1 //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the RAGreedy function pass for register allocation in
10 // optimized builds.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "AllocationOrder.h"
15 #include "InterferenceCache.h"
16 #include "LiveDebugVariables.h"
17 #include "RegAllocBase.h"
18 #include "SpillPlacement.h"
19 #include "SplitKit.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/BitVector.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/IndexedMap.h"
24 #include "llvm/ADT/MapVector.h"
25 #include "llvm/ADT/SetVector.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallSet.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/Analysis/AliasAnalysis.h"
32 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
33 #include "llvm/CodeGen/CalcSpillWeights.h"
34 #include "llvm/CodeGen/EdgeBundles.h"
35 #include "llvm/CodeGen/LiveInterval.h"
36 #include "llvm/CodeGen/LiveIntervalUnion.h"
37 #include "llvm/CodeGen/LiveIntervals.h"
38 #include "llvm/CodeGen/LiveRangeEdit.h"
39 #include "llvm/CodeGen/LiveRegMatrix.h"
40 #include "llvm/CodeGen/LiveStacks.h"
41 #include "llvm/CodeGen/MachineBasicBlock.h"
42 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
43 #include "llvm/CodeGen/MachineDominators.h"
44 #include "llvm/CodeGen/MachineFrameInfo.h"
45 #include "llvm/CodeGen/MachineFunction.h"
46 #include "llvm/CodeGen/MachineFunctionPass.h"
47 #include "llvm/CodeGen/MachineInstr.h"
48 #include "llvm/CodeGen/MachineLoopInfo.h"
49 #include "llvm/CodeGen/MachineOperand.h"
50 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
51 #include "llvm/CodeGen/MachineRegisterInfo.h"
52 #include "llvm/CodeGen/RegAllocRegistry.h"
53 #include "llvm/CodeGen/RegisterClassInfo.h"
54 #include "llvm/CodeGen/SlotIndexes.h"
55 #include "llvm/CodeGen/Spiller.h"
56 #include "llvm/CodeGen/TargetInstrInfo.h"
57 #include "llvm/CodeGen/TargetRegisterInfo.h"
58 #include "llvm/CodeGen/TargetSubtargetInfo.h"
59 #include "llvm/CodeGen/VirtRegMap.h"
60 #include "llvm/IR/Function.h"
61 #include "llvm/IR/LLVMContext.h"
62 #include "llvm/MC/MCRegisterInfo.h"
63 #include "llvm/Pass.h"
64 #include "llvm/Support/BlockFrequency.h"
65 #include "llvm/Support/BranchProbability.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/Debug.h"
68 #include "llvm/Support/MathExtras.h"
69 #include "llvm/Support/Timer.h"
70 #include "llvm/Support/raw_ostream.h"
71 #include "llvm/Target/TargetMachine.h"
72 #include "llvm/IR/DebugInfoMetadata.h"
73 #include <algorithm>
74 #include <cassert>
75 #include <cstdint>
76 #include <memory>
77 #include <queue>
78 #include <tuple>
79 #include <utility>
80 
81 using namespace llvm;
82 
83 #define DEBUG_TYPE "regalloc"
84 
85 STATISTIC(NumGlobalSplits, "Number of split global live ranges");
86 STATISTIC(NumLocalSplits,  "Number of split local live ranges");
87 STATISTIC(NumEvicted,      "Number of interferences evicted");
88 
89 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode(
90     "split-spill-mode", cl::Hidden,
91     cl::desc("Spill mode for splitting live ranges"),
92     cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"),
93                clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"),
94                clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")),
95     cl::init(SplitEditor::SM_Speed));
96 
97 static cl::opt<unsigned>
98 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden,
99                              cl::desc("Last chance recoloring max depth"),
100                              cl::init(5));
101 
102 static cl::opt<unsigned> LastChanceRecoloringMaxInterference(
103     "lcr-max-interf", cl::Hidden,
104     cl::desc("Last chance recoloring maximum number of considered"
105              " interference at a time"),
106     cl::init(8));
107 
108 static cl::opt<bool> ExhaustiveSearch(
109     "exhaustive-register-search", cl::NotHidden,
110     cl::desc("Exhaustive Search for registers bypassing the depth "
111              "and interference cutoffs of last chance recoloring"),
112     cl::Hidden);
113 
114 static cl::opt<bool> EnableLocalReassignment(
115     "enable-local-reassign", cl::Hidden,
116     cl::desc("Local reassignment can yield better allocation decisions, but "
117              "may be compile time intensive"),
118     cl::init(false));
119 
120 static cl::opt<bool> EnableDeferredSpilling(
121     "enable-deferred-spilling", cl::Hidden,
122     cl::desc("Instead of spilling a variable right away, defer the actual "
123              "code insertion to the end of the allocation. That way the "
124              "allocator might still find a suitable coloring for this "
125              "variable because of other evicted variables."),
126     cl::init(false));
127 
128 // FIXME: Find a good default for this flag and remove the flag.
129 static cl::opt<unsigned>
130 CSRFirstTimeCost("regalloc-csr-first-time-cost",
131               cl::desc("Cost for first time use of callee-saved register."),
132               cl::init(0), cl::Hidden);
133 
134 static cl::opt<bool> ConsiderLocalIntervalCost(
135     "consider-local-interval-cost", cl::Hidden,
136     cl::desc("Consider the cost of local intervals created by a split "
137              "candidate when choosing the best split candidate."),
138     cl::init(false));
139 
140 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
141                                        createGreedyRegisterAllocator);
142 
143 namespace {
144 
145 class RAGreedy : public MachineFunctionPass,
146                  public RegAllocBase,
147                  private LiveRangeEdit::Delegate {
148   // Convenient shortcuts.
149   using PQueue = std::priority_queue<std::pair<unsigned, unsigned>>;
150   using SmallLISet = SmallPtrSet<LiveInterval *, 4>;
151   using SmallVirtRegSet = SmallSet<Register, 16>;
152 
153   // context
154   MachineFunction *MF;
155 
156   // Shortcuts to some useful interface.
157   const TargetInstrInfo *TII;
158   const TargetRegisterInfo *TRI;
159   RegisterClassInfo RCI;
160 
161   // analyses
162   SlotIndexes *Indexes;
163   MachineBlockFrequencyInfo *MBFI;
164   MachineDominatorTree *DomTree;
165   MachineLoopInfo *Loops;
166   MachineOptimizationRemarkEmitter *ORE;
167   EdgeBundles *Bundles;
168   SpillPlacement *SpillPlacer;
169   LiveDebugVariables *DebugVars;
170   AliasAnalysis *AA;
171 
172   // state
173   std::unique_ptr<Spiller> SpillerInstance;
174   PQueue Queue;
175   unsigned NextCascade;
176   std::unique_ptr<VirtRegAuxInfo> VRAI;
177 
178   // Live ranges pass through a number of stages as we try to allocate them.
179   // Some of the stages may also create new live ranges:
180   //
181   // - Region splitting.
182   // - Per-block splitting.
183   // - Local splitting.
184   // - Spilling.
185   //
186   // Ranges produced by one of the stages skip the previous stages when they are
187   // dequeued. This improves performance because we can skip interference checks
188   // that are unlikely to give any results. It also guarantees that the live
189   // range splitting algorithm terminates, something that is otherwise hard to
190   // ensure.
191   enum LiveRangeStage {
192     /// Newly created live range that has never been queued.
193     RS_New,
194 
195     /// Only attempt assignment and eviction. Then requeue as RS_Split.
196     RS_Assign,
197 
198     /// Attempt live range splitting if assignment is impossible.
199     RS_Split,
200 
201     /// Attempt more aggressive live range splitting that is guaranteed to make
202     /// progress.  This is used for split products that may not be making
203     /// progress.
204     RS_Split2,
205 
206     /// Live range will be spilled.  No more splitting will be attempted.
207     RS_Spill,
208 
209 
210     /// Live range is in memory. Because of other evictions, it might get moved
211     /// in a register in the end.
212     RS_Memory,
213 
214     /// There is nothing more we can do to this live range.  Abort compilation
215     /// if it can't be assigned.
216     RS_Done
217   };
218 
219   // Enum CutOffStage to keep a track whether the register allocation failed
220   // because of the cutoffs encountered in last chance recoloring.
221   // Note: This is used as bitmask. New value should be next power of 2.
222   enum CutOffStage {
223     // No cutoffs encountered
224     CO_None = 0,
225 
226     // lcr-max-depth cutoff encountered
227     CO_Depth = 1,
228 
229     // lcr-max-interf cutoff encountered
230     CO_Interf = 2
231   };
232 
233   uint8_t CutOffInfo;
234 
235 #ifndef NDEBUG
236   static const char *const StageName[];
237 #endif
238 
239   // RegInfo - Keep additional information about each live range.
240   struct RegInfo {
241     LiveRangeStage Stage = RS_New;
242 
243     // Cascade - Eviction loop prevention. See canEvictInterference().
244     unsigned Cascade = 0;
245 
246     RegInfo() = default;
247   };
248 
249   IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo;
250 
251   LiveRangeStage getStage(const LiveInterval &VirtReg) const {
252     return ExtraRegInfo[VirtReg.reg()].Stage;
253   }
254 
255   void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) {
256     ExtraRegInfo.resize(MRI->getNumVirtRegs());
257     ExtraRegInfo[VirtReg.reg()].Stage = Stage;
258   }
259 
260   template<typename Iterator>
261   void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) {
262     ExtraRegInfo.resize(MRI->getNumVirtRegs());
263     for (;Begin != End; ++Begin) {
264       Register Reg = *Begin;
265       if (ExtraRegInfo[Reg].Stage == RS_New)
266         ExtraRegInfo[Reg].Stage = NewStage;
267     }
268   }
269 
270   /// Cost of evicting interference.
271   struct EvictionCost {
272     unsigned BrokenHints = 0; ///< Total number of broken hints.
273     float MaxWeight = 0;      ///< Maximum spill weight evicted.
274 
275     EvictionCost() = default;
276 
277     bool isMax() const { return BrokenHints == ~0u; }
278 
279     void setMax() { BrokenHints = ~0u; }
280 
281     void setBrokenHints(unsigned NHints) { BrokenHints = NHints; }
282 
283     bool operator<(const EvictionCost &O) const {
284       return std::tie(BrokenHints, MaxWeight) <
285              std::tie(O.BrokenHints, O.MaxWeight);
286     }
287   };
288 
289   /// EvictionTrack - Keeps track of past evictions in order to optimize region
290   /// split decision.
291   class EvictionTrack {
292 
293   public:
294     using EvictorInfo =
295         std::pair<Register /* evictor */, MCRegister /* physreg */>;
296     using EvicteeInfo = llvm::DenseMap<Register /* evictee */, EvictorInfo>;
297 
298   private:
299     /// Each Vreg that has been evicted in the last stage of selectOrSplit will
300     /// be mapped to the evictor Vreg and the PhysReg it was evicted from.
301     EvicteeInfo Evictees;
302 
303   public:
304     /// Clear all eviction information.
305     void clear() { Evictees.clear(); }
306 
307     ///  Clear eviction information for the given evictee Vreg.
308     /// E.g. when Vreg get's a new allocation, the old eviction info is no
309     /// longer relevant.
310     /// \param Evictee The evictee Vreg for whom we want to clear collected
311     /// eviction info.
312     void clearEvicteeInfo(Register Evictee) { Evictees.erase(Evictee); }
313 
314     /// Track new eviction.
315     /// The Evictor vreg has evicted the Evictee vreg from Physreg.
316     /// \param PhysReg The physical register Evictee was evicted from.
317     /// \param Evictor The evictor Vreg that evicted Evictee.
318     /// \param Evictee The evictee Vreg.
319     void addEviction(MCRegister PhysReg, Register Evictor, Register Evictee) {
320       Evictees[Evictee].first = Evictor;
321       Evictees[Evictee].second = PhysReg;
322     }
323 
324     /// Return the Evictor Vreg which evicted Evictee Vreg from PhysReg.
325     /// \param Evictee The evictee vreg.
326     /// \return The Evictor vreg which evicted Evictee vreg from PhysReg. 0 if
327     /// nobody has evicted Evictee from PhysReg.
328     EvictorInfo getEvictor(Register Evictee) {
329       if (Evictees.count(Evictee)) {
330         return Evictees[Evictee];
331       }
332 
333       return EvictorInfo(0, 0);
334     }
335   };
336 
337   // Keeps track of past evictions in order to optimize region split decision.
338   EvictionTrack LastEvicted;
339 
340   // splitting state.
341   std::unique_ptr<SplitAnalysis> SA;
342   std::unique_ptr<SplitEditor> SE;
343 
344   /// Cached per-block interference maps
345   InterferenceCache IntfCache;
346 
347   /// All basic blocks where the current register has uses.
348   SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints;
349 
350   /// Global live range splitting candidate info.
351   struct GlobalSplitCandidate {
352     // Register intended for assignment, or 0.
353     MCRegister PhysReg;
354 
355     // SplitKit interval index for this candidate.
356     unsigned IntvIdx;
357 
358     // Interference for PhysReg.
359     InterferenceCache::Cursor Intf;
360 
361     // Bundles where this candidate should be live.
362     BitVector LiveBundles;
363     SmallVector<unsigned, 8> ActiveBlocks;
364 
365     void reset(InterferenceCache &Cache, MCRegister Reg) {
366       PhysReg = Reg;
367       IntvIdx = 0;
368       Intf.setPhysReg(Cache, Reg);
369       LiveBundles.clear();
370       ActiveBlocks.clear();
371     }
372 
373     // Set B[I] = C for every live bundle where B[I] was NoCand.
374     unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) {
375       unsigned Count = 0;
376       for (unsigned I : LiveBundles.set_bits())
377         if (B[I] == NoCand) {
378           B[I] = C;
379           Count++;
380         }
381       return Count;
382     }
383   };
384 
385   /// Candidate info for each PhysReg in AllocationOrder.
386   /// This vector never shrinks, but grows to the size of the largest register
387   /// class.
388   SmallVector<GlobalSplitCandidate, 32> GlobalCand;
389 
390   enum : unsigned { NoCand = ~0u };
391 
392   /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to
393   /// NoCand which indicates the stack interval.
394   SmallVector<unsigned, 32> BundleCand;
395 
396   /// Callee-save register cost, calculated once per machine function.
397   BlockFrequency CSRCost;
398 
399   /// Run or not the local reassignment heuristic. This information is
400   /// obtained from the TargetSubtargetInfo.
401   bool EnableLocalReassign;
402 
403   /// Enable or not the consideration of the cost of local intervals created
404   /// by a split candidate when choosing the best split candidate.
405   bool EnableAdvancedRASplitCost;
406 
407   /// Set of broken hints that may be reconciled later because of eviction.
408   SmallSetVector<LiveInterval *, 8> SetOfBrokenHints;
409 
410   /// The register cost values. This list will be recreated for each Machine
411   /// Function
412   ArrayRef<uint8_t> RegCosts;
413 
414 public:
415   RAGreedy(const RegClassFilterFunc F = allocateAllRegClasses);
416 
417   /// Return the pass name.
418   StringRef getPassName() const override { return "Greedy Register Allocator"; }
419 
420   /// RAGreedy analysis usage.
421   void getAnalysisUsage(AnalysisUsage &AU) const override;
422   void releaseMemory() override;
423   Spiller &spiller() override { return *SpillerInstance; }
424   void enqueueImpl(LiveInterval *LI) override;
425   LiveInterval *dequeue() override;
426   MCRegister selectOrSplit(LiveInterval &,
427                            SmallVectorImpl<Register> &) override;
428   void aboutToRemoveInterval(LiveInterval &) override;
429 
430   /// Perform register allocation.
