1 //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the RAGreedy function pass for register allocation in
10 // optimized builds.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "AllocationOrder.h"
15 #include "InterferenceCache.h"
16 #include "LiveDebugVariables.h"
17 #include "RegAllocBase.h"
18 #include "SpillPlacement.h"
19 #include "SplitKit.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/BitVector.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/IndexedMap.h"
24 #include "llvm/ADT/MapVector.h"
25 #include "llvm/ADT/SetVector.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallSet.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/Analysis/AliasAnalysis.h"
32 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
33 #include "llvm/CodeGen/CalcSpillWeights.h"
34 #include "llvm/CodeGen/EdgeBundles.h"
35 #include "llvm/CodeGen/LiveInterval.h"
36 #include "llvm/CodeGen/LiveIntervalUnion.h"
37 #include "llvm/CodeGen/LiveIntervals.h"
38 #include "llvm/CodeGen/LiveRangeEdit.h"
39 #include "llvm/CodeGen/LiveRegMatrix.h"
40 #include "llvm/CodeGen/LiveStacks.h"
41 #include "llvm/CodeGen/MachineBasicBlock.h"
42 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
43 #include "llvm/CodeGen/MachineDominators.h"
44 #include "llvm/CodeGen/MachineFrameInfo.h"
45 #include "llvm/CodeGen/MachineFunction.h"
46 #include "llvm/CodeGen/MachineFunctionPass.h"
47 #include "llvm/CodeGen/MachineInstr.h"
48 #include "llvm/CodeGen/MachineLoopInfo.h"
49 #include "llvm/CodeGen/MachineOperand.h"
50 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
51 #include "llvm/CodeGen/MachineRegisterInfo.h"
52 #include "llvm/CodeGen/RegAllocRegistry.h"
53 #include "llvm/CodeGen/RegisterClassInfo.h"
54 #include "llvm/CodeGen/SlotIndexes.h"
55 #include "llvm/CodeGen/Spiller.h"
56 #include "llvm/CodeGen/TargetInstrInfo.h"
57 #include "llvm/CodeGen/TargetRegisterInfo.h"
58 #include "llvm/CodeGen/TargetSubtargetInfo.h"
59 #include "llvm/CodeGen/VirtRegMap.h"
60 #include "llvm/IR/Function.h"
61 #include "llvm/IR/LLVMContext.h"
62 #include "llvm/MC/MCRegisterInfo.h"
63 #include "llvm/Pass.h"
64 #include "llvm/Support/BlockFrequency.h"
65 #include "llvm/Support/BranchProbability.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/Debug.h"
68 #include "llvm/Support/MathExtras.h"
69 #include "llvm/Support/Timer.h"
70 #include "llvm/Support/raw_ostream.h"
71 #include "llvm/Target/TargetMachine.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstdint>
75 #include <memory>
76 #include <queue>
77 #include <tuple>
78 #include <utility>
79 
80 using namespace llvm;
81 
82 #define DEBUG_TYPE "regalloc"
83 
84 STATISTIC(NumGlobalSplits, "Number of split global live ranges");
85 STATISTIC(NumLocalSplits,  "Number of split local live ranges");
86 STATISTIC(NumEvicted,      "Number of interferences evicted");
87 
88 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode(
89     "split-spill-mode", cl::Hidden,
90     cl::desc("Spill mode for splitting live ranges"),
91     cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"),
92                clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"),
93                clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")),
94     cl::init(SplitEditor::SM_Speed));
95 
96 static cl::opt<unsigned>
97 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden,
98                              cl::desc("Last chance recoloring max depth"),
99                              cl::init(5));
100 
101 static cl::opt<unsigned> LastChanceRecoloringMaxInterference(
102     "lcr-max-interf", cl::Hidden,
103     cl::desc("Last chance recoloring maximum number of considered"
104              " interference at a time"),
105     cl::init(8));
106 
107 static cl::opt<bool> ExhaustiveSearch(
108     "exhaustive-register-search", cl::NotHidden,
109     cl::desc("Exhaustive Search for registers bypassing the depth "
110              "and interference cutoffs of last chance recoloring"),
111     cl::Hidden);
112 
113 static cl::opt<bool> EnableLocalReassignment(
114     "enable-local-reassign", cl::Hidden,
115     cl::desc("Local reassignment can yield better allocation decisions, but "
116              "may be compile time intensive"),
117     cl::init(false));
118 
119 static cl::opt<bool> EnableDeferredSpilling(
120     "enable-deferred-spilling", cl::Hidden,
121     cl::desc("Instead of spilling a variable right away, defer the actual "
122              "code insertion to the end of the allocation. That way the "
123              "allocator might still find a suitable coloring for this "
124              "variable because of other evicted variables."),
125     cl::init(false));
126 
127 // FIXME: Find a good default for this flag and remove the flag.
128 static cl::opt<unsigned>
129 CSRFirstTimeCost("regalloc-csr-first-time-cost",
130               cl::desc("Cost for first time use of callee-saved register."),
131               cl::init(0), cl::Hidden);
132 
133 static cl::opt<bool> ConsiderLocalIntervalCost(
134     "consider-local-interval-cost", cl::Hidden,
135     cl::desc("Consider the cost of local intervals created by a split "
136              "candidate when choosing the best split candidate."),
137     cl::init(false));
138 
139 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
140                                        createGreedyRegisterAllocator);
141 
142 namespace {
143 
144 class RAGreedy : public MachineFunctionPass,
145                  public RegAllocBase,
146                  private LiveRangeEdit::Delegate {
147   // Convenient shortcuts.
148   using PQueue = std::priority_queue<std::pair<unsigned, unsigned>>;
149   using SmallLISet = SmallPtrSet<LiveInterval *, 4>;
150   using SmallVirtRegSet = SmallSet<unsigned, 16>;
151 
152   // context
153   MachineFunction *MF;
154 
155   // Shortcuts to some useful interface.
156   const TargetInstrInfo *TII;
157   const TargetRegisterInfo *TRI;
158   RegisterClassInfo RCI;
159 
160   // analyses
161   SlotIndexes *Indexes;
162   MachineBlockFrequencyInfo *MBFI;
163   MachineDominatorTree *DomTree;
164   MachineLoopInfo *Loops;
165   MachineOptimizationRemarkEmitter *ORE;
166   EdgeBundles *Bundles;
167   SpillPlacement *SpillPlacer;
168   LiveDebugVariables *DebugVars;
169   AliasAnalysis *AA;
170 
171   // state
172   std::unique_ptr<Spiller> SpillerInstance;
173   PQueue Queue;
174   unsigned NextCascade;
175 
176   // Live ranges pass through a number of stages as we try to allocate them.
177   // Some of the stages may also create new live ranges:
178   //
179   // - Region splitting.
180   // - Per-block splitting.
181   // - Local splitting.
182   // - Spilling.
183   //
184   // Ranges produced by one of the stages skip the previous stages when they are
185   // dequeued. This improves performance because we can skip interference checks
186   // that are unlikely to give any results. It also guarantees that the live
187   // range splitting algorithm terminates, something that is otherwise hard to
188   // ensure.
189   enum LiveRangeStage {
190     /// Newly created live range that has never been queued.
191     RS_New,
192 
193     /// Only attempt assignment and eviction. Then requeue as RS_Split.
194     RS_Assign,
195 
196     /// Attempt live range splitting if assignment is impossible.
197     RS_Split,
198 
199     /// Attempt more aggressive live range splitting that is guaranteed to make
200     /// progress.  This is used for split products that may not be making
201     /// progress.
202     RS_Split2,
203 
204     /// Live range will be spilled.  No more splitting will be attempted.
205     RS_Spill,
206 
207 
208     /// Live range is in memory. Because of other evictions, it might get moved
209     /// in a register in the end.
210     RS_Memory,
211 
212     /// There is nothing more we can do to this live range.  Abort compilation
213     /// if it can't be assigned.
214     RS_Done
215   };
216 
217   // Enum CutOffStage to keep a track whether the register allocation failed
218   // because of the cutoffs encountered in last chance recoloring.
219   // Note: This is used as bitmask. New value should be next power of 2.
220   enum CutOffStage {
221     // No cutoffs encountered
222     CO_None = 0,
223 
224     // lcr-max-depth cutoff encountered
225     CO_Depth = 1,
226 
227     // lcr-max-interf cutoff encountered
228     CO_Interf = 2
229   };
230 
231   uint8_t CutOffInfo;
232 
233 #ifndef NDEBUG
234   static const char *const StageName[];
235 #endif
236 
237   // RegInfo - Keep additional information about each live range.
238   struct RegInfo {
239     LiveRangeStage Stage = RS_New;
240 
241     // Cascade - Eviction loop prevention. See canEvictInterference().
242     unsigned Cascade = 0;
243 
244     RegInfo() = default;
245   };
246 
247   IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo;
248 
249   LiveRangeStage getStage(const LiveInterval &VirtReg) const {
250     return ExtraRegInfo[VirtReg.reg()].Stage;
251   }
252 
253   void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) {
254     ExtraRegInfo.resize(MRI->getNumVirtRegs());
255     ExtraRegInfo[VirtReg.reg()].Stage = Stage;
256   }
257 
258   template<typename Iterator>
259   void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) {
260     ExtraRegInfo.resize(MRI->getNumVirtRegs());
261     for (;Begin != End; ++Begin) {
262       unsigned Reg = *Begin;
263       if (ExtraRegInfo[Reg].Stage == RS_New)
264         ExtraRegInfo[Reg].Stage = NewStage;
265     }
266   }
267 
268   /// Cost of evicting interference.
269   struct EvictionCost {
270     unsigned BrokenHints = 0; ///< Total number of broken hints.
271     float MaxWeight = 0;      ///< Maximum spill weight evicted.
272 
273     EvictionCost() = default;
274 
275     bool isMax() const { return BrokenHints == ~0u; }
276 
277     void setMax() { BrokenHints = ~0u; }
278 
279     void setBrokenHints(unsigned NHints) { BrokenHints = NHints; }
280 
281     bool operator<(const EvictionCost &O) const {
282       return std::tie(BrokenHints, MaxWeight) <
283              std::tie(O.BrokenHints, O.MaxWeight);
284     }
285   };
286 
287   /// EvictionTrack - Keeps track of past evictions in order to optimize region
288   /// split decision.
289   class EvictionTrack {
290 
291   public:
292     using EvictorInfo =
293         std::pair<unsigned /* evictor */, unsigned /* physreg */>;
294     using EvicteeInfo = llvm::DenseMap<unsigned /* evictee */, EvictorInfo>;
295 
296   private:
297     /// Each Vreg that has been evicted in the last stage of selectOrSplit will
298     /// be mapped to the evictor Vreg and the PhysReg it was evicted from.
299     EvicteeInfo Evictees;
300 
301   public:
302     /// Clear all eviction information.
303     void clear() { Evictees.clear(); }
304 
305     ///  Clear eviction information for the given evictee Vreg.
306     /// E.g. when Vreg get's a new allocation, the old eviction info is no
307     /// longer relevant.
308     /// \param Evictee The evictee Vreg for whom we want to clear collected
309     /// eviction info.
310     void clearEvicteeInfo(unsigned Evictee) { Evictees.erase(Evictee); }
311 
312     /// Track new eviction.
313     /// The Evictor vreg has evicted the Evictee vreg from Physreg.
314     /// \param PhysReg The physical register Evictee was evicted from.
315     /// \param Evictor The evictor Vreg that evicted Evictee.
316     /// \param Evictee The evictee Vreg.
317     void addEviction(unsigned PhysReg, unsigned Evictor, unsigned Evictee) {
318       Evictees[Evictee].first = Evictor;
319       Evictees[Evictee].second = PhysReg;
320     }
321 
322     /// Return the Evictor Vreg which evicted Evictee Vreg from PhysReg.
323     /// \param Evictee The evictee vreg.
324     /// \return The Evictor vreg which evicted Evictee vreg from PhysReg. 0 if
325     /// nobody has evicted Evictee from PhysReg.
326     EvictorInfo getEvictor(unsigned Evictee) {
327       if (Evictees.count(Evictee)) {
328         return Evictees[Evictee];
329       }
330 
331       return EvictorInfo(0, 0);
332     }
333   };
334 
335   // Keeps track of past evictions in order to optimize region split decision.
336   EvictionTrack LastEvicted;
337 
338   // splitting state.
339   std::unique_ptr<SplitAnalysis> SA;
340   std::unique_ptr<SplitEditor> SE;
341 
342   /// Cached per-block interference maps
343   InterferenceCache IntfCache;
344 
345   /// All basic blocks where the current register has uses.
346   SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints;
347 
348   /// Global live range splitting candidate info.
349   struct GlobalSplitCandidate {
350     // Register intended for assignment, or 0.
351     unsigned PhysReg;
352 
353     // SplitKit interval index for this candidate.
354     unsigned IntvIdx;
355 
356     // Interference for PhysReg.
357     InterferenceCache::Cursor Intf;
358 
359     // Bundles where this candidate should be live.
360     BitVector LiveBundles;
361     SmallVector<unsigned, 8> ActiveBlocks;
362 
363     void reset(InterferenceCache &Cache, unsigned Reg) {
364       PhysReg = Reg;
365       IntvIdx = 0;
366       Intf.setPhysReg(Cache, Reg);
367       LiveBundles.clear();
368       ActiveBlocks.clear();
369     }
370 
371     // Set B[I] = C for every live bundle where B[I] was NoCand.
372     unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) {
373       unsigned Count = 0;
374       for (unsigned I : LiveBundles.set_bits())
375         if (B[I] == NoCand) {
376           B[I] = C;
377           Count++;
378         }
379       return Count;
380     }
381   };
382 
383   /// Candidate info for each PhysReg in AllocationOrder.
384   /// This vector never shrinks, but grows to the size of the largest register
385   /// class.
386   SmallVector<GlobalSplitCandidate, 32> GlobalCand;
387 
388   enum : unsigned { NoCand = ~0u };
389 
390   /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to
391   /// NoCand which indicates the stack interval.
392   SmallVector<unsigned, 32> BundleCand;
393 
394   /// Callee-save register cost, calculated once per machine function.
395   BlockFrequency CSRCost;
396 
397   /// Run or not the local reassignment heuristic. This information is
398   /// obtained from the TargetSubtargetInfo.
399   bool EnableLocalReassign;
400 
401   /// Enable or not the consideration of the cost of local intervals created
402   /// by a split candidate when choosing the best split candidate.
403   bool EnableAdvancedRASplitCost;
404 
405   /// Set of broken hints that may be reconciled later because of eviction.
406   SmallSetVector<LiveInterval *, 8> SetOfBrokenHints;
407 
408 public:
409   RAGreedy();
410 
411   /// Return the pass name.
412   StringRef getPassName() const override { return "Greedy Register Allocator"; }
413 
414   /// RAGreedy analysis usage.
415   void getAnalysisUsage(AnalysisUsage &AU) const override;
416   void releaseMemory() override;
417   Spiller &spiller() override { return *SpillerInstance; }
418   void enqueue(LiveInterval *LI) override;
419   LiveInterval *dequeue() override;
420   Register selectOrSplit(LiveInterval&, SmallVectorImpl<Register>&) override;
421   void aboutToRemoveInterval(LiveInterval &) override;
422 
423   /// Perform register allocation.
