1 //===-- RegAllocGreedy.cpp - greedy register allocator --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the RAGreedy function pass for register allocation in 11 // optimized builds. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AllocationOrder.h" 16 #include "InterferenceCache.h" 17 #include "LiveDebugVariables.h" 18 #include "RegAllocBase.h" 19 #include "SpillPlacement.h" 20 #include "Spiller.h" 21 #include "SplitKit.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/CodeGen/CalcSpillWeights.h" 25 #include "llvm/CodeGen/EdgeBundles.h" 26 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 27 #include "llvm/CodeGen/LiveRangeEdit.h" 28 #include "llvm/CodeGen/LiveRegMatrix.h" 29 #include "llvm/CodeGen/LiveStackAnalysis.h" 30 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 31 #include "llvm/CodeGen/MachineDominators.h" 32 #include "llvm/CodeGen/MachineFunctionPass.h" 33 #include "llvm/CodeGen/MachineLoopInfo.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/Passes.h" 36 #include "llvm/CodeGen/RegAllocRegistry.h" 37 #include "llvm/CodeGen/RegisterClassInfo.h" 38 #include "llvm/CodeGen/VirtRegMap.h" 39 #include "llvm/IR/LLVMContext.h" 40 #include "llvm/PassAnalysisSupport.h" 41 #include "llvm/Support/BranchProbability.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/Timer.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include "llvm/Target/TargetInstrInfo.h" 48 #include "llvm/Target/TargetSubtargetInfo.h" 49 #include <queue> 50 51 using namespace llvm; 52 53 #define DEBUG_TYPE "regalloc" 54 55 STATISTIC(NumGlobalSplits, "Number of split global live ranges"); 56 STATISTIC(NumLocalSplits, "Number of split local live ranges"); 57 STATISTIC(NumEvicted, "Number of interferences evicted"); 58 59 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode( 60 "split-spill-mode", cl::Hidden, 61 cl::desc("Spill mode for splitting live ranges"), 62 cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"), 63 clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"), 64 clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")), 65 cl::init(SplitEditor::SM_Speed)); 66 67 static cl::opt<unsigned> 68 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden, 69 cl::desc("Last chance recoloring max depth"), 70 cl::init(5)); 71 72 static cl::opt<unsigned> LastChanceRecoloringMaxInterference( 73 "lcr-max-interf", cl::Hidden, 74 cl::desc("Last chance recoloring maximum number of considered" 75 " interference at a time"), 76 cl::init(8)); 77 78 static cl::opt<bool> 79 ExhaustiveSearch("exhaustive-register-search", cl::NotHidden, 80 cl::desc("Exhaustive Search for registers bypassing the depth " 81 "and interference cutoffs of last chance recoloring")); 82 83 static cl::opt<bool> EnableLocalReassignment( 84 "enable-local-reassign", cl::Hidden, 85 cl::desc("Local reassignment can yield better allocation decisions, but " 86 "may be compile time intensive"), 87 cl::init(false)); 88 89 static cl::opt<bool> EnableDeferredSpilling( 90 "enable-deferred-spilling", cl::Hidden, 91 cl::desc("Instead of spilling a variable right away, defer the actual " 92 "code insertion to the end of the allocation. That way the " 93 "allocator might still find a suitable coloring for this " 94 "variable because of other evicted variables."), 95 cl::init(false)); 96 97 // FIXME: Find a good default for this flag and remove the flag. 98 static cl::opt<unsigned> 99 CSRFirstTimeCost("regalloc-csr-first-time-cost", 100 cl::desc("Cost for first time use of callee-saved register."), 101 cl::init(0), cl::Hidden); 102 103 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator", 104 createGreedyRegisterAllocator); 105 106 namespace { 107 class RAGreedy : public MachineFunctionPass, 108 public RegAllocBase, 109 private LiveRangeEdit::Delegate { 110 // Convenient shortcuts. 111 typedef std::priority_queue<std::pair<unsigned, unsigned> > PQueue; 112 typedef SmallPtrSet<LiveInterval *, 4> SmallLISet; 113 typedef SmallSet<unsigned, 16> SmallVirtRegSet; 114 115 // context 116 MachineFunction *MF; 117 118 // Shortcuts to some useful interface. 119 const TargetInstrInfo *TII; 120 const TargetRegisterInfo *TRI; 121 RegisterClassInfo RCI; 122 123 // analyses 124 SlotIndexes *Indexes; 125 MachineBlockFrequencyInfo *MBFI; 126 MachineDominatorTree *DomTree; 127 MachineLoopInfo *Loops; 128 EdgeBundles *Bundles; 129 SpillPlacement *SpillPlacer; 130 LiveDebugVariables *DebugVars; 131 AliasAnalysis *AA; 132 133 // state 134 std::unique_ptr<Spiller> SpillerInstance; 135 PQueue Queue; 136 unsigned NextCascade; 137 138 // Live ranges pass through a number of stages as we try to allocate them. 139 // Some of the stages may also create new live ranges: 140 // 141 // - Region splitting. 142 // - Per-block splitting. 143 // - Local splitting. 144 // - Spilling. 145 // 146 // Ranges produced by one of the stages skip the previous stages when they are 147 // dequeued. This improves performance because we can skip interference checks 148 // that are unlikely to give any results. It also guarantees that the live 149 // range splitting algorithm terminates, something that is otherwise hard to 150 // ensure. 151 enum LiveRangeStage { 152 /// Newly created live range that has never been queued. 153 RS_New, 154 155 /// Only attempt assignment and eviction. Then requeue as RS_Split. 156 RS_Assign, 157 158 /// Attempt live range splitting if assignment is impossible. 159 RS_Split, 160 161 /// Attempt more aggressive live range splitting that is guaranteed to make 162 /// progress. This is used for split products that may not be making 163 /// progress. 164 RS_Split2, 165 166 /// Live range will be spilled. No more splitting will be attempted. 167 RS_Spill, 168 169 170 /// Live range is in memory. Because of other evictions, it might get moved 171 /// in a register in the end. 172 RS_Memory, 173 174 /// There is nothing more we can do to this live range. Abort compilation 175 /// if it can't be assigned. 176 RS_Done 177 }; 178 179 // Enum CutOffStage to keep a track whether the register allocation failed 180 // because of the cutoffs encountered in last chance recoloring. 181 // Note: This is used as bitmask. New value should be next power of 2. 182 enum CutOffStage { 183 // No cutoffs encountered 184 CO_None = 0, 185 186 // lcr-max-depth cutoff encountered 187 CO_Depth = 1, 188 189 // lcr-max-interf cutoff encountered 190 CO_Interf = 2 191 }; 192 193 uint8_t CutOffInfo; 194 195 #ifndef NDEBUG 196 static const char *const StageName[]; 197 #endif 198 199 // RegInfo - Keep additional information about each live range. 200 struct RegInfo { 201 LiveRangeStage Stage; 202 203 // Cascade - Eviction loop prevention. See canEvictInterference(). 204 unsigned Cascade; 205 206 RegInfo() : Stage(RS_New), Cascade(0) {} 207 }; 208 209 IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo; 210 211 LiveRangeStage getStage(const LiveInterval &VirtReg) const { 212 return ExtraRegInfo[VirtReg.reg].Stage; 213 } 214 215 void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) { 216 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 217 ExtraRegInfo[VirtReg.reg].Stage = Stage; 218 } 219 220 template<typename Iterator> 221 void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) { 222 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 223 for (;Begin != End; ++Begin) { 224 unsigned Reg = *Begin; 225 if (ExtraRegInfo[Reg].Stage == RS_New) 226 ExtraRegInfo[Reg].Stage = NewStage; 227 } 228 } 229 230 /// Cost of evicting interference. 231 struct EvictionCost { 232 unsigned BrokenHints; ///< Total number of broken hints. 233 float MaxWeight; ///< Maximum spill weight evicted. 234 235 EvictionCost(): BrokenHints(0), MaxWeight(0) {} 236 237 bool isMax() const { return BrokenHints == ~0u; } 238 239 void setMax() { BrokenHints = ~0u; } 240 241 void setBrokenHints(unsigned NHints) { BrokenHints = NHints; } 242 243 bool operator<(const EvictionCost &O) const { 244 return std::tie(BrokenHints, MaxWeight) < 245 std::tie(O.BrokenHints, O.MaxWeight); 246 } 247 }; 248 249 // splitting state. 250 std::unique_ptr<SplitAnalysis> SA; 251 std::unique_ptr<SplitEditor> SE; 252 253 /// Cached per-block interference maps 254 InterferenceCache IntfCache; 255 256 /// All basic blocks where the current register has uses. 257 SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints; 258 259 /// Global live range splitting candidate info. 260 struct GlobalSplitCandidate { 261 // Register intended for assignment, or 0. 262 unsigned PhysReg; 263 264 // SplitKit interval index for this candidate. 265 unsigned IntvIdx; 266 267 // Interference for PhysReg. 268 InterferenceCache::Cursor Intf; 269 270 // Bundles where this candidate should be live. 271 BitVector LiveBundles; 272 SmallVector<unsigned, 8> ActiveBlocks; 273 274 void reset(InterferenceCache &Cache, unsigned Reg) { 275 PhysReg = Reg; 276 IntvIdx = 0; 277 Intf.setPhysReg(Cache, Reg); 278 LiveBundles.clear(); 279 ActiveBlocks.clear(); 280 } 281 282 // Set B[i] = C for every live bundle where B[i] was NoCand. 283 unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) { 284 unsigned Count = 0; 285 for (int i = LiveBundles.find_first(); i >= 0; 286 i = LiveBundles.find_next(i)) 287 if (B[i] == NoCand) { 288 B[i] = C; 289 Count++; 290 } 291 return Count; 292 } 293 }; 294 295 /// Candidate info for each PhysReg in AllocationOrder. 296 /// This vector never shrinks, but grows to the size of the largest register 297 /// class. 298 SmallVector<GlobalSplitCandidate, 32> GlobalCand; 299 300 enum : unsigned { NoCand = ~0u }; 301 302 /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to 303 /// NoCand which indicates the stack interval. 304 SmallVector<unsigned, 32> BundleCand; 305 306 /// Callee-save register cost, calculated once per machine function. 307 BlockFrequency CSRCost; 308 309 /// Run or not the local reassignment heuristic. This information is 310 /// obtained from the TargetSubtargetInfo. 311 bool EnableLocalReassign; 312 313 /// Set of broken hints that may be reconciled later because of eviction. 314 SmallSetVector<LiveInterval *, 8> SetOfBrokenHints; 315 316 public: 317 RAGreedy(); 318 319 /// Return the pass name. 320 StringRef getPassName() const override { return "Greedy Register Allocator"; } 321 322 /// RAGreedy analysis usage. 323 void getAnalysisUsage(AnalysisUsage &AU) const override; 324 void releaseMemory() override; 325 Spiller &spiller() override { return *SpillerInstance; } 326 void enqueue(LiveInterval *LI) override; 327 LiveInterval *dequeue() override; 328 unsigned selectOrSplit(LiveInterval&, SmallVectorImpl<unsigned>&) override; 329 void aboutToRemoveInterval(LiveInterval &) override; 330 331 /// Perform register allocation. 332 bool runOnMachineFunction(MachineFunction &mf) override; 333 334 MachineFunctionProperties getRequiredProperties() const override { 335 return MachineFunctionProperties().set( 336 MachineFunctionProperties::Property::NoPHIs); 337 } 338 339 static char ID; 340 341 private: 342 unsigned selectOrSplitImpl(LiveInterval &, SmallVectorImpl<unsigned> &, 343 SmallVirtRegSet &, unsigned = 0); 344 345 bool LRE_CanEraseVirtReg(unsigned) override; 346 void LRE_WillShrinkVirtReg(unsigned) override; 347 void LRE_DidCloneVirtReg(unsigned, unsigned) override; 348 void enqueue(PQueue &CurQueue, LiveInterval *LI); 349 LiveInterval *dequeue(PQueue &CurQueue); 350 351 BlockFrequency calcSpillCost(); 352 bool addSplitConstraints(InterferenceCache::Cursor, BlockFrequency&); 353 void addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>); 354 void growRegion(GlobalSplitCandidate &Cand); 355 BlockFrequency calcGlobalSplitCost(GlobalSplitCandidate&); 356 bool calcCompactRegion(GlobalSplitCandidate&); 357 void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>); 358 void calcGapWeights(unsigned, SmallVectorImpl<float>&); 359 unsigned canReassign(LiveInterval &VirtReg, unsigned PhysReg); 360 bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool); 361 bool canEvictInterference(LiveInterval&, unsigned, bool, EvictionCost&); 362 void evictInterference(LiveInterval&, unsigned, 363 SmallVectorImpl<unsigned>&); 364 bool mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg, 365 SmallLISet &RecoloringCandidates, 366 const SmallVirtRegSet &FixedRegisters); 367 368 unsigned tryAssign(LiveInterval&, AllocationOrder&, 369 SmallVectorImpl<unsigned>&); 370 unsigned tryEvict(LiveInterval&, AllocationOrder&, 371 SmallVectorImpl<unsigned>&, unsigned = ~0u); 372 unsigned tryRegionSplit(LiveInterval&, AllocationOrder&, 373 SmallVectorImpl<unsigned>&); 374 /// Calculate cost of region splitting. 