431   bool runOnMachineFunction(MachineFunction &mf) override;
432 
433   MachineFunctionProperties getRequiredProperties() const override {
434     return MachineFunctionProperties().set(
435         MachineFunctionProperties::Property::NoPHIs);
436   }
437 
438   MachineFunctionProperties getClearedProperties() const override {
439     return MachineFunctionProperties().set(
440       MachineFunctionProperties::Property::IsSSA);
441   }
442 
443   static char ID;
444 
445 private:
446   MCRegister selectOrSplitImpl(LiveInterval &, SmallVectorImpl<Register> &,
447                                SmallVirtRegSet &, unsigned = 0);
448 
449   bool LRE_CanEraseVirtReg(Register) override;
450   void LRE_WillShrinkVirtReg(Register) override;
451   void LRE_DidCloneVirtReg(Register, Register) override;
452   void enqueue(PQueue &CurQueue, LiveInterval *LI);
453   LiveInterval *dequeue(PQueue &CurQueue);
454 
455   BlockFrequency calcSpillCost();
456   bool addSplitConstraints(InterferenceCache::Cursor, BlockFrequency&);
457   bool addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>);
458   bool growRegion(GlobalSplitCandidate &Cand);
459   bool splitCanCauseEvictionChain(Register Evictee, GlobalSplitCandidate &Cand,
460                                   unsigned BBNumber,
461                                   const AllocationOrder &Order);
462   bool splitCanCauseLocalSpill(unsigned VirtRegToSplit,
463                                GlobalSplitCandidate &Cand, unsigned BBNumber,
464                                const AllocationOrder &Order);
465   BlockFrequency calcGlobalSplitCost(GlobalSplitCandidate &,
466                                      const AllocationOrder &Order,
467                                      bool *CanCauseEvictionChain);
468   bool calcCompactRegion(GlobalSplitCandidate&);
469   void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>);
470   void calcGapWeights(MCRegister, SmallVectorImpl<float> &);
471   Register canReassign(LiveInterval &VirtReg, Register PrevReg) const;
472   bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool) const;
473   bool canEvictInterference(LiveInterval &, MCRegister, bool, EvictionCost &,
474                             const SmallVirtRegSet &) const;
475   bool canEvictInterferenceInRange(const LiveInterval &VirtReg,
476                                    MCRegister PhysReg, SlotIndex Start,
477                                    SlotIndex End, EvictionCost &MaxCost) const;
478   MCRegister getCheapestEvicteeWeight(const AllocationOrder &Order,
479                                       const LiveInterval &VirtReg,
480                                       SlotIndex Start, SlotIndex End,
481                                       float *BestEvictWeight) const;
482   void evictInterference(LiveInterval &, MCRegister,
483                          SmallVectorImpl<Register> &);
484   bool mayRecolorAllInterferences(MCRegister PhysReg, LiveInterval &VirtReg,
485                                   SmallLISet &RecoloringCandidates,
486                                   const SmallVirtRegSet &FixedRegisters);
487 
488   MCRegister tryAssign(LiveInterval&, AllocationOrder&,
489                      SmallVectorImpl<Register>&,
490                      const SmallVirtRegSet&);
491   MCRegister tryEvict(LiveInterval &, AllocationOrder &,
492                     SmallVectorImpl<Register> &, uint8_t,
493                     const SmallVirtRegSet &);
494   MCRegister tryRegionSplit(LiveInterval &, AllocationOrder &,
495                             SmallVectorImpl<Register> &);
496   /// Calculate cost of region splitting.
497   unsigned calculateRegionSplitCost(LiveInterval &VirtReg,
498                                     AllocationOrder &Order,
499                                     BlockFrequency &BestCost,
500                                     unsigned &NumCands, bool IgnoreCSR,
501                                     bool *CanCauseEvictionChain = nullptr);
502   /// Perform region splitting.
503   unsigned doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
504                          bool HasCompact,
505                          SmallVectorImpl<Register> &NewVRegs);
506   /// Check other options before using a callee-saved register for the first
507   /// time.
508   MCRegister tryAssignCSRFirstTime(LiveInterval &VirtReg,
509                                    AllocationOrder &Order, MCRegister PhysReg,
510                                    uint8_t &CostPerUseLimit,
511                                    SmallVectorImpl<Register> &NewVRegs);
512   void initializeCSRCost();
513   unsigned tryBlockSplit(LiveInterval&, AllocationOrder&,
514                          SmallVectorImpl<Register>&);
515   unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&,
516                                SmallVectorImpl<Register>&);
517   unsigned tryLocalSplit(LiveInterval&, AllocationOrder&,
518     SmallVectorImpl<Register>&);
519   unsigned trySplit(LiveInterval&, AllocationOrder&,
520                     SmallVectorImpl<Register>&,
521                     const SmallVirtRegSet&);
522   unsigned tryLastChanceRecoloring(LiveInterval &, AllocationOrder &,
523                                    SmallVectorImpl<Register> &,
524                                    SmallVirtRegSet &, unsigned);
525   bool tryRecoloringCandidates(PQueue &, SmallVectorImpl<Register> &,
526                                SmallVirtRegSet &, unsigned);
527   void tryHintRecoloring(LiveInterval &);
528   void tryHintsRecoloring();
529 
530   /// Model the information carried by one end of a copy.
531   struct HintInfo {
532     /// The frequency of the copy.
533     BlockFrequency Freq;
534     /// The virtual register or physical register.
535     Register Reg;
536     /// Its currently assigned register.
537     /// In case of a physical register Reg == PhysReg.
538     MCRegister PhysReg;
539 
540     HintInfo(BlockFrequency Freq, Register Reg, MCRegister PhysReg)
541         : Freq(Freq), Reg(Reg), PhysReg(PhysReg) {}
542   };
543   using HintsInfo = SmallVector<HintInfo, 4>;
544 
545   BlockFrequency getBrokenHintFreq(const HintsInfo &, MCRegister);
546   void collectHintInfo(Register, HintsInfo &);
547 
548   bool isUnusedCalleeSavedReg(MCRegister PhysReg) const;
549 
550   /// Greedy RA statistic to remark.
551   struct RAGreedyStats {
552     unsigned Reloads = 0;
553     unsigned FoldedReloads = 0;
554     unsigned ZeroCostFoldedReloads = 0;
555     unsigned Spills = 0;
556     unsigned FoldedSpills = 0;
557     unsigned Copies = 0;
558     float ReloadsCost = 0.0f;
559     float FoldedReloadsCost = 0.0f;
560     float SpillsCost = 0.0f;
561     float FoldedSpillsCost = 0.0f;
562     float CopiesCost = 0.0f;
563 
564     bool isEmpty() {
565       return !(Reloads || FoldedReloads || Spills || FoldedSpills ||
566                ZeroCostFoldedReloads || Copies);
567     }
568 
569     void add(RAGreedyStats other) {
570       Reloads += other.Reloads;
571       FoldedReloads += other.FoldedReloads;
572       ZeroCostFoldedReloads += other.ZeroCostFoldedReloads;
573       Spills += other.Spills;
574       FoldedSpills += other.FoldedSpills;
575       Copies += other.Copies;
576       ReloadsCost += other.ReloadsCost;
577       FoldedReloadsCost += other.FoldedReloadsCost;
578       SpillsCost += other.SpillsCost;
579       FoldedSpillsCost += other.FoldedSpillsCost;
580       CopiesCost += other.CopiesCost;
581     }
582 
583     void report(MachineOptimizationRemarkMissed &R);
584   };
585 
586   /// Compute statistic for a basic block.
587   RAGreedyStats computeStats(MachineBasicBlock &MBB);
588 
589   /// Compute and report statistic through a remark.
590   RAGreedyStats reportStats(MachineLoop *L);
591 
592   /// Report the statistic for each loop.
593   void reportStats();
594 };
595 
596 } // end anonymous namespace
597 
598 char RAGreedy::ID = 0;
599 char &llvm::RAGreedyID = RAGreedy::ID;
600 
601 INITIALIZE_PASS_BEGIN(RAGreedy, "greedy",
602                 "Greedy Register Allocator", false, false)
603 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
604 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
605 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
606 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer)
607 INITIALIZE_PASS_DEPENDENCY(MachineScheduler)
608 INITIALIZE_PASS_DEPENDENCY(LiveStacks)
609 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
610 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
611 INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
612 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix)
613 INITIALIZE_PASS_DEPENDENCY(EdgeBundles)
614 INITIALIZE_PASS_DEPENDENCY(SpillPlacement)
615 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass)
616 INITIALIZE_PASS_END(RAGreedy, "greedy",
617                 "Greedy Register Allocator", false, false)
618 
619 #ifndef NDEBUG
620 const char *const RAGreedy::StageName[] = {
621     "RS_New",
622     "RS_Assign",
623     "RS_Split",
624     "RS_Split2",
625     "RS_Spill",
626     "RS_Memory",
627     "RS_Done"
628 };
629 #endif
630 
631 // Hysteresis to use when comparing floats.
632 // This helps stabilize decisions based on float comparisons.
633 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875
634 
635 FunctionPass* llvm::createGreedyRegisterAllocator() {
636   return new RAGreedy();
637 }
638 
639 namespace llvm {
640 FunctionPass* createGreedyRegisterAllocator(
641   std::function<bool(const TargetRegisterInfo &TRI,
642                      const TargetRegisterClass &RC)> Ftor);
643 
644 }
645 
646 FunctionPass* llvm::createGreedyRegisterAllocator(
647   std::function<bool(const TargetRegisterInfo &TRI,
648                      const TargetRegisterClass &RC)> Ftor) {
649   return new RAGreedy(Ftor);
650 }
651 
652 RAGreedy::RAGreedy(RegClassFilterFunc F):
653   MachineFunctionPass(ID),
654   RegAllocBase(F) {
655 }
656 
657 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
658   AU.setPreservesCFG();
659   AU.addRequired<MachineBlockFrequencyInfo>();
660   AU.addPreserved<MachineBlockFrequencyInfo>();
661   AU.addRequired<AAResultsWrapperPass>();
662   AU.addPreserved<AAResultsWrapperPass>();
663   AU.addRequired<LiveIntervals>();
664   AU.addPreserved<LiveIntervals>();
665   AU.addRequired<SlotIndexes>();
666   AU.addPreserved<SlotIndexes>();
667   AU.addRequired<LiveDebugVariables>();
668   AU.addPreserved<LiveDebugVariables>();
669   AU.addRequired<LiveStacks>();
670   AU.addPreserved<LiveStacks>();
671   AU.addRequired<MachineDominatorTree>();
672   AU.addPreserved<MachineDominatorTree>();
673   AU.addRequired<MachineLoopInfo>();
674   AU.addPreserved<MachineLoopInfo>();
675   AU.addRequired<VirtRegMap>();
676   AU.addPreserved<VirtRegMap>();
677   AU.addRequired<LiveRegMatrix>();
678   AU.addPreserved<LiveRegMatrix>();
679   AU.addRequired<EdgeBundles>();
680   AU.addRequired<SpillPlacement>();
681   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
682   MachineFunctionPass::getAnalysisUsage(AU);
683 }
684 
685 //===----------------------------------------------------------------------===//
686 //                     LiveRangeEdit delegate methods
687 //===----------------------------------------------------------------------===//
688 
689 bool RAGreedy::LRE_CanEraseVirtReg(Register VirtReg) {
690   LiveInterval &LI = LIS->getInterval(VirtReg);
691   if (VRM->hasPhys(VirtReg)) {
692     Matrix->unassign(LI);
693     aboutToRemoveInterval(LI);
694     return true;
695   }
696   // Unassigned virtreg is probably in the priority queue.
697   // RegAllocBase will erase it after dequeueing.
698   // Nonetheless, clear the live-range so that the debug
699   // dump will show the right state for that VirtReg.
700   LI.clear();
701   return false;
702 }
703 
704 void RAGreedy::LRE_WillShrinkVirtReg(Register VirtReg) {
705   if (!VRM->hasPhys(VirtReg))
706     return;
707 
708   // Register is assigned, put it back on the queue for reassignment.
709   LiveInterval &LI = LIS->getInterval(VirtReg);
710   Matrix->unassign(LI);
711   RegAllocBase::enqueue(&LI);
712 }
713 
714 void RAGreedy::LRE_DidCloneVirtReg(Register New, Register Old) {
715   // Cloning a register we haven't even heard about yet?  Just ignore it.
716   if (!ExtraRegInfo.inBounds(Old))
717     return;
718 
719   // LRE may clone a virtual register because dead code elimination causes it to
720   // be split into connected components. The new components are much smaller
721   // than the original, so they should get a new chance at being assigned.
722   // same stage as the parent.
723   ExtraRegInfo[Old].Stage = RS_Assign;
724   ExtraRegInfo.grow(New);
725   ExtraRegInfo[New] = ExtraRegInfo[Old];
726 }
727 
728 void RAGreedy::releaseMemory() {
729   SpillerInstance.reset();
730   ExtraRegInfo.clear();
731   GlobalCand.clear();
732 }
733 
734 void RAGreedy::enqueueImpl(LiveInterval *LI) { enqueue(Queue, LI); }
735 
736 void RAGreedy::enqueue(PQueue &CurQueue, LiveInterval *LI) {
737   // Prioritize live ranges by size, assigning larger ranges first.
738   // The queue holds (size, reg) pairs.
739   const unsigned Size = LI->getSize();
740   const Register Reg = LI->reg();
741   assert(Reg.isVirtual() && "Can only enqueue virtual registers");
742   unsigned Prio;
743 
744   ExtraRegInfo.grow(Reg);
745   if (ExtraRegInfo[Reg].Stage == RS_New)
746     ExtraRegInfo[Reg].Stage = RS_Assign;
747 
748   if (ExtraRegInfo[Reg].Stage == RS_Split) {
749     // Unsplit ranges that couldn't be allocated immediately are deferred until
750     // everything else has been allocated.
751     Prio = Size;
752   } else if (ExtraRegInfo[Reg].Stage == RS_Memory) {
753     // Memory operand should be considered last.
754     // Change the priority such that Memory operand are assigned in
755     // the reverse order that they came in.
756     // TODO: Make this a member variable and probably do something about hints.
757     static unsigned MemOp = 0;
758     Prio = MemOp++;
759   } else {
760     // Giant live ranges fall back to the global assignment heuristic, which
761     // prevents excessive spilling in pathological cases.
762     bool ReverseLocal = TRI->reverseLocalAssignment();
763     const TargetRegisterClass &RC = *MRI->getRegClass(Reg);
764     bool ForceGlobal = !ReverseLocal &&
765       (Size / SlotIndex::InstrDist) > (2 * RC.getNumRegs());
766 
767     if (ExtraRegInfo[Reg].Stage == RS_Assign && !ForceGlobal && !LI->empty() &&
768         LIS->intervalIsInOneMBB(*LI)) {
769       // Allocate original local ranges in linear instruction order. Since they
770       // are singly defined, this produces optimal coloring in the absence of
771       // global interference and other constraints.
772       if (!ReverseLocal)
773         Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex());
774       else {
775         // Allocating bottom up may allow many short LRGs to be assigned first
776         // to one of the cheap registers. This could be much faster for very
777         // large blocks on targets with many physical registers.
778         Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex());
779       }
780       Prio |= RC.AllocationPriority << 24;
781     } else {
782       // Allocate global and split ranges in long->short order. Long ranges that
783       // don't fit should be spilled (or split) ASAP so they don't create
784       // interference.  Mark a bit to prioritize global above local ranges.
785       Prio = (1u << 29) + Size;
786 
787       Prio |= RC.AllocationPriority << 24;
788     }
789     // Mark a higher bit to prioritize global and local above RS_Split.
790     Prio |= (1u << 31);
791 
792     // Boost ranges that have a physical register hint.
793     if (VRM->hasKnownPreference(Reg))
794       Prio |= (1u << 30);
795   }
796   // The virtual register number is a tie breaker for same-sized ranges.
797   // Give lower vreg numbers higher priority to assign them first.
798   CurQueue.push(std::make_pair(Prio, ~Reg));
799 }
800 
801 LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); }
802 
803 LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) {
804   if (CurQueue.empty())
805     return nullptr;
806   LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second);
807   CurQueue.pop();
808   return LI;
809 }
810 
811 //===----------------------------------------------------------------------===//
812 //                            Direct Assignment
813 //===----------------------------------------------------------------------===//
814 
815 /// tryAssign - Try to assign VirtReg to an available register.
816 MCRegister RAGreedy::tryAssign(LiveInterval &VirtReg,
817                              AllocationOrder &Order,
818                              SmallVectorImpl<Register> &NewVRegs,
819                              const SmallVirtRegSet &FixedRegisters) {
820   MCRegister PhysReg;
821   for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) {
822     assert(*I);
823     if (!Matrix->checkInterference(VirtReg, *I)) {
824       if (I.isHint())
825         return *I;
826       else
827         PhysReg = *I;
828     }
829   }
830   if (!PhysReg.isValid())
831     return PhysReg;
832 
833   // PhysReg is available, but there may be a better choice.
834 
835   // If we missed a simple hint, try to cheaply evict interference from the
836   // preferred register.
837   if (Register Hint = MRI->getSimpleHint(VirtReg.reg()))
838     if (Order.isHint(Hint)) {
839       MCRegister PhysHint = Hint.asMCReg();
840       LLVM_DEBUG(dbgs() << "missed hint " << printReg(PhysHint, TRI) << '\n');
841       EvictionCost MaxCost;
842       MaxCost.setBrokenHints(1);
843       if (canEvictInterference(VirtReg, PhysHint, true, MaxCost,
844                                FixedRegisters)) {
845         evictInterference(VirtReg, PhysHint, NewVRegs);
846         return PhysHint;
847       }
848       // Record the missed hint, we may be able to recover
849       // at the end if the surrounding allocation changed.
850       SetOfBrokenHints.insert(&VirtReg);
851     }
852 
853   // Try to evict interference from a cheaper alternative.
854   uint8_t Cost = RegCosts[PhysReg];
855 
856   // Most registers have 0 additional cost.
857   if (!Cost)
858     return PhysReg;
859 
860   LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is available at cost "
861                     << Cost << '\n');
862   MCRegister CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost, FixedRegisters);
863   return CheapReg ? CheapReg : PhysReg;
864 }
865 
866 //===----------------------------------------------------------------------===//
867 //                         Interference eviction
868 //===----------------------------------------------------------------------===//
869 
870 Register RAGreedy::canReassign(LiveInterval &VirtReg, Register PrevReg) const {
871   auto Order =
872       AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix);
873   MCRegister PhysReg;
874   for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) {
875     if ((*I).id() == PrevReg.id())
876       continue;
877 
878     MCRegUnitIterator Units(*I, TRI);
879     for (; Units.isValid(); ++Units) {
880       // Instantiate a "subquery", not to be confused with the Queries array.
881       LiveIntervalUnion::Query subQ(VirtReg, Matrix->getLiveUnions()[*Units]);
882       if (subQ.checkInterference())
883         break;
884     }
885     // If no units have interference, break out with the current PhysReg.
