1 //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the RAGreedy function pass for register allocation in 10 // optimized builds. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RegAllocGreedy.h" 15 #include "AllocationOrder.h" 16 #include "InterferenceCache.h" 17 #include "LiveDebugVariables.h" 18 #include "RegAllocBase.h" 19 #include "RegAllocEvictionAdvisor.h" 20 #include "SpillPlacement.h" 21 #include "SplitKit.h" 22 #include "llvm/ADT/ArrayRef.h" 23 #include "llvm/ADT/BitVector.h" 24 #include "llvm/ADT/IndexedMap.h" 25 #include "llvm/ADT/SetVector.h" 26 #include "llvm/ADT/SmallPtrSet.h" 27 #include "llvm/ADT/SmallSet.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/ADT/StringRef.h" 31 #include "llvm/Analysis/AliasAnalysis.h" 32 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 33 #include "llvm/CodeGen/CalcSpillWeights.h" 34 #include "llvm/CodeGen/EdgeBundles.h" 35 #include "llvm/CodeGen/LiveInterval.h" 36 #include "llvm/CodeGen/LiveIntervalUnion.h" 37 #include "llvm/CodeGen/LiveIntervals.h" 38 #include "llvm/CodeGen/LiveRangeEdit.h" 39 #include "llvm/CodeGen/LiveRegMatrix.h" 40 #include "llvm/CodeGen/LiveStacks.h" 41 #include "llvm/CodeGen/MachineBasicBlock.h" 42 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 43 #include "llvm/CodeGen/MachineDominators.h" 44 #include "llvm/CodeGen/MachineFrameInfo.h" 45 #include "llvm/CodeGen/MachineFunction.h" 46 #include "llvm/CodeGen/MachineFunctionPass.h" 47 #include "llvm/CodeGen/MachineInstr.h" 48 #include "llvm/CodeGen/MachineLoopInfo.h" 49 #include "llvm/CodeGen/MachineOperand.h" 50 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 51 #include "llvm/CodeGen/MachineRegisterInfo.h" 52 #include "llvm/CodeGen/RegAllocRegistry.h" 53 #include "llvm/CodeGen/RegisterClassInfo.h" 54 #include "llvm/CodeGen/SlotIndexes.h" 55 #include "llvm/CodeGen/Spiller.h" 56 #include "llvm/CodeGen/TargetInstrInfo.h" 57 #include "llvm/CodeGen/TargetRegisterInfo.h" 58 #include "llvm/CodeGen/TargetSubtargetInfo.h" 59 #include "llvm/CodeGen/VirtRegMap.h" 60 #include "llvm/IR/DebugInfoMetadata.h" 61 #include "llvm/IR/Function.h" 62 #include "llvm/IR/LLVMContext.h" 63 #include "llvm/InitializePasses.h" 64 #include "llvm/MC/MCRegisterInfo.h" 65 #include "llvm/Pass.h" 66 #include "llvm/Support/BlockFrequency.h" 67 #include "llvm/Support/BranchProbability.h" 68 #include "llvm/Support/CommandLine.h" 69 #include "llvm/Support/Debug.h" 70 #include "llvm/Support/MathExtras.h" 71 #include "llvm/Support/Timer.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cstdint> 76 #include <utility> 77 78 using namespace llvm; 79 80 #define DEBUG_TYPE "regalloc" 81 82 STATISTIC(NumGlobalSplits, "Number of split global live ranges"); 83 STATISTIC(NumLocalSplits, "Number of split local live ranges"); 84 STATISTIC(NumEvicted, "Number of interferences evicted"); 85 86 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode( 87 "split-spill-mode", cl::Hidden, 88 cl::desc("Spill mode for splitting live ranges"), 89 cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"), 90 clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"), 91 clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")), 92 cl::init(SplitEditor::SM_Speed)); 93 94 static cl::opt<unsigned> 95 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden, 96 cl::desc("Last chance recoloring max depth"), 97 cl::init(5)); 98 99 static cl::opt<unsigned> LastChanceRecoloringMaxInterference( 100 "lcr-max-interf", cl::Hidden, 101 cl::desc("Last chance recoloring maximum number of considered" 102 " interference at a time"), 103 cl::init(8)); 104 105 static cl::opt<bool> ExhaustiveSearch( 106 "exhaustive-register-search", cl::NotHidden, 107 cl::desc("Exhaustive Search for registers bypassing the depth " 108 "and interference cutoffs of last chance recoloring"), 109 cl::Hidden); 110 111 static cl::opt<bool> EnableDeferredSpilling( 112 "enable-deferred-spilling", cl::Hidden, 113 cl::desc("Instead of spilling a variable right away, defer the actual " 114 "code insertion to the end of the allocation. That way the " 115 "allocator might still find a suitable coloring for this " 116 "variable because of other evicted variables."), 117 cl::init(false)); 118 119 // FIXME: Find a good default for this flag and remove the flag. 120 static cl::opt<unsigned> 121 CSRFirstTimeCost("regalloc-csr-first-time-cost", 122 cl::desc("Cost for first time use of callee-saved register."), 123 cl::init(0), cl::Hidden); 124 125 static cl::opt<unsigned long> GrowRegionComplexityBudget( 126 "grow-region-complexity-budget", 127 cl::desc("growRegion() does not scale with the number of BB edges, so " 128 "limit its budget and bail out once we reach the limit."), 129 cl::init(10000), cl::Hidden); 130 131 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator", 132 createGreedyRegisterAllocator); 133 134 char RAGreedy::ID = 0; 135 char &llvm::RAGreedyID = RAGreedy::ID; 136 137 INITIALIZE_PASS_BEGIN(RAGreedy, "greedy", 138 "Greedy Register Allocator", false, false) 139 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables) 140 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 141 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 142 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer) 143 INITIALIZE_PASS_DEPENDENCY(MachineScheduler) 144 INITIALIZE_PASS_DEPENDENCY(LiveStacks) 145 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 146 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 147 INITIALIZE_PASS_DEPENDENCY(VirtRegMap) 148 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix) 149 INITIALIZE_PASS_DEPENDENCY(EdgeBundles) 150 INITIALIZE_PASS_DEPENDENCY(SpillPlacement) 151 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass) 152 INITIALIZE_PASS_DEPENDENCY(RegAllocEvictionAdvisorAnalysis) 153 INITIALIZE_PASS_END(RAGreedy, "greedy", 154 "Greedy Register Allocator", false, false) 155 156 #ifndef NDEBUG 157 const char *const RAGreedy::StageName[] = { 158 "RS_New", 159 "RS_Assign", 160 "RS_Split", 161 "RS_Split2", 162 "RS_Spill", 163 "RS_Memory", 164 "RS_Done" 165 }; 166 #endif 167 168 // Hysteresis to use when comparing floats. 169 // This helps stabilize decisions based on float comparisons. 170 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875 171 172 FunctionPass* llvm::createGreedyRegisterAllocator() { 173 return new RAGreedy(); 174 } 175 176 namespace llvm { 177 FunctionPass* createGreedyRegisterAllocator( 178 std::function<bool(const TargetRegisterInfo &TRI, 179 const TargetRegisterClass &RC)> Ftor); 180 181 } 182 183 FunctionPass* llvm::createGreedyRegisterAllocator( 184 std::function<bool(const TargetRegisterInfo &TRI, 185 const TargetRegisterClass &RC)> Ftor) { 186 return new RAGreedy(Ftor); 187 } 188 189 RAGreedy::RAGreedy(RegClassFilterFunc F): 190 MachineFunctionPass(ID), 191 RegAllocBase(F) { 192 } 193 194 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const { 195 AU.setPreservesCFG(); 196 AU.addRequired<MachineBlockFrequencyInfo>(); 197 AU.addPreserved<MachineBlockFrequencyInfo>(); 198 AU.addRequired<AAResultsWrapperPass>(); 199 AU.addPreserved<AAResultsWrapperPass>(); 200 AU.addRequired<LiveIntervals>(); 201 AU.addPreserved<LiveIntervals>(); 202 AU.addRequired<SlotIndexes>(); 203 AU.addPreserved<SlotIndexes>(); 204 AU.addRequired<LiveDebugVariables>(); 205 AU.addPreserved<LiveDebugVariables>(); 206 AU.addRequired<LiveStacks>(); 207 AU.addPreserved<LiveStacks>(); 208 AU.addRequired<MachineDominatorTree>(); 209 AU.addPreserved<MachineDominatorTree>(); 210 AU.addRequired<MachineLoopInfo>(); 211 AU.addPreserved<MachineLoopInfo>(); 212 AU.addRequired<VirtRegMap>(); 213 AU.addPreserved<VirtRegMap>(); 214 AU.addRequired<LiveRegMatrix>(); 215 AU.addPreserved<LiveRegMatrix>(); 216 AU.addRequired<EdgeBundles>(); 217 AU.addRequired<SpillPlacement>(); 218 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 219 AU.addRequired<RegAllocEvictionAdvisorAnalysis>(); 220 MachineFunctionPass::getAnalysisUsage(AU); 221 } 222 223 //===----------------------------------------------------------------------===// 224 // LiveRangeEdit delegate methods 225 //===----------------------------------------------------------------------===// 226 227 bool RAGreedy::LRE_CanEraseVirtReg(Register VirtReg) { 228 LiveInterval &LI = LIS->getInterval(VirtReg); 229 if (VRM->hasPhys(VirtReg)) { 230 Matrix->unassign(LI); 231 aboutToRemoveInterval(LI); 232 return true; 233 } 234 // Unassigned virtreg is probably in the priority queue. 235 // RegAllocBase will erase it after dequeueing. 236 // Nonetheless, clear the live-range so that the debug 237 // dump will show the right state for that VirtReg. 238 LI.clear(); 239 return false; 240 } 241 242 void RAGreedy::LRE_WillShrinkVirtReg(Register VirtReg) { 243 if (!VRM->hasPhys(VirtReg)) 244 return; 245 246 // Register is assigned, put it back on the queue for reassignment. 247 LiveInterval &LI = LIS->getInterval(VirtReg); 248 Matrix->unassign(LI); 249 RegAllocBase::enqueue(&LI); 250 } 251 252 void RAGreedy::LRE_DidCloneVirtReg(Register New, Register Old) { 253 ExtraInfo->LRE_DidCloneVirtReg(New, Old); 254 } 255 256 void RAGreedy::ExtraRegInfo::LRE_DidCloneVirtReg(Register New, Register Old) { 257 // Cloning a register we haven't even heard about yet? Just ignore it. 258 if (!Info.inBounds(Old)) 259 return; 260 261 // LRE may clone a virtual register because dead code elimination causes it to 262 // be split into connected components. The new components are much smaller 263 // than the original, so they should get a new chance at being assigned. 264 // same stage as the parent. 265 Info[Old].Stage = RS_Assign; 266 Info.grow(New.id()); 267 Info[New] = Info[Old]; 268 } 269 270 void RAGreedy::releaseMemory() { 271 SpillerInstance.reset(); 272 GlobalCand.clear(); 273 } 274 275 void RAGreedy::enqueueImpl(const LiveInterval *LI) { enqueue(Queue, LI); } 276 277 void RAGreedy::enqueue(PQueue &CurQueue, const LiveInterval *LI) { 278 // Prioritize live ranges by size, assigning larger ranges first. 279 // The queue holds (size, reg) pairs. 280 const unsigned Size = LI->getSize(); 281 const Register Reg = LI->reg(); 282 assert(Reg.isVirtual() && "Can only enqueue virtual registers"); 283 unsigned Prio; 284 285 auto Stage = ExtraInfo->getOrInitStage(Reg); 286 if (Stage == RS_New) { 287 Stage = RS_Assign; 288 ExtraInfo->setStage(Reg, Stage); 289 } 290 if (Stage == RS_Split) { 291 // Unsplit ranges that couldn't be allocated immediately are deferred until 292 // everything else has been allocated. 293 Prio = Size; 294 } else if (Stage == RS_Memory) { 295 // Memory operand should be considered last. 296 // Change the priority such that Memory operand are assigned in 297 // the reverse order that they came in. 298 // TODO: Make this a member variable and probably do something about hints. 299 static unsigned MemOp = 0; 300 Prio = MemOp++; 301 } else { 302 // Giant live ranges fall back to the global assignment heuristic, which 303 // prevents excessive spilling in pathological cases. 304 bool ReverseLocal = TRI->reverseLocalAssignment(); 305 const TargetRegisterClass &RC = *MRI->getRegClass(Reg); 306 bool ForceGlobal = !ReverseLocal && 307 (Size / SlotIndex::InstrDist) > (2 * RCI.getNumAllocatableRegs(&RC)); 308 309 if (Stage == RS_Assign && !ForceGlobal && !LI->empty() && 310 LIS->intervalIsInOneMBB(*LI)) { 311 // Allocate original local ranges in linear instruction order. Since they 312 // are singly defined, this produces optimal coloring in the absence of 313 // global interference and other constraints. 314 if (!ReverseLocal) 315 Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex()); 316 else { 317 // Allocating bottom up may allow many short LRGs to be assigned first 318 // to one of the cheap registers. This could be much faster for very 319 // large blocks on targets with many physical registers. 320 Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex()); 321 } 322 Prio |= RC.AllocationPriority << 24; 323 } else { 324 // Allocate global and split ranges in long->short order. Long ranges that 325 // don't fit should be spilled (or split) ASAP so they don't create 326 // interference. Mark a bit to prioritize global above local ranges. 327 Prio = (1u << 29) + Size; 328 329 Prio |= RC.AllocationPriority << 24; 330 } 331 // Mark a higher bit to prioritize global and local above RS_Split. 332 Prio |= (1u << 31); 333 334 // Boost ranges that have a physical register hint. 335 if (VRM->hasKnownPreference(Reg)) 336 Prio |= (1u << 30); 337 } 338 // The virtual register number is a tie breaker for same-sized ranges. 339 // Give lower vreg numbers higher priority to assign them first. 