1 //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the RAGreedy function pass for register allocation in
11 // optimized builds.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "AllocationOrder.h"
16 #include "InterferenceCache.h"
17 #include "LiveDebugVariables.h"
18 #include "RegAllocBase.h"
19 #include "SpillPlacement.h"
20 #include "Spiller.h"
21 #include "SplitKit.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/BitVector.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/IndexedMap.h"
26 #include "llvm/ADT/MapVector.h"
27 #include "llvm/ADT/SetVector.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include "llvm/ADT/SmallSet.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/ADT/StringRef.h"
33 #include "llvm/Analysis/AliasAnalysis.h"
34 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
35 #include "llvm/CodeGen/CalcSpillWeights.h"
36 #include "llvm/CodeGen/EdgeBundles.h"
37 #include "llvm/CodeGen/LiveInterval.h"
38 #include "llvm/CodeGen/LiveIntervalUnion.h"
39 #include "llvm/CodeGen/LiveIntervals.h"
40 #include "llvm/CodeGen/LiveRangeEdit.h"
41 #include "llvm/CodeGen/LiveRegMatrix.h"
42 #include "llvm/CodeGen/LiveStacks.h"
43 #include "llvm/CodeGen/MachineBasicBlock.h"
44 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
45 #include "llvm/CodeGen/MachineDominators.h"
46 #include "llvm/CodeGen/MachineFrameInfo.h"
47 #include "llvm/CodeGen/MachineFunction.h"
48 #include "llvm/CodeGen/MachineFunctionPass.h"
49 #include "llvm/CodeGen/MachineInstr.h"
50 #include "llvm/CodeGen/MachineLoopInfo.h"
51 #include "llvm/CodeGen/MachineOperand.h"
52 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
53 #include "llvm/CodeGen/MachineRegisterInfo.h"
54 #include "llvm/CodeGen/RegAllocRegistry.h"
55 #include "llvm/CodeGen/RegisterClassInfo.h"
56 #include "llvm/CodeGen/SlotIndexes.h"
57 #include "llvm/CodeGen/TargetInstrInfo.h"
58 #include "llvm/CodeGen/TargetRegisterInfo.h"
59 #include "llvm/CodeGen/TargetSubtargetInfo.h"
60 #include "llvm/CodeGen/VirtRegMap.h"
61 #include "llvm/IR/Function.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/MC/MCRegisterInfo.h"
64 #include "llvm/Pass.h"
65 #include "llvm/Support/BlockFrequency.h"
66 #include "llvm/Support/BranchProbability.h"
67 #include "llvm/Support/CommandLine.h"
68 #include "llvm/Support/Debug.h"
69 #include "llvm/Support/MathExtras.h"
70 #include "llvm/Support/Timer.h"
71 #include "llvm/Support/raw_ostream.h"
72 #include "llvm/Target/TargetMachine.h"
73 #include <algorithm>
74 #include <cassert>
75 #include <cstdint>
76 #include <memory>
77 #include <queue>
78 #include <tuple>
79 #include <utility>
80 
81 using namespace llvm;
82 
83 #define DEBUG_TYPE "regalloc"
84 
85 STATISTIC(NumGlobalSplits, "Number of split global live ranges");
86 STATISTIC(NumLocalSplits,  "Number of split local live ranges");
87 STATISTIC(NumEvicted,      "Number of interferences evicted");
88 
89 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode(
90     "split-spill-mode", cl::Hidden,
91     cl::desc("Spill mode for splitting live ranges"),
92     cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"),
93                clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"),
94                clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")),
95     cl::init(SplitEditor::SM_Speed));
96 
97 static cl::opt<unsigned>
98 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden,
99                              cl::desc("Last chance recoloring max depth"),
100                              cl::init(5));
101 
102 static cl::opt<unsigned> LastChanceRecoloringMaxInterference(
103     "lcr-max-interf", cl::Hidden,
104     cl::desc("Last chance recoloring maximum number of considered"
105              " interference at a time"),
106     cl::init(8));
107 
108 static cl::opt<bool> ExhaustiveSearch(
109     "exhaustive-register-search", cl::NotHidden,
110     cl::desc("Exhaustive Search for registers bypassing the depth "
111              "and interference cutoffs of last chance recoloring"),
112     cl::Hidden);
113 
114 static cl::opt<bool> EnableLocalReassignment(
115     "enable-local-reassign", cl::Hidden,
116     cl::desc("Local reassignment can yield better allocation decisions, but "
117              "may be compile time intensive"),
118     cl::init(false));
119 
120 static cl::opt<bool> EnableDeferredSpilling(
121     "enable-deferred-spilling", cl::Hidden,
122     cl::desc("Instead of spilling a variable right away, defer the actual "
123              "code insertion to the end of the allocation. That way the "
124              "allocator might still find a suitable coloring for this "
125              "variable because of other evicted variables."),
126     cl::init(false));
127 
128 static cl::opt<unsigned>
129     HugeSizeForSplit("huge-size-for-split", cl::Hidden,
130                      cl::desc("A threshold of live range size which may cause "
131                               "high compile time cost in global splitting."),
132                      cl::init(5000));
133 
134 // FIXME: Find a good default for this flag and remove the flag.