375 unsigned calculateRegionSplitCost(LiveInterval &VirtReg, 376 AllocationOrder &Order, 377 BlockFrequency &BestCost, 378 unsigned &NumCands, bool IgnoreCSR); 379 /// Perform region splitting. 380 unsigned doRegionSplit(LiveInterval &VirtReg, unsigned BestCand, 381 bool HasCompact, 382 SmallVectorImpl<unsigned> &NewVRegs); 383 /// Check other options before using a callee-saved register for the first 384 /// time. 385 unsigned tryAssignCSRFirstTime(LiveInterval &VirtReg, AllocationOrder &Order, 386 unsigned PhysReg, unsigned &CostPerUseLimit, 387 SmallVectorImpl<unsigned> &NewVRegs); 388 void initializeCSRCost(); 389 unsigned tryBlockSplit(LiveInterval&, AllocationOrder&, 390 SmallVectorImpl<unsigned>&); 391 unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&, 392 SmallVectorImpl<unsigned>&); 393 unsigned tryLocalSplit(LiveInterval&, AllocationOrder&, 394 SmallVectorImpl<unsigned>&); 395 unsigned trySplit(LiveInterval&, AllocationOrder&, 396 SmallVectorImpl<unsigned>&); 397 unsigned tryLastChanceRecoloring(LiveInterval &, AllocationOrder &, 398 SmallVectorImpl<unsigned> &, 399 SmallVirtRegSet &, unsigned); 400 bool tryRecoloringCandidates(PQueue &, SmallVectorImpl<unsigned> &, 401 SmallVirtRegSet &, unsigned); 402 void tryHintRecoloring(LiveInterval &); 403 void tryHintsRecoloring(); 404 405 /// Model the information carried by one end of a copy. 406 struct HintInfo { 407 /// The frequency of the copy. 408 BlockFrequency Freq; 409 /// The virtual register or physical register. 410 unsigned Reg; 411 /// Its currently assigned register. 412 /// In case of a physical register Reg == PhysReg. 413 unsigned PhysReg; 414 HintInfo(BlockFrequency Freq, unsigned Reg, unsigned PhysReg) 415 : Freq(Freq), Reg(Reg), PhysReg(PhysReg) {} 416 }; 417 typedef SmallVector<HintInfo, 4> HintsInfo; 418 BlockFrequency getBrokenHintFreq(const HintsInfo &, unsigned); 419 void collectHintInfo(unsigned, HintsInfo &); 420 421 bool isUnusedCalleeSavedReg(unsigned PhysReg) const; 422 }; 423 } // end anonymous namespace 424 425 char RAGreedy::ID = 0; 426 char &llvm::RAGreedyID = RAGreedy::ID; 427 428 INITIALIZE_PASS_BEGIN(RAGreedy, "greedy", 429 "Greedy Register Allocator", false, false) 430 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables) 431 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 432 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 433 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer) 434 INITIALIZE_PASS_DEPENDENCY(MachineScheduler) 435 INITIALIZE_PASS_DEPENDENCY(LiveStacks) 436 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 437 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 438 INITIALIZE_PASS_DEPENDENCY(VirtRegMap) 439 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix) 440 INITIALIZE_PASS_DEPENDENCY(EdgeBundles) 441 INITIALIZE_PASS_DEPENDENCY(SpillPlacement) 442 INITIALIZE_PASS_END(RAGreedy, "greedy", 443 "Greedy Register Allocator", false, false) 444 445 #ifndef NDEBUG 446 const char *const RAGreedy::StageName[] = { 447 "RS_New", 448 "RS_Assign", 449 "RS_Split", 450 "RS_Split2", 451 "RS_Spill", 452 "RS_Memory", 453 "RS_Done" 454 }; 455 #endif 456 457 // Hysteresis to use when comparing floats. 458 // This helps stabilize decisions based on float comparisons. 459 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875 460 461 462 FunctionPass* llvm::createGreedyRegisterAllocator() { 463 return new RAGreedy(); 464 } 465 466 RAGreedy::RAGreedy(): MachineFunctionPass(ID) { 467 } 468 469 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const { 470 AU.setPreservesCFG(); 471 AU.addRequired<MachineBlockFrequencyInfo>(); 472 AU.addPreserved<MachineBlockFrequencyInfo>(); 473 AU.addRequired<AAResultsWrapperPass>(); 474 AU.addPreserved<AAResultsWrapperPass>(); 475 AU.addRequired<LiveIntervals>(); 476 AU.addPreserved<LiveIntervals>(); 477 AU.addRequired<SlotIndexes>(); 478 AU.addPreserved<SlotIndexes>(); 479 AU.addRequired<LiveDebugVariables>(); 480 AU.addPreserved<LiveDebugVariables>(); 481 AU.addRequired<LiveStacks>(); 482 AU.addPreserved<LiveStacks>(); 483 AU.addRequired<MachineDominatorTree>(); 484 AU.addPreserved<MachineDominatorTree>(); 485 AU.addRequired<MachineLoopInfo>(); 486 AU.addPreserved<MachineLoopInfo>(); 487 AU.addRequired<VirtRegMap>(); 488 AU.addPreserved<VirtRegMap>(); 489 AU.addRequired<LiveRegMatrix>(); 490 AU.addPreserved<LiveRegMatrix>(); 491 AU.addRequired<EdgeBundles>(); 492 AU.addRequired<SpillPlacement>(); 493 MachineFunctionPass::getAnalysisUsage(AU); 494 } 495 496 497 //===----------------------------------------------------------------------===// 498 // LiveRangeEdit delegate methods 499 //===----------------------------------------------------------------------===// 500 501 bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) { 502 if (VRM->hasPhys(VirtReg)) { 503 LiveInterval &LI = LIS->getInterval(VirtReg); 504 Matrix->unassign(LI); 505 aboutToRemoveInterval(LI); 506 return true; 507 } 508 // Unassigned virtreg is probably in the priority queue. 509 // RegAllocBase will erase it after dequeueing. 510 return false; 511 } 512 513 void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) { 514 if (!VRM->hasPhys(VirtReg)) 515 return; 516 517 // Register is assigned, put it back on the queue for reassignment. 518 LiveInterval &LI = LIS->getInterval(VirtReg); 519 Matrix->unassign(LI); 520 enqueue(&LI); 521 } 522 523 void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) { 524 // Cloning a register we haven't even heard about yet? Just ignore it. 525 if (!ExtraRegInfo.inBounds(Old)) 526 return; 527 528 // LRE may clone a virtual register because dead code elimination causes it to 529 // be split into connected components. The new components are much smaller 530 // than the original, so they should get a new chance at being assigned. 531 // same stage as the parent. 532 ExtraRegInfo[Old].Stage = RS_Assign; 533 ExtraRegInfo.grow(New); 534 ExtraRegInfo[New] = ExtraRegInfo[Old]; 535 } 536 537 void RAGreedy::releaseMemory() { 538 SpillerInstance.reset(); 539 ExtraRegInfo.clear(); 540 GlobalCand.clear(); 541 } 542 543 void RAGreedy::enqueue(LiveInterval *LI) { enqueue(Queue, LI); } 544 545 void RAGreedy::enqueue(PQueue &CurQueue, LiveInterval *LI) { 546 // Prioritize live ranges by size, assigning larger ranges first. 547 // The queue holds (size, reg) pairs. 548 const unsigned Size = LI->getSize(); 549 const unsigned Reg = LI->reg; 550 assert(TargetRegisterInfo::isVirtualRegister(Reg) && 551 "Can only enqueue virtual registers"); 552 unsigned Prio; 553 554 ExtraRegInfo.grow(Reg); 555 if (ExtraRegInfo[Reg].Stage == RS_New) 556 ExtraRegInfo[Reg].Stage = RS_Assign; 557 558 if (ExtraRegInfo[Reg].Stage == RS_Split) { 559 // Unsplit ranges that couldn't be allocated immediately are deferred until 560 // everything else has been allocated. 561 Prio = Size; 562 } else if (ExtraRegInfo[Reg].Stage == RS_Memory) { 563 // Memory operand should be considered last. 564 // Change the priority such that Memory operand are assigned in 565 // the reverse order that they came in. 566 // TODO: Make this a member variable and probably do something about hints. 567 static unsigned MemOp = 0; 568 Prio = MemOp++; 569 } else { 570 // Giant live ranges fall back to the global assignment heuristic, which 571 // prevents excessive spilling in pathological cases. 572 bool ReverseLocal = TRI->reverseLocalAssignment(); 573 const TargetRegisterClass &RC = *MRI->getRegClass(Reg); 574 bool ForceGlobal = !ReverseLocal && 575 (Size / SlotIndex::InstrDist) > (2 * RC.getNumRegs()); 576 577 if (ExtraRegInfo[Reg].Stage == RS_Assign && !ForceGlobal && !LI->empty() && 578 LIS->intervalIsInOneMBB(*LI)) { 579 // Allocate original local ranges in linear instruction order. Since they 580 // are singly defined, this produces optimal coloring in the absence of 581 // global interference and other constraints. 582 if (!ReverseLocal) 583 Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex()); 584 else { 585 // Allocating bottom up may allow many short LRGs to be assigned first 586 // to one of the cheap registers. This could be much faster for very 587 // large blocks on targets with many physical registers. 588 Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex()); 589 } 590 Prio |= RC.AllocationPriority << 24; 591 } else { 592 // Allocate global and split ranges in long->short order. Long ranges that 593 // don't fit should be spilled (or split) ASAP so they don't create 594 // interference. Mark a bit to prioritize global above local ranges. 595 Prio = (1u << 29) + Size; 596 } 597 // Mark a higher bit to prioritize global and local above RS_Split. 598 Prio |= (1u << 31); 599 600 // Boost ranges that have a physical register hint. 601 if (VRM->hasKnownPreference(Reg)) 602 Prio |= (1u << 30); 603 } 604 // The virtual register number is a tie breaker for same-sized ranges. 605 // Give lower vreg numbers higher priority to assign them first. 606 CurQueue.push(std::make_pair(Prio, ~Reg)); 607 } 608 609 LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); } 610 611 LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) { 612 if (CurQueue.empty()) 613 return nullptr; 614 LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second); 615 CurQueue.pop(); 616 return LI; 617 } 618 619 620 //===----------------------------------------------------------------------===// 621 // Direct Assignment 622 //===----------------------------------------------------------------------===// 623 624 /// tryAssign - Try to assign VirtReg to an available register. 625 unsigned RAGreedy::tryAssign(LiveInterval &VirtReg, 626 AllocationOrder &Order, 627 SmallVectorImpl<unsigned> &NewVRegs) { 628 Order.rewind(); 629 unsigned PhysReg; 630 while ((PhysReg = Order.next())) 631 if (!Matrix->checkInterference(VirtReg, PhysReg)) 632 break; 633 if (!PhysReg || Order.isHint()) 634 return PhysReg; 635 636 // PhysReg is available, but there may be a better choice. 637 638 // If we missed a simple hint, try to cheaply evict interference from the 639 // preferred register. 640 if (unsigned Hint = MRI->getSimpleHint(VirtReg.reg)) 641 if (Order.isHint(Hint)) { 642 DEBUG(dbgs() << "missed hint " << PrintReg(Hint, TRI) << '\n'); 643 EvictionCost MaxCost; 644 MaxCost.setBrokenHints(1); 645 if (canEvictInterference(VirtReg, Hint, true, MaxCost)) { 646 evictInterference(VirtReg, Hint, NewVRegs); 647 return Hint; 648 } 649 // Record the missed hint, we may be able to recover 650 // at the end if the surrounding allocation changed. 651 SetOfBrokenHints.insert(&VirtReg); 652 } 653 654 // Try to evict interference from a cheaper alternative. 655 unsigned Cost = TRI->getCostPerUse(PhysReg); 656 657 // Most registers have 0 additional cost. 658 if (!Cost) 659 return PhysReg; 660 661 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is available at cost " << Cost 662 << '\n'); 663 unsigned CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost); 664 return CheapReg ? CheapReg : PhysReg; 665 } 666 667 668 //===----------------------------------------------------------------------===// 669 // Interference eviction 670 //===----------------------------------------------------------------------===// 671 672 unsigned RAGreedy::canReassign(LiveInterval &VirtReg, unsigned PrevReg) { 673 AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo, Matrix); 674 unsigned PhysReg; 675 while ((PhysReg = Order.next())) { 676 if (PhysReg == PrevReg) 677 continue; 678 679 MCRegUnitIterator Units(PhysReg, TRI); 680 for (; Units.isValid(); ++Units) { 681 // Instantiate a "subquery", not to be confused with the Queries array. 682 LiveIntervalUnion::Query subQ(&VirtReg, &Matrix->getLiveUnions()[*Units]); 683 if (subQ.checkInterference()) 684 break; 685 } 686 // If no units have interference, break out with the current PhysReg. 687 if (!Units.isValid()) 688 break; 689 } 690 if (PhysReg) 691 DEBUG(dbgs() << "can reassign: " << VirtReg << " from " 692 << PrintReg(PrevReg, TRI) << " to " << PrintReg(PhysReg, TRI) 693 << '\n'); 694 return PhysReg; 695 } 696 697 /// shouldEvict - determine if A should evict the assigned live range B. The 698 /// eviction policy defined by this function together with the allocation order 699 /// defined by enqueue() decides which registers ultimately end up being split 700 /// and spilled. 701 /// 702 /// Cascade numbers are used to prevent infinite loops if this function is a 703 /// cyclic relation. 