1 //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the RAGreedy function pass for register allocation in 10 // optimized builds. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "AllocationOrder.h" 15 #include "InterferenceCache.h" 16 #include "LiveDebugVariables.h" 17 #include "RegAllocBase.h" 18 #include "SpillPlacement.h" 19 #include "SplitKit.h" 20 #include "llvm/ADT/ArrayRef.h" 21 #include "llvm/ADT/BitVector.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/IndexedMap.h" 24 #include "llvm/ADT/MapVector.h" 25 #include "llvm/ADT/SetVector.h" 26 #include "llvm/ADT/SmallPtrSet.h" 27 #include "llvm/ADT/SmallSet.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/ADT/StringRef.h" 31 #include "llvm/Analysis/AliasAnalysis.h" 32 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 33 #include "llvm/CodeGen/CalcSpillWeights.h" 34 #include "llvm/CodeGen/EdgeBundles.h" 35 #include "llvm/CodeGen/LiveInterval.h" 36 #include "llvm/CodeGen/LiveIntervalUnion.h" 37 #include "llvm/CodeGen/LiveIntervals.h" 38 #include "llvm/CodeGen/LiveRangeEdit.h" 39 #include "llvm/CodeGen/LiveRegMatrix.h" 40 #include "llvm/CodeGen/LiveStacks.h" 41 #include "llvm/CodeGen/MachineBasicBlock.h" 42 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 43 #include "llvm/CodeGen/MachineDominators.h" 44 #include "llvm/CodeGen/MachineFrameInfo.h" 45 #include "llvm/CodeGen/MachineFunction.h" 46 #include "llvm/CodeGen/MachineFunctionPass.h" 47 #include "llvm/CodeGen/MachineInstr.h" 48 #include "llvm/CodeGen/MachineLoopInfo.h" 49 #include "llvm/CodeGen/MachineOperand.h" 50 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 51 #include "llvm/CodeGen/MachineRegisterInfo.h" 52 #include "llvm/CodeGen/RegAllocRegistry.h" 53 #include "llvm/CodeGen/RegisterClassInfo.h" 54 #include "llvm/CodeGen/SlotIndexes.h" 55 #include "llvm/CodeGen/Spiller.h" 56 #include "llvm/CodeGen/TargetInstrInfo.h" 57 #include "llvm/CodeGen/TargetRegisterInfo.h" 58 #include "llvm/CodeGen/TargetSubtargetInfo.h" 59 #include "llvm/CodeGen/VirtRegMap.h" 60 #include "llvm/IR/Function.h" 61 #include "llvm/IR/LLVMContext.h" 62 #include "llvm/MC/MCRegisterInfo.h" 63 #include "llvm/Pass.h" 64 #include "llvm/Support/BlockFrequency.h" 65 #include "llvm/Support/BranchProbability.h" 66 #include "llvm/Support/CommandLine.h" 67 #include "llvm/Support/Debug.h" 68 #include "llvm/Support/MathExtras.h" 69 #include "llvm/Support/Timer.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include "llvm/Target/TargetMachine.h" 72 #include "llvm/IR/DebugInfoMetadata.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cstdint> 76 #include <memory> 77 #include <queue> 78 #include <tuple> 79 #include <utility> 80 81 using namespace llvm; 82 83 #define DEBUG_TYPE "regalloc" 84 85 STATISTIC(NumGlobalSplits, "Number of split global live ranges"); 86 STATISTIC(NumLocalSplits, "Number of split local live ranges"); 87 STATISTIC(NumEvicted, "Number of interferences evicted"); 88 89 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode( 90 "split-spill-mode", cl::Hidden, 91 cl::desc("Spill mode for splitting live ranges"), 92 cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"), 93 clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"), 94 clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")), 95 cl::init(SplitEditor::SM_Speed)); 96 97 static cl::opt<unsigned> 98 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden, 99 cl::desc("Last chance recoloring max depth"), 100 cl::init(5)); 101 102 static cl::opt<unsigned> LastChanceRecoloringMaxInterference( 103 "lcr-max-interf", cl::Hidden, 104 cl::desc("Last chance recoloring maximum number of considered" 105 " interference at a time"), 106 cl::init(8)); 107 108 static cl::opt<bool> ExhaustiveSearch( 109 "exhaustive-register-search", cl::NotHidden, 110 cl::desc("Exhaustive Search for registers bypassing the depth " 111 "and interference cutoffs of last chance recoloring"), 112 cl::Hidden); 113 114 static cl::opt<bool> EnableLocalReassignment( 115 "enable-local-reassign", cl::Hidden, 116 cl::desc("Local reassignment can yield better allocation decisions, but " 117 "may be compile time intensive"), 118 cl::init(false)); 119 120 static cl::opt<bool> EnableDeferredSpilling( 121 "enable-deferred-spilling", cl::Hidden, 122 cl::desc("Instead of spilling a variable right away, defer the actual " 123 "code insertion to the end of the allocation. That way the " 124 "allocator might still find a suitable coloring for this " 125 "variable because of other evicted variables."), 126 cl::init(false)); 127 128 // FIXME: Find a good default for this flag and remove the flag. 129 static cl::opt<unsigned> 130 CSRFirstTimeCost("regalloc-csr-first-time-cost", 131 cl::desc("Cost for first time use of callee-saved register."), 132 cl::init(0), cl::Hidden); 133 134 static cl::opt<bool> ConsiderLocalIntervalCost( 135 "consider-local-interval-cost", cl::Hidden, 136 cl::desc("Consider the cost of local intervals created by a split " 137 "candidate when choosing the best split candidate."), 138 cl::init(false)); 139 140 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator", 141 createGreedyRegisterAllocator); 142 143 namespace { 144 145 class RAGreedy : public MachineFunctionPass, 146 public RegAllocBase, 147 private LiveRangeEdit::Delegate { 148 // Convenient shortcuts. 149 using PQueue = std::priority_queue<std::pair<unsigned, unsigned>>; 150 using SmallLISet = SmallPtrSet<LiveInterval *, 4>; 151 using SmallVirtRegSet = SmallSet<Register, 16>; 152 153 // context 154 MachineFunction *MF; 155 156 // Shortcuts to some useful interface. 157 const TargetInstrInfo *TII; 158 const TargetRegisterInfo *TRI; 159 RegisterClassInfo RCI; 160 161 // analyses 162 SlotIndexes *Indexes; 163 MachineBlockFrequencyInfo *MBFI; 164 MachineDominatorTree *DomTree; 165 MachineLoopInfo *Loops; 166 MachineOptimizationRemarkEmitter *ORE; 167 EdgeBundles *Bundles; 168 SpillPlacement *SpillPlacer; 169 LiveDebugVariables *DebugVars; 170 AliasAnalysis *AA; 171 172 // state 173 std::unique_ptr<Spiller> SpillerInstance; 174 PQueue Queue; 175 unsigned NextCascade; 176 std::unique_ptr<VirtRegAuxInfo> VRAI; 177 178 // Live ranges pass through a number of stages as we try to allocate them. 179 // Some of the stages may also create new live ranges: 180 // 181 // - Region splitting. 182 // - Per-block splitting. 183 // - Local splitting. 184 // - Spilling. 185 // 186 // Ranges produced by one of the stages skip the previous stages when they are 187 // dequeued. This improves performance because we can skip interference checks 188 // that are unlikely to give any results. It also guarantees that the live 189 // range splitting algorithm terminates, something that is otherwise hard to 190 // ensure. 191 enum LiveRangeStage { 192 /// Newly created live range that has never been queued. 193 RS_New, 194 195 /// Only attempt assignment and eviction. Then requeue as RS_Split. 196 RS_Assign, 197 198 /// Attempt live range splitting if assignment is impossible. 199 RS_Split, 200 201 /// Attempt more aggressive live range splitting that is guaranteed to make 202 /// progress. This is used for split products that may not be making 203 /// progress. 204 RS_Split2, 205 206 /// Live range will be spilled. No more splitting will be attempted. 207 RS_Spill, 208 209 210 /// Live range is in memory. Because of other evictions, it might get moved 211 /// in a register in the end. 212 RS_Memory, 213 214 /// There is nothing more we can do to this live range. Abort compilation 215 /// if it can't be assigned. 216 RS_Done 217 }; 218 219 // Enum CutOffStage to keep a track whether the register allocation failed 220 // because of the cutoffs encountered in last chance recoloring. 221 // Note: This is used as bitmask. New value should be next power of 2. 222 enum CutOffStage { 223 // No cutoffs encountered 224 CO_None = 0, 225 226 // lcr-max-depth cutoff encountered 227 CO_Depth = 1, 228 229 // lcr-max-interf cutoff encountered 230 CO_Interf = 2 231 }; 232 233 uint8_t CutOffInfo; 234 235 #ifndef NDEBUG 236 static const char *const StageName[]; 237 #endif 238 239 // RegInfo - Keep additional information about each live range. 240 struct RegInfo { 241 LiveRangeStage Stage = RS_New; 242 243 // Cascade - Eviction loop prevention. See canEvictInterference(). 244 unsigned Cascade = 0; 245 246 RegInfo() = default; 247 }; 248 249 IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo; 250 251 LiveRangeStage getStage(const LiveInterval &VirtReg) const { 252 return ExtraRegInfo[VirtReg.reg()].Stage; 253 } 254 255 void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) { 256 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 257 ExtraRegInfo[VirtReg.reg()].Stage = Stage; 258 } 259 260 template<typename Iterator> 261 void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) { 262 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 263 for (;Begin != End; ++Begin) { 264 Register Reg = *Begin; 265 if (ExtraRegInfo[Reg].Stage == RS_New) 266 ExtraRegInfo[Reg].Stage = NewStage; 267 } 268 } 269 270 /// Cost of evicting interference. 271 struct EvictionCost { 272 unsigned BrokenHints = 0; ///< Total number of broken hints. 273 float MaxWeight = 0; ///< Maximum spill weight evicted. 274 275 EvictionCost() = default; 276 277 bool isMax() const { return BrokenHints == ~0u; } 278 279 void setMax() { BrokenHints = ~0u; } 280 281 void setBrokenHints(unsigned NHints) { BrokenHints = NHints; } 282 283 bool operator<(const EvictionCost &O) const { 284 return std::tie(BrokenHints, MaxWeight) < 285 std::tie(O.BrokenHints, O.MaxWeight); 286 } 287 }; 288 289 /// EvictionTrack - Keeps track of past evictions in order to optimize region 290 /// split decision. 291 class EvictionTrack { 292 293 public: 294 using EvictorInfo = 295 std::pair<Register /* evictor */, MCRegister /* physreg */>; 296 using EvicteeInfo = llvm::DenseMap<Register /* evictee */, EvictorInfo>; 297 298 private: 299 /// Each Vreg that has been evicted in the last stage of selectOrSplit will 300 /// be mapped to the evictor Vreg and the PhysReg it was evicted from. 301 EvicteeInfo Evictees; 302 303 public: 304 /// Clear all eviction information. 305 void clear() { Evictees.clear(); } 306 307 /// Clear eviction information for the given evictee Vreg. 308 /// E.g. when Vreg get's a new allocation, the old eviction info is no 309 /// longer relevant. 310 /// \param Evictee The evictee Vreg for whom we want to clear collected 311 /// eviction info. 312 void clearEvicteeInfo(Register Evictee) { Evictees.erase(Evictee); } 313 314 /// Track new eviction. 315 /// The Evictor vreg has evicted the Evictee vreg from Physreg. 316 /// \param PhysReg The physical register Evictee was evicted from. 317 /// \param Evictor The evictor Vreg that evicted Evictee. 318 /// \param Evictee The evictee Vreg. 319 void addEviction(MCRegister PhysReg, Register Evictor, Register Evictee) { 320 Evictees[Evictee].first = Evictor; 321 Evictees[Evictee].second = PhysReg; 322 } 323 324 /// Return the Evictor Vreg which evicted Evictee Vreg from PhysReg. 325 /// \param Evictee The evictee vreg. 326 /// \return The Evictor vreg which evicted Evictee vreg from PhysReg. 0 if 327 /// nobody has evicted Evictee from PhysReg. 328 EvictorInfo getEvictor(Register Evictee) { 329 if (Evictees.count(Evictee)) { 330 return Evictees[Evictee]; 331 } 332 333 return EvictorInfo(0, 0); 334 } 335 }; 336 337 // Keeps track of past evictions in order to optimize region split decision. 338 EvictionTrack LastEvicted; 339 340 // splitting state. 341 std::unique_ptr<SplitAnalysis> SA; 342 std::unique_ptr<SplitEditor> SE; 343 344 /// Cached per-block interference maps 345 InterferenceCache IntfCache; 346 347 /// All basic blocks where the current register has uses. 348 SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints; 349 350 /// Global live range splitting candidate info. 351 struct GlobalSplitCandidate { 352 // Register intended for assignment, or 0. 353 MCRegister PhysReg; 354 355 // SplitKit interval index for this candidate. 356 unsigned IntvIdx; 357 358 // Interference for PhysReg. 359 InterferenceCache::Cursor Intf; 360 361 // Bundles where this candidate should be live. 362 BitVector LiveBundles; 363 SmallVector<unsigned, 8> ActiveBlocks; 364 365 void reset(InterferenceCache &Cache, MCRegister Reg) { 366 PhysReg = Reg; 367 IntvIdx = 0; 368 Intf.setPhysReg(Cache, Reg); 369 LiveBundles.clear(); 370 ActiveBlocks.clear(); 371 } 372 373 // Set B[I] = C for every live bundle where B[I] was NoCand. 374 unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) { 375 unsigned Count = 0; 376 for (unsigned I : LiveBundles.set_bits()) 377 if (B[I] == NoCand) { 378 B[I] = C; 379 Count++; 380 } 381 return Count; 382 } 383 }; 384 385 /// Candidate info for each PhysReg in AllocationOrder. 386 /// This vector never shrinks, but grows to the size of the largest register 387 /// class. 388 SmallVector<GlobalSplitCandidate, 32> GlobalCand; 389 390 enum : unsigned { NoCand = ~0u }; 391 392 /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to 393 /// NoCand which indicates the stack interval. 394 SmallVector<unsigned, 32> BundleCand; 395 396 /// Callee-save register cost, calculated once per machine function. 397 BlockFrequency CSRCost; 398 399 /// Run or not the local reassignment heuristic. This information is 400 /// obtained from the TargetSubtargetInfo. 401 bool EnableLocalReassign; 402 403 /// Enable or not the consideration of the cost of local intervals created 404 /// by a split candidate when choosing the best split candidate. 405 bool EnableAdvancedRASplitCost; 406 407 /// Set of broken hints that may be reconciled later because of eviction. 408 SmallSetVector<LiveInterval *, 8> SetOfBrokenHints; 409 410 /// The register cost values. This list will be recreated for each Machine 411 /// Function 412 ArrayRef<uint8_t> RegCosts; 413 414 public: 415 RAGreedy(const RegClassFilterFunc F = allocateAllRegClasses); 416 417 /// Return the pass name. 418 StringRef getPassName() const override { return "Greedy Register Allocator"; } 419 420 /// RAGreedy analysis usage. 421 void getAnalysisUsage(AnalysisUsage &AU) const override; 422 void releaseMemory() override; 423 Spiller &spiller() override { return *SpillerInstance; } 424 void enqueueImpl(LiveInterval *LI) override; 425 LiveInterval *dequeue() override; 426 MCRegister selectOrSplit(LiveInterval &, 427 SmallVectorImpl<Register> &) override; 428 void aboutToRemoveInterval(LiveInterval &) override; 429 430 /// Perform register allocation. 431 bool runOnMachineFunction(MachineFunction &mf) override; 432 433 MachineFunctionProperties getRequiredProperties() const override { 434 return MachineFunctionProperties().set( 435 MachineFunctionProperties::Property::NoPHIs); 436 } 437 438 MachineFunctionProperties getClearedProperties() const override { 439 return MachineFunctionProperties().set( 440 MachineFunctionProperties::Property::IsSSA); 441 } 442 443 static char ID; 444 445 private: 446 MCRegister selectOrSplitImpl(LiveInterval &, SmallVectorImpl<Register> &, 447 SmallVirtRegSet &, unsigned = 0); 448 449 bool LRE_CanEraseVirtReg(Register) override; 450 void LRE_WillShrinkVirtReg(Register) override; 451 void LRE_DidCloneVirtReg(Register, Register) override; 452 void enqueue(PQueue &CurQueue, LiveInterval *LI); 453 LiveInterval *dequeue(PQueue &CurQueue); 454 455 BlockFrequency calcSpillCost(); 456 bool addSplitConstraints(InterferenceCache::Cursor, BlockFrequency&); 457 bool addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>); 458 bool growRegion(GlobalSplitCandidate &Cand); 459 bool splitCanCauseEvictionChain(Register Evictee, GlobalSplitCandidate &Cand, 460 unsigned BBNumber, 461 const AllocationOrder &Order); 462 bool splitCanCauseLocalSpill(unsigned VirtRegToSplit, 463 GlobalSplitCandidate &Cand, unsigned BBNumber, 464 const AllocationOrder &Order); 465 BlockFrequency calcGlobalSplitCost(GlobalSplitCandidate &, 466 const AllocationOrder &Order, 467 bool *CanCauseEvictionChain); 468 bool calcCompactRegion(GlobalSplitCandidate&); 469 void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>); 470 void calcGapWeights(MCRegister, SmallVectorImpl<float> &); 471 Register canReassign(LiveInterval &VirtReg, Register PrevReg) const; 472 bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool) const; 473 bool canEvictInterference(LiveInterval &, MCRegister, bool, EvictionCost &, 474 const SmallVirtRegSet &) const; 475 bool canEvictInterferenceInRange(const LiveInterval &VirtReg, 476 MCRegister PhysReg, SlotIndex Start, 477 SlotIndex End, EvictionCost &MaxCost) const; 478 MCRegister getCheapestEvicteeWeight(const AllocationOrder &Order, 479 const LiveInterval &VirtReg, 480 SlotIndex Start, SlotIndex End, 481 float *BestEvictWeight) const; 482 void evictInterference(LiveInterval &, MCRegister, 483 SmallVectorImpl<Register> &); 484 bool mayRecolorAllInterferences(MCRegister PhysReg, LiveInterval &VirtReg, 485 SmallLISet &RecoloringCandidates, 486 const SmallVirtRegSet &FixedRegisters); 487 488 MCRegister tryAssign(LiveInterval&, AllocationOrder&, 489 SmallVectorImpl<Register>&, 490 const SmallVirtRegSet&); 491 MCRegister tryEvict(LiveInterval &, AllocationOrder &, 492 SmallVectorImpl<Register> &, uint8_t, 493 const SmallVirtRegSet &); 494 MCRegister tryRegionSplit(LiveInterval &, AllocationOrder &, 495 SmallVectorImpl<Register> &); 496 /// Calculate cost of region splitting. 