886     if (!Units.isValid())
887       PhysReg = *I;
888   }
889   if (PhysReg)
890     LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg << " from "
891                       << printReg(PrevReg, TRI) << " to "
892                       << printReg(PhysReg, TRI) << '\n');
893   return PhysReg;
894 }
895 
896 /// shouldEvict - determine if A should evict the assigned live range B. The
897 /// eviction policy defined by this function together with the allocation order
898 /// defined by enqueue() decides which registers ultimately end up being split
899 /// and spilled.
900 ///
901 /// Cascade numbers are used to prevent infinite loops if this function is a
902 /// cyclic relation.
903 ///
904 /// @param A          The live range to be assigned.
905 /// @param IsHint     True when A is about to be assigned to its preferred
906 ///                   register.
907 /// @param B          The live range to be evicted.
908 /// @param BreaksHint True when B is already assigned to its preferred register.
909 bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint,
910                            LiveInterval &B, bool BreaksHint) const {
911   bool CanSplit = getStage(B) < RS_Spill;
912 
913   // Be fairly aggressive about following hints as long as the evictee can be
914   // split.
915   if (CanSplit && IsHint && !BreaksHint)
916     return true;
917 
918   if (A.weight() > B.weight()) {
919     LLVM_DEBUG(dbgs() << "should evict: " << B << " w= " << B.weight() << '\n');
920     return true;
921   }
922   return false;
923 }
924 
925 /// canEvictInterference - Return true if all interferences between VirtReg and
926 /// PhysReg can be evicted.
927 ///
928 /// @param VirtReg Live range that is about to be assigned.
929 /// @param PhysReg Desired register for assignment.
930 /// @param IsHint  True when PhysReg is VirtReg's preferred register.
931 /// @param MaxCost Only look for cheaper candidates and update with new cost
932 ///                when returning true.
933 /// @returns True when interference can be evicted cheaper than MaxCost.
934 bool RAGreedy::canEvictInterference(
935     LiveInterval &VirtReg, MCRegister PhysReg, bool IsHint,
936     EvictionCost &MaxCost, const SmallVirtRegSet &FixedRegisters) const {
937   // It is only possible to evict virtual register interference.
938   if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg)
939     return false;
940 
941   bool IsLocal = LIS->intervalIsInOneMBB(VirtReg);
942 
943   // Find VirtReg's cascade number. This will be unassigned if VirtReg was never
944   // involved in an eviction before. If a cascade number was assigned, deny
945   // evicting anything with the same or a newer cascade number. This prevents
946   // infinite eviction loops.
947   //
948   // This works out so a register without a cascade number is allowed to evict
949   // anything, and it can be evicted by anything.
950   unsigned Cascade = ExtraRegInfo[VirtReg.reg()].Cascade;
951   if (!Cascade)
952     Cascade = NextCascade;
953 
954   EvictionCost Cost;
955   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
956     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
957     // If there is 10 or more interferences, chances are one is heavier.
958     if (Q.collectInterferingVRegs(10) >= 10)
959       return false;
960 
961     // Check if any interfering live range is heavier than MaxWeight.
962     for (LiveInterval *Intf : reverse(Q.interferingVRegs())) {
963       assert(Register::isVirtualRegister(Intf->reg()) &&
964              "Only expecting virtual register interference from query");
965 
966       // Do not allow eviction of a virtual register if we are in the middle
967       // of last-chance recoloring and this virtual register is one that we
968       // have scavenged a physical register for.
969       if (FixedRegisters.count(Intf->reg()))
970         return false;
971 
972       // Never evict spill products. They cannot split or spill.
973       if (getStage(*Intf) == RS_Done)
974         return false;
975       // Once a live range becomes small enough, it is urgent that we find a
976       // register for it. This is indicated by an infinite spill weight. These
977       // urgent live ranges get to evict almost anything.
978       //
979       // Also allow urgent evictions of unspillable ranges from a strictly
980       // larger allocation order.
981       bool Urgent =
982           !VirtReg.isSpillable() &&
983           (Intf->isSpillable() ||
984            RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg())) <
985                RegClassInfo.getNumAllocatableRegs(
986                    MRI->getRegClass(Intf->reg())));
987       // Only evict older cascades or live ranges without a cascade.
988       unsigned IntfCascade = ExtraRegInfo[Intf->reg()].Cascade;
989       if (Cascade <= IntfCascade) {
990         if (!Urgent)
991           return false;
992         // We permit breaking cascades for urgent evictions. It should be the
993         // last resort, though, so make it really expensive.
994         Cost.BrokenHints += 10;
995       }
996       // Would this break a satisfied hint?
997       bool BreaksHint = VRM->hasPreferredPhys(Intf->reg());
998       // Update eviction cost.
999       Cost.BrokenHints += BreaksHint;
1000       Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight());
1001       // Abort if this would be too expensive.
1002       if (!(Cost < MaxCost))
1003         return false;
1004       if (Urgent)
1005         continue;
1006       // Apply the eviction policy for non-urgent evictions.
1007       if (!shouldEvict(VirtReg, IsHint, *Intf, BreaksHint))
1008         return false;
1009       // If !MaxCost.isMax(), then we're just looking for a cheap register.
1010       // Evicting another local live range in this case could lead to suboptimal
1011       // coloring.
1012       if (!MaxCost.isMax() && IsLocal && LIS->intervalIsInOneMBB(*Intf) &&
1013           (!EnableLocalReassign || !canReassign(*Intf, PhysReg))) {
1014         return false;
1015       }
1016     }
1017   }
1018   MaxCost = Cost;
1019   return true;
1020 }
1021 
1022 /// Return true if all interferences between VirtReg and PhysReg between
1023 /// Start and End can be evicted.
1024 ///
1025 /// \param VirtReg Live range that is about to be assigned.
1026 /// \param PhysReg Desired register for assignment.
1027 /// \param Start   Start of range to look for interferences.
1028 /// \param End     End of range to look for interferences.
1029 /// \param MaxCost Only look for cheaper candidates and update with new cost
1030 ///                when returning true.
1031 /// \return True when interference can be evicted cheaper than MaxCost.
1032 bool RAGreedy::canEvictInterferenceInRange(const LiveInterval &VirtReg,
1033                                            MCRegister PhysReg, SlotIndex Start,
1034                                            SlotIndex End,
1035                                            EvictionCost &MaxCost) const {
1036   EvictionCost Cost;
1037 
1038   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1039     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
1040     Q.collectInterferingVRegs();
1041 
1042     // Check if any interfering live range is heavier than MaxWeight.
1043     for (const LiveInterval *Intf : reverse(Q.interferingVRegs())) {
1044       // Check if interference overlast the segment in interest.
1045       if (!Intf->overlaps(Start, End))
1046         continue;
1047 
1048       // Cannot evict non virtual reg interference.
1049       if (!Register::isVirtualRegister(Intf->reg()))
1050         return false;
1051       // Never evict spill products. They cannot split or spill.
1052       if (getStage(*Intf) == RS_Done)
1053         return false;
1054 
1055       // Would this break a satisfied hint?
1056       bool BreaksHint = VRM->hasPreferredPhys(Intf->reg());
1057       // Update eviction cost.
1058       Cost.BrokenHints += BreaksHint;
1059       Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight());
1060       // Abort if this would be too expensive.
1061       if (!(Cost < MaxCost))
1062         return false;
1063     }
1064   }
1065 
1066   if (Cost.MaxWeight == 0)
1067     return false;
1068 
1069   MaxCost = Cost;
1070   return true;
1071 }
1072 
1073 /// Return the physical register that will be best
1074 /// candidate for eviction by a local split interval that will be created
1075 /// between Start and End.
1076 ///
1077 /// \param Order            The allocation order
1078 /// \param VirtReg          Live range that is about to be assigned.
1079 /// \param Start            Start of range to look for interferences
1080 /// \param End              End of range to look for interferences
1081 /// \param BestEvictweight  The eviction cost of that eviction
1082 /// \return The PhysReg which is the best candidate for eviction and the
1083 /// eviction cost in BestEvictweight
1084 MCRegister RAGreedy::getCheapestEvicteeWeight(const AllocationOrder &Order,
1085                                               const LiveInterval &VirtReg,
1086                                               SlotIndex Start, SlotIndex End,
1087                                               float *BestEvictweight) const {
1088   EvictionCost BestEvictCost;
1089   BestEvictCost.setMax();
1090   BestEvictCost.MaxWeight = VirtReg.weight();
1091   MCRegister BestEvicteePhys;
1092 
1093   // Go over all physical registers and find the best candidate for eviction
1094   for (MCRegister PhysReg : Order.getOrder()) {
1095 
1096     if (!canEvictInterferenceInRange(VirtReg, PhysReg, Start, End,
1097                                      BestEvictCost))
1098       continue;
1099 
1100     // Best so far.
1101     BestEvicteePhys = PhysReg;
1102   }
1103   *BestEvictweight = BestEvictCost.MaxWeight;
1104   return BestEvicteePhys;
1105 }
1106 
1107 /// evictInterference - Evict any interferring registers that prevent VirtReg
1108 /// from being assigned to Physreg. This assumes that canEvictInterference
1109 /// returned true.
1110 void RAGreedy::evictInterference(LiveInterval &VirtReg, MCRegister PhysReg,
1111                                  SmallVectorImpl<Register> &NewVRegs) {
1112   // Make sure that VirtReg has a cascade number, and assign that cascade
1113   // number to every evicted register. These live ranges than then only be
1114   // evicted by a newer cascade, preventing infinite loops.
1115   unsigned Cascade = ExtraRegInfo[VirtReg.reg()].Cascade;
1116   if (!Cascade)
1117     Cascade = ExtraRegInfo[VirtReg.reg()].Cascade = NextCascade++;
1118 
1119   LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg, TRI)
1120                     << " interference: Cascade " << Cascade << '\n');
1121 
1122   // Collect all interfering virtregs first.
1123   SmallVector<LiveInterval*, 8> Intfs;
1124   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1125     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
1126     // We usually have the interfering VRegs cached so collectInterferingVRegs()
1127     // should be fast, we may need to recalculate if when different physregs
1128     // overlap the same register unit so we had different SubRanges queried
1129     // against it.
1130     Q.collectInterferingVRegs();
1131     ArrayRef<LiveInterval*> IVR = Q.interferingVRegs();
1132     Intfs.append(IVR.begin(), IVR.end());
1133   }
1134 
1135   // Evict them second. This will invalidate the queries.
1136   for (LiveInterval *Intf : Intfs) {
1137     // The same VirtReg may be present in multiple RegUnits. Skip duplicates.
1138     if (!VRM->hasPhys(Intf->reg()))
1139       continue;
1140 
1141     LastEvicted.addEviction(PhysReg, VirtReg.reg(), Intf->reg());
1142 
1143     Matrix->unassign(*Intf);
1144     assert((ExtraRegInfo[Intf->reg()].Cascade < Cascade ||
1145             VirtReg.isSpillable() < Intf->isSpillable()) &&
1146            "Cannot decrease cascade number, illegal eviction");
1147     ExtraRegInfo[Intf->reg()].Cascade = Cascade;
1148     ++NumEvicted;
1149     NewVRegs.push_back(Intf->reg());
1150   }
1151 }
1152 
1153 /// Returns true if the given \p PhysReg is a callee saved register and has not
1154 /// been used for allocation yet.
1155 bool RAGreedy::isUnusedCalleeSavedReg(MCRegister PhysReg) const {
1156   MCRegister CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg);
1157   if (!CSR)
1158     return false;
1159 
1160   return !Matrix->isPhysRegUsed(PhysReg);
1161 }
1162 
1163 /// tryEvict - Try to evict all interferences for a physreg.
1164 /// @param  VirtReg Currently unassigned virtual register.
1165 /// @param  Order   Physregs to try.
1166 /// @return         Physreg to assign VirtReg, or 0.
1167 MCRegister RAGreedy::tryEvict(LiveInterval &VirtReg, AllocationOrder &Order,
1168                             SmallVectorImpl<Register> &NewVRegs,
1169                             uint8_t CostPerUseLimit,
1170                             const SmallVirtRegSet &FixedRegisters) {
1171   NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription,
1172                      TimePassesIsEnabled);
1173 
1174   // Keep track of the cheapest interference seen so far.
1175   EvictionCost BestCost;
1176   BestCost.setMax();
1177   MCRegister BestPhys;
1178   unsigned OrderLimit = Order.getOrder().size();
1179 
1180   // When we are just looking for a reduced cost per use, don't break any
1181   // hints, and only evict smaller spill weights.
1182   if (CostPerUseLimit < uint8_t(~0u)) {
1183     BestCost.BrokenHints = 0;
1184     BestCost.MaxWeight = VirtReg.weight();
1185 
1186     // Check of any registers in RC are below CostPerUseLimit.
1187     const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg());
1188     uint8_t MinCost = RegClassInfo.getMinCost(RC);
1189     if (MinCost >= CostPerUseLimit) {
1190       LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = "
1191                         << MinCost << ", no cheaper registers to be found.\n");
1192       return 0;
1193     }
1194 
1195     // It is normal for register classes to have a long tail of registers with
1196     // the same cost. We don't need to look at them if they're too expensive.
1197     if (RegCosts[Order.getOrder().back()] >= CostPerUseLimit) {
1198       OrderLimit = RegClassInfo.getLastCostChange(RC);
1199       LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit
1200                         << " regs.\n");
1201     }
1202   }
1203 
1204   for (auto I = Order.begin(), E = Order.getOrderLimitEnd(OrderLimit); I != E;
1205        ++I) {
1206     MCRegister PhysReg = *I;
1207     assert(PhysReg);
1208     if (RegCosts[PhysReg] >= CostPerUseLimit)
1209       continue;
1210     // The first use of a callee-saved register in a function has cost 1.
1211     // Don't start using a CSR when the CostPerUseLimit is low.
1212     if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) {
1213       LLVM_DEBUG(
1214           dbgs() << printReg(PhysReg, TRI) << " would clobber CSR "
1215                  << printReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI)
1216                  << '\n');
1217       continue;
1218     }
1219 
1220     if (!canEvictInterference(VirtReg, PhysReg, false, BestCost,
1221                               FixedRegisters))
1222       continue;
1223 
1224     // Best so far.
1225     BestPhys = PhysReg;
1226 
1227     // Stop if the hint can be used.
1228     if (I.isHint())
1229       break;
1230   }
1231 
1232   if (BestPhys.isValid())
1233     evictInterference(VirtReg, BestPhys, NewVRegs);
1234   return BestPhys;
1235 }
1236 
1237 //===----------------------------------------------------------------------===//
1238 //                              Region Splitting
1239 //===----------------------------------------------------------------------===//
1240 
1241 /// addSplitConstraints - Fill out the SplitConstraints vector based on the
1242 /// interference pattern in Physreg and its aliases. Add the constraints to
1243 /// SpillPlacement and return the static cost of this split in Cost, assuming
1244 /// that all preferences in SplitConstraints are met.
1245 /// Return false if there are no bundles with positive bias.
1246 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
1247                                    BlockFrequency &Cost) {
1248   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1249 
1250   // Reset interference dependent info.
1251   SplitConstraints.resize(UseBlocks.size());
1252   BlockFrequency StaticCost = 0;
1253   for (unsigned I = 0; I != UseBlocks.size(); ++I) {
1254     const SplitAnalysis::BlockInfo &BI = UseBlocks[I];
1255     SpillPlacement::BlockConstraint &BC = SplitConstraints[I];
1256 
1257     BC.Number = BI.MBB->getNumber();
1258     Intf.moveToBlock(BC.Number);
1259     BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
1260     BC.Exit = (BI.LiveOut &&
1261                !LIS->getInstructionFromIndex(BI.LastInstr)->isImplicitDef())
1262                   ? SpillPlacement::PrefReg
1263                   : SpillPlacement::DontCare;
1264     BC.ChangesValue = BI.FirstDef.isValid();
1265 
1266     if (!Intf.hasInterference())
1267       continue;
1268 
1269     // Number of spill code instructions to insert.
1270     unsigned Ins = 0;
1271 
1272     // Interference for the live-in value.
1273     if (BI.LiveIn) {
1274       if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) {
1275         BC.Entry = SpillPlacement::MustSpill;
1276         ++Ins;
1277       } else if (Intf.first() < BI.FirstInstr) {
1278         BC.Entry = SpillPlacement::PrefSpill;
1279         ++Ins;
1280       } else if (Intf.first() < BI.LastInstr) {
1281         ++Ins;
1282       }
1283 
1284       // Abort if the spill cannot be inserted at the MBB' start
1285       if (((BC.Entry == SpillPlacement::MustSpill) ||
1286            (BC.Entry == SpillPlacement::PrefSpill)) &&
1287           SlotIndex::isEarlierInstr(BI.FirstInstr,
1288                                     SA->getFirstSplitPoint(BC.Number)))
1289         return false;
1290     }
1291 
1292     // Interference for the live-out value.
1293     if (BI.LiveOut) {
1294       if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) {
1295         BC.Exit = SpillPlacement::MustSpill;
1296         ++Ins;
1297       } else if (Intf.last() > BI.LastInstr) {
1298         BC.Exit = SpillPlacement::PrefSpill;
1299         ++Ins;
1300       } else if (Intf.last() > BI.FirstInstr) {
1301         ++Ins;
1302       }
1303     }
1304 
1305     // Accumulate the total frequency of inserted spill code.