340 CurQueue.push(std::make_pair(Prio, ~Reg)); 341 } 342 343 const LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); } 344 345 const LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) { 346 if (CurQueue.empty()) 347 return nullptr; 348 LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second); 349 CurQueue.pop(); 350 return LI; 351 } 352 353 //===----------------------------------------------------------------------===// 354 // Direct Assignment 355 //===----------------------------------------------------------------------===// 356 357 /// tryAssign - Try to assign VirtReg to an available register. 358 MCRegister RAGreedy::tryAssign(const LiveInterval &VirtReg, 359 AllocationOrder &Order, 360 SmallVectorImpl<Register> &NewVRegs, 361 const SmallVirtRegSet &FixedRegisters) { 362 MCRegister PhysReg; 363 for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) { 364 assert(*I); 365 if (!Matrix->checkInterference(VirtReg, *I)) { 366 if (I.isHint()) 367 return *I; 368 else 369 PhysReg = *I; 370 } 371 } 372 if (!PhysReg.isValid()) 373 return PhysReg; 374 375 // PhysReg is available, but there may be a better choice. 376 377 // If we missed a simple hint, try to cheaply evict interference from the 378 // preferred register. 379 if (Register Hint = MRI->getSimpleHint(VirtReg.reg())) 380 if (Order.isHint(Hint)) { 381 MCRegister PhysHint = Hint.asMCReg(); 382 LLVM_DEBUG(dbgs() << "missed hint " << printReg(PhysHint, TRI) << '\n'); 383 384 if (EvictAdvisor->canEvictHintInterference(VirtReg, PhysHint, 385 FixedRegisters)) { 386 evictInterference(VirtReg, PhysHint, NewVRegs); 387 return PhysHint; 388 } 389 // Record the missed hint, we may be able to recover 390 // at the end if the surrounding allocation changed. 391 SetOfBrokenHints.insert(&VirtReg); 392 } 393 394 // Try to evict interference from a cheaper alternative. 395 uint8_t Cost = RegCosts[PhysReg]; 396 397 // Most registers have 0 additional cost. 398 if (!Cost) 399 return PhysReg; 400 401 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is available at cost " 402 << (unsigned)Cost << '\n'); 403 MCRegister CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost, FixedRegisters); 404 return CheapReg ? CheapReg : PhysReg; 405 } 406 407 //===----------------------------------------------------------------------===// 408 // Interference eviction 409 //===----------------------------------------------------------------------===// 410 411 Register RegAllocEvictionAdvisor::canReassign(const LiveInterval &VirtReg, 412 Register PrevReg) const { 413 auto Order = 414 AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix); 415 MCRegister PhysReg; 416 for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) { 417 if ((*I).id() == PrevReg.id()) 418 continue; 419 420 MCRegUnitIterator Units(*I, TRI); 421 for (; Units.isValid(); ++Units) { 422 // Instantiate a "subquery", not to be confused with the Queries array. 423 LiveIntervalUnion::Query subQ(VirtReg, Matrix->getLiveUnions()[*Units]); 424 if (subQ.checkInterference()) 425 break; 426 } 427 // If no units have interference, break out with the current PhysReg. 428 if (!Units.isValid()) 429 PhysReg = *I; 430 } 431 if (PhysReg) 432 LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg << " from " 433 << printReg(PrevReg, TRI) << " to " 434 << printReg(PhysReg, TRI) << '\n'); 435 return PhysReg; 436 } 437 438 /// Return true if all interferences between VirtReg and PhysReg between 439 /// Start and End can be evicted. 440 /// 441 /// \param VirtReg Live range that is about to be assigned. 442 /// \param PhysReg Desired register for assignment. 443 /// \param Start Start of range to look for interferences. 444 /// \param End End of range to look for interferences. 445 /// \param MaxCost Only look for cheaper candidates and update with new cost 446 /// when returning true. 447 /// \return True when interference can be evicted cheaper than MaxCost. 448 bool RAGreedy::canEvictInterferenceInRange(const LiveInterval &VirtReg, 449 MCRegister PhysReg, SlotIndex Start, 450 SlotIndex End, 451 EvictionCost &MaxCost) const { 452 EvictionCost Cost; 453 454 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 455 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 456 457 // Check if any interfering live range is heavier than MaxWeight. 458 for (const LiveInterval *Intf : reverse(Q.interferingVRegs())) { 459 // Check if interference overlast the segment in interest. 460 if (!Intf->overlaps(Start, End)) 461 continue; 462 463 // Cannot evict non virtual reg interference. 464 if (!Register::isVirtualRegister(Intf->reg())) 465 return false; 466 // Never evict spill products. They cannot split or spill. 467 if (ExtraInfo->getStage(*Intf) == RS_Done) 468 return false; 469 470 // Would this break a satisfied hint? 471 bool BreaksHint = VRM->hasPreferredPhys(Intf->reg()); 472 // Update eviction cost. 473 Cost.BrokenHints += BreaksHint; 474 Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight()); 475 // Abort if this would be too expensive. 476 if (!(Cost < MaxCost)) 477 return false; 478 } 479 } 480 481 if (Cost.MaxWeight == 0) 482 return false; 483 484 MaxCost = Cost; 485 return true; 486 } 487 488 /// Return the physical register that will be best 489 /// candidate for eviction by a local split interval that will be created 490 /// between Start and End. 491 /// 492 /// \param Order The allocation order 493 /// \param VirtReg Live range that is about to be assigned. 494 /// \param Start Start of range to look for interferences 495 /// \param End End of range to look for interferences 496 /// \param BestEvictweight The eviction cost of that eviction 497 /// \return The PhysReg which is the best candidate for eviction and the 498 /// eviction cost in BestEvictweight 499 MCRegister RAGreedy::getCheapestEvicteeWeight(const AllocationOrder &Order, 500 const LiveInterval &VirtReg, 501 SlotIndex Start, SlotIndex End, 502 float *BestEvictweight) const { 503 EvictionCost BestEvictCost; 504 BestEvictCost.setMax(); 505 BestEvictCost.MaxWeight = VirtReg.weight(); 506 MCRegister BestEvicteePhys; 507 508 // Go over all physical registers and find the best candidate for eviction 509 for (MCRegister PhysReg : Order.getOrder()) { 510 511 if (!canEvictInterferenceInRange(VirtReg, PhysReg, Start, End, 512 BestEvictCost)) 513 continue; 514 515 // Best so far. 516 BestEvicteePhys = PhysReg; 517 } 518 *BestEvictweight = BestEvictCost.MaxWeight; 519 return BestEvicteePhys; 520 } 521 522 /// evictInterference - Evict any interferring registers that prevent VirtReg 523 /// from being assigned to Physreg. This assumes that canEvictInterference 524 /// returned true. 525 void RAGreedy::evictInterference(const LiveInterval &VirtReg, 526 MCRegister PhysReg, 527 SmallVectorImpl<Register> &NewVRegs) { 528 // Make sure that VirtReg has a cascade number, and assign that cascade 529 // number to every evicted register. These live ranges than then only be 530 // evicted by a newer cascade, preventing infinite loops. 531 unsigned Cascade = ExtraInfo->getOrAssignNewCascade(VirtReg.reg()); 532 533 LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg, TRI) 534 << " interference: Cascade " << Cascade << '\n'); 535 536 // Collect all interfering virtregs first. 537 SmallVector<const LiveInterval *, 8> Intfs; 538 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 539 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 540 // We usually have the interfering VRegs cached so collectInterferingVRegs() 541 // should be fast, we may need to recalculate if when different physregs 542 // overlap the same register unit so we had different SubRanges queried 543 // against it. 544 ArrayRef<const LiveInterval *> IVR = Q.interferingVRegs(); 545 Intfs.append(IVR.begin(), IVR.end()); 546 } 547 548 // Evict them second. This will invalidate the queries. 549 for (const LiveInterval *Intf : Intfs) { 550 // The same VirtReg may be present in multiple RegUnits. Skip duplicates. 551 if (!VRM->hasPhys(Intf->reg())) 552 continue; 553 554 LastEvicted.addEviction(PhysReg, VirtReg.reg(), Intf->reg()); 555 556 Matrix->unassign(*Intf); 557 assert((ExtraInfo->getCascade(Intf->reg()) < Cascade || 558 VirtReg.isSpillable() < Intf->isSpillable()) && 559 "Cannot decrease cascade number, illegal eviction"); 560 ExtraInfo->setCascade(Intf->reg(), Cascade); 561 ++NumEvicted; 562 NewVRegs.push_back(Intf->reg()); 563 } 564 } 565 566 /// Returns true if the given \p PhysReg is a callee saved register and has not 567 /// been used for allocation yet. 568 bool RegAllocEvictionAdvisor::isUnusedCalleeSavedReg(MCRegister PhysReg) const { 569 MCRegister CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg); 570 if (!CSR) 571 return false; 572 573 return !Matrix->isPhysRegUsed(PhysReg); 574 } 575 576 Optional<unsigned> 577 RegAllocEvictionAdvisor::getOrderLimit(const LiveInterval &VirtReg, 578 const AllocationOrder &Order, 579 unsigned CostPerUseLimit) const { 580 unsigned OrderLimit = Order.getOrder().size(); 581 582 if (CostPerUseLimit < uint8_t(~0u)) { 583 // Check of any registers in RC are below CostPerUseLimit. 584 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg()); 585 uint8_t MinCost = RegClassInfo.getMinCost(RC); 586 if (MinCost >= CostPerUseLimit) { 587 LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = " 588 << MinCost << ", no cheaper registers to be found.\n"); 589 return None; 590 } 591 592 // It is normal for register classes to have a long tail of registers with 593 // the same cost. We don't need to look at them if they're too expensive. 594 if (RegCosts[Order.getOrder().back()] >= CostPerUseLimit) { 595 OrderLimit = RegClassInfo.getLastCostChange(RC); 596 LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit 597 << " regs.\n"); 598 } 599 } 600 return OrderLimit; 601 } 602 603 bool RegAllocEvictionAdvisor::canAllocatePhysReg(unsigned CostPerUseLimit, 604 MCRegister PhysReg) const { 605 if (RegCosts[PhysReg] >= CostPerUseLimit) 606 return false; 607 // The first use of a callee-saved register in a function has cost 1. 608 // Don't start using a CSR when the CostPerUseLimit is low. 609 if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) { 610 LLVM_DEBUG( 611 dbgs() << printReg(PhysReg, TRI) << " would clobber CSR " 612 << printReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI) 613 << '\n'); 614 return false; 615 } 616 return true; 617 } 618 619 /// tryEvict - Try to evict all interferences for a physreg. 620 /// @param VirtReg Currently unassigned virtual register. 621 /// @param Order Physregs to try. 622 /// @return Physreg to assign VirtReg, or 0. 623 MCRegister RAGreedy::tryEvict(const LiveInterval &VirtReg, 624 AllocationOrder &Order, 625 SmallVectorImpl<Register> &NewVRegs, 626 uint8_t CostPerUseLimit, 627 const SmallVirtRegSet &FixedRegisters) { 628 NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription, 629 TimePassesIsEnabled); 630 631 MCRegister BestPhys = EvictAdvisor->tryFindEvictionCandidate( 632 VirtReg, Order, CostPerUseLimit, FixedRegisters); 633 if (BestPhys.isValid()) 634 evictInterference(VirtReg, BestPhys, NewVRegs); 635 return BestPhys; 636 } 637 638 //===----------------------------------------------------------------------===// 639 // Region Splitting 640 //===----------------------------------------------------------------------===// 641 642 /// addSplitConstraints - Fill out the SplitConstraints vector based on the 643 /// interference pattern in Physreg and its aliases. Add the constraints to 644 /// SpillPlacement and return the static cost of this split in Cost, assuming 645 /// that all preferences in SplitConstraints are met. 646 /// Return false if there are no bundles with positive bias. 647 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf, 648 BlockFrequency &Cost) { 649 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 650 651 // Reset interference dependent info. 652 SplitConstraints.resize(UseBlocks.size()); 653 BlockFrequency StaticCost = 0; 654 for (unsigned I = 0; I != UseBlocks.size(); ++I) { 655 const SplitAnalysis::BlockInfo &BI = UseBlocks[I]; 656 SpillPlacement::BlockConstraint &BC = SplitConstraints[I]; 657 658 BC.Number = BI.MBB->getNumber(); 659 Intf.moveToBlock(BC.Number); 660 BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare; 661 BC.Exit = (BI.LiveOut && 662 !LIS->getInstructionFromIndex(BI.LastInstr)->isImplicitDef()) 663 ? SpillPlacement::PrefReg 664 : SpillPlacement::DontCare; 665 BC.ChangesValue = BI.FirstDef.isValid(); 666 667 if (!Intf.hasInterference()) 668 continue; 669 670 // Number of spill code instructions to insert. 671 unsigned Ins = 0; 672 673 // Interference for the live-in value. 674 if (BI.LiveIn) { 675 if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) { 676 BC.Entry = SpillPlacement::MustSpill; 677 ++Ins; 678 } else if (Intf.first() < BI.FirstInstr) { 679 BC.Entry = SpillPlacement::PrefSpill; 680 ++Ins; 681 } else if (Intf.first() < BI.LastInstr) { 682 ++Ins; 683 } 684 685 // Abort if the spill cannot be inserted at the MBB' start 686 if (((BC.Entry == SpillPlacement::MustSpill) || 687 (BC.Entry == SpillPlacement::PrefSpill)) && 688 SlotIndex::isEarlierInstr(BI.FirstInstr, 689 SA->getFirstSplitPoint(BC.Number))) 690 return false; 691 } 692 693 // Interference for the live-out value. 