704 /// 705 /// @param A The live range to be assigned. 706 /// @param IsHint True when A is about to be assigned to its preferred 707 /// register. 708 /// @param B The live range to be evicted. 709 /// @param BreaksHint True when B is already assigned to its preferred register. 710 bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint, 711 LiveInterval &B, bool BreaksHint) { 712 bool CanSplit = getStage(B) < RS_Spill; 713 714 // Be fairly aggressive about following hints as long as the evictee can be 715 // split. 716 if (CanSplit && IsHint && !BreaksHint) 717 return true; 718 719 if (A.weight > B.weight) { 720 DEBUG(dbgs() << "should evict: " << B << " w= " << B.weight << '\n'); 721 return true; 722 } 723 return false; 724 } 725 726 /// canEvictInterference - Return true if all interferences between VirtReg and 727 /// PhysReg can be evicted. 728 /// 729 /// @param VirtReg Live range that is about to be assigned. 730 /// @param PhysReg Desired register for assignment. 731 /// @param IsHint True when PhysReg is VirtReg's preferred register. 732 /// @param MaxCost Only look for cheaper candidates and update with new cost 733 /// when returning true. 734 /// @returns True when interference can be evicted cheaper than MaxCost. 735 bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg, 736 bool IsHint, EvictionCost &MaxCost) { 737 // It is only possible to evict virtual register interference. 738 if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg) 739 return false; 740 741 bool IsLocal = LIS->intervalIsInOneMBB(VirtReg); 742 743 // Find VirtReg's cascade number. This will be unassigned if VirtReg was never 744 // involved in an eviction before. If a cascade number was assigned, deny 745 // evicting anything with the same or a newer cascade number. This prevents 746 // infinite eviction loops. 747 // 748 // This works out so a register without a cascade number is allowed to evict 749 // anything, and it can be evicted by anything. 750 unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade; 751 if (!Cascade) 752 Cascade = NextCascade; 753 754 EvictionCost Cost; 755 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 756 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 757 // If there is 10 or more interferences, chances are one is heavier. 758 if (Q.collectInterferingVRegs(10) >= 10) 759 return false; 760 761 // Check if any interfering live range is heavier than MaxWeight. 762 for (unsigned i = Q.interferingVRegs().size(); i; --i) { 763 LiveInterval *Intf = Q.interferingVRegs()[i - 1]; 764 assert(TargetRegisterInfo::isVirtualRegister(Intf->reg) && 765 "Only expecting virtual register interference from query"); 766 // Never evict spill products. They cannot split or spill. 767 if (getStage(*Intf) == RS_Done) 768 return false; 769 // Once a live range becomes small enough, it is urgent that we find a 770 // register for it. This is indicated by an infinite spill weight. These 771 // urgent live ranges get to evict almost anything. 772 // 773 // Also allow urgent evictions of unspillable ranges from a strictly 774 // larger allocation order. 775 bool Urgent = !VirtReg.isSpillable() && 776 (Intf->isSpillable() || 777 RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg)) < 778 RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(Intf->reg))); 779 // Only evict older cascades or live ranges without a cascade. 780 unsigned IntfCascade = ExtraRegInfo[Intf->reg].Cascade; 781 if (Cascade <= IntfCascade) { 782 if (!Urgent) 783 return false; 784 // We permit breaking cascades for urgent evictions. It should be the 785 // last resort, though, so make it really expensive. 786 Cost.BrokenHints += 10; 787 } 788 // Would this break a satisfied hint? 789 bool BreaksHint = VRM->hasPreferredPhys(Intf->reg); 790 // Update eviction cost. 791 Cost.BrokenHints += BreaksHint; 792 Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight); 793 // Abort if this would be too expensive. 794 if (!(Cost < MaxCost)) 795 return false; 796 if (Urgent) 797 continue; 798 // Apply the eviction policy for non-urgent evictions. 799 if (!shouldEvict(VirtReg, IsHint, *Intf, BreaksHint)) 800 return false; 801 // If !MaxCost.isMax(), then we're just looking for a cheap register. 802 // Evicting another local live range in this case could lead to suboptimal 803 // coloring. 804 if (!MaxCost.isMax() && IsLocal && LIS->intervalIsInOneMBB(*Intf) && 805 (!EnableLocalReassign || !canReassign(*Intf, PhysReg))) { 806 return false; 807 } 808 } 809 } 810 MaxCost = Cost; 811 return true; 812 } 813 814 /// evictInterference - Evict any interferring registers that prevent VirtReg 815 /// from being assigned to Physreg. This assumes that canEvictInterference 816 /// returned true. 817 void RAGreedy::evictInterference(LiveInterval &VirtReg, unsigned PhysReg, 818 SmallVectorImpl<unsigned> &NewVRegs) { 819 // Make sure that VirtReg has a cascade number, and assign that cascade 820 // number to every evicted register. These live ranges than then only be 821 // evicted by a newer cascade, preventing infinite loops. 822 unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade; 823 if (!Cascade) 824 Cascade = ExtraRegInfo[VirtReg.reg].Cascade = NextCascade++; 825 826 DEBUG(dbgs() << "evicting " << PrintReg(PhysReg, TRI) 827 << " interference: Cascade " << Cascade << '\n'); 828 829 // Collect all interfering virtregs first. 830 SmallVector<LiveInterval*, 8> Intfs; 831 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 832 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 833 assert(Q.seenAllInterferences() && "Didn't check all interfererences."); 834 ArrayRef<LiveInterval*> IVR = Q.interferingVRegs(); 835 Intfs.append(IVR.begin(), IVR.end()); 836 } 837 838 // Evict them second. This will invalidate the queries. 839 for (unsigned i = 0, e = Intfs.size(); i != e; ++i) { 840 LiveInterval *Intf = Intfs[i]; 841 // The same VirtReg may be present in multiple RegUnits. Skip duplicates. 842 if (!VRM->hasPhys(Intf->reg)) 843 continue; 844 Matrix->unassign(*Intf); 845 assert((ExtraRegInfo[Intf->reg].Cascade < Cascade || 846 VirtReg.isSpillable() < Intf->isSpillable()) && 847 "Cannot decrease cascade number, illegal eviction"); 848 ExtraRegInfo[Intf->reg].Cascade = Cascade; 849 ++NumEvicted; 850 NewVRegs.push_back(Intf->reg); 851 } 852 } 853 854 /// Returns true if the given \p PhysReg is a callee saved register and has not 855 /// been used for allocation yet. 856 bool RAGreedy::isUnusedCalleeSavedReg(unsigned PhysReg) const { 857 unsigned CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg); 858 if (CSR == 0) 859 return false; 860 861 return !Matrix->isPhysRegUsed(PhysReg); 862 } 863 864 /// tryEvict - Try to evict all interferences for a physreg. 865 /// @param VirtReg Currently unassigned virtual register. 866 /// @param Order Physregs to try. 867 /// @return Physreg to assign VirtReg, or 0. 868 unsigned RAGreedy::tryEvict(LiveInterval &VirtReg, 869 AllocationOrder &Order, 870 SmallVectorImpl<unsigned> &NewVRegs, 871 unsigned CostPerUseLimit) { 872 NamedRegionTimer T("Evict", TimerGroupName, TimePassesIsEnabled); 873 874 // Keep track of the cheapest interference seen so far. 875 EvictionCost BestCost; 876 BestCost.setMax(); 877 unsigned BestPhys = 0; 878 unsigned OrderLimit = Order.getOrder().size(); 879 880 // When we are just looking for a reduced cost per use, don't break any 881 // hints, and only evict smaller spill weights. 882 if (CostPerUseLimit < ~0u) { 883 BestCost.BrokenHints = 0; 884 BestCost.MaxWeight = VirtReg.weight; 885 886 // Check of any registers in RC are below CostPerUseLimit. 887 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg); 888 unsigned MinCost = RegClassInfo.getMinCost(RC); 889 if (MinCost >= CostPerUseLimit) { 890 DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = " << MinCost 891 << ", no cheaper registers to be found.\n"); 892 return 0; 893 } 894 895 // It is normal for register classes to have a long tail of registers with 896 // the same cost. We don't need to look at them if they're too expensive. 897 if (TRI->getCostPerUse(Order.getOrder().back()) >= CostPerUseLimit) { 898 OrderLimit = RegClassInfo.getLastCostChange(RC); 899 DEBUG(dbgs() << "Only trying the first " << OrderLimit << " regs.\n"); 900 } 901 } 902 903 Order.rewind(); 904 while (unsigned PhysReg = Order.next(OrderLimit)) { 905 if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit) 906 continue; 907 // The first use of a callee-saved register in a function has cost 1. 908 // Don't start using a CSR when the CostPerUseLimit is low. 909 if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) { 910 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " would clobber CSR " 911 << PrintReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI) 912 << '\n'); 913 continue; 914 } 915 916 if (!canEvictInterference(VirtReg, PhysReg, false, BestCost)) 917 continue; 918 919 // Best so far. 920 BestPhys = PhysReg; 921 922 // Stop if the hint can be used. 923 if (Order.isHint()) 924 break; 925 } 926 927 if (!BestPhys) 928 return 0; 929 930 evictInterference(VirtReg, BestPhys, NewVRegs); 931 return BestPhys; 932 } 933 934 935 //===----------------------------------------------------------------------===// 936 // Region Splitting 937 //===----------------------------------------------------------------------===// 938 939 /// addSplitConstraints - Fill out the SplitConstraints vector based on the 940 /// interference pattern in Physreg and its aliases. Add the constraints to 941 /// SpillPlacement and return the static cost of this split in Cost, assuming 942 /// that all preferences in SplitConstraints are met. 943 /// Return false if there are no bundles with positive bias. 944 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf, 945 BlockFrequency &Cost) { 946 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 947 948 // Reset interference dependent info. 949 SplitConstraints.resize(UseBlocks.size()); 950 BlockFrequency StaticCost = 0; 951 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 952 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 953 SpillPlacement::BlockConstraint &BC = SplitConstraints[i]; 954 955 BC.Number = BI.MBB->getNumber(); 956 Intf.moveToBlock(BC.Number); 957 BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare; 958 BC.Exit = BI.LiveOut ? SpillPlacement::PrefReg : SpillPlacement::DontCare; 959 BC.ChangesValue = BI.FirstDef.isValid(); 960 961 if (!Intf.hasInterference()) 962 continue; 963 964 // Number of spill code instructions to insert. 965 unsigned Ins = 0; 966 967 // Interference for the live-in value. 968 if (BI.LiveIn) { 969 if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) { 970 BC.Entry = SpillPlacement::MustSpill; 971 ++Ins; 972 } else if (Intf.first() < BI.FirstInstr) { 973 BC.Entry = SpillPlacement::PrefSpill; 974 ++Ins; 975 } else if (Intf.first() < BI.LastInstr) { 976 ++Ins; 977 } 978 } 979 980 // Interference for the live-out value. 981 if (BI.LiveOut) { 982 if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) { 983 BC.Exit = SpillPlacement::MustSpill; 984 ++Ins; 985 } else if (Intf.last() > BI.LastInstr) { 986 BC.Exit = SpillPlacement::PrefSpill; 987 ++Ins; 988 } else if (Intf.last() > BI.FirstInstr) { 989 ++Ins; 990 } 991 } 992 993 // Accumulate the total frequency of inserted spill code. 994 while (Ins--) 995 StaticCost += SpillPlacer->getBlockFrequency(BC.Number); 996 } 997 Cost = StaticCost; 998 999 // Add constraints for use-blocks. Note that these are the only constraints 1000 // that may add a positive bias, it is downhill from here. 1001 SpillPlacer->addConstraints(SplitConstraints); 1002 return SpillPlacer->scanActiveBundles(); 1003 } 1004 1005 1006 /// addThroughConstraints - Add constraints and links to SpillPlacer from the 1007 /// live-through blocks in Blocks. 1008 void RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf, 1009 ArrayRef<unsigned> Blocks) { 1010 const unsigned GroupSize = 8; 1011 SpillPlacement::BlockConstraint BCS[GroupSize]; 1012 unsigned TBS[GroupSize]; 1013 unsigned B = 0, T = 0; 1014 1015 for (unsigned i = 0; i != Blocks.size(); ++i) { 1016 unsigned Number = Blocks[i]; 1017 Intf.moveToBlock(Number); 1018 1019 if (!Intf.hasInterference()) { 1020 assert(T < GroupSize && "Array overflow"); 1021 TBS[T] = Number; 1022 if (++T == GroupSize) { 1023 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 1024 T = 0; 1025 } 1026 continue; 1027 } 1028 1029 assert(B < GroupSize && "Array overflow"); 1030 BCS[B].Number = Number; 1031 1032 // Interference for the live-in value. 