497 unsigned calculateRegionSplitCost(LiveInterval &VirtReg, 498 AllocationOrder &Order, 499 BlockFrequency &BestCost, 500 unsigned &NumCands, bool IgnoreCSR, 501 bool *CanCauseEvictionChain = nullptr); 502 /// Perform region splitting. 503 unsigned doRegionSplit(LiveInterval &VirtReg, unsigned BestCand, 504 bool HasCompact, 505 SmallVectorImpl<Register> &NewVRegs); 506 /// Check other options before using a callee-saved register for the first 507 /// time. 508 MCRegister tryAssignCSRFirstTime(LiveInterval &VirtReg, 509 AllocationOrder &Order, MCRegister PhysReg, 510 uint8_t &CostPerUseLimit, 511 SmallVectorImpl<Register> &NewVRegs); 512 void initializeCSRCost(); 513 unsigned tryBlockSplit(LiveInterval&, AllocationOrder&, 514 SmallVectorImpl<Register>&); 515 unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&, 516 SmallVectorImpl<Register>&); 517 unsigned tryLocalSplit(LiveInterval&, AllocationOrder&, 518 SmallVectorImpl<Register>&); 519 unsigned trySplit(LiveInterval&, AllocationOrder&, 520 SmallVectorImpl<Register>&, 521 const SmallVirtRegSet&); 522 unsigned tryLastChanceRecoloring(LiveInterval &, AllocationOrder &, 523 SmallVectorImpl<Register> &, 524 SmallVirtRegSet &, unsigned); 525 bool tryRecoloringCandidates(PQueue &, SmallVectorImpl<Register> &, 526 SmallVirtRegSet &, unsigned); 527 void tryHintRecoloring(LiveInterval &); 528 void tryHintsRecoloring(); 529 530 /// Model the information carried by one end of a copy. 531 struct HintInfo { 532 /// The frequency of the copy. 533 BlockFrequency Freq; 534 /// The virtual register or physical register. 535 Register Reg; 536 /// Its currently assigned register. 537 /// In case of a physical register Reg == PhysReg. 538 MCRegister PhysReg; 539 540 HintInfo(BlockFrequency Freq, Register Reg, MCRegister PhysReg) 541 : Freq(Freq), Reg(Reg), PhysReg(PhysReg) {} 542 }; 543 using HintsInfo = SmallVector<HintInfo, 4>; 544 545 BlockFrequency getBrokenHintFreq(const HintsInfo &, MCRegister); 546 void collectHintInfo(Register, HintsInfo &); 547 548 bool isUnusedCalleeSavedReg(MCRegister PhysReg) const; 549 550 /// Greedy RA statistic to remark. 551 struct RAGreedyStats { 552 unsigned Reloads = 0; 553 unsigned FoldedReloads = 0; 554 unsigned ZeroCostFoldedReloads = 0; 555 unsigned Spills = 0; 556 unsigned FoldedSpills = 0; 557 unsigned Copies = 0; 558 float ReloadsCost = 0.0f; 559 float FoldedReloadsCost = 0.0f; 560 float SpillsCost = 0.0f; 561 float FoldedSpillsCost = 0.0f; 562 float CopiesCost = 0.0f; 563 564 bool isEmpty() { 565 return !(Reloads || FoldedReloads || Spills || FoldedSpills || 566 ZeroCostFoldedReloads || Copies); 567 } 568 569 void add(RAGreedyStats other) { 570 Reloads += other.Reloads; 571 FoldedReloads += other.FoldedReloads; 572 ZeroCostFoldedReloads += other.ZeroCostFoldedReloads; 573 Spills += other.Spills; 574 FoldedSpills += other.FoldedSpills; 575 Copies += other.Copies; 576 ReloadsCost += other.ReloadsCost; 577 FoldedReloadsCost += other.FoldedReloadsCost; 578 SpillsCost += other.SpillsCost; 579 FoldedSpillsCost += other.FoldedSpillsCost; 580 CopiesCost += other.CopiesCost; 581 } 582 583 void report(MachineOptimizationRemarkMissed &R); 584 }; 585 586 /// Compute statistic for a basic block. 587 RAGreedyStats computeStats(MachineBasicBlock &MBB); 588 589 /// Compute and report statistic through a remark. 590 RAGreedyStats reportStats(MachineLoop *L); 591 592 /// Report the statistic for each loop. 593 void reportStats(); 594 }; 595 596 } // end anonymous namespace 597 598 char RAGreedy::ID = 0; 599 char &llvm::RAGreedyID = RAGreedy::ID; 600 601 INITIALIZE_PASS_BEGIN(RAGreedy, "greedy", 602 "Greedy Register Allocator", false, false) 603 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables) 604 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 605 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 606 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer) 607 INITIALIZE_PASS_DEPENDENCY(MachineScheduler) 608 INITIALIZE_PASS_DEPENDENCY(LiveStacks) 609 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 610 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 611 INITIALIZE_PASS_DEPENDENCY(VirtRegMap) 612 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix) 613 INITIALIZE_PASS_DEPENDENCY(EdgeBundles) 614 INITIALIZE_PASS_DEPENDENCY(SpillPlacement) 615 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass) 616 INITIALIZE_PASS_END(RAGreedy, "greedy", 617 "Greedy Register Allocator", false, false) 618 619 #ifndef NDEBUG 620 const char *const RAGreedy::StageName[] = { 621 "RS_New", 622 "RS_Assign", 623 "RS_Split", 624 "RS_Split2", 625 "RS_Spill", 626 "RS_Memory", 627 "RS_Done" 628 }; 629 #endif 630 631 // Hysteresis to use when comparing floats. 632 // This helps stabilize decisions based on float comparisons. 633 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875 634 635 FunctionPass* llvm::createGreedyRegisterAllocator() { 636 return new RAGreedy(); 637 } 638 639 namespace llvm { 640 FunctionPass* createGreedyRegisterAllocator( 641 std::function<bool(const TargetRegisterInfo &TRI, 642 const TargetRegisterClass &RC)> Ftor); 643 644 } 645 646 FunctionPass* llvm::createGreedyRegisterAllocator( 647 std::function<bool(const TargetRegisterInfo &TRI, 648 const TargetRegisterClass &RC)> Ftor) { 649 return new RAGreedy(Ftor); 650 } 651 652 RAGreedy::RAGreedy(RegClassFilterFunc F): 653 MachineFunctionPass(ID), 654 RegAllocBase(F) { 655 } 656 657 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const { 658 AU.setPreservesCFG(); 659 AU.addRequired<MachineBlockFrequencyInfo>(); 660 AU.addPreserved<MachineBlockFrequencyInfo>(); 661 AU.addRequired<AAResultsWrapperPass>(); 662 AU.addPreserved<AAResultsWrapperPass>(); 663 AU.addRequired<LiveIntervals>(); 664 AU.addPreserved<LiveIntervals>(); 665 AU.addRequired<SlotIndexes>(); 666 AU.addPreserved<SlotIndexes>(); 667 AU.addRequired<LiveDebugVariables>(); 668 AU.addPreserved<LiveDebugVariables>(); 669 AU.addRequired<LiveStacks>(); 670 AU.addPreserved<LiveStacks>(); 671 AU.addRequired<MachineDominatorTree>(); 672 AU.addPreserved<MachineDominatorTree>(); 673 AU.addRequired<MachineLoopInfo>(); 674 AU.addPreserved<MachineLoopInfo>(); 675 AU.addRequired<VirtRegMap>(); 676 AU.addPreserved<VirtRegMap>(); 677 AU.addRequired<LiveRegMatrix>(); 678 AU.addPreserved<LiveRegMatrix>(); 679 AU.addRequired<EdgeBundles>(); 680 AU.addRequired<SpillPlacement>(); 681 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 682 MachineFunctionPass::getAnalysisUsage(AU); 683 } 684 685 //===----------------------------------------------------------------------===// 686 // LiveRangeEdit delegate methods 687 //===----------------------------------------------------------------------===// 688 689 bool RAGreedy::LRE_CanEraseVirtReg(Register VirtReg) { 690 LiveInterval &LI = LIS->getInterval(VirtReg); 691 if (VRM->hasPhys(VirtReg)) { 692 Matrix->unassign(LI); 693 aboutToRemoveInterval(LI); 694 return true; 695 } 696 // Unassigned virtreg is probably in the priority queue. 697 // RegAllocBase will erase it after dequeueing. 698 // Nonetheless, clear the live-range so that the debug 699 // dump will show the right state for that VirtReg. 700 LI.clear(); 701 return false; 702 } 703 704 void RAGreedy::LRE_WillShrinkVirtReg(Register VirtReg) { 705 if (!VRM->hasPhys(VirtReg)) 706 return; 707 708 // Register is assigned, put it back on the queue for reassignment. 709 LiveInterval &LI = LIS->getInterval(VirtReg); 710 Matrix->unassign(LI); 711 RegAllocBase::enqueue(&LI); 712 } 713 714 void RAGreedy::LRE_DidCloneVirtReg(Register New, Register Old) { 715 // Cloning a register we haven't even heard about yet? Just ignore it. 716 if (!ExtraRegInfo.inBounds(Old)) 717 return; 718 719 // LRE may clone a virtual register because dead code elimination causes it to 720 // be split into connected components. The new components are much smaller 721 // than the original, so they should get a new chance at being assigned. 722 // same stage as the parent. 723 ExtraRegInfo[Old].Stage = RS_Assign; 724 ExtraRegInfo.grow(New); 725 ExtraRegInfo[New] = ExtraRegInfo[Old]; 726 } 727 728 void RAGreedy::releaseMemory() { 729 SpillerInstance.reset(); 730 ExtraRegInfo.clear(); 731 GlobalCand.clear(); 732 } 733 734 void RAGreedy::enqueueImpl(LiveInterval *LI) { enqueue(Queue, LI); } 735 736 void RAGreedy::enqueue(PQueue &CurQueue, LiveInterval *LI) { 737 // Prioritize live ranges by size, assigning larger ranges first. 738 // The queue holds (size, reg) pairs. 739 const unsigned Size = LI->getSize(); 740 const Register Reg = LI->reg(); 741 assert(Reg.isVirtual() && "Can only enqueue virtual registers"); 742 unsigned Prio; 743 744 ExtraRegInfo.grow(Reg); 745 if (ExtraRegInfo[Reg].Stage == RS_New) 746 ExtraRegInfo[Reg].Stage = RS_Assign; 747 748 if (ExtraRegInfo[Reg].Stage == RS_Split) { 749 // Unsplit ranges that couldn't be allocated immediately are deferred until 750 // everything else has been allocated. 751 Prio = Size; 752 } else if (ExtraRegInfo[Reg].Stage == RS_Memory) { 753 // Memory operand should be considered last. 754 // Change the priority such that Memory operand are assigned in 755 // the reverse order that they came in. 756 // TODO: Make this a member variable and probably do something about hints. 757 static unsigned MemOp = 0; 758 Prio = MemOp++; 759 } else { 760 // Giant live ranges fall back to the global assignment heuristic, which 761 // prevents excessive spilling in pathological cases. 762 bool ReverseLocal = TRI->reverseLocalAssignment(); 763 const TargetRegisterClass &RC = *MRI->getRegClass(Reg); 764 bool ForceGlobal = !ReverseLocal && 765 (Size / SlotIndex::InstrDist) > (2 * RC.getNumRegs()); 766 767 if (ExtraRegInfo[Reg].Stage == RS_Assign && !ForceGlobal && !LI->empty() && 768 LIS->intervalIsInOneMBB(*LI)) { 769 // Allocate original local ranges in linear instruction order. Since they 770 // are singly defined, this produces optimal coloring in the absence of 771 // global interference and other constraints. 772 if (!ReverseLocal) 773 Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex()); 774 else { 775 // Allocating bottom up may allow many short LRGs to be assigned first 776 // to one of the cheap registers. This could be much faster for very 777 // large blocks on targets with many physical registers. 778 Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex()); 779 } 780 Prio |= RC.AllocationPriority << 24; 781 } else { 782 // Allocate global and split ranges in long->short order. Long ranges that 783 // don't fit should be spilled (or split) ASAP so they don't create 784 // interference. Mark a bit to prioritize global above local ranges. 785 Prio = (1u << 29) + Size; 786 787 Prio |= RC.AllocationPriority << 24; 788 } 789 // Mark a higher bit to prioritize global and local above RS_Split. 790 Prio |= (1u << 31); 791 792 // Boost ranges that have a physical register hint. 793 if (VRM->hasKnownPreference(Reg)) 794 Prio |= (1u << 30); 795 } 796 // The virtual register number is a tie breaker for same-sized ranges. 797 // Give lower vreg numbers higher priority to assign them first. 798 CurQueue.push(std::make_pair(Prio, ~Reg)); 799 } 800 801 LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); } 802 803 LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) { 804 if (CurQueue.empty()) 805 return nullptr; 806 LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second); 807 CurQueue.pop(); 808 return LI; 809 } 810 811 //===----------------------------------------------------------------------===// 812 // Direct Assignment 813 //===----------------------------------------------------------------------===// 814 815 /// tryAssign - Try to assign VirtReg to an available register. 816 MCRegister RAGreedy::tryAssign(LiveInterval &VirtReg, 817 AllocationOrder &Order, 818 SmallVectorImpl<Register> &NewVRegs, 819 const SmallVirtRegSet &FixedRegisters) { 820 MCRegister PhysReg; 821 for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) { 822 assert(*I); 823 if (!Matrix->checkInterference(VirtReg, *I)) { 824 if (I.isHint()) 825 return *I; 826 else 827 PhysReg = *I; 828 } 829 } 830 if (!PhysReg.isValid()) 831 return PhysReg; 832 833 // PhysReg is available, but there may be a better choice. 834 835 // If we missed a simple hint, try to cheaply evict interference from the 836 // preferred register. 837 if (Register Hint = MRI->getSimpleHint(VirtReg.reg())) 838 if (Order.isHint(Hint)) { 839 MCRegister PhysHint = Hint.asMCReg(); 840 LLVM_DEBUG(dbgs() << "missed hint " << printReg(PhysHint, TRI) << '\n'); 841 EvictionCost MaxCost; 842 MaxCost.setBrokenHints(1); 843 if (canEvictInterference(VirtReg, PhysHint, true, MaxCost, 844 FixedRegisters)) { 845 evictInterference(VirtReg, PhysHint, NewVRegs); 846 return PhysHint; 847 } 848 // Record the missed hint, we may be able to recover 849 // at the end if the surrounding allocation changed. 850 SetOfBrokenHints.insert(&VirtReg); 851 } 852 853 // Try to evict interference from a cheaper alternative. 854 uint8_t Cost = RegCosts[PhysReg]; 855 856 // Most registers have 0 additional cost. 857 if (!Cost) 858 return PhysReg; 859 860 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is available at cost " 861 << Cost << '\n'); 862 MCRegister CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost, FixedRegisters); 863 return CheapReg ? CheapReg : PhysReg; 864 } 865 866 //===----------------------------------------------------------------------===// 867 // Interference eviction 868 //===----------------------------------------------------------------------===// 869 870 Register RAGreedy::canReassign(LiveInterval &VirtReg, Register PrevReg) const { 871 auto Order = 872 AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix); 873 MCRegister PhysReg; 874 for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) { 875 if ((*I).id() == PrevReg.id()) 876 continue; 877 878 MCRegUnitIterator Units(*I, TRI); 879 for (; Units.isValid(); ++Units) { 880 // Instantiate a "subquery", not to be confused with the Queries array. 881 LiveIntervalUnion::Query subQ(VirtReg, Matrix->getLiveUnions()[*Units]); 882 if (subQ.checkInterference()) 883 break; 884 } 885 // If no units have interference, break out with the current PhysReg. 886 if (!Units.isValid()) 887 PhysReg = *I; 888 } 889 if (PhysReg) 890 LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg << " from " 891 << printReg(PrevReg, TRI) << " to " 892 << printReg(PhysReg, TRI) << '\n'); 893 return PhysReg; 894 } 895 896 /// shouldEvict - determine if A should evict the assigned live range B. The 897 /// eviction policy defined by this function together with the allocation order 898 /// defined by enqueue() decides which registers ultimately end up being split 899 /// and spilled. 