694 if (BI.LiveOut) { 695 if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) { 696 BC.Exit = SpillPlacement::MustSpill; 697 ++Ins; 698 } else if (Intf.last() > BI.LastInstr) { 699 BC.Exit = SpillPlacement::PrefSpill; 700 ++Ins; 701 } else if (Intf.last() > BI.FirstInstr) { 702 ++Ins; 703 } 704 } 705 706 // Accumulate the total frequency of inserted spill code. 707 while (Ins--) 708 StaticCost += SpillPlacer->getBlockFrequency(BC.Number); 709 } 710 Cost = StaticCost; 711 712 // Add constraints for use-blocks. Note that these are the only constraints 713 // that may add a positive bias, it is downhill from here. 714 SpillPlacer->addConstraints(SplitConstraints); 715 return SpillPlacer->scanActiveBundles(); 716 } 717 718 /// addThroughConstraints - Add constraints and links to SpillPlacer from the 719 /// live-through blocks in Blocks. 720 bool RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf, 721 ArrayRef<unsigned> Blocks) { 722 const unsigned GroupSize = 8; 723 SpillPlacement::BlockConstraint BCS[GroupSize]; 724 unsigned TBS[GroupSize]; 725 unsigned B = 0, T = 0; 726 727 for (unsigned Number : Blocks) { 728 Intf.moveToBlock(Number); 729 730 if (!Intf.hasInterference()) { 731 assert(T < GroupSize && "Array overflow"); 732 TBS[T] = Number; 733 if (++T == GroupSize) { 734 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 735 T = 0; 736 } 737 continue; 738 } 739 740 assert(B < GroupSize && "Array overflow"); 741 BCS[B].Number = Number; 742 743 // Abort if the spill cannot be inserted at the MBB' start 744 MachineBasicBlock *MBB = MF->getBlockNumbered(Number); 745 auto FirstNonDebugInstr = MBB->getFirstNonDebugInstr(); 746 if (FirstNonDebugInstr != MBB->end() && 747 SlotIndex::isEarlierInstr(LIS->getInstructionIndex(*FirstNonDebugInstr), 748 SA->getFirstSplitPoint(Number))) 749 return false; 750 // Interference for the live-in value. 751 if (Intf.first() <= Indexes->getMBBStartIdx(Number)) 752 BCS[B].Entry = SpillPlacement::MustSpill; 753 else 754 BCS[B].Entry = SpillPlacement::PrefSpill; 755 756 // Interference for the live-out value. 757 if (Intf.last() >= SA->getLastSplitPoint(Number)) 758 BCS[B].Exit = SpillPlacement::MustSpill; 759 else 760 BCS[B].Exit = SpillPlacement::PrefSpill; 761 762 if (++B == GroupSize) { 763 SpillPlacer->addConstraints(makeArrayRef(BCS, B)); 764 B = 0; 765 } 766 } 767 768 SpillPlacer->addConstraints(makeArrayRef(BCS, B)); 769 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 770 return true; 771 } 772 773 bool RAGreedy::growRegion(GlobalSplitCandidate &Cand) { 774 // Keep track of through blocks that have not been added to SpillPlacer. 775 BitVector Todo = SA->getThroughBlocks(); 776 SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks; 777 unsigned AddedTo = 0; 778 #ifndef NDEBUG 779 unsigned Visited = 0; 780 #endif 781 782 unsigned long Budget = GrowRegionComplexityBudget; 783 while (true) { 784 ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive(); 785 // Find new through blocks in the periphery of PrefRegBundles. 786 for (unsigned Bundle : NewBundles) { 787 // Look at all blocks connected to Bundle in the full graph. 788 ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle); 789 // Limit compilation time by bailing out after we use all our budget. 790 if (Blocks.size() >= Budget) 791 return false; 792 Budget -= Blocks.size(); 793 for (unsigned Block : Blocks) { 794 if (!Todo.test(Block)) 795 continue; 796 Todo.reset(Block); 797 // This is a new through block. Add it to SpillPlacer later. 798 ActiveBlocks.push_back(Block); 799 #ifndef NDEBUG 800 ++Visited; 801 #endif 802 } 803 } 804 // Any new blocks to add? 805 if (ActiveBlocks.size() == AddedTo) 806 break; 807 808 // Compute through constraints from the interference, or assume that all 809 // through blocks prefer spilling when forming compact regions. 810 auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo); 811 if (Cand.PhysReg) { 812 if (!addThroughConstraints(Cand.Intf, NewBlocks)) 813 return false; 814 } else 815 // Provide a strong negative bias on through blocks to prevent unwanted 816 // liveness on loop backedges. 817 SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true); 818 AddedTo = ActiveBlocks.size(); 819 820 // Perhaps iterating can enable more bundles? 821 SpillPlacer->iterate(); 822 } 823 LLVM_DEBUG(dbgs() << ", v=" << Visited); 824 return true; 825 } 826 827 /// calcCompactRegion - Compute the set of edge bundles that should be live 828 /// when splitting the current live range into compact regions. Compact 829 /// regions can be computed without looking at interference. They are the 830 /// regions formed by removing all the live-through blocks from the live range. 831 /// 832 /// Returns false if the current live range is already compact, or if the 833 /// compact regions would form single block regions anyway. 834 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) { 835 // Without any through blocks, the live range is already compact. 836 if (!SA->getNumThroughBlocks()) 837 return false; 838 839 // Compact regions don't correspond to any physreg. 840 Cand.reset(IntfCache, MCRegister::NoRegister); 841 842 LLVM_DEBUG(dbgs() << "Compact region bundles"); 843 844 // Use the spill placer to determine the live bundles. GrowRegion pretends 845 // that all the through blocks have interference when PhysReg is unset. 846 SpillPlacer->prepare(Cand.LiveBundles); 847 848 // The static split cost will be zero since Cand.Intf reports no interference. 849 BlockFrequency Cost; 850 if (!addSplitConstraints(Cand.Intf, Cost)) { 851 LLVM_DEBUG(dbgs() << ", none.\n"); 852 return false; 853 } 854 855 if (!growRegion(Cand)) { 856 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n"); 857 return false; 858 } 859 860 SpillPlacer->finish(); 861 862 if (!Cand.LiveBundles.any()) { 863 LLVM_DEBUG(dbgs() << ", none.\n"); 864 return false; 865 } 866 867 LLVM_DEBUG({ 868 for (int I : Cand.LiveBundles.set_bits()) 869 dbgs() << " EB#" << I; 870 dbgs() << ".\n"; 871 }); 872 return true; 873 } 874 875 /// calcSpillCost - Compute how expensive it would be to split the live range in 876 /// SA around all use blocks instead of forming bundle regions. 877 BlockFrequency RAGreedy::calcSpillCost() { 878 BlockFrequency Cost = 0; 879 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 880 for (const SplitAnalysis::BlockInfo &BI : UseBlocks) { 881 unsigned Number = BI.MBB->getNumber(); 882 // We normally only need one spill instruction - a load or a store. 883 Cost += SpillPlacer->getBlockFrequency(Number); 884 885 // Unless the value is redefined in the block. 886 if (BI.LiveIn && BI.LiveOut && BI.FirstDef) 887 Cost += SpillPlacer->getBlockFrequency(Number); 888 } 889 return Cost; 890 } 891 892 /// Check if splitting Evictee will create a local split interval in 893 /// basic block number BBNumber that may cause a bad eviction chain. This is 894 /// intended to prevent bad eviction sequences like: 895 /// movl %ebp, 8(%esp) # 4-byte Spill 896 /// movl %ecx, %ebp 897 /// movl %ebx, %ecx 898 /// movl %edi, %ebx 899 /// movl %edx, %edi 900 /// cltd 901 /// idivl %esi 902 /// movl %edi, %edx 903 /// movl %ebx, %edi 904 /// movl %ecx, %ebx 905 /// movl %ebp, %ecx 906 /// movl 16(%esp), %ebp # 4 - byte Reload 907 /// 908 /// Such sequences are created in 2 scenarios: 909 /// 910 /// Scenario #1: 911 /// %0 is evicted from physreg0 by %1. 912 /// Evictee %0 is intended for region splitting with split candidate 913 /// physreg0 (the reg %0 was evicted from). 914 /// Region splitting creates a local interval because of interference with the 915 /// evictor %1 (normally region splitting creates 2 interval, the "by reg" 916 /// and "by stack" intervals and local interval created when interference 917 /// occurs). 918 /// One of the split intervals ends up evicting %2 from physreg1. 919 /// Evictee %2 is intended for region splitting with split candidate 920 /// physreg1. 921 /// One of the split intervals ends up evicting %3 from physreg2, etc. 922 /// 923 /// Scenario #2 924 /// %0 is evicted from physreg0 by %1. 925 /// %2 is evicted from physreg2 by %3 etc. 926 /// Evictee %0 is intended for region splitting with split candidate 927 /// physreg1. 928 /// Region splitting creates a local interval because of interference with the 929 /// evictor %1. 930 /// One of the split intervals ends up evicting back original evictor %1 931 /// from physreg0 (the reg %0 was evicted from). 932 /// Another evictee %2 is intended for region splitting with split candidate 933 /// physreg1. 934 /// One of the split intervals ends up evicting %3 from physreg2, etc. 935 /// 936 /// \param Evictee The register considered to be split. 937 /// \param Cand The split candidate that determines the physical register 938 /// we are splitting for and the interferences. 939 /// \param BBNumber The number of a BB for which the region split process will 940 /// create a local split interval. 941 /// \param Order The physical registers that may get evicted by a split 942 /// artifact of Evictee. 943 /// \return True if splitting Evictee may cause a bad eviction chain, false 944 /// otherwise. 945 bool RAGreedy::splitCanCauseEvictionChain(Register Evictee, 946 GlobalSplitCandidate &Cand, 947 unsigned BBNumber, 948 const AllocationOrder &Order) { 949 EvictionTrack::EvictorInfo VregEvictorInfo = LastEvicted.getEvictor(Evictee); 950 unsigned Evictor = VregEvictorInfo.first; 951 MCRegister PhysReg = VregEvictorInfo.second; 952 953 // No actual evictor. 954 if (!Evictor || !PhysReg) 955 return false; 956 957 float MaxWeight = 0; 958 MCRegister FutureEvictedPhysReg = 959 getCheapestEvicteeWeight(Order, LIS->getInterval(Evictee), 960 Cand.Intf.first(), Cand.Intf.last(), &MaxWeight); 961 962 // The bad eviction chain occurs when either the split candidate is the 963 // evicting reg or one of the split artifact will evict the evicting reg. 964 if ((PhysReg != Cand.PhysReg) && (PhysReg != FutureEvictedPhysReg)) 965 return false; 966 967 Cand.Intf.moveToBlock(BBNumber); 968 969 // Check to see if the Evictor contains interference (with Evictee) in the 970 // given BB. If so, this interference caused the eviction of Evictee from 971 // PhysReg. This suggest that we will create a local interval during the 972 // region split to avoid this interference This local interval may cause a bad 973 // eviction chain. 974 if (!LIS->hasInterval(Evictor)) 975 return false; 976 LiveInterval &EvictorLI = LIS->getInterval(Evictor); 977 if (EvictorLI.FindSegmentContaining(Cand.Intf.first()) == EvictorLI.end()) 978 return false; 979 980 // Now, check to see if the local interval we will create is going to be 981 // expensive enough to evict somebody If so, this may cause a bad eviction 982 // chain. 983 float splitArtifactWeight = 984 VRAI->futureWeight(LIS->getInterval(Evictee), 985 Cand.Intf.first().getPrevIndex(), Cand.Intf.last()); 986 if (splitArtifactWeight >= 0 && splitArtifactWeight < MaxWeight) 987 return false; 988 989 return true; 990 } 991 992 /// calcGlobalSplitCost - Return the global split cost of following the split 993 /// pattern in LiveBundles. This cost should be added to the local cost of the 994 /// interference pattern in SplitConstraints. 995 /// 996 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand, 997 const AllocationOrder &Order) { 998 BlockFrequency GlobalCost = 0; 999 const BitVector &LiveBundles = Cand.LiveBundles; 1000 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1001 for (unsigned I = 0; I != UseBlocks.size(); ++I) { 1002 const SplitAnalysis::BlockInfo &BI = UseBlocks[I]; 1003 SpillPlacement::BlockConstraint &BC = SplitConstraints[I]; 1004 bool RegIn = LiveBundles[Bundles->getBundle(BC.Number, false)]; 1005 bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)]; 1006 unsigned Ins = 0; 1007 1008 Cand.Intf.moveToBlock(BC.Number); 1009 1010 if (BI.LiveIn) 1011 Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg); 1012 if (BI.LiveOut) 1013 Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg); 1014 while (Ins--) 1015 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1016 } 1017 1018 for (unsigned Number : Cand.ActiveBlocks) { 1019 bool RegIn = LiveBundles[Bundles->getBundle(Number, false)]; 1020 bool RegOut = LiveBundles[Bundles->getBundle(Number, true)]; 1021 if (!RegIn && !RegOut) 1022 continue; 1023 if (RegIn && RegOut) { 1024 // We need double spill code if this block has interference. 1025 Cand.Intf.moveToBlock(Number); 1026 if (Cand.Intf.hasInterference()) { 1027 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1028 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1029 } 1030 continue; 1031 } 1032 // live-in / stack-out or stack-in live-out. 1033 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1034 } 1035 return GlobalCost; 1036 } 1037 1038 /// splitAroundRegion - Split the current live range around the regions 1039 /// determined by BundleCand and GlobalCand. 