1306     while (Ins--)
1307       StaticCost += SpillPlacer->getBlockFrequency(BC.Number);
1308   }
1309   Cost = StaticCost;
1310 
1311   // Add constraints for use-blocks. Note that these are the only constraints
1312   // that may add a positive bias, it is downhill from here.
1313   SpillPlacer->addConstraints(SplitConstraints);
1314   return SpillPlacer->scanActiveBundles();
1315 }
1316 
1317 /// addThroughConstraints - Add constraints and links to SpillPlacer from the
1318 /// live-through blocks in Blocks.
1319 bool RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
1320                                      ArrayRef<unsigned> Blocks) {
1321   const unsigned GroupSize = 8;
1322   SpillPlacement::BlockConstraint BCS[GroupSize];
1323   unsigned TBS[GroupSize];
1324   unsigned B = 0, T = 0;
1325 
1326   for (unsigned Number : Blocks) {
1327     Intf.moveToBlock(Number);
1328 
1329     if (!Intf.hasInterference()) {
1330       assert(T < GroupSize && "Array overflow");
1331       TBS[T] = Number;
1332       if (++T == GroupSize) {
1333         SpillPlacer->addLinks(makeArrayRef(TBS, T));
1334         T = 0;
1335       }
1336       continue;
1337     }
1338 
1339     assert(B < GroupSize && "Array overflow");
1340     BCS[B].Number = Number;
1341 
1342     // Abort if the spill cannot be inserted at the MBB' start
1343     MachineBasicBlock *MBB = MF->getBlockNumbered(Number);
1344     auto FirstNonDebugInstr = MBB->getFirstNonDebugInstr();
1345     if (FirstNonDebugInstr != MBB->end() &&
1346         SlotIndex::isEarlierInstr(LIS->getInstructionIndex(*FirstNonDebugInstr),
1347                                   SA->getFirstSplitPoint(Number)))
1348       return false;
1349     // Interference for the live-in value.
1350     if (Intf.first() <= Indexes->getMBBStartIdx(Number))
1351       BCS[B].Entry = SpillPlacement::MustSpill;
1352     else
1353       BCS[B].Entry = SpillPlacement::PrefSpill;
1354 
1355     // Interference for the live-out value.
1356     if (Intf.last() >= SA->getLastSplitPoint(Number))
1357       BCS[B].Exit = SpillPlacement::MustSpill;
1358     else
1359       BCS[B].Exit = SpillPlacement::PrefSpill;
1360 
1361     if (++B == GroupSize) {
1362       SpillPlacer->addConstraints(makeArrayRef(BCS, B));
1363       B = 0;
1364     }
1365   }
1366 
1367   SpillPlacer->addConstraints(makeArrayRef(BCS, B));
1368   SpillPlacer->addLinks(makeArrayRef(TBS, T));
1369   return true;
1370 }
1371 
1372 bool RAGreedy::growRegion(GlobalSplitCandidate &Cand) {
1373   // Keep track of through blocks that have not been added to SpillPlacer.
1374   BitVector Todo = SA->getThroughBlocks();
1375   SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
1376   unsigned AddedTo = 0;
1377 #ifndef NDEBUG
1378   unsigned Visited = 0;
1379 #endif
1380 
1381   while (true) {
1382     ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
1383     // Find new through blocks in the periphery of PrefRegBundles.
1384     for (unsigned Bundle : NewBundles) {
1385       // Look at all blocks connected to Bundle in the full graph.
1386       ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
1387       for (unsigned Block : Blocks) {
1388         if (!Todo.test(Block))
1389           continue;
1390         Todo.reset(Block);
1391         // This is a new through block. Add it to SpillPlacer later.
1392         ActiveBlocks.push_back(Block);
1393 #ifndef NDEBUG
1394         ++Visited;
1395 #endif
1396       }
1397     }
1398     // Any new blocks to add?
1399     if (ActiveBlocks.size() == AddedTo)
1400       break;
1401 
1402     // Compute through constraints from the interference, or assume that all
1403     // through blocks prefer spilling when forming compact regions.
1404     auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo);
1405     if (Cand.PhysReg) {
1406       if (!addThroughConstraints(Cand.Intf, NewBlocks))
1407         return false;
1408     } else
1409       // Provide a strong negative bias on through blocks to prevent unwanted
1410       // liveness on loop backedges.
1411       SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true);
1412     AddedTo = ActiveBlocks.size();
1413 
1414     // Perhaps iterating can enable more bundles?
1415     SpillPlacer->iterate();
1416   }
1417   LLVM_DEBUG(dbgs() << ", v=" << Visited);
1418   return true;
1419 }
1420 
1421 /// calcCompactRegion - Compute the set of edge bundles that should be live
1422 /// when splitting the current live range into compact regions.  Compact
1423 /// regions can be computed without looking at interference.  They are the
1424 /// regions formed by removing all the live-through blocks from the live range.
1425 ///
1426 /// Returns false if the current live range is already compact, or if the
1427 /// compact regions would form single block regions anyway.
1428 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) {
1429   // Without any through blocks, the live range is already compact.
1430   if (!SA->getNumThroughBlocks())
1431     return false;
1432 
1433   // Compact regions don't correspond to any physreg.
1434   Cand.reset(IntfCache, MCRegister::NoRegister);
1435 
1436   LLVM_DEBUG(dbgs() << "Compact region bundles");
1437 
1438   // Use the spill placer to determine the live bundles. GrowRegion pretends
1439   // that all the through blocks have interference when PhysReg is unset.
1440   SpillPlacer->prepare(Cand.LiveBundles);
1441 
1442   // The static split cost will be zero since Cand.Intf reports no interference.
1443   BlockFrequency Cost;
1444   if (!addSplitConstraints(Cand.Intf, Cost)) {
1445     LLVM_DEBUG(dbgs() << ", none.\n");
1446     return false;
1447   }
1448 
1449   if (!growRegion(Cand)) {
1450     LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
1451     return false;
1452   }
1453 
1454   SpillPlacer->finish();
1455 
1456   if (!Cand.LiveBundles.any()) {
1457     LLVM_DEBUG(dbgs() << ", none.\n");
1458     return false;
1459   }
1460 
1461   LLVM_DEBUG({
1462     for (int I : Cand.LiveBundles.set_bits())
1463       dbgs() << " EB#" << I;
1464     dbgs() << ".\n";
1465   });
1466   return true;
1467 }
1468 
1469 /// calcSpillCost - Compute how expensive it would be to split the live range in
1470 /// SA around all use blocks instead of forming bundle regions.
1471 BlockFrequency RAGreedy::calcSpillCost() {
1472   BlockFrequency Cost = 0;
1473   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1474   for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
1475     unsigned Number = BI.MBB->getNumber();
1476     // We normally only need one spill instruction - a load or a store.
1477     Cost += SpillPlacer->getBlockFrequency(Number);
1478 
1479     // Unless the value is redefined in the block.
1480     if (BI.LiveIn && BI.LiveOut && BI.FirstDef)
1481       Cost += SpillPlacer->getBlockFrequency(Number);
1482   }
1483   return Cost;
1484 }
1485 
1486 /// Check if splitting Evictee will create a local split interval in
1487 /// basic block number BBNumber that may cause a bad eviction chain. This is
1488 /// intended to prevent bad eviction sequences like:
1489 /// movl	%ebp, 8(%esp)           # 4-byte Spill
1490 /// movl	%ecx, %ebp
1491 /// movl	%ebx, %ecx
1492 /// movl	%edi, %ebx
1493 /// movl	%edx, %edi
1494 /// cltd
1495 /// idivl	%esi
1496 /// movl	%edi, %edx
1497 /// movl	%ebx, %edi
1498 /// movl	%ecx, %ebx
1499 /// movl	%ebp, %ecx
1500 /// movl	16(%esp), %ebp          # 4 - byte Reload
1501 ///
1502 /// Such sequences are created in 2 scenarios:
1503 ///
1504 /// Scenario #1:
1505 /// %0 is evicted from physreg0 by %1.
1506 /// Evictee %0 is intended for region splitting with split candidate
1507 /// physreg0 (the reg %0 was evicted from).
1508 /// Region splitting creates a local interval because of interference with the
1509 /// evictor %1 (normally region splitting creates 2 interval, the "by reg"
1510 /// and "by stack" intervals and local interval created when interference
1511 /// occurs).
1512 /// One of the split intervals ends up evicting %2 from physreg1.
1513 /// Evictee %2 is intended for region splitting with split candidate
1514 /// physreg1.
1515 /// One of the split intervals ends up evicting %3 from physreg2, etc.
1516 ///
1517 /// Scenario #2
1518 /// %0 is evicted from physreg0 by %1.
1519 /// %2 is evicted from physreg2 by %3 etc.
1520 /// Evictee %0 is intended for region splitting with split candidate
1521 /// physreg1.
1522 /// Region splitting creates a local interval because of interference with the
1523 /// evictor %1.
1524 /// One of the split intervals ends up evicting back original evictor %1
1525 /// from physreg0 (the reg %0 was evicted from).
1526 /// Another evictee %2 is intended for region splitting with split candidate
1527 /// physreg1.
1528 /// One of the split intervals ends up evicting %3 from physreg2, etc.
1529 ///
1530 /// \param Evictee  The register considered to be split.
1531 /// \param Cand     The split candidate that determines the physical register
1532 ///                 we are splitting for and the interferences.
1533 /// \param BBNumber The number of a BB for which the region split process will
1534 ///                 create a local split interval.
1535 /// \param Order    The physical registers that may get evicted by a split
1536 ///                 artifact of Evictee.
1537 /// \return True if splitting Evictee may cause a bad eviction chain, false
1538 /// otherwise.
1539 bool RAGreedy::splitCanCauseEvictionChain(Register Evictee,
1540                                           GlobalSplitCandidate &Cand,
1541                                           unsigned BBNumber,
1542                                           const AllocationOrder &Order) {
1543   EvictionTrack::EvictorInfo VregEvictorInfo = LastEvicted.getEvictor(Evictee);
1544   unsigned Evictor = VregEvictorInfo.first;
1545   MCRegister PhysReg = VregEvictorInfo.second;
1546 
1547   // No actual evictor.
1548   if (!Evictor || !PhysReg)
1549     return false;
1550 
1551   float MaxWeight = 0;
1552   MCRegister FutureEvictedPhysReg =
1553       getCheapestEvicteeWeight(Order, LIS->getInterval(Evictee),
1554                                Cand.Intf.first(), Cand.Intf.last(), &MaxWeight);
1555 
1556   // The bad eviction chain occurs when either the split candidate is the
1557   // evicting reg or one of the split artifact will evict the evicting reg.
1558   if ((PhysReg != Cand.PhysReg) && (PhysReg != FutureEvictedPhysReg))
1559     return false;
1560 
1561   Cand.Intf.moveToBlock(BBNumber);
1562 
1563   // Check to see if the Evictor contains interference (with Evictee) in the
1564   // given BB. If so, this interference caused the eviction of Evictee from
1565   // PhysReg. This suggest that we will create a local interval during the
1566   // region split to avoid this interference This local interval may cause a bad
1567   // eviction chain.
1568   if (!LIS->hasInterval(Evictor))
1569     return false;
1570   LiveInterval &EvictorLI = LIS->getInterval(Evictor);
1571   if (EvictorLI.FindSegmentContaining(Cand.Intf.first()) == EvictorLI.end())
1572     return false;
1573 
1574   // Now, check to see if the local interval we will create is going to be
1575   // expensive enough to evict somebody If so, this may cause a bad eviction
1576   // chain.
1577   float splitArtifactWeight =
1578       VRAI->futureWeight(LIS->getInterval(Evictee),
1579                          Cand.Intf.first().getPrevIndex(), Cand.Intf.last());
1580   if (splitArtifactWeight >= 0 && splitArtifactWeight < MaxWeight)
1581     return false;
1582 
1583   return true;
1584 }
1585 
1586 /// Check if splitting VirtRegToSplit will create a local split interval
1587 /// in basic block number BBNumber that may cause a spill.
1588 ///
1589 /// \param VirtRegToSplit The register considered to be split.
1590 /// \param Cand           The split candidate that determines the physical
1591 ///                       register we are splitting for and the interferences.
1592 /// \param BBNumber       The number of a BB for which the region split process
1593 ///                       will create a local split interval.
1594 /// \param Order          The physical registers that may get evicted by a
1595 ///                       split artifact of VirtRegToSplit.
1596 /// \return True if splitting VirtRegToSplit may cause a spill, false
1597 /// otherwise.
1598 bool RAGreedy::splitCanCauseLocalSpill(unsigned VirtRegToSplit,
1599                                        GlobalSplitCandidate &Cand,
1600                                        unsigned BBNumber,
1601                                        const AllocationOrder &Order) {
1602   Cand.Intf.moveToBlock(BBNumber);
1603 
1604   // Check if the local interval will find a non interfereing assignment.
1605   for (auto PhysReg : Order.getOrder()) {
1606     if (!Matrix->checkInterference(Cand.Intf.first().getPrevIndex(),
1607                                    Cand.Intf.last(), PhysReg))
1608       return false;
1609   }
1610 
1611   // The local interval is not able to find non interferencing assignment
1612   // and not able to evict a less worthy interval, therfore, it can cause a
1613   // spill.
1614   return true;
1615 }
1616 
1617 /// calcGlobalSplitCost - Return the global split cost of following the split
1618 /// pattern in LiveBundles. This cost should be added to the local cost of the
1619 /// interference pattern in SplitConstraints.
1620 ///
1621 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand,
1622                                              const AllocationOrder &Order,
1623                                              bool *CanCauseEvictionChain) {
1624   BlockFrequency GlobalCost = 0;
1625   const BitVector &LiveBundles = Cand.LiveBundles;
1626   Register VirtRegToSplit = SA->getParent().reg();
1627   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1628   for (unsigned I = 0; I != UseBlocks.size(); ++I) {
1629     const SplitAnalysis::BlockInfo &BI = UseBlocks[I];
1630     SpillPlacement::BlockConstraint &BC = SplitConstraints[I];
1631     bool RegIn  = LiveBundles[Bundles->getBundle(BC.Number, false)];
1632     bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)];
1633     unsigned Ins = 0;
1634 
1635     Cand.Intf.moveToBlock(BC.Number);
1636     // Check wheather a local interval is going to be created during the region
1637     // split. Calculate adavanced spilt cost (cost of local intervals) if option
1638     // is enabled.
1639     if (EnableAdvancedRASplitCost && Cand.Intf.hasInterference() && BI.LiveIn &&
1640         BI.LiveOut && RegIn && RegOut) {
1641 
1642       if (CanCauseEvictionChain &&
1643           splitCanCauseEvictionChain(VirtRegToSplit, Cand, BC.Number, Order)) {
1644         // This interference causes our eviction from this assignment, we might
1645         // evict somebody else and eventually someone will spill, add that cost.
1646         // See splitCanCauseEvictionChain for detailed description of scenarios.
1647         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1648         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1649 
1650         *CanCauseEvictionChain = true;
1651 
1652       } else if (splitCanCauseLocalSpill(VirtRegToSplit, Cand, BC.Number,
1653                                          Order)) {
1654         // This interference causes local interval to spill, add that cost.
1655         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1656         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1657       }
1658     }
1659 
1660     if (BI.LiveIn)
1661       Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
1662     if (BI.LiveOut)
1663       Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
1664     while (Ins--)
1665       GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1666   }
1667 
1668   for (unsigned Number : Cand.ActiveBlocks) {
1669     bool RegIn  = LiveBundles[Bundles->getBundle(Number, false)];
1670     bool RegOut = LiveBundles[Bundles->getBundle(Number, true)];
1671     if (!RegIn && !RegOut)
1672       continue;
1673     if (RegIn && RegOut) {
1674       // We need double spill code if this block has interference.
1675       Cand.Intf.moveToBlock(Number);
1676       if (Cand.Intf.hasInterference()) {
1677         GlobalCost += SpillPlacer->getBlockFrequency(Number);
1678         GlobalCost += SpillPlacer->getBlockFrequency(Number);
1679 
1680         // Check wheather a local interval is going to be created during the
1681         // region split.
1682         if (EnableAdvancedRASplitCost && CanCauseEvictionChain &&
1683             splitCanCauseEvictionChain(VirtRegToSplit, Cand, Number, Order)) {
1684           // This interference cause our eviction from this assignment, we might
1685           // evict somebody else, add that cost.
1686           // See splitCanCauseEvictionChain for detailed description of
1687           // scenarios.
1688           GlobalCost += SpillPlacer->getBlockFrequency(Number);
1689           GlobalCost += SpillPlacer->getBlockFrequency(Number);
1690 
1691           *CanCauseEvictionChain = true;
1692         }
1693       }
1694       continue;
1695     }
1696     // live-in / stack-out or stack-in live-out.
1697     GlobalCost += SpillPlacer->getBlockFrequency(Number);
1698   }
1699   return GlobalCost;
1700 }
1701 
1702 /// splitAroundRegion - Split the current live range around the regions
1703 /// determined by BundleCand and GlobalCand.