900 /// 901 /// Cascade numbers are used to prevent infinite loops if this function is a 902 /// cyclic relation. 903 /// 904 /// @param A The live range to be assigned. 905 /// @param IsHint True when A is about to be assigned to its preferred 906 /// register. 907 /// @param B The live range to be evicted. 908 /// @param BreaksHint True when B is already assigned to its preferred register. 909 bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint, 910 LiveInterval &B, bool BreaksHint) const { 911 bool CanSplit = getStage(B) < RS_Spill; 912 913 // Be fairly aggressive about following hints as long as the evictee can be 914 // split. 915 if (CanSplit && IsHint && !BreaksHint) 916 return true; 917 918 if (A.weight() > B.weight()) { 919 LLVM_DEBUG(dbgs() << "should evict: " << B << " w= " << B.weight() << '\n'); 920 return true; 921 } 922 return false; 923 } 924 925 /// canEvictInterference - Return true if all interferences between VirtReg and 926 /// PhysReg can be evicted. 927 /// 928 /// @param VirtReg Live range that is about to be assigned. 929 /// @param PhysReg Desired register for assignment. 930 /// @param IsHint True when PhysReg is VirtReg's preferred register. 931 /// @param MaxCost Only look for cheaper candidates and update with new cost 932 /// when returning true. 933 /// @returns True when interference can be evicted cheaper than MaxCost. 934 bool RAGreedy::canEvictInterference( 935 LiveInterval &VirtReg, MCRegister PhysReg, bool IsHint, 936 EvictionCost &MaxCost, const SmallVirtRegSet &FixedRegisters) const { 937 // It is only possible to evict virtual register interference. 938 if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg) 939 return false; 940 941 bool IsLocal = LIS->intervalIsInOneMBB(VirtReg); 942 943 // Find VirtReg's cascade number. This will be unassigned if VirtReg was never 944 // involved in an eviction before. If a cascade number was assigned, deny 945 // evicting anything with the same or a newer cascade number. This prevents 946 // infinite eviction loops. 947 // 948 // This works out so a register without a cascade number is allowed to evict 949 // anything, and it can be evicted by anything. 950 unsigned Cascade = ExtraRegInfo[VirtReg.reg()].Cascade; 951 if (!Cascade) 952 Cascade = NextCascade; 953 954 EvictionCost Cost; 955 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 956 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 957 // If there is 10 or more interferences, chances are one is heavier. 958 if (Q.collectInterferingVRegs(10) >= 10) 959 return false; 960 961 // Check if any interfering live range is heavier than MaxWeight. 962 for (LiveInterval *Intf : reverse(Q.interferingVRegs())) { 963 assert(Register::isVirtualRegister(Intf->reg()) && 964 "Only expecting virtual register interference from query"); 965 966 // Do not allow eviction of a virtual register if we are in the middle 967 // of last-chance recoloring and this virtual register is one that we 968 // have scavenged a physical register for. 969 if (FixedRegisters.count(Intf->reg())) 970 return false; 971 972 // Never evict spill products. They cannot split or spill. 973 if (getStage(*Intf) == RS_Done) 974 return false; 975 // Once a live range becomes small enough, it is urgent that we find a 976 // register for it. This is indicated by an infinite spill weight. These 977 // urgent live ranges get to evict almost anything. 978 // 979 // Also allow urgent evictions of unspillable ranges from a strictly 980 // larger allocation order. 981 bool Urgent = 982 !VirtReg.isSpillable() && 983 (Intf->isSpillable() || 984 RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg())) < 985 RegClassInfo.getNumAllocatableRegs( 986 MRI->getRegClass(Intf->reg()))); 987 // Only evict older cascades or live ranges without a cascade. 988 unsigned IntfCascade = ExtraRegInfo[Intf->reg()].Cascade; 989 if (Cascade <= IntfCascade) { 990 if (!Urgent) 991 return false; 992 // We permit breaking cascades for urgent evictions. It should be the 993 // last resort, though, so make it really expensive. 994 Cost.BrokenHints += 10; 995 } 996 // Would this break a satisfied hint? 997 bool BreaksHint = VRM->hasPreferredPhys(Intf->reg()); 998 // Update eviction cost. 999 Cost.BrokenHints += BreaksHint; 1000 Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight()); 1001 // Abort if this would be too expensive. 1002 if (!(Cost < MaxCost)) 1003 return false; 1004 if (Urgent) 1005 continue; 1006 // Apply the eviction policy for non-urgent evictions. 1007 if (!shouldEvict(VirtReg, IsHint, *Intf, BreaksHint)) 1008 return false; 1009 // If !MaxCost.isMax(), then we're just looking for a cheap register. 1010 // Evicting another local live range in this case could lead to suboptimal 1011 // coloring. 1012 if (!MaxCost.isMax() && IsLocal && LIS->intervalIsInOneMBB(*Intf) && 1013 (!EnableLocalReassign || !canReassign(*Intf, PhysReg))) { 1014 return false; 1015 } 1016 } 1017 } 1018 MaxCost = Cost; 1019 return true; 1020 } 1021 1022 /// Return true if all interferences between VirtReg and PhysReg between 1023 /// Start and End can be evicted. 1024 /// 1025 /// \param VirtReg Live range that is about to be assigned. 1026 /// \param PhysReg Desired register for assignment. 1027 /// \param Start Start of range to look for interferences. 1028 /// \param End End of range to look for interferences. 1029 /// \param MaxCost Only look for cheaper candidates and update with new cost 1030 /// when returning true. 1031 /// \return True when interference can be evicted cheaper than MaxCost. 1032 bool RAGreedy::canEvictInterferenceInRange(const LiveInterval &VirtReg, 1033 MCRegister PhysReg, SlotIndex Start, 1034 SlotIndex End, 1035 EvictionCost &MaxCost) const { 1036 EvictionCost Cost; 1037 1038 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 1039 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 1040 Q.collectInterferingVRegs(); 1041 1042 // Check if any interfering live range is heavier than MaxWeight. 1043 for (const LiveInterval *Intf : reverse(Q.interferingVRegs())) { 1044 // Check if interference overlast the segment in interest. 1045 if (!Intf->overlaps(Start, End)) 1046 continue; 1047 1048 // Cannot evict non virtual reg interference. 1049 if (!Register::isVirtualRegister(Intf->reg())) 1050 return false; 1051 // Never evict spill products. They cannot split or spill. 1052 if (getStage(*Intf) == RS_Done) 1053 return false; 1054 1055 // Would this break a satisfied hint? 1056 bool BreaksHint = VRM->hasPreferredPhys(Intf->reg()); 1057 // Update eviction cost. 1058 Cost.BrokenHints += BreaksHint; 1059 Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight()); 1060 // Abort if this would be too expensive. 1061 if (!(Cost < MaxCost)) 1062 return false; 1063 } 1064 } 1065 1066 if (Cost.MaxWeight == 0) 1067 return false; 1068 1069 MaxCost = Cost; 1070 return true; 1071 } 1072 1073 /// Return the physical register that will be best 1074 /// candidate for eviction by a local split interval that will be created 1075 /// between Start and End. 1076 /// 1077 /// \param Order The allocation order 1078 /// \param VirtReg Live range that is about to be assigned. 1079 /// \param Start Start of range to look for interferences 1080 /// \param End End of range to look for interferences 1081 /// \param BestEvictweight The eviction cost of that eviction 1082 /// \return The PhysReg which is the best candidate for eviction and the 1083 /// eviction cost in BestEvictweight 1084 MCRegister RAGreedy::getCheapestEvicteeWeight(const AllocationOrder &Order, 1085 const LiveInterval &VirtReg, 1086 SlotIndex Start, SlotIndex End, 1087 float *BestEvictweight) const { 1088 EvictionCost BestEvictCost; 1089 BestEvictCost.setMax(); 1090 BestEvictCost.MaxWeight = VirtReg.weight(); 1091 MCRegister BestEvicteePhys; 1092 1093 // Go over all physical registers and find the best candidate for eviction 1094 for (MCRegister PhysReg : Order.getOrder()) { 1095 1096 if (!canEvictInterferenceInRange(VirtReg, PhysReg, Start, End, 1097 BestEvictCost)) 1098 continue; 1099 1100 // Best so far. 1101 BestEvicteePhys = PhysReg; 1102 } 1103 *BestEvictweight = BestEvictCost.MaxWeight; 1104 return BestEvicteePhys; 1105 } 1106 1107 /// evictInterference - Evict any interferring registers that prevent VirtReg 1108 /// from being assigned to Physreg. This assumes that canEvictInterference 1109 /// returned true. 1110 void RAGreedy::evictInterference(LiveInterval &VirtReg, MCRegister PhysReg, 1111 SmallVectorImpl<Register> &NewVRegs) { 1112 // Make sure that VirtReg has a cascade number, and assign that cascade 1113 // number to every evicted register. These live ranges than then only be 1114 // evicted by a newer cascade, preventing infinite loops. 1115 unsigned Cascade = ExtraRegInfo[VirtReg.reg()].Cascade; 1116 if (!Cascade) 1117 Cascade = ExtraRegInfo[VirtReg.reg()].Cascade = NextCascade++; 1118 1119 LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg, TRI) 1120 << " interference: Cascade " << Cascade << '\n'); 1121 1122 // Collect all interfering virtregs first. 1123 SmallVector<LiveInterval*, 8> Intfs; 1124 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 1125 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 1126 // We usually have the interfering VRegs cached so collectInterferingVRegs() 1127 // should be fast, we may need to recalculate if when different physregs 1128 // overlap the same register unit so we had different SubRanges queried 1129 // against it. 1130 Q.collectInterferingVRegs(); 1131 ArrayRef<LiveInterval*> IVR = Q.interferingVRegs(); 1132 Intfs.append(IVR.begin(), IVR.end()); 1133 } 1134 1135 // Evict them second. This will invalidate the queries. 1136 for (LiveInterval *Intf : Intfs) { 1137 // The same VirtReg may be present in multiple RegUnits. Skip duplicates. 1138 if (!VRM->hasPhys(Intf->reg())) 1139 continue; 1140 1141 LastEvicted.addEviction(PhysReg, VirtReg.reg(), Intf->reg()); 1142 1143 Matrix->unassign(*Intf); 1144 assert((ExtraRegInfo[Intf->reg()].Cascade < Cascade || 1145 VirtReg.isSpillable() < Intf->isSpillable()) && 1146 "Cannot decrease cascade number, illegal eviction"); 1147 ExtraRegInfo[Intf->reg()].Cascade = Cascade; 1148 ++NumEvicted; 1149 NewVRegs.push_back(Intf->reg()); 1150 } 1151 } 1152 1153 /// Returns true if the given \p PhysReg is a callee saved register and has not 1154 /// been used for allocation yet. 1155 bool RAGreedy::isUnusedCalleeSavedReg(MCRegister PhysReg) const { 1156 MCRegister CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg); 1157 if (!CSR) 1158 return false; 1159 1160 return !Matrix->isPhysRegUsed(PhysReg); 1161 } 1162 1163 /// tryEvict - Try to evict all interferences for a physreg. 1164 /// @param VirtReg Currently unassigned virtual register. 1165 /// @param Order Physregs to try. 1166 /// @return Physreg to assign VirtReg, or 0. 1167 MCRegister RAGreedy::tryEvict(LiveInterval &VirtReg, AllocationOrder &Order, 1168 SmallVectorImpl<Register> &NewVRegs, 1169 uint8_t CostPerUseLimit, 1170 const SmallVirtRegSet &FixedRegisters) { 1171 NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription, 1172 TimePassesIsEnabled); 1173 1174 // Keep track of the cheapest interference seen so far. 1175 EvictionCost BestCost; 1176 BestCost.setMax(); 1177 MCRegister BestPhys; 1178 unsigned OrderLimit = Order.getOrder().size(); 1179 1180 // When we are just looking for a reduced cost per use, don't break any 1181 // hints, and only evict smaller spill weights. 1182 if (CostPerUseLimit < uint8_t(~0u)) { 1183 BestCost.BrokenHints = 0; 1184 BestCost.MaxWeight = VirtReg.weight(); 1185 1186 // Check of any registers in RC are below CostPerUseLimit. 1187 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg()); 1188 uint8_t MinCost = RegClassInfo.getMinCost(RC); 1189 if (MinCost >= CostPerUseLimit) { 1190 LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = " 1191 << MinCost << ", no cheaper registers to be found.\n"); 1192 return 0; 1193 } 1194 1195 // It is normal for register classes to have a long tail of registers with 1196 // the same cost. We don't need to look at them if they're too expensive. 1197 if (RegCosts[Order.getOrder().back()] >= CostPerUseLimit) { 1198 OrderLimit = RegClassInfo.getLastCostChange(RC); 1199 LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit 1200 << " regs.\n"); 1201 } 1202 } 1203 1204 for (auto I = Order.begin(), E = Order.getOrderLimitEnd(OrderLimit); I != E; 1205 ++I) { 1206 MCRegister PhysReg = *I; 1207 assert(PhysReg); 1208 if (RegCosts[PhysReg] >= CostPerUseLimit) 1209 continue; 1210 // The first use of a callee-saved register in a function has cost 1. 1211 // Don't start using a CSR when the CostPerUseLimit is low. 1212 if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) { 1213 LLVM_DEBUG( 1214 dbgs() << printReg(PhysReg, TRI) << " would clobber CSR " 1215 << printReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI) 1216 << '\n'); 1217 continue; 1218 } 1219 1220 if (!canEvictInterference(VirtReg, PhysReg, false, BestCost, 1221 FixedRegisters)) 1222 continue; 1223 1224 // Best so far. 1225 BestPhys = PhysReg; 1226 1227 // Stop if the hint can be used. 1228 if (I.isHint()) 1229 break; 1230 } 1231 1232 if (BestPhys.isValid()) 1233 evictInterference(VirtReg, BestPhys, NewVRegs); 1234 return BestPhys; 1235 } 1236 1237 //===----------------------------------------------------------------------===// 1238 // Region Splitting 1239 //===----------------------------------------------------------------------===// 1240 1241 /// addSplitConstraints - Fill out the SplitConstraints vector based on the 1242 /// interference pattern in Physreg and its aliases. Add the constraints to 1243 /// SpillPlacement and return the static cost of this split in Cost, assuming 1244 /// that all preferences in SplitConstraints are met. 1245 /// Return false if there are no bundles with positive bias. 1246 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf, 1247 BlockFrequency &Cost) { 1248 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1249 1250 // Reset interference dependent info. 1251 SplitConstraints.resize(UseBlocks.size()); 1252 BlockFrequency StaticCost = 0; 1253 for (unsigned I = 0; I != UseBlocks.size(); ++I) { 1254 const SplitAnalysis::BlockInfo &BI = UseBlocks[I]; 1255 SpillPlacement::BlockConstraint &BC = SplitConstraints[I]; 1256 1257 BC.Number = BI.MBB->getNumber(); 1258 Intf.moveToBlock(BC.Number); 1259 BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare; 1260 BC.Exit = (BI.LiveOut && 1261 !LIS->getInstructionFromIndex(BI.LastInstr)->isImplicitDef()) 1262 ? SpillPlacement::PrefReg 1263 : SpillPlacement::DontCare; 1264 BC.ChangesValue = BI.FirstDef.isValid(); 1265 1266 if (!Intf.hasInterference()) 1267 continue; 1268 1269 // Number of spill code instructions to insert. 1270 unsigned Ins = 0; 1271 1272 // Interference for the live-in value. 1273 if (BI.LiveIn) { 1274 if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) { 1275 BC.Entry = SpillPlacement::MustSpill; 1276 ++Ins; 1277 } else if (Intf.first() < BI.FirstInstr) { 1278 BC.Entry = SpillPlacement::PrefSpill; 1279 ++Ins; 1280 } else if (Intf.first() < BI.LastInstr) { 1281 ++Ins; 1282 } 1283 1284 // Abort if the spill cannot be inserted at the MBB' start 1285 if (((BC.Entry == SpillPlacement::MustSpill) || 1286 (BC.Entry == SpillPlacement::PrefSpill)) && 1287 SlotIndex::isEarlierInstr(BI.FirstInstr, 1288 SA->getFirstSplitPoint(BC.Number))) 1289 return false; 1290 } 1291 1292 // Interference for the live-out value. 1293 if (BI.LiveOut) { 1294 if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) { 1295 BC.Exit = SpillPlacement::MustSpill; 1296 ++Ins; 1297 } else if (Intf.last() > BI.LastInstr) { 1298 BC.Exit = SpillPlacement::PrefSpill; 1299 ++Ins; 1300 } else if (Intf.last() > BI.FirstInstr) { 1301 ++Ins; 1302 } 1303 } 1304 1305 // Accumulate the total frequency of inserted spill code. 1306 while (Ins--) 1307 StaticCost += SpillPlacer->getBlockFrequency(BC.Number); 1308 } 1309 Cost = StaticCost; 1310 1311 // Add constraints for use-blocks. Note that these are the only constraints 1312 // that may add a positive bias, it is downhill from here. 1313 SpillPlacer->addConstraints(SplitConstraints); 1314 return SpillPlacer->scanActiveBundles(); 1315 } 1316 1317 /// addThroughConstraints - Add constraints and links to SpillPlacer from the 1318 /// live-through blocks in Blocks. 