1040 /// 1041 /// Before calling this function, GlobalCand and BundleCand must be initialized 1042 /// so each bundle is assigned to a valid candidate, or NoCand for the 1043 /// stack-bound bundles. The shared SA/SE SplitAnalysis and SplitEditor 1044 /// objects must be initialized for the current live range, and intervals 1045 /// created for the used candidates. 1046 /// 1047 /// @param LREdit The LiveRangeEdit object handling the current split. 1048 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value 1049 /// must appear in this list. 1050 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit, 1051 ArrayRef<unsigned> UsedCands) { 1052 // These are the intervals created for new global ranges. We may create more 1053 // intervals for local ranges. 1054 const unsigned NumGlobalIntvs = LREdit.size(); 1055 LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs 1056 << " globals.\n"); 1057 assert(NumGlobalIntvs && "No global intervals configured"); 1058 1059 // Isolate even single instructions when dealing with a proper sub-class. 1060 // That guarantees register class inflation for the stack interval because it 1061 // is all copies. 1062 Register Reg = SA->getParent().reg(); 1063 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 1064 1065 // First handle all the blocks with uses. 1066 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1067 for (const SplitAnalysis::BlockInfo &BI : UseBlocks) { 1068 unsigned Number = BI.MBB->getNumber(); 1069 unsigned IntvIn = 0, IntvOut = 0; 1070 SlotIndex IntfIn, IntfOut; 1071 if (BI.LiveIn) { 1072 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)]; 1073 if (CandIn != NoCand) { 1074 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 1075 IntvIn = Cand.IntvIdx; 1076 Cand.Intf.moveToBlock(Number); 1077 IntfIn = Cand.Intf.first(); 1078 } 1079 } 1080 if (BI.LiveOut) { 1081 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)]; 1082 if (CandOut != NoCand) { 1083 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 1084 IntvOut = Cand.IntvIdx; 1085 Cand.Intf.moveToBlock(Number); 1086 IntfOut = Cand.Intf.last(); 1087 } 1088 } 1089 1090 // Create separate intervals for isolated blocks with multiple uses. 1091 if (!IntvIn && !IntvOut) { 1092 LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " isolated.\n"); 1093 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 1094 SE->splitSingleBlock(BI); 1095 continue; 1096 } 1097 1098 if (IntvIn && IntvOut) 1099 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1100 else if (IntvIn) 1101 SE->splitRegInBlock(BI, IntvIn, IntfIn); 1102 else 1103 SE->splitRegOutBlock(BI, IntvOut, IntfOut); 1104 } 1105 1106 // Handle live-through blocks. The relevant live-through blocks are stored in 1107 // the ActiveBlocks list with each candidate. We need to filter out 1108 // duplicates. 1109 BitVector Todo = SA->getThroughBlocks(); 1110 for (unsigned UsedCand : UsedCands) { 1111 ArrayRef<unsigned> Blocks = GlobalCand[UsedCand].ActiveBlocks; 1112 for (unsigned Number : Blocks) { 1113 if (!Todo.test(Number)) 1114 continue; 1115 Todo.reset(Number); 1116 1117 unsigned IntvIn = 0, IntvOut = 0; 1118 SlotIndex IntfIn, IntfOut; 1119 1120 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)]; 1121 if (CandIn != NoCand) { 1122 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 1123 IntvIn = Cand.IntvIdx; 1124 Cand.Intf.moveToBlock(Number); 1125 IntfIn = Cand.Intf.first(); 1126 } 1127 1128 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)]; 1129 if (CandOut != NoCand) { 1130 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 1131 IntvOut = Cand.IntvIdx; 1132 Cand.Intf.moveToBlock(Number); 1133 IntfOut = Cand.Intf.last(); 1134 } 1135 if (!IntvIn && !IntvOut) 1136 continue; 1137 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1138 } 1139 } 1140 1141 ++NumGlobalSplits; 1142 1143 SmallVector<unsigned, 8> IntvMap; 1144 SE->finish(&IntvMap); 1145 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 1146 1147 unsigned OrigBlocks = SA->getNumLiveBlocks(); 1148 1149 // Sort out the new intervals created by splitting. We get four kinds: 1150 // - Remainder intervals should not be split again. 1151 // - Candidate intervals can be assigned to Cand.PhysReg. 1152 // - Block-local splits are candidates for local splitting. 1153 // - DCE leftovers should go back on the queue. 1154 for (unsigned I = 0, E = LREdit.size(); I != E; ++I) { 1155 const LiveInterval &Reg = LIS->getInterval(LREdit.get(I)); 1156 1157 // Ignore old intervals from DCE. 1158 if (ExtraInfo->getOrInitStage(Reg.reg()) != RS_New) 1159 continue; 1160 1161 // Remainder interval. Don't try splitting again, spill if it doesn't 1162 // allocate. 1163 if (IntvMap[I] == 0) { 1164 ExtraInfo->setStage(Reg, RS_Spill); 1165 continue; 1166 } 1167 1168 // Global intervals. Allow repeated splitting as long as the number of live 1169 // blocks is strictly decreasing. 1170 if (IntvMap[I] < NumGlobalIntvs) { 1171 if (SA->countLiveBlocks(&Reg) >= OrigBlocks) { 1172 LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks 1173 << " blocks as original.\n"); 1174 // Don't allow repeated splitting as a safe guard against looping. 1175 ExtraInfo->setStage(Reg, RS_Split2); 1176 } 1177 continue; 1178 } 1179 1180 // Other intervals are treated as new. This includes local intervals created 1181 // for blocks with multiple uses, and anything created by DCE. 1182 } 1183 1184 if (VerifyEnabled) 1185 MF->verify(this, "After splitting live range around region"); 1186 } 1187 1188 MCRegister RAGreedy::tryRegionSplit(const LiveInterval &VirtReg, 1189 AllocationOrder &Order, 1190 SmallVectorImpl<Register> &NewVRegs) { 1191 if (!TRI->shouldRegionSplitForVirtReg(*MF, VirtReg)) 1192 return MCRegister::NoRegister; 1193 unsigned NumCands = 0; 1194 BlockFrequency SpillCost = calcSpillCost(); 1195 BlockFrequency BestCost; 1196 1197 // Check if we can split this live range around a compact region. 1198 bool HasCompact = calcCompactRegion(GlobalCand.front()); 1199 if (HasCompact) { 1200 // Yes, keep GlobalCand[0] as the compact region candidate. 1201 NumCands = 1; 1202 BestCost = BlockFrequency::getMaxFrequency(); 1203 } else { 1204 // No benefit from the compact region, our fallback will be per-block 1205 // splitting. Make sure we find a solution that is cheaper than spilling. 1206 BestCost = SpillCost; 1207 LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = "; 1208 MBFI->printBlockFreq(dbgs(), BestCost) << '\n'); 1209 } 1210 1211 unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost, 1212 NumCands, false /*IgnoreCSR*/); 1213 1214 // No solutions found, fall back to single block splitting. 1215 if (!HasCompact && BestCand == NoCand) 1216 return MCRegister::NoRegister; 1217 1218 return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs); 1219 } 1220 1221 unsigned RAGreedy::calculateRegionSplitCost(const LiveInterval &VirtReg, 1222 AllocationOrder &Order, 1223 BlockFrequency &BestCost, 1224 unsigned &NumCands, 1225 bool IgnoreCSR) { 1226 unsigned BestCand = NoCand; 1227 for (MCPhysReg PhysReg : Order) { 1228 assert(PhysReg); 1229 if (IgnoreCSR && EvictAdvisor->isUnusedCalleeSavedReg(PhysReg)) 1230 continue; 1231 1232 // Discard bad candidates before we run out of interference cache cursors. 1233 // This will only affect register classes with a lot of registers (>32). 1234 if (NumCands == IntfCache.getMaxCursors()) { 1235 unsigned WorstCount = ~0u; 1236 unsigned Worst = 0; 1237 for (unsigned CandIndex = 0; CandIndex != NumCands; ++CandIndex) { 1238 if (CandIndex == BestCand || !GlobalCand[CandIndex].PhysReg) 1239 continue; 1240 unsigned Count = GlobalCand[CandIndex].LiveBundles.count(); 1241 if (Count < WorstCount) { 1242 Worst = CandIndex; 1243 WorstCount = Count; 1244 } 1245 } 1246 --NumCands; 1247 GlobalCand[Worst] = GlobalCand[NumCands]; 1248 if (BestCand == NumCands) 1249 BestCand = Worst; 1250 } 1251 1252 if (GlobalCand.size() <= NumCands) 1253 GlobalCand.resize(NumCands+1); 1254 GlobalSplitCandidate &Cand = GlobalCand[NumCands]; 1255 Cand.reset(IntfCache, PhysReg); 1256 1257 SpillPlacer->prepare(Cand.LiveBundles); 1258 BlockFrequency Cost; 1259 if (!addSplitConstraints(Cand.Intf, Cost)) { 1260 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tno positive bundles\n"); 1261 continue; 1262 } 1263 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tstatic = "; 1264 MBFI->printBlockFreq(dbgs(), Cost)); 1265 if (Cost >= BestCost) { 1266 LLVM_DEBUG({ 1267 if (BestCand == NoCand) 1268 dbgs() << " worse than no bundles\n"; 1269 else 1270 dbgs() << " worse than " 1271 << printReg(GlobalCand[BestCand].PhysReg, TRI) << '\n'; 1272 }); 1273 continue; 1274 } 1275 if (!growRegion(Cand)) { 1276 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n"); 1277 continue; 1278 } 1279 1280 SpillPlacer->finish(); 1281 1282 // No live bundles, defer to splitSingleBlocks(). 1283 if (!Cand.LiveBundles.any()) { 1284 LLVM_DEBUG(dbgs() << " no bundles.\n"); 1285 continue; 1286 } 1287 1288 Cost += calcGlobalSplitCost(Cand, Order); 1289 LLVM_DEBUG({ 1290 dbgs() << ", total = "; 1291 MBFI->printBlockFreq(dbgs(), Cost) << " with bundles"; 1292 for (int I : Cand.LiveBundles.set_bits()) 1293 dbgs() << " EB#" << I; 1294 dbgs() << ".\n"; 1295 }); 1296 if (Cost < BestCost) { 1297 BestCand = NumCands; 1298 BestCost = Cost; 1299 } 1300 ++NumCands; 1301 } 1302 1303 return BestCand; 1304 } 1305 1306 unsigned RAGreedy::doRegionSplit(const LiveInterval &VirtReg, unsigned BestCand, 1307 bool HasCompact, 1308 SmallVectorImpl<Register> &NewVRegs) { 1309 SmallVector<unsigned, 8> UsedCands; 1310 // Prepare split editor. 1311 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1312 SE->reset(LREdit, SplitSpillMode); 1313 1314 // Assign all edge bundles to the preferred candidate, or NoCand. 1315 BundleCand.assign(Bundles->getNumBundles(), NoCand); 1316 1317 // Assign bundles for the best candidate region. 1318 if (BestCand != NoCand) { 1319 GlobalSplitCandidate &Cand = GlobalCand[BestCand]; 1320 if (unsigned B = Cand.getBundles(BundleCand, BestCand)) { 1321 UsedCands.push_back(BestCand); 1322 Cand.IntvIdx = SE->openIntv(); 1323 LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand.PhysReg, TRI) << " in " 1324 << B << " bundles, intv " << Cand.IntvIdx << ".\n"); 1325 (void)B; 1326 } 1327 } 1328 1329 // Assign bundles for the compact region. 1330 if (HasCompact) { 1331 GlobalSplitCandidate &Cand = GlobalCand.front(); 1332 assert(!Cand.PhysReg && "Compact region has no physreg"); 1333 if (unsigned B = Cand.getBundles(BundleCand, 0)) { 1334 UsedCands.push_back(0); 1335 Cand.IntvIdx = SE->openIntv(); 1336 LLVM_DEBUG(dbgs() << "Split for compact region in " << B 1337 << " bundles, intv " << Cand.IntvIdx << ".\n"); 1338 (void)B; 1339 } 1340 } 1341 1342 splitAroundRegion(LREdit, UsedCands); 1343 return 0; 1344 } 1345 1346 //===----------------------------------------------------------------------===// 1347 // Per-Block Splitting 1348 //===----------------------------------------------------------------------===// 1349 1350 /// tryBlockSplit - Split a global live range around every block with uses. This 1351 /// creates a lot of local live ranges, that will be split by tryLocalSplit if 1352 /// they don't allocate. 1353 unsigned RAGreedy::tryBlockSplit(const LiveInterval &VirtReg, 1354 AllocationOrder &Order, 1355 SmallVectorImpl<Register> &NewVRegs) { 1356 assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed"); 1357 Register Reg = VirtReg.reg(); 1358 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 1359 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1360 SE->reset(LREdit, SplitSpillMode); 1361 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1362 for (const SplitAnalysis::BlockInfo &BI : UseBlocks) { 1363 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 1364 SE->splitSingleBlock(BI); 1365 } 1366 // No blocks were split. 1367 if (LREdit.empty()) 1368 return 0; 1369 1370 // We did split for some blocks. 1371 SmallVector<unsigned, 8> IntvMap; 1372 SE->finish(&IntvMap); 1373 1374 // Tell LiveDebugVariables about the new ranges. 1375 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 1376 1377 // Sort out the new intervals created by splitting. The remainder interval 1378 // goes straight to spilling, the new local ranges get to stay RS_New. 1379 for (unsigned I = 0, E = LREdit.size(); I != E; ++I) { 1380 const LiveInterval &LI = LIS->getInterval(LREdit.get(I)); 1381 if (ExtraInfo->getOrInitStage(LI.reg()) == RS_New && IntvMap[I] == 0) 1382 ExtraInfo->setStage(LI, RS_Spill); 1383 } 1384 1385 if (VerifyEnabled) 1386 MF->verify(this, "After splitting live range around basic blocks"); 1387 return 0; 1388 } 1389 1390 //===----------------------------------------------------------------------===// 1391 // Per-Instruction Splitting 1392 //===----------------------------------------------------------------------===// 1393 1394 /// Get the number of allocatable registers that match the constraints of \p Reg 1395 /// on \p MI and that are also in \p SuperRC. 