424   bool runOnMachineFunction(MachineFunction &mf) override;
425 
426   MachineFunctionProperties getRequiredProperties() const override {
427     return MachineFunctionProperties().set(
428         MachineFunctionProperties::Property::NoPHIs);
429   }
430 
431   static char ID;
432 
433 private:
434   Register selectOrSplitImpl(LiveInterval &, SmallVectorImpl<Register> &,
435                              SmallVirtRegSet &, unsigned = 0);
436 
437   bool LRE_CanEraseVirtReg(unsigned) override;
438   void LRE_WillShrinkVirtReg(unsigned) override;
439   void LRE_DidCloneVirtReg(unsigned, unsigned) override;
440   void enqueue(PQueue &CurQueue, LiveInterval *LI);
441   LiveInterval *dequeue(PQueue &CurQueue);
442 
443   BlockFrequency calcSpillCost();
444   bool addSplitConstraints(InterferenceCache::Cursor, BlockFrequency&);
445   bool addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>);
446   bool growRegion(GlobalSplitCandidate &Cand);
447   bool splitCanCauseEvictionChain(unsigned Evictee, GlobalSplitCandidate &Cand,
448                                   unsigned BBNumber,
449                                   const AllocationOrder &Order);
450   bool splitCanCauseLocalSpill(unsigned VirtRegToSplit,
451                                GlobalSplitCandidate &Cand, unsigned BBNumber,
452                                const AllocationOrder &Order);
453   BlockFrequency calcGlobalSplitCost(GlobalSplitCandidate &,
454                                      const AllocationOrder &Order,
455                                      bool *CanCauseEvictionChain);
456   bool calcCompactRegion(GlobalSplitCandidate&);
457   void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>);
458   void calcGapWeights(unsigned, SmallVectorImpl<float>&);
459   Register canReassign(LiveInterval &VirtReg, Register PrevReg);
460   bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool);
461   bool canEvictInterference(LiveInterval&, Register, bool, EvictionCost&,
462                             const SmallVirtRegSet&);
463   bool canEvictInterferenceInRange(LiveInterval &VirtReg, Register oPhysReg,
464                                    SlotIndex Start, SlotIndex End,
465                                    EvictionCost &MaxCost);
466   unsigned getCheapestEvicteeWeight(const AllocationOrder &Order,
467                                     LiveInterval &VirtReg, SlotIndex Start,
468                                     SlotIndex End, float *BestEvictWeight);
469   void evictInterference(LiveInterval&, Register,
470                          SmallVectorImpl<Register>&);
471   bool mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg,
472                                   SmallLISet &RecoloringCandidates,
473                                   const SmallVirtRegSet &FixedRegisters);
474 
475   Register tryAssign(LiveInterval&, AllocationOrder&,
476                      SmallVectorImpl<Register>&,
477                      const SmallVirtRegSet&);
478   unsigned tryEvict(LiveInterval&, AllocationOrder&,
479                     SmallVectorImpl<Register>&, unsigned,
480                     const SmallVirtRegSet&);
481   unsigned tryRegionSplit(LiveInterval&, AllocationOrder&,
482                           SmallVectorImpl<Register>&);
483   /// Calculate cost of region splitting.
484   unsigned calculateRegionSplitCost(LiveInterval &VirtReg,
485                                     AllocationOrder &Order,
486                                     BlockFrequency &BestCost,
487                                     unsigned &NumCands, bool IgnoreCSR,
488                                     bool *CanCauseEvictionChain = nullptr);
489   /// Perform region splitting.
490   unsigned doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
491                          bool HasCompact,
492                          SmallVectorImpl<Register> &NewVRegs);
493   /// Check other options before using a callee-saved register for the first
494   /// time.
495   unsigned tryAssignCSRFirstTime(LiveInterval &VirtReg, AllocationOrder &Order,
496                                  Register PhysReg, unsigned &CostPerUseLimit,
497                                  SmallVectorImpl<Register> &NewVRegs);
498   void initializeCSRCost();
499   unsigned tryBlockSplit(LiveInterval&, AllocationOrder&,
500                          SmallVectorImpl<Register>&);
501   unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&,
502                                SmallVectorImpl<Register>&);
503   unsigned tryLocalSplit(LiveInterval&, AllocationOrder&,
504     SmallVectorImpl<Register>&);
505   unsigned trySplit(LiveInterval&, AllocationOrder&,
506                     SmallVectorImpl<Register>&,
507                     const SmallVirtRegSet&);
508   unsigned tryLastChanceRecoloring(LiveInterval &, AllocationOrder &,
509                                    SmallVectorImpl<Register> &,
510                                    SmallVirtRegSet &, unsigned);
511   bool tryRecoloringCandidates(PQueue &, SmallVectorImpl<Register> &,
512                                SmallVirtRegSet &, unsigned);
513   void tryHintRecoloring(LiveInterval &);
514   void tryHintsRecoloring();
515 
516   /// Model the information carried by one end of a copy.
517   struct HintInfo {
518     /// The frequency of the copy.
519     BlockFrequency Freq;
520     /// The virtual register or physical register.
521     Register Reg;
522     /// Its currently assigned register.
523     /// In case of a physical register Reg == PhysReg.
524     MCRegister PhysReg;
525 
526     HintInfo(BlockFrequency Freq, Register Reg, MCRegister PhysReg)
527         : Freq(Freq), Reg(Reg), PhysReg(PhysReg) {}
528   };
529   using HintsInfo = SmallVector<HintInfo, 4>;
530 
531   BlockFrequency getBrokenHintFreq(const HintsInfo &, unsigned);
532   void collectHintInfo(unsigned, HintsInfo &);
533 
534   bool isUnusedCalleeSavedReg(MCRegister PhysReg) const;
535 
536   /// Compute and report the number of spills and reloads for a loop.
537   void reportNumberOfSplillsReloads(MachineLoop *L, unsigned &Reloads,
538                                     unsigned &FoldedReloads, unsigned &Spills,
539                                     unsigned &FoldedSpills);
540 
541   /// Report the number of spills and reloads for each loop.
542   void reportNumberOfSplillsReloads() {
543     for (MachineLoop *L : *Loops) {
544       unsigned Reloads, FoldedReloads, Spills, FoldedSpills;
545       reportNumberOfSplillsReloads(L, Reloads, FoldedReloads, Spills,
546                                    FoldedSpills);
547     }
548   }
549 };
550 
551 } // end anonymous namespace
552 
553 char RAGreedy::ID = 0;
554 char &llvm::RAGreedyID = RAGreedy::ID;
555 
556 INITIALIZE_PASS_BEGIN(RAGreedy, "greedy",
557                 "Greedy Register Allocator", false, false)
558 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
559 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
560 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
561 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer)
562 INITIALIZE_PASS_DEPENDENCY(MachineScheduler)
563 INITIALIZE_PASS_DEPENDENCY(LiveStacks)
564 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
565 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
566 INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
567 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix)
568 INITIALIZE_PASS_DEPENDENCY(EdgeBundles)
569 INITIALIZE_PASS_DEPENDENCY(SpillPlacement)
570 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass)
571 INITIALIZE_PASS_END(RAGreedy, "greedy",
572                 "Greedy Register Allocator", false, false)
573 
574 #ifndef NDEBUG
575 const char *const RAGreedy::StageName[] = {
576     "RS_New",
577     "RS_Assign",
578     "RS_Split",
579     "RS_Split2",
580     "RS_Spill",
581     "RS_Memory",
582     "RS_Done"
583 };
584 #endif
585 
586 // Hysteresis to use when comparing floats.
587 // This helps stabilize decisions based on float comparisons.
588 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875
589 
590 FunctionPass* llvm::createGreedyRegisterAllocator() {
591   return new RAGreedy();
592 }
593 
594 RAGreedy::RAGreedy(): MachineFunctionPass(ID) {
595 }
596 
597 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
598   AU.setPreservesCFG();
599   AU.addRequired<MachineBlockFrequencyInfo>();
600   AU.addPreserved<MachineBlockFrequencyInfo>();
601   AU.addRequired<AAResultsWrapperPass>();
602   AU.addPreserved<AAResultsWrapperPass>();
603   AU.addRequired<LiveIntervals>();
604   AU.addPreserved<LiveIntervals>();
605   AU.addRequired<SlotIndexes>();
606   AU.addPreserved<SlotIndexes>();
607   AU.addRequired<LiveDebugVariables>();
608   AU.addPreserved<LiveDebugVariables>();
609   AU.addRequired<LiveStacks>();
610   AU.addPreserved<LiveStacks>();
611   AU.addRequired<MachineDominatorTree>();
612   AU.addPreserved<MachineDominatorTree>();
613   AU.addRequired<MachineLoopInfo>();
614   AU.addPreserved<MachineLoopInfo>();
615   AU.addRequired<VirtRegMap>();
616   AU.addPreserved<VirtRegMap>();
617   AU.addRequired<LiveRegMatrix>();
618   AU.addPreserved<LiveRegMatrix>();
619   AU.addRequired<EdgeBundles>();
620   AU.addRequired<SpillPlacement>();
621   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
622   MachineFunctionPass::getAnalysisUsage(AU);
623 }
624 
625 //===----------------------------------------------------------------------===//
626 //                     LiveRangeEdit delegate methods
627 //===----------------------------------------------------------------------===//
628 
629 bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) {
630   LiveInterval &LI = LIS->getInterval(VirtReg);
631   if (VRM->hasPhys(VirtReg)) {
632     Matrix->unassign(LI);
633     aboutToRemoveInterval(LI);
634     return true;
635   }
636   // Unassigned virtreg is probably in the priority queue.
637   // RegAllocBase will erase it after dequeueing.
638   // Nonetheless, clear the live-range so that the debug
639   // dump will show the right state for that VirtReg.
640   LI.clear();
641   return false;
642 }
643 
644 void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) {
645   if (!VRM->hasPhys(VirtReg))
646     return;
647 
648   // Register is assigned, put it back on the queue for reassignment.
649   LiveInterval &LI = LIS->getInterval(VirtReg);
650   Matrix->unassign(LI);
651   enqueue(&LI);
652 }
653 
654 void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) {
655   // Cloning a register we haven't even heard about yet?  Just ignore it.
656   if (!ExtraRegInfo.inBounds(Old))
657     return;
658 
659   // LRE may clone a virtual register because dead code elimination causes it to
660   // be split into connected components. The new components are much smaller
661   // than the original, so they should get a new chance at being assigned.
662   // same stage as the parent.
663   ExtraRegInfo[Old].Stage = RS_Assign;
664   ExtraRegInfo.grow(New);
665   ExtraRegInfo[New] = ExtraRegInfo[Old];
666 }
667 
668 void RAGreedy::releaseMemory() {
669   SpillerInstance.reset();
670   ExtraRegInfo.clear();
671   GlobalCand.clear();
672 }
673 
674 void RAGreedy::enqueue(LiveInterval *LI) { enqueue(Queue, LI); }
675 
676 void RAGreedy::enqueue(PQueue &CurQueue, LiveInterval *LI) {
677   // Prioritize live ranges by size, assigning larger ranges first.
678   // The queue holds (size, reg) pairs.
679   const unsigned Size = LI->getSize();
680   const unsigned Reg = LI->reg();
681   assert(Register::isVirtualRegister(Reg) &&
682          "Can only enqueue virtual registers");
683   unsigned Prio;
684 
685   ExtraRegInfo.grow(Reg);
686   if (ExtraRegInfo[Reg].Stage == RS_New)
687     ExtraRegInfo[Reg].Stage = RS_Assign;
688 
689   if (ExtraRegInfo[Reg].Stage == RS_Split) {
690     // Unsplit ranges that couldn't be allocated immediately are deferred until
691     // everything else has been allocated.
692     Prio = Size;
693   } else if (ExtraRegInfo[Reg].Stage == RS_Memory) {
694     // Memory operand should be considered last.
695     // Change the priority such that Memory operand are assigned in
696     // the reverse order that they came in.
697     // TODO: Make this a member variable and probably do something about hints.
698     static unsigned MemOp = 0;
699     Prio = MemOp++;
700   } else {
701     // Giant live ranges fall back to the global assignment heuristic, which
702     // prevents excessive spilling in pathological cases.
703     bool ReverseLocal = TRI->reverseLocalAssignment();
704     const TargetRegisterClass &RC = *MRI->getRegClass(Reg);
705     bool ForceGlobal = !ReverseLocal &&
706       (Size / SlotIndex::InstrDist) > (2 * RC.getNumRegs());
707 
708     if (ExtraRegInfo[Reg].Stage == RS_Assign && !ForceGlobal && !LI->empty() &&
709         LIS->intervalIsInOneMBB(*LI)) {
710       // Allocate original local ranges in linear instruction order. Since they
711       // are singly defined, this produces optimal coloring in the absence of
712       // global interference and other constraints.
713       if (!ReverseLocal)
714         Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex());
715       else {
716         // Allocating bottom up may allow many short LRGs to be assigned first
717         // to one of the cheap registers. This could be much faster for very
718         // large blocks on targets with many physical registers.
719         Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex());
720       }
721       Prio |= RC.AllocationPriority << 24;
722     } else {
723       // Allocate global and split ranges in long->short order. Long ranges that
724       // don't fit should be spilled (or split) ASAP so they don't create
725       // interference.  Mark a bit to prioritize global above local ranges.
726       Prio = (1u << 29) + Size;
727     }
728     // Mark a higher bit to prioritize global and local above RS_Split.
729     Prio |= (1u << 31);
730 
731     // Boost ranges that have a physical register hint.
732     if (VRM->hasKnownPreference(Reg))
733       Prio |= (1u << 30);
734   }
735   // The virtual register number is a tie breaker for same-sized ranges.
736   // Give lower vreg numbers higher priority to assign them first.
737   CurQueue.push(std::make_pair(Prio, ~Reg));
738 }
739 
740 LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); }
741 
742 LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) {
743   if (CurQueue.empty())
744     return nullptr;
745   LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second);
746   CurQueue.pop();
747   return LI;
748 }
749 
750 //===----------------------------------------------------------------------===//
751 //                            Direct Assignment
752 //===----------------------------------------------------------------------===//
753 
754 /// tryAssign - Try to assign VirtReg to an available register.
755 Register RAGreedy::tryAssign(LiveInterval &VirtReg,
756                              AllocationOrder &Order,
757                              SmallVectorImpl<Register> &NewVRegs,
758                              const SmallVirtRegSet &FixedRegisters) {
759   Order.rewind();
760   Register PhysReg;
761   while ((PhysReg = Order.next()))
762     if (!Matrix->checkInterference(VirtReg, PhysReg))
763       break;
764   if (!PhysReg || Order.isHint())
765     return PhysReg;
766 
767   // PhysReg is available, but there may be a better choice.
768 
769   // If we missed a simple hint, try to cheaply evict interference from the
770   // preferred register.
771   if (Register Hint = MRI->getSimpleHint(VirtReg.reg()))
772     if (Order.isHint(Hint)) {
773       LLVM_DEBUG(dbgs() << "missed hint " << printReg(Hint, TRI) << '\n');
774       EvictionCost MaxCost;
775       MaxCost.setBrokenHints(1);
776       if (canEvictInterference(VirtReg, Hint, true, MaxCost, FixedRegisters)) {
777         evictInterference(VirtReg, Hint, NewVRegs);
778         return Hint;
779       }
780       // Record the missed hint, we may be able to recover
781       // at the end if the surrounding allocation changed.
782       SetOfBrokenHints.insert(&VirtReg);
783     }
784 
785   // Try to evict interference from a cheaper alternative.
786   unsigned Cost = TRI->getCostPerUse(PhysReg);
787 
788   // Most registers have 0 additional cost.
789   if (!Cost)
790     return PhysReg;
791 
792   LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is available at cost "
793                     << Cost << '\n');
794   Register CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost, FixedRegisters);
795   return CheapReg ? CheapReg : PhysReg;
796 }
797 
798 //===----------------------------------------------------------------------===//
799 //                         Interference eviction
800 //===----------------------------------------------------------------------===//
801 
802 Register RAGreedy::canReassign(LiveInterval &VirtReg, Register PrevReg) {
803   auto Order =
804       AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix);
805   Register PhysReg;
806   while ((PhysReg = Order.next())) {
807     if (PhysReg == PrevReg)
808       continue;
809 
810     MCRegUnitIterator Units(PhysReg, TRI);
811     for (; Units.isValid(); ++Units) {
812       // Instantiate a "subquery", not to be confused with the Queries array.
813       LiveIntervalUnion::Query subQ(VirtReg, Matrix->getLiveUnions()[*Units]);
814       if (subQ.checkInterference())
815         break;
816     }
817     // If no units have interference, break out with the current PhysReg.
818     if (!Units.isValid())
819       break;
820   }
821   if (PhysReg)
822     LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg << " from "
823                       << printReg(PrevReg, TRI) << " to "
824                       << printReg(PhysReg, TRI) << '\n');
825   return PhysReg;
826 }
827 
828 /// shouldEvict - determine if A should evict the assigned live range B. The
829 /// eviction policy defined by this function together with the allocation order
830 /// defined by enqueue() decides which registers ultimately end up being split
831 /// and spilled.
832 ///
833 /// Cascade numbers are used to prevent infinite loops if this function is a
834 /// cyclic relation.
835 ///
836 /// @param A          The live range to be assigned.
837 /// @param IsHint     True when A is about to be assigned to its preferred
838 ///                   register.
839 /// @param B          The live range to be evicted.
840 /// @param BreaksHint True when B is already assigned to its preferred register.
841 bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint,
842                            LiveInterval &B, bool BreaksHint) {
843   bool CanSplit = getStage(B) < RS_Spill;
844 
845   // Be fairly aggressive about following hints as long as the evictee can be
846   // split.