1033 if (Intf.first() <= Indexes->getMBBStartIdx(Number)) 1034 BCS[B].Entry = SpillPlacement::MustSpill; 1035 else 1036 BCS[B].Entry = SpillPlacement::PrefSpill; 1037 1038 // Interference for the live-out value. 1039 if (Intf.last() >= SA->getLastSplitPoint(Number)) 1040 BCS[B].Exit = SpillPlacement::MustSpill; 1041 else 1042 BCS[B].Exit = SpillPlacement::PrefSpill; 1043 1044 if (++B == GroupSize) { 1045 SpillPlacer->addConstraints(makeArrayRef(BCS, B)); 1046 B = 0; 1047 } 1048 } 1049 1050 SpillPlacer->addConstraints(makeArrayRef(BCS, B)); 1051 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 1052 } 1053 1054 void RAGreedy::growRegion(GlobalSplitCandidate &Cand) { 1055 // Keep track of through blocks that have not been added to SpillPlacer. 1056 BitVector Todo = SA->getThroughBlocks(); 1057 SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks; 1058 unsigned AddedTo = 0; 1059 #ifndef NDEBUG 1060 unsigned Visited = 0; 1061 #endif 1062 1063 for (;;) { 1064 ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive(); 1065 // Find new through blocks in the periphery of PrefRegBundles. 1066 for (int i = 0, e = NewBundles.size(); i != e; ++i) { 1067 unsigned Bundle = NewBundles[i]; 1068 // Look at all blocks connected to Bundle in the full graph. 1069 ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle); 1070 for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end(); 1071 I != E; ++I) { 1072 unsigned Block = *I; 1073 if (!Todo.test(Block)) 1074 continue; 1075 Todo.reset(Block); 1076 // This is a new through block. Add it to SpillPlacer later. 1077 ActiveBlocks.push_back(Block); 1078 #ifndef NDEBUG 1079 ++Visited; 1080 #endif 1081 } 1082 } 1083 // Any new blocks to add? 1084 if (ActiveBlocks.size() == AddedTo) 1085 break; 1086 1087 // Compute through constraints from the interference, or assume that all 1088 // through blocks prefer spilling when forming compact regions. 1089 auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo); 1090 if (Cand.PhysReg) 1091 addThroughConstraints(Cand.Intf, NewBlocks); 1092 else 1093 // Provide a strong negative bias on through blocks to prevent unwanted 1094 // liveness on loop backedges. 1095 SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true); 1096 AddedTo = ActiveBlocks.size(); 1097 1098 // Perhaps iterating can enable more bundles? 1099 SpillPlacer->iterate(); 1100 } 1101 DEBUG(dbgs() << ", v=" << Visited); 1102 } 1103 1104 /// calcCompactRegion - Compute the set of edge bundles that should be live 1105 /// when splitting the current live range into compact regions. Compact 1106 /// regions can be computed without looking at interference. They are the 1107 /// regions formed by removing all the live-through blocks from the live range. 1108 /// 1109 /// Returns false if the current live range is already compact, or if the 1110 /// compact regions would form single block regions anyway. 1111 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) { 1112 // Without any through blocks, the live range is already compact. 1113 if (!SA->getNumThroughBlocks()) 1114 return false; 1115 1116 // Compact regions don't correspond to any physreg. 1117 Cand.reset(IntfCache, 0); 1118 1119 DEBUG(dbgs() << "Compact region bundles"); 1120 1121 // Use the spill placer to determine the live bundles. GrowRegion pretends 1122 // that all the through blocks have interference when PhysReg is unset. 1123 SpillPlacer->prepare(Cand.LiveBundles); 1124 1125 // The static split cost will be zero since Cand.Intf reports no interference. 1126 BlockFrequency Cost; 1127 if (!addSplitConstraints(Cand.Intf, Cost)) { 1128 DEBUG(dbgs() << ", none.\n"); 1129 return false; 1130 } 1131 1132 growRegion(Cand); 1133 SpillPlacer->finish(); 1134 1135 if (!Cand.LiveBundles.any()) { 1136 DEBUG(dbgs() << ", none.\n"); 1137 return false; 1138 } 1139 1140 DEBUG({ 1141 for (int i = Cand.LiveBundles.find_first(); i>=0; 1142 i = Cand.LiveBundles.find_next(i)) 1143 dbgs() << " EB#" << i; 1144 dbgs() << ".\n"; 1145 }); 1146 return true; 1147 } 1148 1149 /// calcSpillCost - Compute how expensive it would be to split the live range in 1150 /// SA around all use blocks instead of forming bundle regions. 1151 BlockFrequency RAGreedy::calcSpillCost() { 1152 BlockFrequency Cost = 0; 1153 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1154 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1155 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1156 unsigned Number = BI.MBB->getNumber(); 1157 // We normally only need one spill instruction - a load or a store. 1158 Cost += SpillPlacer->getBlockFrequency(Number); 1159 1160 // Unless the value is redefined in the block. 1161 if (BI.LiveIn && BI.LiveOut && BI.FirstDef) 1162 Cost += SpillPlacer->getBlockFrequency(Number); 1163 } 1164 return Cost; 1165 } 1166 1167 /// calcGlobalSplitCost - Return the global split cost of following the split 1168 /// pattern in LiveBundles. This cost should be added to the local cost of the 1169 /// interference pattern in SplitConstraints. 1170 /// 1171 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand) { 1172 BlockFrequency GlobalCost = 0; 1173 const BitVector &LiveBundles = Cand.LiveBundles; 1174 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1175 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1176 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1177 SpillPlacement::BlockConstraint &BC = SplitConstraints[i]; 1178 bool RegIn = LiveBundles[Bundles->getBundle(BC.Number, 0)]; 1179 bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, 1)]; 1180 unsigned Ins = 0; 1181 1182 if (BI.LiveIn) 1183 Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg); 1184 if (BI.LiveOut) 1185 Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg); 1186 while (Ins--) 1187 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1188 } 1189 1190 for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) { 1191 unsigned Number = Cand.ActiveBlocks[i]; 1192 bool RegIn = LiveBundles[Bundles->getBundle(Number, 0)]; 1193 bool RegOut = LiveBundles[Bundles->getBundle(Number, 1)]; 1194 if (!RegIn && !RegOut) 1195 continue; 1196 if (RegIn && RegOut) { 1197 // We need double spill code if this block has interference. 1198 Cand.Intf.moveToBlock(Number); 1199 if (Cand.Intf.hasInterference()) { 1200 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1201 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1202 } 1203 continue; 1204 } 1205 // live-in / stack-out or stack-in live-out. 1206 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1207 } 1208 return GlobalCost; 1209 } 1210 1211 /// splitAroundRegion - Split the current live range around the regions 1212 /// determined by BundleCand and GlobalCand. 1213 /// 1214 /// Before calling this function, GlobalCand and BundleCand must be initialized 1215 /// so each bundle is assigned to a valid candidate, or NoCand for the 1216 /// stack-bound bundles. The shared SA/SE SplitAnalysis and SplitEditor 1217 /// objects must be initialized for the current live range, and intervals 1218 /// created for the used candidates. 1219 /// 1220 /// @param LREdit The LiveRangeEdit object handling the current split. 1221 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value 1222 /// must appear in this list. 1223 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit, 1224 ArrayRef<unsigned> UsedCands) { 1225 // These are the intervals created for new global ranges. We may create more 1226 // intervals for local ranges. 1227 const unsigned NumGlobalIntvs = LREdit.size(); 1228 DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs << " globals.\n"); 1229 assert(NumGlobalIntvs && "No global intervals configured"); 1230 1231 // Isolate even single instructions when dealing with a proper sub-class. 1232 // That guarantees register class inflation for the stack interval because it 1233 // is all copies. 1234 unsigned Reg = SA->getParent().reg; 1235 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 1236 1237 // First handle all the blocks with uses. 1238 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1239 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1240 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1241 unsigned Number = BI.MBB->getNumber(); 1242 unsigned IntvIn = 0, IntvOut = 0; 1243 SlotIndex IntfIn, IntfOut; 1244 if (BI.LiveIn) { 1245 unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)]; 1246 if (CandIn != NoCand) { 1247 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 1248 IntvIn = Cand.IntvIdx; 1249 Cand.Intf.moveToBlock(Number); 1250 IntfIn = Cand.Intf.first(); 1251 } 1252 } 1253 if (BI.LiveOut) { 1254 unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)]; 1255 if (CandOut != NoCand) { 1256 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 1257 IntvOut = Cand.IntvIdx; 1258 Cand.Intf.moveToBlock(Number); 1259 IntfOut = Cand.Intf.last(); 1260 } 1261 } 1262 1263 // Create separate intervals for isolated blocks with multiple uses. 1264 if (!IntvIn && !IntvOut) { 1265 DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " isolated.\n"); 1266 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 1267 SE->splitSingleBlock(BI); 1268 continue; 1269 } 1270 1271 if (IntvIn && IntvOut) 1272 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1273 else if (IntvIn) 1274 SE->splitRegInBlock(BI, IntvIn, IntfIn); 1275 else 1276 SE->splitRegOutBlock(BI, IntvOut, IntfOut); 1277 } 1278 1279 // Handle live-through blocks. The relevant live-through blocks are stored in 1280 // the ActiveBlocks list with each candidate. We need to filter out 1281 // duplicates. 1282 BitVector Todo = SA->getThroughBlocks(); 1283 for (unsigned c = 0; c != UsedCands.size(); ++c) { 1284 ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks; 1285 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { 1286 unsigned Number = Blocks[i]; 1287 if (!Todo.test(Number)) 1288 continue; 1289 Todo.reset(Number); 1290 1291 unsigned IntvIn = 0, IntvOut = 0; 1292 SlotIndex IntfIn, IntfOut; 1293 1294 unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)]; 1295 if (CandIn != NoCand) { 1296 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 1297 IntvIn = Cand.IntvIdx; 1298 Cand.Intf.moveToBlock(Number); 1299 IntfIn = Cand.Intf.first(); 1300 } 1301 1302 unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)]; 1303 if (CandOut != NoCand) { 1304 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 1305 IntvOut = Cand.IntvIdx; 1306 Cand.Intf.moveToBlock(Number); 1307 IntfOut = Cand.Intf.last(); 1308 } 1309 if (!IntvIn && !IntvOut) 1310 continue; 1311 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1312 } 1313 } 1314 1315 ++NumGlobalSplits; 1316 1317 SmallVector<unsigned, 8> IntvMap; 1318 SE->finish(&IntvMap); 1319 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 1320 1321 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 1322 unsigned OrigBlocks = SA->getNumLiveBlocks(); 1323 1324 // Sort out the new intervals created by splitting. We get four kinds: 1325 // - Remainder intervals should not be split again. 1326 // - Candidate intervals can be assigned to Cand.PhysReg. 1327 // - Block-local splits are candidates for local splitting. 1328 // - DCE leftovers should go back on the queue. 1329 for (unsigned i = 0, e = LREdit.size(); i != e; ++i) { 1330 LiveInterval &Reg = LIS->getInterval(LREdit.get(i)); 1331 1332 // Ignore old intervals from DCE. 1333 if (getStage(Reg) != RS_New) 1334 continue; 1335 1336 // Remainder interval. Don't try splitting again, spill if it doesn't 1337 // allocate. 1338 if (IntvMap[i] == 0) { 1339 setStage(Reg, RS_Spill); 1340 continue; 1341 } 1342 1343 // Global intervals. Allow repeated splitting as long as the number of live 1344 // blocks is strictly decreasing. 1345 if (IntvMap[i] < NumGlobalIntvs) { 1346 if (SA->countLiveBlocks(&Reg) >= OrigBlocks) { 1347 DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks 1348 << " blocks as original.\n"); 1349 // Don't allow repeated splitting as a safe guard against looping. 1350 setStage(Reg, RS_Split2); 1351 } 1352 continue; 1353 } 1354 1355 // Other intervals are treated as new. This includes local intervals created 1356 // for blocks with multiple uses, and anything created by DCE. 1357 } 1358 1359 if (VerifyEnabled) 1360 MF->verify(this, "After splitting live range around region"); 1361 } 1362 1363 unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order, 1364 SmallVectorImpl<unsigned> &NewVRegs) { 1365 unsigned NumCands = 0; 1366 BlockFrequency BestCost; 1367 1368 // Check if we can split this live range around a compact region. 