TimePassesIsEnabled); 1643 DebugVars->emitDebugValues(VRM); 1644 } 1645 1646 // The pass output is in VirtRegMap. Release all the transient data. 1647 releaseMemory(); 1648 1649 return true; 1650 } 1651