1704 ///
1705 /// Before calling this function, GlobalCand and BundleCand must be initialized
1706 /// so each bundle is assigned to a valid candidate, or NoCand for the
1707 /// stack-bound bundles.  The shared SA/SE SplitAnalysis and SplitEditor
1708 /// objects must be initialized for the current live range, and intervals
1709 /// created for the used candidates.
1710 ///
1711 /// @param LREdit    The LiveRangeEdit object handling the current split.
1712 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value
1713 ///                  must appear in this list.
1714 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit,
1715                                  ArrayRef<unsigned> UsedCands) {
1716   // These are the intervals created for new global ranges. We may create more
1717   // intervals for local ranges.
1718   const unsigned NumGlobalIntvs = LREdit.size();
1719   LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs
1720                     << " globals.\n");
1721   assert(NumGlobalIntvs && "No global intervals configured");
1722 
1723   // Isolate even single instructions when dealing with a proper sub-class.
1724   // That guarantees register class inflation for the stack interval because it
1725   // is all copies.
1726   Register Reg = SA->getParent().reg();
1727   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1728 
1729   // First handle all the blocks with uses.
1730   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1731   for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
1732     unsigned Number = BI.MBB->getNumber();
1733     unsigned IntvIn = 0, IntvOut = 0;
1734     SlotIndex IntfIn, IntfOut;
1735     if (BI.LiveIn) {
1736       unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
1737       if (CandIn != NoCand) {
1738         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1739         IntvIn = Cand.IntvIdx;
1740         Cand.Intf.moveToBlock(Number);
1741         IntfIn = Cand.Intf.first();
1742       }
1743     }
1744     if (BI.LiveOut) {
1745       unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
1746       if (CandOut != NoCand) {
1747         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1748         IntvOut = Cand.IntvIdx;
1749         Cand.Intf.moveToBlock(Number);
1750         IntfOut = Cand.Intf.last();
1751       }
1752     }
1753 
1754     // Create separate intervals for isolated blocks with multiple uses.
1755     if (!IntvIn && !IntvOut) {
1756       LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " isolated.\n");
1757       if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1758         SE->splitSingleBlock(BI);
1759       continue;
1760     }
1761 
1762     if (IntvIn && IntvOut)
1763       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1764     else if (IntvIn)
1765       SE->splitRegInBlock(BI, IntvIn, IntfIn);
1766     else
1767       SE->splitRegOutBlock(BI, IntvOut, IntfOut);
1768   }
1769 
1770   // Handle live-through blocks. The relevant live-through blocks are stored in
1771   // the ActiveBlocks list with each candidate. We need to filter out
1772   // duplicates.
1773   BitVector Todo = SA->getThroughBlocks();
1774   for (unsigned c = 0; c != UsedCands.size(); ++c) {
1775     ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks;
1776     for (unsigned Number : Blocks) {
1777       if (!Todo.test(Number))
1778         continue;
1779       Todo.reset(Number);
1780 
1781       unsigned IntvIn = 0, IntvOut = 0;
1782       SlotIndex IntfIn, IntfOut;
1783 
1784       unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
1785       if (CandIn != NoCand) {
1786         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1787         IntvIn = Cand.IntvIdx;
1788         Cand.Intf.moveToBlock(Number);
1789         IntfIn = Cand.Intf.first();
1790       }
1791 
1792       unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
1793       if (CandOut != NoCand) {
1794         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1795         IntvOut = Cand.IntvIdx;
1796         Cand.Intf.moveToBlock(Number);
1797         IntfOut = Cand.Intf.last();
1798       }
1799       if (!IntvIn && !IntvOut)
1800         continue;
1801       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1802     }
1803   }
1804 
1805   ++NumGlobalSplits;
1806 
1807   SmallVector<unsigned, 8> IntvMap;
1808   SE->finish(&IntvMap);
1809   DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
1810 
1811   ExtraRegInfo.resize(MRI->getNumVirtRegs());
1812   unsigned OrigBlocks = SA->getNumLiveBlocks();
1813 
1814   // Sort out the new intervals created by splitting. We get four kinds:
1815   // - Remainder intervals should not be split again.
1816   // - Candidate intervals can be assigned to Cand.PhysReg.
1817   // - Block-local splits are candidates for local splitting.
1818   // - DCE leftovers should go back on the queue.
1819   for (unsigned I = 0, E = LREdit.size(); I != E; ++I) {
1820     LiveInterval &Reg = LIS->getInterval(LREdit.get(I));
1821 
1822     // Ignore old intervals from DCE.
1823     if (getStage(Reg) != RS_New)
1824       continue;
1825 
1826     // Remainder interval. Don't try splitting again, spill if it doesn't
1827     // allocate.
1828     if (IntvMap[I] == 0) {
1829       setStage(Reg, RS_Spill);
1830       continue;
1831     }
1832 
1833     // Global intervals. Allow repeated splitting as long as the number of live
1834     // blocks is strictly decreasing.
1835     if (IntvMap[I] < NumGlobalIntvs) {
1836       if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
1837         LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
1838                           << " blocks as original.\n");
1839         // Don't allow repeated splitting as a safe guard against looping.
1840         setStage(Reg, RS_Split2);
1841       }
1842       continue;
1843     }
1844 
1845     // Other intervals are treated as new. This includes local intervals created
1846     // for blocks with multiple uses, and anything created by DCE.
1847   }
1848 
1849   if (VerifyEnabled)
1850     MF->verify(this, "After splitting live range around region");
1851 }
1852 
1853 MCRegister RAGreedy::tryRegionSplit(LiveInterval &VirtReg,
1854                                     AllocationOrder &Order,
1855                                     SmallVectorImpl<Register> &NewVRegs) {
1856   if (!TRI->shouldRegionSplitForVirtReg(*MF, VirtReg))
1857     return MCRegister::NoRegister;
1858   unsigned NumCands = 0;
1859   BlockFrequency SpillCost = calcSpillCost();
1860   BlockFrequency BestCost;
1861 
1862   // Check if we can split this live range around a compact region.
1863   bool HasCompact = calcCompactRegion(GlobalCand.front());
1864   if (HasCompact) {
1865     // Yes, keep GlobalCand[0] as the compact region candidate.
1866     NumCands = 1;
1867     BestCost = BlockFrequency::getMaxFrequency();
1868   } else {
1869     // No benefit from the compact region, our fallback will be per-block
1870     // splitting. Make sure we find a solution that is cheaper than spilling.
1871     BestCost = SpillCost;
1872     LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = ";
1873                MBFI->printBlockFreq(dbgs(), BestCost) << '\n');
1874   }
1875 
1876   bool CanCauseEvictionChain = false;
1877   unsigned BestCand =
1878       calculateRegionSplitCost(VirtReg, Order, BestCost, NumCands,
1879                                false /*IgnoreCSR*/, &CanCauseEvictionChain);
1880 
1881   // Split candidates with compact regions can cause a bad eviction sequence.
1882   // See splitCanCauseEvictionChain for detailed description of scenarios.
1883   // To avoid it, we need to comapre the cost with the spill cost and not the
1884   // current max frequency.
1885   if (HasCompact && (BestCost > SpillCost) && (BestCand != NoCand) &&
1886     CanCauseEvictionChain) {
1887     return MCRegister::NoRegister;
1888   }
1889 
1890   // No solutions found, fall back to single block splitting.
1891   if (!HasCompact && BestCand == NoCand)
1892     return MCRegister::NoRegister;
1893 
1894   return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs);
1895 }
1896 
1897 unsigned RAGreedy::calculateRegionSplitCost(LiveInterval &VirtReg,
1898                                             AllocationOrder &Order,
1899                                             BlockFrequency &BestCost,
1900                                             unsigned &NumCands, bool IgnoreCSR,
1901                                             bool *CanCauseEvictionChain) {
1902   unsigned BestCand = NoCand;
1903   for (MCPhysReg PhysReg : Order) {
1904     assert(PhysReg);
1905     if (IgnoreCSR && isUnusedCalleeSavedReg(PhysReg))
1906       continue;
1907 
1908     // Discard bad candidates before we run out of interference cache cursors.
1909     // This will only affect register classes with a lot of registers (>32).
1910     if (NumCands == IntfCache.getMaxCursors()) {
1911       unsigned WorstCount = ~0u;
1912       unsigned Worst = 0;
1913       for (unsigned CandIndex = 0; CandIndex != NumCands; ++CandIndex) {
1914         if (CandIndex == BestCand || !GlobalCand[CandIndex].PhysReg)
1915           continue;
1916         unsigned Count = GlobalCand[CandIndex].LiveBundles.count();
1917         if (Count < WorstCount) {
1918           Worst = CandIndex;
1919           WorstCount = Count;
1920         }
1921       }
1922       --NumCands;
1923       GlobalCand[Worst] = GlobalCand[NumCands];
1924       if (BestCand == NumCands)
1925         BestCand = Worst;
1926     }
1927 
1928     if (GlobalCand.size() <= NumCands)
1929       GlobalCand.resize(NumCands+1);
1930     GlobalSplitCandidate &Cand = GlobalCand[NumCands];
1931     Cand.reset(IntfCache, PhysReg);
1932 
1933     SpillPlacer->prepare(Cand.LiveBundles);
1934     BlockFrequency Cost;
1935     if (!addSplitConstraints(Cand.Intf, Cost)) {
1936       LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tno positive bundles\n");
1937       continue;
1938     }
1939     LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tstatic = ";
1940                MBFI->printBlockFreq(dbgs(), Cost));
1941     if (Cost >= BestCost) {
1942       LLVM_DEBUG({
1943         if (BestCand == NoCand)
1944           dbgs() << " worse than no bundles\n";
1945         else
1946           dbgs() << " worse than "
1947                  << printReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
1948       });
1949       continue;
1950     }
1951     if (!growRegion(Cand)) {
1952       LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
1953       continue;
1954     }
1955 
1956     SpillPlacer->finish();
1957 
1958     // No live bundles, defer to splitSingleBlocks().
1959     if (!Cand.LiveBundles.any()) {
1960       LLVM_DEBUG(dbgs() << " no bundles.\n");
1961       continue;
1962     }
1963 
1964     bool HasEvictionChain = false;
1965     Cost += calcGlobalSplitCost(Cand, Order, &HasEvictionChain);
1966     LLVM_DEBUG({
1967       dbgs() << ", total = ";
1968       MBFI->printBlockFreq(dbgs(), Cost) << " with bundles";
1969       for (int I : Cand.LiveBundles.set_bits())
1970         dbgs() << " EB#" << I;
1971       dbgs() << ".\n";
1972     });
1973     if (Cost < BestCost) {
1974       BestCand = NumCands;
1975       BestCost = Cost;
1976       // See splitCanCauseEvictionChain for detailed description of bad
1977       // eviction chain scenarios.
1978       if (CanCauseEvictionChain)
1979         *CanCauseEvictionChain = HasEvictionChain;
1980     }
1981     ++NumCands;
1982   }
1983 
1984   if (CanCauseEvictionChain && BestCand != NoCand) {
1985     // See splitCanCauseEvictionChain for detailed description of bad
1986     // eviction chain scenarios.
1987     LLVM_DEBUG(dbgs() << "Best split candidate of vreg "
1988                       << printReg(VirtReg.reg(), TRI) << "  may ");
1989     if (!(*CanCauseEvictionChain))
1990       LLVM_DEBUG(dbgs() << "not ");
1991     LLVM_DEBUG(dbgs() << "cause bad eviction chain\n");
1992   }
1993 
1994   return BestCand;
1995 }
1996 
1997 unsigned RAGreedy::doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
1998                                  bool HasCompact,
1999                                  SmallVectorImpl<Register> &NewVRegs) {
2000   SmallVector<unsigned, 8> UsedCands;
2001   // Prepare split editor.
2002   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2003   SE->reset(LREdit, SplitSpillMode);
2004 
2005   // Assign all edge bundles to the preferred candidate, or NoCand.
2006   BundleCand.assign(Bundles->getNumBundles(), NoCand);
2007 
2008   // Assign bundles for the best candidate region.
2009   if (BestCand != NoCand) {
2010     GlobalSplitCandidate &Cand = GlobalCand[BestCand];
2011     if (unsigned B = Cand.getBundles(BundleCand, BestCand)) {
2012       UsedCands.push_back(BestCand);
2013       Cand.IntvIdx = SE->openIntv();
2014       LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand.PhysReg, TRI) << " in "
2015                         << B << " bundles, intv " << Cand.IntvIdx << ".\n");
2016       (void)B;
2017     }
2018   }
2019 
2020   // Assign bundles for the compact region.
2021   if (HasCompact) {
2022     GlobalSplitCandidate &Cand = GlobalCand.front();
2023     assert(!Cand.PhysReg && "Compact region has no physreg");
2024     if (unsigned B = Cand.getBundles(BundleCand, 0)) {
2025       UsedCands.push_back(0);
2026       Cand.IntvIdx = SE->openIntv();
2027       LLVM_DEBUG(dbgs() << "Split for compact region in " << B
2028                         << " bundles, intv " << Cand.IntvIdx << ".\n");
2029       (void)B;
2030     }
2031   }
2032 
2033   splitAroundRegion(LREdit, UsedCands);
2034   return 0;
2035 }
2036 
2037 //===----------------------------------------------------------------------===//
2038 //                            Per-Block Splitting
2039 //===----------------------------------------------------------------------===//
2040 
2041 /// tryBlockSplit - Split a global live range around every block with uses. This
2042 /// creates a lot of local live ranges, that will be split by tryLocalSplit if
2043 /// they don't allocate.
2044 unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order,
2045                                  SmallVectorImpl<Register> &NewVRegs) {
2046   assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed");
2047   Register Reg = VirtReg.reg();
2048   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
2049   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2050   SE->reset(LREdit, SplitSpillMode);
2051   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
2052   for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
2053     if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
2054       SE->splitSingleBlock(BI);
2055   }
2056   // No blocks were split.
2057   if (LREdit.empty())
2058     return 0;
2059 
2060   // We did split for some blocks.
2061   SmallVector<unsigned, 8> IntvMap;
2062   SE->finish(&IntvMap);
2063 
2064   // Tell LiveDebugVariables about the new ranges.
2065   DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
2066 
2067   ExtraRegInfo.resize(MRI->getNumVirtRegs());
2068 
2069   // Sort out the new intervals created by splitting. The remainder interval
2070   // goes straight to spilling, the new local ranges get to stay RS_New.
2071   for (unsigned I = 0, E = LREdit.size(); I != E; ++I) {
2072     LiveInterval &LI = LIS->getInterval(LREdit.get(I));
2073     if (getStage(LI) == RS_New && IntvMap[I] == 0)
2074       setStage(LI, RS_Spill);
2075   }
2076 
2077   if (VerifyEnabled)
2078     MF->verify(this, "After splitting live range around basic blocks");
2079   return 0;
2080 }
2081 
2082 //===----------------------------------------------------------------------===//
2083 //                         Per-Instruction Splitting
2084 //===----------------------------------------------------------------------===//
2085 
2086 /// Get the number of allocatable registers that match the constraints of \p Reg
2087 /// on \p MI and that are also in \p SuperRC.
2088 static unsigned getNumAllocatableRegsForConstraints(
2089     const MachineInstr *MI, Register Reg, const TargetRegisterClass *SuperRC,
2090     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
2091     const RegisterClassInfo &RCI) {
2092   assert(SuperRC && "Invalid register class");
2093 
2094   const TargetRegisterClass *ConstrainedRC =
2095       MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI,
2096                                              /* ExploreBundle */ true);
2097   if (!ConstrainedRC)
2098     return 0;
2099   return RCI.getNumAllocatableRegs(ConstrainedRC);
2100 }
2101 
2102 /// tryInstructionSplit - Split a live range around individual instructions.
2103 /// This is normally not worthwhile since the spiller is doing essentially the
2104 /// same thing. However, when the live range is in a constrained register
2105 /// class, it may help to insert copies such that parts of the live range can
2106 /// be moved to a larger register class.
2107 ///
2108 /// This is similar to spilling to a larger register class.
2109 unsigned
2110 RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
2111                               SmallVectorImpl<Register> &NewVRegs) {
2112   const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg());
2113   // There is no point to this if there are no larger sub-classes.
2114   if (!RegClassInfo.isProperSubClass(CurRC))
2115     return 0;
2116 
2117   // Always enable split spill mode, since we're effectively spilling to a
2118   // register.
2119   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2120   SE->reset(LREdit, SplitEditor::SM_Size);
2121 
2122   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
2123   if (Uses.size() <= 1)
2124     return 0;
2125 
2126   LLVM_DEBUG(dbgs() << "Split around " << Uses.size()
2127                     << " individual instrs.\n");
2128 
2129   const TargetRegisterClass *SuperRC =
2130       TRI->getLargestLegalSuperClass(CurRC, *MF);
2131   unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC);
2132   // Split around every non-copy instruction if this split will relax
2133   // the constraints on the virtual register.
2134   // Otherwise, splitting just inserts uncoalescable copies that do not help
2135   // the allocation.