1369 bool HasCompact = calcCompactRegion(GlobalCand.front()); 1370 if (HasCompact) { 1371 // Yes, keep GlobalCand[0] as the compact region candidate. 1372 NumCands = 1; 1373 BestCost = BlockFrequency::getMaxFrequency(); 1374 } else { 1375 // No benefit from the compact region, our fallback will be per-block 1376 // splitting. Make sure we find a solution that is cheaper than spilling. 1377 BestCost = calcSpillCost(); 1378 DEBUG(dbgs() << "Cost of isolating all blocks = "; 1379 MBFI->printBlockFreq(dbgs(), BestCost) << '\n'); 1380 } 1381 1382 unsigned BestCand = 1383 calculateRegionSplitCost(VirtReg, Order, BestCost, NumCands, 1384 false/*IgnoreCSR*/); 1385 1386 // No solutions found, fall back to single block splitting. 1387 if (!HasCompact && BestCand == NoCand) 1388 return 0; 1389 1390 return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs); 1391 } 1392 1393 unsigned RAGreedy::calculateRegionSplitCost(LiveInterval &VirtReg, 1394 AllocationOrder &Order, 1395 BlockFrequency &BestCost, 1396 unsigned &NumCands, 1397 bool IgnoreCSR) { 1398 unsigned BestCand = NoCand; 1399 Order.rewind(); 1400 while (unsigned PhysReg = Order.next()) { 1401 if (IgnoreCSR && isUnusedCalleeSavedReg(PhysReg)) 1402 continue; 1403 1404 // Discard bad candidates before we run out of interference cache cursors. 1405 // This will only affect register classes with a lot of registers (>32). 1406 if (NumCands == IntfCache.getMaxCursors()) { 1407 unsigned WorstCount = ~0u; 1408 unsigned Worst = 0; 1409 for (unsigned i = 0; i != NumCands; ++i) { 1410 if (i == BestCand || !GlobalCand[i].PhysReg) 1411 continue; 1412 unsigned Count = GlobalCand[i].LiveBundles.count(); 1413 if (Count < WorstCount) { 1414 Worst = i; 1415 WorstCount = Count; 1416 } 1417 } 1418 --NumCands; 1419 GlobalCand[Worst] = GlobalCand[NumCands]; 1420 if (BestCand == NumCands) 1421 BestCand = Worst; 1422 } 1423 1424 if (GlobalCand.size() <= NumCands) 1425 GlobalCand.resize(NumCands+1); 1426 GlobalSplitCandidate &Cand = GlobalCand[NumCands]; 1427 Cand.reset(IntfCache, PhysReg); 1428 1429 SpillPlacer->prepare(Cand.LiveBundles); 1430 BlockFrequency Cost; 1431 if (!addSplitConstraints(Cand.Intf, Cost)) { 1432 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tno positive bundles\n"); 1433 continue; 1434 } 1435 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tstatic = "; 1436 MBFI->printBlockFreq(dbgs(), Cost)); 1437 if (Cost >= BestCost) { 1438 DEBUG({ 1439 if (BestCand == NoCand) 1440 dbgs() << " worse than no bundles\n"; 1441 else 1442 dbgs() << " worse than " 1443 << PrintReg(GlobalCand[BestCand].PhysReg, TRI) << '\n'; 1444 }); 1445 continue; 1446 } 1447 growRegion(Cand); 1448 1449 SpillPlacer->finish(); 1450 1451 // No live bundles, defer to splitSingleBlocks(). 1452 if (!Cand.LiveBundles.any()) { 1453 DEBUG(dbgs() << " no bundles.\n"); 1454 continue; 1455 } 1456 1457 Cost += calcGlobalSplitCost(Cand); 1458 DEBUG({ 1459 dbgs() << ", total = "; MBFI->printBlockFreq(dbgs(), Cost) 1460 << " with bundles"; 1461 for (int i = Cand.LiveBundles.find_first(); i>=0; 1462 i = Cand.LiveBundles.find_next(i)) 1463 dbgs() << " EB#" << i; 1464 dbgs() << ".\n"; 1465 }); 1466 if (Cost < BestCost) { 1467 BestCand = NumCands; 1468 BestCost = Cost; 1469 } 1470 ++NumCands; 1471 } 1472 return BestCand; 1473 } 1474 1475 unsigned RAGreedy::doRegionSplit(LiveInterval &VirtReg, unsigned BestCand, 1476 bool HasCompact, 1477 SmallVectorImpl<unsigned> &NewVRegs) { 1478 SmallVector<unsigned, 8> UsedCands; 1479 // Prepare split editor. 1480 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1481 SE->reset(LREdit, SplitSpillMode); 1482 1483 // Assign all edge bundles to the preferred candidate, or NoCand. 1484 BundleCand.assign(Bundles->getNumBundles(), NoCand); 1485 1486 // Assign bundles for the best candidate region. 1487 if (BestCand != NoCand) { 1488 GlobalSplitCandidate &Cand = GlobalCand[BestCand]; 1489 if (unsigned B = Cand.getBundles(BundleCand, BestCand)) { 1490 UsedCands.push_back(BestCand); 1491 Cand.IntvIdx = SE->openIntv(); 1492 DEBUG(dbgs() << "Split for " << PrintReg(Cand.PhysReg, TRI) << " in " 1493 << B << " bundles, intv " << Cand.IntvIdx << ".\n"); 1494 (void)B; 1495 } 1496 } 1497 1498 // Assign bundles for the compact region. 1499 if (HasCompact) { 1500 GlobalSplitCandidate &Cand = GlobalCand.front(); 1501 assert(!Cand.PhysReg && "Compact region has no physreg"); 1502 if (unsigned B = Cand.getBundles(BundleCand, 0)) { 1503 UsedCands.push_back(0); 1504 Cand.IntvIdx = SE->openIntv(); 1505 DEBUG(dbgs() << "Split for compact region in " << B << " bundles, intv " 1506 << Cand.IntvIdx << ".\n"); 1507 (void)B; 1508 } 1509 } 1510 1511 splitAroundRegion(LREdit, UsedCands); 1512 return 0; 1513 } 1514 1515 1516 //===----------------------------------------------------------------------===// 1517 // Per-Block Splitting 1518 //===----------------------------------------------------------------------===// 1519 1520 /// tryBlockSplit - Split a global live range around every block with uses. This 1521 /// creates a lot of local live ranges, that will be split by tryLocalSplit if 1522 /// they don't allocate. 1523 unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order, 1524 SmallVectorImpl<unsigned> &NewVRegs) { 1525 assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed"); 1526 unsigned Reg = VirtReg.reg; 1527 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 1528 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1529 SE->reset(LREdit, SplitSpillMode); 1530 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1531 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1532 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1533 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 1534 SE->splitSingleBlock(BI); 1535 } 1536 // No blocks were split. 1537 if (LREdit.empty()) 1538 return 0; 1539 1540 // We did split for some blocks. 1541 SmallVector<unsigned, 8> IntvMap; 1542 SE->finish(&IntvMap); 1543 1544 // Tell LiveDebugVariables about the new ranges. 1545 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 1546 1547 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 1548 1549 // Sort out the new intervals created by splitting. The remainder interval 1550 // goes straight to spilling, the new local ranges get to stay RS_New. 1551 for (unsigned i = 0, e = LREdit.size(); i != e; ++i) { 1552 LiveInterval &LI = LIS->getInterval(LREdit.get(i)); 1553 if (getStage(LI) == RS_New && IntvMap[i] == 0) 1554 setStage(LI, RS_Spill); 1555 } 1556 1557 if (VerifyEnabled) 1558 MF->verify(this, "After splitting live range around basic blocks"); 1559 return 0; 1560 } 1561 1562 1563 //===----------------------------------------------------------------------===// 1564 // Per-Instruction Splitting 1565 //===----------------------------------------------------------------------===// 1566 1567 /// Get the number of allocatable registers that match the constraints of \p Reg 1568 /// on \p MI and that are also in \p SuperRC. 1569 static unsigned getNumAllocatableRegsForConstraints( 1570 const MachineInstr *MI, unsigned Reg, const TargetRegisterClass *SuperRC, 1571 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI, 1572 const RegisterClassInfo &RCI) { 1573 assert(SuperRC && "Invalid register class"); 1574 1575 const TargetRegisterClass *ConstrainedRC = 1576 MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI, 1577 /* ExploreBundle */ true); 1578 if (!ConstrainedRC) 1579 return 0; 1580 return RCI.getNumAllocatableRegs(ConstrainedRC); 1581 } 1582 1583 /// tryInstructionSplit - Split a live range around individual instructions. 1584 /// This is normally not worthwhile since the spiller is doing essentially the 1585 /// same thing. However, when the live range is in a constrained register 1586 /// class, it may help to insert copies such that parts of the live range can 1587 /// be moved to a larger register class. 1588 /// 1589 /// This is similar to spilling to a larger register class. 1590 unsigned 1591 RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order, 1592 SmallVectorImpl<unsigned> &NewVRegs) { 1593 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg); 1594 // There is no point to this if there are no larger sub-classes. 1595 if (!RegClassInfo.isProperSubClass(CurRC)) 1596 return 0; 1597 1598 // Always enable split spill mode, since we're effectively spilling to a 1599 // register. 1600 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1601 SE->reset(LREdit, SplitEditor::SM_Size); 1602 1603 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 1604 if (Uses.size() <= 1) 1605 return 0; 1606 1607 DEBUG(dbgs() << "Split around " << Uses.size() << " individual instrs.\n"); 1608 1609 const TargetRegisterClass *SuperRC = 1610 TRI->getLargestLegalSuperClass(CurRC, *MF); 1611 unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC); 1612 // Split around every non-copy instruction if this split will relax 1613 // the constraints on the virtual register. 1614 // Otherwise, splitting just inserts uncoalescable copies that do not help 1615 // the allocation. 1616 for (unsigned i = 0; i != Uses.size(); ++i) { 1617 if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Uses[i])) 1618 if (MI->isFullCopy() || 1619 SuperRCNumAllocatableRegs == 1620 getNumAllocatableRegsForConstraints(MI, VirtReg.reg, SuperRC, TII, 1621 TRI, RCI)) { 1622 DEBUG(dbgs() << " skip:\t" << Uses[i] << '\t' << *MI); 1623 continue; 1624 } 1625 SE->openIntv(); 1626 SlotIndex SegStart = SE->enterIntvBefore(Uses[i]); 1627 SlotIndex SegStop = SE->leaveIntvAfter(Uses[i]); 1628 SE->useIntv(SegStart, SegStop); 1629 } 1630 1631 if (LREdit.empty()) { 1632 DEBUG(dbgs() << "All uses were copies.\n"); 1633 return 0; 1634 } 1635 1636 SmallVector<unsigned, 8> IntvMap; 1637 SE->finish(&IntvMap); 1638 DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS); 1639 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 1640 1641 // Assign all new registers to RS_Spill. This was the last chance. 1642 setStage(LREdit.begin(), LREdit.end(), RS_Spill); 1643 return 0; 1644 } 1645 1646 1647 //===----------------------------------------------------------------------===// 1648 // Local Splitting 1649 //===----------------------------------------------------------------------===// 1650 1651 1652 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted 1653 /// in order to use PhysReg between two entries in SA->UseSlots. 1654 /// 1655 /// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1]. 1656 /// 1657 void RAGreedy::calcGapWeights(unsigned PhysReg, 1658 SmallVectorImpl<float> &GapWeight) { 1659 assert(SA->getUseBlocks().size() == 1 && "Not a local interval"); 1660 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 1661 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 1662 const unsigned NumGaps = Uses.size()-1; 1663 1664 // Start and end points for the interference check. 1665 SlotIndex StartIdx = 1666 BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr; 1667 SlotIndex StopIdx = 1668 BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr; 1669 1670 GapWeight.assign(NumGaps, 0.0f); 1671 1672 // Add interference from each overlapping register. 1673 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 1674 if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units) 1675 .checkInterference()) 1676 continue; 1677 1678 // We know that VirtReg is a continuous interval from FirstInstr to 1679 // LastInstr, so we don't need InterferenceQuery. 1680 // 1681 // Interference that overlaps an instruction is counted in both gaps 1682 // surrounding the instruction. The exception is interference before 1683 // StartIdx and after StopIdx. 1684 // 1685 LiveIntervalUnion::SegmentIter IntI = 1686 Matrix->getLiveUnions()[*Units] .find(StartIdx); 1687 for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) { 1688 // Skip the gaps before IntI. 1689 while (Uses[Gap+1].getBoundaryIndex() < IntI.start()) 1690 if (++Gap == NumGaps) 1691 break; 1692 if (Gap == NumGaps) 1693 break; 1694 1695 // Update the gaps covered by IntI. 1696 const float weight = IntI.value()->weight; 1697 for (; Gap != NumGaps; ++Gap) { 1698 GapWeight[Gap] = std::max(GapWeight[Gap], weight); 1699 if (Uses[Gap+1].getBaseIndex() >= IntI.stop()) 1700 break; 1701 } 1702 if (Gap == NumGaps) 1703 break; 1704 } 1705 } 1706 1707 // Add fixed interference. 