847   if (CanSplit && IsHint && !BreaksHint)
848     return true;
849 
850   if (A.weight() > B.weight()) {
851     LLVM_DEBUG(dbgs() << "should evict: " << B << " w= " << B.weight() << '\n');
852     return true;
853   }
854   return false;
855 }
856 
857 /// canEvictInterference - Return true if all interferences between VirtReg and
858 /// PhysReg can be evicted.
859 ///
860 /// @param VirtReg Live range that is about to be assigned.
861 /// @param PhysReg Desired register for assignment.
862 /// @param IsHint  True when PhysReg is VirtReg's preferred register.
863 /// @param MaxCost Only look for cheaper candidates and update with new cost
864 ///                when returning true.
865 /// @returns True when interference can be evicted cheaper than MaxCost.
866 bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, Register PhysReg,
867                                     bool IsHint, EvictionCost &MaxCost,
868                                     const SmallVirtRegSet &FixedRegisters) {
869   // It is only possible to evict virtual register interference.
870   if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg)
871     return false;
872 
873   bool IsLocal = LIS->intervalIsInOneMBB(VirtReg);
874 
875   // Find VirtReg's cascade number. This will be unassigned if VirtReg was never
876   // involved in an eviction before. If a cascade number was assigned, deny
877   // evicting anything with the same or a newer cascade number. This prevents
878   // infinite eviction loops.
879   //
880   // This works out so a register without a cascade number is allowed to evict
881   // anything, and it can be evicted by anything.
882   unsigned Cascade = ExtraRegInfo[VirtReg.reg()].Cascade;
883   if (!Cascade)
884     Cascade = NextCascade;
885 
886   EvictionCost Cost;
887   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
888     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
889     // If there is 10 or more interferences, chances are one is heavier.
890     if (Q.collectInterferingVRegs(10) >= 10)
891       return false;
892 
893     // Check if any interfering live range is heavier than MaxWeight.
894     for (LiveInterval *Intf : reverse(Q.interferingVRegs())) {
895       assert(Register::isVirtualRegister(Intf->reg()) &&
896              "Only expecting virtual register interference from query");
897 
898       // Do not allow eviction of a virtual register if we are in the middle
899       // of last-chance recoloring and this virtual register is one that we
900       // have scavenged a physical register for.
901       if (FixedRegisters.count(Intf->reg()))
902         return false;
903 
904       // Never evict spill products. They cannot split or spill.
905       if (getStage(*Intf) == RS_Done)
906         return false;
907       // Once a live range becomes small enough, it is urgent that we find a
908       // register for it. This is indicated by an infinite spill weight. These
909       // urgent live ranges get to evict almost anything.
910       //
911       // Also allow urgent evictions of unspillable ranges from a strictly
912       // larger allocation order.
913       bool Urgent =
914           !VirtReg.isSpillable() &&
915           (Intf->isSpillable() ||
916            RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg())) <
917                RegClassInfo.getNumAllocatableRegs(
918                    MRI->getRegClass(Intf->reg())));
919       // Only evict older cascades or live ranges without a cascade.
920       unsigned IntfCascade = ExtraRegInfo[Intf->reg()].Cascade;
921       if (Cascade <= IntfCascade) {
922         if (!Urgent)
923           return false;
924         // We permit breaking cascades for urgent evictions. It should be the
925         // last resort, though, so make it really expensive.
926         Cost.BrokenHints += 10;
927       }
928       // Would this break a satisfied hint?
929       bool BreaksHint = VRM->hasPreferredPhys(Intf->reg());
930       // Update eviction cost.
931       Cost.BrokenHints += BreaksHint;
932       Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight());
933       // Abort if this would be too expensive.
934       if (!(Cost < MaxCost))
935         return false;
936       if (Urgent)
937         continue;
938       // Apply the eviction policy for non-urgent evictions.
939       if (!shouldEvict(VirtReg, IsHint, *Intf, BreaksHint))
940         return false;
941       // If !MaxCost.isMax(), then we're just looking for a cheap register.
942       // Evicting another local live range in this case could lead to suboptimal
943       // coloring.
944       if (!MaxCost.isMax() && IsLocal && LIS->intervalIsInOneMBB(*Intf) &&
945           (!EnableLocalReassign || !canReassign(*Intf, PhysReg))) {
946         return false;
947       }
948     }
949   }
950   MaxCost = Cost;
951   return true;
952 }
953 
954 /// Return true if all interferences between VirtReg and PhysReg between
955 /// Start and End can be evicted.
956 ///
957 /// \param VirtReg Live range that is about to be assigned.
958 /// \param PhysReg Desired register for assignment.
959 /// \param Start   Start of range to look for interferences.
960 /// \param End     End of range to look for interferences.
961 /// \param MaxCost Only look for cheaper candidates and update with new cost
962 ///                when returning true.
963 /// \return True when interference can be evicted cheaper than MaxCost.
964 bool RAGreedy::canEvictInterferenceInRange(LiveInterval &VirtReg,
965                                            Register PhysReg, SlotIndex Start,
966                                            SlotIndex End,
967                                            EvictionCost &MaxCost) {
968   EvictionCost Cost;
969 
970   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
971     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
972 
973     // Check if any interfering live range is heavier than MaxWeight.
974     for (const LiveInterval *Intf : reverse(Q.interferingVRegs())) {
975       // Check if interference overlast the segment in interest.
976       if (!Intf->overlaps(Start, End))
977         continue;
978 
979       // Cannot evict non virtual reg interference.
980       if (!Register::isVirtualRegister(Intf->reg()))
981         return false;
982       // Never evict spill products. They cannot split or spill.
983       if (getStage(*Intf) == RS_Done)
984         return false;
985 
986       // Would this break a satisfied hint?
987       bool BreaksHint = VRM->hasPreferredPhys(Intf->reg());
988       // Update eviction cost.
989       Cost.BrokenHints += BreaksHint;
990       Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight());
991       // Abort if this would be too expensive.
992       if (!(Cost < MaxCost))
993         return false;
994     }
995   }
996 
997   if (Cost.MaxWeight == 0)
998     return false;
999 
1000   MaxCost = Cost;
1001   return true;
1002 }
1003 
1004 /// Return the physical register that will be best
1005 /// candidate for eviction by a local split interval that will be created
1006 /// between Start and End.
1007 ///
1008 /// \param Order            The allocation order
1009 /// \param VirtReg          Live range that is about to be assigned.
1010 /// \param Start            Start of range to look for interferences
1011 /// \param End              End of range to look for interferences
1012 /// \param BestEvictweight  The eviction cost of that eviction
1013 /// \return The PhysReg which is the best candidate for eviction and the
1014 /// eviction cost in BestEvictweight
1015 unsigned RAGreedy::getCheapestEvicteeWeight(const AllocationOrder &Order,
1016                                             LiveInterval &VirtReg,
1017                                             SlotIndex Start, SlotIndex End,
1018                                             float *BestEvictweight) {
1019   EvictionCost BestEvictCost;
1020   BestEvictCost.setMax();
1021   BestEvictCost.MaxWeight = VirtReg.weight();
1022   unsigned BestEvicteePhys = 0;
1023 
1024   // Go over all physical registers and find the best candidate for eviction
1025   for (auto PhysReg : Order.getOrder()) {
1026 
1027     if (!canEvictInterferenceInRange(VirtReg, PhysReg, Start, End,
1028                                      BestEvictCost))
1029       continue;
1030 
1031     // Best so far.
1032     BestEvicteePhys = PhysReg;
1033   }
1034   *BestEvictweight = BestEvictCost.MaxWeight;
1035   return BestEvicteePhys;
1036 }
1037 
1038 /// evictInterference - Evict any interferring registers that prevent VirtReg
1039 /// from being assigned to Physreg. This assumes that canEvictInterference
1040 /// returned true.
1041 void RAGreedy::evictInterference(LiveInterval &VirtReg, Register PhysReg,
1042                                  SmallVectorImpl<Register> &NewVRegs) {
1043   // Make sure that VirtReg has a cascade number, and assign that cascade
1044   // number to every evicted register. These live ranges than then only be
1045   // evicted by a newer cascade, preventing infinite loops.
1046   unsigned Cascade = ExtraRegInfo[VirtReg.reg()].Cascade;
1047   if (!Cascade)
1048     Cascade = ExtraRegInfo[VirtReg.reg()].Cascade = NextCascade++;
1049 
1050   LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg, TRI)
1051                     << " interference: Cascade " << Cascade << '\n');
1052 
1053   // Collect all interfering virtregs first.
1054   SmallVector<LiveInterval*, 8> Intfs;
1055   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1056     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
1057     // We usually have the interfering VRegs cached so collectInterferingVRegs()
1058     // should be fast, we may need to recalculate if when different physregs
1059     // overlap the same register unit so we had different SubRanges queried
1060     // against it.
1061     Q.collectInterferingVRegs();
1062     ArrayRef<LiveInterval*> IVR = Q.interferingVRegs();
1063     Intfs.append(IVR.begin(), IVR.end());
1064   }
1065 
1066   // Evict them second. This will invalidate the queries.
1067   for (LiveInterval *Intf : Intfs) {
1068     // The same VirtReg may be present in multiple RegUnits. Skip duplicates.
1069     if (!VRM->hasPhys(Intf->reg()))
1070       continue;
1071 
1072     LastEvicted.addEviction(PhysReg, VirtReg.reg(), Intf->reg());
1073 
1074     Matrix->unassign(*Intf);
1075     assert((ExtraRegInfo[Intf->reg()].Cascade < Cascade ||
1076             VirtReg.isSpillable() < Intf->isSpillable()) &&
1077            "Cannot decrease cascade number, illegal eviction");
1078     ExtraRegInfo[Intf->reg()].Cascade = Cascade;
1079     ++NumEvicted;
1080     NewVRegs.push_back(Intf->reg());
1081   }
1082 }
1083 
1084 /// Returns true if the given \p PhysReg is a callee saved register and has not
1085 /// been used for allocation yet.
1086 bool RAGreedy::isUnusedCalleeSavedReg(MCRegister PhysReg) const {
1087   MCRegister CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg);
1088   if (!CSR)
1089     return false;
1090 
1091   return !Matrix->isPhysRegUsed(PhysReg);
1092 }
1093 
1094 /// tryEvict - Try to evict all interferences for a physreg.
1095 /// @param  VirtReg Currently unassigned virtual register.
1096 /// @param  Order   Physregs to try.
1097 /// @return         Physreg to assign VirtReg, or 0.
1098 unsigned RAGreedy::tryEvict(LiveInterval &VirtReg,
1099                             AllocationOrder &Order,
1100                             SmallVectorImpl<Register> &NewVRegs,
1101                             unsigned CostPerUseLimit,
1102                             const SmallVirtRegSet &FixedRegisters) {
1103   NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription,
1104                      TimePassesIsEnabled);
1105 
1106   // Keep track of the cheapest interference seen so far.
1107   EvictionCost BestCost;
1108   BestCost.setMax();
1109   unsigned BestPhys = 0;
1110   unsigned OrderLimit = Order.getOrder().size();
1111 
1112   // When we are just looking for a reduced cost per use, don't break any
1113   // hints, and only evict smaller spill weights.
1114   if (CostPerUseLimit < ~0u) {
1115     BestCost.BrokenHints = 0;
1116     BestCost.MaxWeight = VirtReg.weight();
1117 
1118     // Check of any registers in RC are below CostPerUseLimit.
1119     const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg());
1120     unsigned MinCost = RegClassInfo.getMinCost(RC);
1121     if (MinCost >= CostPerUseLimit) {
1122       LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = "
1123                         << MinCost << ", no cheaper registers to be found.\n");
1124       return 0;
1125     }
1126 
1127     // It is normal for register classes to have a long tail of registers with
1128     // the same cost. We don't need to look at them if they're too expensive.
1129     if (TRI->getCostPerUse(Order.getOrder().back()) >= CostPerUseLimit) {
1130       OrderLimit = RegClassInfo.getLastCostChange(RC);
1131       LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit
1132                         << " regs.\n");
1133     }
1134   }
1135 
1136   Order.rewind();
1137   while (MCRegister PhysReg = Order.next(OrderLimit)) {
1138     if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit)
1139       continue;
1140     // The first use of a callee-saved register in a function has cost 1.
1141     // Don't start using a CSR when the CostPerUseLimit is low.
1142     if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) {
1143       LLVM_DEBUG(
1144           dbgs() << printReg(PhysReg, TRI) << " would clobber CSR "
1145                  << printReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI)
1146                  << '\n');
1147       continue;
1148     }
1149 
1150     if (!canEvictInterference(VirtReg, PhysReg, false, BestCost,
1151                               FixedRegisters))
1152       continue;
1153 
1154     // Best so far.
1155     BestPhys = PhysReg;
1156 
1157     // Stop if the hint can be used.
1158     if (Order.isHint())
1159       break;
1160   }
1161 
1162   if (!BestPhys)
1163     return 0;
1164 
1165   evictInterference(VirtReg, BestPhys, NewVRegs);
1166   return BestPhys;
1167 }
1168 
1169 //===----------------------------------------------------------------------===//
1170 //                              Region Splitting
1171 //===----------------------------------------------------------------------===//
1172 
1173 /// addSplitConstraints - Fill out the SplitConstraints vector based on the
1174 /// interference pattern in Physreg and its aliases. Add the constraints to
1175 /// SpillPlacement and return the static cost of this split in Cost, assuming
1176 /// that all preferences in SplitConstraints are met.
1177 /// Return false if there are no bundles with positive bias.
1178 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
1179                                    BlockFrequency &Cost) {
1180   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1181 
1182   // Reset interference dependent info.
1183   SplitConstraints.resize(UseBlocks.size());
1184   BlockFrequency StaticCost = 0;
1185   for (unsigned I = 0; I != UseBlocks.size(); ++I) {
1186     const SplitAnalysis::BlockInfo &BI = UseBlocks[I];
1187     SpillPlacement::BlockConstraint &BC = SplitConstraints[I];
1188 
1189     BC.Number = BI.MBB->getNumber();
1190     Intf.moveToBlock(BC.Number);
1191     BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
1192     BC.Exit = (BI.LiveOut &&
1193                !LIS->getInstructionFromIndex(BI.LastInstr)->isImplicitDef())
1194                   ? SpillPlacement::PrefReg
1195                   : SpillPlacement::DontCare;
1196     BC.ChangesValue = BI.FirstDef.isValid();
1197 
1198     if (!Intf.hasInterference())
1199       continue;
1200 
1201     // Number of spill code instructions to insert.
1202     unsigned Ins = 0;
1203 
1204     // Interference for the live-in value.
1205     if (BI.LiveIn) {
1206       if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) {
1207         BC.Entry = SpillPlacement::MustSpill;
1208         ++Ins;
1209       } else if (Intf.first() < BI.FirstInstr) {
1210         BC.Entry = SpillPlacement::PrefSpill;
1211         ++Ins;
1212       } else if (Intf.first() < BI.LastInstr) {
1213         ++Ins;
1214       }
1215 
1216       // Abort if the spill cannot be inserted at the MBB' start
1217       if (((BC.Entry == SpillPlacement::MustSpill) ||
1218            (BC.Entry == SpillPlacement::PrefSpill)) &&
1219           SlotIndex::isEarlierInstr(BI.FirstInstr,
1220                                     SA->getFirstSplitPoint(BC.Number)))
1221         return false;
1222     }
1223 
1224     // Interference for the live-out value.
1225     if (BI.LiveOut) {
1226       if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) {
1227         BC.Exit = SpillPlacement::MustSpill;
1228         ++Ins;
1229       } else if (Intf.last() > BI.LastInstr) {
1230         BC.Exit = SpillPlacement::PrefSpill;
1231         ++Ins;
1232       } else if (Intf.last() > BI.FirstInstr) {
1233         ++Ins;
1234       }
1235     }
1236 
1237     // Accumulate the total frequency of inserted spill code.
1238     while (Ins--)
1239       StaticCost += SpillPlacer->getBlockFrequency(BC.Number);
1240   }
1241   Cost = StaticCost;
1242 
1243   // Add constraints for use-blocks. Note that these are the only constraints
1244   // that may add a positive bias, it is downhill from here.
1245   SpillPlacer->addConstraints(SplitConstraints);
1246   return SpillPlacer->scanActiveBundles();
1247 }
1248 
1249 /// addThroughConstraints - Add constraints and links to SpillPlacer from the
1250 /// live-through blocks in Blocks.
