1 //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the RAGreedy function pass for register allocation in
10 // optimized builds.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "AllocationOrder.h"
15 #include "InterferenceCache.h"
16 #include "LiveDebugVariables.h"
17 #include "RegAllocBase.h"
18 #include "SpillPlacement.h"
19 #include "SplitKit.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/BitVector.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/IndexedMap.h"
24 #include "llvm/ADT/MapVector.h"
25 #include "llvm/ADT/SetVector.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallSet.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/Analysis/AliasAnalysis.h"
32 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
33 #include "llvm/CodeGen/CalcSpillWeights.h"
34 #include "llvm/CodeGen/EdgeBundles.h"
35 #include "llvm/CodeGen/LiveInterval.h"
36 #include "llvm/CodeGen/LiveIntervalUnion.h"
37 #include "llvm/CodeGen/LiveIntervals.h"
38 #include "llvm/CodeGen/LiveRangeEdit.h"
39 #include "llvm/CodeGen/LiveRegMatrix.h"
40 #include "llvm/CodeGen/LiveStacks.h"
41 #include "llvm/CodeGen/MachineBasicBlock.h"
42 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
43 #include "llvm/CodeGen/MachineDominators.h"
44 #include "llvm/CodeGen/MachineFrameInfo.h"
45 #include "llvm/CodeGen/MachineFunction.h"
46 #include "llvm/CodeGen/MachineFunctionPass.h"
47 #include "llvm/CodeGen/MachineInstr.h"
48 #include "llvm/CodeGen/MachineLoopInfo.h"
49 #include "llvm/CodeGen/MachineOperand.h"
50 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
51 #include "llvm/CodeGen/MachineRegisterInfo.h"
52 #include "llvm/CodeGen/RegAllocRegistry.h"
53 #include "llvm/CodeGen/RegisterClassInfo.h"
54 #include "llvm/CodeGen/SlotIndexes.h"
55 #include "llvm/CodeGen/Spiller.h"
56 #include "llvm/CodeGen/TargetInstrInfo.h"
57 #include "llvm/CodeGen/TargetRegisterInfo.h"
58 #include "llvm/CodeGen/TargetSubtargetInfo.h"
59 #include "llvm/CodeGen/VirtRegMap.h"
60 #include "llvm/IR/Function.h"
61 #include "llvm/IR/LLVMContext.h"
62 #include "llvm/MC/MCRegisterInfo.h"
63 #include "llvm/Pass.h"
64 #include "llvm/Support/BlockFrequency.h"
65 #include "llvm/Support/BranchProbability.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/Debug.h"
68 #include "llvm/Support/MathExtras.h"
69 #include "llvm/Support/Timer.h"
70 #include "llvm/Support/raw_ostream.h"
71 #include "llvm/Target/TargetMachine.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstdint>
75 #include <memory>
76 #include <queue>
77 #include <tuple>
78 #include <utility>
79 
80 using namespace llvm;
81 
82 #define DEBUG_TYPE "regalloc"
83 
84 STATISTIC(NumGlobalSplits, "Number of split global live ranges");
85 STATISTIC(NumLocalSplits,  "Number of split local live ranges");
86 STATISTIC(NumEvicted,      "Number of interferences evicted");
87 
88 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode(
89     "split-spill-mode", cl::Hidden,
90     cl::desc("Spill mode for splitting live ranges"),
91     cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"),
92                clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"),
93                clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")),
94     cl::init(SplitEditor::SM_Speed));
95 
96 static cl::opt<unsigned>
97 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden,
98                              cl::desc("Last chance recoloring max depth"),
99                              cl::init(5));
100 
101 static cl::opt<unsigned> LastChanceRecoloringMaxInterference(
102     "lcr-max-interf", cl::Hidden,
103     cl::desc("Last chance recoloring maximum number of considered"
104              " interference at a time"),
105     cl::init(8));
106 
107 static cl::opt<bool> ExhaustiveSearch(
108     "exhaustive-register-search", cl::NotHidden,
109     cl::desc("Exhaustive Search for registers bypassing the depth "
110              "and interference cutoffs of last chance recoloring"),
111     cl::Hidden);
112 
113 static cl::opt<bool> EnableLocalReassignment(
114     "enable-local-reassign", cl::Hidden,
115     cl::desc("Local reassignment can yield better allocation decisions, but "
116              "may be compile time intensive"),
117     cl::init(false));
118 
119 static cl::opt<bool> EnableDeferredSpilling(
120     "enable-deferred-spilling", cl::Hidden,
121     cl::desc("Instead of spilling a variable right away, defer the actual "
122              "code insertion to the end of the allocation. That way the "
123              "allocator might still find a suitable coloring for this "
124              "variable because of other evicted variables."),
125     cl::init(false));
126 
127 // FIXME: Find a good default for this flag and remove the flag.
128 static cl::opt<unsigned>
129 CSRFirstTimeCost("regalloc-csr-first-time-cost",
130               cl::desc("Cost for first time use of callee-saved register."),
131               cl::init(0), cl::Hidden);
132 
133 static cl::opt<bool> ConsiderLocalIntervalCost(
134     "consider-local-interval-cost", cl::Hidden,
135     cl::desc("Consider the cost of local intervals created by a split "
136              "candidate when choosing the best split candidate."),
137     cl::init(false));
138 
139 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
140                                        createGreedyRegisterAllocator);
141 
142 namespace {
143 
144 class RAGreedy : public MachineFunctionPass,
145                  public RegAllocBase,
146                  private LiveRangeEdit::Delegate {
147   // Convenient shortcuts.
148   using PQueue = std::priority_queue<std::pair<unsigned, unsigned>>;
149   using SmallLISet = SmallPtrSet<LiveInterval *, 4>;
150   using SmallVirtRegSet = SmallSet<Register, 16>;
151 
152   // context
153   MachineFunction *MF;
154 
155   // Shortcuts to some useful interface.
156   const TargetInstrInfo *TII;
157   const TargetRegisterInfo *TRI;
158   RegisterClassInfo RCI;
159 
160   // analyses
161   SlotIndexes *Indexes;
162   MachineBlockFrequencyInfo *MBFI;
163   MachineDominatorTree *DomTree;
164   MachineLoopInfo *Loops;
165   MachineOptimizationRemarkEmitter *ORE;
166   EdgeBundles *Bundles;
167   SpillPlacement *SpillPlacer;
168   LiveDebugVariables *DebugVars;
169   AliasAnalysis *AA;
170 
171   // state
172   std::unique_ptr<Spiller> SpillerInstance;
173   PQueue Queue;
174   unsigned NextCascade;
175   std::unique_ptr<VirtRegAuxInfo> VRAI;
176 
177   // Live ranges pass through a number of stages as we try to allocate them.
178   // Some of the stages may also create new live ranges:
179   //
180   // - Region splitting.
181   // - Per-block splitting.
182   // - Local splitting.
183   // - Spilling.
184   //
185   // Ranges produced by one of the stages skip the previous stages when they are
186   // dequeued. This improves performance because we can skip interference checks
187   // that are unlikely to give any results. It also guarantees that the live
188   // range splitting algorithm terminates, something that is otherwise hard to
189   // ensure.
190   enum LiveRangeStage {
191     /// Newly created live range that has never been queued.
192     RS_New,
193 
194     /// Only attempt assignment and eviction. Then requeue as RS_Split.
195     RS_Assign,
196 
197     /// Attempt live range splitting if assignment is impossible.
198     RS_Split,
199 
200     /// Attempt more aggressive live range splitting that is guaranteed to make
201     /// progress.  This is used for split products that may not be making
202     /// progress.
203     RS_Split2,
204 
205     /// Live range will be spilled.  No more splitting will be attempted.
206     RS_Spill,
207 
208 
209     /// Live range is in memory. Because of other evictions, it might get moved
210     /// in a register in the end.
211     RS_Memory,
212 
213     /// There is nothing more we can do to this live range.  Abort compilation
214     /// if it can't be assigned.
215     RS_Done
216   };
217 
218   // Enum CutOffStage to keep a track whether the register allocation failed
219   // because of the cutoffs encountered in last chance recoloring.
220   // Note: This is used as bitmask. New value should be next power of 2.
221   enum CutOffStage {
222     // No cutoffs encountered
223     CO_None = 0,
224 
225     // lcr-max-depth cutoff encountered
226     CO_Depth = 1,
227 
228     // lcr-max-interf cutoff encountered
229     CO_Interf = 2
230   };
231 
232   uint8_t CutOffInfo;
233 
234 #ifndef NDEBUG
235   static const char *const StageName[];
236 #endif
237 
238   // RegInfo - Keep additional information about each live range.
239   struct RegInfo {
240     LiveRangeStage Stage = RS_New;
241 
242     // Cascade - Eviction loop prevention. See canEvictInterference().
243     unsigned Cascade = 0;
244 
245     RegInfo() = default;
246   };
247 
248   IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo;
249 
250   LiveRangeStage getStage(const LiveInterval &VirtReg) const {
251     return ExtraRegInfo[VirtReg.reg()].Stage;
252   }
253 
254   void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) {
255     ExtraRegInfo.resize(MRI->getNumVirtRegs());
256     ExtraRegInfo[VirtReg.reg()].Stage = Stage;
257   }
258 
259   template<typename Iterator>
260   void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) {
261     ExtraRegInfo.resize(MRI->getNumVirtRegs());
262     for (;Begin != End; ++Begin) {
263       Register Reg = *Begin;
264       if (ExtraRegInfo[Reg].Stage == RS_New)
265         ExtraRegInfo[Reg].Stage = NewStage;
266     }
267   }
268 
269   /// Cost of evicting interference.
270   struct EvictionCost {
271     unsigned BrokenHints = 0; ///< Total number of broken hints.
272     float MaxWeight = 0;      ///< Maximum spill weight evicted.
273 
274     EvictionCost() = default;
275 
276     bool isMax() const { return BrokenHints == ~0u; }
277 
278     void setMax() { BrokenHints = ~0u; }
279 
280     void setBrokenHints(unsigned NHints) { BrokenHints = NHints; }
281 
282     bool operator<(const EvictionCost &O) const {
283       return std::tie(BrokenHints, MaxWeight) <
284              std::tie(O.BrokenHints, O.MaxWeight);
285     }
286   };
287 
288   /// EvictionTrack - Keeps track of past evictions in order to optimize region
289   /// split decision.
290   class EvictionTrack {
291 
292   public:
293     using EvictorInfo =
294         std::pair<Register /* evictor */, MCRegister /* physreg */>;
295     using EvicteeInfo = llvm::DenseMap<Register /* evictee */, EvictorInfo>;
296 
297   private:
298     /// Each Vreg that has been evicted in the last stage of selectOrSplit will
299     /// be mapped to the evictor Vreg and the PhysReg it was evicted from.
300     EvicteeInfo Evictees;
301 
302   public:
303     /// Clear all eviction information.
304     void clear() { Evictees.clear(); }
305 
306     ///  Clear eviction information for the given evictee Vreg.
307     /// E.g. when Vreg get's a new allocation, the old eviction info is no
308     /// longer relevant.
309     /// \param Evictee The evictee Vreg for whom we want to clear collected
310     /// eviction info.
311     void clearEvicteeInfo(Register Evictee) { Evictees.erase(Evictee); }
312 
313     /// Track new eviction.
314     /// The Evictor vreg has evicted the Evictee vreg from Physreg.
315     /// \param PhysReg The physical register Evictee was evicted from.
316     /// \param Evictor The evictor Vreg that evicted Evictee.
317     /// \param Evictee The evictee Vreg.
318     void addEviction(MCRegister PhysReg, Register Evictor, Register Evictee) {
319       Evictees[Evictee].first = Evictor;
320       Evictees[Evictee].second = PhysReg;
321     }
322 
323     /// Return the Evictor Vreg which evicted Evictee Vreg from PhysReg.
324     /// \param Evictee The evictee vreg.
325     /// \return The Evictor vreg which evicted Evictee vreg from PhysReg. 0 if
326     /// nobody has evicted Evictee from PhysReg.
327     EvictorInfo getEvictor(Register Evictee) {
328       if (Evictees.count(Evictee)) {
329         return Evictees[Evictee];
330       }
331 
332       return EvictorInfo(0, 0);
333     }
334   };
335 
336   // Keeps track of past evictions in order to optimize region split decision.
337   EvictionTrack LastEvicted;
338 
339   // splitting state.
340   std::unique_ptr<SplitAnalysis> SA;
341   std::unique_ptr<SplitEditor> SE;
342 
343   /// Cached per-block interference maps
344   InterferenceCache IntfCache;
345 
346   /// All basic blocks where the current register has uses.
347   SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints;
348 
349   /// Global live range splitting candidate info.
350   struct GlobalSplitCandidate {
351     // Register intended for assignment, or 0.
352     MCRegister PhysReg;
353 
354     // SplitKit interval index for this candidate.
355     unsigned IntvIdx;
356 
357     // Interference for PhysReg.
358     InterferenceCache::Cursor Intf;
359 
360     // Bundles where this candidate should be live.
361     BitVector LiveBundles;
362     SmallVector<unsigned, 8> ActiveBlocks;
363 
364     void reset(InterferenceCache &Cache, MCRegister Reg) {
365       PhysReg = Reg;
366       IntvIdx = 0;
367       Intf.setPhysReg(Cache, Reg);
368       LiveBundles.clear();
369       ActiveBlocks.clear();
370     }
371 
372     // Set B[I] = C for every live bundle where B[I] was NoCand.
373     unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) {
374       unsigned Count = 0;
375       for (unsigned I : LiveBundles.set_bits())
376         if (B[I] == NoCand) {
377           B[I] = C;
378           Count++;
379         }
380       return Count;
381     }
382   };
383 
384   /// Candidate info for each PhysReg in AllocationOrder.
385   /// This vector never shrinks, but grows to the size of the largest register
386   /// class.
387   SmallVector<GlobalSplitCandidate, 32> GlobalCand;
388 
389   enum : unsigned { NoCand = ~0u };
390 
391   /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to
392   /// NoCand which indicates the stack interval.
393   SmallVector<unsigned, 32> BundleCand;
394 
395   /// Callee-save register cost, calculated once per machine function.
396   BlockFrequency CSRCost;
397 
398   /// Run or not the local reassignment heuristic. This information is
399   /// obtained from the TargetSubtargetInfo.
400   bool EnableLocalReassign;
401 
402   /// Enable or not the consideration of the cost of local intervals created
403   /// by a split candidate when choosing the best split candidate.
404   bool EnableAdvancedRASplitCost;
405 
406   /// Set of broken hints that may be reconciled later because of eviction.
407   SmallSetVector<LiveInterval *, 8> SetOfBrokenHints;
408 
409   /// The register cost values. This list will be recreated for each Machine
410   /// Function
411   ArrayRef<uint8_t> RegCosts;
412 
413 public:
414   RAGreedy();
415 
416   /// Return the pass name.
417   StringRef getPassName() const override { return "Greedy Register Allocator"; }
418 
419   /// RAGreedy analysis usage.
420   void getAnalysisUsage(AnalysisUsage &AU) const override;
421   void releaseMemory() override;
422   Spiller &spiller() override { return *SpillerInstance; }
423   void enqueue(LiveInterval *LI) override;
424   LiveInterval *dequeue() override;
425   MCRegister selectOrSplit(LiveInterval &,
426                            SmallVectorImpl<Register> &) override;
427   void aboutToRemoveInterval(LiveInterval &) override;
428 
429   /// Perform register allocation.