1319 bool RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf, 1320 ArrayRef<unsigned> Blocks) { 1321 const unsigned GroupSize = 8; 1322 SpillPlacement::BlockConstraint BCS[GroupSize]; 1323 unsigned TBS[GroupSize]; 1324 unsigned B = 0, T = 0; 1325 1326 for (unsigned Number : Blocks) { 1327 Intf.moveToBlock(Number); 1328 1329 if (!Intf.hasInterference()) { 1330 assert(T < GroupSize && "Array overflow"); 1331 TBS[T] = Number; 1332 if (++T == GroupSize) { 1333 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 1334 T = 0; 1335 } 1336 continue; 1337 } 1338 1339 assert(B < GroupSize && "Array overflow"); 1340 BCS[B].Number = Number; 1341 1342 // Abort if the spill cannot be inserted at the MBB' start 1343 MachineBasicBlock *MBB = MF->getBlockNumbered(Number); 1344 auto FirstNonDebugInstr = MBB->getFirstNonDebugInstr(); 1345 if (FirstNonDebugInstr != MBB->end() && 1346 SlotIndex::isEarlierInstr(LIS->getInstructionIndex(*FirstNonDebugInstr), 1347 SA->getFirstSplitPoint(Number))) 1348 return false; 1349 // Interference for the live-in value. 1350 if (Intf.first() <= Indexes->getMBBStartIdx(Number)) 1351 BCS[B].Entry = SpillPlacement::MustSpill; 1352 else 1353 BCS[B].Entry = SpillPlacement::PrefSpill; 1354 1355 // Interference for the live-out value. 1356 if (Intf.last() >= SA->getLastSplitPoint(Number)) 1357 BCS[B].Exit = SpillPlacement::MustSpill; 1358 else 1359 BCS[B].Exit = SpillPlacement::PrefSpill; 1360 1361 if (++B == GroupSize) { 1362 SpillPlacer->addConstraints(makeArrayRef(BCS, B)); 1363 B = 0; 1364 } 1365 } 1366 1367 SpillPlacer->addConstraints(makeArrayRef(BCS, B)); 1368 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 1369 return true; 1370 } 1371 1372 bool RAGreedy::growRegion(GlobalSplitCandidate &Cand) { 1373 // Keep track of through blocks that have not been added to SpillPlacer. 1374 BitVector Todo = SA->getThroughBlocks(); 1375 SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks; 1376 unsigned AddedTo = 0; 1377 #ifndef NDEBUG 1378 unsigned Visited = 0; 1379 #endif 1380 1381 while (true) { 1382 ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive(); 1383 // Find new through blocks in the periphery of PrefRegBundles. 1384 for (unsigned Bundle : NewBundles) { 1385 // Look at all blocks connected to Bundle in the full graph. 1386 ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle); 1387 for (unsigned Block : Blocks) { 1388 if (!Todo.test(Block)) 1389 continue; 1390 Todo.reset(Block); 1391 // This is a new through block. Add it to SpillPlacer later. 1392 ActiveBlocks.push_back(Block); 1393 #ifndef NDEBUG 1394 ++Visited; 1395 #endif 1396 } 1397 } 1398 // Any new blocks to add? 1399 if (ActiveBlocks.size() == AddedTo) 1400 break; 1401 1402 // Compute through constraints from the interference, or assume that all 1403 // through blocks prefer spilling when forming compact regions. 1404 auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo); 1405 if (Cand.PhysReg) { 1406 if (!addThroughConstraints(Cand.Intf, NewBlocks)) 1407 return false; 1408 } else 1409 // Provide a strong negative bias on through blocks to prevent unwanted 1410 // liveness on loop backedges. 1411 SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true); 1412 AddedTo = ActiveBlocks.size(); 1413 1414 // Perhaps iterating can enable more bundles? 1415 SpillPlacer->iterate(); 1416 } 1417 LLVM_DEBUG(dbgs() << ", v=" << Visited); 1418 return true; 1419 } 1420 1421 /// calcCompactRegion - Compute the set of edge bundles that should be live 1422 /// when splitting the current live range into compact regions. Compact 1423 /// regions can be computed without looking at interference. They are the 1424 /// regions formed by removing all the live-through blocks from the live range. 1425 /// 1426 /// Returns false if the current live range is already compact, or if the 1427 /// compact regions would form single block regions anyway. 1428 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) { 1429 // Without any through blocks, the live range is already compact. 1430 if (!SA->getNumThroughBlocks()) 1431 return false; 1432 1433 // Compact regions don't correspond to any physreg. 1434 Cand.reset(IntfCache, MCRegister::NoRegister); 1435 1436 LLVM_DEBUG(dbgs() << "Compact region bundles"); 1437 1438 // Use the spill placer to determine the live bundles. GrowRegion pretends 1439 // that all the through blocks have interference when PhysReg is unset. 1440 SpillPlacer->prepare(Cand.LiveBundles); 1441 1442 // The static split cost will be zero since Cand.Intf reports no interference. 1443 BlockFrequency Cost; 1444 if (!addSplitConstraints(Cand.Intf, Cost)) { 1445 LLVM_DEBUG(dbgs() << ", none.\n"); 1446 return false; 1447 } 1448 1449 if (!growRegion(Cand)) { 1450 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n"); 1451 return false; 1452 } 1453 1454 SpillPlacer->finish(); 1455 1456 if (!Cand.LiveBundles.any()) { 1457 LLVM_DEBUG(dbgs() << ", none.\n"); 1458 return false; 1459 } 1460 1461 LLVM_DEBUG({ 1462 for (int I : Cand.LiveBundles.set_bits()) 1463 dbgs() << " EB#" << I; 1464 dbgs() << ".\n"; 1465 }); 1466 return true; 1467 } 1468 1469 /// calcSpillCost - Compute how expensive it would be to split the live range in 1470 /// SA around all use blocks instead of forming bundle regions. 1471 BlockFrequency RAGreedy::calcSpillCost() { 1472 BlockFrequency Cost = 0; 1473 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1474 for (const SplitAnalysis::BlockInfo &BI : UseBlocks) { 1475 unsigned Number = BI.MBB->getNumber(); 1476 // We normally only need one spill instruction - a load or a store. 1477 Cost += SpillPlacer->getBlockFrequency(Number); 1478 1479 // Unless the value is redefined in the block. 1480 if (BI.LiveIn && BI.LiveOut && BI.FirstDef) 1481 Cost += SpillPlacer->getBlockFrequency(Number); 1482 } 1483 return Cost; 1484 } 1485 1486 /// Check if splitting Evictee will create a local split interval in 1487 /// basic block number BBNumber that may cause a bad eviction chain. This is 1488 /// intended to prevent bad eviction sequences like: 1489 /// movl %ebp, 8(%esp) # 4-byte Spill 1490 /// movl %ecx, %ebp 1491 /// movl %ebx, %ecx 1492 /// movl %edi, %ebx 1493 /// movl %edx, %edi 1494 /// cltd 1495 /// idivl %esi 1496 /// movl %edi, %edx 1497 /// movl %ebx, %edi 1498 /// movl %ecx, %ebx 1499 /// movl %ebp, %ecx 1500 /// movl 16(%esp), %ebp # 4 - byte Reload 1501 /// 1502 /// Such sequences are created in 2 scenarios: 1503 /// 1504 /// Scenario #1: 1505 /// %0 is evicted from physreg0 by %1. 1506 /// Evictee %0 is intended for region splitting with split candidate 1507 /// physreg0 (the reg %0 was evicted from). 1508 /// Region splitting creates a local interval because of interference with the 1509 /// evictor %1 (normally region splitting creates 2 interval, the "by reg" 1510 /// and "by stack" intervals and local interval created when interference 1511 /// occurs). 1512 /// One of the split intervals ends up evicting %2 from physreg1. 1513 /// Evictee %2 is intended for region splitting with split candidate 1514 /// physreg1. 1515 /// One of the split intervals ends up evicting %3 from physreg2, etc. 1516 /// 1517 /// Scenario #2 1518 /// %0 is evicted from physreg0 by %1. 1519 /// %2 is evicted from physreg2 by %3 etc. 1520 /// Evictee %0 is intended for region splitting with split candidate 1521 /// physreg1. 1522 /// Region splitting creates a local interval because of interference with the 1523 /// evictor %1. 1524 /// One of the split intervals ends up evicting back original evictor %1 1525 /// from physreg0 (the reg %0 was evicted from). 1526 /// Another evictee %2 is intended for region splitting with split candidate 1527 /// physreg1. 1528 /// One of the split intervals ends up evicting %3 from physreg2, etc. 1529 /// 1530 /// \param Evictee The register considered to be split. 1531 /// \param Cand The split candidate that determines the physical register 1532 /// we are splitting for and the interferences. 1533 /// \param BBNumber The number of a BB for which the region split process will 1534 /// create a local split interval. 1535 /// \param Order The physical registers that may get evicted by a split 1536 /// artifact of Evictee. 1537 /// \return True if splitting Evictee may cause a bad eviction chain, false 1538 /// otherwise. 1539 bool RAGreedy::splitCanCauseEvictionChain(Register Evictee, 1540 GlobalSplitCandidate &Cand, 1541 unsigned BBNumber, 1542 const AllocationOrder &Order) { 1543 EvictionTrack::EvictorInfo VregEvictorInfo = LastEvicted.getEvictor(Evictee); 1544 unsigned Evictor = VregEvictorInfo.first; 1545 MCRegister PhysReg = VregEvictorInfo.second; 1546 1547 // No actual evictor. 1548 if (!Evictor || !PhysReg) 1549 return false; 1550 1551 float MaxWeight = 0; 1552 MCRegister FutureEvictedPhysReg = 1553 getCheapestEvicteeWeight(Order, LIS->getInterval(Evictee), 1554 Cand.Intf.first(), Cand.Intf.last(), &MaxWeight); 1555 1556 // The bad eviction chain occurs when either the split candidate is the 1557 // evicting reg or one of the split artifact will evict the evicting reg. 1558 if ((PhysReg != Cand.PhysReg) && (PhysReg != FutureEvictedPhysReg)) 1559 return false; 1560 1561 Cand.Intf.moveToBlock(BBNumber); 1562 1563 // Check to see if the Evictor contains interference (with Evictee) in the 1564 // given BB. If so, this interference caused the eviction of Evictee from 1565 // PhysReg. This suggest that we will create a local interval during the 1566 // region split to avoid this interference This local interval may cause a bad 1567 // eviction chain. 1568 if (!LIS->hasInterval(Evictor)) 1569 return false; 1570 LiveInterval &EvictorLI = LIS->getInterval(Evictor); 1571 if (EvictorLI.FindSegmentContaining(Cand.Intf.first()) == EvictorLI.end()) 1572 return false; 1573 1574 // Now, check to see if the local interval we will create is going to be 1575 // expensive enough to evict somebody If so, this may cause a bad eviction 1576 // chain. 1577 float splitArtifactWeight = 1578 VRAI->futureWeight(LIS->getInterval(Evictee), 1579 Cand.Intf.first().getPrevIndex(), Cand.Intf.last()); 1580 if (splitArtifactWeight >= 0 && splitArtifactWeight < MaxWeight) 1581 return false; 1582 1583 return true; 1584 } 1585 1586 /// Check if splitting VirtRegToSplit will create a local split interval 1587 /// in basic block number BBNumber that may cause a spill. 1588 /// 1589 /// \param VirtRegToSplit The register considered to be split. 1590 /// \param Cand The split candidate that determines the physical 1591 /// register we are splitting for and the interferences. 1592 /// \param BBNumber The number of a BB for which the region split process 1593 /// will create a local split interval. 1594 /// \param Order The physical registers that may get evicted by a 1595 /// split artifact of VirtRegToSplit. 1596 /// \return True if splitting VirtRegToSplit may cause a spill, false 1597 /// otherwise. 1598 bool RAGreedy::splitCanCauseLocalSpill(unsigned VirtRegToSplit, 1599 GlobalSplitCandidate &Cand, 1600 unsigned BBNumber, 1601 const AllocationOrder &Order) { 1602 Cand.Intf.moveToBlock(BBNumber); 1603 1604 // Check if the local interval will find a non interfereing assignment. 1605 for (auto PhysReg : Order.getOrder()) { 1606 if (!Matrix->checkInterference(Cand.Intf.first().getPrevIndex(), 1607 Cand.Intf.last(), PhysReg)) 1608 return false; 1609 } 1610 1611 // The local interval is not able to find non interferencing assignment 1612 // and not able to evict a less worthy interval, therfore, it can cause a 1613 // spill. 1614 return true; 1615 } 1616 1617 /// calcGlobalSplitCost - Return the global split cost of following the split 1618 /// pattern in LiveBundles. This cost should be added to the local cost of the 1619 /// interference pattern in SplitConstraints. 1620 /// 1621 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand, 1622 const AllocationOrder &Order, 1623 bool *CanCauseEvictionChain) { 1624 BlockFrequency GlobalCost = 0; 1625 const BitVector &LiveBundles = Cand.LiveBundles; 1626 Register VirtRegToSplit = SA->getParent().reg(); 1627 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1628 for (unsigned I = 0; I != UseBlocks.size(); ++I) { 1629 const SplitAnalysis::BlockInfo &BI = UseBlocks[I]; 1630 SpillPlacement::BlockConstraint &BC = SplitConstraints[I]; 1631 bool RegIn = LiveBundles[Bundles->getBundle(BC.Number, false)]; 1632 bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)]; 1633 unsigned Ins = 0; 1634 1635 Cand.Intf.moveToBlock(BC.Number); 1636 // Check wheather a local interval is going to be created during the region 1637 // split. Calculate adavanced spilt cost (cost of local intervals) if option 1638 // is enabled. 1639 if (EnableAdvancedRASplitCost && Cand.Intf.hasInterference() && BI.LiveIn && 1640 BI.LiveOut && RegIn && RegOut) { 1641 1642 if (CanCauseEvictionChain && 1643 splitCanCauseEvictionChain(VirtRegToSplit, Cand, BC.Number, Order)) { 1644 // This interference causes our eviction from this assignment, we might 1645 // evict somebody else and eventually someone will spill, add that cost. 1646 // See splitCanCauseEvictionChain for detailed description of scenarios. 1647 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1648 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1649 1650 *CanCauseEvictionChain = true; 1651 1652 } else if (splitCanCauseLocalSpill(VirtRegToSplit, Cand, BC.Number, 1653 Order)) { 1654 // This interference causes local interval to spill, add that cost. 1655 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1656 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1657 } 1658 } 1659 1660 if (BI.LiveIn) 1661 Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg); 1662 if (BI.LiveOut) 1663 Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg); 1664 while (Ins--) 1665 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1666 } 1667 1668 for (unsigned Number : Cand.ActiveBlocks) { 1669 bool RegIn = LiveBundles[Bundles->getBundle(Number, false)]; 1670 bool RegOut = LiveBundles[Bundles->getBundle(Number, true)]; 1671 if (!RegIn && !RegOut) 1672 continue; 1673 if (RegIn && RegOut) { 1674 // We need double spill code if this block has interference. 1675 Cand.Intf.moveToBlock(Number); 1676 if (Cand.Intf.hasInterference()) { 1677 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1678 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1679 1680 // Check wheather a local interval is going to be created during the 1681 // region split. 1682 if (EnableAdvancedRASplitCost && CanCauseEvictionChain && 1683 splitCanCauseEvictionChain(VirtRegToSplit, Cand, Number, Order)) { 1684 // This interference cause our eviction from this assignment, we might 1685 // evict somebody else, add that cost. 1686 // See splitCanCauseEvictionChain for detailed description of 1687 // scenarios. 1688 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1689 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1690 1691 *CanCauseEvictionChain = true; 1692 } 1693 } 1694 continue; 1695 } 1696 // live-in / stack-out or stack-in live-out. 1697 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1698 } 1699 return GlobalCost; 1700 } 1701 1702 /// splitAroundRegion - Split the current live range around the regions 1703 /// determined by BundleCand and GlobalCand. 1704 /// 1705 /// Before calling this function, GlobalCand and BundleCand must be initialized 1706 /// so each bundle is assigned to a valid candidate, or NoCand for the 1707 /// stack-bound bundles. The shared SA/SE SplitAnalysis and SplitEditor 1708 /// objects must be initialized for the current live range, and intervals 1709 /// created for the used candidates. 1710 /// 1711 /// @param LREdit The LiveRangeEdit object handling the current split. 