1251 bool RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
1252                                      ArrayRef<unsigned> Blocks) {
1253   const unsigned GroupSize = 8;
1254   SpillPlacement::BlockConstraint BCS[GroupSize];
1255   unsigned TBS[GroupSize];
1256   unsigned B = 0, T = 0;
1257 
1258   for (unsigned Number : Blocks) {
1259     Intf.moveToBlock(Number);
1260 
1261     if (!Intf.hasInterference()) {
1262       assert(T < GroupSize && "Array overflow");
1263       TBS[T] = Number;
1264       if (++T == GroupSize) {
1265         SpillPlacer->addLinks(makeArrayRef(TBS, T));
1266         T = 0;
1267       }
1268       continue;
1269     }
1270 
1271     assert(B < GroupSize && "Array overflow");
1272     BCS[B].Number = Number;
1273 
1274     // Abort if the spill cannot be inserted at the MBB' start
1275     MachineBasicBlock *MBB = MF->getBlockNumbered(Number);
1276     if (!MBB->empty() &&
1277         SlotIndex::isEarlierInstr(LIS->getInstructionIndex(MBB->instr_front()),
1278                                   SA->getFirstSplitPoint(Number)))
1279       return false;
1280     // Interference for the live-in value.
1281     if (Intf.first() <= Indexes->getMBBStartIdx(Number))
1282       BCS[B].Entry = SpillPlacement::MustSpill;
1283     else
1284       BCS[B].Entry = SpillPlacement::PrefSpill;
1285 
1286     // Interference for the live-out value.
1287     if (Intf.last() >= SA->getLastSplitPoint(Number))
1288       BCS[B].Exit = SpillPlacement::MustSpill;
1289     else
1290       BCS[B].Exit = SpillPlacement::PrefSpill;
1291 
1292     if (++B == GroupSize) {
1293       SpillPlacer->addConstraints(makeArrayRef(BCS, B));
1294       B = 0;
1295     }
1296   }
1297 
1298   SpillPlacer->addConstraints(makeArrayRef(BCS, B));
1299   SpillPlacer->addLinks(makeArrayRef(TBS, T));
1300   return true;
1301 }
1302 
1303 bool RAGreedy::growRegion(GlobalSplitCandidate &Cand) {
1304   // Keep track of through blocks that have not been added to SpillPlacer.
1305   BitVector Todo = SA->getThroughBlocks();
1306   SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
1307   unsigned AddedTo = 0;
1308 #ifndef NDEBUG
1309   unsigned Visited = 0;
1310 #endif
1311 
1312   while (true) {
1313     ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
1314     // Find new through blocks in the periphery of PrefRegBundles.
1315     for (unsigned Bundle : NewBundles) {
1316       // Look at all blocks connected to Bundle in the full graph.
1317       ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
1318       for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
1319            I != E; ++I) {
1320         unsigned Block = *I;
1321         if (!Todo.test(Block))
1322           continue;
1323         Todo.reset(Block);
1324         // This is a new through block. Add it to SpillPlacer later.
1325         ActiveBlocks.push_back(Block);
1326 #ifndef NDEBUG
1327         ++Visited;
1328 #endif
1329       }
1330     }
1331     // Any new blocks to add?
1332     if (ActiveBlocks.size() == AddedTo)
1333       break;
1334 
1335     // Compute through constraints from the interference, or assume that all
1336     // through blocks prefer spilling when forming compact regions.
1337     auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo);
1338     if (Cand.PhysReg) {
1339       if (!addThroughConstraints(Cand.Intf, NewBlocks))
1340         return false;
1341     } else
1342       // Provide a strong negative bias on through blocks to prevent unwanted
1343       // liveness on loop backedges.
1344       SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true);
1345     AddedTo = ActiveBlocks.size();
1346 
1347     // Perhaps iterating can enable more bundles?
1348     SpillPlacer->iterate();
1349   }
1350   LLVM_DEBUG(dbgs() << ", v=" << Visited);
1351   return true;
1352 }
1353 
1354 /// calcCompactRegion - Compute the set of edge bundles that should be live
1355 /// when splitting the current live range into compact regions.  Compact
1356 /// regions can be computed without looking at interference.  They are the
1357 /// regions formed by removing all the live-through blocks from the live range.
1358 ///
1359 /// Returns false if the current live range is already compact, or if the
1360 /// compact regions would form single block regions anyway.
1361 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) {
1362   // Without any through blocks, the live range is already compact.
1363   if (!SA->getNumThroughBlocks())
1364     return false;
1365 
1366   // Compact regions don't correspond to any physreg.
1367   Cand.reset(IntfCache, 0);
1368 
1369   LLVM_DEBUG(dbgs() << "Compact region bundles");
1370 
1371   // Use the spill placer to determine the live bundles. GrowRegion pretends
1372   // that all the through blocks have interference when PhysReg is unset.
1373   SpillPlacer->prepare(Cand.LiveBundles);
1374 
1375   // The static split cost will be zero since Cand.Intf reports no interference.
1376   BlockFrequency Cost;
1377   if (!addSplitConstraints(Cand.Intf, Cost)) {
1378     LLVM_DEBUG(dbgs() << ", none.\n");
1379     return false;
1380   }
1381 
1382   if (!growRegion(Cand)) {
1383     LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
1384     return false;
1385   }
1386 
1387   SpillPlacer->finish();
1388 
1389   if (!Cand.LiveBundles.any()) {
1390     LLVM_DEBUG(dbgs() << ", none.\n");
1391     return false;
1392   }
1393 
1394   LLVM_DEBUG({
1395     for (int I : Cand.LiveBundles.set_bits())
1396       dbgs() << " EB#" << I;
1397     dbgs() << ".\n";
1398   });
1399   return true;
1400 }
1401 
1402 /// calcSpillCost - Compute how expensive it would be to split the live range in
1403 /// SA around all use blocks instead of forming bundle regions.
1404 BlockFrequency RAGreedy::calcSpillCost() {
1405   BlockFrequency Cost = 0;
1406   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1407   for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
1408     unsigned Number = BI.MBB->getNumber();
1409     // We normally only need one spill instruction - a load or a store.
1410     Cost += SpillPlacer->getBlockFrequency(Number);
1411 
1412     // Unless the value is redefined in the block.
1413     if (BI.LiveIn && BI.LiveOut && BI.FirstDef)
1414       Cost += SpillPlacer->getBlockFrequency(Number);
1415   }
1416   return Cost;
1417 }
1418 
1419 /// Check if splitting Evictee will create a local split interval in
1420 /// basic block number BBNumber that may cause a bad eviction chain. This is
1421 /// intended to prevent bad eviction sequences like:
1422 /// movl	%ebp, 8(%esp)           # 4-byte Spill
1423 /// movl	%ecx, %ebp
1424 /// movl	%ebx, %ecx
1425 /// movl	%edi, %ebx
1426 /// movl	%edx, %edi
1427 /// cltd
1428 /// idivl	%esi
1429 /// movl	%edi, %edx
1430 /// movl	%ebx, %edi
1431 /// movl	%ecx, %ebx
1432 /// movl	%ebp, %ecx
1433 /// movl	16(%esp), %ebp          # 4 - byte Reload
1434 ///
1435 /// Such sequences are created in 2 scenarios:
1436 ///
1437 /// Scenario #1:
1438 /// %0 is evicted from physreg0 by %1.
1439 /// Evictee %0 is intended for region splitting with split candidate
1440 /// physreg0 (the reg %0 was evicted from).
1441 /// Region splitting creates a local interval because of interference with the
1442 /// evictor %1 (normally region splitting creates 2 interval, the "by reg"
1443 /// and "by stack" intervals and local interval created when interference
1444 /// occurs).
1445 /// One of the split intervals ends up evicting %2 from physreg1.
1446 /// Evictee %2 is intended for region splitting with split candidate
1447 /// physreg1.
1448 /// One of the split intervals ends up evicting %3 from physreg2, etc.
1449 ///
1450 /// Scenario #2
1451 /// %0 is evicted from physreg0 by %1.
1452 /// %2 is evicted from physreg2 by %3 etc.
1453 /// Evictee %0 is intended for region splitting with split candidate
1454 /// physreg1.
1455 /// Region splitting creates a local interval because of interference with the
1456 /// evictor %1.
1457 /// One of the split intervals ends up evicting back original evictor %1
1458 /// from physreg0 (the reg %0 was evicted from).
1459 /// Another evictee %2 is intended for region splitting with split candidate
1460 /// physreg1.
1461 /// One of the split intervals ends up evicting %3 from physreg2, etc.
1462 ///
1463 /// \param Evictee  The register considered to be split.
1464 /// \param Cand     The split candidate that determines the physical register
1465 ///                 we are splitting for and the interferences.
1466 /// \param BBNumber The number of a BB for which the region split process will
1467 ///                 create a local split interval.
1468 /// \param Order    The physical registers that may get evicted by a split
1469 ///                 artifact of Evictee.
1470 /// \return True if splitting Evictee may cause a bad eviction chain, false
1471 /// otherwise.
1472 bool RAGreedy::splitCanCauseEvictionChain(unsigned Evictee,
1473                                           GlobalSplitCandidate &Cand,
1474                                           unsigned BBNumber,
1475                                           const AllocationOrder &Order) {
1476   EvictionTrack::EvictorInfo VregEvictorInfo = LastEvicted.getEvictor(Evictee);
1477   unsigned Evictor = VregEvictorInfo.first;
1478   unsigned PhysReg = VregEvictorInfo.second;
1479 
1480   // No actual evictor.
1481   if (!Evictor || !PhysReg)
1482     return false;
1483 
1484   float MaxWeight = 0;
1485   unsigned FutureEvictedPhysReg =
1486       getCheapestEvicteeWeight(Order, LIS->getInterval(Evictee),
1487                                Cand.Intf.first(), Cand.Intf.last(), &MaxWeight);
1488 
1489   // The bad eviction chain occurs when either the split candidate is the
1490   // evicting reg or one of the split artifact will evict the evicting reg.
1491   if ((PhysReg != Cand.PhysReg) && (PhysReg != FutureEvictedPhysReg))
1492     return false;
1493 
1494   Cand.Intf.moveToBlock(BBNumber);
1495 
1496   // Check to see if the Evictor contains interference (with Evictee) in the
1497   // given BB. If so, this interference caused the eviction of Evictee from
1498   // PhysReg. This suggest that we will create a local interval during the
1499   // region split to avoid this interference This local interval may cause a bad
1500   // eviction chain.
1501   if (!LIS->hasInterval(Evictor))
1502     return false;
1503   LiveInterval &EvictorLI = LIS->getInterval(Evictor);
1504   if (EvictorLI.FindSegmentContaining(Cand.Intf.first()) == EvictorLI.end())
1505     return false;
1506 
1507   // Now, check to see if the local interval we will create is going to be
1508   // expensive enough to evict somebody If so, this may cause a bad eviction
1509   // chain.
1510   VirtRegAuxInfo VRAI(*MF, *LIS, VRM, getAnalysis<MachineLoopInfo>(), *MBFI);
1511   float splitArtifactWeight =
1512       VRAI.futureWeight(LIS->getInterval(Evictee),
1513                         Cand.Intf.first().getPrevIndex(), Cand.Intf.last());
1514   if (splitArtifactWeight >= 0 && splitArtifactWeight < MaxWeight)
1515     return false;
1516 
1517   return true;
1518 }
1519 
1520 /// Check if splitting VirtRegToSplit will create a local split interval
1521 /// in basic block number BBNumber that may cause a spill.
1522 ///
1523 /// \param VirtRegToSplit The register considered to be split.
1524 /// \param Cand           The split candidate that determines the physical
1525 ///                       register we are splitting for and the interferences.
1526 /// \param BBNumber       The number of a BB for which the region split process
1527 ///                       will create a local split interval.
1528 /// \param Order          The physical registers that may get evicted by a
1529 ///                       split artifact of VirtRegToSplit.
1530 /// \return True if splitting VirtRegToSplit may cause a spill, false
1531 /// otherwise.
1532 bool RAGreedy::splitCanCauseLocalSpill(unsigned VirtRegToSplit,
1533                                        GlobalSplitCandidate &Cand,
1534                                        unsigned BBNumber,
1535                                        const AllocationOrder &Order) {
1536   Cand.Intf.moveToBlock(BBNumber);
1537 
1538   // Check if the local interval will find a non interfereing assignment.
1539   for (auto PhysReg : Order.getOrder()) {
1540     if (!Matrix->checkInterference(Cand.Intf.first().getPrevIndex(),
1541                                    Cand.Intf.last(), PhysReg))
1542       return false;
1543   }
1544 
1545   // Check if the local interval will evict a cheaper interval.
1546   float CheapestEvictWeight = 0;
1547   unsigned FutureEvictedPhysReg = getCheapestEvicteeWeight(
1548       Order, LIS->getInterval(VirtRegToSplit), Cand.Intf.first(),
1549       Cand.Intf.last(), &CheapestEvictWeight);
1550 
1551   // Have we found an interval that can be evicted?
1552   if (FutureEvictedPhysReg) {
1553     VirtRegAuxInfo VRAI(*MF, *LIS, VRM, getAnalysis<MachineLoopInfo>(), *MBFI);
1554     float splitArtifactWeight =
1555         VRAI.futureWeight(LIS->getInterval(VirtRegToSplit),
1556                           Cand.Intf.first().getPrevIndex(), Cand.Intf.last());
1557     // Will the weight of the local interval be higher than the cheapest evictee
1558     // weight? If so it will evict it and will not cause a spill.
1559     if (splitArtifactWeight >= 0 && splitArtifactWeight > CheapestEvictWeight)
1560       return false;
1561   }
1562 
1563   // The local interval is not able to find non interferencing assignment and
1564   // not able to evict a less worthy interval, therfore, it can cause a spill.
1565   return true;
1566 }
1567 
1568 /// calcGlobalSplitCost - Return the global split cost of following the split
1569 /// pattern in LiveBundles. This cost should be added to the local cost of the
1570 /// interference pattern in SplitConstraints.
1571 ///
1572 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand,
1573                                              const AllocationOrder &Order,
1574                                              bool *CanCauseEvictionChain) {
1575   BlockFrequency GlobalCost = 0;
1576   const BitVector &LiveBundles = Cand.LiveBundles;
1577   unsigned VirtRegToSplit = SA->getParent().reg();
1578   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1579   for (unsigned I = 0; I != UseBlocks.size(); ++I) {
1580     const SplitAnalysis::BlockInfo &BI = UseBlocks[I];
1581     SpillPlacement::BlockConstraint &BC = SplitConstraints[I];
1582     bool RegIn  = LiveBundles[Bundles->getBundle(BC.Number, false)];
1583     bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)];
1584     unsigned Ins = 0;
1585 
1586     Cand.Intf.moveToBlock(BC.Number);
1587     // Check wheather a local interval is going to be created during the region
1588     // split. Calculate adavanced spilt cost (cost of local intervals) if option
1589     // is enabled.
1590     if (EnableAdvancedRASplitCost && Cand.Intf.hasInterference() && BI.LiveIn &&
1591         BI.LiveOut && RegIn && RegOut) {
1592 
1593       if (CanCauseEvictionChain &&
1594           splitCanCauseEvictionChain(VirtRegToSplit, Cand, BC.Number, Order)) {
1595         // This interference causes our eviction from this assignment, we might
1596         // evict somebody else and eventually someone will spill, add that cost.
1597         // See splitCanCauseEvictionChain for detailed description of scenarios.
1598         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1599         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1600 
1601         *CanCauseEvictionChain = true;
1602 
1603       } else if (splitCanCauseLocalSpill(VirtRegToSplit, Cand, BC.Number,
1604                                          Order)) {
1605         // This interference causes local interval to spill, add that cost.
1606         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1607         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1608       }
1609     }
1610 
1611     if (BI.LiveIn)
1612       Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
1613     if (BI.LiveOut)
1614       Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
1615     while (Ins--)
1616       GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1617   }
1618 
1619   for (unsigned Number : Cand.ActiveBlocks) {
1620     bool RegIn  = LiveBundles[Bundles->getBundle(Number, false)];
1621     bool RegOut = LiveBundles[Bundles->getBundle(Number, true)];
1622     if (!RegIn && !RegOut)
1623       continue;
1624     if (RegIn && RegOut) {
1625       // We need double spill code if this block has interference.