430   bool runOnMachineFunction(MachineFunction &mf) override;
431 
432   MachineFunctionProperties getRequiredProperties() const override {
433     return MachineFunctionProperties().set(
434         MachineFunctionProperties::Property::NoPHIs);
435   }
436 
437   MachineFunctionProperties getClearedProperties() const override {
438     return MachineFunctionProperties().set(
439       MachineFunctionProperties::Property::IsSSA);
440   }
441 
442   static char ID;
443 
444 private:
445   MCRegister selectOrSplitImpl(LiveInterval &, SmallVectorImpl<Register> &,
446                                SmallVirtRegSet &, unsigned = 0);
447 
448   bool LRE_CanEraseVirtReg(Register) override;
449   void LRE_WillShrinkVirtReg(Register) override;
450   void LRE_DidCloneVirtReg(Register, Register) override;
451   void enqueue(PQueue &CurQueue, LiveInterval *LI);
452   LiveInterval *dequeue(PQueue &CurQueue);
453 
454   BlockFrequency calcSpillCost();
455   bool addSplitConstraints(InterferenceCache::Cursor, BlockFrequency&);
456   bool addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>);
457   bool growRegion(GlobalSplitCandidate &Cand);
458   bool splitCanCauseEvictionChain(Register Evictee, GlobalSplitCandidate &Cand,
459                                   unsigned BBNumber,
460                                   const AllocationOrder &Order);
461   bool splitCanCauseLocalSpill(unsigned VirtRegToSplit,
462                                GlobalSplitCandidate &Cand, unsigned BBNumber,
463                                const AllocationOrder &Order);
464   BlockFrequency calcGlobalSplitCost(GlobalSplitCandidate &,
465                                      const AllocationOrder &Order,
466                                      bool *CanCauseEvictionChain);
467   bool calcCompactRegion(GlobalSplitCandidate&);
468   void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>);
469   void calcGapWeights(MCRegister, SmallVectorImpl<float> &);
470   Register canReassign(LiveInterval &VirtReg, Register PrevReg);
471   bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool);
472   bool canEvictInterference(LiveInterval &, MCRegister, bool, EvictionCost &,
473                             const SmallVirtRegSet &);
474   bool canEvictInterferenceInRange(LiveInterval &VirtReg, MCRegister PhysReg,
475                                    SlotIndex Start, SlotIndex End,
476                                    EvictionCost &MaxCost);
477   MCRegister getCheapestEvicteeWeight(const AllocationOrder &Order,
478                                       LiveInterval &VirtReg, SlotIndex Start,
479                                       SlotIndex End, float *BestEvictWeight);
480   void evictInterference(LiveInterval &, MCRegister,
481                          SmallVectorImpl<Register> &);
482   bool mayRecolorAllInterferences(MCRegister PhysReg, LiveInterval &VirtReg,
483                                   SmallLISet &RecoloringCandidates,
484                                   const SmallVirtRegSet &FixedRegisters);
485 
486   Register tryAssign(LiveInterval&, AllocationOrder&,
487                      SmallVectorImpl<Register>&,
488                      const SmallVirtRegSet&);
489   unsigned tryEvict(LiveInterval &, AllocationOrder &,
490                     SmallVectorImpl<Register> &, uint8_t,
491                     const SmallVirtRegSet &);
492   MCRegister tryRegionSplit(LiveInterval &, AllocationOrder &,
493                             SmallVectorImpl<Register> &);
494   /// Calculate cost of region splitting.
495   unsigned calculateRegionSplitCost(LiveInterval &VirtReg,
496                                     AllocationOrder &Order,
497                                     BlockFrequency &BestCost,
498                                     unsigned &NumCands, bool IgnoreCSR,
499                                     bool *CanCauseEvictionChain = nullptr);
500   /// Perform region splitting.
501   unsigned doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
502                          bool HasCompact,
503                          SmallVectorImpl<Register> &NewVRegs);
504   /// Check other options before using a callee-saved register for the first
505   /// time.
506   MCRegister tryAssignCSRFirstTime(LiveInterval &VirtReg,
507                                    AllocationOrder &Order, MCRegister PhysReg,
508                                    uint8_t &CostPerUseLimit,
509                                    SmallVectorImpl<Register> &NewVRegs);
510   void initializeCSRCost();
511   unsigned tryBlockSplit(LiveInterval&, AllocationOrder&,
512                          SmallVectorImpl<Register>&);
513   unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&,
514                                SmallVectorImpl<Register>&);
515   unsigned tryLocalSplit(LiveInterval&, AllocationOrder&,
516     SmallVectorImpl<Register>&);
517   unsigned trySplit(LiveInterval&, AllocationOrder&,
518                     SmallVectorImpl<Register>&,
519                     const SmallVirtRegSet&);
520   unsigned tryLastChanceRecoloring(LiveInterval &, AllocationOrder &,
521                                    SmallVectorImpl<Register> &,
522                                    SmallVirtRegSet &, unsigned);
523   bool tryRecoloringCandidates(PQueue &, SmallVectorImpl<Register> &,
524                                SmallVirtRegSet &, unsigned);
525   void tryHintRecoloring(LiveInterval &);
526   void tryHintsRecoloring();
527 
528   /// Model the information carried by one end of a copy.
529   struct HintInfo {
530     /// The frequency of the copy.
531     BlockFrequency Freq;
532     /// The virtual register or physical register.
533     Register Reg;
534     /// Its currently assigned register.
535     /// In case of a physical register Reg == PhysReg.
536     MCRegister PhysReg;
537 
538     HintInfo(BlockFrequency Freq, Register Reg, MCRegister PhysReg)
539         : Freq(Freq), Reg(Reg), PhysReg(PhysReg) {}
540   };
541   using HintsInfo = SmallVector<HintInfo, 4>;
542 
543   BlockFrequency getBrokenHintFreq(const HintsInfo &, MCRegister);
544   void collectHintInfo(Register, HintsInfo &);
545 
546   bool isUnusedCalleeSavedReg(MCRegister PhysReg) const;
547 
548   /// Compute and report the number of spills and reloads for a loop.
549   void reportNumberOfSplillsReloads(MachineLoop *L, unsigned &Reloads,
550                                     unsigned &FoldedReloads, unsigned &Spills,
551                                     unsigned &FoldedSpills);
552 
553   /// Report the number of spills and reloads for each loop.
554   void reportNumberOfSplillsReloads() {
555     for (MachineLoop *L : *Loops) {
556       unsigned Reloads, FoldedReloads, Spills, FoldedSpills;
557       reportNumberOfSplillsReloads(L, Reloads, FoldedReloads, Spills,
558                                    FoldedSpills);
559     }
560   }
561 };
562 
563 } // end anonymous namespace
564 
565 char RAGreedy::ID = 0;
566 char &llvm::RAGreedyID = RAGreedy::ID;
567 
568 INITIALIZE_PASS_BEGIN(RAGreedy, "greedy",
569                 "Greedy Register Allocator", false, false)
570 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
571 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
572 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
573 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer)
574 INITIALIZE_PASS_DEPENDENCY(MachineScheduler)
575 INITIALIZE_PASS_DEPENDENCY(LiveStacks)
576 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
577 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
578 INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
579 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix)
580 INITIALIZE_PASS_DEPENDENCY(EdgeBundles)
581 INITIALIZE_PASS_DEPENDENCY(SpillPlacement)
582 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass)
583 INITIALIZE_PASS_END(RAGreedy, "greedy",
584                 "Greedy Register Allocator", false, false)
585 
586 #ifndef NDEBUG
587 const char *const RAGreedy::StageName[] = {
588     "RS_New",
589     "RS_Assign",
590     "RS_Split",
591     "RS_Split2",
592     "RS_Spill",
593     "RS_Memory",
594     "RS_Done"
595 };
596 #endif
597 
598 // Hysteresis to use when comparing floats.
599 // This helps stabilize decisions based on float comparisons.
600 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875
601 
602 FunctionPass* llvm::createGreedyRegisterAllocator() {
603   return new RAGreedy();
604 }
605 
606 RAGreedy::RAGreedy(): MachineFunctionPass(ID) {
607 }
608 
609 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
610   AU.setPreservesCFG();
611   AU.addRequired<MachineBlockFrequencyInfo>();
612   AU.addPreserved<MachineBlockFrequencyInfo>();
613   AU.addRequired<AAResultsWrapperPass>();
614   AU.addPreserved<AAResultsWrapperPass>();
615   AU.addRequired<LiveIntervals>();
616   AU.addPreserved<LiveIntervals>();
617   AU.addRequired<SlotIndexes>();
618   AU.addPreserved<SlotIndexes>();
619   AU.addRequired<LiveDebugVariables>();
620   AU.addPreserved<LiveDebugVariables>();
621   AU.addRequired<LiveStacks>();
622   AU.addPreserved<LiveStacks>();
623   AU.addRequired<MachineDominatorTree>();
624   AU.addPreserved<MachineDominatorTree>();
625   AU.addRequired<MachineLoopInfo>();
626   AU.addPreserved<MachineLoopInfo>();
627   AU.addRequired<VirtRegMap>();
628   AU.addPreserved<VirtRegMap>();
629   AU.addRequired<LiveRegMatrix>();
630   AU.addPreserved<LiveRegMatrix>();
631   AU.addRequired<EdgeBundles>();
632   AU.addRequired<SpillPlacement>();
633   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
634   MachineFunctionPass::getAnalysisUsage(AU);
635 }
636 
637 //===----------------------------------------------------------------------===//
638 //                     LiveRangeEdit delegate methods
639 //===----------------------------------------------------------------------===//
640 
641 bool RAGreedy::LRE_CanEraseVirtReg(Register VirtReg) {
642   LiveInterval &LI = LIS->getInterval(VirtReg);
643   if (VRM->hasPhys(VirtReg)) {
644     Matrix->unassign(LI);
645     aboutToRemoveInterval(LI);
646     return true;
647   }
648   // Unassigned virtreg is probably in the priority queue.
649   // RegAllocBase will erase it after dequeueing.
650   // Nonetheless, clear the live-range so that the debug
651   // dump will show the right state for that VirtReg.
652   LI.clear();
653   return false;
654 }
655 
656 void RAGreedy::LRE_WillShrinkVirtReg(Register VirtReg) {
657   if (!VRM->hasPhys(VirtReg))
658     return;
659 
660   // Register is assigned, put it back on the queue for reassignment.
661   LiveInterval &LI = LIS->getInterval(VirtReg);
662   Matrix->unassign(LI);
663   enqueue(&LI);
664 }
665 
666 void RAGreedy::LRE_DidCloneVirtReg(Register New, Register Old) {
667   // Cloning a register we haven't even heard about yet?  Just ignore it.
668   if (!ExtraRegInfo.inBounds(Old))
669     return;
670 
671   // LRE may clone a virtual register because dead code elimination causes it to
672   // be split into connected components. The new components are much smaller
673   // than the original, so they should get a new chance at being assigned.
674   // same stage as the parent.
675   ExtraRegInfo[Old].Stage = RS_Assign;
676   ExtraRegInfo.grow(New);
677   ExtraRegInfo[New] = ExtraRegInfo[Old];
678 }
679 
680 void RAGreedy::releaseMemory() {
681   SpillerInstance.reset();
682   ExtraRegInfo.clear();
683   GlobalCand.clear();
684 }
685 
686 void RAGreedy::enqueue(LiveInterval *LI) { enqueue(Queue, LI); }
687 
688 void RAGreedy::enqueue(PQueue &CurQueue, LiveInterval *LI) {
689   // Prioritize live ranges by size, assigning larger ranges first.
690   // The queue holds (size, reg) pairs.
691   const unsigned Size = LI->getSize();
692   const Register Reg = LI->reg();
693   assert(Reg.isVirtual() && "Can only enqueue virtual registers");
694   unsigned Prio;
695 
696   ExtraRegInfo.grow(Reg);
697   if (ExtraRegInfo[Reg].Stage == RS_New)
698     ExtraRegInfo[Reg].Stage = RS_Assign;
699 
700   if (ExtraRegInfo[Reg].Stage == RS_Split) {
701     // Unsplit ranges that couldn't be allocated immediately are deferred until
702     // everything else has been allocated.
703     Prio = Size;
704   } else if (ExtraRegInfo[Reg].Stage == RS_Memory) {
705     // Memory operand should be considered last.
706     // Change the priority such that Memory operand are assigned in
707     // the reverse order that they came in.
708     // TODO: Make this a member variable and probably do something about hints.
709     static unsigned MemOp = 0;
710     Prio = MemOp++;
711   } else {
712     // Giant live ranges fall back to the global assignment heuristic, which
713     // prevents excessive spilling in pathological cases.
714     bool ReverseLocal = TRI->reverseLocalAssignment();
715     const TargetRegisterClass &RC = *MRI->getRegClass(Reg);
716     bool ForceGlobal = !ReverseLocal &&
717       (Size / SlotIndex::InstrDist) > (2 * RC.getNumRegs());
718 
719     if (ExtraRegInfo[Reg].Stage == RS_Assign && !ForceGlobal && !LI->empty() &&
720         LIS->intervalIsInOneMBB(*LI)) {
721       // Allocate original local ranges in linear instruction order. Since they
722       // are singly defined, this produces optimal coloring in the absence of
723       // global interference and other constraints.
724       if (!ReverseLocal)
725         Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex());
726       else {
727         // Allocating bottom up may allow many short LRGs to be assigned first
728         // to one of the cheap registers. This could be much faster for very
729         // large blocks on targets with many physical registers.
730         Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex());
731       }
732       Prio |= RC.AllocationPriority << 24;
733     } else {
734       // Allocate global and split ranges in long->short order. Long ranges that
735       // don't fit should be spilled (or split) ASAP so they don't create
736       // interference.  Mark a bit to prioritize global above local ranges.
737       Prio = (1u << 29) + Size;
738     }
739     // Mark a higher bit to prioritize global and local above RS_Split.
740     Prio |= (1u << 31);
741 
742     // Boost ranges that have a physical register hint.
743     if (VRM->hasKnownPreference(Reg))
744       Prio |= (1u << 30);
745   }
746   // The virtual register number is a tie breaker for same-sized ranges.
747   // Give lower vreg numbers higher priority to assign them first.
748   CurQueue.push(std::make_pair(Prio, ~Reg));
749 }
750 
751 LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); }
752 
753 LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) {
754   if (CurQueue.empty())
755     return nullptr;
756   LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second);
757   CurQueue.pop();
758   return LI;
759 }
760 
761 //===----------------------------------------------------------------------===//
762 //                            Direct Assignment
763 //===----------------------------------------------------------------------===//
764 
765 /// tryAssign - Try to assign VirtReg to an available register.
766 Register RAGreedy::tryAssign(LiveInterval &VirtReg,
767                              AllocationOrder &Order,
768                              SmallVectorImpl<Register> &NewVRegs,
769                              const SmallVirtRegSet &FixedRegisters) {
770   Register PhysReg;
771   for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) {
772     assert(*I);
773     if (!Matrix->checkInterference(VirtReg, *I)) {
774       if (I.isHint())
775         return *I;
776       else
777         PhysReg = *I;
778     }
779   }
780   if (!PhysReg.isValid())
781     return PhysReg;
782 
783   // PhysReg is available, but there may be a better choice.
784 
785   // If we missed a simple hint, try to cheaply evict interference from the
786   // preferred register.
787   if (Register Hint = MRI->getSimpleHint(VirtReg.reg()))
788     if (Order.isHint(Hint)) {
789       MCRegister PhysHint = Hint.asMCReg();
790       LLVM_DEBUG(dbgs() << "missed hint " << printReg(PhysHint, TRI) << '\n');
791       EvictionCost MaxCost;
792       MaxCost.setBrokenHints(1);
793       if (canEvictInterference(VirtReg, PhysHint, true, MaxCost,
794                                FixedRegisters)) {
795         evictInterference(VirtReg, PhysHint, NewVRegs);
796         return PhysHint;
797       }
798       // Record the missed hint, we may be able to recover
799       // at the end if the surrounding allocation changed.
800       SetOfBrokenHints.insert(&VirtReg);
801     }
802 
803   // Try to evict interference from a cheaper alternative.
804   uint8_t Cost = RegCosts[PhysReg];
805 
806   // Most registers have 0 additional cost.
807   if (!Cost)
808     return PhysReg;
809 
810   LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is available at cost "
811                     << Cost << '\n');
812   Register CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost, FixedRegisters);
813   return CheapReg ? CheapReg : PhysReg;
814 }
815 
816 //===----------------------------------------------------------------------===//
817 //                         Interference eviction
818 //===----------------------------------------------------------------------===//
819 
820 Register RAGreedy::canReassign(LiveInterval &VirtReg, Register PrevReg) {
821   auto Order =
822       AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix);
823   MCRegister PhysReg;
824   for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) {
825     if ((*I).id() == PrevReg.id())
826       continue;
827 
828     MCRegUnitIterator Units(*I, TRI);
829     for (; Units.isValid(); ++Units) {
830       // Instantiate a "subquery", not to be confused with the Queries array.
831       LiveIntervalUnion::Query subQ(VirtReg, Matrix->getLiveUnions()[*Units]);
832       if (subQ.checkInterference())
833         break;
834     }
835     // If no units have interference, break out with the current PhysReg.
836     if (!Units.isValid())
837       PhysReg = *I;
838   }
839   if (PhysReg)
840     LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg << " from "
841                       << printReg(PrevReg, TRI) << " to "
842                       << printReg(PhysReg, TRI) << '\n');
843   return PhysReg;
844 }
845 
846 /// shouldEvict - determine if A should evict the assigned live range B. The
847 /// eviction policy defined by this function together with the allocation order
848 /// defined by enqueue() decides which registers ultimately end up being split
849 /// and spilled.