1712 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value 1713 /// must appear in this list. 1714 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit, 1715 ArrayRef<unsigned> UsedCands) { 1716 // These are the intervals created for new global ranges. We may create more 1717 // intervals for local ranges. 1718 const unsigned NumGlobalIntvs = LREdit.size(); 1719 LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs 1720 << " globals.\n"); 1721 assert(NumGlobalIntvs && "No global intervals configured"); 1722 1723 // Isolate even single instructions when dealing with a proper sub-class. 1724 // That guarantees register class inflation for the stack interval because it 1725 // is all copies. 1726 Register Reg = SA->getParent().reg(); 1727 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 1728 1729 // First handle all the blocks with uses. 1730 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1731 for (const SplitAnalysis::BlockInfo &BI : UseBlocks) { 1732 unsigned Number = BI.MBB->getNumber(); 1733 unsigned IntvIn = 0, IntvOut = 0; 1734 SlotIndex IntfIn, IntfOut; 1735 if (BI.LiveIn) { 1736 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)]; 1737 if (CandIn != NoCand) { 1738 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 1739 IntvIn = Cand.IntvIdx; 1740 Cand.Intf.moveToBlock(Number); 1741 IntfIn = Cand.Intf.first(); 1742 } 1743 } 1744 if (BI.LiveOut) { 1745 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)]; 1746 if (CandOut != NoCand) { 1747 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 1748 IntvOut = Cand.IntvIdx; 1749 Cand.Intf.moveToBlock(Number); 1750 IntfOut = Cand.Intf.last(); 1751 } 1752 } 1753 1754 // Create separate intervals for isolated blocks with multiple uses. 1755 if (!IntvIn && !IntvOut) { 1756 LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " isolated.\n"); 1757 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 1758 SE->splitSingleBlock(BI); 1759 continue; 1760 } 1761 1762 if (IntvIn && IntvOut) 1763 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1764 else if (IntvIn) 1765 SE->splitRegInBlock(BI, IntvIn, IntfIn); 1766 else 1767 SE->splitRegOutBlock(BI, IntvOut, IntfOut); 1768 } 1769 1770 // Handle live-through blocks. The relevant live-through blocks are stored in 1771 // the ActiveBlocks list with each candidate. We need to filter out 1772 // duplicates. 1773 BitVector Todo = SA->getThroughBlocks(); 1774 for (unsigned c = 0; c != UsedCands.size(); ++c) { 1775 ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks; 1776 for (unsigned Number : Blocks) { 1777 if (!Todo.test(Number)) 1778 continue; 1779 Todo.reset(Number); 1780 1781 unsigned IntvIn = 0, IntvOut = 0; 1782 SlotIndex IntfIn, IntfOut; 1783 1784 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)]; 1785 if (CandIn != NoCand) { 1786 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 1787 IntvIn = Cand.IntvIdx; 1788 Cand.Intf.moveToBlock(Number); 1789 IntfIn = Cand.Intf.first(); 1790 } 1791 1792 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)]; 1793 if (CandOut != NoCand) { 1794 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 1795 IntvOut = Cand.IntvIdx; 1796 Cand.Intf.moveToBlock(Number); 1797 IntfOut = Cand.Intf.last(); 1798 } 1799 if (!IntvIn && !IntvOut) 1800 continue; 1801 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1802 } 1803 } 1804 1805 ++NumGlobalSplits; 1806 1807 SmallVector<unsigned, 8> IntvMap; 1808 SE->finish(&IntvMap); 1809 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 1810 1811 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 1812 unsigned OrigBlocks = SA->getNumLiveBlocks(); 1813 1814 // Sort out the new intervals created by splitting. We get four kinds: 1815 // - Remainder intervals should not be split again. 1816 // - Candidate intervals can be assigned to Cand.PhysReg. 1817 // - Block-local splits are candidates for local splitting. 1818 // - DCE leftovers should go back on the queue. 1819 for (unsigned I = 0, E = LREdit.size(); I != E; ++I) { 1820 LiveInterval &Reg = LIS->getInterval(LREdit.get(I)); 1821 1822 // Ignore old intervals from DCE. 1823 if (getStage(Reg) != RS_New) 1824 continue; 1825 1826 // Remainder interval. Don't try splitting again, spill if it doesn't 1827 // allocate. 1828 if (IntvMap[I] == 0) { 1829 setStage(Reg, RS_Spill); 1830 continue; 1831 } 1832 1833 // Global intervals. Allow repeated splitting as long as the number of live 1834 // blocks is strictly decreasing. 1835 if (IntvMap[I] < NumGlobalIntvs) { 1836 if (SA->countLiveBlocks(&Reg) >= OrigBlocks) { 1837 LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks 1838 << " blocks as original.\n"); 1839 // Don't allow repeated splitting as a safe guard against looping. 1840 setStage(Reg, RS_Split2); 1841 } 1842 continue; 1843 } 1844 1845 // Other intervals are treated as new. This includes local intervals created 1846 // for blocks with multiple uses, and anything created by DCE. 1847 } 1848 1849 if (VerifyEnabled) 1850 MF->verify(this, "After splitting live range around region"); 1851 } 1852 1853 MCRegister RAGreedy::tryRegionSplit(LiveInterval &VirtReg, 1854 AllocationOrder &Order, 1855 SmallVectorImpl<Register> &NewVRegs) { 1856 if (!TRI->shouldRegionSplitForVirtReg(*MF, VirtReg)) 1857 return MCRegister::NoRegister; 1858 unsigned NumCands = 0; 1859 BlockFrequency SpillCost = calcSpillCost(); 1860 BlockFrequency BestCost; 1861 1862 // Check if we can split this live range around a compact region. 1863 bool HasCompact = calcCompactRegion(GlobalCand.front()); 1864 if (HasCompact) { 1865 // Yes, keep GlobalCand[0] as the compact region candidate. 1866 NumCands = 1; 1867 BestCost = BlockFrequency::getMaxFrequency(); 1868 } else { 1869 // No benefit from the compact region, our fallback will be per-block 1870 // splitting. Make sure we find a solution that is cheaper than spilling. 1871 BestCost = SpillCost; 1872 LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = "; 1873 MBFI->printBlockFreq(dbgs(), BestCost) << '\n'); 1874 } 1875 1876 bool CanCauseEvictionChain = false; 1877 unsigned BestCand = 1878 calculateRegionSplitCost(VirtReg, Order, BestCost, NumCands, 1879 false /*IgnoreCSR*/, &CanCauseEvictionChain); 1880 1881 // Split candidates with compact regions can cause a bad eviction sequence. 1882 // See splitCanCauseEvictionChain for detailed description of scenarios. 1883 // To avoid it, we need to comapre the cost with the spill cost and not the 1884 // current max frequency. 1885 if (HasCompact && (BestCost > SpillCost) && (BestCand != NoCand) && 1886 CanCauseEvictionChain) { 1887 return MCRegister::NoRegister; 1888 } 1889 1890 // No solutions found, fall back to single block splitting. 1891 if (!HasCompact && BestCand == NoCand) 1892 return MCRegister::NoRegister; 1893 1894 return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs); 1895 } 1896 1897 unsigned RAGreedy::calculateRegionSplitCost(LiveInterval &VirtReg, 1898 AllocationOrder &Order, 1899 BlockFrequency &BestCost, 1900 unsigned &NumCands, bool IgnoreCSR, 1901 bool *CanCauseEvictionChain) { 1902 unsigned BestCand = NoCand; 1903 for (MCPhysReg PhysReg : Order) { 1904 assert(PhysReg); 1905 if (IgnoreCSR && isUnusedCalleeSavedReg(PhysReg)) 1906 continue; 1907 1908 // Discard bad candidates before we run out of interference cache cursors. 1909 // This will only affect register classes with a lot of registers (>32). 1910 if (NumCands == IntfCache.getMaxCursors()) { 1911 unsigned WorstCount = ~0u; 1912 unsigned Worst = 0; 1913 for (unsigned CandIndex = 0; CandIndex != NumCands; ++CandIndex) { 1914 if (CandIndex == BestCand || !GlobalCand[CandIndex].PhysReg) 1915 continue; 1916 unsigned Count = GlobalCand[CandIndex].LiveBundles.count(); 1917 if (Count < WorstCount) { 1918 Worst = CandIndex; 1919 WorstCount = Count; 1920 } 1921 } 1922 --NumCands; 1923 GlobalCand[Worst] = GlobalCand[NumCands]; 1924 if (BestCand == NumCands) 1925 BestCand = Worst; 1926 } 1927 1928 if (GlobalCand.size() <= NumCands) 1929 GlobalCand.resize(NumCands+1); 1930 GlobalSplitCandidate &Cand = GlobalCand[NumCands]; 1931 Cand.reset(IntfCache, PhysReg); 1932 1933 SpillPlacer->prepare(Cand.LiveBundles); 1934 BlockFrequency Cost; 1935 if (!addSplitConstraints(Cand.Intf, Cost)) { 1936 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tno positive bundles\n"); 1937 continue; 1938 } 1939 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tstatic = "; 1940 MBFI->printBlockFreq(dbgs(), Cost)); 1941 if (Cost >= BestCost) { 1942 LLVM_DEBUG({ 1943 if (BestCand == NoCand) 1944 dbgs() << " worse than no bundles\n"; 1945 else 1946 dbgs() << " worse than " 1947 << printReg(GlobalCand[BestCand].PhysReg, TRI) << '\n'; 1948 }); 1949 continue; 1950 } 1951 if (!growRegion(Cand)) { 1952 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n"); 1953 continue; 1954 } 1955 1956 SpillPlacer->finish(); 1957 1958 // No live bundles, defer to splitSingleBlocks(). 1959 if (!Cand.LiveBundles.any()) { 1960 LLVM_DEBUG(dbgs() << " no bundles.\n"); 1961 continue; 1962 } 1963 1964 bool HasEvictionChain = false; 1965 Cost += calcGlobalSplitCost(Cand, Order, &HasEvictionChain); 1966 LLVM_DEBUG({ 1967 dbgs() << ", total = "; 1968 MBFI->printBlockFreq(dbgs(), Cost) << " with bundles"; 1969 for (int I : Cand.LiveBundles.set_bits()) 1970 dbgs() << " EB#" << I; 1971 dbgs() << ".\n"; 1972 }); 1973 if (Cost < BestCost) { 1974 BestCand = NumCands; 1975 BestCost = Cost; 1976 // See splitCanCauseEvictionChain for detailed description of bad 1977 // eviction chain scenarios. 1978 if (CanCauseEvictionChain) 1979 *CanCauseEvictionChain = HasEvictionChain; 1980 } 1981 ++NumCands; 1982 } 1983 1984 if (CanCauseEvictionChain && BestCand != NoCand) { 1985 // See splitCanCauseEvictionChain for detailed description of bad 1986 // eviction chain scenarios. 1987 LLVM_DEBUG(dbgs() << "Best split candidate of vreg " 1988 << printReg(VirtReg.reg(), TRI) << " may "); 1989 if (!(*CanCauseEvictionChain)) 1990 LLVM_DEBUG(dbgs() << "not "); 1991 LLVM_DEBUG(dbgs() << "cause bad eviction chain\n"); 1992 } 1993 1994 return BestCand; 1995 } 1996 1997 unsigned RAGreedy::doRegionSplit(LiveInterval &VirtReg, unsigned BestCand, 1998 bool HasCompact, 1999 SmallVectorImpl<Register> &NewVRegs) { 2000 SmallVector<unsigned, 8> UsedCands; 2001 // Prepare split editor. 2002 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2003 SE->reset(LREdit, SplitSpillMode); 2004 2005 // Assign all edge bundles to the preferred candidate, or NoCand. 2006 BundleCand.assign(Bundles->getNumBundles(), NoCand); 2007 2008 // Assign bundles for the best candidate region. 2009 if (BestCand != NoCand) { 2010 GlobalSplitCandidate &Cand = GlobalCand[BestCand]; 2011 if (unsigned B = Cand.getBundles(BundleCand, BestCand)) { 2012 UsedCands.push_back(BestCand); 2013 Cand.IntvIdx = SE->openIntv(); 2014 LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand.PhysReg, TRI) << " in " 2015 << B << " bundles, intv " << Cand.IntvIdx << ".\n"); 2016 (void)B; 2017 } 2018 } 2019 2020 // Assign bundles for the compact region. 2021 if (HasCompact) { 2022 GlobalSplitCandidate &Cand = GlobalCand.front(); 2023 assert(!Cand.PhysReg && "Compact region has no physreg"); 2024 if (unsigned B = Cand.getBundles(BundleCand, 0)) { 2025 UsedCands.push_back(0); 2026 Cand.IntvIdx = SE->openIntv(); 2027 LLVM_DEBUG(dbgs() << "Split for compact region in " << B 2028 << " bundles, intv " << Cand.IntvIdx << ".\n"); 2029 (void)B; 2030 } 2031 } 2032 2033 splitAroundRegion(LREdit, UsedCands); 2034 return 0; 2035 } 2036 2037 //===----------------------------------------------------------------------===// 2038 // Per-Block Splitting 2039 //===----------------------------------------------------------------------===// 2040 2041 /// tryBlockSplit - Split a global live range around every block with uses. This 2042 /// creates a lot of local live ranges, that will be split by tryLocalSplit if 2043 /// they don't allocate. 2044 unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order, 2045 SmallVectorImpl<Register> &NewVRegs) { 2046 assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed"); 2047 Register Reg = VirtReg.reg(); 2048 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 2049 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2050 SE->reset(LREdit, SplitSpillMode); 2051 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 2052 for (const SplitAnalysis::BlockInfo &BI : UseBlocks) { 2053 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 2054 SE->splitSingleBlock(BI); 2055 } 2056 // No blocks were split. 2057 if (LREdit.empty()) 2058 return 0; 2059 2060 // We did split for some blocks. 2061 SmallVector<unsigned, 8> IntvMap; 2062 SE->finish(&IntvMap); 2063 2064 // Tell LiveDebugVariables about the new ranges. 2065 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 2066 2067 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 2068 2069 // Sort out the new intervals created by splitting. The remainder interval 2070 // goes straight to spilling, the new local ranges get to stay RS_New. 2071 for (unsigned I = 0, E = LREdit.size(); I != E; ++I) { 2072 LiveInterval &LI = LIS->getInterval(LREdit.get(I)); 2073 if (getStage(LI) == RS_New && IntvMap[I] == 0) 2074 setStage(LI, RS_Spill); 2075 } 2076 2077 if (VerifyEnabled) 2078 MF->verify(this, "After splitting live range around basic blocks"); 2079 return 0; 2080 } 2081 2082 //===----------------------------------------------------------------------===// 2083 // Per-Instruction Splitting 2084 //===----------------------------------------------------------------------===// 2085 2086 /// Get the number of allocatable registers that match the constraints of \p Reg 2087 /// on \p MI and that are also in \p SuperRC. 2088 static unsigned getNumAllocatableRegsForConstraints( 2089 const MachineInstr *MI, Register Reg, const TargetRegisterClass *SuperRC, 2090 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI, 2091 const RegisterClassInfo &RCI) { 2092 assert(SuperRC && "Invalid register class"); 2093 2094 const TargetRegisterClass *ConstrainedRC = 2095 MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI, 2096 /* ExploreBundle */ true); 2097 if (!ConstrainedRC) 2098 return 0; 2099 return RCI.getNumAllocatableRegs(ConstrainedRC); 2100 } 2101 2102 /// tryInstructionSplit - Split a live range around individual instructions. 2103 /// This is normally not worthwhile since the spiller is doing essentially the 2104 /// same thing. However, when the live range is in a constrained register 2105 /// class, it may help to insert copies such that parts of the live range can 2106 /// be moved to a larger register class. 2107 /// 2108 /// This is similar to spilling to a larger register class. 2109 unsigned 2110 RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order, 2111 SmallVectorImpl<Register> &NewVRegs) { 2112 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg()); 2113 // There is no point to this if there are no larger sub-classes. 2114 if (!RegClassInfo.isProperSubClass(CurRC)) 2115 return 0; 2116 2117 // Always enable split spill mode, since we're effectively spilling to a 2118 // register. 2119 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2120 SE->reset(LREdit, SplitEditor::SM_Size); 2121 2122 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 2123 if (Uses.size() <= 1) 2124 return 0; 2125 2126 LLVM_DEBUG(dbgs() << "Split around " << Uses.size() 2127 << " individual instrs.\n"); 2128 2129 const TargetRegisterClass *SuperRC = 2130 TRI->getLargestLegalSuperClass(CurRC, *MF); 2131 unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC); 2132 // Split around every non-copy instruction if this split will relax 2133 // the constraints on the virtual register. 2134 // Otherwise, splitting just inserts uncoalescable copies that do not help 2135 // the allocation. 2136 for (const auto &Use : Uses) { 2137 if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Use)) 2138 if (MI->isFullCopy() || 2139 SuperRCNumAllocatableRegs == 2140 getNumAllocatableRegsForConstraints(MI, VirtReg.reg(), SuperRC, 2141 TII, TRI, RCI)) { 2142 LLVM_DEBUG(dbgs() << " skip:\t" << Use << '\t' << *MI); 2143 continue; 2144 } 2145 SE->openIntv(); 2146 SlotIndex SegStart = SE->enterIntvBefore(Use); 2147 SlotIndex SegStop = SE->leaveIntvAfter(Use); 2148 SE->useIntv(SegStart, SegStop); 2149 } 2150 2151 if (LREdit.empty()) { 2152 LLVM_DEBUG(dbgs() << "All uses were copies.