1626       Cand.Intf.moveToBlock(Number);
1627       if (Cand.Intf.hasInterference()) {
1628         GlobalCost += SpillPlacer->getBlockFrequency(Number);
1629         GlobalCost += SpillPlacer->getBlockFrequency(Number);
1630 
1631         // Check wheather a local interval is going to be created during the
1632         // region split.
1633         if (EnableAdvancedRASplitCost && CanCauseEvictionChain &&
1634             splitCanCauseEvictionChain(VirtRegToSplit, Cand, Number, Order)) {
1635           // This interference cause our eviction from this assignment, we might
1636           // evict somebody else, add that cost.
1637           // See splitCanCauseEvictionChain for detailed description of
1638           // scenarios.
1639           GlobalCost += SpillPlacer->getBlockFrequency(Number);
1640           GlobalCost += SpillPlacer->getBlockFrequency(Number);
1641 
1642           *CanCauseEvictionChain = true;
1643         }
1644       }
1645       continue;
1646     }
1647     // live-in / stack-out or stack-in live-out.
1648     GlobalCost += SpillPlacer->getBlockFrequency(Number);
1649   }
1650   return GlobalCost;
1651 }
1652 
1653 /// splitAroundRegion - Split the current live range around the regions
1654 /// determined by BundleCand and GlobalCand.
1655 ///
1656 /// Before calling this function, GlobalCand and BundleCand must be initialized
1657 /// so each bundle is assigned to a valid candidate, or NoCand for the
1658 /// stack-bound bundles.  The shared SA/SE SplitAnalysis and SplitEditor
1659 /// objects must be initialized for the current live range, and intervals
1660 /// created for the used candidates.
1661 ///
1662 /// @param LREdit    The LiveRangeEdit object handling the current split.
1663 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value
1664 ///                  must appear in this list.
1665 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit,
1666                                  ArrayRef<unsigned> UsedCands) {
1667   // These are the intervals created for new global ranges. We may create more
1668   // intervals for local ranges.
1669   const unsigned NumGlobalIntvs = LREdit.size();
1670   LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs
1671                     << " globals.\n");
1672   assert(NumGlobalIntvs && "No global intervals configured");
1673 
1674   // Isolate even single instructions when dealing with a proper sub-class.
1675   // That guarantees register class inflation for the stack interval because it
1676   // is all copies.
1677   unsigned Reg = SA->getParent().reg();
1678   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1679 
1680   // First handle all the blocks with uses.
1681   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1682   for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
1683     unsigned Number = BI.MBB->getNumber();
1684     unsigned IntvIn = 0, IntvOut = 0;
1685     SlotIndex IntfIn, IntfOut;
1686     if (BI.LiveIn) {
1687       unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
1688       if (CandIn != NoCand) {
1689         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1690         IntvIn = Cand.IntvIdx;
1691         Cand.Intf.moveToBlock(Number);
1692         IntfIn = Cand.Intf.first();
1693       }
1694     }
1695     if (BI.LiveOut) {
1696       unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
1697       if (CandOut != NoCand) {
1698         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1699         IntvOut = Cand.IntvIdx;
1700         Cand.Intf.moveToBlock(Number);
1701         IntfOut = Cand.Intf.last();
1702       }
1703     }
1704 
1705     // Create separate intervals for isolated blocks with multiple uses.
1706     if (!IntvIn && !IntvOut) {
1707       LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " isolated.\n");
1708       if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1709         SE->splitSingleBlock(BI);
1710       continue;
1711     }
1712 
1713     if (IntvIn && IntvOut)
1714       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1715     else if (IntvIn)
1716       SE->splitRegInBlock(BI, IntvIn, IntfIn);
1717     else
1718       SE->splitRegOutBlock(BI, IntvOut, IntfOut);
1719   }
1720 
1721   // Handle live-through blocks. The relevant live-through blocks are stored in
1722   // the ActiveBlocks list with each candidate. We need to filter out
1723   // duplicates.
1724   BitVector Todo = SA->getThroughBlocks();
1725   for (unsigned c = 0; c != UsedCands.size(); ++c) {
1726     ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks;
1727     for (unsigned Number : Blocks) {
1728       if (!Todo.test(Number))
1729         continue;
1730       Todo.reset(Number);
1731 
1732       unsigned IntvIn = 0, IntvOut = 0;
1733       SlotIndex IntfIn, IntfOut;
1734 
1735       unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
1736       if (CandIn != NoCand) {
1737         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1738         IntvIn = Cand.IntvIdx;
1739         Cand.Intf.moveToBlock(Number);
1740         IntfIn = Cand.Intf.first();
1741       }
1742 
1743       unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
1744       if (CandOut != NoCand) {
1745         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1746         IntvOut = Cand.IntvIdx;
1747         Cand.Intf.moveToBlock(Number);
1748         IntfOut = Cand.Intf.last();
1749       }
1750       if (!IntvIn && !IntvOut)
1751         continue;
1752       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1753     }
1754   }
1755 
1756   ++NumGlobalSplits;
1757 
1758   SmallVector<unsigned, 8> IntvMap;
1759   SE->finish(&IntvMap);
1760   DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
1761 
1762   ExtraRegInfo.resize(MRI->getNumVirtRegs());
1763   unsigned OrigBlocks = SA->getNumLiveBlocks();
1764 
1765   // Sort out the new intervals created by splitting. We get four kinds:
1766   // - Remainder intervals should not be split again.
1767   // - Candidate intervals can be assigned to Cand.PhysReg.
1768   // - Block-local splits are candidates for local splitting.
1769   // - DCE leftovers should go back on the queue.
1770   for (unsigned I = 0, E = LREdit.size(); I != E; ++I) {
1771     LiveInterval &Reg = LIS->getInterval(LREdit.get(I));
1772 
1773     // Ignore old intervals from DCE.
1774     if (getStage(Reg) != RS_New)
1775       continue;
1776 
1777     // Remainder interval. Don't try splitting again, spill if it doesn't
1778     // allocate.
1779     if (IntvMap[I] == 0) {
1780       setStage(Reg, RS_Spill);
1781       continue;
1782     }
1783 
1784     // Global intervals. Allow repeated splitting as long as the number of live
1785     // blocks is strictly decreasing.
1786     if (IntvMap[I] < NumGlobalIntvs) {
1787       if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
1788         LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
1789                           << " blocks as original.\n");
1790         // Don't allow repeated splitting as a safe guard against looping.
1791         setStage(Reg, RS_Split2);
1792       }
1793       continue;
1794     }
1795 
1796     // Other intervals are treated as new. This includes local intervals created
1797     // for blocks with multiple uses, and anything created by DCE.
1798   }
1799 
1800   if (VerifyEnabled)
1801     MF->verify(this, "After splitting live range around region");
1802 }
1803 
1804 unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1805                                   SmallVectorImpl<Register> &NewVRegs) {
1806   if (!TRI->shouldRegionSplitForVirtReg(*MF, VirtReg))
1807     return 0;
1808   unsigned NumCands = 0;
1809   BlockFrequency SpillCost = calcSpillCost();
1810   BlockFrequency BestCost;
1811 
1812   // Check if we can split this live range around a compact region.
1813   bool HasCompact = calcCompactRegion(GlobalCand.front());
1814   if (HasCompact) {
1815     // Yes, keep GlobalCand[0] as the compact region candidate.
1816     NumCands = 1;
1817     BestCost = BlockFrequency::getMaxFrequency();
1818   } else {
1819     // No benefit from the compact region, our fallback will be per-block
1820     // splitting. Make sure we find a solution that is cheaper than spilling.
1821     BestCost = SpillCost;
1822     LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = ";
1823                MBFI->printBlockFreq(dbgs(), BestCost) << '\n');
1824   }
1825 
1826   bool CanCauseEvictionChain = false;
1827   unsigned BestCand =
1828       calculateRegionSplitCost(VirtReg, Order, BestCost, NumCands,
1829                                false /*IgnoreCSR*/, &CanCauseEvictionChain);
1830 
1831   // Split candidates with compact regions can cause a bad eviction sequence.
1832   // See splitCanCauseEvictionChain for detailed description of scenarios.
1833   // To avoid it, we need to comapre the cost with the spill cost and not the
1834   // current max frequency.
1835   if (HasCompact && (BestCost > SpillCost) && (BestCand != NoCand) &&
1836     CanCauseEvictionChain) {
1837     return 0;
1838   }
1839 
1840   // No solutions found, fall back to single block splitting.
1841   if (!HasCompact && BestCand == NoCand)
1842     return 0;
1843 
1844   return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs);
1845 }
1846 
1847 unsigned RAGreedy::calculateRegionSplitCost(LiveInterval &VirtReg,
1848                                             AllocationOrder &Order,
1849                                             BlockFrequency &BestCost,
1850                                             unsigned &NumCands, bool IgnoreCSR,
1851                                             bool *CanCauseEvictionChain) {
1852   unsigned BestCand = NoCand;
1853   Order.rewind();
1854   while (unsigned PhysReg = Order.next()) {
1855     if (IgnoreCSR && isUnusedCalleeSavedReg(PhysReg))
1856       continue;
1857 
1858     // Discard bad candidates before we run out of interference cache cursors.
1859     // This will only affect register classes with a lot of registers (>32).
1860     if (NumCands == IntfCache.getMaxCursors()) {
1861       unsigned WorstCount = ~0u;
1862       unsigned Worst = 0;
1863       for (unsigned CandIndex = 0; CandIndex != NumCands; ++CandIndex) {
1864         if (CandIndex == BestCand || !GlobalCand[CandIndex].PhysReg)
1865           continue;
1866         unsigned Count = GlobalCand[CandIndex].LiveBundles.count();
1867         if (Count < WorstCount) {
1868           Worst = CandIndex;
1869           WorstCount = Count;
1870         }
1871       }
1872       --NumCands;
1873       GlobalCand[Worst] = GlobalCand[NumCands];
1874       if (BestCand == NumCands)
1875         BestCand = Worst;
1876     }
1877 
1878     if (GlobalCand.size() <= NumCands)
1879       GlobalCand.resize(NumCands+1);
1880     GlobalSplitCandidate &Cand = GlobalCand[NumCands];
1881     Cand.reset(IntfCache, PhysReg);
1882 
1883     SpillPlacer->prepare(Cand.LiveBundles);
1884     BlockFrequency Cost;
1885     if (!addSplitConstraints(Cand.Intf, Cost)) {
1886       LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tno positive bundles\n");
1887       continue;
1888     }
1889     LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tstatic = ";
1890                MBFI->printBlockFreq(dbgs(), Cost));
1891     if (Cost >= BestCost) {
1892       LLVM_DEBUG({
1893         if (BestCand == NoCand)
1894           dbgs() << " worse than no bundles\n";
1895         else
1896           dbgs() << " worse than "
1897                  << printReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
1898       });
1899       continue;
1900     }
1901     if (!growRegion(Cand)) {
1902       LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
1903       continue;
1904     }
1905 
1906     SpillPlacer->finish();
1907 
1908     // No live bundles, defer to splitSingleBlocks().
1909     if (!Cand.LiveBundles.any()) {
1910       LLVM_DEBUG(dbgs() << " no bundles.\n");
1911       continue;
1912     }
1913 
1914     bool HasEvictionChain = false;
1915     Cost += calcGlobalSplitCost(Cand, Order, &HasEvictionChain);
1916     LLVM_DEBUG({
1917       dbgs() << ", total = ";
1918       MBFI->printBlockFreq(dbgs(), Cost) << " with bundles";
1919       for (int I : Cand.LiveBundles.set_bits())
1920         dbgs() << " EB#" << I;
1921       dbgs() << ".\n";
1922     });
1923     if (Cost < BestCost) {
1924       BestCand = NumCands;
1925       BestCost = Cost;
1926       // See splitCanCauseEvictionChain for detailed description of bad
1927       // eviction chain scenarios.
1928       if (CanCauseEvictionChain)
1929         *CanCauseEvictionChain = HasEvictionChain;
1930     }
1931     ++NumCands;
1932   }
1933 
1934   if (CanCauseEvictionChain && BestCand != NoCand) {
1935     // See splitCanCauseEvictionChain for detailed description of bad
1936     // eviction chain scenarios.
1937     LLVM_DEBUG(dbgs() << "Best split candidate of vreg "
1938                       << printReg(VirtReg.reg(), TRI) << "  may ");
1939     if (!(*CanCauseEvictionChain))
1940       LLVM_DEBUG(dbgs() << "not ");
1941     LLVM_DEBUG(dbgs() << "cause bad eviction chain\n");
1942   }
1943 
1944   return BestCand;
1945 }
1946 
1947 unsigned RAGreedy::doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
1948                                  bool HasCompact,
1949                                  SmallVectorImpl<Register> &NewVRegs) {
1950   SmallVector<unsigned, 8> UsedCands;
1951   // Prepare split editor.
1952   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1953   SE->reset(LREdit, SplitSpillMode);
1954 
1955   // Assign all edge bundles to the preferred candidate, or NoCand.
1956   BundleCand.assign(Bundles->getNumBundles(), NoCand);
1957 
1958   // Assign bundles for the best candidate region.
1959   if (BestCand != NoCand) {
1960     GlobalSplitCandidate &Cand = GlobalCand[BestCand];
1961     if (unsigned B = Cand.getBundles(BundleCand, BestCand)) {
1962       UsedCands.push_back(BestCand);
1963       Cand.IntvIdx = SE->openIntv();
1964       LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand.PhysReg, TRI) << " in "
1965                         << B << " bundles, intv " << Cand.IntvIdx << ".\n");
1966       (void)B;
1967     }
1968   }
1969 
1970   // Assign bundles for the compact region.
1971   if (HasCompact) {
1972     GlobalSplitCandidate &Cand = GlobalCand.front();
1973     assert(!Cand.PhysReg && "Compact region has no physreg");
1974     if (unsigned B = Cand.getBundles(BundleCand, 0)) {
1975       UsedCands.push_back(0);
1976       Cand.IntvIdx = SE->openIntv();
1977       LLVM_DEBUG(dbgs() << "Split for compact region in " << B
1978                         << " bundles, intv " << Cand.IntvIdx << ".\n");
1979       (void)B;
1980     }
1981   }
1982 
1983   splitAroundRegion(LREdit, UsedCands);
1984   return 0;
1985 }
1986 
1987 //===----------------------------------------------------------------------===//
1988 //                            Per-Block Splitting
1989 //===----------------------------------------------------------------------===//
1990 
1991 /// tryBlockSplit - Split a global live range around every block with uses. This
1992 /// creates a lot of local live ranges, that will be split by tryLocalSplit if
1993 /// they don't allocate.
1994 unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1995                                  SmallVectorImpl<Register> &NewVRegs) {
1996   assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed");
1997   Register Reg = VirtReg.reg();
1998   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1999   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2000   SE->reset(LREdit, SplitSpillMode);
2001   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
2002   for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
2003     if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
2004       SE->splitSingleBlock(BI);
2005   }
2006   // No blocks were split.
2007   if (LREdit.empty())
2008     return 0;
2009 
2010   // We did split for some blocks.
2011   SmallVector<unsigned, 8> IntvMap;
2012   SE->finish(&IntvMap);
2013 
2014   // Tell LiveDebugVariables about the new ranges.
2015   DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
2016 
2017   ExtraRegInfo.resize(MRI->getNumVirtRegs());
2018 
2019   // Sort out the new intervals created by splitting. The remainder interval
2020   // goes straight to spilling, the new local ranges get to stay RS_New.
2021   for (unsigned I = 0, E = LREdit.size(); I != E; ++I) {
2022     LiveInterval &LI = LIS->getInterval(LREdit.get(I));
2023     if (getStage(LI) == RS_New && IntvMap[I] == 0)
2024       setStage(LI, RS_Spill);
2025   }
2026 
2027   if (VerifyEnabled)
2028     MF->verify(this, "After splitting live range around basic blocks");
2029   return 0;
2030 }
2031 
2032 //===----------------------------------------------------------------------===//
2033 //                         Per-Instruction Splitting
2034 //===----------------------------------------------------------------------===//
2035 
2036 /// Get the number of allocatable registers that match the constraints of \p Reg
2037 /// on \p MI and that are also in \p SuperRC.
2038 static unsigned getNumAllocatableRegsForConstraints(
2039     const MachineInstr *MI, unsigned Reg, const TargetRegisterClass *SuperRC,
2040     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
2041     const RegisterClassInfo &RCI) {
2042   assert(SuperRC && "Invalid register class");
2043 
2044   const TargetRegisterClass *ConstrainedRC =
2045       MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI,
2046                                              /* ExploreBundle */ true);
2047   if (!ConstrainedRC)
2048     return 0;
2049   return RCI.getNumAllocatableRegs(ConstrainedRC);
2050 }
2051 
2052 /// tryInstructionSplit - Split a live range around individual instructions.