135 static cl::opt<unsigned>
136 CSRFirstTimeCost("regalloc-csr-first-time-cost",
137               cl::desc("Cost for first time use of callee-saved register."),
138               cl::init(0), cl::Hidden);
139 
140 static cl::opt<bool> ConsiderLocalIntervalCost(
141     "condsider-local-interval-cost", cl::Hidden,
142     cl::desc("Consider the cost of local intervals created by a split "
143              "candidate when choosing the best split candidate."),
144     cl::init(false));
145 
146 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
147                                        createGreedyRegisterAllocator);
148 
149 namespace {
150 
151 class RAGreedy : public MachineFunctionPass,
152                  public RegAllocBase,
153                  private LiveRangeEdit::Delegate {
154   // Convenient shortcuts.
155   using PQueue = std::priority_queue<std::pair<unsigned, unsigned>>;
156   using SmallLISet = SmallPtrSet<LiveInterval *, 4>;
157   using SmallVirtRegSet = SmallSet<unsigned, 16>;
158 
159   // context
160   MachineFunction *MF;
161 
162   // Shortcuts to some useful interface.
163   const TargetInstrInfo *TII;
164   const TargetRegisterInfo *TRI;
165   RegisterClassInfo RCI;
166 
167   // analyses
168   SlotIndexes *Indexes;
169   MachineBlockFrequencyInfo *MBFI;
170   MachineDominatorTree *DomTree;
171   MachineLoopInfo *Loops;
172   MachineOptimizationRemarkEmitter *ORE;
173   EdgeBundles *Bundles;
174   SpillPlacement *SpillPlacer;
175   LiveDebugVariables *DebugVars;
176   AliasAnalysis *AA;
177 
178   // state
179   std::unique_ptr<Spiller> SpillerInstance;
180   PQueue Queue;
181   unsigned NextCascade;
182 
183   // Live ranges pass through a number of stages as we try to allocate them.
184   // Some of the stages may also create new live ranges:
185   //
186   // - Region splitting.
187   // - Per-block splitting.
188   // - Local splitting.
189   // - Spilling.
190   //
191   // Ranges produced by one of the stages skip the previous stages when they are
192   // dequeued. This improves performance because we can skip interference checks
193   // that are unlikely to give any results. It also guarantees that the live
194   // range splitting algorithm terminates, something that is otherwise hard to
195   // ensure.
196   enum LiveRangeStage {
197     /// Newly created live range that has never been queued.
198     RS_New,
199 
200     /// Only attempt assignment and eviction. Then requeue as RS_Split.
201     RS_Assign,
202 
203     /// Attempt live range splitting if assignment is impossible.
204     RS_Split,
205 
206     /// Attempt more aggressive live range splitting that is guaranteed to make
207     /// progress.  This is used for split products that may not be making
208     /// progress.
209     RS_Split2,
210 
211     /// Live range will be spilled.  No more splitting will be attempted.
212     RS_Spill,
213 
214 
215     /// Live range is in memory. Because of other evictions, it might get moved
216     /// in a register in the end.
217     RS_Memory,
218 
219     /// There is nothing more we can do to this live range.  Abort compilation
220     /// if it can't be assigned.
221     RS_Done
222   };
223 
224   // Enum CutOffStage to keep a track whether the register allocation failed
225   // because of the cutoffs encountered in last chance recoloring.
226   // Note: This is used as bitmask. New value should be next power of 2.
227   enum CutOffStage {
228     // No cutoffs encountered
229     CO_None = 0,
230 
231     // lcr-max-depth cutoff encountered
232     CO_Depth = 1,
233 
234     // lcr-max-interf cutoff encountered
235     CO_Interf = 2
236   };
237 
238   uint8_t CutOffInfo;
239 
240 #ifndef NDEBUG
241   static const char *const StageName[];
242 #endif
243 
244   // RegInfo - Keep additional information about each live range.