\n"); 2153 return 0; 2154 } 2155 2156 SmallVector<unsigned, 8> IntvMap; 2157 SE->finish(&IntvMap); 2158 DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS); 2159 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 2160 2161 // Assign all new registers to RS_Spill. This was the last chance. 2162 setStage(LREdit.begin(), LREdit.end(), RS_Spill); 2163 return 0; 2164 } 2165 2166 //===----------------------------------------------------------------------===// 2167 // Local Splitting 2168 //===----------------------------------------------------------------------===// 2169 2170 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted 2171 /// in order to use PhysReg between two entries in SA->UseSlots. 2172 /// 2173 /// GapWeight[I] represents the gap between UseSlots[I] and UseSlots[I + 1]. 2174 /// 2175 void RAGreedy::calcGapWeights(MCRegister PhysReg, 2176 SmallVectorImpl<float> &GapWeight) { 2177 assert(SA->getUseBlocks().size() == 1 && "Not a local interval"); 2178 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 2179 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 2180 const unsigned NumGaps = Uses.size()-1; 2181 2182 // Start and end points for the interference check. 2183 SlotIndex StartIdx = 2184 BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr; 2185 SlotIndex StopIdx = 2186 BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr; 2187 2188 GapWeight.assign(NumGaps, 0.0f); 2189 2190 // Add interference from each overlapping register. 2191 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 2192 if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units) 2193 .checkInterference()) 2194 continue; 2195 2196 // We know that VirtReg is a continuous interval from FirstInstr to 2197 // LastInstr, so we don't need InterferenceQuery. 2198 // 2199 // Interference that overlaps an instruction is counted in both gaps 2200 // surrounding the instruction. The exception is interference before 2201 // StartIdx and after StopIdx. 2202 // 2203 LiveIntervalUnion::SegmentIter IntI = 2204 Matrix->getLiveUnions()[*Units] .find(StartIdx); 2205 for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) { 2206 // Skip the gaps before IntI. 2207 while (Uses[Gap+1].getBoundaryIndex() < IntI.start()) 2208 if (++Gap == NumGaps) 2209 break; 2210 if (Gap == NumGaps) 2211 break; 2212 2213 // Update the gaps covered by IntI. 2214 const float weight = IntI.value()->weight(); 2215 for (; Gap != NumGaps; ++Gap) { 2216 GapWeight[Gap] = std::max(GapWeight[Gap], weight); 2217 if (Uses[Gap+1].getBaseIndex() >= IntI.stop()) 2218 break; 2219 } 2220 if (Gap == NumGaps) 2221 break; 2222 } 2223 } 2224 2225 // Add fixed interference. 2226 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 2227 const LiveRange &LR = LIS->getRegUnit(*Units); 2228 LiveRange::const_iterator I = LR.find(StartIdx); 2229 LiveRange::const_iterator E = LR.end(); 2230 2231 // Same loop as above. Mark any overlapped gaps as HUGE_VALF. 2232 for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) { 2233 while (Uses[Gap+1].getBoundaryIndex() < I->start) 2234 if (++Gap == NumGaps) 2235 break; 2236 if (Gap == NumGaps) 2237 break; 2238 2239 for (; Gap != NumGaps; ++Gap) { 2240 GapWeight[Gap] = huge_valf; 2241 if (Uses[Gap+1].getBaseIndex() >= I->end) 2242 break; 2243 } 2244 if (Gap == NumGaps) 2245 break; 2246 } 2247 } 2248 } 2249 2250 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only 2251 /// basic block. 2252 /// 2253 unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order, 2254 SmallVectorImpl<Register> &NewVRegs) { 2255 // TODO: the function currently only handles a single UseBlock; it should be 2256 // possible to generalize. 2257 if (SA->getUseBlocks().size() != 1) 2258 return 0; 2259 2260 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 2261 2262 // Note that it is possible to have an interval that is live-in or live-out 2263 // while only covering a single block - A phi-def can use undef values from 2264 // predecessors, and the block could be a single-block loop. 2265 // We don't bother doing anything clever about such a case, we simply assume 2266 // that the interval is continuous from FirstInstr to LastInstr. We should 2267 // make sure that we don't do anything illegal to such an interval, though. 2268 2269 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 2270 if (Uses.size() <= 2) 2271 return 0; 2272 const unsigned NumGaps = Uses.size()-1; 2273 2274 LLVM_DEBUG({ 2275 dbgs() << "tryLocalSplit: "; 2276 for (const auto &Use : Uses) 2277 dbgs() << ' ' << Use; 2278 dbgs() << '\n'; 2279 }); 2280 2281 // If VirtReg is live across any register mask operands, compute a list of 2282 // gaps with register masks. 2283 SmallVector<unsigned, 8> RegMaskGaps; 2284 if (Matrix->checkRegMaskInterference(VirtReg)) { 2285 // Get regmask slots for the whole block. 2286 ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber()); 2287 LLVM_DEBUG(dbgs() << RMS.size() << " regmasks in block:"); 2288 // Constrain to VirtReg's live range. 2289 unsigned RI = 2290 llvm::lower_bound(RMS, Uses.front().getRegSlot()) - RMS.begin(); 2291 unsigned RE = RMS.size(); 2292 for (unsigned I = 0; I != NumGaps && RI != RE; ++I) { 2293 // Look for Uses[I] <= RMS <= Uses[I + 1]. 2294 assert(!SlotIndex::isEarlierInstr(RMS[RI], Uses[I])); 2295 if (SlotIndex::isEarlierInstr(Uses[I + 1], RMS[RI])) 2296 continue; 2297 // Skip a regmask on the same instruction as the last use. It doesn't 2298 // overlap the live range. 2299 if (SlotIndex::isSameInstr(Uses[I + 1], RMS[RI]) && I + 1 == NumGaps) 2300 break; 2301 LLVM_DEBUG(dbgs() << ' ' << RMS[RI] << ':' << Uses[I] << '-' 2302 << Uses[I + 1]); 2303 RegMaskGaps.push_back(I); 2304 // Advance ri to the next gap. A regmask on one of the uses counts in 2305 // both gaps. 2306 while (RI != RE && SlotIndex::isEarlierInstr(RMS[RI], Uses[I + 1])) 2307 ++RI; 2308 } 2309 LLVM_DEBUG(dbgs() << '\n'); 2310 } 2311 2312 // Since we allow local split results to be split again, there is a risk of 2313 // creating infinite loops. It is tempting to require that the new live 2314 // ranges have less instructions than the original. That would guarantee 2315 // convergence, but it is too strict. A live range with 3 instructions can be 2316 // split 2+3 (including the COPY), and we want to allow that. 2317 // 2318 // Instead we use these rules: 2319 // 2320 // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the 2321 // noop split, of course). 2322 // 2. Require progress be made for ranges with getStage() == RS_Split2. All 2323 // the new ranges must have fewer instructions than before the split. 2324 // 3. New ranges with the same number of instructions are marked RS_Split2, 2325 // smaller ranges are marked RS_New. 2326 // 2327 // These rules allow a 3 -> 2+3 split once, which we need. They also prevent 2328 // excessive splitting and infinite loops. 2329 // 2330 bool ProgressRequired = getStage(VirtReg) >= RS_Split2; 2331 2332 // Best split candidate. 2333 unsigned BestBefore = NumGaps; 2334 unsigned BestAfter = 0; 2335 float BestDiff = 0; 2336 2337 const float blockFreq = 2338 SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() * 2339 (1.0f / MBFI->getEntryFreq()); 2340 SmallVector<float, 8> GapWeight; 2341 2342 for (MCPhysReg PhysReg : Order) { 2343 assert(PhysReg); 2344 // Keep track of the largest spill weight that would need to be evicted in 2345 // order to make use of PhysReg between UseSlots[I] and UseSlots[I + 1]. 2346 calcGapWeights(PhysReg, GapWeight); 2347 2348 // Remove any gaps with regmask clobbers. 2349 if (Matrix->checkRegMaskInterference(VirtReg, PhysReg)) 2350 for (unsigned I = 0, E = RegMaskGaps.size(); I != E; ++I) 2351 GapWeight[RegMaskGaps[I]] = huge_valf; 2352 2353 // Try to find the best sequence of gaps to close. 2354 // The new spill weight must be larger than any gap interference. 2355 2356 // We will split before Uses[SplitBefore] and after Uses[SplitAfter]. 2357 unsigned SplitBefore = 0, SplitAfter = 1; 2358 2359 // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]). 2360 // It is the spill weight that needs to be evicted. 2361 float MaxGap = GapWeight[0]; 2362 2363 while (true) { 2364 // Live before/after split? 2365 const bool LiveBefore = SplitBefore != 0 || BI.LiveIn; 2366 const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut; 2367 2368 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << ' ' << Uses[SplitBefore] 2369 << '-' << Uses[SplitAfter] << " I=" << MaxGap); 2370 2371 // Stop before the interval gets so big we wouldn't be making progress. 2372 if (!LiveBefore && !LiveAfter) { 2373 LLVM_DEBUG(dbgs() << " all\n"); 2374 break; 2375 } 2376 // Should the interval be extended or shrunk? 2377 bool Shrink = true; 2378 2379 // How many gaps would the new range have? 2380 unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter; 2381 2382 // Legally, without causing looping? 2383 bool Legal = !ProgressRequired || NewGaps < NumGaps; 2384 2385 if (Legal && MaxGap < huge_valf) { 2386 // Estimate the new spill weight. Each instruction reads or writes the 2387 // register. Conservatively assume there are no read-modify-write 2388 // instructions. 2389 // 2390 // Try to guess the size of the new interval. 2391 const float EstWeight = normalizeSpillWeight( 2392 blockFreq * (NewGaps + 1), 2393 Uses[SplitBefore].distance(Uses[SplitAfter]) + 2394 (LiveBefore + LiveAfter) * SlotIndex::InstrDist, 2395 1); 2396 // Would this split be possible to allocate? 2397 // Never allocate all gaps, we wouldn't be making progress. 2398 LLVM_DEBUG(dbgs() << " w=" << EstWeight); 2399 if (EstWeight * Hysteresis >= MaxGap) { 2400 Shrink = false; 2401 float Diff = EstWeight - MaxGap; 2402 if (Diff > BestDiff) { 2403 LLVM_DEBUG(dbgs() << " (best)"); 2404 BestDiff = Hysteresis * Diff; 2405 BestBefore = SplitBefore; 2406 BestAfter = SplitAfter; 2407 } 2408 } 2409 } 2410 2411 // Try to shrink. 2412 if (Shrink) { 2413 if (++SplitBefore < SplitAfter) { 2414 LLVM_DEBUG(dbgs() << " shrink\n"); 2415 // Recompute the max when necessary. 2416 if (GapWeight[SplitBefore - 1] >= MaxGap) { 2417 MaxGap = GapWeight[SplitBefore]; 2418 for (unsigned I = SplitBefore + 1; I != SplitAfter; ++I) 2419 MaxGap = std::max(MaxGap, GapWeight[I]); 2420 } 2421 continue; 2422 } 2423 MaxGap = 0; 2424 } 2425 2426 // Try to extend the interval. 2427 if (SplitAfter >= NumGaps) { 2428 LLVM_DEBUG(dbgs() << " end\n"); 2429 break; 2430 } 2431 2432 LLVM_DEBUG(dbgs() << " extend\n"); 2433 MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]); 2434 } 2435 } 2436 2437 // Didn't find any candidates? 2438 if (BestBefore == NumGaps) 2439 return 0; 2440 2441 LLVM_DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] << '-' 2442 << Uses[BestAfter] << ", " << BestDiff << ", " 2443 << (BestAfter - BestBefore + 1) << " instrs\n"); 2444 2445 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2446 SE->reset(LREdit); 2447 2448 SE->openIntv(); 2449 SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]); 2450 SlotIndex SegStop = SE->leaveIntvAfter(Uses[BestAfter]); 2451 SE->useIntv(SegStart, SegStop); 2452 SmallVector<unsigned, 8> IntvMap; 2453 SE->finish(&IntvMap); 2454 DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS); 2455 2456 // If the new range has the same number of instructions as before, mark it as 2457 // RS_Split2 so the next split will be forced to make progress. Otherwise, 2458 // leave the new intervals as RS_New so they can compete. 2459 bool LiveBefore = BestBefore != 0 || BI.LiveIn; 2460 bool LiveAfter = BestAfter != NumGaps || BI.LiveOut; 2461 unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter; 2462 if (NewGaps >= NumGaps) { 2463 LLVM_DEBUG(dbgs() << "Tagging non-progress ranges:"); 2464 assert(!ProgressRequired && "Didn't make progress when it was required."); 2465 for (unsigned I = 0, E = IntvMap.size(); I != E; ++I) 2466 if (IntvMap[I] == 1) { 2467 setStage(LIS->getInterval(LREdit.get(I)), RS_Split2); 2468 LLVM_DEBUG(dbgs() << ' ' << printReg(LREdit.get(I))); 2469 } 2470 LLVM_DEBUG(dbgs() << '\n'); 2471 } 2472 ++NumLocalSplits; 2473 2474 return 0; 2475 } 2476 2477 //===----------------------------------------------------------------------===// 2478 // Live Range Splitting 2479 //===----------------------------------------------------------------------===// 2480 2481 /// trySplit - Try to split VirtReg or one of its interferences, making it 2482 /// assignable. 2483 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs. 2484 unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order, 2485 SmallVectorImpl<Register> &NewVRegs, 2486 const SmallVirtRegSet &FixedRegisters) { 2487 // Ranges must be Split2 or less. 2488 if (getStage(VirtReg) >= RS_Spill) 2489 return 0; 2490 2491 // Local intervals are handled separately. 2492 if (LIS->intervalIsInOneMBB(VirtReg)) { 2493 NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName, 2494 TimerGroupDescription, TimePassesIsEnabled); 2495 SA->analyze(&VirtReg); 2496 Register PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs); 2497 if (PhysReg || !NewVRegs.empty()) 2498 return PhysReg; 2499 return tryInstructionSplit(VirtReg, Order, NewVRegs); 2500 } 2501 2502 NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName, 2503 TimerGroupDescription, TimePassesIsEnabled); 2504 2505 SA->analyze(&VirtReg); 2506 2507 // FIXME: SplitAnalysis may repair broken live ranges coming from the 2508 // coalescer. That may cause the range to become allocatable which means that 2509 // tryRegionSplit won't be making progress. This check should be replaced with 2510 // an assertion when the coalescer is fixed. 2511 if (SA->didRepairRange()) { 2512 // VirtReg has changed, so all cached queries are invalid. 2513 Matrix->invalidateVirtRegs(); 2514 if (Register PhysReg = tryAssign(VirtReg, Order, NewVRegs, FixedRegisters)) 2515 return PhysReg; 2516 } 2517 2518 // First try to split around a region spanning multiple blocks. RS_Split2 2519 // ranges already made dubious progress with region splitting, so they go 2520 // straight to single block splitting. 2521 if (getStage(VirtReg) < RS_Split2) { 2522 MCRegister PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs); 2523 if (PhysReg || !NewVRegs.empty()) 2524 return PhysReg; 2525 } 2526 2527 // Then isolate blocks. 2528 return tryBlockSplit(VirtReg, Order, NewVRegs); 2529 } 2530 2531 //===----------------------------------------------------------------------===// 2532 // Last Chance Recoloring 2533 //===----------------------------------------------------------------------===// 2534 2535 /// Return true if \p reg has any tied def operand. 2536 static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg) { 2537 for (const MachineOperand &MO : MRI->def_operands(reg)) 2538 if (MO.isTied()) 2539 return true; 2540 2541 return false; 2542 } 2543 2544 /// mayRecolorAllInterferences - Check if the virtual registers that 2545 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be 2546 /// recolored to free \p PhysReg. 2547 /// When true is returned, \p RecoloringCandidates has been augmented with all 2548 /// the live intervals that need to be recolored in order to free \p PhysReg 2549 /// for \p VirtReg. 2550 /// \p FixedRegisters contains all the virtual registers that cannot be 2551 /// recolored. 2552 bool RAGreedy::mayRecolorAllInterferences( 2553 MCRegister PhysReg, LiveInterval &VirtReg, SmallLISet &RecoloringCandidates, 2554 const SmallVirtRegSet &FixedRegisters) { 2555 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg()); 2556 2557 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 2558 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 2559 // If there is LastChanceRecoloringMaxInterference or more interferences, 2560 // chances are one would not be recolorable. 