850 ///
851 /// Cascade numbers are used to prevent infinite loops if this function is a
852 /// cyclic relation.
853 ///
854 /// @param A          The live range to be assigned.
855 /// @param IsHint     True when A is about to be assigned to its preferred
856 ///                   register.
857 /// @param B          The live range to be evicted.
858 /// @param BreaksHint True when B is already assigned to its preferred register.
859 bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint,
860                            LiveInterval &B, bool BreaksHint) {
861   bool CanSplit = getStage(B) < RS_Spill;
862 
863   // Be fairly aggressive about following hints as long as the evictee can be
864   // split.
865   if (CanSplit && IsHint && !BreaksHint)
866     return true;
867 
868   if (A.weight() > B.weight()) {
869     LLVM_DEBUG(dbgs() << "should evict: " << B << " w= " << B.weight() << '\n');
870     return true;
871   }
872   return false;
873 }
874 
875 /// canEvictInterference - Return true if all interferences between VirtReg and
876 /// PhysReg can be evicted.
877 ///
878 /// @param VirtReg Live range that is about to be assigned.
879 /// @param PhysReg Desired register for assignment.
880 /// @param IsHint  True when PhysReg is VirtReg's preferred register.
881 /// @param MaxCost Only look for cheaper candidates and update with new cost
882 ///                when returning true.
883 /// @returns True when interference can be evicted cheaper than MaxCost.
884 bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, MCRegister PhysReg,
885                                     bool IsHint, EvictionCost &MaxCost,
886                                     const SmallVirtRegSet &FixedRegisters) {
887   // It is only possible to evict virtual register interference.
888   if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg)
889     return false;
890 
891   bool IsLocal = LIS->intervalIsInOneMBB(VirtReg);
892 
893   // Find VirtReg's cascade number. This will be unassigned if VirtReg was never
894   // involved in an eviction before. If a cascade number was assigned, deny
895   // evicting anything with the same or a newer cascade number. This prevents
896   // infinite eviction loops.
897   //
898   // This works out so a register without a cascade number is allowed to evict
899   // anything, and it can be evicted by anything.
900   unsigned Cascade = ExtraRegInfo[VirtReg.reg()].Cascade;
901   if (!Cascade)
902     Cascade = NextCascade;
903 
904   EvictionCost Cost;
905   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
906     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
907     // If there is 10 or more interferences, chances are one is heavier.
908     if (Q.collectInterferingVRegs(10) >= 10)
909       return false;
910 
911     // Check if any interfering live range is heavier than MaxWeight.
912     for (LiveInterval *Intf : reverse(Q.interferingVRegs())) {
913       assert(Register::isVirtualRegister(Intf->reg()) &&
914              "Only expecting virtual register interference from query");
915 
916       // Do not allow eviction of a virtual register if we are in the middle
917       // of last-chance recoloring and this virtual register is one that we
918       // have scavenged a physical register for.
919       if (FixedRegisters.count(Intf->reg()))
920         return false;
921 
922       // Never evict spill products. They cannot split or spill.
923       if (getStage(*Intf) == RS_Done)
924         return false;
925       // Once a live range becomes small enough, it is urgent that we find a
926       // register for it. This is indicated by an infinite spill weight. These
927       // urgent live ranges get to evict almost anything.
928       //
929       // Also allow urgent evictions of unspillable ranges from a strictly
930       // larger allocation order.
931       bool Urgent =
932           !VirtReg.isSpillable() &&
933           (Intf->isSpillable() ||
934            RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg())) <
935                RegClassInfo.getNumAllocatableRegs(
936                    MRI->getRegClass(Intf->reg())));
937       // Only evict older cascades or live ranges without a cascade.
938       unsigned IntfCascade = ExtraRegInfo[Intf->reg()].Cascade;
939       if (Cascade <= IntfCascade) {
940         if (!Urgent)
941           return false;
942         // We permit breaking cascades for urgent evictions. It should be the
943         // last resort, though, so make it really expensive.
944         Cost.BrokenHints += 10;
945       }
946       // Would this break a satisfied hint?
947       bool BreaksHint = VRM->hasPreferredPhys(Intf->reg());
948       // Update eviction cost.
949       Cost.BrokenHints += BreaksHint;
950       Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight());
951       // Abort if this would be too expensive.
952       if (!(Cost < MaxCost))
953         return false;
954       if (Urgent)
955         continue;
956       // Apply the eviction policy for non-urgent evictions.
957       if (!shouldEvict(VirtReg, IsHint, *Intf, BreaksHint))
958         return false;
959       // If !MaxCost.isMax(), then we're just looking for a cheap register.
960       // Evicting another local live range in this case could lead to suboptimal
961       // coloring.
962       if (!MaxCost.isMax() && IsLocal && LIS->intervalIsInOneMBB(*Intf) &&
963           (!EnableLocalReassign || !canReassign(*Intf, PhysReg))) {
964         return false;
965       }
966     }
967   }
968   MaxCost = Cost;
969   return true;
970 }
971 
972 /// Return true if all interferences between VirtReg and PhysReg between
973 /// Start and End can be evicted.
974 ///
975 /// \param VirtReg Live range that is about to be assigned.
976 /// \param PhysReg Desired register for assignment.
977 /// \param Start   Start of range to look for interferences.
978 /// \param End     End of range to look for interferences.
979 /// \param MaxCost Only look for cheaper candidates and update with new cost
980 ///                when returning true.
981 /// \return True when interference can be evicted cheaper than MaxCost.
982 bool RAGreedy::canEvictInterferenceInRange(LiveInterval &VirtReg,
983                                            MCRegister PhysReg, SlotIndex Start,
984                                            SlotIndex End,
985                                            EvictionCost &MaxCost) {
986   EvictionCost Cost;
987 
988   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
989     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
990 
991     // Check if any interfering live range is heavier than MaxWeight.
992     for (const LiveInterval *Intf : reverse(Q.interferingVRegs())) {
993       // Check if interference overlast the segment in interest.
994       if (!Intf->overlaps(Start, End))
995         continue;
996 
997       // Cannot evict non virtual reg interference.
998       if (!Register::isVirtualRegister(Intf->reg()))
999         return false;
1000       // Never evict spill products. They cannot split or spill.
1001       if (getStage(*Intf) == RS_Done)
1002         return false;
1003 
1004       // Would this break a satisfied hint?
1005       bool BreaksHint = VRM->hasPreferredPhys(Intf->reg());
1006       // Update eviction cost.
1007       Cost.BrokenHints += BreaksHint;
1008       Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight());
1009       // Abort if this would be too expensive.
1010       if (!(Cost < MaxCost))
1011         return false;
1012     }
1013   }
1014 
1015   if (Cost.MaxWeight == 0)
1016     return false;
1017 
1018   MaxCost = Cost;
1019   return true;
1020 }
1021 
1022 /// Return the physical register that will be best
1023 /// candidate for eviction by a local split interval that will be created
1024 /// between Start and End.
1025 ///
1026 /// \param Order            The allocation order
1027 /// \param VirtReg          Live range that is about to be assigned.
1028 /// \param Start            Start of range to look for interferences
1029 /// \param End              End of range to look for interferences
1030 /// \param BestEvictweight  The eviction cost of that eviction
1031 /// \return The PhysReg which is the best candidate for eviction and the
1032 /// eviction cost in BestEvictweight
1033 MCRegister RAGreedy::getCheapestEvicteeWeight(const AllocationOrder &Order,
1034                                               LiveInterval &VirtReg,
1035                                               SlotIndex Start, SlotIndex End,
1036                                               float *BestEvictweight) {
1037   EvictionCost BestEvictCost;
1038   BestEvictCost.setMax();
1039   BestEvictCost.MaxWeight = VirtReg.weight();
1040   MCRegister BestEvicteePhys;
1041 
1042   // Go over all physical registers and find the best candidate for eviction
1043   for (MCRegister PhysReg : Order.getOrder()) {
1044 
1045     if (!canEvictInterferenceInRange(VirtReg, PhysReg, Start, End,
1046                                      BestEvictCost))
1047       continue;
1048 
1049     // Best so far.
1050     BestEvicteePhys = PhysReg;
1051   }
1052   *BestEvictweight = BestEvictCost.MaxWeight;
1053   return BestEvicteePhys;
1054 }
1055 
1056 /// evictInterference - Evict any interferring registers that prevent VirtReg
1057 /// from being assigned to Physreg. This assumes that canEvictInterference
1058 /// returned true.
1059 void RAGreedy::evictInterference(LiveInterval &VirtReg, MCRegister PhysReg,
1060                                  SmallVectorImpl<Register> &NewVRegs) {
1061   // Make sure that VirtReg has a cascade number, and assign that cascade
1062   // number to every evicted register. These live ranges than then only be
1063   // evicted by a newer cascade, preventing infinite loops.
1064   unsigned Cascade = ExtraRegInfo[VirtReg.reg()].Cascade;
1065   if (!Cascade)
1066     Cascade = ExtraRegInfo[VirtReg.reg()].Cascade = NextCascade++;
1067 
1068   LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg, TRI)
1069                     << " interference: Cascade " << Cascade << '\n');
1070 
1071   // Collect all interfering virtregs first.
1072   SmallVector<LiveInterval*, 8> Intfs;
1073   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1074     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
1075     // We usually have the interfering VRegs cached so collectInterferingVRegs()
1076     // should be fast, we may need to recalculate if when different physregs
1077     // overlap the same register unit so we had different SubRanges queried
1078     // against it.
1079     Q.collectInterferingVRegs();
1080     ArrayRef<LiveInterval*> IVR = Q.interferingVRegs();
1081     Intfs.append(IVR.begin(), IVR.end());
1082   }
1083 
1084   // Evict them second. This will invalidate the queries.
1085   for (LiveInterval *Intf : Intfs) {
1086     // The same VirtReg may be present in multiple RegUnits. Skip duplicates.
1087     if (!VRM->hasPhys(Intf->reg()))
1088       continue;
1089 
1090     LastEvicted.addEviction(PhysReg, VirtReg.reg(), Intf->reg());
1091 
1092     Matrix->unassign(*Intf);
1093     assert((ExtraRegInfo[Intf->reg()].Cascade < Cascade ||
1094             VirtReg.isSpillable() < Intf->isSpillable()) &&
1095            "Cannot decrease cascade number, illegal eviction");
1096     ExtraRegInfo[Intf->reg()].Cascade = Cascade;
1097     ++NumEvicted;
1098     NewVRegs.push_back(Intf->reg());
1099   }
1100 }
1101 
1102 /// Returns true if the given \p PhysReg is a callee saved register and has not
1103 /// been used for allocation yet.
1104 bool RAGreedy::isUnusedCalleeSavedReg(MCRegister PhysReg) const {
1105   MCRegister CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg);
1106   if (!CSR)
1107     return false;
1108 
1109   return !Matrix->isPhysRegUsed(PhysReg);
1110 }
1111 
1112 /// tryEvict - Try to evict all interferences for a physreg.
1113 /// @param  VirtReg Currently unassigned virtual register.
1114 /// @param  Order   Physregs to try.
1115 /// @return         Physreg to assign VirtReg, or 0.
1116 unsigned RAGreedy::tryEvict(LiveInterval &VirtReg, AllocationOrder &Order,
1117                             SmallVectorImpl<Register> &NewVRegs,
1118                             uint8_t CostPerUseLimit,
1119                             const SmallVirtRegSet &FixedRegisters) {
1120   NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription,
1121                      TimePassesIsEnabled);
1122 
1123   // Keep track of the cheapest interference seen so far.
1124   EvictionCost BestCost;
1125   BestCost.setMax();
1126   MCRegister BestPhys;
1127   unsigned OrderLimit = Order.getOrder().size();
1128 
1129   // When we are just looking for a reduced cost per use, don't break any
1130   // hints, and only evict smaller spill weights.
1131   if (CostPerUseLimit < uint8_t(~0u)) {
1132     BestCost.BrokenHints = 0;
1133     BestCost.MaxWeight = VirtReg.weight();
1134 
1135     // Check of any registers in RC are below CostPerUseLimit.
1136     const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg());
1137     uint8_t MinCost = RegClassInfo.getMinCost(RC);
1138     if (MinCost >= CostPerUseLimit) {
1139       LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = "
1140                         << MinCost << ", no cheaper registers to be found.\n");
1141       return 0;
1142     }
1143 
1144     // It is normal for register classes to have a long tail of registers with
1145     // the same cost. We don't need to look at them if they're too expensive.
1146     if (RegCosts[Order.getOrder().back()] >= CostPerUseLimit) {
1147       OrderLimit = RegClassInfo.getLastCostChange(RC);
1148       LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit
1149                         << " regs.\n");
1150     }
1151   }
1152 
1153   for (auto I = Order.begin(), E = Order.getOrderLimitEnd(OrderLimit); I != E;
1154        ++I) {
1155     MCRegister PhysReg = *I;
1156     assert(PhysReg);
1157     if (RegCosts[PhysReg] >= CostPerUseLimit)
1158       continue;
1159     // The first use of a callee-saved register in a function has cost 1.
1160     // Don't start using a CSR when the CostPerUseLimit is low.
1161     if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) {
1162       LLVM_DEBUG(
1163           dbgs() << printReg(PhysReg, TRI) << " would clobber CSR "
1164                  << printReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI)
1165                  << '\n');
1166       continue;
1167     }
1168 
1169     if (!canEvictInterference(VirtReg, PhysReg, false, BestCost,
1170                               FixedRegisters))
1171       continue;
1172 
1173     // Best so far.
1174     BestPhys = PhysReg;
1175 
1176     // Stop if the hint can be used.
1177     if (I.isHint())
1178       break;
1179   }
1180 
1181   if (!BestPhys)
1182     return 0;
1183 
1184   evictInterference(VirtReg, BestPhys, NewVRegs);
1185   return BestPhys;
1186 }
1187 
1188 //===----------------------------------------------------------------------===//
1189 //                              Region Splitting
1190 //===----------------------------------------------------------------------===//
1191 
1192 /// addSplitConstraints - Fill out the SplitConstraints vector based on the
1193 /// interference pattern in Physreg and its aliases. Add the constraints to
1194 /// SpillPlacement and return the static cost of this split in Cost, assuming
1195 /// that all preferences in SplitConstraints are met.
1196 /// Return false if there are no bundles with positive bias.
1197 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
1198                                    BlockFrequency &Cost) {
1199   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1200 
1201   // Reset interference dependent info.
1202   SplitConstraints.resize(UseBlocks.size());
1203   BlockFrequency StaticCost = 0;
1204   for (unsigned I = 0; I != UseBlocks.size(); ++I) {
1205     const SplitAnalysis::BlockInfo &BI = UseBlocks[I];
1206     SpillPlacement::BlockConstraint &BC = SplitConstraints[I];
1207 
1208     BC.Number = BI.MBB->getNumber();
1209     Intf.moveToBlock(BC.Number);
1210     BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
1211     BC.Exit = (BI.LiveOut &&
1212                !LIS->getInstructionFromIndex(BI.LastInstr)->isImplicitDef())
1213                   ? SpillPlacement::PrefReg
1214                   : SpillPlacement::DontCare;
1215     BC.ChangesValue = BI.FirstDef.isValid();
1216 
1217     if (!Intf.hasInterference())
1218       continue;
1219 
1220     // Number of spill code instructions to insert.
1221     unsigned Ins = 0;
1222 
1223     // Interference for the live-in value.
1224     if (BI.LiveIn) {
1225       if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) {
1226         BC.Entry = SpillPlacement::MustSpill;
1227         ++Ins;
1228       } else if (Intf.first() < BI.FirstInstr) {
1229         BC.Entry = SpillPlacement::PrefSpill;
1230         ++Ins;
1231       } else if (Intf.first() < BI.LastInstr) {
1232         ++Ins;
1233       }
1234 
1235       // Abort if the spill cannot be inserted at the MBB' start
1236       if (((BC.Entry == SpillPlacement::MustSpill) ||
1237            (BC.Entry == SpillPlacement::PrefSpill)) &&
1238           SlotIndex::isEarlierInstr(BI.FirstInstr,
1239                                     SA->getFirstSplitPoint(BC.Number)))
1240         return false;
1241     }
1242 
1243     // Interference for the live-out value.
1244     if (BI.LiveOut) {
1245       if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) {
1246         BC.Exit = SpillPlacement::MustSpill;
1247         ++Ins;
1248       } else if (Intf.last() > BI.LastInstr) {
1249         BC.Exit = SpillPlacement::PrefSpill;
1250         ++Ins;
1251       } else if (Intf.last() > BI.FirstInstr) {
1252         ++Ins;
1253       }
1254     }
1255 
1256     // Accumulate the total frequency of inserted spill code.