2053 /// This is normally not worthwhile since the spiller is doing essentially the
2054 /// same thing. However, when the live range is in a constrained register
2055 /// class, it may help to insert copies such that parts of the live range can
2056 /// be moved to a larger register class.
2057 ///
2058 /// This is similar to spilling to a larger register class.
2059 unsigned
2060 RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
2061                               SmallVectorImpl<Register> &NewVRegs) {
2062   const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg());
2063   // There is no point to this if there are no larger sub-classes.
2064   if (!RegClassInfo.isProperSubClass(CurRC))
2065     return 0;
2066 
2067   // Always enable split spill mode, since we're effectively spilling to a
2068   // register.
2069   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2070   SE->reset(LREdit, SplitEditor::SM_Size);
2071 
2072   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
2073   if (Uses.size() <= 1)
2074     return 0;
2075 
2076   LLVM_DEBUG(dbgs() << "Split around " << Uses.size()
2077                     << " individual instrs.\n");
2078 
2079   const TargetRegisterClass *SuperRC =
2080       TRI->getLargestLegalSuperClass(CurRC, *MF);
2081   unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC);
2082   // Split around every non-copy instruction if this split will relax
2083   // the constraints on the virtual register.
2084   // Otherwise, splitting just inserts uncoalescable copies that do not help
2085   // the allocation.
2086   for (const auto &Use : Uses) {
2087     if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Use))
2088       if (MI->isFullCopy() ||
2089           SuperRCNumAllocatableRegs ==
2090               getNumAllocatableRegsForConstraints(MI, VirtReg.reg(), SuperRC,
2091                                                   TII, TRI, RCI)) {
2092         LLVM_DEBUG(dbgs() << "    skip:\t" << Use << '\t' << *MI);
2093         continue;
2094       }
2095     SE->openIntv();
2096     SlotIndex SegStart = SE->enterIntvBefore(Use);
2097     SlotIndex SegStop = SE->leaveIntvAfter(Use);
2098     SE->useIntv(SegStart, SegStop);
2099   }
2100 
2101   if (LREdit.empty()) {
2102     LLVM_DEBUG(dbgs() << "All uses were copies.\n");
2103     return 0;
2104   }
2105 
2106   SmallVector<unsigned, 8> IntvMap;
2107   SE->finish(&IntvMap);
2108   DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS);
2109   ExtraRegInfo.resize(MRI->getNumVirtRegs());
2110 
2111   // Assign all new registers to RS_Spill. This was the last chance.
2112   setStage(LREdit.begin(), LREdit.end(), RS_Spill);
2113   return 0;
2114 }
2115 
2116 //===----------------------------------------------------------------------===//
2117 //                             Local Splitting
2118 //===----------------------------------------------------------------------===//
2119 
2120 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted
2121 /// in order to use PhysReg between two entries in SA->UseSlots.
2122 ///
2123 /// GapWeight[I] represents the gap between UseSlots[I] and UseSlots[I + 1].
2124 ///
2125 void RAGreedy::calcGapWeights(unsigned PhysReg,
2126                               SmallVectorImpl<float> &GapWeight) {
2127   assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
2128   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
2129   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
2130   const unsigned NumGaps = Uses.size()-1;
2131 
2132   // Start and end points for the interference check.
2133   SlotIndex StartIdx =
2134     BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr;
2135   SlotIndex StopIdx =
2136     BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr;
2137 
2138   GapWeight.assign(NumGaps, 0.0f);
2139 
2140   // Add interference from each overlapping register.
2141   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2142     if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units)
2143           .checkInterference())
2144       continue;
2145 
2146     // We know that VirtReg is a continuous interval from FirstInstr to
2147     // LastInstr, so we don't need InterferenceQuery.
2148     //
2149     // Interference that overlaps an instruction is counted in both gaps
2150     // surrounding the instruction. The exception is interference before
2151     // StartIdx and after StopIdx.
2152     //
2153     LiveIntervalUnion::SegmentIter IntI =
2154       Matrix->getLiveUnions()[*Units] .find(StartIdx);
2155     for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
2156       // Skip the gaps before IntI.
2157       while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
2158         if (++Gap == NumGaps)
2159           break;
2160       if (Gap == NumGaps)
2161         break;
2162 
2163       // Update the gaps covered by IntI.
2164       const float weight = IntI.value()->weight();
2165       for (; Gap != NumGaps; ++Gap) {
2166         GapWeight[Gap] = std::max(GapWeight[Gap], weight);
2167         if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
2168           break;
2169       }
2170       if (Gap == NumGaps)
2171         break;
2172     }
2173   }
2174 
2175   // Add fixed interference.
2176   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2177     const LiveRange &LR = LIS->getRegUnit(*Units);
2178     LiveRange::const_iterator I = LR.find(StartIdx);
2179     LiveRange::const_iterator E = LR.end();
2180 
2181     // Same loop as above. Mark any overlapped gaps as HUGE_VALF.
2182     for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) {
2183       while (Uses[Gap+1].getBoundaryIndex() < I->start)
2184         if (++Gap == NumGaps)
2185           break;
2186       if (Gap == NumGaps)
2187         break;
2188 
2189       for (; Gap != NumGaps; ++Gap) {
2190         GapWeight[Gap] = huge_valf;
2191         if (Uses[Gap+1].getBaseIndex() >= I->end)
2192           break;
2193       }
2194       if (Gap == NumGaps)
2195         break;
2196     }
2197   }
2198 }
2199 
2200 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
2201 /// basic block.
2202 ///
2203 unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
2204                                  SmallVectorImpl<Register> &NewVRegs) {
2205   // TODO: the function currently only handles a single UseBlock; it should be
2206   // possible to generalize.
2207   if (SA->getUseBlocks().size() != 1)
2208     return 0;
2209 
2210   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
2211 
2212   // Note that it is possible to have an interval that is live-in or live-out
2213   // while only covering a single block - A phi-def can use undef values from
2214   // predecessors, and the block could be a single-block loop.
2215   // We don't bother doing anything clever about such a case, we simply assume
2216   // that the interval is continuous from FirstInstr to LastInstr. We should
2217   // make sure that we don't do anything illegal to such an interval, though.
2218 
2219   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
2220   if (Uses.size() <= 2)
2221     return 0;
2222   const unsigned NumGaps = Uses.size()-1;
2223 
2224   LLVM_DEBUG({
2225     dbgs() << "tryLocalSplit: ";
2226     for (const auto &Use : Uses)
2227       dbgs() << ' ' << Use;
2228     dbgs() << '\n';
2229   });
2230 
2231   // If VirtReg is live across any register mask operands, compute a list of
2232   // gaps with register masks.
2233   SmallVector<unsigned, 8> RegMaskGaps;
2234   if (Matrix->checkRegMaskInterference(VirtReg)) {
2235     // Get regmask slots for the whole block.
2236     ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber());
2237     LLVM_DEBUG(dbgs() << RMS.size() << " regmasks in block:");
2238     // Constrain to VirtReg's live range.
2239     unsigned RI =
2240         llvm::lower_bound(RMS, Uses.front().getRegSlot()) - RMS.begin();
2241     unsigned RE = RMS.size();
2242     for (unsigned I = 0; I != NumGaps && RI != RE; ++I) {
2243       // Look for Uses[I] <= RMS <= Uses[I + 1].
2244       assert(!SlotIndex::isEarlierInstr(RMS[RI], Uses[I]));
2245       if (SlotIndex::isEarlierInstr(Uses[I + 1], RMS[RI]))
2246         continue;
2247       // Skip a regmask on the same instruction as the last use. It doesn't
2248       // overlap the live range.
2249       if (SlotIndex::isSameInstr(Uses[I + 1], RMS[RI]) && I + 1 == NumGaps)
2250         break;
2251       LLVM_DEBUG(dbgs() << ' ' << RMS[RI] << ':' << Uses[I] << '-'
2252                         << Uses[I + 1]);
2253       RegMaskGaps.push_back(I);
2254       // Advance ri to the next gap. A regmask on one of the uses counts in
2255       // both gaps.
2256       while (RI != RE && SlotIndex::isEarlierInstr(RMS[RI], Uses[I + 1]))
2257         ++RI;
2258     }
2259     LLVM_DEBUG(dbgs() << '\n');
2260   }
2261 
2262   // Since we allow local split results to be split again, there is a risk of
2263   // creating infinite loops. It is tempting to require that the new live
2264   // ranges have less instructions than the original. That would guarantee
2265   // convergence, but it is too strict. A live range with 3 instructions can be
2266   // split 2+3 (including the COPY), and we want to allow that.
2267   //
2268   // Instead we use these rules:
2269   //
2270   // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the
2271   //    noop split, of course).
2272   // 2. Require progress be made for ranges with getStage() == RS_Split2. All
2273   //    the new ranges must have fewer instructions than before the split.
2274   // 3. New ranges with the same number of instructions are marked RS_Split2,
2275   //    smaller ranges are marked RS_New.
2276   //
2277   // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
2278   // excessive splitting and infinite loops.
2279   //
2280   bool ProgressRequired = getStage(VirtReg) >= RS_Split2;
2281 
2282   // Best split candidate.
2283   unsigned BestBefore = NumGaps;
2284   unsigned BestAfter = 0;
2285   float BestDiff = 0;
2286 
2287   const float blockFreq =
2288     SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() *
2289     (1.0f / MBFI->getEntryFreq());
2290   SmallVector<float, 8> GapWeight;
2291 
2292   Order.rewind();
2293   while (unsigned PhysReg = Order.next()) {
2294     // Keep track of the largest spill weight that would need to be evicted in
2295     // order to make use of PhysReg between UseSlots[I] and UseSlots[I + 1].
2296     calcGapWeights(PhysReg, GapWeight);
2297 
2298     // Remove any gaps with regmask clobbers.
2299     if (Matrix->checkRegMaskInterference(VirtReg, PhysReg))
2300       for (unsigned I = 0, E = RegMaskGaps.size(); I != E; ++I)
2301         GapWeight[RegMaskGaps[I]] = huge_valf;
2302 
2303     // Try to find the best sequence of gaps to close.
2304     // The new spill weight must be larger than any gap interference.
2305 
2306     // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
2307     unsigned SplitBefore = 0, SplitAfter = 1;
2308 
2309     // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
2310     // It is the spill weight that needs to be evicted.
2311     float MaxGap = GapWeight[0];
2312 
2313     while (true) {
2314       // Live before/after split?
2315       const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
2316       const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
2317 
2318       LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << ' ' << Uses[SplitBefore]
2319                         << '-' << Uses[SplitAfter] << " I=" << MaxGap);
2320 
2321       // Stop before the interval gets so big we wouldn't be making progress.
2322       if (!LiveBefore && !LiveAfter) {
2323         LLVM_DEBUG(dbgs() << " all\n");
2324         break;
2325       }
2326       // Should the interval be extended or shrunk?
2327       bool Shrink = true;
2328 
2329       // How many gaps would the new range have?
2330       unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
2331 
2332       // Legally, without causing looping?
2333       bool Legal = !ProgressRequired || NewGaps < NumGaps;
2334 
2335       if (Legal && MaxGap < huge_valf) {
2336         // Estimate the new spill weight. Each instruction reads or writes the
2337         // register. Conservatively assume there are no read-modify-write
2338         // instructions.
2339         //
2340         // Try to guess the size of the new interval.
2341         const float EstWeight = normalizeSpillWeight(
2342             blockFreq * (NewGaps + 1),
2343             Uses[SplitBefore].distance(Uses[SplitAfter]) +
2344                 (LiveBefore + LiveAfter) * SlotIndex::InstrDist,
2345             1);
2346         // Would this split be possible to allocate?
2347         // Never allocate all gaps, we wouldn't be making progress.
2348         LLVM_DEBUG(dbgs() << " w=" << EstWeight);
2349         if (EstWeight * Hysteresis >= MaxGap) {
2350           Shrink = false;
2351           float Diff = EstWeight - MaxGap;
2352           if (Diff > BestDiff) {
2353             LLVM_DEBUG(dbgs() << " (best)");
2354             BestDiff = Hysteresis * Diff;
2355             BestBefore = SplitBefore;
2356             BestAfter = SplitAfter;
2357           }
2358         }
2359       }
2360 
2361       // Try to shrink.
2362       if (Shrink) {
2363         if (++SplitBefore < SplitAfter) {
2364           LLVM_DEBUG(dbgs() << " shrink\n");
2365           // Recompute the max when necessary.
2366           if (GapWeight[SplitBefore - 1] >= MaxGap) {
2367             MaxGap = GapWeight[SplitBefore];
2368             for (unsigned I = SplitBefore + 1; I != SplitAfter; ++I)
2369               MaxGap = std::max(MaxGap, GapWeight[I]);
2370           }
2371           continue;
2372         }
2373         MaxGap = 0;
2374       }
2375 
2376       // Try to extend the interval.
2377       if (SplitAfter >= NumGaps) {
2378         LLVM_DEBUG(dbgs() << " end\n");
2379         break;
2380       }
2381 
2382       LLVM_DEBUG(dbgs() << " extend\n");
2383       MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
2384     }
2385   }
2386 
2387   // Didn't find any candidates?
2388   if (BestBefore == NumGaps)
2389     return 0;
2390 
2391   LLVM_DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] << '-'
2392                     << Uses[BestAfter] << ", " << BestDiff << ", "
2393                     << (BestAfter - BestBefore + 1) << " instrs\n");
2394 
2395   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2396   SE->reset(LREdit);
2397 
2398   SE->openIntv();
2399   SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
2400   SlotIndex SegStop  = SE->leaveIntvAfter(Uses[BestAfter]);
2401   SE->useIntv(SegStart, SegStop);
2402   SmallVector<unsigned, 8> IntvMap;
2403   SE->finish(&IntvMap);
2404   DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS);
2405 
2406   // If the new range has the same number of instructions as before, mark it as
2407   // RS_Split2 so the next split will be forced to make progress. Otherwise,
2408   // leave the new intervals as RS_New so they can compete.
2409   bool LiveBefore = BestBefore != 0 || BI.LiveIn;
2410   bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
2411   unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
2412   if (NewGaps >= NumGaps) {
2413     LLVM_DEBUG(dbgs() << "Tagging non-progress ranges: ");
2414     assert(!ProgressRequired && "Didn't make progress when it was required.");
2415     for (unsigned I = 0, E = IntvMap.size(); I != E; ++I)
2416       if (IntvMap[I] == 1) {
2417         setStage(LIS->getInterval(LREdit.get(I)), RS_Split2);
2418         LLVM_DEBUG(dbgs() << printReg(LREdit.get(I)));
2419       }
2420     LLVM_DEBUG(dbgs() << '\n');
2421   }
2422   ++NumLocalSplits;
2423 
2424   return 0;
2425 }
2426 
2427 //===----------------------------------------------------------------------===//
2428 //                          Live Range Splitting
2429 //===----------------------------------------------------------------------===//
2430 
2431 /// trySplit - Try to split VirtReg or one of its interferences, making it
2432 /// assignable.
2433 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
2434 unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
2435                             SmallVectorImpl<Register> &NewVRegs,
2436                             const SmallVirtRegSet &FixedRegisters) {
2437   // Ranges must be Split2 or less.
2438   if (getStage(VirtReg) >= RS_Spill)
2439     return 0;
2440 
2441   // Local intervals are handled separately.
2442   if (LIS->intervalIsInOneMBB(VirtReg)) {
2443     NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName,
2444                        TimerGroupDescription, TimePassesIsEnabled);
2445     SA->analyze(&VirtReg);
2446     Register PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs);
2447     if (PhysReg || !NewVRegs.empty())
2448       return PhysReg;
2449     return tryInstructionSplit(VirtReg, Order, NewVRegs);
2450   }
2451 
2452   NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName,
2453                      TimerGroupDescription, TimePassesIsEnabled);
2454 
2455   SA->analyze(&VirtReg);
2456 
2457   // FIXME: SplitAnalysis may repair broken live ranges coming from the
2458   // coalescer. That may cause the range to become allocatable which means that
2459   // tryRegionSplit won't be making progress. This check should be replaced with
2460   // an assertion when the coalescer is fixed.
2461   if (SA->didRepairRange()) {
2462     // VirtReg has changed, so all cached queries are invalid.