245   struct RegInfo {
246     LiveRangeStage Stage = RS_New;
247 
248     // Cascade - Eviction loop prevention. See canEvictInterference().
249     unsigned Cascade = 0;
250 
251     RegInfo() = default;
252   };
253 
254   IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo;
255 
256   LiveRangeStage getStage(const LiveInterval &VirtReg) const {
257     return ExtraRegInfo[VirtReg.reg].Stage;
258   }
259 
260   void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) {
261     ExtraRegInfo.resize(MRI->getNumVirtRegs());
262     ExtraRegInfo[VirtReg.reg].Stage = Stage;
263   }
264 
265   template<typename Iterator>
266   void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) {
267     ExtraRegInfo.resize(MRI->getNumVirtRegs());
268     for (;Begin != End; ++Begin) {
269       unsigned Reg = *Begin;
270       if (ExtraRegInfo[Reg].Stage == RS_New)
271         ExtraRegInfo[Reg].Stage = NewStage;
272     }
273   }
274 
275   /// Cost of evicting interference.
276   struct EvictionCost {
277     unsigned BrokenHints = 0; ///< Total number of broken hints.
278     float MaxWeight = 0;      ///< Maximum spill weight evicted.
279 
280     EvictionCost() = default;
281 
282     bool isMax() const { return BrokenHints == ~0u; }
283 
284     void setMax() { BrokenHints = ~0u; }
285 
286     void setBrokenHints(unsigned NHints) { BrokenHints = NHints; }
287 
288     bool operator<(const EvictionCost &O) const {
289       return std::tie(BrokenHints, MaxWeight) <
290              std::tie(O.BrokenHints, O.MaxWeight);
291     }
292   };
293 
294   /// EvictionTrack - Keeps track of past evictions in order to optimize region
295   /// split decision.
296   class EvictionTrack {
297 
298   public:
299     using EvictorInfo =
300         std::pair<unsigned /* evictor */, unsigned /* physreg */>;
301     using EvicteeInfo = llvm::DenseMap<unsigned /* evictee */, EvictorInfo>;
302 
303   private:
304     /// Each Vreg that has been evicted in the last stage of selectOrSplit will
305     /// be mapped to the evictor Vreg and the PhysReg it was evicted from.
306     EvicteeInfo Evictees;
307 
308   public:
309     /// Clear all eviction information.
310     void clear() { Evictees.clear(); }
311 
312     ///  Clear eviction information for the given evictee Vreg.
313     /// E.g. when Vreg get's a new allocation, the old eviction info is no
314     /// longer relevant.
315     /// \param Evictee The evictee Vreg for whom we want to clear collected
316     /// eviction info.
317     void clearEvicteeInfo(unsigned Evictee) { Evictees.erase(Evictee); }
318 
319     /// Track new eviction.
320     /// The Evictor vreg has evicted the Evictee vreg from Physreg.
321     /// \param PhysReg The phisical register Evictee was evicted from.
322     /// \param Evictor The evictor Vreg that evicted Evictee.
323     /// \param Evictee The evictee Vreg.
324     void addEviction(unsigned PhysReg, unsigned Evictor, unsigned Evictee) {
325       Evictees[Evictee].first = Evictor;
326       Evictees[Evictee].second = PhysReg;
327     }
328 
329     /// Return the Evictor Vreg which evicted Evictee Vreg from PhysReg.
330     /// \param Evictee The evictee vreg.
331     /// \return The Evictor vreg which evicted Evictee vreg from PhysReg. 0 if
332     /// nobody has evicted Evictee from PhysReg.
333     EvictorInfo getEvictor(unsigned Evictee) {
334       if (Evictees.count(Evictee)) {
335         return Evictees[Evictee];
336       }
337 
338       return EvictorInfo(0, 0);
339     }
340   };
341 
342   // Keeps track of past evictions in order to optimize region split decision.
343   EvictionTrack LastEvicted;
344 
345   // splitting state.
346   std::unique_ptr<SplitAnalysis> SA;
347   std::unique_ptr<SplitEditor> SE;
348 
349   /// Cached per-block interference maps
350   InterferenceCache IntfCache;
351 
352   /// All basic blocks where the current register has uses.
353   SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints;
354 
355   /// Global live range splitting candidate info.