1257     while (Ins--)
1258       StaticCost += SpillPlacer->getBlockFrequency(BC.Number);
1259   }
1260   Cost = StaticCost;
1261 
1262   // Add constraints for use-blocks. Note that these are the only constraints
1263   // that may add a positive bias, it is downhill from here.
1264   SpillPlacer->addConstraints(SplitConstraints);
1265   return SpillPlacer->scanActiveBundles();
1266 }
1267 
1268 /// addThroughConstraints - Add constraints and links to SpillPlacer from the
1269 /// live-through blocks in Blocks.
1270 bool RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
1271                                      ArrayRef<unsigned> Blocks) {
1272   const unsigned GroupSize = 8;
1273   SpillPlacement::BlockConstraint BCS[GroupSize];
1274   unsigned TBS[GroupSize];
1275   unsigned B = 0, T = 0;
1276 
1277   for (unsigned Number : Blocks) {
1278     Intf.moveToBlock(Number);
1279 
1280     if (!Intf.hasInterference()) {
1281       assert(T < GroupSize && "Array overflow");
1282       TBS[T] = Number;
1283       if (++T == GroupSize) {
1284         SpillPlacer->addLinks(makeArrayRef(TBS, T));
1285         T = 0;
1286       }
1287       continue;
1288     }
1289 
1290     assert(B < GroupSize && "Array overflow");
1291     BCS[B].Number = Number;
1292 
1293     // Abort if the spill cannot be inserted at the MBB' start
1294     MachineBasicBlock *MBB = MF->getBlockNumbered(Number);
1295     if (!MBB->empty() &&
1296         SlotIndex::isEarlierInstr(LIS->getInstructionIndex(MBB->instr_front()),
1297                                   SA->getFirstSplitPoint(Number)))
1298       return false;
1299     // Interference for the live-in value.
1300     if (Intf.first() <= Indexes->getMBBStartIdx(Number))
1301       BCS[B].Entry = SpillPlacement::MustSpill;
1302     else
1303       BCS[B].Entry = SpillPlacement::PrefSpill;
1304 
1305     // Interference for the live-out value.
1306     if (Intf.last() >= SA->getLastSplitPoint(Number))
1307       BCS[B].Exit = SpillPlacement::MustSpill;
1308     else
1309       BCS[B].Exit = SpillPlacement::PrefSpill;
1310 
1311     if (++B == GroupSize) {
1312       SpillPlacer->addConstraints(makeArrayRef(BCS, B));
1313       B = 0;
1314     }
1315   }
1316 
1317   SpillPlacer->addConstraints(makeArrayRef(BCS, B));
1318   SpillPlacer->addLinks(makeArrayRef(TBS, T));
1319   return true;
1320 }
1321 
1322 bool RAGreedy::growRegion(GlobalSplitCandidate &Cand) {
1323   // Keep track of through blocks that have not been added to SpillPlacer.
1324   BitVector Todo = SA->getThroughBlocks();
1325   SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
1326   unsigned AddedTo = 0;
1327 #ifndef NDEBUG
1328   unsigned Visited = 0;
1329 #endif
1330 
1331   while (true) {
1332     ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
1333     // Find new through blocks in the periphery of PrefRegBundles.
1334     for (unsigned Bundle : NewBundles) {
1335       // Look at all blocks connected to Bundle in the full graph.
1336       ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
1337       for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
1338            I != E; ++I) {
1339         unsigned Block = *I;
1340         if (!Todo.test(Block))
1341           continue;
1342         Todo.reset(Block);
1343         // This is a new through block. Add it to SpillPlacer later.
1344         ActiveBlocks.push_back(Block);
1345 #ifndef NDEBUG
1346         ++Visited;
1347 #endif
1348       }
1349     }
1350     // Any new blocks to add?
1351     if (ActiveBlocks.size() == AddedTo)
1352       break;
1353 
1354     // Compute through constraints from the interference, or assume that all
1355     // through blocks prefer spilling when forming compact regions.
1356     auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo);
1357     if (Cand.PhysReg) {
1358       if (!addThroughConstraints(Cand.Intf, NewBlocks))
1359         return false;
1360     } else
1361       // Provide a strong negative bias on through blocks to prevent unwanted
1362       // liveness on loop backedges.
1363       SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true);
1364     AddedTo = ActiveBlocks.size();
1365 
1366     // Perhaps iterating can enable more bundles?
1367     SpillPlacer->iterate();
1368   }
1369   LLVM_DEBUG(dbgs() << ", v=" << Visited);
1370   return true;
1371 }
1372 
1373 /// calcCompactRegion - Compute the set of edge bundles that should be live
1374 /// when splitting the current live range into compact regions.  Compact
1375 /// regions can be computed without looking at interference.  They are the
1376 /// regions formed by removing all the live-through blocks from the live range.
1377 ///
1378 /// Returns false if the current live range is already compact, or if the
1379 /// compact regions would form single block regions anyway.
1380 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) {
1381   // Without any through blocks, the live range is already compact.
1382   if (!SA->getNumThroughBlocks())
1383     return false;
1384 
1385   // Compact regions don't correspond to any physreg.
1386   Cand.reset(IntfCache, MCRegister::NoRegister);
1387 
1388   LLVM_DEBUG(dbgs() << "Compact region bundles");
1389 
1390   // Use the spill placer to determine the live bundles. GrowRegion pretends
1391   // that all the through blocks have interference when PhysReg is unset.
1392   SpillPlacer->prepare(Cand.LiveBundles);
1393 
1394   // The static split cost will be zero since Cand.Intf reports no interference.
1395   BlockFrequency Cost;
1396   if (!addSplitConstraints(Cand.Intf, Cost)) {
1397     LLVM_DEBUG(dbgs() << ", none.\n");
1398     return false;
1399   }
1400 
1401   if (!growRegion(Cand)) {
1402     LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
1403     return false;
1404   }
1405 
1406   SpillPlacer->finish();
1407 
1408   if (!Cand.LiveBundles.any()) {
1409     LLVM_DEBUG(dbgs() << ", none.\n");
1410     return false;
1411   }
1412 
1413   LLVM_DEBUG({
1414     for (int I : Cand.LiveBundles.set_bits())
1415       dbgs() << " EB#" << I;
1416     dbgs() << ".\n";
1417   });
1418   return true;
1419 }
1420 
1421 /// calcSpillCost - Compute how expensive it would be to split the live range in
1422 /// SA around all use blocks instead of forming bundle regions.
1423 BlockFrequency RAGreedy::calcSpillCost() {
1424   BlockFrequency Cost = 0;
1425   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1426   for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
1427     unsigned Number = BI.MBB->getNumber();
1428     // We normally only need one spill instruction - a load or a store.
1429     Cost += SpillPlacer->getBlockFrequency(Number);
1430 
1431     // Unless the value is redefined in the block.
1432     if (BI.LiveIn && BI.LiveOut && BI.FirstDef)
1433       Cost += SpillPlacer->getBlockFrequency(Number);
1434   }
1435   return Cost;
1436 }
1437 
1438 /// Check if splitting Evictee will create a local split interval in
1439 /// basic block number BBNumber that may cause a bad eviction chain. This is
1440 /// intended to prevent bad eviction sequences like:
1441 /// movl	%ebp, 8(%esp)           # 4-byte Spill
1442 /// movl	%ecx, %ebp
1443 /// movl	%ebx, %ecx
1444 /// movl	%edi, %ebx
1445 /// movl	%edx, %edi
1446 /// cltd
1447 /// idivl	%esi
1448 /// movl	%edi, %edx
1449 /// movl	%ebx, %edi
1450 /// movl	%ecx, %ebx
1451 /// movl	%ebp, %ecx
1452 /// movl	16(%esp), %ebp          # 4 - byte Reload
1453 ///
1454 /// Such sequences are created in 2 scenarios:
1455 ///
1456 /// Scenario #1:
1457 /// %0 is evicted from physreg0 by %1.
1458 /// Evictee %0 is intended for region splitting with split candidate
1459 /// physreg0 (the reg %0 was evicted from).
1460 /// Region splitting creates a local interval because of interference with the
1461 /// evictor %1 (normally region splitting creates 2 interval, the "by reg"
1462 /// and "by stack" intervals and local interval created when interference
1463 /// occurs).
1464 /// One of the split intervals ends up evicting %2 from physreg1.
1465 /// Evictee %2 is intended for region splitting with split candidate
1466 /// physreg1.
1467 /// One of the split intervals ends up evicting %3 from physreg2, etc.
1468 ///
1469 /// Scenario #2
1470 /// %0 is evicted from physreg0 by %1.
1471 /// %2 is evicted from physreg2 by %3 etc.
1472 /// Evictee %0 is intended for region splitting with split candidate
1473 /// physreg1.
1474 /// Region splitting creates a local interval because of interference with the
1475 /// evictor %1.
1476 /// One of the split intervals ends up evicting back original evictor %1
1477 /// from physreg0 (the reg %0 was evicted from).
1478 /// Another evictee %2 is intended for region splitting with split candidate
1479 /// physreg1.
1480 /// One of the split intervals ends up evicting %3 from physreg2, etc.
1481 ///
1482 /// \param Evictee  The register considered to be split.
1483 /// \param Cand     The split candidate that determines the physical register
1484 ///                 we are splitting for and the interferences.
1485 /// \param BBNumber The number of a BB for which the region split process will
1486 ///                 create a local split interval.
1487 /// \param Order    The physical registers that may get evicted by a split
1488 ///                 artifact of Evictee.
1489 /// \return True if splitting Evictee may cause a bad eviction chain, false
1490 /// otherwise.
1491 bool RAGreedy::splitCanCauseEvictionChain(Register Evictee,
1492                                           GlobalSplitCandidate &Cand,
1493                                           unsigned BBNumber,
1494                                           const AllocationOrder &Order) {
1495   EvictionTrack::EvictorInfo VregEvictorInfo = LastEvicted.getEvictor(Evictee);
1496   unsigned Evictor = VregEvictorInfo.first;
1497   MCRegister PhysReg = VregEvictorInfo.second;
1498 
1499   // No actual evictor.
1500   if (!Evictor || !PhysReg)
1501     return false;
1502 
1503   float MaxWeight = 0;
1504   MCRegister FutureEvictedPhysReg =
1505       getCheapestEvicteeWeight(Order, LIS->getInterval(Evictee),
1506                                Cand.Intf.first(), Cand.Intf.last(), &MaxWeight);
1507 
1508   // The bad eviction chain occurs when either the split candidate is the
1509   // evicting reg or one of the split artifact will evict the evicting reg.
1510   if ((PhysReg != Cand.PhysReg) && (PhysReg != FutureEvictedPhysReg))
1511     return false;
1512 
1513   Cand.Intf.moveToBlock(BBNumber);
1514 
1515   // Check to see if the Evictor contains interference (with Evictee) in the
1516   // given BB. If so, this interference caused the eviction of Evictee from
1517   // PhysReg. This suggest that we will create a local interval during the
1518   // region split to avoid this interference This local interval may cause a bad
1519   // eviction chain.
1520   if (!LIS->hasInterval(Evictor))
1521     return false;
1522   LiveInterval &EvictorLI = LIS->getInterval(Evictor);
1523   if (EvictorLI.FindSegmentContaining(Cand.Intf.first()) == EvictorLI.end())
1524     return false;
1525 
1526   // Now, check to see if the local interval we will create is going to be
1527   // expensive enough to evict somebody If so, this may cause a bad eviction
1528   // chain.
1529   float splitArtifactWeight =
1530       VRAI->futureWeight(LIS->getInterval(Evictee),
1531                          Cand.Intf.first().getPrevIndex(), Cand.Intf.last());
1532   if (splitArtifactWeight >= 0 && splitArtifactWeight < MaxWeight)
1533     return false;
1534 
1535   return true;
1536 }
1537 
1538 /// Check if splitting VirtRegToSplit will create a local split interval
1539 /// in basic block number BBNumber that may cause a spill.
1540 ///
1541 /// \param VirtRegToSplit The register considered to be split.
1542 /// \param Cand           The split candidate that determines the physical
1543 ///                       register we are splitting for and the interferences.
1544 /// \param BBNumber       The number of a BB for which the region split process
1545 ///                       will create a local split interval.
1546 /// \param Order          The physical registers that may get evicted by a
1547 ///                       split artifact of VirtRegToSplit.
1548 /// \return True if splitting VirtRegToSplit may cause a spill, false
1549 /// otherwise.
1550 bool RAGreedy::splitCanCauseLocalSpill(unsigned VirtRegToSplit,
1551                                        GlobalSplitCandidate &Cand,
1552                                        unsigned BBNumber,
1553                                        const AllocationOrder &Order) {
1554   Cand.Intf.moveToBlock(BBNumber);
1555 
1556   // Check if the local interval will find a non interfereing assignment.
1557   for (auto PhysReg : Order.getOrder()) {
1558     if (!Matrix->checkInterference(Cand.Intf.first().getPrevIndex(),
1559                                    Cand.Intf.last(), PhysReg))
1560       return false;
1561   }
1562 
1563   // Check if the local interval will evict a cheaper interval.
1564   float CheapestEvictWeight = 0;
1565   MCRegister FutureEvictedPhysReg = getCheapestEvicteeWeight(
1566       Order, LIS->getInterval(VirtRegToSplit), Cand.Intf.first(),
1567       Cand.Intf.last(), &CheapestEvictWeight);
1568 
1569   // Have we found an interval that can be evicted?
1570   if (FutureEvictedPhysReg) {
1571     float splitArtifactWeight =
1572         VRAI->futureWeight(LIS->getInterval(VirtRegToSplit),
1573                            Cand.Intf.first().getPrevIndex(), Cand.Intf.last());
1574     // Will the weight of the local interval be higher than the cheapest evictee
1575     // weight? If so it will evict it and will not cause a spill.
1576     if (splitArtifactWeight >= 0 && splitArtifactWeight > CheapestEvictWeight)
1577       return false;
1578   }
1579 
1580   // The local interval is not able to find non interferencing assignment and
1581   // not able to evict a less worthy interval, therfore, it can cause a spill.
1582   return true;
1583 }
1584 
1585 /// calcGlobalSplitCost - Return the global split cost of following the split
1586 /// pattern in LiveBundles. This cost should be added to the local cost of the
1587 /// interference pattern in SplitConstraints.
1588 ///
1589 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand,
1590                                              const AllocationOrder &Order,
1591                                              bool *CanCauseEvictionChain) {
1592   BlockFrequency GlobalCost = 0;
1593   const BitVector &LiveBundles = Cand.LiveBundles;
1594   Register VirtRegToSplit = SA->getParent().reg();
1595   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1596   for (unsigned I = 0; I != UseBlocks.size(); ++I) {
1597     const SplitAnalysis::BlockInfo &BI = UseBlocks[I];
1598     SpillPlacement::BlockConstraint &BC = SplitConstraints[I];
1599     bool RegIn  = LiveBundles[Bundles->getBundle(BC.Number, false)];
1600     bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)];
1601     unsigned Ins = 0;
1602 
1603     Cand.Intf.moveToBlock(BC.Number);
1604     // Check wheather a local interval is going to be created during the region
1605     // split. Calculate adavanced spilt cost (cost of local intervals) if option
1606     // is enabled.
1607     if (EnableAdvancedRASplitCost && Cand.Intf.hasInterference() && BI.LiveIn &&
1608         BI.LiveOut && RegIn && RegOut) {
1609 
1610       if (CanCauseEvictionChain &&
1611           splitCanCauseEvictionChain(VirtRegToSplit, Cand, BC.Number, Order)) {
1612         // This interference causes our eviction from this assignment, we might
1613         // evict somebody else and eventually someone will spill, add that cost.
1614         // See splitCanCauseEvictionChain for detailed description of scenarios.
1615         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1616         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1617 
1618         *CanCauseEvictionChain = true;
1619 
1620       } else if (splitCanCauseLocalSpill(VirtRegToSplit, Cand, BC.Number,
1621                                          Order)) {
1622         // This interference causes local interval to spill, add that cost.
1623         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1624         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1625       }
1626     }
1627 
1628     if (BI.LiveIn)
1629       Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
1630     if (BI.LiveOut)
1631       Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
1632     while (Ins--)
1633       GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1634   }
1635 
1636   for (unsigned Number : Cand.ActiveBlocks) {
1637     bool RegIn  = LiveBundles[Bundles->getBundle(Number, false)];
1638     bool RegOut = LiveBundles[Bundles->getBundle(Number, true)];
1639     if (!RegIn && !RegOut)
1640       continue;
1641     if (RegIn && RegOut) {
1642       // We need double spill code if this block has interference.