1708 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 1709 const LiveRange &LR = LIS->getRegUnit(*Units); 1710 LiveRange::const_iterator I = LR.find(StartIdx); 1711 LiveRange::const_iterator E = LR.end(); 1712 1713 // Same loop as above. Mark any overlapped gaps as HUGE_VALF. 1714 for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) { 1715 while (Uses[Gap+1].getBoundaryIndex() < I->start) 1716 if (++Gap == NumGaps) 1717 break; 1718 if (Gap == NumGaps) 1719 break; 1720 1721 for (; Gap != NumGaps; ++Gap) { 1722 GapWeight[Gap] = llvm::huge_valf; 1723 if (Uses[Gap+1].getBaseIndex() >= I->end) 1724 break; 1725 } 1726 if (Gap == NumGaps) 1727 break; 1728 } 1729 } 1730 } 1731 1732 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only 1733 /// basic block. 1734 /// 1735 unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order, 1736 SmallVectorImpl<unsigned> &NewVRegs) { 1737 assert(SA->getUseBlocks().size() == 1 && "Not a local interval"); 1738 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 1739 1740 // Note that it is possible to have an interval that is live-in or live-out 1741 // while only covering a single block - A phi-def can use undef values from 1742 // predecessors, and the block could be a single-block loop. 1743 // We don't bother doing anything clever about such a case, we simply assume 1744 // that the interval is continuous from FirstInstr to LastInstr. We should 1745 // make sure that we don't do anything illegal to such an interval, though. 1746 1747 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 1748 if (Uses.size() <= 2) 1749 return 0; 1750 const unsigned NumGaps = Uses.size()-1; 1751 1752 DEBUG({ 1753 dbgs() << "tryLocalSplit: "; 1754 for (unsigned i = 0, e = Uses.size(); i != e; ++i) 1755 dbgs() << ' ' << Uses[i]; 1756 dbgs() << '\n'; 1757 }); 1758 1759 // If VirtReg is live across any register mask operands, compute a list of 1760 // gaps with register masks. 1761 SmallVector<unsigned, 8> RegMaskGaps; 1762 if (Matrix->checkRegMaskInterference(VirtReg)) { 1763 // Get regmask slots for the whole block. 1764 ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber()); 1765 DEBUG(dbgs() << RMS.size() << " regmasks in block:"); 1766 // Constrain to VirtReg's live range. 1767 unsigned ri = std::lower_bound(RMS.begin(), RMS.end(), 1768 Uses.front().getRegSlot()) - RMS.begin(); 1769 unsigned re = RMS.size(); 1770 for (unsigned i = 0; i != NumGaps && ri != re; ++i) { 1771 // Look for Uses[i] <= RMS <= Uses[i+1]. 1772 assert(!SlotIndex::isEarlierInstr(RMS[ri], Uses[i])); 1773 if (SlotIndex::isEarlierInstr(Uses[i+1], RMS[ri])) 1774 continue; 1775 // Skip a regmask on the same instruction as the last use. It doesn't 1776 // overlap the live range. 1777 if (SlotIndex::isSameInstr(Uses[i+1], RMS[ri]) && i+1 == NumGaps) 1778 break; 1779 DEBUG(dbgs() << ' ' << RMS[ri] << ':' << Uses[i] << '-' << Uses[i+1]); 1780 RegMaskGaps.push_back(i); 1781 // Advance ri to the next gap. A regmask on one of the uses counts in 1782 // both gaps. 1783 while (ri != re && SlotIndex::isEarlierInstr(RMS[ri], Uses[i+1])) 1784 ++ri; 1785 } 1786 DEBUG(dbgs() << '\n'); 1787 } 1788 1789 // Since we allow local split results to be split again, there is a risk of 1790 // creating infinite loops. It is tempting to require that the new live 1791 // ranges have less instructions than the original. That would guarantee 1792 // convergence, but it is too strict. A live range with 3 instructions can be 1793 // split 2+3 (including the COPY), and we want to allow that. 1794 // 1795 // Instead we use these rules: 1796 // 1797 // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the 1798 // noop split, of course). 1799 // 2. Require progress be made for ranges with getStage() == RS_Split2. All 1800 // the new ranges must have fewer instructions than before the split. 1801 // 3. New ranges with the same number of instructions are marked RS_Split2, 1802 // smaller ranges are marked RS_New. 1803 // 1804 // These rules allow a 3 -> 2+3 split once, which we need. They also prevent 1805 // excessive splitting and infinite loops. 1806 // 1807 bool ProgressRequired = getStage(VirtReg) >= RS_Split2; 1808 1809 // Best split candidate. 1810 unsigned BestBefore = NumGaps; 1811 unsigned BestAfter = 0; 1812 float BestDiff = 0; 1813 1814 const float blockFreq = 1815 SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() * 1816 (1.0f / MBFI->getEntryFreq()); 1817 SmallVector<float, 8> GapWeight; 1818 1819 Order.rewind(); 1820 while (unsigned PhysReg = Order.next()) { 1821 // Keep track of the largest spill weight that would need to be evicted in 1822 // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1]. 1823 calcGapWeights(PhysReg, GapWeight); 1824 1825 // Remove any gaps with regmask clobbers. 1826 if (Matrix->checkRegMaskInterference(VirtReg, PhysReg)) 1827 for (unsigned i = 0, e = RegMaskGaps.size(); i != e; ++i) 1828 GapWeight[RegMaskGaps[i]] = llvm::huge_valf; 1829 1830 // Try to find the best sequence of gaps to close. 1831 // The new spill weight must be larger than any gap interference. 1832 1833 // We will split before Uses[SplitBefore] and after Uses[SplitAfter]. 1834 unsigned SplitBefore = 0, SplitAfter = 1; 1835 1836 // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]). 1837 // It is the spill weight that needs to be evicted. 1838 float MaxGap = GapWeight[0]; 1839 1840 for (;;) { 1841 // Live before/after split? 1842 const bool LiveBefore = SplitBefore != 0 || BI.LiveIn; 1843 const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut; 1844 1845 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << ' ' 1846 << Uses[SplitBefore] << '-' << Uses[SplitAfter] 1847 << " i=" << MaxGap); 1848 1849 // Stop before the interval gets so big we wouldn't be making progress. 1850 if (!LiveBefore && !LiveAfter) { 1851 DEBUG(dbgs() << " all\n"); 1852 break; 1853 } 1854 // Should the interval be extended or shrunk? 1855 bool Shrink = true; 1856 1857 // How many gaps would the new range have? 1858 unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter; 1859 1860 // Legally, without causing looping? 1861 bool Legal = !ProgressRequired || NewGaps < NumGaps; 1862 1863 if (Legal && MaxGap < llvm::huge_valf) { 1864 // Estimate the new spill weight. Each instruction reads or writes the 1865 // register. Conservatively assume there are no read-modify-write 1866 // instructions. 1867 // 1868 // Try to guess the size of the new interval. 1869 const float EstWeight = normalizeSpillWeight( 1870 blockFreq * (NewGaps + 1), 1871 Uses[SplitBefore].distance(Uses[SplitAfter]) + 1872 (LiveBefore + LiveAfter) * SlotIndex::InstrDist, 1873 1); 1874 // Would this split be possible to allocate? 1875 // Never allocate all gaps, we wouldn't be making progress. 1876 DEBUG(dbgs() << " w=" << EstWeight); 1877 if (EstWeight * Hysteresis >= MaxGap) { 1878 Shrink = false; 1879 float Diff = EstWeight - MaxGap; 1880 if (Diff > BestDiff) { 1881 DEBUG(dbgs() << " (best)"); 1882 BestDiff = Hysteresis * Diff; 1883 BestBefore = SplitBefore; 1884 BestAfter = SplitAfter; 1885 } 1886 } 1887 } 1888 1889 // Try to shrink. 1890 if (Shrink) { 1891 if (++SplitBefore < SplitAfter) { 1892 DEBUG(dbgs() << " shrink\n"); 1893 // Recompute the max when necessary. 1894 if (GapWeight[SplitBefore - 1] >= MaxGap) { 1895 MaxGap = GapWeight[SplitBefore]; 1896 for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i) 1897 MaxGap = std::max(MaxGap, GapWeight[i]); 1898 } 1899 continue; 1900 } 1901 MaxGap = 0; 1902 } 1903 1904 // Try to extend the interval. 1905 if (SplitAfter >= NumGaps) { 1906 DEBUG(dbgs() << " end\n"); 1907 break; 1908 } 1909 1910 DEBUG(dbgs() << " extend\n"); 1911 MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]); 1912 } 1913 } 1914 1915 // Didn't find any candidates? 1916 if (BestBefore == NumGaps) 1917 return 0; 1918 1919 DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] 1920 << '-' << Uses[BestAfter] << ", " << BestDiff 1921 << ", " << (BestAfter - BestBefore + 1) << " instrs\n"); 1922 1923 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1924 SE->reset(LREdit); 1925 1926 SE->openIntv(); 1927 SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]); 1928 SlotIndex SegStop = SE->leaveIntvAfter(Uses[BestAfter]); 1929 SE->useIntv(SegStart, SegStop); 1930 SmallVector<unsigned, 8> IntvMap; 1931 SE->finish(&IntvMap); 1932 DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS); 1933 1934 // If the new range has the same number of instructions as before, mark it as 1935 // RS_Split2 so the next split will be forced to make progress. Otherwise, 1936 // leave the new intervals as RS_New so they can compete. 1937 bool LiveBefore = BestBefore != 0 || BI.LiveIn; 1938 bool LiveAfter = BestAfter != NumGaps || BI.LiveOut; 1939 unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter; 1940 if (NewGaps >= NumGaps) { 1941 DEBUG(dbgs() << "Tagging non-progress ranges: "); 1942 assert(!ProgressRequired && "Didn't make progress when it was required."); 1943 for (unsigned i = 0, e = IntvMap.size(); i != e; ++i) 1944 if (IntvMap[i] == 1) { 1945 setStage(LIS->getInterval(LREdit.get(i)), RS_Split2); 1946 DEBUG(dbgs() << PrintReg(LREdit.get(i))); 1947 } 1948 DEBUG(dbgs() << '\n'); 1949 } 1950 ++NumLocalSplits; 1951 1952 return 0; 1953 } 1954 1955 //===----------------------------------------------------------------------===// 1956 // Live Range Splitting 1957 //===----------------------------------------------------------------------===// 1958 1959 /// trySplit - Try to split VirtReg or one of its interferences, making it 1960 /// assignable. 1961 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs. 1962 unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order, 1963 SmallVectorImpl<unsigned>&NewVRegs) { 1964 // Ranges must be Split2 or less. 1965 if (getStage(VirtReg) >= RS_Spill) 1966 return 0; 1967 1968 // Local intervals are handled separately. 1969 if (LIS->intervalIsInOneMBB(VirtReg)) { 1970 NamedRegionTimer T("Local Splitting", TimerGroupName, TimePassesIsEnabled); 1971 SA->analyze(&VirtReg); 1972 unsigned PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs); 1973 if (PhysReg || !NewVRegs.empty()) 1974 return PhysReg; 1975 return tryInstructionSplit(VirtReg, Order, NewVRegs); 1976 } 1977 1978 NamedRegionTimer T("Global Splitting", TimerGroupName, TimePassesIsEnabled); 1979 1980 SA->analyze(&VirtReg); 1981 1982 // FIXME: SplitAnalysis may repair broken live ranges coming from the 1983 // coalescer. That may cause the range to become allocatable which means that 1984 // tryRegionSplit won't be making progress. This check should be replaced with 1985 // an assertion when the coalescer is fixed. 1986 if (SA->didRepairRange()) { 1987 // VirtReg has changed, so all cached queries are invalid. 1988 Matrix->invalidateVirtRegs(); 1989 if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs)) 1990 return PhysReg; 1991 } 1992 1993 // First try to split around a region spanning multiple blocks. RS_Split2 1994 // ranges already made dubious progress with region splitting, so they go 1995 // straight to single block splitting. 1996 if (getStage(VirtReg) < RS_Split2) { 1997 unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs); 1998 if (PhysReg || !NewVRegs.empty()) 1999 return PhysReg; 2000 } 2001 2002 // Then isolate blocks. 2003 return tryBlockSplit(VirtReg, Order, NewVRegs); 2004 } 2005 2006 //===----------------------------------------------------------------------===// 2007 // Last Chance Recoloring 2008 //===----------------------------------------------------------------------===// 2009 2010 /// mayRecolorAllInterferences - Check if the virtual registers that 2011 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be 2012 /// recolored to free \p PhysReg. 2013 /// When true is returned, \p RecoloringCandidates has been augmented with all 2014 /// the live intervals that need to be recolored in order to free \p PhysReg 2015 /// for \p VirtReg. 2016 /// \p FixedRegisters contains all the virtual registers that cannot be 2017 /// recolored. 2018 bool 2019 RAGreedy::mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg, 2020 SmallLISet &RecoloringCandidates, 2021 const SmallVirtRegSet &FixedRegisters) { 2022 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg); 2023 2024 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 2025 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 2026 // If there is LastChanceRecoloringMaxInterference or more interferences, 2027 // chances are one would not be recolorable. 