2136   for (const auto &Use : Uses) {
2137     if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Use))
2138       if (MI->isFullCopy() ||
2139           SuperRCNumAllocatableRegs ==
2140               getNumAllocatableRegsForConstraints(MI, VirtReg.reg(), SuperRC,
2141                                                   TII, TRI, RCI)) {
2142         LLVM_DEBUG(dbgs() << "    skip:\t" << Use << '\t' << *MI);
2143         continue;
2144       }
2145     SE->openIntv();
2146     SlotIndex SegStart = SE->enterIntvBefore(Use);
2147     SlotIndex SegStop = SE->leaveIntvAfter(Use);
2148     SE->useIntv(SegStart, SegStop);
2149   }
2150 
2151   if (LREdit.empty()) {
2152     LLVM_DEBUG(dbgs() << "All uses were copies.\n");
2153     return 0;
2154   }
2155 
2156   SmallVector<unsigned, 8> IntvMap;
2157   SE->finish(&IntvMap);
2158   DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS);
2159   ExtraRegInfo.resize(MRI->getNumVirtRegs());
2160 
2161   // Assign all new registers to RS_Spill. This was the last chance.
2162   setStage(LREdit.begin(), LREdit.end(), RS_Spill);
2163   return 0;
2164 }
2165 
2166 //===----------------------------------------------------------------------===//
2167 //                             Local Splitting
2168 //===----------------------------------------------------------------------===//
2169 
2170 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted
2171 /// in order to use PhysReg between two entries in SA->UseSlots.
2172 ///
2173 /// GapWeight[I] represents the gap between UseSlots[I] and UseSlots[I + 1].
2174 ///
2175 void RAGreedy::calcGapWeights(MCRegister PhysReg,
2176                               SmallVectorImpl<float> &GapWeight) {
2177   assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
2178   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
2179   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
2180   const unsigned NumGaps = Uses.size()-1;
2181 
2182   // Start and end points for the interference check.
2183   SlotIndex StartIdx =
2184     BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr;
2185   SlotIndex StopIdx =
2186     BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr;
2187 
2188   GapWeight.assign(NumGaps, 0.0f);
2189 
2190   // Add interference from each overlapping register.
2191   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2192     if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units)
2193           .checkInterference())
2194       continue;
2195 
2196     // We know that VirtReg is a continuous interval from FirstInstr to
2197     // LastInstr, so we don't need InterferenceQuery.
2198     //
2199     // Interference that overlaps an instruction is counted in both gaps
2200     // surrounding the instruction. The exception is interference before
2201     // StartIdx and after StopIdx.
2202     //
2203     LiveIntervalUnion::SegmentIter IntI =
2204       Matrix->getLiveUnions()[*Units] .find(StartIdx);
2205     for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
2206       // Skip the gaps before IntI.
2207       while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
2208         if (++Gap == NumGaps)
2209           break;
2210       if (Gap == NumGaps)
2211         break;
2212 
2213       // Update the gaps covered by IntI.
2214       const float weight = IntI.value()->weight();
2215       for (; Gap != NumGaps; ++Gap) {
2216         GapWeight[Gap] = std::max(GapWeight[Gap], weight);
2217         if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
2218           break;
2219       }
2220       if (Gap == NumGaps)
2221         break;
2222     }
2223   }
2224 
2225   // Add fixed interference.
2226   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2227     const LiveRange &LR = LIS->getRegUnit(*Units);
2228     LiveRange::const_iterator I = LR.find(StartIdx);
2229     LiveRange::const_iterator E = LR.end();
2230 
2231     // Same loop as above. Mark any overlapped gaps as HUGE_VALF.
2232     for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) {
2233       while (Uses[Gap+1].getBoundaryIndex() < I->start)
2234         if (++Gap == NumGaps)
2235           break;
2236       if (Gap == NumGaps)
2237         break;
2238 
2239       for (; Gap != NumGaps; ++Gap) {
2240         GapWeight[Gap] = huge_valf;
2241         if (Uses[Gap+1].getBaseIndex() >= I->end)
2242           break;
2243       }
2244       if (Gap == NumGaps)
2245         break;
2246     }
2247   }
2248 }
2249 
2250 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
2251 /// basic block.
2252 ///
2253 unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
2254                                  SmallVectorImpl<Register> &NewVRegs) {
2255   // TODO: the function currently only handles a single UseBlock; it should be
2256   // possible to generalize.
2257   if (SA->getUseBlocks().size() != 1)
2258     return 0;
2259 
2260   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
2261 
2262   // Note that it is possible to have an interval that is live-in or live-out
2263   // while only covering a single block - A phi-def can use undef values from
2264   // predecessors, and the block could be a single-block loop.
2265   // We don't bother doing anything clever about such a case, we simply assume
2266   // that the interval is continuous from FirstInstr to LastInstr. We should
2267   // make sure that we don't do anything illegal to such an interval, though.
2268 
2269   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
2270   if (Uses.size() <= 2)
2271     return 0;
2272   const unsigned NumGaps = Uses.size()-1;
2273 
2274   LLVM_DEBUG({
2275     dbgs() << "tryLocalSplit: ";
2276     for (const auto &Use : Uses)
2277       dbgs() << ' ' << Use;
2278     dbgs() << '\n';
2279   });
2280 
2281   // If VirtReg is live across any register mask operands, compute a list of
2282   // gaps with register masks.
2283   SmallVector<unsigned, 8> RegMaskGaps;
2284   if (Matrix->checkRegMaskInterference(VirtReg)) {
2285     // Get regmask slots for the whole block.
2286     ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber());
2287     LLVM_DEBUG(dbgs() << RMS.size() << " regmasks in block:");
2288     // Constrain to VirtReg's live range.
2289     unsigned RI =
2290         llvm::lower_bound(RMS, Uses.front().getRegSlot()) - RMS.begin();
2291     unsigned RE = RMS.size();
2292     for (unsigned I = 0; I != NumGaps && RI != RE; ++I) {
2293       // Look for Uses[I] <= RMS <= Uses[I + 1].
2294       assert(!SlotIndex::isEarlierInstr(RMS[RI], Uses[I]));
2295       if (SlotIndex::isEarlierInstr(Uses[I + 1], RMS[RI]))
2296         continue;
2297       // Skip a regmask on the same instruction as the last use. It doesn't
2298       // overlap the live range.
2299       if (SlotIndex::isSameInstr(Uses[I + 1], RMS[RI]) && I + 1 == NumGaps)
2300         break;
2301       LLVM_DEBUG(dbgs() << ' ' << RMS[RI] << ':' << Uses[I] << '-'
2302                         << Uses[I + 1]);
2303       RegMaskGaps.push_back(I);
2304       // Advance ri to the next gap. A regmask on one of the uses counts in
2305       // both gaps.
2306       while (RI != RE && SlotIndex::isEarlierInstr(RMS[RI], Uses[I + 1]))
2307         ++RI;
2308     }
2309     LLVM_DEBUG(dbgs() << '\n');
2310   }
2311 
2312   // Since we allow local split results to be split again, there is a risk of
2313   // creating infinite loops. It is tempting to require that the new live
2314   // ranges have less instructions than the original. That would guarantee
2315   // convergence, but it is too strict. A live range with 3 instructions can be
2316   // split 2+3 (including the COPY), and we want to allow that.
2317   //
2318   // Instead we use these rules:
2319   //
2320   // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the
2321   //    noop split, of course).
2322   // 2. Require progress be made for ranges with getStage() == RS_Split2. All
2323   //    the new ranges must have fewer instructions than before the split.
2324   // 3. New ranges with the same number of instructions are marked RS_Split2,
2325   //    smaller ranges are marked RS_New.
2326   //
2327   // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
2328   // excessive splitting and infinite loops.
2329   //
2330   bool ProgressRequired = getStage(VirtReg) >= RS_Split2;
2331 
2332   // Best split candidate.
2333   unsigned BestBefore = NumGaps;
2334   unsigned BestAfter = 0;
2335   float BestDiff = 0;
2336 
2337   const float blockFreq =
2338     SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() *
2339     (1.0f / MBFI->getEntryFreq());
2340   SmallVector<float, 8> GapWeight;
2341 
2342   for (MCPhysReg PhysReg : Order) {
2343     assert(PhysReg);
2344     // Keep track of the largest spill weight that would need to be evicted in
2345     // order to make use of PhysReg between UseSlots[I] and UseSlots[I + 1].
2346     calcGapWeights(PhysReg, GapWeight);
2347 
2348     // Remove any gaps with regmask clobbers.
2349     if (Matrix->checkRegMaskInterference(VirtReg, PhysReg))
2350       for (unsigned I = 0, E = RegMaskGaps.size(); I != E; ++I)
2351         GapWeight[RegMaskGaps[I]] = huge_valf;
2352 
2353     // Try to find the best sequence of gaps to close.
2354     // The new spill weight must be larger than any gap interference.
2355 
2356     // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
2357     unsigned SplitBefore = 0, SplitAfter = 1;
2358 
2359     // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
2360     // It is the spill weight that needs to be evicted.
2361     float MaxGap = GapWeight[0];
2362 
2363     while (true) {
2364       // Live before/after split?
2365       const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
2366       const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
2367 
2368       LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << ' ' << Uses[SplitBefore]
2369                         << '-' << Uses[SplitAfter] << " I=" << MaxGap);
2370 
2371       // Stop before the interval gets so big we wouldn't be making progress.
2372       if (!LiveBefore && !LiveAfter) {
2373         LLVM_DEBUG(dbgs() << " all\n");
2374         break;
2375       }
2376       // Should the interval be extended or shrunk?
2377       bool Shrink = true;
2378 
2379       // How many gaps would the new range have?
2380       unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
2381 
2382       // Legally, without causing looping?
2383       bool Legal = !ProgressRequired || NewGaps < NumGaps;
2384 
2385       if (Legal && MaxGap < huge_valf) {
2386         // Estimate the new spill weight. Each instruction reads or writes the
2387         // register. Conservatively assume there are no read-modify-write
2388         // instructions.
2389         //
2390         // Try to guess the size of the new interval.
2391         const float EstWeight = normalizeSpillWeight(
2392             blockFreq * (NewGaps + 1),
2393             Uses[SplitBefore].distance(Uses[SplitAfter]) +
2394                 (LiveBefore + LiveAfter) * SlotIndex::InstrDist,
2395             1);
2396         // Would this split be possible to allocate?
2397         // Never allocate all gaps, we wouldn't be making progress.
2398         LLVM_DEBUG(dbgs() << " w=" << EstWeight);
2399         if (EstWeight * Hysteresis >= MaxGap) {
2400           Shrink = false;
2401           float Diff = EstWeight - MaxGap;
2402           if (Diff > BestDiff) {
2403             LLVM_DEBUG(dbgs() << " (best)");
2404             BestDiff = Hysteresis * Diff;
2405             BestBefore = SplitBefore;
2406             BestAfter = SplitAfter;
2407           }
2408         }
2409       }
2410 
2411       // Try to shrink.
2412       if (Shrink) {
2413         if (++SplitBefore < SplitAfter) {
2414           LLVM_DEBUG(dbgs() << " shrink\n");
2415           // Recompute the max when necessary.
2416           if (GapWeight[SplitBefore - 1] >= MaxGap) {
2417             MaxGap = GapWeight[SplitBefore];
2418             for (unsigned I = SplitBefore + 1; I != SplitAfter; ++I)
2419               MaxGap = std::max(MaxGap, GapWeight[I]);
2420           }
2421           continue;
2422         }
2423         MaxGap = 0;
2424       }
2425 
2426       // Try to extend the interval.
2427       if (SplitAfter >= NumGaps) {
2428         LLVM_DEBUG(dbgs() << " end\n");
2429         break;
2430       }
2431 
2432       LLVM_DEBUG(dbgs() << " extend\n");
2433       MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
2434     }
2435   }
2436 
2437   // Didn't find any candidates?
2438   if (BestBefore == NumGaps)
2439     return 0;
2440 
2441   LLVM_DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] << '-'
2442                     << Uses[BestAfter] << ", " << BestDiff << ", "
2443                     << (BestAfter - BestBefore + 1) << " instrs\n");
2444 
2445   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2446   SE->reset(LREdit);
2447 
2448   SE->openIntv();
2449   SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
2450   SlotIndex SegStop  = SE->leaveIntvAfter(Uses[BestAfter]);
2451   SE->useIntv(SegStart, SegStop);
2452   SmallVector<unsigned, 8> IntvMap;
2453   SE->finish(&IntvMap);
2454   DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS);
2455 
2456   // If the new range has the same number of instructions as before, mark it as
2457   // RS_Split2 so the next split will be forced to make progress. Otherwise,
2458   // leave the new intervals as RS_New so they can compete.
2459   bool LiveBefore = BestBefore != 0 || BI.LiveIn;
2460   bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
2461   unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
2462   if (NewGaps >= NumGaps) {
2463     LLVM_DEBUG(dbgs() << "Tagging non-progress ranges:");
2464     assert(!ProgressRequired && "Didn't make progress when it was required.");
2465     for (unsigned I = 0, E = IntvMap.size(); I != E; ++I)
2466       if (IntvMap[I] == 1) {
2467         setStage(LIS->getInterval(LREdit.get(I)), RS_Split2);
2468         LLVM_DEBUG(dbgs() << ' ' << printReg(LREdit.get(I)));
2469       }
2470     LLVM_DEBUG(dbgs() << '\n');
2471   }
2472   ++NumLocalSplits;
2473 
2474   return 0;
2475 }
2476 
2477 //===----------------------------------------------------------------------===//
2478 //                          Live Range Splitting
2479 //===----------------------------------------------------------------------===//
2480 
2481 /// trySplit - Try to split VirtReg or one of its interferences, making it
2482 /// assignable.
2483 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
2484 unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
2485                             SmallVectorImpl<Register> &NewVRegs,
2486                             const SmallVirtRegSet &FixedRegisters) {
2487   // Ranges must be Split2 or less.
2488   if (getStage(VirtReg) >= RS_Spill)
2489     return 0;
2490 
2491   // Local intervals are handled separately.
2492   if (LIS->intervalIsInOneMBB(VirtReg)) {
2493     NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName,
2494                        TimerGroupDescription, TimePassesIsEnabled);
2495     SA->analyze(&VirtReg);
2496     Register PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs);
2497     if (PhysReg || !NewVRegs.empty())
2498       return PhysReg;
2499     return tryInstructionSplit(VirtReg, Order, NewVRegs);
2500   }
2501 
2502   NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName,
2503                      TimerGroupDescription, TimePassesIsEnabled);
2504 
2505   SA->analyze(&VirtReg);
2506 
2507   // FIXME: SplitAnalysis may repair broken live ranges coming from the
2508   // coalescer. That may cause the range to become allocatable which means that
2509   // tryRegionSplit won't be making progress. This check should be replaced with
2510   // an assertion when the coalescer is fixed.
2511   if (SA->didRepairRange()) {
2512     // VirtReg has changed, so all cached queries are invalid.
2513     Matrix->invalidateVirtRegs();
2514     if (Register PhysReg = tryAssign(VirtReg, Order, NewVRegs, FixedRegisters))
2515       return PhysReg;
2516   }
2517 
2518   // First try to split around a region spanning multiple blocks. RS_Split2
2519   // ranges already made dubious progress with region splitting, so they go
2520   // straight to single block splitting.
2521   if (getStage(VirtReg) < RS_Split2) {
2522     MCRegister PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
2523     if (PhysReg || !NewVRegs.empty())
2524       return PhysReg;
2525   }
2526 
2527   // Then isolate blocks.
2528   return tryBlockSplit(VirtReg, Order, NewVRegs);
2529 }
2530 
2531 //===----------------------------------------------------------------------===//
2532 //                          Last Chance Recoloring
2533 //===----------------------------------------------------------------------===//
2534 
2535 /// Return true if \p reg has any tied def operand.
2536 static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg) {
2537   for (const MachineOperand &MO : MRI->def_operands(reg))
2538     if (MO.isTied())
2539       return true;
2540 
2541   return false;
2542 }
2543 
2544 /// mayRecolorAllInterferences - Check if the virtual registers that
2545 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be
2546 /// recolored to free \p PhysReg.
2547 /// When true is returned, \p RecoloringCandidates has been augmented with all
2548 /// the live intervals that need to be recolored in order to free \p PhysReg
2549 /// for \p VirtReg.
2550 /// \p FixedRegisters contains all the virtual registers that cannot be
2551 /// recolored.
2552 bool RAGreedy::mayRecolorAllInterferences(
2553     MCRegister PhysReg, LiveInterval &VirtReg, SmallLISet &RecoloringCandidates,
2554     const SmallVirtRegSet &FixedRegisters) {
2555   const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg());
2556 
2557   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2558     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
2559     // If there is LastChanceRecoloringMaxInterference or more interferences,
2560     // chances are one would not be recolorable.
2561     if (Q.collectInterferingVRegs(LastChanceRecoloringMaxInterference) >=
2562         LastChanceRecoloringMaxInterference && !ExhaustiveSearch) {
2563       LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n");
2564       CutOffInfo |= CO_Interf;
2565       return false;
2566     }
2567     for (LiveInterval *Intf : reverse(Q.interferingVRegs())) {
2568       // If Intf is done and sit on the same register class as VirtReg,
2569       // it would not be recolorable as it is in the same state as VirtReg.
2570       // However, if VirtReg has tied defs and Intf doesn't, then
2571       // there is still a point in examining if it can be recolorable.
2572       if (((getStage(*Intf) == RS_Done &&
2573             MRI->getRegClass(Intf->reg()) == CurRC) &&
2574            !(hasTiedDef(MRI, VirtReg.reg()) &&
2575              !hasTiedDef(MRI, Intf->reg()))) ||
2576           FixedRegisters.count(Intf->reg())) {
2577         LLVM_DEBUG(
2578             dbgs() << "Early abort: the interference is not recolorable.\n");
2579         return false;
2580       }
2581       RecoloringCandidates.insert(Intf);
2582     }
2583   }
2584   return true;
2585 }
2586 
2587 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring
2588 /// its interferences.