1396 static unsigned getNumAllocatableRegsForConstraints( 1397 const MachineInstr *MI, Register Reg, const TargetRegisterClass *SuperRC, 1398 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI, 1399 const RegisterClassInfo &RCI) { 1400 assert(SuperRC && "Invalid register class"); 1401 1402 const TargetRegisterClass *ConstrainedRC = 1403 MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI, 1404 /* ExploreBundle */ true); 1405 if (!ConstrainedRC) 1406 return 0; 1407 return RCI.getNumAllocatableRegs(ConstrainedRC); 1408 } 1409 1410 /// tryInstructionSplit - Split a live range around individual instructions. 1411 /// This is normally not worthwhile since the spiller is doing essentially the 1412 /// same thing. However, when the live range is in a constrained register 1413 /// class, it may help to insert copies such that parts of the live range can 1414 /// be moved to a larger register class. 1415 /// 1416 /// This is similar to spilling to a larger register class. 1417 unsigned RAGreedy::tryInstructionSplit(const LiveInterval &VirtReg, 1418 AllocationOrder &Order, 1419 SmallVectorImpl<Register> &NewVRegs) { 1420 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg()); 1421 // There is no point to this if there are no larger sub-classes. 1422 if (!RegClassInfo.isProperSubClass(CurRC)) 1423 return 0; 1424 1425 // Always enable split spill mode, since we're effectively spilling to a 1426 // register. 1427 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1428 SE->reset(LREdit, SplitEditor::SM_Size); 1429 1430 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 1431 if (Uses.size() <= 1) 1432 return 0; 1433 1434 LLVM_DEBUG(dbgs() << "Split around " << Uses.size() 1435 << " individual instrs.\n"); 1436 1437 const TargetRegisterClass *SuperRC = 1438 TRI->getLargestLegalSuperClass(CurRC, *MF); 1439 unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC); 1440 // Split around every non-copy instruction if this split will relax 1441 // the constraints on the virtual register. 1442 // Otherwise, splitting just inserts uncoalescable copies that do not help 1443 // the allocation. 1444 for (const SlotIndex Use : Uses) { 1445 if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Use)) 1446 if (MI->isFullCopy() || 1447 SuperRCNumAllocatableRegs == 1448 getNumAllocatableRegsForConstraints(MI, VirtReg.reg(), SuperRC, 1449 TII, TRI, RCI)) { 1450 LLVM_DEBUG(dbgs() << " skip:\t" << Use << '\t' << *MI); 1451 continue; 1452 } 1453 SE->openIntv(); 1454 SlotIndex SegStart = SE->enterIntvBefore(Use); 1455 SlotIndex SegStop = SE->leaveIntvAfter(Use); 1456 SE->useIntv(SegStart, SegStop); 1457 } 1458 1459 if (LREdit.empty()) { 1460 LLVM_DEBUG(dbgs() << "All uses were copies.\n"); 1461 return 0; 1462 } 1463 1464 SmallVector<unsigned, 8> IntvMap; 1465 SE->finish(&IntvMap); 1466 DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS); 1467 // Assign all new registers to RS_Spill. This was the last chance. 1468 ExtraInfo->setStage(LREdit.begin(), LREdit.end(), RS_Spill); 1469 return 0; 1470 } 1471 1472 //===----------------------------------------------------------------------===// 1473 // Local Splitting 1474 //===----------------------------------------------------------------------===// 1475 1476 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted 1477 /// in order to use PhysReg between two entries in SA->UseSlots. 1478 /// 1479 /// GapWeight[I] represents the gap between UseSlots[I] and UseSlots[I + 1]. 1480 /// 1481 void RAGreedy::calcGapWeights(MCRegister PhysReg, 1482 SmallVectorImpl<float> &GapWeight) { 1483 assert(SA->getUseBlocks().size() == 1 && "Not a local interval"); 1484 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 1485 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 1486 const unsigned NumGaps = Uses.size()-1; 1487 1488 // Start and end points for the interference check. 1489 SlotIndex StartIdx = 1490 BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr; 1491 SlotIndex StopIdx = 1492 BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr; 1493 1494 GapWeight.assign(NumGaps, 0.0f); 1495 1496 // Add interference from each overlapping register. 1497 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 1498 if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units) 1499 .checkInterference()) 1500 continue; 1501 1502 // We know that VirtReg is a continuous interval from FirstInstr to 1503 // LastInstr, so we don't need InterferenceQuery. 1504 // 1505 // Interference that overlaps an instruction is counted in both gaps 1506 // surrounding the instruction. The exception is interference before 1507 // StartIdx and after StopIdx. 1508 // 1509 LiveIntervalUnion::SegmentIter IntI = 1510 Matrix->getLiveUnions()[*Units] .find(StartIdx); 1511 for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) { 1512 // Skip the gaps before IntI. 1513 while (Uses[Gap+1].getBoundaryIndex() < IntI.start()) 1514 if (++Gap == NumGaps) 1515 break; 1516 if (Gap == NumGaps) 1517 break; 1518 1519 // Update the gaps covered by IntI. 1520 const float weight = IntI.value()->weight(); 1521 for (; Gap != NumGaps; ++Gap) { 1522 GapWeight[Gap] = std::max(GapWeight[Gap], weight); 1523 if (Uses[Gap+1].getBaseIndex() >= IntI.stop()) 1524 break; 1525 } 1526 if (Gap == NumGaps) 1527 break; 1528 } 1529 } 1530 1531 // Add fixed interference. 1532 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 1533 const LiveRange &LR = LIS->getRegUnit(*Units); 1534 LiveRange::const_iterator I = LR.find(StartIdx); 1535 LiveRange::const_iterator E = LR.end(); 1536 1537 // Same loop as above. Mark any overlapped gaps as HUGE_VALF. 1538 for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) { 1539 while (Uses[Gap+1].getBoundaryIndex() < I->start) 1540 if (++Gap == NumGaps) 1541 break; 1542 if (Gap == NumGaps) 1543 break; 1544 1545 for (; Gap != NumGaps; ++Gap) { 1546 GapWeight[Gap] = huge_valf; 1547 if (Uses[Gap+1].getBaseIndex() >= I->end) 1548 break; 1549 } 1550 if (Gap == NumGaps) 1551 break; 1552 } 1553 } 1554 } 1555 1556 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only 1557 /// basic block. 1558 /// 1559 unsigned RAGreedy::tryLocalSplit(const LiveInterval &VirtReg, 1560 AllocationOrder &Order, 1561 SmallVectorImpl<Register> &NewVRegs) { 1562 // TODO: the function currently only handles a single UseBlock; it should be 1563 // possible to generalize. 1564 if (SA->getUseBlocks().size() != 1) 1565 return 0; 1566 1567 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 1568 1569 // Note that it is possible to have an interval that is live-in or live-out 1570 // while only covering a single block - A phi-def can use undef values from 1571 // predecessors, and the block could be a single-block loop. 1572 // We don't bother doing anything clever about such a case, we simply assume 1573 // that the interval is continuous from FirstInstr to LastInstr. We should 1574 // make sure that we don't do anything illegal to such an interval, though. 1575 1576 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 1577 if (Uses.size() <= 2) 1578 return 0; 1579 const unsigned NumGaps = Uses.size()-1; 1580 1581 LLVM_DEBUG({ 1582 dbgs() << "tryLocalSplit: "; 1583 for (const auto &Use : Uses) 1584 dbgs() << ' ' << Use; 1585 dbgs() << '\n'; 1586 }); 1587 1588 // If VirtReg is live across any register mask operands, compute a list of 1589 // gaps with register masks. 1590 SmallVector<unsigned, 8> RegMaskGaps; 1591 if (Matrix->checkRegMaskInterference(VirtReg)) { 1592 // Get regmask slots for the whole block. 1593 ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber()); 1594 LLVM_DEBUG(dbgs() << RMS.size() << " regmasks in block:"); 1595 // Constrain to VirtReg's live range. 1596 unsigned RI = 1597 llvm::lower_bound(RMS, Uses.front().getRegSlot()) - RMS.begin(); 1598 unsigned RE = RMS.size(); 1599 for (unsigned I = 0; I != NumGaps && RI != RE; ++I) { 1600 // Look for Uses[I] <= RMS <= Uses[I + 1]. 1601 assert(!SlotIndex::isEarlierInstr(RMS[RI], Uses[I])); 1602 if (SlotIndex::isEarlierInstr(Uses[I + 1], RMS[RI])) 1603 continue; 1604 // Skip a regmask on the same instruction as the last use. It doesn't 1605 // overlap the live range. 1606 if (SlotIndex::isSameInstr(Uses[I + 1], RMS[RI]) && I + 1 == NumGaps) 1607 break; 1608 LLVM_DEBUG(dbgs() << ' ' << RMS[RI] << ':' << Uses[I] << '-' 1609 << Uses[I + 1]); 1610 RegMaskGaps.push_back(I); 1611 // Advance ri to the next gap. A regmask on one of the uses counts in 1612 // both gaps. 1613 while (RI != RE && SlotIndex::isEarlierInstr(RMS[RI], Uses[I + 1])) 1614 ++RI; 1615 } 1616 LLVM_DEBUG(dbgs() << '\n'); 1617 } 1618 1619 // Since we allow local split results to be split again, there is a risk of 1620 // creating infinite loops. It is tempting to require that the new live 1621 // ranges have less instructions than the original. That would guarantee 1622 // convergence, but it is too strict. A live range with 3 instructions can be 1623 // split 2+3 (including the COPY), and we want to allow that. 1624 // 1625 // Instead we use these rules: 1626 // 1627 // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the 1628 // noop split, of course). 1629 // 2. Require progress be made for ranges with getStage() == RS_Split2. All 1630 // the new ranges must have fewer instructions than before the split. 1631 // 3. New ranges with the same number of instructions are marked RS_Split2, 1632 // smaller ranges are marked RS_New. 1633 // 1634 // These rules allow a 3 -> 2+3 split once, which we need. They also prevent 1635 // excessive splitting and infinite loops. 1636 // 1637 bool ProgressRequired = ExtraInfo->getStage(VirtReg) >= RS_Split2; 1638 1639 // Best split candidate. 1640 unsigned BestBefore = NumGaps; 1641 unsigned BestAfter = 0; 1642 float BestDiff = 0; 1643 1644 const float blockFreq = 1645 SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() * 1646 (1.0f / MBFI->getEntryFreq()); 1647 SmallVector<float, 8> GapWeight; 1648 1649 for (MCPhysReg PhysReg : Order) { 1650 assert(PhysReg); 1651 // Keep track of the largest spill weight that would need to be evicted in 1652 // order to make use of PhysReg between UseSlots[I] and UseSlots[I + 1]. 1653 calcGapWeights(PhysReg, GapWeight); 1654 1655 // Remove any gaps with regmask clobbers. 1656 if (Matrix->checkRegMaskInterference(VirtReg, PhysReg)) 1657 for (unsigned I = 0, E = RegMaskGaps.size(); I != E; ++I) 1658 GapWeight[RegMaskGaps[I]] = huge_valf; 1659 1660 // Try to find the best sequence of gaps to close. 1661 // The new spill weight must be larger than any gap interference. 1662 1663 // We will split before Uses[SplitBefore] and after Uses[SplitAfter]. 1664 unsigned SplitBefore = 0, SplitAfter = 1; 1665 1666 // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]). 1667 // It is the spill weight that needs to be evicted. 1668 float MaxGap = GapWeight[0]; 1669 1670 while (true) { 1671 // Live before/after split? 1672 const bool LiveBefore = SplitBefore != 0 || BI.LiveIn; 1673 const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut; 1674 1675 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << ' ' << Uses[SplitBefore] 1676 << '-' << Uses[SplitAfter] << " I=" << MaxGap); 1677 1678 // Stop before the interval gets so big we wouldn't be making progress. 1679 if (!LiveBefore && !LiveAfter) { 1680 LLVM_DEBUG(dbgs() << " all\n"); 1681 break; 1682 } 1683 // Should the interval be extended or shrunk? 1684 bool Shrink = true; 1685 1686 // How many gaps would the new range have? 1687 unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter; 1688 1689 // Legally, without causing looping? 1690 bool Legal = !ProgressRequired || NewGaps < NumGaps; 1691 1692 if (Legal && MaxGap < huge_valf) { 1693 // Estimate the new spill weight. Each instruction reads or writes the 1694 // register. Conservatively assume there are no read-modify-write 1695 // instructions. 1696 // 1697 // Try to guess the size of the new interval. 1698 const float EstWeight = normalizeSpillWeight( 1699 blockFreq * (NewGaps + 1), 1700 Uses[SplitBefore].distance(Uses[SplitAfter]) + 1701 (LiveBefore + LiveAfter) * SlotIndex::InstrDist, 1702 1); 1703 // Would this split be possible to allocate? 1704 // Never allocate all gaps, we wouldn't be making progress. 1705 LLVM_DEBUG(dbgs() << " w=" << EstWeight); 1706 if (EstWeight * Hysteresis >= MaxGap) { 1707 Shrink = false; 1708 float Diff = EstWeight - MaxGap; 1709 if (Diff > BestDiff) { 1710 LLVM_DEBUG(dbgs() << " (best)"); 1711 BestDiff = Hysteresis * Diff; 1712 BestBefore = SplitBefore; 1713 BestAfter = SplitAfter; 1714 } 1715 } 1716 } 1717 1718 // Try to shrink. 