2028 if (Q.collectInterferingVRegs(LastChanceRecoloringMaxInterference) >= 2029 LastChanceRecoloringMaxInterference && !ExhaustiveSearch) { 2030 DEBUG(dbgs() << "Early abort: too many interferences.\n"); 2031 CutOffInfo |= CO_Interf; 2032 return false; 2033 } 2034 for (unsigned i = Q.interferingVRegs().size(); i; --i) { 2035 LiveInterval *Intf = Q.interferingVRegs()[i - 1]; 2036 // If Intf is done and sit on the same register class as VirtReg, 2037 // it would not be recolorable as it is in the same state as VirtReg. 2038 if ((getStage(*Intf) == RS_Done && 2039 MRI->getRegClass(Intf->reg) == CurRC) || 2040 FixedRegisters.count(Intf->reg)) { 2041 DEBUG(dbgs() << "Early abort: the inteference is not recolorable.\n"); 2042 return false; 2043 } 2044 RecoloringCandidates.insert(Intf); 2045 } 2046 } 2047 return true; 2048 } 2049 2050 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring 2051 /// its interferences. 2052 /// Last chance recoloring chooses a color for \p VirtReg and recolors every 2053 /// virtual register that was using it. The recoloring process may recursively 2054 /// use the last chance recoloring. Therefore, when a virtual register has been 2055 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot 2056 /// be last-chance-recolored again during this recoloring "session". 2057 /// E.g., 2058 /// Let 2059 /// vA can use {R1, R2 } 2060 /// vB can use { R2, R3} 2061 /// vC can use {R1 } 2062 /// Where vA, vB, and vC cannot be split anymore (they are reloads for 2063 /// instance) and they all interfere. 2064 /// 2065 /// vA is assigned R1 2066 /// vB is assigned R2 2067 /// vC tries to evict vA but vA is already done. 2068 /// Regular register allocation fails. 2069 /// 2070 /// Last chance recoloring kicks in: 2071 /// vC does as if vA was evicted => vC uses R1. 2072 /// vC is marked as fixed. 2073 /// vA needs to find a color. 2074 /// None are available. 2075 /// vA cannot evict vC: vC is a fixed virtual register now. 2076 /// vA does as if vB was evicted => vA uses R2. 2077 /// vB needs to find a color. 2078 /// R3 is available. 2079 /// Recoloring => vC = R1, vA = R2, vB = R3 2080 /// 2081 /// \p Order defines the preferred allocation order for \p VirtReg. 2082 /// \p NewRegs will contain any new virtual register that have been created 2083 /// (split, spill) during the process and that must be assigned. 2084 /// \p FixedRegisters contains all the virtual registers that cannot be 2085 /// recolored. 2086 /// \p Depth gives the current depth of the last chance recoloring. 2087 /// \return a physical register that can be used for VirtReg or ~0u if none 2088 /// exists. 2089 unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg, 2090 AllocationOrder &Order, 2091 SmallVectorImpl<unsigned> &NewVRegs, 2092 SmallVirtRegSet &FixedRegisters, 2093 unsigned Depth) { 2094 DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n'); 2095 // Ranges must be Done. 2096 assert((getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) && 2097 "Last chance recoloring should really be last chance"); 2098 // Set the max depth to LastChanceRecoloringMaxDepth. 2099 // We may want to reconsider that if we end up with a too large search space 2100 // for target with hundreds of registers. 2101 // Indeed, in that case we may want to cut the search space earlier. 2102 if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) { 2103 DEBUG(dbgs() << "Abort because max depth has been reached.\n"); 2104 CutOffInfo |= CO_Depth; 2105 return ~0u; 2106 } 2107 2108 // Set of Live intervals that will need to be recolored. 2109 SmallLISet RecoloringCandidates; 2110 // Record the original mapping virtual register to physical register in case 2111 // the recoloring fails. 2112 DenseMap<unsigned, unsigned> VirtRegToPhysReg; 2113 // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in 2114 // this recoloring "session". 2115 FixedRegisters.insert(VirtReg.reg); 2116 SmallVector<unsigned, 4> CurrentNewVRegs; 2117 2118 Order.rewind(); 2119 while (unsigned PhysReg = Order.next()) { 2120 DEBUG(dbgs() << "Try to assign: " << VirtReg << " to " 2121 << PrintReg(PhysReg, TRI) << '\n'); 2122 RecoloringCandidates.clear(); 2123 VirtRegToPhysReg.clear(); 2124 CurrentNewVRegs.clear(); 2125 2126 // It is only possible to recolor virtual register interference. 2127 if (Matrix->checkInterference(VirtReg, PhysReg) > 2128 LiveRegMatrix::IK_VirtReg) { 2129 DEBUG(dbgs() << "Some inteferences are not with virtual registers.\n"); 2130 2131 continue; 2132 } 2133 2134 // Early give up on this PhysReg if it is obvious we cannot recolor all 2135 // the interferences. 2136 if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates, 2137 FixedRegisters)) { 2138 DEBUG(dbgs() << "Some inteferences cannot be recolored.\n"); 2139 continue; 2140 } 2141 2142 // RecoloringCandidates contains all the virtual registers that interfer 2143 // with VirtReg on PhysReg (or one of its aliases). 2144 // Enqueue them for recoloring and perform the actual recoloring. 2145 PQueue RecoloringQueue; 2146 for (SmallLISet::iterator It = RecoloringCandidates.begin(), 2147 EndIt = RecoloringCandidates.end(); 2148 It != EndIt; ++It) { 2149 unsigned ItVirtReg = (*It)->reg; 2150 enqueue(RecoloringQueue, *It); 2151 assert(VRM->hasPhys(ItVirtReg) && 2152 "Interferences are supposed to be with allocated vairables"); 2153 2154 // Record the current allocation. 2155 VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg); 2156 // unset the related struct. 2157 Matrix->unassign(**It); 2158 } 2159 2160 // Do as if VirtReg was assigned to PhysReg so that the underlying 2161 // recoloring has the right information about the interferes and 2162 // available colors. 2163 Matrix->assign(VirtReg, PhysReg); 2164 2165 // Save the current recoloring state. 2166 // If we cannot recolor all the interferences, we will have to start again 2167 // at this point for the next physical register. 2168 SmallVirtRegSet SaveFixedRegisters(FixedRegisters); 2169 if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs, 2170 FixedRegisters, Depth)) { 2171 // Push the queued vregs into the main queue. 2172 for (unsigned NewVReg : CurrentNewVRegs) 2173 NewVRegs.push_back(NewVReg); 2174 // Do not mess up with the global assignment process. 2175 // I.e., VirtReg must be unassigned. 2176 Matrix->unassign(VirtReg); 2177 return PhysReg; 2178 } 2179 2180 DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to " 2181 << PrintReg(PhysReg, TRI) << '\n'); 2182 2183 // The recoloring attempt failed, undo the changes. 2184 FixedRegisters = SaveFixedRegisters; 2185 Matrix->unassign(VirtReg); 2186 2187 // For a newly created vreg which is also in RecoloringCandidates, 2188 // don't add it to NewVRegs because its physical register will be restored 2189 // below. Other vregs in CurrentNewVRegs are created by calling 2190 // selectOrSplit and should be added into NewVRegs. 2191 for (SmallVectorImpl<unsigned>::iterator Next = CurrentNewVRegs.begin(), 2192 End = CurrentNewVRegs.end(); 2193 Next != End; ++Next) { 2194 if (RecoloringCandidates.count(&LIS->getInterval(*Next))) 2195 continue; 2196 NewVRegs.push_back(*Next); 2197 } 2198 2199 for (SmallLISet::iterator It = RecoloringCandidates.begin(), 2200 EndIt = RecoloringCandidates.end(); 2201 It != EndIt; ++It) { 2202 unsigned ItVirtReg = (*It)->reg; 2203 if (VRM->hasPhys(ItVirtReg)) 2204 Matrix->unassign(**It); 2205 unsigned ItPhysReg = VirtRegToPhysReg[ItVirtReg]; 2206 Matrix->assign(**It, ItPhysReg); 2207 } 2208 } 2209 2210 // Last chance recoloring did not worked either, give up. 2211 return ~0u; 2212 } 2213 2214 /// tryRecoloringCandidates - Try to assign a new color to every register 2215 /// in \RecoloringQueue. 2216 /// \p NewRegs will contain any new virtual register created during the 2217 /// recoloring process. 2218 /// \p FixedRegisters[in/out] contains all the registers that have been 2219 /// recolored. 2220 /// \return true if all virtual registers in RecoloringQueue were successfully 2221 /// recolored, false otherwise. 2222 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue, 2223 SmallVectorImpl<unsigned> &NewVRegs, 2224 SmallVirtRegSet &FixedRegisters, 2225 unsigned Depth) { 2226 while (!RecoloringQueue.empty()) { 2227 LiveInterval *LI = dequeue(RecoloringQueue); 2228 DEBUG(dbgs() << "Try to recolor: " << *LI << '\n'); 2229 unsigned PhysReg; 2230 PhysReg = selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, Depth + 1); 2231 // When splitting happens, the live-range may actually be empty. 2232 // In that case, this is okay to continue the recoloring even 2233 // if we did not find an alternative color for it. Indeed, 2234 // there will not be anything to color for LI in the end. 2235 if (PhysReg == ~0u || (!PhysReg && !LI->empty())) 2236 return false; 2237 2238 if (!PhysReg) { 2239 assert(LI->empty() && "Only empty live-range do not require a register"); 2240 DEBUG(dbgs() << "Recoloring of " << *LI << " succeeded. Empty LI.\n"); 2241 continue; 2242 } 2243 DEBUG(dbgs() << "Recoloring of " << *LI 2244 << " succeeded with: " << PrintReg(PhysReg, TRI) << '\n'); 2245 2246 Matrix->assign(*LI, PhysReg); 2247 FixedRegisters.insert(LI->reg); 2248 } 2249 return true; 2250 } 2251 2252 //===----------------------------------------------------------------------===// 2253 // Main Entry Point 2254 //===----------------------------------------------------------------------===// 2255 2256 unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg, 2257 SmallVectorImpl<unsigned> &NewVRegs) { 2258 CutOffInfo = CO_None; 2259 LLVMContext &Ctx = MF->getFunction()->getContext(); 2260 SmallVirtRegSet FixedRegisters; 2261 unsigned Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters); 2262 if (Reg == ~0U && (CutOffInfo != CO_None)) { 2263 uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf); 2264 if (CutOffEncountered == CO_Depth) 2265 Ctx.emitError("register allocation failed: maximum depth for recoloring " 2266 "reached. Use -fexhaustive-register-search to skip " 2267 "cutoffs"); 2268 else if (CutOffEncountered == CO_Interf) 2269 Ctx.emitError("register allocation failed: maximum interference for " 2270 "recoloring reached. Use -fexhaustive-register-search " 2271 "to skip cutoffs"); 2272 else if (CutOffEncountered == (CO_Depth | CO_Interf)) 2273 Ctx.emitError("register allocation failed: maximum interference and " 2274 "depth for recoloring reached. Use " 2275 "-fexhaustive-register-search to skip cutoffs"); 2276 } 2277 return Reg; 2278 } 2279 2280 /// Using a CSR for the first time has a cost because it causes push|pop 2281 /// to be added to prologue|epilogue. Splitting a cold section of the live 2282 /// range can have lower cost than using the CSR for the first time; 2283 /// Spilling a live range in the cold path can have lower cost than using 2284 /// the CSR for the first time. Returns the physical register if we decide 2285 /// to use the CSR; otherwise return 0. 2286 unsigned RAGreedy::tryAssignCSRFirstTime(LiveInterval &VirtReg, 2287 AllocationOrder &Order, 2288 unsigned PhysReg, 2289 unsigned &CostPerUseLimit, 2290 SmallVectorImpl<unsigned> &NewVRegs) { 2291 if (getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) { 2292 // We choose spill over using the CSR for the first time if the spill cost 2293 // is lower than CSRCost. 2294 SA->analyze(&VirtReg); 2295 if (calcSpillCost() >= CSRCost) 2296 return PhysReg; 2297 2298 // We are going to spill, set CostPerUseLimit to 1 to make sure that 2299 // we will not use a callee-saved register in tryEvict. 2300 CostPerUseLimit = 1; 2301 return 0; 2302 } 2303 if (getStage(VirtReg) < RS_Split) { 2304 // We choose pre-splitting over using the CSR for the first time if 2305 // the cost of splitting is lower than CSRCost. 2306 SA->analyze(&VirtReg); 2307 unsigned NumCands = 0; 2308 BlockFrequency BestCost = CSRCost; // Don't modify CSRCost. 2309 unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost, 2310 NumCands, true /*IgnoreCSR*/); 2311 if (BestCand == NoCand) 2312 // Use the CSR if we can't find a region split below CSRCost. 2313 return PhysReg; 2314 2315 // Perform the actual pre-splitting. 2316 doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs); 2317 return 0; 2318 } 2319 return PhysReg; 2320 } 2321 2322 void RAGreedy::aboutToRemoveInterval(LiveInterval &LI) { 2323 // Do not keep invalid information around. 2324 SetOfBrokenHints.remove(&LI); 2325 } 2326 2327 void RAGreedy::initializeCSRCost() { 2328 // We use the larger one out of the command-line option and the value report 2329 // by TRI. 2330 CSRCost = BlockFrequency( 2331 std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost())); 2332 if (!CSRCost.getFrequency()) 2333 return; 2334 2335 // Raw cost is relative to Entry == 2^14; scale it appropriately. 