2589 /// Last chance recoloring chooses a color for \p VirtReg and recolors every
2590 /// virtual register that was using it. The recoloring process may recursively
2591 /// use the last chance recoloring. Therefore, when a virtual register has been
2592 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot
2593 /// be last-chance-recolored again during this recoloring "session".
2594 /// E.g.,
2595 /// Let
2596 /// vA can use {R1, R2    }
2597 /// vB can use {    R2, R3}
2598 /// vC can use {R1        }
2599 /// Where vA, vB, and vC cannot be split anymore (they are reloads for
2600 /// instance) and they all interfere.
2601 ///
2602 /// vA is assigned R1
2603 /// vB is assigned R2
2604 /// vC tries to evict vA but vA is already done.
2605 /// Regular register allocation fails.
2606 ///
2607 /// Last chance recoloring kicks in:
2608 /// vC does as if vA was evicted => vC uses R1.
2609 /// vC is marked as fixed.
2610 /// vA needs to find a color.
2611 /// None are available.
2612 /// vA cannot evict vC: vC is a fixed virtual register now.
2613 /// vA does as if vB was evicted => vA uses R2.
2614 /// vB needs to find a color.
2615 /// R3 is available.
2616 /// Recoloring => vC = R1, vA = R2, vB = R3
2617 ///
2618 /// \p Order defines the preferred allocation order for \p VirtReg.
2619 /// \p NewRegs will contain any new virtual register that have been created
2620 /// (split, spill) during the process and that must be assigned.
2621 /// \p FixedRegisters contains all the virtual registers that cannot be
2622 /// recolored.
2623 /// \p Depth gives the current depth of the last chance recoloring.
2624 /// \return a physical register that can be used for VirtReg or ~0u if none
2625 /// exists.
2626 unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg,
2627                                            AllocationOrder &Order,
2628                                            SmallVectorImpl<Register> &NewVRegs,
2629                                            SmallVirtRegSet &FixedRegisters,
2630                                            unsigned Depth) {
2631   if (!TRI->shouldUseLastChanceRecoloringForVirtReg(*MF, VirtReg))
2632     return ~0u;
2633 
2634   LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n');
2635   // Ranges must be Done.
2636   assert((getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) &&
2637          "Last chance recoloring should really be last chance");
2638   // Set the max depth to LastChanceRecoloringMaxDepth.
2639   // We may want to reconsider that if we end up with a too large search space
2640   // for target with hundreds of registers.
2641   // Indeed, in that case we may want to cut the search space earlier.
2642   if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) {
2643     LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n");
2644     CutOffInfo |= CO_Depth;
2645     return ~0u;
2646   }
2647 
2648   // Set of Live intervals that will need to be recolored.
2649   SmallLISet RecoloringCandidates;
2650   // Record the original mapping virtual register to physical register in case
2651   // the recoloring fails.
2652   DenseMap<Register, MCRegister> VirtRegToPhysReg;
2653   // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in
2654   // this recoloring "session".
2655   assert(!FixedRegisters.count(VirtReg.reg()));
2656   FixedRegisters.insert(VirtReg.reg());
2657   SmallVector<Register, 4> CurrentNewVRegs;
2658 
2659   for (MCRegister PhysReg : Order) {
2660     assert(PhysReg.isValid());
2661     LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg << " to "
2662                       << printReg(PhysReg, TRI) << '\n');
2663     RecoloringCandidates.clear();
2664     VirtRegToPhysReg.clear();
2665     CurrentNewVRegs.clear();
2666 
2667     // It is only possible to recolor virtual register interference.
2668     if (Matrix->checkInterference(VirtReg, PhysReg) >
2669         LiveRegMatrix::IK_VirtReg) {
2670       LLVM_DEBUG(
2671           dbgs() << "Some interferences are not with virtual registers.\n");
2672 
2673       continue;
2674     }
2675 
2676     // Early give up on this PhysReg if it is obvious we cannot recolor all
2677     // the interferences.
2678     if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates,
2679                                     FixedRegisters)) {
2680       LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n");
2681       continue;
2682     }
2683 
2684     // RecoloringCandidates contains all the virtual registers that interfer
2685     // with VirtReg on PhysReg (or one of its aliases).
2686     // Enqueue them for recoloring and perform the actual recoloring.
2687     PQueue RecoloringQueue;
2688     for (LiveInterval *RC : RecoloringCandidates) {
2689       Register ItVirtReg = RC->reg();
2690       enqueue(RecoloringQueue, RC);
2691       assert(VRM->hasPhys(ItVirtReg) &&
2692              "Interferences are supposed to be with allocated variables");
2693 
2694       // Record the current allocation.
2695       VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg);
2696       // unset the related struct.
2697       Matrix->unassign(*RC);
2698     }
2699 
2700     // Do as if VirtReg was assigned to PhysReg so that the underlying
2701     // recoloring has the right information about the interferes and
2702     // available colors.
2703     Matrix->assign(VirtReg, PhysReg);
2704 
2705     // Save the current recoloring state.
2706     // If we cannot recolor all the interferences, we will have to start again
2707     // at this point for the next physical register.
2708     SmallVirtRegSet SaveFixedRegisters(FixedRegisters);
2709     if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs,
2710                                 FixedRegisters, Depth)) {
2711       // Push the queued vregs into the main queue.
2712       for (Register NewVReg : CurrentNewVRegs)
2713         NewVRegs.push_back(NewVReg);
2714       // Do not mess up with the global assignment process.
2715       // I.e., VirtReg must be unassigned.
2716       Matrix->unassign(VirtReg);
2717       return PhysReg;
2718     }
2719 
2720     LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to "
2721                       << printReg(PhysReg, TRI) << '\n');
2722 
2723     // The recoloring attempt failed, undo the changes.
2724     FixedRegisters = SaveFixedRegisters;
2725     Matrix->unassign(VirtReg);
2726 
2727     // For a newly created vreg which is also in RecoloringCandidates,
2728     // don't add it to NewVRegs because its physical register will be restored
2729     // below. Other vregs in CurrentNewVRegs are created by calling
2730     // selectOrSplit and should be added into NewVRegs.
2731     for (Register &R : CurrentNewVRegs) {
2732       if (RecoloringCandidates.count(&LIS->getInterval(R)))
2733         continue;
2734       NewVRegs.push_back(R);
2735     }
2736 
2737     for (LiveInterval *RC : RecoloringCandidates) {
2738       Register ItVirtReg = RC->reg();
2739       if (VRM->hasPhys(ItVirtReg))
2740         Matrix->unassign(*RC);
2741       MCRegister ItPhysReg = VirtRegToPhysReg[ItVirtReg];
2742       Matrix->assign(*RC, ItPhysReg);
2743     }
2744   }
2745 
2746   // Last chance recoloring did not worked either, give up.
2747   return ~0u;
2748 }
2749 
2750 /// tryRecoloringCandidates - Try to assign a new color to every register
2751 /// in \RecoloringQueue.
2752 /// \p NewRegs will contain any new virtual register created during the
2753 /// recoloring process.
2754 /// \p FixedRegisters[in/out] contains all the registers that have been
2755 /// recolored.
2756 /// \return true if all virtual registers in RecoloringQueue were successfully
2757 /// recolored, false otherwise.
2758 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue,
2759                                        SmallVectorImpl<Register> &NewVRegs,
2760                                        SmallVirtRegSet &FixedRegisters,
2761                                        unsigned Depth) {
2762   while (!RecoloringQueue.empty()) {
2763     LiveInterval *LI = dequeue(RecoloringQueue);
2764     LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI << '\n');
2765     MCRegister PhysReg =
2766         selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, Depth + 1);
2767     // When splitting happens, the live-range may actually be empty.
2768     // In that case, this is okay to continue the recoloring even
2769     // if we did not find an alternative color for it. Indeed,
2770     // there will not be anything to color for LI in the end.
2771     if (PhysReg == ~0u || (!PhysReg && !LI->empty()))
2772       return false;
2773 
2774     if (!PhysReg) {
2775       assert(LI->empty() && "Only empty live-range do not require a register");
2776       LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2777                         << " succeeded. Empty LI.\n");
2778       continue;
2779     }
2780     LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2781                       << " succeeded with: " << printReg(PhysReg, TRI) << '\n');
2782 
2783     Matrix->assign(*LI, PhysReg);
2784     FixedRegisters.insert(LI->reg());
2785   }
2786   return true;
2787 }
2788 
2789 //===----------------------------------------------------------------------===//
2790 //                            Main Entry Point
2791 //===----------------------------------------------------------------------===//
2792 
2793 MCRegister RAGreedy::selectOrSplit(LiveInterval &VirtReg,
2794                                    SmallVectorImpl<Register> &NewVRegs) {
2795   CutOffInfo = CO_None;
2796   LLVMContext &Ctx = MF->getFunction().getContext();
2797   SmallVirtRegSet FixedRegisters;
2798   MCRegister Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters);
2799   if (Reg == ~0U && (CutOffInfo != CO_None)) {
2800     uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf);
2801     if (CutOffEncountered == CO_Depth)
2802       Ctx.emitError("register allocation failed: maximum depth for recoloring "
2803                     "reached. Use -fexhaustive-register-search to skip "
2804                     "cutoffs");
2805     else if (CutOffEncountered == CO_Interf)
2806       Ctx.emitError("register allocation failed: maximum interference for "
2807                     "recoloring reached. Use -fexhaustive-register-search "
2808                     "to skip cutoffs");
2809     else if (CutOffEncountered == (CO_Depth | CO_Interf))
2810       Ctx.emitError("register allocation failed: maximum interference and "
2811                     "depth for recoloring reached. Use "
2812                     "-fexhaustive-register-search to skip cutoffs");
2813   }
2814   return Reg;
2815 }
2816 
2817 /// Using a CSR for the first time has a cost because it causes push|pop
2818 /// to be added to prologue|epilogue. Splitting a cold section of the live
2819 /// range can have lower cost than using the CSR for the first time;
2820 /// Spilling a live range in the cold path can have lower cost than using
2821 /// the CSR for the first time. Returns the physical register if we decide
2822 /// to use the CSR; otherwise return 0.
2823 MCRegister
2824 RAGreedy::tryAssignCSRFirstTime(LiveInterval &VirtReg, AllocationOrder &Order,
2825                                 MCRegister PhysReg, uint8_t &CostPerUseLimit,
2826                                 SmallVectorImpl<Register> &NewVRegs) {
2827   if (getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) {
2828     // We choose spill over using the CSR for the first time if the spill cost
2829     // is lower than CSRCost.
2830     SA->analyze(&VirtReg);
2831     if (calcSpillCost() >= CSRCost)
2832       return PhysReg;
2833 
2834     // We are going to spill, set CostPerUseLimit to 1 to make sure that
2835     // we will not use a callee-saved register in tryEvict.
2836     CostPerUseLimit = 1;
2837     return 0;
2838   }
2839   if (getStage(VirtReg) < RS_Split) {
2840     // We choose pre-splitting over using the CSR for the first time if
2841     // the cost of splitting is lower than CSRCost.
2842     SA->analyze(&VirtReg);
2843     unsigned NumCands = 0;
2844     BlockFrequency BestCost = CSRCost; // Don't modify CSRCost.
2845     unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost,
2846                                                  NumCands, true /*IgnoreCSR*/);
2847     if (BestCand == NoCand)
2848       // Use the CSR if we can't find a region split below CSRCost.
2849       return PhysReg;
2850 
2851     // Perform the actual pre-splitting.
2852     doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs);
2853     return 0;
2854   }
2855   return PhysReg;
2856 }
2857 
2858 void RAGreedy::aboutToRemoveInterval(LiveInterval &LI) {
2859   // Do not keep invalid information around.
2860   SetOfBrokenHints.remove(&LI);
2861 }
2862 
2863 void RAGreedy::initializeCSRCost() {
2864   // We use the larger one out of the command-line option and the value report
2865   // by TRI.
2866   CSRCost = BlockFrequency(
2867       std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost()));
2868   if (!CSRCost.getFrequency())
2869     return;
2870 
2871   // Raw cost is relative to Entry == 2^14; scale it appropriately.
2872   uint64_t ActualEntry = MBFI->getEntryFreq();
2873   if (!ActualEntry) {
2874     CSRCost = 0;
2875     return;
2876   }
2877   uint64_t FixedEntry = 1 << 14;
2878   if (ActualEntry < FixedEntry)
2879     CSRCost *= BranchProbability(ActualEntry, FixedEntry);
2880   else if (ActualEntry <= UINT32_MAX)
2881     // Invert the fraction and divide.
2882     CSRCost /= BranchProbability(FixedEntry, ActualEntry);
2883   else
2884     // Can't use BranchProbability in general, since it takes 32-bit numbers.
2885     CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry);
2886 }
2887 
2888 /// Collect the hint info for \p Reg.
2889 /// The results are stored into \p Out.
2890 /// \p Out is not cleared before being populated.
2891 void RAGreedy::collectHintInfo(Register Reg, HintsInfo &Out) {
2892   for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) {
2893     if (!Instr.isFullCopy())
2894       continue;
2895     // Look for the other end of the copy.
2896     Register OtherReg = Instr.getOperand(0).getReg();
2897     if (OtherReg == Reg) {
2898       OtherReg = Instr.getOperand(1).getReg();
2899       if (OtherReg == Reg)
2900         continue;
2901     }
2902     // Get the current assignment.
2903     MCRegister OtherPhysReg =
2904         OtherReg.isPhysical() ? OtherReg.asMCReg() : VRM->getPhys(OtherReg);
2905     // Push the collected information.
2906     Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg,
2907                            OtherPhysReg));
2908   }
2909 }
2910 
2911 /// Using the given \p List, compute the cost of the broken hints if
2912 /// \p PhysReg was used.
2913 /// \return The cost of \p List for \p PhysReg.
2914 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List,
2915                                            MCRegister PhysReg) {
2916   BlockFrequency Cost = 0;
2917   for (const HintInfo &Info : List) {
2918     if (Info.PhysReg != PhysReg)
2919       Cost += Info.Freq;
2920   }
2921   return Cost;
2922 }
2923 
2924 /// Using the register assigned to \p VirtReg, try to recolor
2925 /// all the live ranges that are copy-related with \p VirtReg.
2926 /// The recoloring is then propagated to all the live-ranges that have
2927 /// been recolored and so on, until no more copies can be coalesced or
2928 /// it is not profitable.
2929 /// For a given live range, profitability is determined by the sum of the
2930 /// frequencies of the non-identity copies it would introduce with the old
2931 /// and new register.
2932 void RAGreedy::tryHintRecoloring(LiveInterval &VirtReg) {
2933   // We have a broken hint, check if it is possible to fix it by
2934   // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted
2935   // some register and PhysReg may be available for the other live-ranges.
2936   SmallSet<Register, 4> Visited;
2937   SmallVector<unsigned, 2> RecoloringCandidates;
2938   HintsInfo Info;
2939   Register Reg = VirtReg.reg();
2940   MCRegister PhysReg = VRM->getPhys(Reg);
2941   // Start the recoloring algorithm from the input live-interval, then
2942   // it will propagate to the ones that are copy-related with it.
2943   Visited.insert(Reg);
2944   RecoloringCandidates.push_back(Reg);
2945 
2946   LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg, TRI)
2947                     << '(' << printReg(PhysReg, TRI) << ")\n");
2948 
2949   do {
2950     Reg = RecoloringCandidates.pop_back_val();
2951 
2952     // We cannot recolor physical register.
2953     if (Register::isPhysicalRegister(Reg))
2954       continue;
2955 
2956     // This may be a skipped class
2957     if (!VRM->hasPhys(Reg)) {
2958       assert(!ShouldAllocateClass(*TRI, *MRI->getRegClass(Reg)) &&
2959              "We have an unallocated variable which should have been handled");
2960       continue;
2961     }
2962 
2963     // Get the live interval mapped with this virtual register to be able
2964     // to check for the interference with the new color.
2965     LiveInterval &LI = LIS->getInterval(Reg);
2966     MCRegister CurrPhys = VRM->getPhys(Reg);
2967     // Check that the new color matches the register class constraints and
2968     // that it is free for this live range.
2969     if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) ||
2970                                 Matrix->checkInterference(LI, PhysReg)))
2971       continue;
2972 
2973     LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << '(' << printReg(CurrPhys, TRI)
2974                       << ") is recolorable.\n");
2975 
2976     // Gather the hint info.
2977     Info.clear();
2978     collectHintInfo(Reg, Info);
2979     // Check if recoloring the live-range will increase the cost of the
2980     // non-identity copies.
2981     if (CurrPhys != PhysReg) {
2982       LLVM_DEBUG(dbgs() << "Checking profitability:\n");
2983       BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys);
2984       BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg);
2985       LLVM_DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency()
2986                         << "\nNew Cost: " << NewCopiesCost.getFrequency()
2987                         << '\n');
2988       if (OldCopiesCost < NewCopiesCost) {
2989         LLVM_DEBUG(dbgs() << "=> Not profitable.\n");
2990         continue;
2991       }
2992       // At this point, the cost is either cheaper or equal. If it is
2993       // equal, we consider this is profitable because it may expose
2994       // more recoloring opportunities.