1719 if (Shrink) { 1720 if (++SplitBefore < SplitAfter) { 1721 LLVM_DEBUG(dbgs() << " shrink\n"); 1722 // Recompute the max when necessary. 1723 if (GapWeight[SplitBefore - 1] >= MaxGap) { 1724 MaxGap = GapWeight[SplitBefore]; 1725 for (unsigned I = SplitBefore + 1; I != SplitAfter; ++I) 1726 MaxGap = std::max(MaxGap, GapWeight[I]); 1727 } 1728 continue; 1729 } 1730 MaxGap = 0; 1731 } 1732 1733 // Try to extend the interval. 1734 if (SplitAfter >= NumGaps) { 1735 LLVM_DEBUG(dbgs() << " end\n"); 1736 break; 1737 } 1738 1739 LLVM_DEBUG(dbgs() << " extend\n"); 1740 MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]); 1741 } 1742 } 1743 1744 // Didn't find any candidates? 1745 if (BestBefore == NumGaps) 1746 return 0; 1747 1748 LLVM_DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] << '-' 1749 << Uses[BestAfter] << ", " << BestDiff << ", " 1750 << (BestAfter - BestBefore + 1) << " instrs\n"); 1751 1752 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1753 SE->reset(LREdit); 1754 1755 SE->openIntv(); 1756 SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]); 1757 SlotIndex SegStop = SE->leaveIntvAfter(Uses[BestAfter]); 1758 SE->useIntv(SegStart, SegStop); 1759 SmallVector<unsigned, 8> IntvMap; 1760 SE->finish(&IntvMap); 1761 DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS); 1762 // If the new range has the same number of instructions as before, mark it as 1763 // RS_Split2 so the next split will be forced to make progress. Otherwise, 1764 // leave the new intervals as RS_New so they can compete. 1765 bool LiveBefore = BestBefore != 0 || BI.LiveIn; 1766 bool LiveAfter = BestAfter != NumGaps || BI.LiveOut; 1767 unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter; 1768 if (NewGaps >= NumGaps) { 1769 LLVM_DEBUG(dbgs() << "Tagging non-progress ranges:"); 1770 assert(!ProgressRequired && "Didn't make progress when it was required."); 1771 for (unsigned I = 0, E = IntvMap.size(); I != E; ++I) 1772 if (IntvMap[I] == 1) { 1773 ExtraInfo->setStage(LIS->getInterval(LREdit.get(I)), RS_Split2); 1774 LLVM_DEBUG(dbgs() << ' ' << printReg(LREdit.get(I))); 1775 } 1776 LLVM_DEBUG(dbgs() << '\n'); 1777 } 1778 ++NumLocalSplits; 1779 1780 return 0; 1781 } 1782 1783 //===----------------------------------------------------------------------===// 1784 // Live Range Splitting 1785 //===----------------------------------------------------------------------===// 1786 1787 /// trySplit - Try to split VirtReg or one of its interferences, making it 1788 /// assignable. 1789 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs. 1790 unsigned RAGreedy::trySplit(const LiveInterval &VirtReg, AllocationOrder &Order, 1791 SmallVectorImpl<Register> &NewVRegs, 1792 const SmallVirtRegSet &FixedRegisters) { 1793 // Ranges must be Split2 or less. 1794 if (ExtraInfo->getStage(VirtReg) >= RS_Spill) 1795 return 0; 1796 1797 // Local intervals are handled separately. 1798 if (LIS->intervalIsInOneMBB(VirtReg)) { 1799 NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName, 1800 TimerGroupDescription, TimePassesIsEnabled); 1801 SA->analyze(&VirtReg); 1802 Register PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs); 1803 if (PhysReg || !NewVRegs.empty()) 1804 return PhysReg; 1805 return tryInstructionSplit(VirtReg, Order, NewVRegs); 1806 } 1807 1808 NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName, 1809 TimerGroupDescription, TimePassesIsEnabled); 1810 1811 SA->analyze(&VirtReg); 1812 1813 // First try to split around a region spanning multiple blocks. RS_Split2 1814 // ranges already made dubious progress with region splitting, so they go 1815 // straight to single block splitting. 1816 if (ExtraInfo->getStage(VirtReg) < RS_Split2) { 1817 MCRegister PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs); 1818 if (PhysReg || !NewVRegs.empty()) 1819 return PhysReg; 1820 } 1821 1822 // Then isolate blocks. 1823 return tryBlockSplit(VirtReg, Order, NewVRegs); 1824 } 1825 1826 //===----------------------------------------------------------------------===// 1827 // Last Chance Recoloring 1828 //===----------------------------------------------------------------------===// 1829 1830 /// Return true if \p reg has any tied def operand. 1831 static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg) { 1832 for (const MachineOperand &MO : MRI->def_operands(reg)) 1833 if (MO.isTied()) 1834 return true; 1835 1836 return false; 1837 } 1838 1839 /// mayRecolorAllInterferences - Check if the virtual registers that 1840 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be 1841 /// recolored to free \p PhysReg. 1842 /// When true is returned, \p RecoloringCandidates has been augmented with all 1843 /// the live intervals that need to be recolored in order to free \p PhysReg 1844 /// for \p VirtReg. 1845 /// \p FixedRegisters contains all the virtual registers that cannot be 1846 /// recolored. 1847 bool RAGreedy::mayRecolorAllInterferences( 1848 MCRegister PhysReg, const LiveInterval &VirtReg, 1849 SmallLISet &RecoloringCandidates, const SmallVirtRegSet &FixedRegisters) { 1850 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg()); 1851 1852 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 1853 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 1854 // If there is LastChanceRecoloringMaxInterference or more interferences, 1855 // chances are one would not be recolorable. 1856 if (Q.interferingVRegs(LastChanceRecoloringMaxInterference).size() >= 1857 LastChanceRecoloringMaxInterference && 1858 !ExhaustiveSearch) { 1859 LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n"); 1860 CutOffInfo |= CO_Interf; 1861 return false; 1862 } 1863 for (const LiveInterval *Intf : reverse(Q.interferingVRegs())) { 1864 // If Intf is done and sit on the same register class as VirtReg, 1865 // it would not be recolorable as it is in the same state as VirtReg. 1866 // However, if VirtReg has tied defs and Intf doesn't, then 1867 // there is still a point in examining if it can be recolorable. 1868 if (((ExtraInfo->getStage(*Intf) == RS_Done && 1869 MRI->getRegClass(Intf->reg()) == CurRC) && 1870 !(hasTiedDef(MRI, VirtReg.reg()) && 1871 !hasTiedDef(MRI, Intf->reg()))) || 1872 FixedRegisters.count(Intf->reg())) { 1873 LLVM_DEBUG( 1874 dbgs() << "Early abort: the interference is not recolorable.\n"); 1875 return false; 1876 } 1877 RecoloringCandidates.insert(Intf); 1878 } 1879 } 1880 return true; 1881 } 1882 1883 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring 1884 /// its interferences. 1885 /// Last chance recoloring chooses a color for \p VirtReg and recolors every 1886 /// virtual register that was using it. The recoloring process may recursively 1887 /// use the last chance recoloring. Therefore, when a virtual register has been 1888 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot 1889 /// be last-chance-recolored again during this recoloring "session". 1890 /// E.g., 1891 /// Let 1892 /// vA can use {R1, R2 } 1893 /// vB can use { R2, R3} 1894 /// vC can use {R1 } 1895 /// Where vA, vB, and vC cannot be split anymore (they are reloads for 1896 /// instance) and they all interfere. 1897 /// 1898 /// vA is assigned R1 1899 /// vB is assigned R2 1900 /// vC tries to evict vA but vA is already done. 1901 /// Regular register allocation fails. 1902 /// 1903 /// Last chance recoloring kicks in: 1904 /// vC does as if vA was evicted => vC uses R1. 1905 /// vC is marked as fixed. 1906 /// vA needs to find a color. 1907 /// None are available. 1908 /// vA cannot evict vC: vC is a fixed virtual register now. 1909 /// vA does as if vB was evicted => vA uses R2. 1910 /// vB needs to find a color. 1911 /// R3 is available. 1912 /// Recoloring => vC = R1, vA = R2, vB = R3 1913 /// 1914 /// \p Order defines the preferred allocation order for \p VirtReg. 1915 /// \p NewRegs will contain any new virtual register that have been created 1916 /// (split, spill) during the process and that must be assigned. 1917 /// \p FixedRegisters contains all the virtual registers that cannot be 1918 /// recolored. 1919 /// 1920 /// \p RecolorStack tracks the original assignments of successfully recolored 1921 /// registers. 1922 /// 1923 /// \p Depth gives the current depth of the last chance recoloring. 1924 /// \return a physical register that can be used for VirtReg or ~0u if none 1925 /// exists. 1926 unsigned RAGreedy::tryLastChanceRecoloring(const LiveInterval &VirtReg, 1927 AllocationOrder &Order, 1928 SmallVectorImpl<Register> &NewVRegs, 1929 SmallVirtRegSet &FixedRegisters, 1930 RecoloringStack &RecolorStack, 1931 unsigned Depth) { 1932 if (!TRI->shouldUseLastChanceRecoloringForVirtReg(*MF, VirtReg)) 1933 return ~0u; 1934 1935 LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n'); 1936 1937 const ssize_t EntryStackSize = RecolorStack.size(); 1938 1939 // Ranges must be Done. 1940 assert((ExtraInfo->getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) && 1941 "Last chance recoloring should really be last chance"); 1942 // Set the max depth to LastChanceRecoloringMaxDepth. 1943 // We may want to reconsider that if we end up with a too large search space 1944 // for target with hundreds of registers. 1945 // Indeed, in that case we may want to cut the search space earlier. 1946 if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) { 1947 LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n"); 1948 CutOffInfo |= CO_Depth; 1949 return ~0u; 1950 } 1951 1952 // Set of Live intervals that will need to be recolored. 1953 SmallLISet RecoloringCandidates; 1954 1955 // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in 1956 // this recoloring "session". 1957 assert(!FixedRegisters.count(VirtReg.reg())); 1958 FixedRegisters.insert(VirtReg.reg()); 1959 SmallVector<Register, 4> CurrentNewVRegs; 1960 1961 for (MCRegister PhysReg : Order) { 1962 assert(PhysReg.isValid()); 1963 LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg << " to " 1964 << printReg(PhysReg, TRI) << '\n'); 1965 RecoloringCandidates.clear(); 1966 CurrentNewVRegs.clear(); 1967 1968 // It is only possible to recolor virtual register interference. 1969 if (Matrix->checkInterference(VirtReg, PhysReg) > 1970 LiveRegMatrix::IK_VirtReg) { 1971 LLVM_DEBUG( 1972 dbgs() << "Some interferences are not with virtual registers.\n"); 1973 1974 continue; 1975 } 1976 1977 // Early give up on this PhysReg if it is obvious we cannot recolor all 1978 // the interferences. 1979 if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates, 1980 FixedRegisters)) { 1981 LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n"); 1982 continue; 1983 } 1984 1985 // RecoloringCandidates contains all the virtual registers that interfere 1986 // with VirtReg on PhysReg (or one of its aliases). Enqueue them for 1987 // recoloring and perform the actual recoloring. 1988 PQueue RecoloringQueue; 1989 for (const LiveInterval *RC : RecoloringCandidates) { 1990 Register ItVirtReg = RC->reg(); 1991 enqueue(RecoloringQueue, RC); 1992 assert(VRM->hasPhys(ItVirtReg) && 1993 "Interferences are supposed to be with allocated variables"); 1994 1995 // Record the current allocation. 1996 RecolorStack.push_back(std::make_pair(RC, VRM->getPhys(ItVirtReg))); 1997 1998 // unset the related struct. 1999 Matrix->unassign(*RC); 2000 } 2001 2002 // Do as if VirtReg was assigned to PhysReg so that the underlying 2003 // recoloring has the right information about the interferes and 2004 // available colors. 2005 Matrix->assign(VirtReg, PhysReg); 2006 2007 // Save the current recoloring state. 2008 // If we cannot recolor all the interferences, we will have to start again 2009 // at this point for the next physical register. 2010 SmallVirtRegSet SaveFixedRegisters(FixedRegisters); 2011 if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs, 2012 FixedRegisters, RecolorStack, Depth)) { 2013 // Push the queued vregs into the main queue. 2014 for (Register NewVReg : CurrentNewVRegs) 2015 NewVRegs.push_back(NewVReg); 2016 // Do not mess up with the global assignment process. 2017 // I.e., VirtReg must be unassigned. 2018 Matrix->unassign(VirtReg); 2019 return PhysReg; 2020 } 2021 2022 LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to " 2023 << printReg(PhysReg, TRI) << '\n'); 2024 2025 // The recoloring attempt failed, undo the changes. 2026 FixedRegisters = SaveFixedRegisters; 2027 Matrix->unassign(VirtReg); 2028 2029 // For a newly created vreg which is also in RecoloringCandidates, 2030 // don't add it to NewVRegs because its physical register will be restored 2031 // below. Other vregs in CurrentNewVRegs are created by calling 2032 // selectOrSplit and should be added into NewVRegs. 