1643       Cand.Intf.moveToBlock(Number);
1644       if (Cand.Intf.hasInterference()) {
1645         GlobalCost += SpillPlacer->getBlockFrequency(Number);
1646         GlobalCost += SpillPlacer->getBlockFrequency(Number);
1647 
1648         // Check wheather a local interval is going to be created during the
1649         // region split.
1650         if (EnableAdvancedRASplitCost && CanCauseEvictionChain &&
1651             splitCanCauseEvictionChain(VirtRegToSplit, Cand, Number, Order)) {
1652           // This interference cause our eviction from this assignment, we might
1653           // evict somebody else, add that cost.
1654           // See splitCanCauseEvictionChain for detailed description of
1655           // scenarios.
1656           GlobalCost += SpillPlacer->getBlockFrequency(Number);
1657           GlobalCost += SpillPlacer->getBlockFrequency(Number);
1658 
1659           *CanCauseEvictionChain = true;
1660         }
1661       }
1662       continue;
1663     }
1664     // live-in / stack-out or stack-in live-out.
1665     GlobalCost += SpillPlacer->getBlockFrequency(Number);
1666   }
1667   return GlobalCost;
1668 }
1669 
1670 /// splitAroundRegion - Split the current live range around the regions
1671 /// determined by BundleCand and GlobalCand.
1672 ///
1673 /// Before calling this function, GlobalCand and BundleCand must be initialized
1674 /// so each bundle is assigned to a valid candidate, or NoCand for the
1675 /// stack-bound bundles.  The shared SA/SE SplitAnalysis and SplitEditor
1676 /// objects must be initialized for the current live range, and intervals
1677 /// created for the used candidates.
1678 ///
1679 /// @param LREdit    The LiveRangeEdit object handling the current split.
1680 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value
1681 ///                  must appear in this list.
1682 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit,
1683                                  ArrayRef<unsigned> UsedCands) {
1684   // These are the intervals created for new global ranges. We may create more
1685   // intervals for local ranges.
1686   const unsigned NumGlobalIntvs = LREdit.size();
1687   LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs
1688                     << " globals.\n");
1689   assert(NumGlobalIntvs && "No global intervals configured");
1690 
1691   // Isolate even single instructions when dealing with a proper sub-class.
1692   // That guarantees register class inflation for the stack interval because it
1693   // is all copies.
1694   Register Reg = SA->getParent().reg();
1695   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1696 
1697   // First handle all the blocks with uses.
1698   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1699   for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
1700     unsigned Number = BI.MBB->getNumber();
1701     unsigned IntvIn = 0, IntvOut = 0;
1702     SlotIndex IntfIn, IntfOut;
1703     if (BI.LiveIn) {
1704       unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
1705       if (CandIn != NoCand) {
1706         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1707         IntvIn = Cand.IntvIdx;
1708         Cand.Intf.moveToBlock(Number);
1709         IntfIn = Cand.Intf.first();
1710       }
1711     }
1712     if (BI.LiveOut) {
1713       unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
1714       if (CandOut != NoCand) {
1715         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1716         IntvOut = Cand.IntvIdx;
1717         Cand.Intf.moveToBlock(Number);
1718         IntfOut = Cand.Intf.last();
1719       }
1720     }
1721 
1722     // Create separate intervals for isolated blocks with multiple uses.
1723     if (!IntvIn && !IntvOut) {
1724       LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " isolated.\n");
1725       if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1726         SE->splitSingleBlock(BI);
1727       continue;
1728     }
1729 
1730     if (IntvIn && IntvOut)
1731       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1732     else if (IntvIn)
1733       SE->splitRegInBlock(BI, IntvIn, IntfIn);
1734     else
1735       SE->splitRegOutBlock(BI, IntvOut, IntfOut);
1736   }
1737 
1738   // Handle live-through blocks. The relevant live-through blocks are stored in
1739   // the ActiveBlocks list with each candidate. We need to filter out
1740   // duplicates.
1741   BitVector Todo = SA->getThroughBlocks();
1742   for (unsigned c = 0; c != UsedCands.size(); ++c) {
1743     ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks;
1744     for (unsigned Number : Blocks) {
1745       if (!Todo.test(Number))
1746         continue;
1747       Todo.reset(Number);
1748 
1749       unsigned IntvIn = 0, IntvOut = 0;
1750       SlotIndex IntfIn, IntfOut;
1751 
1752       unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
1753       if (CandIn != NoCand) {
1754         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1755         IntvIn = Cand.IntvIdx;
1756         Cand.Intf.moveToBlock(Number);
1757         IntfIn = Cand.Intf.first();
1758       }
1759 
1760       unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
1761       if (CandOut != NoCand) {
1762         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1763         IntvOut = Cand.IntvIdx;
1764         Cand.Intf.moveToBlock(Number);
1765         IntfOut = Cand.Intf.last();
1766       }
1767       if (!IntvIn && !IntvOut)
1768         continue;
1769       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1770     }
1771   }
1772 
1773   ++NumGlobalSplits;
1774 
1775   SmallVector<unsigned, 8> IntvMap;
1776   SE->finish(&IntvMap);
1777   DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
1778 
1779   ExtraRegInfo.resize(MRI->getNumVirtRegs());
1780   unsigned OrigBlocks = SA->getNumLiveBlocks();
1781 
1782   // Sort out the new intervals created by splitting. We get four kinds:
1783   // - Remainder intervals should not be split again.
1784   // - Candidate intervals can be assigned to Cand.PhysReg.
1785   // - Block-local splits are candidates for local splitting.
1786   // - DCE leftovers should go back on the queue.
1787   for (unsigned I = 0, E = LREdit.size(); I != E; ++I) {
1788     LiveInterval &Reg = LIS->getInterval(LREdit.get(I));
1789 
1790     // Ignore old intervals from DCE.
1791     if (getStage(Reg) != RS_New)
1792       continue;
1793 
1794     // Remainder interval. Don't try splitting again, spill if it doesn't
1795     // allocate.
1796     if (IntvMap[I] == 0) {
1797       setStage(Reg, RS_Spill);
1798       continue;
1799     }
1800 
1801     // Global intervals. Allow repeated splitting as long as the number of live
1802     // blocks is strictly decreasing.
1803     if (IntvMap[I] < NumGlobalIntvs) {
1804       if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
1805         LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
1806                           << " blocks as original.\n");
1807         // Don't allow repeated splitting as a safe guard against looping.
1808         setStage(Reg, RS_Split2);
1809       }
1810       continue;
1811     }
1812 
1813     // Other intervals are treated as new. This includes local intervals created
1814     // for blocks with multiple uses, and anything created by DCE.
1815   }
1816 
1817   if (VerifyEnabled)
1818     MF->verify(this, "After splitting live range around region");
1819 }
1820 
1821 MCRegister RAGreedy::tryRegionSplit(LiveInterval &VirtReg,
1822                                     AllocationOrder &Order,
1823                                     SmallVectorImpl<Register> &NewVRegs) {
1824   if (!TRI->shouldRegionSplitForVirtReg(*MF, VirtReg))
1825     return MCRegister::NoRegister;
1826   unsigned NumCands = 0;
1827   BlockFrequency SpillCost = calcSpillCost();
1828   BlockFrequency BestCost;
1829 
1830   // Check if we can split this live range around a compact region.
1831   bool HasCompact = calcCompactRegion(GlobalCand.front());
1832   if (HasCompact) {
1833     // Yes, keep GlobalCand[0] as the compact region candidate.
1834     NumCands = 1;
1835     BestCost = BlockFrequency::getMaxFrequency();
1836   } else {
1837     // No benefit from the compact region, our fallback will be per-block
1838     // splitting. Make sure we find a solution that is cheaper than spilling.
1839     BestCost = SpillCost;
1840     LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = ";
1841                MBFI->printBlockFreq(dbgs(), BestCost) << '\n');
1842   }
1843 
1844   bool CanCauseEvictionChain = false;
1845   unsigned BestCand =
1846       calculateRegionSplitCost(VirtReg, Order, BestCost, NumCands,
1847                                false /*IgnoreCSR*/, &CanCauseEvictionChain);
1848 
1849   // Split candidates with compact regions can cause a bad eviction sequence.
1850   // See splitCanCauseEvictionChain for detailed description of scenarios.
1851   // To avoid it, we need to comapre the cost with the spill cost and not the
1852   // current max frequency.
1853   if (HasCompact && (BestCost > SpillCost) && (BestCand != NoCand) &&
1854     CanCauseEvictionChain) {
1855     return MCRegister::NoRegister;
1856   }
1857 
1858   // No solutions found, fall back to single block splitting.
1859   if (!HasCompact && BestCand == NoCand)
1860     return MCRegister::NoRegister;
1861 
1862   return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs);
1863 }
1864 
1865 unsigned RAGreedy::calculateRegionSplitCost(LiveInterval &VirtReg,
1866                                             AllocationOrder &Order,
1867                                             BlockFrequency &BestCost,
1868                                             unsigned &NumCands, bool IgnoreCSR,
1869                                             bool *CanCauseEvictionChain) {
1870   unsigned BestCand = NoCand;
1871   for (MCPhysReg PhysReg : Order) {
1872     assert(PhysReg);
1873     if (IgnoreCSR && isUnusedCalleeSavedReg(PhysReg))
1874       continue;
1875 
1876     // Discard bad candidates before we run out of interference cache cursors.
1877     // This will only affect register classes with a lot of registers (>32).
1878     if (NumCands == IntfCache.getMaxCursors()) {
1879       unsigned WorstCount = ~0u;
1880       unsigned Worst = 0;
1881       for (unsigned CandIndex = 0; CandIndex != NumCands; ++CandIndex) {
1882         if (CandIndex == BestCand || !GlobalCand[CandIndex].PhysReg)
1883           continue;
1884         unsigned Count = GlobalCand[CandIndex].LiveBundles.count();
1885         if (Count < WorstCount) {
1886           Worst = CandIndex;
1887           WorstCount = Count;
1888         }
1889       }
1890       --NumCands;
1891       GlobalCand[Worst] = GlobalCand[NumCands];
1892       if (BestCand == NumCands)
1893         BestCand = Worst;
1894     }
1895 
1896     if (GlobalCand.size() <= NumCands)
1897       GlobalCand.resize(NumCands+1);
1898     GlobalSplitCandidate &Cand = GlobalCand[NumCands];
1899     Cand.reset(IntfCache, PhysReg);
1900 
1901     SpillPlacer->prepare(Cand.LiveBundles);
1902     BlockFrequency Cost;
1903     if (!addSplitConstraints(Cand.Intf, Cost)) {
1904       LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tno positive bundles\n");
1905       continue;
1906     }
1907     LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tstatic = ";
1908                MBFI->printBlockFreq(dbgs(), Cost));
1909     if (Cost >= BestCost) {
1910       LLVM_DEBUG({
1911         if (BestCand == NoCand)
1912           dbgs() << " worse than no bundles\n";
1913         else
1914           dbgs() << " worse than "
1915                  << printReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
1916       });
1917       continue;
1918     }
1919     if (!growRegion(Cand)) {
1920       LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
1921       continue;
1922     }
1923 
1924     SpillPlacer->finish();
1925 
1926     // No live bundles, defer to splitSingleBlocks().
1927     if (!Cand.LiveBundles.any()) {
1928       LLVM_DEBUG(dbgs() << " no bundles.\n");
1929       continue;
1930     }
1931 
1932     bool HasEvictionChain = false;
1933     Cost += calcGlobalSplitCost(Cand, Order, &HasEvictionChain);
1934     LLVM_DEBUG({
1935       dbgs() << ", total = ";
1936       MBFI->printBlockFreq(dbgs(), Cost) << " with bundles";
1937       for (int I : Cand.LiveBundles.set_bits())
1938         dbgs() << " EB#" << I;
1939       dbgs() << ".\n";
1940     });
1941     if (Cost < BestCost) {
1942       BestCand = NumCands;
1943       BestCost = Cost;
1944       // See splitCanCauseEvictionChain for detailed description of bad
1945       // eviction chain scenarios.
1946       if (CanCauseEvictionChain)
1947         *CanCauseEvictionChain = HasEvictionChain;
1948     }
1949     ++NumCands;
1950   }
1951 
1952   if (CanCauseEvictionChain && BestCand != NoCand) {
1953     // See splitCanCauseEvictionChain for detailed description of bad
1954     // eviction chain scenarios.
1955     LLVM_DEBUG(dbgs() << "Best split candidate of vreg "
1956                       << printReg(VirtReg.reg(), TRI) << "  may ");
1957     if (!(*CanCauseEvictionChain))
1958       LLVM_DEBUG(dbgs() << "not ");
1959     LLVM_DEBUG(dbgs() << "cause bad eviction chain\n");
1960   }
1961 
1962   return BestCand;
1963 }
1964 
1965 unsigned RAGreedy::doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
1966                                  bool HasCompact,
1967                                  SmallVectorImpl<Register> &NewVRegs) {
1968   SmallVector<unsigned, 8> UsedCands;
1969   // Prepare split editor.
1970   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1971   SE->reset(LREdit, SplitSpillMode);
1972 
1973   // Assign all edge bundles to the preferred candidate, or NoCand.
1974   BundleCand.assign(Bundles->getNumBundles(), NoCand);
1975 
1976   // Assign bundles for the best candidate region.
1977   if (BestCand != NoCand) {
1978     GlobalSplitCandidate &Cand = GlobalCand[BestCand];
1979     if (unsigned B = Cand.getBundles(BundleCand, BestCand)) {
1980       UsedCands.push_back(BestCand);
1981       Cand.IntvIdx = SE->openIntv();
1982       LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand.PhysReg, TRI) << " in "
1983                         << B << " bundles, intv " << Cand.IntvIdx << ".\n");
1984       (void)B;
1985     }
1986   }
1987 
1988   // Assign bundles for the compact region.
1989   if (HasCompact) {
1990     GlobalSplitCandidate &Cand = GlobalCand.front();
1991     assert(!Cand.PhysReg && "Compact region has no physreg");
1992     if (unsigned B = Cand.getBundles(BundleCand, 0)) {
1993       UsedCands.push_back(0);
1994       Cand.IntvIdx = SE->openIntv();
1995       LLVM_DEBUG(dbgs() << "Split for compact region in " << B
1996                         << " bundles, intv " << Cand.IntvIdx << ".\n");
1997       (void)B;
1998     }
1999   }
2000 
2001   splitAroundRegion(LREdit, UsedCands);
2002   return 0;
2003 }
2004 
2005 //===----------------------------------------------------------------------===//
2006 //                            Per-Block Splitting
2007 //===----------------------------------------------------------------------===//
2008 
2009 /// tryBlockSplit - Split a global live range around every block with uses. This
2010 /// creates a lot of local live ranges, that will be split by tryLocalSplit if
2011 /// they don't allocate.
2012 unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order,
2013                                  SmallVectorImpl<Register> &NewVRegs) {
2014   assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed");
2015   Register Reg = VirtReg.reg();
2016   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
2017   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2018   SE->reset(LREdit, SplitSpillMode);
2019   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
2020   for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
2021     if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
2022       SE->splitSingleBlock(BI);
2023   }
2024   // No blocks were split.
2025   if (LREdit.empty())
2026     return 0;
2027 
2028   // We did split for some blocks.
2029   SmallVector<unsigned, 8> IntvMap;
2030   SE->finish(&IntvMap);
2031 
2032   // Tell LiveDebugVariables about the new ranges.
2033   DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
2034 
2035   ExtraRegInfo.resize(MRI->getNumVirtRegs());
2036 
2037   // Sort out the new intervals created by splitting. The remainder interval
2038   // goes straight to spilling, the new local ranges get to stay RS_New.
2039   for (unsigned I = 0, E = LREdit.size(); I != E; ++I) {
2040     LiveInterval &LI = LIS->getInterval(LREdit.get(I));
2041     if (getStage(LI) == RS_New && IntvMap[I] == 0)
2042       setStage(LI, RS_Spill);
2043   }
2044 
2045   if (VerifyEnabled)
2046     MF->verify(this, "After splitting live range around basic blocks");
2047   return 0;
2048 }
2049 
2050 //===----------------------------------------------------------------------===//
2051 //                         Per-Instruction Splitting
2052 //===----------------------------------------------------------------------===//
2053 
2054 /// Get the number of allocatable registers that match the constraints of \p Reg
2055 /// on \p MI and that are also in \p SuperRC.