2463     Matrix->invalidateVirtRegs();
2464     if (Register PhysReg = tryAssign(VirtReg, Order, NewVRegs, FixedRegisters))
2465       return PhysReg;
2466   }
2467 
2468   // First try to split around a region spanning multiple blocks. RS_Split2
2469   // ranges already made dubious progress with region splitting, so they go
2470   // straight to single block splitting.
2471   if (getStage(VirtReg) < RS_Split2) {
2472     unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
2473     if (PhysReg || !NewVRegs.empty())
2474       return PhysReg;
2475   }
2476 
2477   // Then isolate blocks.
2478   return tryBlockSplit(VirtReg, Order, NewVRegs);
2479 }
2480 
2481 //===----------------------------------------------------------------------===//
2482 //                          Last Chance Recoloring
2483 //===----------------------------------------------------------------------===//
2484 
2485 /// Return true if \p reg has any tied def operand.
2486 static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg) {
2487   for (const MachineOperand &MO : MRI->def_operands(reg))
2488     if (MO.isTied())
2489       return true;
2490 
2491   return false;
2492 }
2493 
2494 /// mayRecolorAllInterferences - Check if the virtual registers that
2495 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be
2496 /// recolored to free \p PhysReg.
2497 /// When true is returned, \p RecoloringCandidates has been augmented with all
2498 /// the live intervals that need to be recolored in order to free \p PhysReg
2499 /// for \p VirtReg.
2500 /// \p FixedRegisters contains all the virtual registers that cannot be
2501 /// recolored.
2502 bool
2503 RAGreedy::mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg,
2504                                      SmallLISet &RecoloringCandidates,
2505                                      const SmallVirtRegSet &FixedRegisters) {
2506   const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg());
2507 
2508   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2509     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
2510     // If there is LastChanceRecoloringMaxInterference or more interferences,
2511     // chances are one would not be recolorable.
2512     if (Q.collectInterferingVRegs(LastChanceRecoloringMaxInterference) >=
2513         LastChanceRecoloringMaxInterference && !ExhaustiveSearch) {
2514       LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n");
2515       CutOffInfo |= CO_Interf;
2516       return false;
2517     }
2518     for (LiveInterval *Intf : reverse(Q.interferingVRegs())) {
2519       // If Intf is done and sit on the same register class as VirtReg,
2520       // it would not be recolorable as it is in the same state as VirtReg.
2521       // However, if VirtReg has tied defs and Intf doesn't, then
2522       // there is still a point in examining if it can be recolorable.
2523       if (((getStage(*Intf) == RS_Done &&
2524             MRI->getRegClass(Intf->reg()) == CurRC) &&
2525            !(hasTiedDef(MRI, VirtReg.reg()) &&
2526              !hasTiedDef(MRI, Intf->reg()))) ||
2527           FixedRegisters.count(Intf->reg())) {
2528         LLVM_DEBUG(
2529             dbgs() << "Early abort: the interference is not recolorable.\n");
2530         return false;
2531       }
2532       RecoloringCandidates.insert(Intf);
2533     }
2534   }
2535   return true;
2536 }
2537 
2538 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring
2539 /// its interferences.
2540 /// Last chance recoloring chooses a color for \p VirtReg and recolors every
2541 /// virtual register that was using it. The recoloring process may recursively
2542 /// use the last chance recoloring. Therefore, when a virtual register has been
2543 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot
2544 /// be last-chance-recolored again during this recoloring "session".
2545 /// E.g.,
2546 /// Let
2547 /// vA can use {R1, R2    }
2548 /// vB can use {    R2, R3}
2549 /// vC can use {R1        }
2550 /// Where vA, vB, and vC cannot be split anymore (they are reloads for
2551 /// instance) and they all interfere.
2552 ///
2553 /// vA is assigned R1
2554 /// vB is assigned R2
2555 /// vC tries to evict vA but vA is already done.
2556 /// Regular register allocation fails.
2557 ///
2558 /// Last chance recoloring kicks in:
2559 /// vC does as if vA was evicted => vC uses R1.
2560 /// vC is marked as fixed.
2561 /// vA needs to find a color.
2562 /// None are available.
2563 /// vA cannot evict vC: vC is a fixed virtual register now.
2564 /// vA does as if vB was evicted => vA uses R2.
2565 /// vB needs to find a color.
2566 /// R3 is available.
2567 /// Recoloring => vC = R1, vA = R2, vB = R3
2568 ///
2569 /// \p Order defines the preferred allocation order for \p VirtReg.
2570 /// \p NewRegs will contain any new virtual register that have been created
2571 /// (split, spill) during the process and that must be assigned.
2572 /// \p FixedRegisters contains all the virtual registers that cannot be
2573 /// recolored.
2574 /// \p Depth gives the current depth of the last chance recoloring.
2575 /// \return a physical register that can be used for VirtReg or ~0u if none
2576 /// exists.
2577 unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg,
2578                                            AllocationOrder &Order,
2579                                            SmallVectorImpl<Register> &NewVRegs,
2580                                            SmallVirtRegSet &FixedRegisters,
2581                                            unsigned Depth) {
2582   if (!TRI->shouldUseLastChanceRecoloringForVirtReg(*MF, VirtReg))
2583     return ~0u;
2584 
2585   LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n');
2586   // Ranges must be Done.
2587   assert((getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) &&
2588          "Last chance recoloring should really be last chance");
2589   // Set the max depth to LastChanceRecoloringMaxDepth.
2590   // We may want to reconsider that if we end up with a too large search space
2591   // for target with hundreds of registers.
2592   // Indeed, in that case we may want to cut the search space earlier.
2593   if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) {
2594     LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n");
2595     CutOffInfo |= CO_Depth;
2596     return ~0u;
2597   }
2598 
2599   // Set of Live intervals that will need to be recolored.
2600   SmallLISet RecoloringCandidates;
2601   // Record the original mapping virtual register to physical register in case
2602   // the recoloring fails.
2603   DenseMap<Register, Register> VirtRegToPhysReg;
2604   // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in
2605   // this recoloring "session".
2606   assert(!FixedRegisters.count(VirtReg.reg()));
2607   FixedRegisters.insert(VirtReg.reg());
2608   SmallVector<Register, 4> CurrentNewVRegs;
2609 
2610   Order.rewind();
2611   while (Register PhysReg = Order.next()) {
2612     LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg << " to "
2613                       << printReg(PhysReg, TRI) << '\n');
2614     RecoloringCandidates.clear();
2615     VirtRegToPhysReg.clear();
2616     CurrentNewVRegs.clear();
2617 
2618     // It is only possible to recolor virtual register interference.
2619     if (Matrix->checkInterference(VirtReg, PhysReg) >
2620         LiveRegMatrix::IK_VirtReg) {
2621       LLVM_DEBUG(
2622           dbgs() << "Some interferences are not with virtual registers.\n");
2623 
2624       continue;
2625     }
2626 
2627     // Early give up on this PhysReg if it is obvious we cannot recolor all
2628     // the interferences.
2629     if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates,
2630                                     FixedRegisters)) {
2631       LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n");
2632       continue;
2633     }
2634 
2635     // RecoloringCandidates contains all the virtual registers that interfer
2636     // with VirtReg on PhysReg (or one of its aliases).
2637     // Enqueue them for recoloring and perform the actual recoloring.
2638     PQueue RecoloringQueue;
2639     for (SmallLISet::iterator It = RecoloringCandidates.begin(),
2640                               EndIt = RecoloringCandidates.end();
2641          It != EndIt; ++It) {
2642       Register ItVirtReg = (*It)->reg();
2643       enqueue(RecoloringQueue, *It);
2644       assert(VRM->hasPhys(ItVirtReg) &&
2645              "Interferences are supposed to be with allocated variables");
2646 
2647       // Record the current allocation.
2648       VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg);
2649       // unset the related struct.
2650       Matrix->unassign(**It);
2651     }
2652 
2653     // Do as if VirtReg was assigned to PhysReg so that the underlying
2654     // recoloring has the right information about the interferes and
2655     // available colors.
2656     Matrix->assign(VirtReg, PhysReg);
2657 
2658     // Save the current recoloring state.
2659     // If we cannot recolor all the interferences, we will have to start again
2660     // at this point for the next physical register.
2661     SmallVirtRegSet SaveFixedRegisters(FixedRegisters);
2662     if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs,
2663                                 FixedRegisters, Depth)) {
2664       // Push the queued vregs into the main queue.
2665       for (Register NewVReg : CurrentNewVRegs)
2666         NewVRegs.push_back(NewVReg);
2667       // Do not mess up with the global assignment process.
2668       // I.e., VirtReg must be unassigned.
2669       Matrix->unassign(VirtReg);
2670       return PhysReg;
2671     }
2672 
2673     LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to "
2674                       << printReg(PhysReg, TRI) << '\n');
2675 
2676     // The recoloring attempt failed, undo the changes.
2677     FixedRegisters = SaveFixedRegisters;
2678     Matrix->unassign(VirtReg);
2679 
2680     // For a newly created vreg which is also in RecoloringCandidates,
2681     // don't add it to NewVRegs because its physical register will be restored
2682     // below. Other vregs in CurrentNewVRegs are created by calling
2683     // selectOrSplit and should be added into NewVRegs.
2684     for (SmallVectorImpl<Register>::iterator Next = CurrentNewVRegs.begin(),
2685                                              End = CurrentNewVRegs.end();
2686          Next != End; ++Next) {
2687       if (RecoloringCandidates.count(&LIS->getInterval(*Next)))
2688         continue;
2689       NewVRegs.push_back(*Next);
2690     }
2691 
2692     for (SmallLISet::iterator It = RecoloringCandidates.begin(),
2693                               EndIt = RecoloringCandidates.end();
2694          It != EndIt; ++It) {
2695       Register ItVirtReg = (*It)->reg();
2696       if (VRM->hasPhys(ItVirtReg))
2697         Matrix->unassign(**It);
2698       Register ItPhysReg = VirtRegToPhysReg[ItVirtReg];
2699       Matrix->assign(**It, ItPhysReg);
2700     }
2701   }
2702 
2703   // Last chance recoloring did not worked either, give up.
2704   return ~0u;
2705 }
2706 
2707 /// tryRecoloringCandidates - Try to assign a new color to every register
2708 /// in \RecoloringQueue.
2709 /// \p NewRegs will contain any new virtual register created during the
2710 /// recoloring process.
2711 /// \p FixedRegisters[in/out] contains all the registers that have been
2712 /// recolored.
2713 /// \return true if all virtual registers in RecoloringQueue were successfully
2714 /// recolored, false otherwise.
2715 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue,
2716                                        SmallVectorImpl<Register> &NewVRegs,
2717                                        SmallVirtRegSet &FixedRegisters,
2718                                        unsigned Depth) {
2719   while (!RecoloringQueue.empty()) {
2720     LiveInterval *LI = dequeue(RecoloringQueue);
2721     LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI << '\n');
2722     Register PhysReg = selectOrSplitImpl(*LI, NewVRegs, FixedRegisters,
2723                                          Depth + 1);
2724     // When splitting happens, the live-range may actually be empty.
2725     // In that case, this is okay to continue the recoloring even
2726     // if we did not find an alternative color for it. Indeed,
2727     // there will not be anything to color for LI in the end.
2728     if (PhysReg == ~0u || (!PhysReg && !LI->empty()))
2729       return false;
2730 
2731     if (!PhysReg) {
2732       assert(LI->empty() && "Only empty live-range do not require a register");
2733       LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2734                         << " succeeded. Empty LI.\n");
2735       continue;
2736     }
2737     LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2738                       << " succeeded with: " << printReg(PhysReg, TRI) << '\n');
2739 
2740     Matrix->assign(*LI, PhysReg);
2741     FixedRegisters.insert(LI->reg());
2742   }
2743   return true;
2744 }
2745 
2746 //===----------------------------------------------------------------------===//
2747 //                            Main Entry Point
2748 //===----------------------------------------------------------------------===//
2749 
2750 Register RAGreedy::selectOrSplit(LiveInterval &VirtReg,
2751                                  SmallVectorImpl<Register> &NewVRegs) {
2752   CutOffInfo = CO_None;
2753   LLVMContext &Ctx = MF->getFunction().getContext();
2754   SmallVirtRegSet FixedRegisters;
2755   Register Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters);
2756   if (Reg == ~0U && (CutOffInfo != CO_None)) {
2757     uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf);
2758     if (CutOffEncountered == CO_Depth)
2759       Ctx.emitError("register allocation failed: maximum depth for recoloring "
2760                     "reached. Use -fexhaustive-register-search to skip "
2761                     "cutoffs");
2762     else if (CutOffEncountered == CO_Interf)
2763       Ctx.emitError("register allocation failed: maximum interference for "
2764                     "recoloring reached. Use -fexhaustive-register-search "
2765                     "to skip cutoffs");
2766     else if (CutOffEncountered == (CO_Depth | CO_Interf))
2767       Ctx.emitError("register allocation failed: maximum interference and "
2768                     "depth for recoloring reached. Use "
2769                     "-fexhaustive-register-search to skip cutoffs");
2770   }
2771   return Reg;
2772 }
2773 
2774 /// Using a CSR for the first time has a cost because it causes push|pop
2775 /// to be added to prologue|epilogue. Splitting a cold section of the live
2776 /// range can have lower cost than using the CSR for the first time;
2777 /// Spilling a live range in the cold path can have lower cost than using
2778 /// the CSR for the first time. Returns the physical register if we decide
2779 /// to use the CSR; otherwise return 0.
2780 unsigned RAGreedy::tryAssignCSRFirstTime(LiveInterval &VirtReg,
2781                                          AllocationOrder &Order,
2782                                          Register PhysReg,
2783                                          unsigned &CostPerUseLimit,
2784                                          SmallVectorImpl<Register> &NewVRegs) {
2785   if (getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) {
2786     // We choose spill over using the CSR for the first time if the spill cost
2787     // is lower than CSRCost.
2788     SA->analyze(&VirtReg);
2789     if (calcSpillCost() >= CSRCost)
2790       return PhysReg;
2791 
2792     // We are going to spill, set CostPerUseLimit to 1 to make sure that
2793     // we will not use a callee-saved register in tryEvict.
2794     CostPerUseLimit = 1;
2795     return 0;
2796   }
2797   if (getStage(VirtReg) < RS_Split) {
2798     // We choose pre-splitting over using the CSR for the first time if
2799     // the cost of splitting is lower than CSRCost.
2800     SA->analyze(&VirtReg);
2801     unsigned NumCands = 0;
2802     BlockFrequency BestCost = CSRCost; // Don't modify CSRCost.
2803     unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost,
2804                                                  NumCands, true /*IgnoreCSR*/);
2805     if (BestCand == NoCand)
2806       // Use the CSR if we can't find a region split below CSRCost.
2807       return PhysReg;
2808 
2809     // Perform the actual pre-splitting.
2810     doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs);
2811     return 0;
2812   }
2813   return PhysReg;
2814 }
2815 
2816 void RAGreedy::aboutToRemoveInterval(LiveInterval &LI) {
2817   // Do not keep invalid information around.
2818   SetOfBrokenHints.remove(&LI);
2819 }
2820 
2821 void RAGreedy::initializeCSRCost() {
2822   // We use the larger one out of the command-line option and the value report
2823   // by TRI.
2824   CSRCost = BlockFrequency(
2825       std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost()));
2826   if (!CSRCost.getFrequency())
2827     return;
2828 
2829   // Raw cost is relative to Entry == 2^14; scale it appropriately.
2830   uint64_t ActualEntry = MBFI->getEntryFreq();
2831   if (!ActualEntry) {
2832     CSRCost = 0;
2833     return;
2834   }
2835   uint64_t FixedEntry = 1 << 14;
2836   if (ActualEntry < FixedEntry)
2837     CSRCost *= BranchProbability(ActualEntry, FixedEntry);
2838   else if (ActualEntry <= UINT32_MAX)
2839     // Invert the fraction and divide.
2840     CSRCost /= BranchProbability(FixedEntry, ActualEntry);
2841   else
2842     // Can't use BranchProbability in general, since it takes 32-bit numbers.
2843     CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry);
2844 }
2845 
2846 /// Collect the hint info for \p Reg.
2847 /// The results are stored into \p Out.
2848 /// \p Out is not cleared before being populated.
2849 void RAGreedy::collectHintInfo(unsigned Reg, HintsInfo &Out) {
2850   for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) {
2851     if (!Instr.isFullCopy())
2852       continue;
2853     // Look for the other end of the copy.