2033 for (Register &R : CurrentNewVRegs) { 2034 if (RecoloringCandidates.count(&LIS->getInterval(R))) 2035 continue; 2036 NewVRegs.push_back(R); 2037 } 2038 2039 // Roll back our unsuccessful recoloring. Also roll back any successful 2040 // recolorings in any recursive recoloring attempts, since it's possible 2041 // they would have introduced conflicts with assignments we will be 2042 // restoring further up the stack. Perform all unassignments prior to 2043 // reassigning, since sub-recolorings may have conflicted with the registers 2044 // we are going to restore to their original assignments. 2045 for (ssize_t I = RecolorStack.size() - 1; I >= EntryStackSize; --I) { 2046 const LiveInterval *LI; 2047 MCRegister PhysReg; 2048 std::tie(LI, PhysReg) = RecolorStack[I]; 2049 2050 if (VRM->hasPhys(LI->reg())) 2051 Matrix->unassign(*LI); 2052 } 2053 2054 for (size_t I = EntryStackSize; I != RecolorStack.size(); ++I) { 2055 const LiveInterval *LI; 2056 MCRegister PhysReg; 2057 std::tie(LI, PhysReg) = RecolorStack[I]; 2058 Matrix->assign(*LI, PhysReg); 2059 } 2060 2061 // Pop the stack of recoloring attempts. 2062 RecolorStack.resize(EntryStackSize); 2063 } 2064 2065 // Last chance recoloring did not worked either, give up. 2066 return ~0u; 2067 } 2068 2069 /// tryRecoloringCandidates - Try to assign a new color to every register 2070 /// in \RecoloringQueue. 2071 /// \p NewRegs will contain any new virtual register created during the 2072 /// recoloring process. 2073 /// \p FixedRegisters[in/out] contains all the registers that have been 2074 /// recolored. 2075 /// \return true if all virtual registers in RecoloringQueue were successfully 2076 /// recolored, false otherwise. 2077 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue, 2078 SmallVectorImpl<Register> &NewVRegs, 2079 SmallVirtRegSet &FixedRegisters, 2080 RecoloringStack &RecolorStack, 2081 unsigned Depth) { 2082 while (!RecoloringQueue.empty()) { 2083 const LiveInterval *LI = dequeue(RecoloringQueue); 2084 LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI << '\n'); 2085 MCRegister PhysReg = selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, 2086 RecolorStack, Depth + 1); 2087 // When splitting happens, the live-range may actually be empty. 2088 // In that case, this is okay to continue the recoloring even 2089 // if we did not find an alternative color for it. Indeed, 2090 // there will not be anything to color for LI in the end. 2091 if (PhysReg == ~0u || (!PhysReg && !LI->empty())) 2092 return false; 2093 2094 if (!PhysReg) { 2095 assert(LI->empty() && "Only empty live-range do not require a register"); 2096 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI 2097 << " succeeded. Empty LI.\n"); 2098 continue; 2099 } 2100 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI 2101 << " succeeded with: " << printReg(PhysReg, TRI) << '\n'); 2102 2103 Matrix->assign(*LI, PhysReg); 2104 FixedRegisters.insert(LI->reg()); 2105 } 2106 return true; 2107 } 2108 2109 //===----------------------------------------------------------------------===// 2110 // Main Entry Point 2111 //===----------------------------------------------------------------------===// 2112 2113 MCRegister RAGreedy::selectOrSplit(const LiveInterval &VirtReg, 2114 SmallVectorImpl<Register> &NewVRegs) { 2115 CutOffInfo = CO_None; 2116 LLVMContext &Ctx = MF->getFunction().getContext(); 2117 SmallVirtRegSet FixedRegisters; 2118 RecoloringStack RecolorStack; 2119 MCRegister Reg = 2120 selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters, RecolorStack); 2121 if (Reg == ~0U && (CutOffInfo != CO_None)) { 2122 uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf); 2123 if (CutOffEncountered == CO_Depth) 2124 Ctx.emitError("register allocation failed: maximum depth for recoloring " 2125 "reached. Use -fexhaustive-register-search to skip " 2126 "cutoffs"); 2127 else if (CutOffEncountered == CO_Interf) 2128 Ctx.emitError("register allocation failed: maximum interference for " 2129 "recoloring reached. Use -fexhaustive-register-search " 2130 "to skip cutoffs"); 2131 else if (CutOffEncountered == (CO_Depth | CO_Interf)) 2132 Ctx.emitError("register allocation failed: maximum interference and " 2133 "depth for recoloring reached. Use " 2134 "-fexhaustive-register-search to skip cutoffs"); 2135 } 2136 return Reg; 2137 } 2138 2139 /// Using a CSR for the first time has a cost because it causes push|pop 2140 /// to be added to prologue|epilogue. Splitting a cold section of the live 2141 /// range can have lower cost than using the CSR for the first time; 2142 /// Spilling a live range in the cold path can have lower cost than using 2143 /// the CSR for the first time. Returns the physical register if we decide 2144 /// to use the CSR; otherwise return 0. 2145 MCRegister RAGreedy::tryAssignCSRFirstTime( 2146 const LiveInterval &VirtReg, AllocationOrder &Order, MCRegister PhysReg, 2147 uint8_t &CostPerUseLimit, SmallVectorImpl<Register> &NewVRegs) { 2148 if (ExtraInfo->getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) { 2149 // We choose spill over using the CSR for the first time if the spill cost 2150 // is lower than CSRCost. 2151 SA->analyze(&VirtReg); 2152 if (calcSpillCost() >= CSRCost) 2153 return PhysReg; 2154 2155 // We are going to spill, set CostPerUseLimit to 1 to make sure that 2156 // we will not use a callee-saved register in tryEvict. 2157 CostPerUseLimit = 1; 2158 return 0; 2159 } 2160 if (ExtraInfo->getStage(VirtReg) < RS_Split) { 2161 // We choose pre-splitting over using the CSR for the first time if 2162 // the cost of splitting is lower than CSRCost. 2163 SA->analyze(&VirtReg); 2164 unsigned NumCands = 0; 2165 BlockFrequency BestCost = CSRCost; // Don't modify CSRCost. 2166 unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost, 2167 NumCands, true /*IgnoreCSR*/); 2168 if (BestCand == NoCand) 2169 // Use the CSR if we can't find a region split below CSRCost. 2170 return PhysReg; 2171 2172 // Perform the actual pre-splitting. 2173 doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs); 2174 return 0; 2175 } 2176 return PhysReg; 2177 } 2178 2179 void RAGreedy::aboutToRemoveInterval(const LiveInterval &LI) { 2180 // Do not keep invalid information around. 2181 SetOfBrokenHints.remove(&LI); 2182 } 2183 2184 void RAGreedy::initializeCSRCost() { 2185 // We use the larger one out of the command-line option and the value report 2186 // by TRI. 2187 CSRCost = BlockFrequency( 2188 std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost())); 2189 if (!CSRCost.getFrequency()) 2190 return; 2191 2192 // Raw cost is relative to Entry == 2^14; scale it appropriately. 2193 uint64_t ActualEntry = MBFI->getEntryFreq(); 2194 if (!ActualEntry) { 2195 CSRCost = 0; 2196 return; 2197 } 2198 uint64_t FixedEntry = 1 << 14; 2199 if (ActualEntry < FixedEntry) 2200 CSRCost *= BranchProbability(ActualEntry, FixedEntry); 2201 else if (ActualEntry <= UINT32_MAX) 2202 // Invert the fraction and divide. 2203 CSRCost /= BranchProbability(FixedEntry, ActualEntry); 2204 else 2205 // Can't use BranchProbability in general, since it takes 32-bit numbers. 2206 CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry); 2207 } 2208 2209 /// Collect the hint info for \p Reg. 2210 /// The results are stored into \p Out. 2211 /// \p Out is not cleared before being populated. 2212 void RAGreedy::collectHintInfo(Register Reg, HintsInfo &Out) { 2213 for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) { 2214 if (!Instr.isFullCopy()) 2215 continue; 2216 // Look for the other end of the copy. 2217 Register OtherReg = Instr.getOperand(0).getReg(); 2218 if (OtherReg == Reg) { 2219 OtherReg = Instr.getOperand(1).getReg(); 2220 if (OtherReg == Reg) 2221 continue; 2222 } 2223 // Get the current assignment. 2224 MCRegister OtherPhysReg = 2225 OtherReg.isPhysical() ? OtherReg.asMCReg() : VRM->getPhys(OtherReg); 2226 // Push the collected information. 2227 Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg, 2228 OtherPhysReg)); 2229 } 2230 } 2231 2232 /// Using the given \p List, compute the cost of the broken hints if 2233 /// \p PhysReg was used. 2234 /// \return The cost of \p List for \p PhysReg. 2235 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List, 2236 MCRegister PhysReg) { 2237 BlockFrequency Cost = 0; 2238 for (const HintInfo &Info : List) { 2239 if (Info.PhysReg != PhysReg) 2240 Cost += Info.Freq; 2241 } 2242 return Cost; 2243 } 2244 2245 /// Using the register assigned to \p VirtReg, try to recolor 2246 /// all the live ranges that are copy-related with \p VirtReg. 2247 /// The recoloring is then propagated to all the live-ranges that have 2248 /// been recolored and so on, until no more copies can be coalesced or 2249 /// it is not profitable. 2250 /// For a given live range, profitability is determined by the sum of the 2251 /// frequencies of the non-identity copies it would introduce with the old 2252 /// and new register. 2253 void RAGreedy::tryHintRecoloring(const LiveInterval &VirtReg) { 2254 // We have a broken hint, check if it is possible to fix it by 2255 // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted 2256 // some register and PhysReg may be available for the other live-ranges. 2257 SmallSet<Register, 4> Visited; 2258 SmallVector<unsigned, 2> RecoloringCandidates; 2259 HintsInfo Info; 2260 Register Reg = VirtReg.reg(); 2261 MCRegister PhysReg = VRM->getPhys(Reg); 2262 // Start the recoloring algorithm from the input live-interval, then 2263 // it will propagate to the ones that are copy-related with it. 2264 Visited.insert(Reg); 2265 RecoloringCandidates.push_back(Reg); 2266 2267 LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg, TRI) 2268 << '(' << printReg(PhysReg, TRI) << ")\n"); 2269 2270 do { 2271 Reg = RecoloringCandidates.pop_back_val(); 2272 2273 // We cannot recolor physical register. 2274 if (Register::isPhysicalRegister(Reg)) 2275 continue; 2276 2277 // This may be a skipped class 2278 if (!VRM->hasPhys(Reg)) { 2279 assert(!ShouldAllocateClass(*TRI, *MRI->getRegClass(Reg)) && 2280 "We have an unallocated variable which should have been handled"); 2281 continue; 2282 } 2283 2284 // Get the live interval mapped with this virtual register to be able 2285 // to check for the interference with the new color. 2286 LiveInterval &LI = LIS->getInterval(Reg); 2287 MCRegister CurrPhys = VRM->getPhys(Reg); 2288 // Check that the new color matches the register class constraints and 2289 // that it is free for this live range. 2290 if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) || 2291 Matrix->checkInterference(LI, PhysReg))) 2292 continue; 2293 2294 LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << '(' << printReg(CurrPhys, TRI) 2295 << ") is recolorable.\n"); 2296 2297 // Gather the hint info. 2298 Info.clear(); 2299 collectHintInfo(Reg, Info); 2300 // Check if recoloring the live-range will increase the cost of the 2301 // non-identity copies. 2302 if (CurrPhys != PhysReg) { 2303 LLVM_DEBUG(dbgs() << "Checking profitability:\n"); 2304 BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys); 2305 BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg); 2306 LLVM_DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency() 2307 << "\nNew Cost: " << NewCopiesCost.getFrequency() 2308 << '\n'); 2309 if (OldCopiesCost < NewCopiesCost) { 2310 LLVM_DEBUG(dbgs() << "=> Not profitable.\n"); 2311 continue; 2312 } 2313 // At this point, the cost is either cheaper or equal. If it is 2314 // equal, we consider this is profitable because it may expose 2315 // more recoloring opportunities. 2316 LLVM_DEBUG(dbgs() << "=> Profitable.\n"); 2317 // Recolor the live-range. 2318 Matrix->unassign(LI); 2319 Matrix->assign(LI, PhysReg); 2320 } 2321 // Push all copy-related live-ranges to keep reconciling the broken 2322 // hints. 2323 for (const HintInfo &HI : Info) { 2324 if (Visited.insert(HI.Reg).second) 2325 RecoloringCandidates.push_back(HI.Reg); 2326 } 2327 } while (!RecoloringCandidates.empty()); 2328 } 2329 2330 /// Try to recolor broken hints. 2331 /// Broken hints may be repaired by recoloring when an evicted variable 2332 /// freed up a register for a larger live-range. 2333 /// Consider the following example: 2334 /// BB1: 2335 /// a = 2336 /// b = 2337 /// BB2: 2338 /// ... 2339 /// = b 2340 /// = a 2341 /// Let us assume b gets split: 2342 /// BB1: 2343 /// a = 2344 /// b = 2345 /// BB2: 2346 /// c = b 2347 /// ... 2348 /// d = c 2349 /// = d 2350 /// = a 2351 /// Because of how the allocation work, b, c, and d may be assigned different 2352 /// colors. Now, if a gets evicted later: 2353 /// BB1: 2354 /// a = 2355 /// st a, SpillSlot 2356 /// b = 2357 /// BB2: 2358 /// c = b 2359 /// ... 2360 /// d = c 2361 /// = d 2362 /// e = ld SpillSlot 2363 /// = e 2364 /// This is likely that we can assign the same register for b, c, and d, 2365 /// getting rid of 2 copies. 2366 void RAGreedy::tryHintsRecoloring() { 2367 for (const LiveInterval *LI : SetOfBrokenHints) { 2368 assert(Register::isVirtualRegister(LI->reg()) && 2369 "Recoloring is possible only for virtual registers"); 2370 // Some dead defs may be around (e.g., because of debug uses). 