2056 static unsigned getNumAllocatableRegsForConstraints(
2057     const MachineInstr *MI, Register Reg, const TargetRegisterClass *SuperRC,
2058     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
2059     const RegisterClassInfo &RCI) {
2060   assert(SuperRC && "Invalid register class");
2061 
2062   const TargetRegisterClass *ConstrainedRC =
2063       MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI,
2064                                              /* ExploreBundle */ true);
2065   if (!ConstrainedRC)
2066     return 0;
2067   return RCI.getNumAllocatableRegs(ConstrainedRC);
2068 }
2069 
2070 /// tryInstructionSplit - Split a live range around individual instructions.
2071 /// This is normally not worthwhile since the spiller is doing essentially the
2072 /// same thing. However, when the live range is in a constrained register
2073 /// class, it may help to insert copies such that parts of the live range can
2074 /// be moved to a larger register class.
2075 ///
2076 /// This is similar to spilling to a larger register class.
2077 unsigned
2078 RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
2079                               SmallVectorImpl<Register> &NewVRegs) {
2080   const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg());
2081   // There is no point to this if there are no larger sub-classes.
2082   if (!RegClassInfo.isProperSubClass(CurRC))
2083     return 0;
2084 
2085   // Always enable split spill mode, since we're effectively spilling to a
2086   // register.
2087   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2088   SE->reset(LREdit, SplitEditor::SM_Size);
2089 
2090   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
2091   if (Uses.size() <= 1)
2092     return 0;
2093 
2094   LLVM_DEBUG(dbgs() << "Split around " << Uses.size()
2095                     << " individual instrs.\n");
2096 
2097   const TargetRegisterClass *SuperRC =
2098       TRI->getLargestLegalSuperClass(CurRC, *MF);
2099   unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC);
2100   // Split around every non-copy instruction if this split will relax
2101   // the constraints on the virtual register.
2102   // Otherwise, splitting just inserts uncoalescable copies that do not help
2103   // the allocation.
2104   for (const auto &Use : Uses) {
2105     if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Use))
2106       if (MI->isFullCopy() ||
2107           SuperRCNumAllocatableRegs ==
2108               getNumAllocatableRegsForConstraints(MI, VirtReg.reg(), SuperRC,
2109                                                   TII, TRI, RCI)) {
2110         LLVM_DEBUG(dbgs() << "    skip:\t" << Use << '\t' << *MI);
2111         continue;
2112       }
2113     SE->openIntv();
2114     SlotIndex SegStart = SE->enterIntvBefore(Use);
2115     SlotIndex SegStop = SE->leaveIntvAfter(Use);
2116     SE->useIntv(SegStart, SegStop);
2117   }
2118 
2119   if (LREdit.empty()) {
2120     LLVM_DEBUG(dbgs() << "All uses were copies.\n");
2121     return 0;
2122   }
2123 
2124   SmallVector<unsigned, 8> IntvMap;
2125   SE->finish(&IntvMap);
2126   DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS);
2127   ExtraRegInfo.resize(MRI->getNumVirtRegs());
2128 
2129   // Assign all new registers to RS_Spill. This was the last chance.
2130   setStage(LREdit.begin(), LREdit.end(), RS_Spill);
2131   return 0;
2132 }
2133 
2134 //===----------------------------------------------------------------------===//
2135 //                             Local Splitting
2136 //===----------------------------------------------------------------------===//
2137 
2138 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted
2139 /// in order to use PhysReg between two entries in SA->UseSlots.
2140 ///
2141 /// GapWeight[I] represents the gap between UseSlots[I] and UseSlots[I + 1].
2142 ///
2143 void RAGreedy::calcGapWeights(MCRegister PhysReg,
2144                               SmallVectorImpl<float> &GapWeight) {
2145   assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
2146   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
2147   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
2148   const unsigned NumGaps = Uses.size()-1;
2149 
2150   // Start and end points for the interference check.
2151   SlotIndex StartIdx =
2152     BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr;
2153   SlotIndex StopIdx =
2154     BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr;
2155 
2156   GapWeight.assign(NumGaps, 0.0f);
2157 
2158   // Add interference from each overlapping register.
2159   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2160     if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units)
2161           .checkInterference())
2162       continue;
2163 
2164     // We know that VirtReg is a continuous interval from FirstInstr to
2165     // LastInstr, so we don't need InterferenceQuery.
2166     //
2167     // Interference that overlaps an instruction is counted in both gaps
2168     // surrounding the instruction. The exception is interference before
2169     // StartIdx and after StopIdx.
2170     //
2171     LiveIntervalUnion::SegmentIter IntI =
2172       Matrix->getLiveUnions()[*Units] .find(StartIdx);
2173     for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
2174       // Skip the gaps before IntI.
2175       while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
2176         if (++Gap == NumGaps)
2177           break;
2178       if (Gap == NumGaps)
2179         break;
2180 
2181       // Update the gaps covered by IntI.
2182       const float weight = IntI.value()->weight();
2183       for (; Gap != NumGaps; ++Gap) {
2184         GapWeight[Gap] = std::max(GapWeight[Gap], weight);
2185         if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
2186           break;
2187       }
2188       if (Gap == NumGaps)
2189         break;
2190     }
2191   }
2192 
2193   // Add fixed interference.
2194   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2195     const LiveRange &LR = LIS->getRegUnit(*Units);
2196     LiveRange::const_iterator I = LR.find(StartIdx);
2197     LiveRange::const_iterator E = LR.end();
2198 
2199     // Same loop as above. Mark any overlapped gaps as HUGE_VALF.
2200     for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) {
2201       while (Uses[Gap+1].getBoundaryIndex() < I->start)
2202         if (++Gap == NumGaps)
2203           break;
2204       if (Gap == NumGaps)
2205         break;
2206 
2207       for (; Gap != NumGaps; ++Gap) {
2208         GapWeight[Gap] = huge_valf;
2209         if (Uses[Gap+1].getBaseIndex() >= I->end)
2210           break;
2211       }
2212       if (Gap == NumGaps)
2213         break;
2214     }
2215   }
2216 }
2217 
2218 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
2219 /// basic block.
2220 ///
2221 unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
2222                                  SmallVectorImpl<Register> &NewVRegs) {
2223   // TODO: the function currently only handles a single UseBlock; it should be
2224   // possible to generalize.
2225   if (SA->getUseBlocks().size() != 1)
2226     return 0;
2227 
2228   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
2229 
2230   // Note that it is possible to have an interval that is live-in or live-out
2231   // while only covering a single block - A phi-def can use undef values from
2232   // predecessors, and the block could be a single-block loop.
2233   // We don't bother doing anything clever about such a case, we simply assume
2234   // that the interval is continuous from FirstInstr to LastInstr. We should
2235   // make sure that we don't do anything illegal to such an interval, though.
2236 
2237   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
2238   if (Uses.size() <= 2)
2239     return 0;
2240   const unsigned NumGaps = Uses.size()-1;
2241 
2242   LLVM_DEBUG({
2243     dbgs() << "tryLocalSplit: ";
2244     for (const auto &Use : Uses)
2245       dbgs() << ' ' << Use;
2246     dbgs() << '\n';
2247   });
2248 
2249   // If VirtReg is live across any register mask operands, compute a list of
2250   // gaps with register masks.
2251   SmallVector<unsigned, 8> RegMaskGaps;
2252   if (Matrix->checkRegMaskInterference(VirtReg)) {
2253     // Get regmask slots for the whole block.
2254     ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber());
2255     LLVM_DEBUG(dbgs() << RMS.size() << " regmasks in block:");
2256     // Constrain to VirtReg's live range.
2257     unsigned RI =
2258         llvm::lower_bound(RMS, Uses.front().getRegSlot()) - RMS.begin();
2259     unsigned RE = RMS.size();
2260     for (unsigned I = 0; I != NumGaps && RI != RE; ++I) {
2261       // Look for Uses[I] <= RMS <= Uses[I + 1].
2262       assert(!SlotIndex::isEarlierInstr(RMS[RI], Uses[I]));
2263       if (SlotIndex::isEarlierInstr(Uses[I + 1], RMS[RI]))
2264         continue;
2265       // Skip a regmask on the same instruction as the last use. It doesn't
2266       // overlap the live range.
2267       if (SlotIndex::isSameInstr(Uses[I + 1], RMS[RI]) && I + 1 == NumGaps)
2268         break;
2269       LLVM_DEBUG(dbgs() << ' ' << RMS[RI] << ':' << Uses[I] << '-'
2270                         << Uses[I + 1]);
2271       RegMaskGaps.push_back(I);
2272       // Advance ri to the next gap. A regmask on one of the uses counts in
2273       // both gaps.
2274       while (RI != RE && SlotIndex::isEarlierInstr(RMS[RI], Uses[I + 1]))
2275         ++RI;
2276     }
2277     LLVM_DEBUG(dbgs() << '\n');
2278   }
2279 
2280   // Since we allow local split results to be split again, there is a risk of
2281   // creating infinite loops. It is tempting to require that the new live
2282   // ranges have less instructions than the original. That would guarantee
2283   // convergence, but it is too strict. A live range with 3 instructions can be
2284   // split 2+3 (including the COPY), and we want to allow that.
2285   //
2286   // Instead we use these rules:
2287   //
2288   // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the
2289   //    noop split, of course).
2290   // 2. Require progress be made for ranges with getStage() == RS_Split2. All
2291   //    the new ranges must have fewer instructions than before the split.
2292   // 3. New ranges with the same number of instructions are marked RS_Split2,
2293   //    smaller ranges are marked RS_New.
2294   //
2295   // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
2296   // excessive splitting and infinite loops.
2297   //
2298   bool ProgressRequired = getStage(VirtReg) >= RS_Split2;
2299 
2300   // Best split candidate.
2301   unsigned BestBefore = NumGaps;
2302   unsigned BestAfter = 0;
2303   float BestDiff = 0;
2304 
2305   const float blockFreq =
2306     SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() *
2307     (1.0f / MBFI->getEntryFreq());
2308   SmallVector<float, 8> GapWeight;
2309 
2310   for (MCPhysReg PhysReg : Order) {
2311     assert(PhysReg);
2312     // Keep track of the largest spill weight that would need to be evicted in
2313     // order to make use of PhysReg between UseSlots[I] and UseSlots[I + 1].
2314     calcGapWeights(PhysReg, GapWeight);
2315 
2316     // Remove any gaps with regmask clobbers.
2317     if (Matrix->checkRegMaskInterference(VirtReg, PhysReg))
2318       for (unsigned I = 0, E = RegMaskGaps.size(); I != E; ++I)
2319         GapWeight[RegMaskGaps[I]] = huge_valf;
2320 
2321     // Try to find the best sequence of gaps to close.
2322     // The new spill weight must be larger than any gap interference.
2323 
2324     // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
2325     unsigned SplitBefore = 0, SplitAfter = 1;
2326 
2327     // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
2328     // It is the spill weight that needs to be evicted.
2329     float MaxGap = GapWeight[0];
2330 
2331     while (true) {
2332       // Live before/after split?
2333       const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
2334       const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
2335 
2336       LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << ' ' << Uses[SplitBefore]
2337                         << '-' << Uses[SplitAfter] << " I=" << MaxGap);
2338 
2339       // Stop before the interval gets so big we wouldn't be making progress.
2340       if (!LiveBefore && !LiveAfter) {
2341         LLVM_DEBUG(dbgs() << " all\n");
2342         break;
2343       }
2344       // Should the interval be extended or shrunk?
2345       bool Shrink = true;
2346 
2347       // How many gaps would the new range have?
2348       unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
2349 
2350       // Legally, without causing looping?
2351       bool Legal = !ProgressRequired || NewGaps < NumGaps;
2352 
2353       if (Legal && MaxGap < huge_valf) {
2354         // Estimate the new spill weight. Each instruction reads or writes the
2355         // register. Conservatively assume there are no read-modify-write
2356         // instructions.
2357         //
2358         // Try to guess the size of the new interval.
2359         const float EstWeight = normalizeSpillWeight(
2360             blockFreq * (NewGaps + 1),
2361             Uses[SplitBefore].distance(Uses[SplitAfter]) +
2362                 (LiveBefore + LiveAfter) * SlotIndex::InstrDist,
2363             1);
2364         // Would this split be possible to allocate?
2365         // Never allocate all gaps, we wouldn't be making progress.
2366         LLVM_DEBUG(dbgs() << " w=" << EstWeight);
2367         if (EstWeight * Hysteresis >= MaxGap) {
2368           Shrink = false;
2369           float Diff = EstWeight - MaxGap;
2370           if (Diff > BestDiff) {
2371             LLVM_DEBUG(dbgs() << " (best)");
2372             BestDiff = Hysteresis * Diff;
2373             BestBefore = SplitBefore;
2374             BestAfter = SplitAfter;
2375           }
2376         }
2377       }
2378 
2379       // Try to shrink.
2380       if (Shrink) {
2381         if (++SplitBefore < SplitAfter) {
2382           LLVM_DEBUG(dbgs() << " shrink\n");
2383           // Recompute the max when necessary.
2384           if (GapWeight[SplitBefore - 1] >= MaxGap) {
2385             MaxGap = GapWeight[SplitBefore];
2386             for (unsigned I = SplitBefore + 1; I != SplitAfter; ++I)
2387               MaxGap = std::max(MaxGap, GapWeight[I]);
2388           }
2389           continue;
2390         }
2391         MaxGap = 0;
2392       }
2393 
2394       // Try to extend the interval.
2395       if (SplitAfter >= NumGaps) {
2396         LLVM_DEBUG(dbgs() << " end\n");
2397         break;
2398       }
2399 
2400       LLVM_DEBUG(dbgs() << " extend\n");
2401       MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
2402     }
2403   }
2404 
2405   // Didn't find any candidates?
2406   if (BestBefore == NumGaps)
2407     return 0;
2408 
2409   LLVM_DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] << '-'
2410                     << Uses[BestAfter] << ", " << BestDiff << ", "
2411                     << (BestAfter - BestBefore + 1) << " instrs\n");
2412 
2413   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2414   SE->reset(LREdit);
2415 
2416   SE->openIntv();
2417   SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
2418   SlotIndex SegStop  = SE->leaveIntvAfter(Uses[BestAfter]);
2419   SE->useIntv(SegStart, SegStop);
2420   SmallVector<unsigned, 8> IntvMap;
2421   SE->finish(&IntvMap);
2422   DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS);
2423 
2424   // If the new range has the same number of instructions as before, mark it as
2425   // RS_Split2 so the next split will be forced to make progress. Otherwise,
2426   // leave the new intervals as RS_New so they can compete.
2427   bool LiveBefore = BestBefore != 0 || BI.LiveIn;
2428   bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
2429   unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
2430   if (NewGaps >= NumGaps) {
2431     LLVM_DEBUG(dbgs() << "Tagging non-progress ranges: ");
2432     assert(!ProgressRequired && "Didn't make progress when it was required.");
2433     for (unsigned I = 0, E = IntvMap.size(); I != E; ++I)
2434       if (IntvMap[I] == 1) {
2435         setStage(LIS->getInterval(LREdit.get(I)), RS_Split2);
2436         LLVM_DEBUG(dbgs() << printReg(LREdit.get(I)));
2437       }
2438     LLVM_DEBUG(dbgs() << '\n');
2439   }
2440   ++NumLocalSplits;
2441 
2442   return 0;
2443 }
2444 
2445 //===----------------------------------------------------------------------===//
2446 //                          Live Range Splitting
2447 //===----------------------------------------------------------------------===//
2448 
2449 /// trySplit - Try to split VirtReg or one of its interferences, making it
2450 /// assignable.
2451 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
2452 unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
2453                             SmallVectorImpl<Register> &NewVRegs,
2454                             const SmallVirtRegSet &FixedRegisters) {
2455   // Ranges must be Split2 or less.
2456   if (getStage(VirtReg) >= RS_Spill)
2457     return 0;
2458 
2459   // Local intervals are handled separately.
2460   if (LIS->intervalIsInOneMBB(VirtReg)) {
2461     NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName,
2462                        TimerGroupDescription, TimePassesIsEnabled);
2463     SA->analyze(&VirtReg);
2464     Register PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs);
2465     if (PhysReg || !NewVRegs.empty())
2466       return PhysReg;
2467     return tryInstructionSplit(VirtReg, Order, NewVRegs);
2468   }
2469 
2470   NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName,
2471                      TimerGroupDescription, TimePassesIsEnabled);
2472 
2473   SA->analyze(&VirtReg);
2474 
2475   // FIXME: SplitAnalysis may repair broken live ranges coming from the
2476   // coalescer. That may cause the range to become allocatable which means that
2477   // tryRegionSplit won't be making progress. This check should be replaced with
2478   // an assertion when the coalescer is fixed.
2479   if (SA->didRepairRange()) {
2480     // VirtReg has changed, so all cached queries are invalid.