356   struct GlobalSplitCandidate {
357     // Register intended for assignment, or 0.
358     unsigned PhysReg;
359 
360     // SplitKit interval index for this candidate.
361     unsigned IntvIdx;
362 
363     // Interference for PhysReg.
364     InterferenceCache::Cursor Intf;
365 
366     // Bundles where this candidate should be live.
367     BitVector LiveBundles;
368     SmallVector<unsigned, 8> ActiveBlocks;
369 
370     void reset(InterferenceCache &Cache, unsigned Reg) {
371       PhysReg = Reg;
372       IntvIdx = 0;
373       Intf.setPhysReg(Cache, Reg);
374       LiveBundles.clear();
375       ActiveBlocks.clear();
376     }
377 
378     // Set B[i] = C for every live bundle where B[i] was NoCand.
379     unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) {
380       unsigned Count = 0;
381       for (unsigned i : LiveBundles.set_bits())
382         if (B[i] == NoCand) {
383           B[i] = C;
384           Count++;
385         }
386       return Count;
387     }
388   };
389 
390   /// Candidate info for each PhysReg in AllocationOrder.
391   /// This vector never shrinks, but grows to the size of the largest register
392   /// class.
393   SmallVector<GlobalSplitCandidate, 32> GlobalCand;
394 
395   enum : unsigned { NoCand = ~0u };
396 
397   /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to
398   /// NoCand which indicates the stack interval.
399   SmallVector<unsigned, 32> BundleCand;
400 
401   /// Callee-save register cost, calculated once per machine function.
402   BlockFrequency CSRCost;
403 
404   /// Run or not the local reassignment heuristic. This information is
405   /// obtained from the TargetSubtargetInfo.
406   bool EnableLocalReassign;
407 
408   /// Enable or not the consideration of the cost of local intervals created
409   /// by a split candidate when choosing the best split candidate.
410   bool EnableAdvancedRASplitCost;
411 
412   /// Set of broken hints that may be reconciled later because of eviction.
413   SmallSetVector<LiveInterval *, 8> SetOfBrokenHints;
414 
415 public:
416   RAGreedy();
417 
418   /// Return the pass name.
419   StringRef getPassName() const override { return "Greedy Register Allocator"; }
420 
421   /// RAGreedy analysis usage.
422   void getAnalysisUsage(AnalysisUsage &AU) const override;
423   void releaseMemory() override;
424   Spiller &spiller() override { return *SpillerInstance; }
425   void enqueue(LiveInterval *LI) override;
426   LiveInterval *dequeue() override;
427   unsigned selectOrSplit(LiveInterval&, SmallVectorImpl<unsigned>&) override;
428   void aboutToRemoveInterval(LiveInterval &) override;
429 
430   /// Perform register allocation.
431   bool runOnMachineFunction(MachineFunction &mf) override;
432 
433   MachineFunctionProperties getRequiredProperties() const override {
434     return MachineFunctionProperties().set(
435         MachineFunctionProperties::Property::NoPHIs);
436   }
437 
438   static char ID;
439 
440 private:
441   unsigned selectOrSplitImpl(LiveInterval &, SmallVectorImpl<unsigned> &,
442                              SmallVirtRegSet &, unsigned = 0);
443 
444   bool LRE_CanEraseVirtReg(unsigned) override;
445   void LRE_WillShrinkVirtReg(unsigned) override;
446   void LRE_DidCloneVirtReg(unsigned, unsigned) override;
447   void enqueue(PQueue &CurQueue, LiveInterval *LI);
448   LiveInterval *dequeue(PQueue &CurQueue);
449 
450   BlockFrequency calcSpillCost();
451   bool addSplitConstraints(InterferenceCache::Cursor, BlockFrequency&);
452   void addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>);
453   void growRegion(GlobalSplitCandidate &Cand);
454   bool splitCanCauseEvictionChain(unsigned Evictee, GlobalSplitCandidate &Cand,
455                                   unsigned BBNumber,
456                                   const AllocationOrder &Order);
457   bool splitCanCauseLocalSpill(unsigned VirtRegToSplit,
458                                GlobalSplitCandidate &Cand, unsigned BBNumber,
459                                const AllocationOrder &Order);
460   BlockFrequency calcGlobalSplitCost(GlobalSplitCandidate &,
461                                      const AllocationOrder &Order,
462                                      bool *CanCauseEvictionChain);
463   bool calcCompactRegion(GlobalSplitCandidate&);
464   void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>);
465   void calcGapWeights(unsigned, SmallVectorImpl<float>&);