2371 // Ignore those. 2372 if (!VRM->hasPhys(LI->reg())) 2373 continue; 2374 tryHintRecoloring(*LI); 2375 } 2376 } 2377 2378 MCRegister RAGreedy::selectOrSplitImpl(const LiveInterval &VirtReg, 2379 SmallVectorImpl<Register> &NewVRegs, 2380 SmallVirtRegSet &FixedRegisters, 2381 RecoloringStack &RecolorStack, 2382 unsigned Depth) { 2383 uint8_t CostPerUseLimit = uint8_t(~0u); 2384 // First try assigning a free register. 2385 auto Order = 2386 AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix); 2387 if (MCRegister PhysReg = 2388 tryAssign(VirtReg, Order, NewVRegs, FixedRegisters)) { 2389 // If VirtReg got an assignment, the eviction info is no longer relevant. 2390 LastEvicted.clearEvicteeInfo(VirtReg.reg()); 2391 // When NewVRegs is not empty, we may have made decisions such as evicting 2392 // a virtual register, go with the earlier decisions and use the physical 2393 // register. 2394 if (CSRCost.getFrequency() && 2395 EvictAdvisor->isUnusedCalleeSavedReg(PhysReg) && NewVRegs.empty()) { 2396 MCRegister CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg, 2397 CostPerUseLimit, NewVRegs); 2398 if (CSRReg || !NewVRegs.empty()) 2399 // Return now if we decide to use a CSR or create new vregs due to 2400 // pre-splitting. 2401 return CSRReg; 2402 } else 2403 return PhysReg; 2404 } 2405 2406 LiveRangeStage Stage = ExtraInfo->getStage(VirtReg); 2407 LLVM_DEBUG(dbgs() << StageName[Stage] << " Cascade " 2408 << ExtraInfo->getCascade(VirtReg.reg()) << '\n'); 2409 2410 // Try to evict a less worthy live range, but only for ranges from the primary 2411 // queue. The RS_Split ranges already failed to do this, and they should not 2412 // get a second chance until they have been split. 2413 if (Stage != RS_Split) 2414 if (Register PhysReg = 2415 tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit, 2416 FixedRegisters)) { 2417 Register Hint = MRI->getSimpleHint(VirtReg.reg()); 2418 // If VirtReg has a hint and that hint is broken record this 2419 // virtual register as a recoloring candidate for broken hint. 2420 // Indeed, since we evicted a variable in its neighborhood it is 2421 // likely we can at least partially recolor some of the 2422 // copy-related live-ranges. 2423 if (Hint && Hint != PhysReg) 2424 SetOfBrokenHints.insert(&VirtReg); 2425 // If VirtReg eviction someone, the eviction info for it as an evictee is 2426 // no longer relevant. 2427 LastEvicted.clearEvicteeInfo(VirtReg.reg()); 2428 return PhysReg; 2429 } 2430 2431 assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs"); 2432 2433 // The first time we see a live range, don't try to split or spill. 2434 // Wait until the second time, when all smaller ranges have been allocated. 2435 // This gives a better picture of the interference to split around. 2436 if (Stage < RS_Split) { 2437 ExtraInfo->setStage(VirtReg, RS_Split); 2438 LLVM_DEBUG(dbgs() << "wait for second round\n"); 2439 NewVRegs.push_back(VirtReg.reg()); 2440 return 0; 2441 } 2442 2443 if (Stage < RS_Spill) { 2444 // Try splitting VirtReg or interferences. 2445 unsigned NewVRegSizeBefore = NewVRegs.size(); 2446 Register PhysReg = trySplit(VirtReg, Order, NewVRegs, FixedRegisters); 2447 if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore)) { 2448 // If VirtReg got split, the eviction info is no longer relevant. 2449 LastEvicted.clearEvicteeInfo(VirtReg.reg()); 2450 return PhysReg; 2451 } 2452 } 2453 2454 // If we couldn't allocate a register from spilling, there is probably some 2455 // invalid inline assembly. The base class will report it. 2456 if (Stage >= RS_Done || !VirtReg.isSpillable()) { 2457 return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters, 2458 RecolorStack, Depth); 2459 } 2460 2461 // Finally spill VirtReg itself. 2462 if ((EnableDeferredSpilling || 2463 TRI->shouldUseDeferredSpillingForVirtReg(*MF, VirtReg)) && 2464 ExtraInfo->getStage(VirtReg) < RS_Memory) { 2465 // TODO: This is experimental and in particular, we do not model 2466 // the live range splitting done by spilling correctly. 2467 // We would need a deep integration with the spiller to do the 2468 // right thing here. Anyway, that is still good for early testing. 2469 ExtraInfo->setStage(VirtReg, RS_Memory); 2470 LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n"); 2471 NewVRegs.push_back(VirtReg.reg()); 2472 } else { 2473 NamedRegionTimer T("spill", "Spiller", TimerGroupName, 2474 TimerGroupDescription, TimePassesIsEnabled); 2475 LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2476 spiller().spill(LRE); 2477 ExtraInfo->setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done); 2478 2479 // Tell LiveDebugVariables about the new ranges. Ranges not being covered by 2480 // the new regs are kept in LDV (still mapping to the old register), until 2481 // we rewrite spilled locations in LDV at a later stage. 2482 DebugVars->splitRegister(VirtReg.reg(), LRE.regs(), *LIS); 2483 2484 if (VerifyEnabled) 2485 MF->verify(this, "After spilling"); 2486 } 2487 2488 // The live virtual register requesting allocation was spilled, so tell 2489 // the caller not to allocate anything during this round. 2490 return 0; 2491 } 2492 2493 void RAGreedy::RAGreedyStats::report(MachineOptimizationRemarkMissed &R) { 2494 using namespace ore; 2495 if (Spills) { 2496 R << NV("NumSpills", Spills) << " spills "; 2497 R << NV("TotalSpillsCost", SpillsCost) << " total spills cost "; 2498 } 2499 if (FoldedSpills) { 2500 R << NV("NumFoldedSpills", FoldedSpills) << " folded spills "; 2501 R << NV("TotalFoldedSpillsCost", FoldedSpillsCost) 2502 << " total folded spills cost "; 2503 } 2504 if (Reloads) { 2505 R << NV("NumReloads", Reloads) << " reloads "; 2506 R << NV("TotalReloadsCost", ReloadsCost) << " total reloads cost "; 2507 } 2508 if (FoldedReloads) { 2509 R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads "; 2510 R << NV("TotalFoldedReloadsCost", FoldedReloadsCost) 2511 << " total folded reloads cost "; 2512 } 2513 if (ZeroCostFoldedReloads) 2514 R << NV("NumZeroCostFoldedReloads", ZeroCostFoldedReloads) 2515 << " zero cost folded reloads "; 2516 if (Copies) { 2517 R << NV("NumVRCopies", Copies) << " virtual registers copies "; 2518 R << NV("TotalCopiesCost", CopiesCost) << " total copies cost "; 2519 } 2520 } 2521 2522 RAGreedy::RAGreedyStats RAGreedy::computeStats(MachineBasicBlock &MBB) { 2523 RAGreedyStats Stats; 2524 const MachineFrameInfo &MFI = MF->getFrameInfo(); 2525 int FI; 2526 2527 auto isSpillSlotAccess = [&MFI](const MachineMemOperand *A) { 2528 return MFI.isSpillSlotObjectIndex(cast<FixedStackPseudoSourceValue>( 2529 A->getPseudoValue())->getFrameIndex()); 2530 }; 2531 auto isPatchpointInstr = [](const MachineInstr &MI) { 2532 return MI.getOpcode() == TargetOpcode::PATCHPOINT || 2533 MI.getOpcode() == TargetOpcode::STACKMAP || 2534 MI.getOpcode() == TargetOpcode::STATEPOINT; 2535 }; 2536 for (MachineInstr &MI : MBB) { 2537 if (MI.isCopy()) { 2538 MachineOperand &Dest = MI.getOperand(0); 2539 MachineOperand &Src = MI.getOperand(1); 2540 if (Dest.isReg() && Src.isReg() && Dest.getReg().isVirtual() && 2541 Src.getReg().isVirtual()) 2542 ++Stats.Copies; 2543 continue; 2544 } 2545 2546 SmallVector<const MachineMemOperand *, 2> Accesses; 2547 if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) { 2548 ++Stats.Reloads; 2549 continue; 2550 } 2551 if (TII->isStoreToStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) { 2552 ++Stats.Spills; 2553 continue; 2554 } 2555 if (TII->hasLoadFromStackSlot(MI, Accesses) && 2556 llvm::any_of(Accesses, isSpillSlotAccess)) { 2557 if (!isPatchpointInstr(MI)) { 2558 Stats.FoldedReloads += Accesses.size(); 2559 continue; 2560 } 2561 // For statepoint there may be folded and zero cost folded stack reloads. 2562 std::pair<unsigned, unsigned> NonZeroCostRange = 2563 TII->getPatchpointUnfoldableRange(MI); 2564 SmallSet<unsigned, 16> FoldedReloads; 2565 SmallSet<unsigned, 16> ZeroCostFoldedReloads; 2566 for (unsigned Idx = 0, E = MI.getNumOperands(); Idx < E; ++Idx) { 2567 MachineOperand &MO = MI.getOperand(Idx); 2568 if (!MO.isFI() || !MFI.isSpillSlotObjectIndex(MO.getIndex())) 2569 continue; 2570 if (Idx >= NonZeroCostRange.first && Idx < NonZeroCostRange.second) 2571 FoldedReloads.insert(MO.getIndex()); 2572 else 2573 ZeroCostFoldedReloads.insert(MO.getIndex()); 2574 } 2575 // If stack slot is used in folded reload it is not zero cost then. 2576 for (unsigned Slot : FoldedReloads) 2577 ZeroCostFoldedReloads.erase(Slot); 2578 Stats.FoldedReloads += FoldedReloads.size(); 2579 Stats.ZeroCostFoldedReloads += ZeroCostFoldedReloads.size(); 2580 continue; 2581 } 2582 Accesses.clear(); 2583 if (TII->hasStoreToStackSlot(MI, Accesses) && 2584 llvm::any_of(Accesses, isSpillSlotAccess)) { 2585 Stats.FoldedSpills += Accesses.size(); 2586 } 2587 } 2588 // Set cost of collected statistic by multiplication to relative frequency of 2589 // this basic block. 2590 float RelFreq = MBFI->getBlockFreqRelativeToEntryBlock(&MBB); 2591 Stats.ReloadsCost = RelFreq * Stats.Reloads; 2592 Stats.FoldedReloadsCost = RelFreq * Stats.FoldedReloads; 2593 Stats.SpillsCost = RelFreq * Stats.Spills; 2594 Stats.FoldedSpillsCost = RelFreq * Stats.FoldedSpills; 2595 Stats.CopiesCost = RelFreq * Stats.Copies; 2596 return Stats; 2597 } 2598 2599 RAGreedy::RAGreedyStats RAGreedy::reportStats(MachineLoop *L) { 2600 RAGreedyStats Stats; 2601 2602 // Sum up the spill and reloads in subloops. 2603 for (MachineLoop *SubLoop : *L) 2604 Stats.add(reportStats(SubLoop)); 2605 2606 for (MachineBasicBlock *MBB : L->getBlocks()) 2607 // Handle blocks that were not included in subloops. 2608 if (Loops->getLoopFor(MBB) == L) 2609 Stats.add(computeStats(*MBB)); 2610 2611 if (!Stats.isEmpty()) { 2612 using namespace ore; 2613 2614 ORE->emit([&]() { 2615 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReloadCopies", 2616 L->getStartLoc(), L->getHeader()); 2617 Stats.report(R); 2618 R << "generated in loop"; 2619 return R; 2620 }); 2621 } 2622 return Stats; 2623 } 2624 2625 void RAGreedy::reportStats() { 2626 if (!ORE->allowExtraAnalysis(DEBUG_TYPE)) 2627 return; 2628 RAGreedyStats Stats; 2629 for (MachineLoop *L : *Loops) 2630 Stats.add(reportStats(L)); 2631 // Process non-loop blocks. 2632 for (MachineBasicBlock &MBB : *MF) 2633 if (!Loops->getLoopFor(&MBB)) 2634 Stats.add(computeStats(MBB)); 2635 if (!Stats.isEmpty()) { 2636 using namespace ore; 2637 2638 ORE->emit([&]() { 2639 DebugLoc Loc; 2640 if (auto *SP = MF->getFunction().getSubprogram()) 2641 Loc = DILocation::get(SP->getContext(), SP->getLine(), 1, SP); 2642 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "SpillReloadCopies", Loc, 2643 &MF->front()); 2644 Stats.report(R); 2645 R << "generated in function"; 2646 return R; 2647 }); 2648 } 2649 } 2650 2651 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) { 2652 LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n" 2653 << "********** Function: " << mf.getName() << '\n'); 2654 2655 MF = &mf; 2656 TRI = MF->getSubtarget().getRegisterInfo(); 2657 TII = MF->getSubtarget().getInstrInfo(); 2658 RCI.runOnMachineFunction(mf); 2659 2660 if (VerifyEnabled) 2661 MF->verify(this, "Before greedy register allocator"); 2662 2663 RegAllocBase::init(getAnalysis<VirtRegMap>(), 2664 getAnalysis<LiveIntervals>(), 2665 getAnalysis<LiveRegMatrix>()); 2666 Indexes = &getAnalysis<SlotIndexes>(); 2667 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 2668 DomTree = &getAnalysis<MachineDominatorTree>(); 2669 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 2670 Loops = &getAnalysis<MachineLoopInfo>(); 2671 Bundles = &getAnalysis<EdgeBundles>(); 2672 SpillPlacer = &getAnalysis<SpillPlacement>(); 2673 DebugVars = &getAnalysis<LiveDebugVariables>(); 2674 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2675 2676 initializeCSRCost(); 2677 2678 RegCosts = TRI->getRegisterCosts(*MF); 2679 2680 ExtraInfo.emplace(); 2681 EvictAdvisor = 2682 getAnalysis<RegAllocEvictionAdvisorAnalysis>().getAdvisor(*MF, *this); 2683 2684 VRAI = std::make_unique<VirtRegAuxInfo>(*MF, *LIS, *VRM, *Loops, *MBFI); 2685 SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM, *VRAI)); 2686 2687 VRAI->calculateSpillWeightsAndHints(); 2688 2689 LLVM_DEBUG(LIS->dump()); 2690 2691 SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops)); 2692 SE.reset(new SplitEditor(*SA, *AA, *LIS, *VRM, *DomTree, *MBFI, *VRAI)); 2693 2694 IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI); 2695 GlobalCand.resize(32); // This will grow as needed. 2696 SetOfBrokenHints.clear(); 2697 LastEvicted.clear(); 2698 2699 allocatePhysRegs(); 2700 tryHintsRecoloring(); 2701 2702 if (VerifyEnabled) 2703 MF->verify(this, "Before post optimization"); 2704 postOptimization(); 2705 reportStats(); 2706 2707 releaseMemory(); 2708 return true; 2709 } 2710