2854     Register OtherReg = Instr.getOperand(0).getReg();
2855     if (OtherReg == Reg) {
2856       OtherReg = Instr.getOperand(1).getReg();
2857       if (OtherReg == Reg)
2858         continue;
2859     }
2860     // Get the current assignment.
2861     Register OtherPhysReg = Register::isPhysicalRegister(OtherReg)
2862                                 ? OtherReg
2863                                 : VRM->getPhys(OtherReg);
2864     // Push the collected information.
2865     Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg,
2866                            OtherPhysReg));
2867   }
2868 }
2869 
2870 /// Using the given \p List, compute the cost of the broken hints if
2871 /// \p PhysReg was used.
2872 /// \return The cost of \p List for \p PhysReg.
2873 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List,
2874                                            unsigned PhysReg) {
2875   BlockFrequency Cost = 0;
2876   for (const HintInfo &Info : List) {
2877     if (Info.PhysReg != PhysReg)
2878       Cost += Info.Freq;
2879   }
2880   return Cost;
2881 }
2882 
2883 /// Using the register assigned to \p VirtReg, try to recolor
2884 /// all the live ranges that are copy-related with \p VirtReg.
2885 /// The recoloring is then propagated to all the live-ranges that have
2886 /// been recolored and so on, until no more copies can be coalesced or
2887 /// it is not profitable.
2888 /// For a given live range, profitability is determined by the sum of the
2889 /// frequencies of the non-identity copies it would introduce with the old
2890 /// and new register.
2891 void RAGreedy::tryHintRecoloring(LiveInterval &VirtReg) {
2892   // We have a broken hint, check if it is possible to fix it by
2893   // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted
2894   // some register and PhysReg may be available for the other live-ranges.
2895   SmallSet<unsigned, 4> Visited;
2896   SmallVector<unsigned, 2> RecoloringCandidates;
2897   HintsInfo Info;
2898   unsigned Reg = VirtReg.reg();
2899   Register PhysReg = VRM->getPhys(Reg);
2900   // Start the recoloring algorithm from the input live-interval, then
2901   // it will propagate to the ones that are copy-related with it.
2902   Visited.insert(Reg);
2903   RecoloringCandidates.push_back(Reg);
2904 
2905   LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg, TRI)
2906                     << '(' << printReg(PhysReg, TRI) << ")\n");
2907 
2908   do {
2909     Reg = RecoloringCandidates.pop_back_val();
2910 
2911     // We cannot recolor physical register.
2912     if (Register::isPhysicalRegister(Reg))
2913       continue;
2914 
2915     assert(VRM->hasPhys(Reg) && "We have unallocated variable!!");
2916 
2917     // Get the live interval mapped with this virtual register to be able
2918     // to check for the interference with the new color.
2919     LiveInterval &LI = LIS->getInterval(Reg);
2920     Register CurrPhys = VRM->getPhys(Reg);
2921     // Check that the new color matches the register class constraints and
2922     // that it is free for this live range.
2923     if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) ||
2924                                 Matrix->checkInterference(LI, PhysReg)))
2925       continue;
2926 
2927     LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << '(' << printReg(CurrPhys, TRI)
2928                       << ") is recolorable.\n");
2929 
2930     // Gather the hint info.
2931     Info.clear();
2932     collectHintInfo(Reg, Info);
2933     // Check if recoloring the live-range will increase the cost of the
2934     // non-identity copies.
2935     if (CurrPhys != PhysReg) {
2936       LLVM_DEBUG(dbgs() << "Checking profitability:\n");
2937       BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys);
2938       BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg);
2939       LLVM_DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency()
2940                         << "\nNew Cost: " << NewCopiesCost.getFrequency()
2941                         << '\n');
2942       if (OldCopiesCost < NewCopiesCost) {
2943         LLVM_DEBUG(dbgs() << "=> Not profitable.\n");
2944         continue;
2945       }
2946       // At this point, the cost is either cheaper or equal. If it is
2947       // equal, we consider this is profitable because it may expose
2948       // more recoloring opportunities.
2949       LLVM_DEBUG(dbgs() << "=> Profitable.\n");
2950       // Recolor the live-range.
2951       Matrix->unassign(LI);
2952       Matrix->assign(LI, PhysReg);
2953     }
2954     // Push all copy-related live-ranges to keep reconciling the broken
2955     // hints.
2956     for (const HintInfo &HI : Info) {
2957       if (Visited.insert(HI.Reg).second)
2958         RecoloringCandidates.push_back(HI.Reg);
2959     }
2960   } while (!RecoloringCandidates.empty());
2961 }
2962 
2963 /// Try to recolor broken hints.
2964 /// Broken hints may be repaired by recoloring when an evicted variable
2965 /// freed up a register for a larger live-range.
2966 /// Consider the following example:
2967 /// BB1:
2968 ///   a =
2969 ///   b =
2970 /// BB2:
2971 ///   ...
2972 ///   = b
2973 ///   = a
2974 /// Let us assume b gets split:
2975 /// BB1:
2976 ///   a =
2977 ///   b =
2978 /// BB2:
2979 ///   c = b
2980 ///   ...
2981 ///   d = c
2982 ///   = d
2983 ///   = a
2984 /// Because of how the allocation work, b, c, and d may be assigned different
2985 /// colors. Now, if a gets evicted later:
2986 /// BB1:
2987 ///   a =
2988 ///   st a, SpillSlot
2989 ///   b =
2990 /// BB2:
2991 ///   c = b
2992 ///   ...
2993 ///   d = c
2994 ///   = d
2995 ///   e = ld SpillSlot
2996 ///   = e
2997 /// This is likely that we can assign the same register for b, c, and d,
2998 /// getting rid of 2 copies.
2999 void RAGreedy::tryHintsRecoloring() {
3000   for (LiveInterval *LI : SetOfBrokenHints) {
3001     assert(Register::isVirtualRegister(LI->reg()) &&
3002            "Recoloring is possible only for virtual registers");
3003     // Some dead defs may be around (e.g., because of debug uses).
3004     // Ignore those.
3005     if (!VRM->hasPhys(LI->reg()))
3006       continue;
3007     tryHintRecoloring(*LI);
3008   }
3009 }
3010 
3011 Register RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg,
3012                                      SmallVectorImpl<Register> &NewVRegs,
3013                                      SmallVirtRegSet &FixedRegisters,
3014                                      unsigned Depth) {
3015   unsigned CostPerUseLimit = ~0u;
3016   // First try assigning a free register.
3017   auto Order =
3018       AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix);
3019   if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs, FixedRegisters)) {
3020     // If VirtReg got an assignment, the eviction info is no longre relevant.
3021     LastEvicted.clearEvicteeInfo(VirtReg.reg());
3022     // When NewVRegs is not empty, we may have made decisions such as evicting
3023     // a virtual register, go with the earlier decisions and use the physical
3024     // register.
3025     if (CSRCost.getFrequency() && isUnusedCalleeSavedReg(PhysReg) &&
3026         NewVRegs.empty()) {
3027       Register CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg,
3028                                               CostPerUseLimit, NewVRegs);
3029       if (CSRReg || !NewVRegs.empty())
3030         // Return now if we decide to use a CSR or create new vregs due to
3031         // pre-splitting.
3032         return CSRReg;
3033     } else
3034       return PhysReg;
3035   }
3036 
3037   LiveRangeStage Stage = getStage(VirtReg);
3038   LLVM_DEBUG(dbgs() << StageName[Stage] << " Cascade "
3039                     << ExtraRegInfo[VirtReg.reg()].Cascade << '\n');
3040 
3041   // Try to evict a less worthy live range, but only for ranges from the primary
3042   // queue. The RS_Split ranges already failed to do this, and they should not
3043   // get a second chance until they have been split.
3044   if (Stage != RS_Split)
3045     if (Register PhysReg =
3046             tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit,
3047                      FixedRegisters)) {
3048       Register Hint = MRI->getSimpleHint(VirtReg.reg());
3049       // If VirtReg has a hint and that hint is broken record this
3050       // virtual register as a recoloring candidate for broken hint.
3051       // Indeed, since we evicted a variable in its neighborhood it is
3052       // likely we can at least partially recolor some of the
3053       // copy-related live-ranges.
3054       if (Hint && Hint != PhysReg)
3055         SetOfBrokenHints.insert(&VirtReg);
3056       // If VirtReg eviction someone, the eviction info for it as an evictee is
3057       // no longre relevant.
3058       LastEvicted.clearEvicteeInfo(VirtReg.reg());
3059       return PhysReg;
3060     }
3061 
3062   assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs");
3063 
3064   // The first time we see a live range, don't try to split or spill.
3065   // Wait until the second time, when all smaller ranges have been allocated.
3066   // This gives a better picture of the interference to split around.
3067   if (Stage < RS_Split) {
3068     setStage(VirtReg, RS_Split);
3069     LLVM_DEBUG(dbgs() << "wait for second round\n");
3070     NewVRegs.push_back(VirtReg.reg());
3071     return 0;
3072   }
3073 
3074   if (Stage < RS_Spill) {
3075     // Try splitting VirtReg or interferences.
3076     unsigned NewVRegSizeBefore = NewVRegs.size();
3077     Register PhysReg = trySplit(VirtReg, Order, NewVRegs, FixedRegisters);
3078     if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore)) {
3079       // If VirtReg got split, the eviction info is no longer relevant.
3080       LastEvicted.clearEvicteeInfo(VirtReg.reg());
3081       return PhysReg;
3082     }
3083   }
3084 
3085   // If we couldn't allocate a register from spilling, there is probably some
3086   // invalid inline assembly. The base class will report it.
3087   if (Stage >= RS_Done || !VirtReg.isSpillable())
3088     return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters,
3089                                    Depth);
3090 
3091   // Finally spill VirtReg itself.
3092   if ((EnableDeferredSpilling ||
3093        TRI->shouldUseDeferredSpillingForVirtReg(*MF, VirtReg)) &&
3094       getStage(VirtReg) < RS_Memory) {
3095     // TODO: This is experimental and in particular, we do not model
3096     // the live range splitting done by spilling correctly.
3097     // We would need a deep integration with the spiller to do the
3098     // right thing here. Anyway, that is still good for early testing.
3099     setStage(VirtReg, RS_Memory);
3100     LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n");
3101     NewVRegs.push_back(VirtReg.reg());
3102   } else {
3103     NamedRegionTimer T("spill", "Spiller", TimerGroupName,
3104                        TimerGroupDescription, TimePassesIsEnabled);
3105     LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
3106     spiller().spill(LRE);
3107     setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done);
3108 
3109     // Tell LiveDebugVariables about the new ranges. Ranges not being covered by
3110     // the new regs are kept in LDV (still mapping to the old register), until
3111     // we rewrite spilled locations in LDV at a later stage.
3112     DebugVars->splitRegister(VirtReg.reg(), LRE.regs(), *LIS);
3113 
3114     if (VerifyEnabled)
3115       MF->verify(this, "After spilling");
3116   }
3117 
3118   // The live virtual register requesting allocation was spilled, so tell
3119   // the caller not to allocate anything during this round.
3120   return 0;
3121 }
3122 
3123 void RAGreedy::reportNumberOfSplillsReloads(MachineLoop *L, unsigned &Reloads,
3124                                             unsigned &FoldedReloads,
3125                                             unsigned &Spills,
3126                                             unsigned &FoldedSpills) {
3127   Reloads = 0;
3128   FoldedReloads = 0;
3129   Spills = 0;
3130   FoldedSpills = 0;
3131 
3132   // Sum up the spill and reloads in subloops.
3133   for (MachineLoop *SubLoop : *L) {
3134     unsigned SubReloads;
3135     unsigned SubFoldedReloads;
3136     unsigned SubSpills;
3137     unsigned SubFoldedSpills;
3138 
3139     reportNumberOfSplillsReloads(SubLoop, SubReloads, SubFoldedReloads,
3140                                  SubSpills, SubFoldedSpills);
3141     Reloads += SubReloads;
3142     FoldedReloads += SubFoldedReloads;
3143     Spills += SubSpills;
3144     FoldedSpills += SubFoldedSpills;
3145   }
3146 
3147   const MachineFrameInfo &MFI = MF->getFrameInfo();
3148   int FI;
3149 
3150   for (MachineBasicBlock *MBB : L->getBlocks())
3151     // Handle blocks that were not included in subloops.
3152     if (Loops->getLoopFor(MBB) == L)
3153       for (MachineInstr &MI : *MBB) {
3154         SmallVector<const MachineMemOperand *, 2> Accesses;
3155         auto isSpillSlotAccess = [&MFI](const MachineMemOperand *A) {
3156           return MFI.isSpillSlotObjectIndex(
3157               cast<FixedStackPseudoSourceValue>(A->getPseudoValue())
3158                   ->getFrameIndex());
3159         };
3160 
3161         if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI))
3162           ++Reloads;
3163         else if (TII->hasLoadFromStackSlot(MI, Accesses) &&
3164                  llvm::any_of(Accesses, isSpillSlotAccess))
3165           ++FoldedReloads;
3166         else if (TII->isStoreToStackSlot(MI, FI) &&
3167                  MFI.isSpillSlotObjectIndex(FI))
3168           ++Spills;
3169         else if (TII->hasStoreToStackSlot(MI, Accesses) &&
3170                  llvm::any_of(Accesses, isSpillSlotAccess))
3171           ++FoldedSpills;
3172       }
3173 
3174   if (Reloads || FoldedReloads || Spills || FoldedSpills) {
3175     using namespace ore;
3176 
3177     ORE->emit([&]() {
3178       MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReload",
3179                                         L->getStartLoc(), L->getHeader());
3180       if (Spills)
3181         R << NV("NumSpills", Spills) << " spills ";
3182       if (FoldedSpills)
3183         R << NV("NumFoldedSpills", FoldedSpills) << " folded spills ";
3184       if (Reloads)
3185         R << NV("NumReloads", Reloads) << " reloads ";
3186       if (FoldedReloads)
3187         R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads ";
3188       R << "generated in loop";
3189       return R;
3190     });
3191   }
3192 }
3193 
3194 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
3195   LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
3196                     << "********** Function: " << mf.getName() << '\n');
3197 
3198   MF = &mf;
3199   TRI = MF->getSubtarget().getRegisterInfo();
3200   TII = MF->getSubtarget().getInstrInfo();
3201   RCI.runOnMachineFunction(mf);
3202 
3203   EnableLocalReassign = EnableLocalReassignment ||
3204                         MF->getSubtarget().enableRALocalReassignment(
3205                             MF->getTarget().getOptLevel());
3206 
3207   EnableAdvancedRASplitCost =
3208       ConsiderLocalIntervalCost.getNumOccurrences()
3209           ? ConsiderLocalIntervalCost
3210           : MF->getSubtarget().enableAdvancedRASplitCost();
3211 
3212   if (VerifyEnabled)
3213     MF->verify(this, "Before greedy register allocator");
3214 
3215   RegAllocBase::init(getAnalysis<VirtRegMap>(),
3216                      getAnalysis<LiveIntervals>(),
3217                      getAnalysis<LiveRegMatrix>());
3218   Indexes = &getAnalysis<SlotIndexes>();
3219   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
3220   DomTree = &getAnalysis<MachineDominatorTree>();
3221   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
3222   SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
3223   Loops = &getAnalysis<MachineLoopInfo>();
3224   Bundles = &getAnalysis<EdgeBundles>();
3225   SpillPlacer = &getAnalysis<SpillPlacement>();
3226   DebugVars = &getAnalysis<LiveDebugVariables>();
3227   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
3228 
3229   initializeCSRCost();
3230 
3231   calculateSpillWeightsAndHints(*LIS, mf, VRM, *Loops, *MBFI);
3232 
3233   LLVM_DEBUG(LIS->dump());
3234 
3235   SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
3236   SE.reset(new SplitEditor(*SA, *AA, *LIS, *VRM, *DomTree, *MBFI));
3237   ExtraRegInfo.clear();
3238   ExtraRegInfo.resize(MRI->getNumVirtRegs());
3239   NextCascade = 1;
3240   IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI);
3241   GlobalCand.resize(32);  // This will grow as needed.
3242   SetOfBrokenHints.clear();
3243   LastEvicted.clear();
3244 
3245   allocatePhysRegs();
3246   tryHintsRecoloring();
3247   postOptimization();
3248   reportNumberOfSplillsReloads();
3249 
3250   releaseMemory();
3251   return true;
3252 }
3253