466   unsigned canReassign(LiveInterval &VirtReg, unsigned PrevReg);
467   bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool);
468   bool canEvictInterference(LiveInterval&, unsigned, bool, EvictionCost&);
469   bool canEvictInterferenceInRange(LiveInterval &VirtReg, unsigned PhysReg,
470                                    SlotIndex Start, SlotIndex End,
471                                    EvictionCost &MaxCost);
472   unsigned getCheapestEvicteeWeight(const AllocationOrder &Order,
473                                     LiveInterval &VirtReg, SlotIndex Start,
474                                     SlotIndex End, float *BestEvictWeight);
475   void evictInterference(LiveInterval&, unsigned,
476                          SmallVectorImpl<unsigned>&);
477   bool mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg,
478                                   SmallLISet &RecoloringCandidates,
479                                   const SmallVirtRegSet &FixedRegisters);
480 
481   unsigned tryAssign(LiveInterval&, AllocationOrder&,
482                      SmallVectorImpl<unsigned>&);
483   unsigned tryEvict(LiveInterval&, AllocationOrder&,
484                     SmallVectorImpl<unsigned>&, unsigned = ~0u);
485   unsigned tryRegionSplit(LiveInterval&, AllocationOrder&,
486                           SmallVectorImpl<unsigned>&);
487   unsigned isSplitBenefitWorthCost(LiveInterval &VirtReg);
488   /// Calculate cost of region splitting.
489   unsigned calculateRegionSplitCost(LiveInterval &VirtReg,
490                                     AllocationOrder &Order,
491                                     BlockFrequency &BestCost,
492                                     unsigned &NumCands, bool IgnoreCSR,
493                                     bool *CanCauseEvictionChain = nullptr);
494   /// Perform region splitting.
495   unsigned doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
496                          bool HasCompact,
497                          SmallVectorImpl<unsigned> &NewVRegs);
498   /// Check other options before using a callee-saved register for the first
499   /// time.
500   unsigned tryAssignCSRFirstTime(LiveInterval &VirtReg, AllocationOrder &Order,
501                                  unsigned PhysReg, unsigned &CostPerUseLimit,
502                                  SmallVectorImpl<unsigned> &NewVRegs);
503   void initializeCSRCost();
504   unsigned tryBlockSplit(LiveInterval&, AllocationOrder&,
505                          SmallVectorImpl<unsigned>&);
506   unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&,
507                                SmallVectorImpl<unsigned>&);
508   unsigned tryLocalSplit(LiveInterval&, AllocationOrder&,
509     SmallVectorImpl<unsigned>&);
510   unsigned trySplit(LiveInterval&, AllocationOrder&,
511                     SmallVectorImpl<unsigned>&);
512   unsigned tryLastChanceRecoloring(LiveInterval &, AllocationOrder &,
513                                    SmallVectorImpl<unsigned> &,
514                                    SmallVirtRegSet &, unsigned);
515   bool tryRecoloringCandidates(PQueue &, SmallVectorImpl<unsigned> &,
516                                SmallVirtRegSet &, unsigned);
517   void tryHintRecoloring(LiveInterval &);
518   void tryHintsRecoloring();
519 
520   /// Model the information carried by one end of a copy.
521   struct HintInfo {
522     /// The frequency of the copy.
523     BlockFrequency Freq;
524     /// The virtual register or physical register.
525     unsigned Reg;
526     /// Its currently assigned register.
527     /// In case of a physical register Reg == PhysReg.
528     unsigned PhysReg;
529 
530     HintInfo(BlockFrequency Freq, unsigned Reg, unsigned PhysReg)
531         : Freq(Freq), Reg(Reg), PhysReg(PhysReg) {}
532   };
533   using HintsInfo = SmallVector<HintInfo, 4>;
534 
535   BlockFrequency getBrokenHintFreq(const HintsInfo &, unsigned);
536   void collectHintInfo(unsigned, HintsInfo &);
537 
538   bool isUnusedCalleeSavedReg(unsigned PhysReg) const;
539 
540   /// Compute and report the number of spills and reloads for a loop.
541   void reportNumberOfSplillsReloads(MachineLoop *L, unsigned &Reloads,
542                                     unsigned &FoldedReloads, unsigned &Spills,
543                                     unsigned &FoldedSpills);
544 
545   /// Report the number of spills and reloads for each loop.