2481     Matrix->invalidateVirtRegs();
2482     if (Register PhysReg = tryAssign(VirtReg, Order, NewVRegs, FixedRegisters))
2483       return PhysReg;
2484   }
2485 
2486   // First try to split around a region spanning multiple blocks. RS_Split2
2487   // ranges already made dubious progress with region splitting, so they go
2488   // straight to single block splitting.
2489   if (getStage(VirtReg) < RS_Split2) {
2490     MCRegister PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
2491     if (PhysReg || !NewVRegs.empty())
2492       return PhysReg;
2493   }
2494 
2495   // Then isolate blocks.
2496   return tryBlockSplit(VirtReg, Order, NewVRegs);
2497 }
2498 
2499 //===----------------------------------------------------------------------===//
2500 //                          Last Chance Recoloring
2501 //===----------------------------------------------------------------------===//
2502 
2503 /// Return true if \p reg has any tied def operand.
2504 static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg) {
2505   for (const MachineOperand &MO : MRI->def_operands(reg))
2506     if (MO.isTied())
2507       return true;
2508 
2509   return false;
2510 }
2511 
2512 /// mayRecolorAllInterferences - Check if the virtual registers that
2513 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be
2514 /// recolored to free \p PhysReg.
2515 /// When true is returned, \p RecoloringCandidates has been augmented with all
2516 /// the live intervals that need to be recolored in order to free \p PhysReg
2517 /// for \p VirtReg.
2518 /// \p FixedRegisters contains all the virtual registers that cannot be
2519 /// recolored.
2520 bool RAGreedy::mayRecolorAllInterferences(
2521     MCRegister PhysReg, LiveInterval &VirtReg, SmallLISet &RecoloringCandidates,
2522     const SmallVirtRegSet &FixedRegisters) {
2523   const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg());
2524 
2525   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2526     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
2527     // If there is LastChanceRecoloringMaxInterference or more interferences,
2528     // chances are one would not be recolorable.
2529     if (Q.collectInterferingVRegs(LastChanceRecoloringMaxInterference) >=
2530         LastChanceRecoloringMaxInterference && !ExhaustiveSearch) {
2531       LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n");
2532       CutOffInfo |= CO_Interf;
2533       return false;
2534     }
2535     for (LiveInterval *Intf : reverse(Q.interferingVRegs())) {
2536       // If Intf is done and sit on the same register class as VirtReg,
2537       // it would not be recolorable as it is in the same state as VirtReg.
2538       // However, if VirtReg has tied defs and Intf doesn't, then
2539       // there is still a point in examining if it can be recolorable.
2540       if (((getStage(*Intf) == RS_Done &&
2541             MRI->getRegClass(Intf->reg()) == CurRC) &&
2542            !(hasTiedDef(MRI, VirtReg.reg()) &&
2543              !hasTiedDef(MRI, Intf->reg()))) ||
2544           FixedRegisters.count(Intf->reg())) {
2545         LLVM_DEBUG(
2546             dbgs() << "Early abort: the interference is not recolorable.\n");
2547         return false;
2548       }
2549       RecoloringCandidates.insert(Intf);
2550     }
2551   }
2552   return true;
2553 }
2554 
2555 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring
2556 /// its interferences.
2557 /// Last chance recoloring chooses a color for \p VirtReg and recolors every
2558 /// virtual register that was using it. The recoloring process may recursively
2559 /// use the last chance recoloring. Therefore, when a virtual register has been
2560 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot
2561 /// be last-chance-recolored again during this recoloring "session".
2562 /// E.g.,
2563 /// Let
2564 /// vA can use {R1, R2    }
2565 /// vB can use {    R2, R3}
2566 /// vC can use {R1        }
2567 /// Where vA, vB, and vC cannot be split anymore (they are reloads for
2568 /// instance) and they all interfere.
2569 ///
2570 /// vA is assigned R1
2571 /// vB is assigned R2
2572 /// vC tries to evict vA but vA is already done.
2573 /// Regular register allocation fails.
2574 ///
2575 /// Last chance recoloring kicks in:
2576 /// vC does as if vA was evicted => vC uses R1.
2577 /// vC is marked as fixed.
2578 /// vA needs to find a color.
2579 /// None are available.
2580 /// vA cannot evict vC: vC is a fixed virtual register now.
2581 /// vA does as if vB was evicted => vA uses R2.
2582 /// vB needs to find a color.
2583 /// R3 is available.
2584 /// Recoloring => vC = R1, vA = R2, vB = R3
2585 ///
2586 /// \p Order defines the preferred allocation order for \p VirtReg.
2587 /// \p NewRegs will contain any new virtual register that have been created
2588 /// (split, spill) during the process and that must be assigned.
2589 /// \p FixedRegisters contains all the virtual registers that cannot be
2590 /// recolored.
2591 /// \p Depth gives the current depth of the last chance recoloring.
2592 /// \return a physical register that can be used for VirtReg or ~0u if none
2593 /// exists.
2594 unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg,
2595                                            AllocationOrder &Order,
2596                                            SmallVectorImpl<Register> &NewVRegs,
2597                                            SmallVirtRegSet &FixedRegisters,
2598                                            unsigned Depth) {
2599   if (!TRI->shouldUseLastChanceRecoloringForVirtReg(*MF, VirtReg))
2600     return ~0u;
2601 
2602   LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n');
2603   // Ranges must be Done.
2604   assert((getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) &&
2605          "Last chance recoloring should really be last chance");
2606   // Set the max depth to LastChanceRecoloringMaxDepth.
2607   // We may want to reconsider that if we end up with a too large search space
2608   // for target with hundreds of registers.
2609   // Indeed, in that case we may want to cut the search space earlier.
2610   if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) {
2611     LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n");
2612     CutOffInfo |= CO_Depth;
2613     return ~0u;
2614   }
2615 
2616   // Set of Live intervals that will need to be recolored.
2617   SmallLISet RecoloringCandidates;
2618   // Record the original mapping virtual register to physical register in case
2619   // the recoloring fails.
2620   DenseMap<Register, MCRegister> VirtRegToPhysReg;
2621   // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in
2622   // this recoloring "session".
2623   assert(!FixedRegisters.count(VirtReg.reg()));
2624   FixedRegisters.insert(VirtReg.reg());
2625   SmallVector<Register, 4> CurrentNewVRegs;
2626 
2627   for (MCRegister PhysReg : Order) {
2628     assert(PhysReg.isValid());
2629     LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg << " to "
2630                       << printReg(PhysReg, TRI) << '\n');
2631     RecoloringCandidates.clear();
2632     VirtRegToPhysReg.clear();
2633     CurrentNewVRegs.clear();
2634 
2635     // It is only possible to recolor virtual register interference.
2636     if (Matrix->checkInterference(VirtReg, PhysReg) >
2637         LiveRegMatrix::IK_VirtReg) {
2638       LLVM_DEBUG(
2639           dbgs() << "Some interferences are not with virtual registers.\n");
2640 
2641       continue;
2642     }
2643 
2644     // Early give up on this PhysReg if it is obvious we cannot recolor all
2645     // the interferences.
2646     if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates,
2647                                     FixedRegisters)) {
2648       LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n");
2649       continue;
2650     }
2651 
2652     // RecoloringCandidates contains all the virtual registers that interfer
2653     // with VirtReg on PhysReg (or one of its aliases).
2654     // Enqueue them for recoloring and perform the actual recoloring.
2655     PQueue RecoloringQueue;
2656     for (SmallLISet::iterator It = RecoloringCandidates.begin(),
2657                               EndIt = RecoloringCandidates.end();
2658          It != EndIt; ++It) {
2659       Register ItVirtReg = (*It)->reg();
2660       enqueue(RecoloringQueue, *It);
2661       assert(VRM->hasPhys(ItVirtReg) &&
2662              "Interferences are supposed to be with allocated variables");
2663 
2664       // Record the current allocation.
2665       VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg);
2666       // unset the related struct.
2667       Matrix->unassign(**It);
2668     }
2669 
2670     // Do as if VirtReg was assigned to PhysReg so that the underlying
2671     // recoloring has the right information about the interferes and
2672     // available colors.
2673     Matrix->assign(VirtReg, PhysReg);
2674 
2675     // Save the current recoloring state.
2676     // If we cannot recolor all the interferences, we will have to start again
2677     // at this point for the next physical register.
2678     SmallVirtRegSet SaveFixedRegisters(FixedRegisters);
2679     if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs,
2680                                 FixedRegisters, Depth)) {
2681       // Push the queued vregs into the main queue.
2682       for (Register NewVReg : CurrentNewVRegs)
2683         NewVRegs.push_back(NewVReg);
2684       // Do not mess up with the global assignment process.
2685       // I.e., VirtReg must be unassigned.
2686       Matrix->unassign(VirtReg);
2687       return PhysReg;
2688     }
2689 
2690     LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to "
2691                       << printReg(PhysReg, TRI) << '\n');
2692 
2693     // The recoloring attempt failed, undo the changes.
2694     FixedRegisters = SaveFixedRegisters;
2695     Matrix->unassign(VirtReg);
2696 
2697     // For a newly created vreg which is also in RecoloringCandidates,
2698     // don't add it to NewVRegs because its physical register will be restored
2699     // below. Other vregs in CurrentNewVRegs are created by calling
2700     // selectOrSplit and should be added into NewVRegs.
2701     for (SmallVectorImpl<Register>::iterator Next = CurrentNewVRegs.begin(),
2702                                              End = CurrentNewVRegs.end();
2703          Next != End; ++Next) {
2704       if (RecoloringCandidates.count(&LIS->getInterval(*Next)))
2705         continue;
2706       NewVRegs.push_back(*Next);
2707     }
2708 
2709     for (SmallLISet::iterator It = RecoloringCandidates.begin(),
2710                               EndIt = RecoloringCandidates.end();
2711          It != EndIt; ++It) {
2712       Register ItVirtReg = (*It)->reg();
2713       if (VRM->hasPhys(ItVirtReg))
2714         Matrix->unassign(**It);
2715       MCRegister ItPhysReg = VirtRegToPhysReg[ItVirtReg];
2716       Matrix->assign(**It, ItPhysReg);
2717     }
2718   }
2719 
2720   // Last chance recoloring did not worked either, give up.
2721   return ~0u;
2722 }
2723 
2724 /// tryRecoloringCandidates - Try to assign a new color to every register
2725 /// in \RecoloringQueue.
2726 /// \p NewRegs will contain any new virtual register created during the
2727 /// recoloring process.
2728 /// \p FixedRegisters[in/out] contains all the registers that have been
2729 /// recolored.
2730 /// \return true if all virtual registers in RecoloringQueue were successfully
2731 /// recolored, false otherwise.
2732 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue,
2733                                        SmallVectorImpl<Register> &NewVRegs,
2734                                        SmallVirtRegSet &FixedRegisters,
2735                                        unsigned Depth) {
2736   while (!RecoloringQueue.empty()) {
2737     LiveInterval *LI = dequeue(RecoloringQueue);
2738     LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI << '\n');
2739     MCRegister PhysReg =
2740         selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, Depth + 1);
2741     // When splitting happens, the live-range may actually be empty.
2742     // In that case, this is okay to continue the recoloring even
2743     // if we did not find an alternative color for it. Indeed,
2744     // there will not be anything to color for LI in the end.
2745     if (PhysReg == ~0u || (!PhysReg && !LI->empty()))
2746       return false;
2747 
2748     if (!PhysReg) {
2749       assert(LI->empty() && "Only empty live-range do not require a register");
2750       LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2751                         << " succeeded. Empty LI.\n");
2752       continue;
2753     }
2754     LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2755                       << " succeeded with: " << printReg(PhysReg, TRI) << '\n');
2756 
2757     Matrix->assign(*LI, PhysReg);
2758     FixedRegisters.insert(LI->reg());
2759   }
2760   return true;
2761 }
2762 
2763 //===----------------------------------------------------------------------===//
2764 //                            Main Entry Point
2765 //===----------------------------------------------------------------------===//
2766 
2767 MCRegister RAGreedy::selectOrSplit(LiveInterval &VirtReg,
2768                                    SmallVectorImpl<Register> &NewVRegs) {
2769   CutOffInfo = CO_None;
2770   LLVMContext &Ctx = MF->getFunction().getContext();
2771   SmallVirtRegSet FixedRegisters;
2772   MCRegister Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters);
2773   if (Reg == ~0U && (CutOffInfo != CO_None)) {
2774     uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf);
2775     if (CutOffEncountered == CO_Depth)
2776       Ctx.emitError("register allocation failed: maximum depth for recoloring "
2777                     "reached. Use -fexhaustive-register-search to skip "
2778                     "cutoffs");
2779     else if (CutOffEncountered == CO_Interf)
2780       Ctx.emitError("register allocation failed: maximum interference for "
2781                     "recoloring reached. Use -fexhaustive-register-search "
2782                     "to skip cutoffs");
2783     else if (CutOffEncountered == (CO_Depth | CO_Interf))
2784       Ctx.emitError("register allocation failed: maximum interference and "
2785                     "depth for recoloring reached. Use "
2786                     "-fexhaustive-register-search to skip cutoffs");
2787   }
2788   return Reg;
2789 }
2790 
2791 /// Using a CSR for the first time has a cost because it causes push|pop
2792 /// to be added to prologue|epilogue. Splitting a cold section of the live
2793 /// range can have lower cost than using the CSR for the first time;
2794 /// Spilling a live range in the cold path can have lower cost than using
2795 /// the CSR for the first time. Returns the physical register if we decide
2796 /// to use the CSR; otherwise return 0.
2797 MCRegister
2798 RAGreedy::tryAssignCSRFirstTime(LiveInterval &VirtReg, AllocationOrder &Order,
2799                                 MCRegister PhysReg, uint8_t &CostPerUseLimit,
2800                                 SmallVectorImpl<Register> &NewVRegs) {
2801   if (getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) {
2802     // We choose spill over using the CSR for the first time if the spill cost
2803     // is lower than CSRCost.
2804     SA->analyze(&VirtReg);
2805     if (calcSpillCost() >= CSRCost)
2806       return PhysReg;
2807 
2808     // We are going to spill, set CostPerUseLimit to 1 to make sure that
2809     // we will not use a callee-saved register in tryEvict.
2810     CostPerUseLimit = 1;
2811     return 0;
2812   }
2813   if (getStage(VirtReg) < RS_Split) {
2814     // We choose pre-splitting over using the CSR for the first time if
2815     // the cost of splitting is lower than CSRCost.
2816     SA->analyze(&VirtReg);
2817     unsigned NumCands = 0;
2818     BlockFrequency BestCost = CSRCost; // Don't modify CSRCost.
2819     unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost,
2820                                                  NumCands, true /*IgnoreCSR*/);
2821     if (BestCand == NoCand)
2822       // Use the CSR if we can't find a region split below CSRCost.
2823       return PhysReg;
2824 
2825     // Perform the actual pre-splitting.
2826     doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs);
2827     return 0;
2828   }
2829   return PhysReg;
2830 }
2831 
2832 void RAGreedy::aboutToRemoveInterval(LiveInterval &LI) {
2833   // Do not keep invalid information around.
2834   SetOfBrokenHints.remove(&LI);
2835 }
2836 
2837 void RAGreedy::initializeCSRCost() {
2838   // We use the larger one out of the command-line option and the value report
2839   // by TRI.
2840   CSRCost = BlockFrequency(
2841       std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost()));
2842   if (!CSRCost.getFrequency())
2843     return;
2844 
2845   // Raw cost is relative to Entry == 2^14; scale it appropriately.
2846   uint64_t ActualEntry = MBFI->getEntryFreq();
2847   if (!ActualEntry) {
2848     CSRCost = 0;
2849     return;
2850   }
2851   uint64_t FixedEntry = 1 << 14;
2852   if (ActualEntry < FixedEntry)
2853     CSRCost *= BranchProbability(ActualEntry, FixedEntry);
2854   else if (ActualEntry <= UINT32_MAX)
2855     // Invert the fraction and divide.
2856     CSRCost /= BranchProbability(FixedEntry, ActualEntry);
2857   else
2858     // Can't use BranchProbability in general, since it takes 32-bit numbers.
2859     CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry);
2860 }
2861 
2862 /// Collect the hint info for \p Reg.
2863 /// The results are stored into \p Out.
2864 /// \p Out is not cleared before being populated.
2865 void RAGreedy::collectHintInfo(Register Reg, HintsInfo &Out) {
2866   for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) {
2867     if (!Instr.isFullCopy())
2868       continue;
2869     // Look for the other end of the copy.