2336 uint64_t ActualEntry = MBFI->getEntryFreq(); 2337 if (!ActualEntry) { 2338 CSRCost = 0; 2339 return; 2340 } 2341 uint64_t FixedEntry = 1 << 14; 2342 if (ActualEntry < FixedEntry) 2343 CSRCost *= BranchProbability(ActualEntry, FixedEntry); 2344 else if (ActualEntry <= UINT32_MAX) 2345 // Invert the fraction and divide. 2346 CSRCost /= BranchProbability(FixedEntry, ActualEntry); 2347 else 2348 // Can't use BranchProbability in general, since it takes 32-bit numbers. 2349 CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry); 2350 } 2351 2352 /// \brief Collect the hint info for \p Reg. 2353 /// The results are stored into \p Out. 2354 /// \p Out is not cleared before being populated. 2355 void RAGreedy::collectHintInfo(unsigned Reg, HintsInfo &Out) { 2356 for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) { 2357 if (!Instr.isFullCopy()) 2358 continue; 2359 // Look for the other end of the copy. 2360 unsigned OtherReg = Instr.getOperand(0).getReg(); 2361 if (OtherReg == Reg) { 2362 OtherReg = Instr.getOperand(1).getReg(); 2363 if (OtherReg == Reg) 2364 continue; 2365 } 2366 // Get the current assignment. 2367 unsigned OtherPhysReg = TargetRegisterInfo::isPhysicalRegister(OtherReg) 2368 ? OtherReg 2369 : VRM->getPhys(OtherReg); 2370 // Push the collected information. 2371 Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg, 2372 OtherPhysReg)); 2373 } 2374 } 2375 2376 /// \brief Using the given \p List, compute the cost of the broken hints if 2377 /// \p PhysReg was used. 2378 /// \return The cost of \p List for \p PhysReg. 2379 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List, 2380 unsigned PhysReg) { 2381 BlockFrequency Cost = 0; 2382 for (const HintInfo &Info : List) { 2383 if (Info.PhysReg != PhysReg) 2384 Cost += Info.Freq; 2385 } 2386 return Cost; 2387 } 2388 2389 /// \brief Using the register assigned to \p VirtReg, try to recolor 2390 /// all the live ranges that are copy-related with \p VirtReg. 2391 /// The recoloring is then propagated to all the live-ranges that have 2392 /// been recolored and so on, until no more copies can be coalesced or 2393 /// it is not profitable. 2394 /// For a given live range, profitability is determined by the sum of the 2395 /// frequencies of the non-identity copies it would introduce with the old 2396 /// and new register. 2397 void RAGreedy::tryHintRecoloring(LiveInterval &VirtReg) { 2398 // We have a broken hint, check if it is possible to fix it by 2399 // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted 2400 // some register and PhysReg may be available for the other live-ranges. 2401 SmallSet<unsigned, 4> Visited; 2402 SmallVector<unsigned, 2> RecoloringCandidates; 2403 HintsInfo Info; 2404 unsigned Reg = VirtReg.reg; 2405 unsigned PhysReg = VRM->getPhys(Reg); 2406 // Start the recoloring algorithm from the input live-interval, then 2407 // it will propagate to the ones that are copy-related with it. 2408 Visited.insert(Reg); 2409 RecoloringCandidates.push_back(Reg); 2410 2411 DEBUG(dbgs() << "Trying to reconcile hints for: " << PrintReg(Reg, TRI) << '(' 2412 << PrintReg(PhysReg, TRI) << ")\n"); 2413 2414 do { 2415 Reg = RecoloringCandidates.pop_back_val(); 2416 2417 // We cannot recolor physcal register. 2418 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 2419 continue; 2420 2421 assert(VRM->hasPhys(Reg) && "We have unallocated variable!!"); 2422 2423 // Get the live interval mapped with this virtual register to be able 2424 // to check for the interference with the new color. 2425 LiveInterval &LI = LIS->getInterval(Reg); 2426 unsigned CurrPhys = VRM->getPhys(Reg); 2427 // Check that the new color matches the register class constraints and 2428 // that it is free for this live range. 2429 if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) || 2430 Matrix->checkInterference(LI, PhysReg))) 2431 continue; 2432 2433 DEBUG(dbgs() << PrintReg(Reg, TRI) << '(' << PrintReg(CurrPhys, TRI) 2434 << ") is recolorable.\n"); 2435 2436 // Gather the hint info. 2437 Info.clear(); 2438 collectHintInfo(Reg, Info); 2439 // Check if recoloring the live-range will increase the cost of the 2440 // non-identity copies. 2441 if (CurrPhys != PhysReg) { 2442 DEBUG(dbgs() << "Checking profitability:\n"); 2443 BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys); 2444 BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg); 2445 DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency() 2446 << "\nNew Cost: " << NewCopiesCost.getFrequency() << '\n'); 2447 if (OldCopiesCost < NewCopiesCost) { 2448 DEBUG(dbgs() << "=> Not profitable.\n"); 2449 continue; 2450 } 2451 // At this point, the cost is either cheaper or equal. If it is 2452 // equal, we consider this is profitable because it may expose 2453 // more recoloring opportunities. 2454 DEBUG(dbgs() << "=> Profitable.\n"); 2455 // Recolor the live-range. 2456 Matrix->unassign(LI); 2457 Matrix->assign(LI, PhysReg); 2458 } 2459 // Push all copy-related live-ranges to keep reconciling the broken 2460 // hints. 2461 for (const HintInfo &HI : Info) { 2462 if (Visited.insert(HI.Reg).second) 2463 RecoloringCandidates.push_back(HI.Reg); 2464 } 2465 } while (!RecoloringCandidates.empty()); 2466 } 2467 2468 /// \brief Try to recolor broken hints. 2469 /// Broken hints may be repaired by recoloring when an evicted variable 2470 /// freed up a register for a larger live-range. 2471 /// Consider the following example: 2472 /// BB1: 2473 /// a = 2474 /// b = 2475 /// BB2: 2476 /// ... 2477 /// = b 2478 /// = a 2479 /// Let us assume b gets split: 2480 /// BB1: 2481 /// a = 2482 /// b = 2483 /// BB2: 2484 /// c = b 2485 /// ... 2486 /// d = c 2487 /// = d 2488 /// = a 2489 /// Because of how the allocation work, b, c, and d may be assigned different 2490 /// colors. Now, if a gets evicted later: 2491 /// BB1: 2492 /// a = 2493 /// st a, SpillSlot 2494 /// b = 2495 /// BB2: 2496 /// c = b 2497 /// ... 2498 /// d = c 2499 /// = d 2500 /// e = ld SpillSlot 2501 /// = e 2502 /// This is likely that we can assign the same register for b, c, and d, 2503 /// getting rid of 2 copies. 2504 void RAGreedy::tryHintsRecoloring() { 2505 for (LiveInterval *LI : SetOfBrokenHints) { 2506 assert(TargetRegisterInfo::isVirtualRegister(LI->reg) && 2507 "Recoloring is possible only for virtual registers"); 2508 // Some dead defs may be around (e.g., because of debug uses). 2509 // Ignore those. 2510 if (!VRM->hasPhys(LI->reg)) 2511 continue; 2512 tryHintRecoloring(*LI); 2513 } 2514 } 2515 2516 unsigned RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg, 2517 SmallVectorImpl<unsigned> &NewVRegs, 2518 SmallVirtRegSet &FixedRegisters, 2519 unsigned Depth) { 2520 unsigned CostPerUseLimit = ~0u; 2521 // First try assigning a free register. 2522 AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo, Matrix); 2523 if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs)) { 2524 // When NewVRegs is not empty, we may have made decisions such as evicting 2525 // a virtual register, go with the earlier decisions and use the physical 2526 // register. 2527 if (CSRCost.getFrequency() && isUnusedCalleeSavedReg(PhysReg) && 2528 NewVRegs.empty()) { 2529 unsigned CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg, 2530 CostPerUseLimit, NewVRegs); 2531 if (CSRReg || !NewVRegs.empty()) 2532 // Return now if we decide to use a CSR or create new vregs due to 2533 // pre-splitting. 2534 return CSRReg; 2535 } else 2536 return PhysReg; 2537 } 2538 2539 LiveRangeStage Stage = getStage(VirtReg); 2540 DEBUG(dbgs() << StageName[Stage] 2541 << " Cascade " << ExtraRegInfo[VirtReg.reg].Cascade << '\n'); 2542 2543 // Try to evict a less worthy live range, but only for ranges from the primary 2544 // queue. The RS_Split ranges already failed to do this, and they should not 2545 // get a second chance until they have been split. 2546 if (Stage != RS_Split) 2547 if (unsigned PhysReg = 2548 tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit)) { 2549 unsigned Hint = MRI->getSimpleHint(VirtReg.reg); 2550 // If VirtReg has a hint and that hint is broken record this 2551 // virtual register as a recoloring candidate for broken hint. 2552 // Indeed, since we evicted a variable in its neighborhood it is 2553 // likely we can at least partially recolor some of the 2554 // copy-related live-ranges. 2555 if (Hint && Hint != PhysReg) 2556 SetOfBrokenHints.insert(&VirtReg); 2557 return PhysReg; 2558 } 2559 2560 assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs"); 2561 2562 // The first time we see a live range, don't try to split or spill. 2563 // Wait until the second time, when all smaller ranges have been allocated. 2564 // This gives a better picture of the interference to split around. 2565 if (Stage < RS_Split) { 2566 setStage(VirtReg, RS_Split); 2567 DEBUG(dbgs() << "wait for second round\n"); 2568 NewVRegs.push_back(VirtReg.reg); 2569 return 0; 2570 } 2571 2572 if (Stage < RS_Spill) { 2573 // Try splitting VirtReg or interferences. 2574 unsigned NewVRegSizeBefore = NewVRegs.size(); 2575 unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs); 2576 if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore)) 2577 return PhysReg; 2578 } 2579 2580 // If we couldn't allocate a register from spilling, there is probably some 2581 // invalid inline assembly. The base class wil report it. 2582 if (Stage >= RS_Done || !VirtReg.isSpillable()) 2583 return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters, 2584 Depth); 2585 2586 // Finally spill VirtReg itself. 2587 if (EnableDeferredSpilling && getStage(VirtReg) < RS_Memory) { 2588 // TODO: This is experimental and in particular, we do not model 2589 // the live range splitting done by spilling correctly. 2590 // We would need a deep integration with the spiller to do the 2591 // right thing here. Anyway, that is still good for early testing. 2592 setStage(VirtReg, RS_Memory); 2593 DEBUG(dbgs() << "Do as if this register is in memory\n"); 2594 NewVRegs.push_back(VirtReg.reg); 2595 } else { 2596 NamedRegionTimer T("Spiller", TimerGroupName, TimePassesIsEnabled); 2597 LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2598 spiller().spill(LRE); 2599 setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done); 2600 2601 if (VerifyEnabled) 2602 MF->verify(this, "After spilling"); 2603 } 2604 2605 // The live virtual register requesting allocation was spilled, so tell 2606 // the caller not to allocate anything during this round. 2607 return 0; 2608 } 2609 2610 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) { 2611 DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n" 2612 << "********** Function: " << mf.getName() << '\n'); 2613 2614 MF = &mf; 2615 TRI = MF->getSubtarget().getRegisterInfo(); 2616 TII = MF->getSubtarget().getInstrInfo(); 2617 RCI.runOnMachineFunction(mf); 2618 2619 EnableLocalReassign = EnableLocalReassignment || 2620 MF->getSubtarget().enableRALocalReassignment( 2621 MF->getTarget().getOptLevel()); 2622 2623 if (VerifyEnabled) 2624 MF->verify(this, "Before greedy register allocator"); 2625 2626 RegAllocBase::init(getAnalysis<VirtRegMap>(), 2627 getAnalysis<LiveIntervals>(), 2628 getAnalysis<LiveRegMatrix>()); 2629 Indexes = &getAnalysis<SlotIndexes>(); 2630 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 2631 DomTree = &getAnalysis<MachineDominatorTree>(); 2632 SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM)); 2633 Loops = &getAnalysis<MachineLoopInfo>(); 2634 Bundles = &getAnalysis<EdgeBundles>(); 2635 SpillPlacer = &getAnalysis<SpillPlacement>(); 2636 DebugVars = &getAnalysis<LiveDebugVariables>(); 2637 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2638 2639 initializeCSRCost(); 2640 2641 calculateSpillWeightsAndHints(*LIS, mf, VRM, *Loops, *MBFI); 2642 2643 DEBUG(LIS->dump()); 2644 2645 SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops)); 2646 SE.reset(new SplitEditor(*SA, *AA, *LIS, *VRM, *DomTree, *MBFI)); 2647 ExtraRegInfo.clear(); 2648 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 2649 NextCascade = 1; 2650 IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI); 2651 GlobalCand.resize(32); // This will grow as needed. 2652 SetOfBrokenHints.clear(); 2653 2654 allocatePhysRegs(); 2655 tryHintsRecoloring(); 2656 postOptimization(); 2657 2658 releaseMemory(); 2659 return true; 2660 } 2661