2561 if (Q.collectInterferingVRegs(LastChanceRecoloringMaxInterference) >= 2562 LastChanceRecoloringMaxInterference && !ExhaustiveSearch) { 2563 LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n"); 2564 CutOffInfo |= CO_Interf; 2565 return false; 2566 } 2567 for (LiveInterval *Intf : reverse(Q.interferingVRegs())) { 2568 // If Intf is done and sit on the same register class as VirtReg, 2569 // it would not be recolorable as it is in the same state as VirtReg. 2570 // However, if VirtReg has tied defs and Intf doesn't, then 2571 // there is still a point in examining if it can be recolorable. 2572 if (((getStage(*Intf) == RS_Done && 2573 MRI->getRegClass(Intf->reg()) == CurRC) && 2574 !(hasTiedDef(MRI, VirtReg.reg()) && 2575 !hasTiedDef(MRI, Intf->reg()))) || 2576 FixedRegisters.count(Intf->reg())) { 2577 LLVM_DEBUG( 2578 dbgs() << "Early abort: the interference is not recolorable.\n"); 2579 return false; 2580 } 2581 RecoloringCandidates.insert(Intf); 2582 } 2583 } 2584 return true; 2585 } 2586 2587 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring 2588 /// its interferences. 2589 /// Last chance recoloring chooses a color for \p VirtReg and recolors every 2590 /// virtual register that was using it. The recoloring process may recursively 2591 /// use the last chance recoloring. Therefore, when a virtual register has been 2592 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot 2593 /// be last-chance-recolored again during this recoloring "session". 2594 /// E.g., 2595 /// Let 2596 /// vA can use {R1, R2 } 2597 /// vB can use { R2, R3} 2598 /// vC can use {R1 } 2599 /// Where vA, vB, and vC cannot be split anymore (they are reloads for 2600 /// instance) and they all interfere. 2601 /// 2602 /// vA is assigned R1 2603 /// vB is assigned R2 2604 /// vC tries to evict vA but vA is already done. 2605 /// Regular register allocation fails. 2606 /// 2607 /// Last chance recoloring kicks in: 2608 /// vC does as if vA was evicted => vC uses R1. 2609 /// vC is marked as fixed. 2610 /// vA needs to find a color. 2611 /// None are available. 2612 /// vA cannot evict vC: vC is a fixed virtual register now. 2613 /// vA does as if vB was evicted => vA uses R2. 2614 /// vB needs to find a color. 2615 /// R3 is available. 2616 /// Recoloring => vC = R1, vA = R2, vB = R3 2617 /// 2618 /// \p Order defines the preferred allocation order for \p VirtReg. 2619 /// \p NewRegs will contain any new virtual register that have been created 2620 /// (split, spill) during the process and that must be assigned. 2621 /// \p FixedRegisters contains all the virtual registers that cannot be 2622 /// recolored. 2623 /// \p Depth gives the current depth of the last chance recoloring. 2624 /// \return a physical register that can be used for VirtReg or ~0u if none 2625 /// exists. 2626 unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg, 2627 AllocationOrder &Order, 2628 SmallVectorImpl<Register> &NewVRegs, 2629 SmallVirtRegSet &FixedRegisters, 2630 unsigned Depth) { 2631 if (!TRI->shouldUseLastChanceRecoloringForVirtReg(*MF, VirtReg)) 2632 return ~0u; 2633 2634 LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n'); 2635 // Ranges must be Done. 2636 assert((getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) && 2637 "Last chance recoloring should really be last chance"); 2638 // Set the max depth to LastChanceRecoloringMaxDepth. 2639 // We may want to reconsider that if we end up with a too large search space 2640 // for target with hundreds of registers. 2641 // Indeed, in that case we may want to cut the search space earlier. 2642 if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) { 2643 LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n"); 2644 CutOffInfo |= CO_Depth; 2645 return ~0u; 2646 } 2647 2648 // Set of Live intervals that will need to be recolored. 2649 SmallLISet RecoloringCandidates; 2650 // Record the original mapping virtual register to physical register in case 2651 // the recoloring fails. 2652 DenseMap<Register, MCRegister> VirtRegToPhysReg; 2653 // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in 2654 // this recoloring "session". 2655 assert(!FixedRegisters.count(VirtReg.reg())); 2656 FixedRegisters.insert(VirtReg.reg()); 2657 SmallVector<Register, 4> CurrentNewVRegs; 2658 2659 for (MCRegister PhysReg : Order) { 2660 assert(PhysReg.isValid()); 2661 LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg << " to " 2662 << printReg(PhysReg, TRI) << '\n'); 2663 RecoloringCandidates.clear(); 2664 VirtRegToPhysReg.clear(); 2665 CurrentNewVRegs.clear(); 2666 2667 // It is only possible to recolor virtual register interference. 2668 if (Matrix->checkInterference(VirtReg, PhysReg) > 2669 LiveRegMatrix::IK_VirtReg) { 2670 LLVM_DEBUG( 2671 dbgs() << "Some interferences are not with virtual registers.\n"); 2672 2673 continue; 2674 } 2675 2676 // Early give up on this PhysReg if it is obvious we cannot recolor all 2677 // the interferences. 2678 if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates, 2679 FixedRegisters)) { 2680 LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n"); 2681 continue; 2682 } 2683 2684 // RecoloringCandidates contains all the virtual registers that interfer 2685 // with VirtReg on PhysReg (or one of its aliases). 2686 // Enqueue them for recoloring and perform the actual recoloring. 2687 PQueue RecoloringQueue; 2688 for (LiveInterval *RC : RecoloringCandidates) { 2689 Register ItVirtReg = RC->reg(); 2690 enqueue(RecoloringQueue, RC); 2691 assert(VRM->hasPhys(ItVirtReg) && 2692 "Interferences are supposed to be with allocated variables"); 2693 2694 // Record the current allocation. 2695 VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg); 2696 // unset the related struct. 2697 Matrix->unassign(*RC); 2698 } 2699 2700 // Do as if VirtReg was assigned to PhysReg so that the underlying 2701 // recoloring has the right information about the interferes and 2702 // available colors. 2703 Matrix->assign(VirtReg, PhysReg); 2704 2705 // Save the current recoloring state. 2706 // If we cannot recolor all the interferences, we will have to start again 2707 // at this point for the next physical register. 2708 SmallVirtRegSet SaveFixedRegisters(FixedRegisters); 2709 if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs, 2710 FixedRegisters, Depth)) { 2711 // Push the queued vregs into the main queue. 2712 for (Register NewVReg : CurrentNewVRegs) 2713 NewVRegs.push_back(NewVReg); 2714 // Do not mess up with the global assignment process. 2715 // I.e., VirtReg must be unassigned. 2716 Matrix->unassign(VirtReg); 2717 return PhysReg; 2718 } 2719 2720 LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to " 2721 << printReg(PhysReg, TRI) << '\n'); 2722 2723 // The recoloring attempt failed, undo the changes. 2724 FixedRegisters = SaveFixedRegisters; 2725 Matrix->unassign(VirtReg); 2726 2727 // For a newly created vreg which is also in RecoloringCandidates, 2728 // don't add it to NewVRegs because its physical register will be restored 2729 // below. Other vregs in CurrentNewVRegs are created by calling 2730 // selectOrSplit and should be added into NewVRegs. 2731 for (Register &R : CurrentNewVRegs) { 2732 if (RecoloringCandidates.count(&LIS->getInterval(R))) 2733 continue; 2734 NewVRegs.push_back(R); 2735 } 2736 2737 for (LiveInterval *RC : RecoloringCandidates) { 2738 Register ItVirtReg = RC->reg(); 2739 if (VRM->hasPhys(ItVirtReg)) 2740 Matrix->unassign(*RC); 2741 MCRegister ItPhysReg = VirtRegToPhysReg[ItVirtReg]; 2742 Matrix->assign(*RC, ItPhysReg); 2743 } 2744 } 2745 2746 // Last chance recoloring did not worked either, give up. 2747 return ~0u; 2748 } 2749 2750 /// tryRecoloringCandidates - Try to assign a new color to every register 2751 /// in \RecoloringQueue. 2752 /// \p NewRegs will contain any new virtual register created during the 2753 /// recoloring process. 2754 /// \p FixedRegisters[in/out] contains all the registers that have been 2755 /// recolored. 2756 /// \return true if all virtual registers in RecoloringQueue were successfully 2757 /// recolored, false otherwise. 2758 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue, 2759 SmallVectorImpl<Register> &NewVRegs, 2760 SmallVirtRegSet &FixedRegisters, 2761 unsigned Depth) { 2762 while (!RecoloringQueue.empty()) { 2763 LiveInterval *LI = dequeue(RecoloringQueue); 2764 LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI << '\n'); 2765 MCRegister PhysReg = 2766 selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, Depth + 1); 2767 // When splitting happens, the live-range may actually be empty. 2768 // In that case, this is okay to continue the recoloring even 2769 // if we did not find an alternative color for it. Indeed, 2770 // there will not be anything to color for LI in the end. 2771 if (PhysReg == ~0u || (!PhysReg && !LI->empty())) 2772 return false; 2773 2774 if (!PhysReg) { 2775 assert(LI->empty() && "Only empty live-range do not require a register"); 2776 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI 2777 << " succeeded. Empty LI.\n"); 2778 continue; 2779 } 2780 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI 2781 << " succeeded with: " << printReg(PhysReg, TRI) << '\n'); 2782 2783 Matrix->assign(*LI, PhysReg); 2784 FixedRegisters.insert(LI->reg()); 2785 } 2786 return true; 2787 } 2788 2789 //===----------------------------------------------------------------------===// 2790 // Main Entry Point 2791 //===----------------------------------------------------------------------===// 2792 2793 MCRegister RAGreedy::selectOrSplit(LiveInterval &VirtReg, 2794 SmallVectorImpl<Register> &NewVRegs) { 2795 CutOffInfo = CO_None; 2796 LLVMContext &Ctx = MF->getFunction().getContext(); 2797 SmallVirtRegSet FixedRegisters; 2798 MCRegister Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters); 2799 if (Reg == ~0U && (CutOffInfo != CO_None)) { 2800 uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf); 2801 if (CutOffEncountered == CO_Depth) 2802 Ctx.emitError("register allocation failed: maximum depth for recoloring " 2803 "reached. Use -fexhaustive-register-search to skip " 2804 "cutoffs"); 2805 else if (CutOffEncountered == CO_Interf) 2806 Ctx.emitError("register allocation failed: maximum interference for " 2807 "recoloring reached. Use -fexhaustive-register-search " 2808 "to skip cutoffs"); 2809 else if (CutOffEncountered == (CO_Depth | CO_Interf)) 2810 Ctx.emitError("register allocation failed: maximum interference and " 2811 "depth for recoloring reached. Use " 2812 "-fexhaustive-register-search to skip cutoffs"); 2813 } 2814 return Reg; 2815 } 2816 2817 /// Using a CSR for the first time has a cost because it causes push|pop 2818 /// to be added to prologue|epilogue. Splitting a cold section of the live 2819 /// range can have lower cost than using the CSR for the first time; 2820 /// Spilling a live range in the cold path can have lower cost than using 2821 /// the CSR for the first time. Returns the physical register if we decide 2822 /// to use the CSR; otherwise return 0. 2823 MCRegister 2824 RAGreedy::tryAssignCSRFirstTime(LiveInterval &VirtReg, AllocationOrder &Order, 2825 MCRegister PhysReg, uint8_t &CostPerUseLimit, 2826 SmallVectorImpl<Register> &NewVRegs) { 2827 if (getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) { 2828 // We choose spill over using the CSR for the first time if the spill cost 2829 // is lower than CSRCost. 2830 SA->analyze(&VirtReg); 2831 if (calcSpillCost() >= CSRCost) 2832 return PhysReg; 2833 2834 // We are going to spill, set CostPerUseLimit to 1 to make sure that 2835 // we will not use a callee-saved register in tryEvict. 2836 CostPerUseLimit = 1; 2837 return 0; 2838 } 2839 if (getStage(VirtReg) < RS_Split) { 2840 // We choose pre-splitting over using the CSR for the first time if 2841 // the cost of splitting is lower than CSRCost. 2842 SA->analyze(&VirtReg); 2843 unsigned NumCands = 0; 2844 BlockFrequency BestCost = CSRCost; // Don't modify CSRCost. 2845 unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost, 2846 NumCands, true /*IgnoreCSR*/); 2847 if (BestCand == NoCand) 2848 // Use the CSR if we can't find a region split below CSRCost. 2849 return PhysReg; 2850 2851 // Perform the actual pre-splitting. 2852 doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs); 2853 return 0; 2854 } 2855 return PhysReg; 2856 } 2857 2858 void RAGreedy::aboutToRemoveInterval(LiveInterval &LI) { 2859 // Do not keep invalid information around. 2860 SetOfBrokenHints.remove(&LI); 2861 } 2862 2863 void RAGreedy::initializeCSRCost() { 2864 // We use the larger one out of the command-line option and the value report 2865 // by TRI. 2866 CSRCost = BlockFrequency( 2867 std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost())); 2868 if (!CSRCost.getFrequency()) 2869 return; 2870 2871 // Raw cost is relative to Entry == 2^14; scale it appropriately. 2872 uint64_t ActualEntry = MBFI->getEntryFreq(); 2873 if (!ActualEntry) { 2874 CSRCost = 0; 2875 return; 2876 } 2877 uint64_t FixedEntry = 1 << 14; 2878 if (ActualEntry < FixedEntry) 2879 CSRCost *= BranchProbability(ActualEntry, FixedEntry); 2880 else if (ActualEntry <= UINT32_MAX) 2881 // Invert the fraction and divide. 2882 CSRCost /= BranchProbability(FixedEntry, ActualEntry); 2883 else 2884 // Can't use BranchProbability in general, since it takes 32-bit numbers. 2885 CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry); 2886 } 2887 2888 /// Collect the hint info for \p Reg. 2889 /// The results are stored into \p Out. 2890 /// \p Out is not cleared before being populated. 2891 void RAGreedy::collectHintInfo(Register Reg, HintsInfo &Out) { 2892 for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) { 2893 if (!Instr.isFullCopy()) 2894 continue; 2895 // Look for the other end of the copy. 2896 Register OtherReg = Instr.getOperand(0).getReg(); 2897 if (OtherReg == Reg) { 2898 OtherReg = Instr.getOperand(1).getReg(); 2899 if (OtherReg == Reg) 2900 continue; 2901 } 2902 // Get the current assignment. 2903 MCRegister OtherPhysReg = 2904 OtherReg.isPhysical() ? OtherReg.asMCReg() : VRM->getPhys(OtherReg); 2905 // Push the collected information. 2906 Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg, 2907 OtherPhysReg)); 2908 } 2909 } 2910 2911 /// Using the given \p List, compute the cost of the broken hints if 2912 /// \p PhysReg was used. 2913 /// \return The cost of \p List for \p PhysReg. 2914 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List, 2915 MCRegister PhysReg) { 2916 BlockFrequency Cost = 0; 2917 for (const HintInfo &Info : List) { 2918 if (Info.PhysReg != PhysReg) 2919 Cost += Info.Freq; 2920 } 2921 return Cost; 2922 } 2923 2924 /// Using the register assigned to \p VirtReg, try to recolor 2925 /// all the live ranges that are copy-related with \p VirtReg. 2926 /// The recoloring is then propagated to all the live-ranges that have 2927 /// been recolored and so on, until no more copies can be coalesced or 2928 /// it is not profitable. 2929 /// For a given live range, profitability is determined by the sum of the 2930 /// frequencies of the non-identity copies it would introduce with the old 2931 /// and new register. 2932 void RAGreedy::tryHintRecoloring(LiveInterval &VirtReg) { 2933 // We have a broken hint, check if it is possible to fix it by 2934 // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted 2935 // some register and PhysReg may be available for the other live-ranges. 2936 SmallSet<Register, 4> Visited; 2937 SmallVector<unsigned, 2> RecoloringCandidates; 2938 HintsInfo Info; 2939 Register Reg = VirtReg.reg(); 2940 MCRegister PhysReg = VRM->getPhys(Reg); 2941 // Start the recoloring algorithm from the input live-interval, then 2942 // it will propagate to the ones that are copy-related with it. 2943 Visited.insert(Reg); 2944 RecoloringCandidates.push_back(Reg); 2945 2946 LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg, TRI) 2947 << '(' << printReg(PhysReg, TRI) << ")\n"); 2948 2949 do { 2950 Reg = RecoloringCandidates.pop_back_val(); 2951 2952 // We cannot recolor physical register. 