2870     Register OtherReg = Instr.getOperand(0).getReg();
2871     if (OtherReg == Reg) {
2872       OtherReg = Instr.getOperand(1).getReg();
2873       if (OtherReg == Reg)
2874         continue;
2875     }
2876     // Get the current assignment.
2877     MCRegister OtherPhysReg =
2878         OtherReg.isPhysical() ? OtherReg.asMCReg() : VRM->getPhys(OtherReg);
2879     // Push the collected information.
2880     Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg,
2881                            OtherPhysReg));
2882   }
2883 }
2884 
2885 /// Using the given \p List, compute the cost of the broken hints if
2886 /// \p PhysReg was used.
2887 /// \return The cost of \p List for \p PhysReg.
2888 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List,
2889                                            MCRegister PhysReg) {
2890   BlockFrequency Cost = 0;
2891   for (const HintInfo &Info : List) {
2892     if (Info.PhysReg != PhysReg)
2893       Cost += Info.Freq;
2894   }
2895   return Cost;
2896 }
2897 
2898 /// Using the register assigned to \p VirtReg, try to recolor
2899 /// all the live ranges that are copy-related with \p VirtReg.
2900 /// The recoloring is then propagated to all the live-ranges that have
2901 /// been recolored and so on, until no more copies can be coalesced or
2902 /// it is not profitable.
2903 /// For a given live range, profitability is determined by the sum of the
2904 /// frequencies of the non-identity copies it would introduce with the old
2905 /// and new register.
2906 void RAGreedy::tryHintRecoloring(LiveInterval &VirtReg) {
2907   // We have a broken hint, check if it is possible to fix it by
2908   // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted
2909   // some register and PhysReg may be available for the other live-ranges.
2910   SmallSet<Register, 4> Visited;
2911   SmallVector<unsigned, 2> RecoloringCandidates;
2912   HintsInfo Info;
2913   Register Reg = VirtReg.reg();
2914   MCRegister PhysReg = VRM->getPhys(Reg);
2915   // Start the recoloring algorithm from the input live-interval, then
2916   // it will propagate to the ones that are copy-related with it.
2917   Visited.insert(Reg);
2918   RecoloringCandidates.push_back(Reg);
2919 
2920   LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg, TRI)
2921                     << '(' << printReg(PhysReg, TRI) << ")\n");
2922 
2923   do {
2924     Reg = RecoloringCandidates.pop_back_val();
2925 
2926     // We cannot recolor physical register.
2927     if (Register::isPhysicalRegister(Reg))
2928       continue;
2929 
2930     assert(VRM->hasPhys(Reg) && "We have unallocated variable!!");
2931 
2932     // Get the live interval mapped with this virtual register to be able
2933     // to check for the interference with the new color.
2934     LiveInterval &LI = LIS->getInterval(Reg);
2935     MCRegister CurrPhys = VRM->getPhys(Reg);
2936     // Check that the new color matches the register class constraints and
2937     // that it is free for this live range.
2938     if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) ||
2939                                 Matrix->checkInterference(LI, PhysReg)))
2940       continue;
2941 
2942     LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << '(' << printReg(CurrPhys, TRI)
2943                       << ") is recolorable.\n");
2944 
2945     // Gather the hint info.
2946     Info.clear();
2947     collectHintInfo(Reg, Info);
2948     // Check if recoloring the live-range will increase the cost of the
2949     // non-identity copies.
2950     if (CurrPhys != PhysReg) {
2951       LLVM_DEBUG(dbgs() << "Checking profitability:\n");
2952       BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys);
2953       BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg);
2954       LLVM_DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency()
2955                         << "\nNew Cost: " << NewCopiesCost.getFrequency()
2956                         << '\n');
2957       if (OldCopiesCost < NewCopiesCost) {
2958         LLVM_DEBUG(dbgs() << "=> Not profitable.\n");
2959         continue;
2960       }
2961       // At this point, the cost is either cheaper or equal. If it is
2962       // equal, we consider this is profitable because it may expose
2963       // more recoloring opportunities.
2964       LLVM_DEBUG(dbgs() << "=> Profitable.\n");
2965       // Recolor the live-range.
2966       Matrix->unassign(LI);
2967       Matrix->assign(LI, PhysReg);
2968     }
2969     // Push all copy-related live-ranges to keep reconciling the broken
2970     // hints.
2971     for (const HintInfo &HI : Info) {
2972       if (Visited.insert(HI.Reg).second)
2973         RecoloringCandidates.push_back(HI.Reg);
2974     }
2975   } while (!RecoloringCandidates.empty());
2976 }
2977 
2978 /// Try to recolor broken hints.
2979 /// Broken hints may be repaired by recoloring when an evicted variable
2980 /// freed up a register for a larger live-range.
2981 /// Consider the following example:
2982 /// BB1:
2983 ///   a =
2984 ///   b =
2985 /// BB2:
2986 ///   ...
2987 ///   = b
2988 ///   = a
2989 /// Let us assume b gets split:
2990 /// BB1:
2991 ///   a =
2992 ///   b =
2993 /// BB2:
2994 ///   c = b
2995 ///   ...
2996 ///   d = c
2997 ///   = d
2998 ///   = a
2999 /// Because of how the allocation work, b, c, and d may be assigned different
3000 /// colors. Now, if a gets evicted later:
3001 /// BB1:
3002 ///   a =
3003 ///   st a, SpillSlot
3004 ///   b =
3005 /// BB2:
3006 ///   c = b
3007 ///   ...
3008 ///   d = c
3009 ///   = d
3010 ///   e = ld SpillSlot
3011 ///   = e
3012 /// This is likely that we can assign the same register for b, c, and d,
3013 /// getting rid of 2 copies.
3014 void RAGreedy::tryHintsRecoloring() {
3015   for (LiveInterval *LI : SetOfBrokenHints) {
3016     assert(Register::isVirtualRegister(LI->reg()) &&
3017            "Recoloring is possible only for virtual registers");
3018     // Some dead defs may be around (e.g., because of debug uses).
3019     // Ignore those.
3020     if (!VRM->hasPhys(LI->reg()))
3021       continue;
3022     tryHintRecoloring(*LI);
3023   }
3024 }
3025 
3026 MCRegister RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg,
3027                                        SmallVectorImpl<Register> &NewVRegs,
3028                                        SmallVirtRegSet &FixedRegisters,
3029                                        unsigned Depth) {
3030   uint8_t CostPerUseLimit = uint8_t(~0u);
3031   // First try assigning a free register.
3032   auto Order =
3033       AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix);
3034   if (MCRegister PhysReg =
3035           tryAssign(VirtReg, Order, NewVRegs, FixedRegisters)) {
3036     // If VirtReg got an assignment, the eviction info is no longre relevant.
3037     LastEvicted.clearEvicteeInfo(VirtReg.reg());
3038     // When NewVRegs is not empty, we may have made decisions such as evicting
3039     // a virtual register, go with the earlier decisions and use the physical
3040     // register.
3041     if (CSRCost.getFrequency() && isUnusedCalleeSavedReg(PhysReg) &&
3042         NewVRegs.empty()) {
3043       MCRegister CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg,
3044                                                 CostPerUseLimit, NewVRegs);
3045       if (CSRReg || !NewVRegs.empty())
3046         // Return now if we decide to use a CSR or create new vregs due to
3047         // pre-splitting.
3048         return CSRReg;
3049     } else
3050       return PhysReg;
3051   }
3052 
3053   LiveRangeStage Stage = getStage(VirtReg);
3054   LLVM_DEBUG(dbgs() << StageName[Stage] << " Cascade "
3055                     << ExtraRegInfo[VirtReg.reg()].Cascade << '\n');
3056 
3057   // Try to evict a less worthy live range, but only for ranges from the primary
3058   // queue. The RS_Split ranges already failed to do this, and they should not
3059   // get a second chance until they have been split.
3060   if (Stage != RS_Split)
3061     if (Register PhysReg =
3062             tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit,
3063                      FixedRegisters)) {
3064       Register Hint = MRI->getSimpleHint(VirtReg.reg());
3065       // If VirtReg has a hint and that hint is broken record this
3066       // virtual register as a recoloring candidate for broken hint.
3067       // Indeed, since we evicted a variable in its neighborhood it is
3068       // likely we can at least partially recolor some of the
3069       // copy-related live-ranges.
3070       if (Hint && Hint != PhysReg)
3071         SetOfBrokenHints.insert(&VirtReg);
3072       // If VirtReg eviction someone, the eviction info for it as an evictee is
3073       // no longre relevant.
3074       LastEvicted.clearEvicteeInfo(VirtReg.reg());
3075       return PhysReg;
3076     }
3077 
3078   assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs");
3079 
3080   // The first time we see a live range, don't try to split or spill.
3081   // Wait until the second time, when all smaller ranges have been allocated.
3082   // This gives a better picture of the interference to split around.
3083   if (Stage < RS_Split) {
3084     setStage(VirtReg, RS_Split);
3085     LLVM_DEBUG(dbgs() << "wait for second round\n");
3086     NewVRegs.push_back(VirtReg.reg());
3087     return 0;
3088   }
3089 
3090   if (Stage < RS_Spill) {
3091     // Try splitting VirtReg or interferences.
3092     unsigned NewVRegSizeBefore = NewVRegs.size();
3093     Register PhysReg = trySplit(VirtReg, Order, NewVRegs, FixedRegisters);
3094     if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore)) {
3095       // If VirtReg got split, the eviction info is no longer relevant.
3096       LastEvicted.clearEvicteeInfo(VirtReg.reg());
3097       return PhysReg;
3098     }
3099   }
3100 
3101   // If we couldn't allocate a register from spilling, there is probably some
3102   // invalid inline assembly. The base class will report it.
3103   if (Stage >= RS_Done || !VirtReg.isSpillable())
3104     return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters,
3105                                    Depth);
3106 
3107   // Finally spill VirtReg itself.
3108   if ((EnableDeferredSpilling ||
3109        TRI->shouldUseDeferredSpillingForVirtReg(*MF, VirtReg)) &&
3110       getStage(VirtReg) < RS_Memory) {
3111     // TODO: This is experimental and in particular, we do not model
3112     // the live range splitting done by spilling correctly.
3113     // We would need a deep integration with the spiller to do the
3114     // right thing here. Anyway, that is still good for early testing.
3115     setStage(VirtReg, RS_Memory);
3116     LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n");
3117     NewVRegs.push_back(VirtReg.reg());
3118   } else {
3119     NamedRegionTimer T("spill", "Spiller", TimerGroupName,
3120                        TimerGroupDescription, TimePassesIsEnabled);
3121     LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
3122     spiller().spill(LRE);
3123     setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done);
3124 
3125     // Tell LiveDebugVariables about the new ranges. Ranges not being covered by
3126     // the new regs are kept in LDV (still mapping to the old register), until
3127     // we rewrite spilled locations in LDV at a later stage.
3128     DebugVars->splitRegister(VirtReg.reg(), LRE.regs(), *LIS);
3129 
3130     if (VerifyEnabled)
3131       MF->verify(this, "After spilling");
3132   }
3133 
3134   // The live virtual register requesting allocation was spilled, so tell
3135   // the caller not to allocate anything during this round.
3136   return 0;
3137 }
3138 
3139 void RAGreedy::reportNumberOfSplillsReloads(MachineLoop *L, unsigned &Reloads,
3140                                             unsigned &FoldedReloads,
3141                                             unsigned &Spills,
3142                                             unsigned &FoldedSpills) {
3143   Reloads = 0;
3144   FoldedReloads = 0;
3145   Spills = 0;
3146   FoldedSpills = 0;
3147 
3148   // Sum up the spill and reloads in subloops.
3149   for (MachineLoop *SubLoop : *L) {
3150     unsigned SubReloads;
3151     unsigned SubFoldedReloads;
3152     unsigned SubSpills;
3153     unsigned SubFoldedSpills;
3154 
3155     reportNumberOfSplillsReloads(SubLoop, SubReloads, SubFoldedReloads,
3156                                  SubSpills, SubFoldedSpills);
3157     Reloads += SubReloads;
3158     FoldedReloads += SubFoldedReloads;
3159     Spills += SubSpills;
3160     FoldedSpills += SubFoldedSpills;
3161   }
3162 
3163   const MachineFrameInfo &MFI = MF->getFrameInfo();
3164   int FI;
3165 
3166   for (MachineBasicBlock *MBB : L->getBlocks())
3167     // Handle blocks that were not included in subloops.
3168     if (Loops->getLoopFor(MBB) == L)
3169       for (MachineInstr &MI : *MBB) {
3170         SmallVector<const MachineMemOperand *, 2> Accesses;
3171         auto isSpillSlotAccess = [&MFI](const MachineMemOperand *A) {
3172           return MFI.isSpillSlotObjectIndex(
3173               cast<FixedStackPseudoSourceValue>(A->getPseudoValue())
3174                   ->getFrameIndex());
3175         };
3176 
3177         if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI))
3178           ++Reloads;
3179         else if (TII->hasLoadFromStackSlot(MI, Accesses) &&
3180                  llvm::any_of(Accesses, isSpillSlotAccess))
3181           ++FoldedReloads;
3182         else if (TII->isStoreToStackSlot(MI, FI) &&
3183                  MFI.isSpillSlotObjectIndex(FI))
3184           ++Spills;
3185         else if (TII->hasStoreToStackSlot(MI, Accesses) &&
3186                  llvm::any_of(Accesses, isSpillSlotAccess))
3187           ++FoldedSpills;
3188       }
3189 
3190   if (Reloads || FoldedReloads || Spills || FoldedSpills) {
3191     using namespace ore;
3192 
3193     ORE->emit([&]() {
3194       MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReload",
3195                                         L->getStartLoc(), L->getHeader());
3196       if (Spills)
3197         R << NV("NumSpills", Spills) << " spills ";
3198       if (FoldedSpills)
3199         R << NV("NumFoldedSpills", FoldedSpills) << " folded spills ";
3200       if (Reloads)
3201         R << NV("NumReloads", Reloads) << " reloads ";
3202       if (FoldedReloads)
3203         R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads ";
3204       R << "generated in loop";
3205       return R;
3206     });
3207   }
3208 }
3209 
3210 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
3211   LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
3212                     << "********** Function: " << mf.getName() << '\n');
3213 
3214   MF = &mf;
3215   TRI = MF->getSubtarget().getRegisterInfo();
3216   TII = MF->getSubtarget().getInstrInfo();
3217   RCI.runOnMachineFunction(mf);
3218 
3219   EnableLocalReassign = EnableLocalReassignment ||
3220                         MF->getSubtarget().enableRALocalReassignment(
3221                             MF->getTarget().getOptLevel());
3222 
3223   EnableAdvancedRASplitCost =
3224       ConsiderLocalIntervalCost.getNumOccurrences()
3225           ? ConsiderLocalIntervalCost
3226           : MF->getSubtarget().enableAdvancedRASplitCost();
3227 
3228   if (VerifyEnabled)
3229     MF->verify(this, "Before greedy register allocator");
3230 
3231   RegAllocBase::init(getAnalysis<VirtRegMap>(),
3232                      getAnalysis<LiveIntervals>(),
3233                      getAnalysis<LiveRegMatrix>());
3234   Indexes = &getAnalysis<SlotIndexes>();
3235   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
3236   DomTree = &getAnalysis<MachineDominatorTree>();
3237   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
3238   SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
3239   Loops = &getAnalysis<MachineLoopInfo>();
3240   Bundles = &getAnalysis<EdgeBundles>();
3241   SpillPlacer = &getAnalysis<SpillPlacement>();
3242   DebugVars = &getAnalysis<LiveDebugVariables>();
3243   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
3244 
3245   initializeCSRCost();
3246 
3247   RegCosts = TRI->getRegisterCosts(*MF);
3248 
3249   VRAI = std::make_unique<VirtRegAuxInfo>(*MF, *LIS, *VRM, *Loops, *MBFI);
3250 
3251   VRAI->calculateSpillWeightsAndHints();
3252 
3253   LLVM_DEBUG(LIS->dump());
3254 
3255   SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
3256   SE.reset(new SplitEditor(*SA, *AA, *LIS, *VRM, *DomTree, *MBFI));
3257   ExtraRegInfo.clear();
3258   ExtraRegInfo.resize(MRI->getNumVirtRegs());
3259   NextCascade = 1;
3260   IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI);
3261   GlobalCand.resize(32);  // This will grow as needed.
3262   SetOfBrokenHints.clear();
3263   LastEvicted.clear();
3264 
3265   allocatePhysRegs();
3266   tryHintsRecoloring();
3267   postOptimization();
3268   reportNumberOfSplillsReloads();
3269 
3270   releaseMemory();
3271   return true;
3272 }
3273