2995       LLVM_DEBUG(dbgs() << "=> Profitable.\n");
2996       // Recolor the live-range.
2997       Matrix->unassign(LI);
2998       Matrix->assign(LI, PhysReg);
2999     }
3000     // Push all copy-related live-ranges to keep reconciling the broken
3001     // hints.
3002     for (const HintInfo &HI : Info) {
3003       if (Visited.insert(HI.Reg).second)
3004         RecoloringCandidates.push_back(HI.Reg);
3005     }
3006   } while (!RecoloringCandidates.empty());
3007 }
3008 
3009 /// Try to recolor broken hints.
3010 /// Broken hints may be repaired by recoloring when an evicted variable
3011 /// freed up a register for a larger live-range.
3012 /// Consider the following example:
3013 /// BB1:
3014 ///   a =
3015 ///   b =
3016 /// BB2:
3017 ///   ...
3018 ///   = b
3019 ///   = a
3020 /// Let us assume b gets split:
3021 /// BB1:
3022 ///   a =
3023 ///   b =
3024 /// BB2:
3025 ///   c = b
3026 ///   ...
3027 ///   d = c
3028 ///   = d
3029 ///   = a
3030 /// Because of how the allocation work, b, c, and d may be assigned different
3031 /// colors. Now, if a gets evicted later:
3032 /// BB1:
3033 ///   a =
3034 ///   st a, SpillSlot
3035 ///   b =
3036 /// BB2:
3037 ///   c = b
3038 ///   ...
3039 ///   d = c
3040 ///   = d
3041 ///   e = ld SpillSlot
3042 ///   = e
3043 /// This is likely that we can assign the same register for b, c, and d,
3044 /// getting rid of 2 copies.
3045 void RAGreedy::tryHintsRecoloring() {
3046   for (LiveInterval *LI : SetOfBrokenHints) {
3047     assert(Register::isVirtualRegister(LI->reg()) &&
3048            "Recoloring is possible only for virtual registers");
3049     // Some dead defs may be around (e.g., because of debug uses).
3050     // Ignore those.
3051     if (!VRM->hasPhys(LI->reg()))
3052       continue;
3053     tryHintRecoloring(*LI);
3054   }
3055 }
3056 
3057 MCRegister RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg,
3058                                        SmallVectorImpl<Register> &NewVRegs,
3059                                        SmallVirtRegSet &FixedRegisters,
3060                                        unsigned Depth) {
3061   uint8_t CostPerUseLimit = uint8_t(~0u);
3062   // First try assigning a free register.
3063   auto Order =
3064       AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix);
3065   if (MCRegister PhysReg =
3066           tryAssign(VirtReg, Order, NewVRegs, FixedRegisters)) {
3067     // If VirtReg got an assignment, the eviction info is no longer relevant.
3068     LastEvicted.clearEvicteeInfo(VirtReg.reg());
3069     // When NewVRegs is not empty, we may have made decisions such as evicting
3070     // a virtual register, go with the earlier decisions and use the physical
3071     // register.
3072     if (CSRCost.getFrequency() && isUnusedCalleeSavedReg(PhysReg) &&
3073         NewVRegs.empty()) {
3074       MCRegister CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg,
3075                                                 CostPerUseLimit, NewVRegs);
3076       if (CSRReg || !NewVRegs.empty())
3077         // Return now if we decide to use a CSR or create new vregs due to
3078         // pre-splitting.
3079         return CSRReg;
3080     } else
3081       return PhysReg;
3082   }
3083 
3084   LiveRangeStage Stage = getStage(VirtReg);
3085   LLVM_DEBUG(dbgs() << StageName[Stage] << " Cascade "
3086                     << ExtraRegInfo[VirtReg.reg()].Cascade << '\n');
3087 
3088   // Try to evict a less worthy live range, but only for ranges from the primary
3089   // queue. The RS_Split ranges already failed to do this, and they should not
3090   // get a second chance until they have been split.
3091   if (Stage != RS_Split)
3092     if (Register PhysReg =
3093             tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit,
3094                      FixedRegisters)) {
3095       Register Hint = MRI->getSimpleHint(VirtReg.reg());
3096       // If VirtReg has a hint and that hint is broken record this
3097       // virtual register as a recoloring candidate for broken hint.
3098       // Indeed, since we evicted a variable in its neighborhood it is
3099       // likely we can at least partially recolor some of the
3100       // copy-related live-ranges.
3101       if (Hint && Hint != PhysReg)
3102         SetOfBrokenHints.insert(&VirtReg);
3103       // If VirtReg eviction someone, the eviction info for it as an evictee is
3104       // no longer relevant.
3105       LastEvicted.clearEvicteeInfo(VirtReg.reg());
3106       return PhysReg;
3107     }
3108 
3109   assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs");
3110 
3111   // The first time we see a live range, don't try to split or spill.
3112   // Wait until the second time, when all smaller ranges have been allocated.
3113   // This gives a better picture of the interference to split around.
3114   if (Stage < RS_Split) {
3115     setStage(VirtReg, RS_Split);
3116     LLVM_DEBUG(dbgs() << "wait for second round\n");
3117     NewVRegs.push_back(VirtReg.reg());
3118     return 0;
3119   }
3120 
3121   if (Stage < RS_Spill) {
3122     // Try splitting VirtReg or interferences.
3123     unsigned NewVRegSizeBefore = NewVRegs.size();
3124     Register PhysReg = trySplit(VirtReg, Order, NewVRegs, FixedRegisters);
3125     if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore)) {
3126       // If VirtReg got split, the eviction info is no longer relevant.
3127       LastEvicted.clearEvicteeInfo(VirtReg.reg());
3128       return PhysReg;
3129     }
3130   }
3131 
3132   // If we couldn't allocate a register from spilling, there is probably some
3133   // invalid inline assembly. The base class will report it.
3134   if (Stage >= RS_Done || !VirtReg.isSpillable())
3135     return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters,
3136                                    Depth);
3137 
3138   // Finally spill VirtReg itself.
3139   if ((EnableDeferredSpilling ||
3140        TRI->shouldUseDeferredSpillingForVirtReg(*MF, VirtReg)) &&
3141       getStage(VirtReg) < RS_Memory) {
3142     // TODO: This is experimental and in particular, we do not model
3143     // the live range splitting done by spilling correctly.
3144     // We would need a deep integration with the spiller to do the
3145     // right thing here. Anyway, that is still good for early testing.
3146     setStage(VirtReg, RS_Memory);
3147     LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n");
3148     NewVRegs.push_back(VirtReg.reg());
3149   } else {
3150     NamedRegionTimer T("spill", "Spiller", TimerGroupName,
3151                        TimerGroupDescription, TimePassesIsEnabled);
3152     LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
3153     spiller().spill(LRE);
3154     setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done);
3155 
3156     // Tell LiveDebugVariables about the new ranges. Ranges not being covered by
3157     // the new regs are kept in LDV (still mapping to the old register), until
3158     // we rewrite spilled locations in LDV at a later stage.
3159     DebugVars->splitRegister(VirtReg.reg(), LRE.regs(), *LIS);
3160 
3161     if (VerifyEnabled)
3162       MF->verify(this, "After spilling");
3163   }
3164 
3165   // The live virtual register requesting allocation was spilled, so tell
3166   // the caller not to allocate anything during this round.
3167   return 0;
3168 }
3169 
3170 void RAGreedy::RAGreedyStats::report(MachineOptimizationRemarkMissed &R) {
3171   using namespace ore;
3172   if (Spills) {
3173     R << NV("NumSpills", Spills) << " spills ";
3174     R << NV("TotalSpillsCost", SpillsCost) << " total spills cost ";
3175   }
3176   if (FoldedSpills) {
3177     R << NV("NumFoldedSpills", FoldedSpills) << " folded spills ";
3178     R << NV("TotalFoldedSpillsCost", FoldedSpillsCost)
3179       << " total folded spills cost ";
3180   }
3181   if (Reloads) {
3182     R << NV("NumReloads", Reloads) << " reloads ";
3183     R << NV("TotalReloadsCost", ReloadsCost) << " total reloads cost ";
3184   }
3185   if (FoldedReloads) {
3186     R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads ";
3187     R << NV("TotalFoldedReloadsCost", FoldedReloadsCost)
3188       << " total folded reloads cost ";
3189   }
3190   if (ZeroCostFoldedReloads)
3191     R << NV("NumZeroCostFoldedReloads", ZeroCostFoldedReloads)
3192       << " zero cost folded reloads ";
3193   if (Copies) {
3194     R << NV("NumVRCopies", Copies) << " virtual registers copies ";
3195     R << NV("TotalCopiesCost", CopiesCost) << " total copies cost ";
3196   }
3197 }
3198 
3199 RAGreedy::RAGreedyStats RAGreedy::computeStats(MachineBasicBlock &MBB) {
3200   RAGreedyStats Stats;
3201   const MachineFrameInfo &MFI = MF->getFrameInfo();
3202   int FI;
3203 
3204   auto isSpillSlotAccess = [&MFI](const MachineMemOperand *A) {
3205     return MFI.isSpillSlotObjectIndex(cast<FixedStackPseudoSourceValue>(
3206         A->getPseudoValue())->getFrameIndex());
3207   };
3208   auto isPatchpointInstr = [](const MachineInstr &MI) {
3209     return MI.getOpcode() == TargetOpcode::PATCHPOINT ||
3210            MI.getOpcode() == TargetOpcode::STACKMAP ||
3211            MI.getOpcode() == TargetOpcode::STATEPOINT;
3212   };
3213   for (MachineInstr &MI : MBB) {
3214     if (MI.isCopy()) {
3215       MachineOperand &Dest = MI.getOperand(0);
3216       MachineOperand &Src = MI.getOperand(1);
3217       if (Dest.isReg() && Src.isReg() && Dest.getReg().isVirtual() &&
3218           Src.getReg().isVirtual())
3219         ++Stats.Copies;
3220       continue;
3221     }
3222 
3223     SmallVector<const MachineMemOperand *, 2> Accesses;
3224     if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) {
3225       ++Stats.Reloads;
3226       continue;
3227     }
3228     if (TII->isStoreToStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) {
3229       ++Stats.Spills;
3230       continue;
3231     }
3232     if (TII->hasLoadFromStackSlot(MI, Accesses) &&
3233         llvm::any_of(Accesses, isSpillSlotAccess)) {
3234       if (!isPatchpointInstr(MI)) {
3235         Stats.FoldedReloads += Accesses.size();
3236         continue;
3237       }
3238       // For statepoint there may be folded and zero cost folded stack reloads.
3239       std::pair<unsigned, unsigned> NonZeroCostRange =
3240           TII->getPatchpointUnfoldableRange(MI);
3241       SmallSet<unsigned, 16> FoldedReloads;
3242       SmallSet<unsigned, 16> ZeroCostFoldedReloads;
3243       for (unsigned Idx = 0, E = MI.getNumOperands(); Idx < E; ++Idx) {
3244         MachineOperand &MO = MI.getOperand(Idx);
3245         if (!MO.isFI() || !MFI.isSpillSlotObjectIndex(MO.getIndex()))
3246           continue;
3247         if (Idx >= NonZeroCostRange.first && Idx < NonZeroCostRange.second)
3248           FoldedReloads.insert(MO.getIndex());
3249         else
3250           ZeroCostFoldedReloads.insert(MO.getIndex());
3251       }
3252       // If stack slot is used in folded reload it is not zero cost then.
3253       for (unsigned Slot : FoldedReloads)
3254         ZeroCostFoldedReloads.erase(Slot);
3255       Stats.FoldedReloads += FoldedReloads.size();
3256       Stats.ZeroCostFoldedReloads += ZeroCostFoldedReloads.size();
3257       continue;
3258     }
3259     Accesses.clear();
3260     if (TII->hasStoreToStackSlot(MI, Accesses) &&
3261         llvm::any_of(Accesses, isSpillSlotAccess)) {
3262       Stats.FoldedSpills += Accesses.size();
3263     }
3264   }
3265   // Set cost of collected statistic by multiplication to relative frequency of
3266   // this basic block.
3267   float RelFreq = MBFI->getBlockFreqRelativeToEntryBlock(&MBB);
3268   Stats.ReloadsCost = RelFreq * Stats.Reloads;
3269   Stats.FoldedReloadsCost = RelFreq * Stats.FoldedReloads;
3270   Stats.SpillsCost = RelFreq * Stats.Spills;
3271   Stats.FoldedSpillsCost = RelFreq * Stats.FoldedSpills;
3272   Stats.CopiesCost = RelFreq * Stats.Copies;
3273   return Stats;
3274 }
3275 
3276 RAGreedy::RAGreedyStats RAGreedy::reportStats(MachineLoop *L) {
3277   RAGreedyStats Stats;
3278 
3279   // Sum up the spill and reloads in subloops.
3280   for (MachineLoop *SubLoop : *L)
3281     Stats.add(reportStats(SubLoop));
3282 
3283   for (MachineBasicBlock *MBB : L->getBlocks())
3284     // Handle blocks that were not included in subloops.
3285     if (Loops->getLoopFor(MBB) == L)
3286       Stats.add(computeStats(*MBB));
3287 
3288   if (!Stats.isEmpty()) {
3289     using namespace ore;
3290 
3291     ORE->emit([&]() {
3292       MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReloadCopies",
3293                                         L->getStartLoc(), L->getHeader());
3294       Stats.report(R);
3295       R << "generated in loop";
3296       return R;
3297     });
3298   }
3299   return Stats;
3300 }
3301 
3302 void RAGreedy::reportStats() {
3303   if (!ORE->allowExtraAnalysis(DEBUG_TYPE))
3304     return;
3305   RAGreedyStats Stats;
3306   for (MachineLoop *L : *Loops)
3307     Stats.add(reportStats(L));
3308   // Process non-loop blocks.
3309   for (MachineBasicBlock &MBB : *MF)
3310     if (!Loops->getLoopFor(&MBB))
3311       Stats.add(computeStats(MBB));
3312   if (!Stats.isEmpty()) {
3313     using namespace ore;
3314 
3315     ORE->emit([&]() {
3316       DebugLoc Loc;
3317       if (auto *SP = MF->getFunction().getSubprogram())
3318         Loc = DILocation::get(SP->getContext(), SP->getLine(), 1, SP);
3319       MachineOptimizationRemarkMissed R(DEBUG_TYPE, "SpillReloadCopies", Loc,
3320                                         &MF->front());
3321       Stats.report(R);
3322       R << "generated in function";
3323       return R;
3324     });
3325   }
3326 }
3327 
3328 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
3329   LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
3330                     << "********** Function: " << mf.getName() << '\n');
3331 
3332   MF = &mf;
3333   TRI = MF->getSubtarget().getRegisterInfo();
3334   TII = MF->getSubtarget().getInstrInfo();
3335   RCI.runOnMachineFunction(mf);
3336 
3337   EnableLocalReassign = EnableLocalReassignment ||
3338                         MF->getSubtarget().enableRALocalReassignment(
3339                             MF->getTarget().getOptLevel());
3340 
3341   EnableAdvancedRASplitCost =
3342       ConsiderLocalIntervalCost.getNumOccurrences()
3343           ? ConsiderLocalIntervalCost
3344           : MF->getSubtarget().enableAdvancedRASplitCost();
3345 
3346   if (VerifyEnabled)
3347     MF->verify(this, "Before greedy register allocator");
3348 
3349   RegAllocBase::init(getAnalysis<VirtRegMap>(),
3350                      getAnalysis<LiveIntervals>(),
3351                      getAnalysis<LiveRegMatrix>());
3352   Indexes = &getAnalysis<SlotIndexes>();
3353   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
3354   DomTree = &getAnalysis<MachineDominatorTree>();
3355   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
3356   Loops = &getAnalysis<MachineLoopInfo>();
3357   Bundles = &getAnalysis<EdgeBundles>();
3358   SpillPlacer = &getAnalysis<SpillPlacement>();
3359   DebugVars = &getAnalysis<LiveDebugVariables>();
3360   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
3361 
3362   initializeCSRCost();
3363 
3364   RegCosts = TRI->getRegisterCosts(*MF);
3365 
3366   VRAI = std::make_unique<VirtRegAuxInfo>(*MF, *LIS, *VRM, *Loops, *MBFI);
3367   SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM, *VRAI));
3368 
3369   VRAI->calculateSpillWeightsAndHints();
3370 
3371   LLVM_DEBUG(LIS->dump());
3372 
3373   SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
3374   SE.reset(new SplitEditor(*SA, *AA, *LIS, *VRM, *DomTree, *MBFI, *VRAI));
3375   ExtraRegInfo.clear();
3376   ExtraRegInfo.resize(MRI->getNumVirtRegs());
3377   NextCascade = 1;
3378   IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI);
3379   GlobalCand.resize(32);  // This will grow as needed.
3380   SetOfBrokenHints.clear();
3381   LastEvicted.clear();
3382 
3383   allocatePhysRegs();
3384   tryHintsRecoloring();
3385 
3386   if (VerifyEnabled)
3387     MF->verify(this, "Before post optimization");
3388   postOptimization();
3389   reportStats();
3390 
3391   releaseMemory();
3392   return true;
3393 }
3394