2953 if (Register::isPhysicalRegister(Reg)) 2954 continue; 2955 2956 // This may be a skipped class 2957 if (!VRM->hasPhys(Reg)) { 2958 assert(!ShouldAllocateClass(*TRI, *MRI->getRegClass(Reg)) && 2959 "We have an unallocated variable which should have been handled"); 2960 continue; 2961 } 2962 2963 // Get the live interval mapped with this virtual register to be able 2964 // to check for the interference with the new color. 2965 LiveInterval &LI = LIS->getInterval(Reg); 2966 MCRegister CurrPhys = VRM->getPhys(Reg); 2967 // Check that the new color matches the register class constraints and 2968 // that it is free for this live range. 2969 if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) || 2970 Matrix->checkInterference(LI, PhysReg))) 2971 continue; 2972 2973 LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << '(' << printReg(CurrPhys, TRI) 2974 << ") is recolorable.\n"); 2975 2976 // Gather the hint info. 2977 Info.clear(); 2978 collectHintInfo(Reg, Info); 2979 // Check if recoloring the live-range will increase the cost of the 2980 // non-identity copies. 2981 if (CurrPhys != PhysReg) { 2982 LLVM_DEBUG(dbgs() << "Checking profitability:\n"); 2983 BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys); 2984 BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg); 2985 LLVM_DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency() 2986 << "\nNew Cost: " << NewCopiesCost.getFrequency() 2987 << '\n'); 2988 if (OldCopiesCost < NewCopiesCost) { 2989 LLVM_DEBUG(dbgs() << "=> Not profitable.\n"); 2990 continue; 2991 } 2992 // At this point, the cost is either cheaper or equal. If it is 2993 // equal, we consider this is profitable because it may expose 2994 // more recoloring opportunities. 2995 LLVM_DEBUG(dbgs() << "=> Profitable.\n"); 2996 // Recolor the live-range. 2997 Matrix->unassign(LI); 2998 Matrix->assign(LI, PhysReg); 2999 } 3000 // Push all copy-related live-ranges to keep reconciling the broken 3001 // hints. 3002 for (const HintInfo &HI : Info) { 3003 if (Visited.insert(HI.Reg).second) 3004 RecoloringCandidates.push_back(HI.Reg); 3005 } 3006 } while (!RecoloringCandidates.empty()); 3007 } 3008 3009 /// Try to recolor broken hints. 3010 /// Broken hints may be repaired by recoloring when an evicted variable 3011 /// freed up a register for a larger live-range. 3012 /// Consider the following example: 3013 /// BB1: 3014 /// a = 3015 /// b = 3016 /// BB2: 3017 /// ... 3018 /// = b 3019 /// = a 3020 /// Let us assume b gets split: 3021 /// BB1: 3022 /// a = 3023 /// b = 3024 /// BB2: 3025 /// c = b 3026 /// ... 3027 /// d = c 3028 /// = d 3029 /// = a 3030 /// Because of how the allocation work, b, c, and d may be assigned different 3031 /// colors. Now, if a gets evicted later: 3032 /// BB1: 3033 /// a = 3034 /// st a, SpillSlot 3035 /// b = 3036 /// BB2: 3037 /// c = b 3038 /// ... 3039 /// d = c 3040 /// = d 3041 /// e = ld SpillSlot 3042 /// = e 3043 /// This is likely that we can assign the same register for b, c, and d, 3044 /// getting rid of 2 copies. 3045 void RAGreedy::tryHintsRecoloring() { 3046 for (LiveInterval *LI : SetOfBrokenHints) { 3047 assert(Register::isVirtualRegister(LI->reg()) && 3048 "Recoloring is possible only for virtual registers"); 3049 // Some dead defs may be around (e.g., because of debug uses). 3050 // Ignore those. 3051 if (!VRM->hasPhys(LI->reg())) 3052 continue; 3053 tryHintRecoloring(*LI); 3054 } 3055 } 3056 3057 MCRegister RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg, 3058 SmallVectorImpl<Register> &NewVRegs, 3059 SmallVirtRegSet &FixedRegisters, 3060 unsigned Depth) { 3061 uint8_t CostPerUseLimit = uint8_t(~0u); 3062 // First try assigning a free register. 3063 auto Order = 3064 AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix); 3065 if (MCRegister PhysReg = 3066 tryAssign(VirtReg, Order, NewVRegs, FixedRegisters)) { 3067 // If VirtReg got an assignment, the eviction info is no longer relevant. 3068 LastEvicted.clearEvicteeInfo(VirtReg.reg()); 3069 // When NewVRegs is not empty, we may have made decisions such as evicting 3070 // a virtual register, go with the earlier decisions and use the physical 3071 // register. 3072 if (CSRCost.getFrequency() && isUnusedCalleeSavedReg(PhysReg) && 3073 NewVRegs.empty()) { 3074 MCRegister CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg, 3075 CostPerUseLimit, NewVRegs); 3076 if (CSRReg || !NewVRegs.empty()) 3077 // Return now if we decide to use a CSR or create new vregs due to 3078 // pre-splitting. 3079 return CSRReg; 3080 } else 3081 return PhysReg; 3082 } 3083 3084 LiveRangeStage Stage = getStage(VirtReg); 3085 LLVM_DEBUG(dbgs() << StageName[Stage] << " Cascade " 3086 << ExtraRegInfo[VirtReg.reg()].Cascade << '\n'); 3087 3088 // Try to evict a less worthy live range, but only for ranges from the primary 3089 // queue. The RS_Split ranges already failed to do this, and they should not 3090 // get a second chance until they have been split. 3091 if (Stage != RS_Split) 3092 if (Register PhysReg = 3093 tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit, 3094 FixedRegisters)) { 3095 Register Hint = MRI->getSimpleHint(VirtReg.reg()); 3096 // If VirtReg has a hint and that hint is broken record this 3097 // virtual register as a recoloring candidate for broken hint. 3098 // Indeed, since we evicted a variable in its neighborhood it is 3099 // likely we can at least partially recolor some of the 3100 // copy-related live-ranges. 3101 if (Hint && Hint != PhysReg) 3102 SetOfBrokenHints.insert(&VirtReg); 3103 // If VirtReg eviction someone, the eviction info for it as an evictee is 3104 // no longer relevant. 3105 LastEvicted.clearEvicteeInfo(VirtReg.reg()); 3106 return PhysReg; 3107 } 3108 3109 assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs"); 3110 3111 // The first time we see a live range, don't try to split or spill. 3112 // Wait until the second time, when all smaller ranges have been allocated. 3113 // This gives a better picture of the interference to split around. 3114 if (Stage < RS_Split) { 3115 setStage(VirtReg, RS_Split); 3116 LLVM_DEBUG(dbgs() << "wait for second round\n"); 3117 NewVRegs.push_back(VirtReg.reg()); 3118 return 0; 3119 } 3120 3121 if (Stage < RS_Spill) { 3122 // Try splitting VirtReg or interferences. 3123 unsigned NewVRegSizeBefore = NewVRegs.size(); 3124 Register PhysReg = trySplit(VirtReg, Order, NewVRegs, FixedRegisters); 3125 if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore)) { 3126 // If VirtReg got split, the eviction info is no longer relevant. 3127 LastEvicted.clearEvicteeInfo(VirtReg.reg()); 3128 return PhysReg; 3129 } 3130 } 3131 3132 // If we couldn't allocate a register from spilling, there is probably some 3133 // invalid inline assembly. The base class will report it. 3134 if (Stage >= RS_Done || !VirtReg.isSpillable()) 3135 return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters, 3136 Depth); 3137 3138 // Finally spill VirtReg itself. 3139 if ((EnableDeferredSpilling || 3140 TRI->shouldUseDeferredSpillingForVirtReg(*MF, VirtReg)) && 3141 getStage(VirtReg) < RS_Memory) { 3142 // TODO: This is experimental and in particular, we do not model 3143 // the live range splitting done by spilling correctly. 3144 // We would need a deep integration with the spiller to do the 3145 // right thing here. Anyway, that is still good for early testing. 3146 setStage(VirtReg, RS_Memory); 3147 LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n"); 3148 NewVRegs.push_back(VirtReg.reg()); 3149 } else { 3150 NamedRegionTimer T("spill", "Spiller", TimerGroupName, 3151 TimerGroupDescription, TimePassesIsEnabled); 3152 LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 3153 spiller().spill(LRE); 3154 setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done); 3155 3156 // Tell LiveDebugVariables about the new ranges. Ranges not being covered by 3157 // the new regs are kept in LDV (still mapping to the old register), until 3158 // we rewrite spilled locations in LDV at a later stage. 3159 DebugVars->splitRegister(VirtReg.reg(), LRE.regs(), *LIS); 3160 3161 if (VerifyEnabled) 3162 MF->verify(this, "After spilling"); 3163 } 3164 3165 // The live virtual register requesting allocation was spilled, so tell 3166 // the caller not to allocate anything during this round. 3167 return 0; 3168 } 3169 3170 void RAGreedy::RAGreedyStats::report(MachineOptimizationRemarkMissed &R) { 3171 using namespace ore; 3172 if (Spills) { 3173 R << NV("NumSpills", Spills) << " spills "; 3174 R << NV("TotalSpillsCost", SpillsCost) << " total spills cost "; 3175 } 3176 if (FoldedSpills) { 3177 R << NV("NumFoldedSpills", FoldedSpills) << " folded spills "; 3178 R << NV("TotalFoldedSpillsCost", FoldedSpillsCost) 3179 << " total folded spills cost "; 3180 } 3181 if (Reloads) { 3182 R << NV("NumReloads", Reloads) << " reloads "; 3183 R << NV("TotalReloadsCost", ReloadsCost) << " total reloads cost "; 3184 } 3185 if (FoldedReloads) { 3186 R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads "; 3187 R << NV("TotalFoldedReloadsCost", FoldedReloadsCost) 3188 << " total folded reloads cost "; 3189 } 3190 if (ZeroCostFoldedReloads) 3191 R << NV("NumZeroCostFoldedReloads", ZeroCostFoldedReloads) 3192 << " zero cost folded reloads "; 3193 if (Copies) { 3194 R << NV("NumVRCopies", Copies) << " virtual registers copies "; 3195 R << NV("TotalCopiesCost", CopiesCost) << " total copies cost "; 3196 } 3197 } 3198 3199 RAGreedy::RAGreedyStats RAGreedy::computeStats(MachineBasicBlock &MBB) { 3200 RAGreedyStats Stats; 3201 const MachineFrameInfo &MFI = MF->getFrameInfo(); 3202 int FI; 3203 3204 auto isSpillSlotAccess = [&MFI](const MachineMemOperand *A) { 3205 return MFI.isSpillSlotObjectIndex(cast<FixedStackPseudoSourceValue>( 3206 A->getPseudoValue())->getFrameIndex()); 3207 }; 3208 auto isPatchpointInstr = [](const MachineInstr &MI) { 3209 return MI.getOpcode() == TargetOpcode::PATCHPOINT || 3210 MI.getOpcode() == TargetOpcode::STACKMAP || 3211 MI.getOpcode() == TargetOpcode::STATEPOINT; 3212 }; 3213 for (MachineInstr &MI : MBB) { 3214 if (MI.isCopy()) { 3215 MachineOperand &Dest = MI.getOperand(0); 3216 MachineOperand &Src = MI.getOperand(1); 3217 if (Dest.isReg() && Src.isReg() && Dest.getReg().isVirtual() && 3218 Src.getReg().isVirtual()) 3219 ++Stats.Copies; 3220 continue; 3221 } 3222 3223 SmallVector<const MachineMemOperand *, 2> Accesses; 3224 if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) { 3225 ++Stats.Reloads; 3226 continue; 3227 } 3228 if (TII->isStoreToStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) { 3229 ++Stats.Spills; 3230 continue; 3231 } 3232 if (TII->hasLoadFromStackSlot(MI, Accesses) && 3233 llvm::any_of(Accesses, isSpillSlotAccess)) { 3234 if (!isPatchpointInstr(MI)) { 3235 Stats.FoldedReloads += Accesses.size(); 3236 continue; 3237 } 3238 // For statepoint there may be folded and zero cost folded stack reloads. 3239 std::pair<unsigned, unsigned> NonZeroCostRange = 3240 TII->getPatchpointUnfoldableRange(MI); 3241 SmallSet<unsigned, 16> FoldedReloads; 3242 SmallSet<unsigned, 16> ZeroCostFoldedReloads; 3243 for (unsigned Idx = 0, E = MI.getNumOperands(); Idx < E; ++Idx) { 3244 MachineOperand &MO = MI.getOperand(Idx); 3245 if (!MO.isFI() || !MFI.isSpillSlotObjectIndex(MO.getIndex())) 3246 continue; 3247 if (Idx >= NonZeroCostRange.first && Idx < NonZeroCostRange.second) 3248 FoldedReloads.insert(MO.getIndex()); 3249 else 3250 ZeroCostFoldedReloads.insert(MO.getIndex()); 3251 } 3252 // If stack slot is used in folded reload it is not zero cost then. 3253 for (unsigned Slot : FoldedReloads) 3254 ZeroCostFoldedReloads.erase(Slot); 3255 Stats.FoldedReloads += FoldedReloads.size(); 3256 Stats.ZeroCostFoldedReloads += ZeroCostFoldedReloads.size(); 3257 continue; 3258 } 3259 Accesses.clear(); 3260 if (TII->hasStoreToStackSlot(MI, Accesses) && 3261 llvm::any_of(Accesses, isSpillSlotAccess)) { 3262 Stats.FoldedSpills += Accesses.size(); 3263 } 3264 } 3265 // Set cost of collected statistic by multiplication to relative frequency of 3266 // this basic block. 3267 float RelFreq = MBFI->getBlockFreqRelativeToEntryBlock(&MBB); 3268 Stats.ReloadsCost = RelFreq * Stats.Reloads; 3269 Stats.FoldedReloadsCost = RelFreq * Stats.FoldedReloads; 3270 Stats.SpillsCost = RelFreq * Stats.Spills; 3271 Stats.FoldedSpillsCost = RelFreq * Stats.FoldedSpills; 3272 Stats.CopiesCost = RelFreq * Stats.Copies; 3273 return Stats; 3274 } 3275 3276 RAGreedy::RAGreedyStats RAGreedy::reportStats(MachineLoop *L) { 3277 RAGreedyStats Stats; 3278 3279 // Sum up the spill and reloads in subloops. 3280 for (MachineLoop *SubLoop : *L) 3281 Stats.add(reportStats(SubLoop)); 3282 3283 for (MachineBasicBlock *MBB : L->getBlocks()) 3284 // Handle blocks that were not included in subloops. 3285 if (Loops->getLoopFor(MBB) == L) 3286 Stats.add(computeStats(*MBB)); 3287 3288 if (!Stats.isEmpty()) { 3289 using namespace ore; 3290 3291 ORE->emit([&]() { 3292 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReloadCopies", 3293 L->getStartLoc(), L->getHeader()); 3294 Stats.report(R); 3295 R << "generated in loop"; 3296 return R; 3297 }); 3298 } 3299 return Stats; 3300 } 3301 3302 void RAGreedy::reportStats() { 3303 if (!ORE->allowExtraAnalysis(DEBUG_TYPE)) 3304 return; 3305 RAGreedyStats Stats; 3306 for (MachineLoop *L : *Loops) 3307 Stats.add(reportStats(L)); 3308 // Process non-loop blocks. 3309 for (MachineBasicBlock &MBB : *MF) 3310 if (!Loops->getLoopFor(&MBB)) 3311 Stats.add(computeStats(MBB)); 3312 if (!Stats.isEmpty()) { 3313 using namespace ore; 3314 3315 ORE->emit([&]() { 3316 DebugLoc Loc; 3317 if (auto *SP = MF->getFunction().getSubprogram()) 3318 Loc = DILocation::get(SP->getContext(), SP->getLine(), 1, SP); 3319 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "SpillReloadCopies", Loc, 3320 &MF->front()); 3321 Stats.report(R); 3322 R << "generated in function"; 3323 return R; 3324 }); 3325 } 3326 } 3327 3328 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) { 3329 LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n" 3330 << "********** Function: " << mf.getName() << '\n'); 3331 3332 MF = &mf; 3333 TRI = MF->getSubtarget().getRegisterInfo(); 3334 TII = MF->getSubtarget().getInstrInfo(); 3335 RCI.runOnMachineFunction(mf); 3336 3337 EnableLocalReassign = EnableLocalReassignment || 3338 MF->getSubtarget().enableRALocalReassignment( 3339 MF->getTarget().getOptLevel()); 3340 3341 EnableAdvancedRASplitCost = 3342 ConsiderLocalIntervalCost.getNumOccurrences() 3343 ? ConsiderLocalIntervalCost 3344 : MF->getSubtarget().enableAdvancedRASplitCost(); 3345 3346 if (VerifyEnabled) 3347 MF->verify(this, "Before greedy register allocator"); 3348 3349 RegAllocBase::init(getAnalysis<VirtRegMap>(), 3350 getAnalysis<LiveIntervals>(), 3351 getAnalysis<LiveRegMatrix>()); 3352 Indexes = &getAnalysis<SlotIndexes>(); 3353 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 3354 DomTree = &getAnalysis<MachineDominatorTree>(); 3355 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 3356 Loops = &getAnalysis<MachineLoopInfo>(); 3357 Bundles = &getAnalysis<EdgeBundles>(); 3358 SpillPlacer = &getAnalysis<SpillPlacement>(); 3359 DebugVars = &getAnalysis<LiveDebugVariables>(); 3360 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3361 3362 initializeCSRCost(); 3363 3364 RegCosts = TRI->getRegisterCosts(*MF); 3365 3366 VRAI = std::make_unique<VirtRegAuxInfo>(*MF, *LIS, *VRM, *Loops, *MBFI); 3367 SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM, *VRAI)); 3368 3369 VRAI->calculateSpillWeightsAndHints(); 3370 3371 LLVM_DEBUG(LIS->dump()); 3372 3373 SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops)); 3374 SE.reset(new SplitEditor(*SA, *AA, *LIS, *VRM, *DomTree, *MBFI, *VRAI)); 3375 ExtraRegInfo.clear(); 3376 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 3377 NextCascade = 1; 3378 IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI); 3379 GlobalCand.resize(32); // This will grow as needed. 3380 SetOfBrokenHints.clear(); 3381 LastEvicted.clear(); 3382 3383 allocatePhysRegs(); 3384 tryHintsRecoloring(); 3385 3386 if (VerifyEnabled) 3387 MF->verify(this, "Before post optimization"); 3388 postOptimization(); 3389 reportStats(); 3390 3391 releaseMemory(); 3392 return true; 3393 } 3394