546   void reportNumberOfSplillsReloads() {
547     for (MachineLoop *L : *Loops) {
548       unsigned Reloads, FoldedReloads, Spills, FoldedSpills;
549       reportNumberOfSplillsReloads(L, Reloads, FoldedReloads, Spills,
550                                    FoldedSpills);
551     }
552   }
553 };
554 
555 } // end anonymous namespace
556 
557 char RAGreedy::ID = 0;
558 char &llvm::RAGreedyID = RAGreedy::ID;
559 
560 INITIALIZE_PASS_BEGIN(RAGreedy, "greedy",
561                 "Greedy Register Allocator", false, false)
562 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
563 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
564 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
565 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer)
566 INITIALIZE_PASS_DEPENDENCY(MachineScheduler)
567 INITIALIZE_PASS_DEPENDENCY(LiveStacks)
568 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
569 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
570 INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
571 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix)
572 INITIALIZE_PASS_DEPENDENCY(EdgeBundles)
573 INITIALIZE_PASS_DEPENDENCY(SpillPlacement)
574 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass)
575 INITIALIZE_PASS_END(RAGreedy, "greedy",
576                 "Greedy Register Allocator", false, false)
577 
578 #ifndef NDEBUG
579 const char *const RAGreedy::StageName[] = {
580     "RS_New",
581     "RS_Assign",
582     "RS_Split",
583     "RS_Split2",
584     "RS_Spill",
585     "RS_Memory",
586     "RS_Done"
587 };
588 #endif
589 
590 // Hysteresis to use when comparing floats.
591 // This helps stabilize decisions based on float comparisons.
592 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875
593 
594 FunctionPass* llvm::createGreedyRegisterAllocator() {
595   return new RAGreedy();
596 }
597 
598 RAGreedy::RAGreedy(): MachineFunctionPass(ID) {
599 }
600 
601 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
602   AU.setPreservesCFG();
603   AU.addRequired<MachineBlockFrequencyInfo>();
604   AU.addPreserved<MachineBlockFrequencyInfo>();
605   AU.addRequired<AAResultsWrapperPass>();
606   AU.addPreserved<AAResultsWrapperPass>();
607   AU.addRequired<LiveIntervals>();
608   AU.addPreserved<LiveIntervals>();
609   AU.addRequired<SlotIndexes>();
610   AU.addPreserved<SlotIndexes>();
611   AU.addRequired<LiveDebugVariables>();
612   AU.addPreserved<LiveDebugVariables>();
613   AU.addRequired<LiveStacks>();
614   AU.addPreserved<LiveStacks>();
615   AU.addRequired<MachineDominatorTree>();
616   AU.addPreserved<MachineDominatorTree>();
617   AU.addRequired<MachineLoopInfo>();
618   AU.addPreserved<MachineLoopInfo>();
619   AU.addRequired<VirtRegMap>();
620   AU.addPreserved<VirtRegMap>();
621   AU.addRequired<LiveRegMatrix>();
622   AU.addPreserved<LiveRegMatrix>();
623   AU.addRequired<EdgeBundles>();
624   AU.addRequired<SpillPlacement>();
625   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
626   MachineFunctionPass::getAnalysisUsage(AU);
627 }
628 
629 //===----------------------------------------------------------------------===//
630 //                     LiveRangeEdit delegate methods
631 //===----------------------------------------------------------------------===//
632 
633 bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) {
634   LiveInterval &LI = LIS->getInterval(VirtReg);
635   if (VRM->hasPhys(VirtReg)) {
636     Matrix->unassign(LI);
637     aboutToRemoveInterval(LI);
638     return true;
639   }
640   // Unassigned virtreg is probably in the priority queue.
641   // RegAllocBase will erase it after dequeueing.
642   // Nonetheless, clear the live-range so that the debug
643   // dump will show the right state for that VirtReg.
644   LI.clear();
645   return false;
646 }
647 
648 void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) {
649   if (!VRM->hasPhys(VirtReg))
650     return;
651 
652   // Register is assigned, put it back on the queue for reassignment.
653   LiveInterval &LI = LIS->getInterval(VirtReg);
654   Matrix->unassign(LI);
655   enqueue(&LI);
656 }
657 
658 void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) {
659   // Cloning a register we haven't even heard about yet?  Just ignore it.
660   if (!ExtraRegInfo.inBounds(Old))
661     return;
662 
663   // LRE may clone a virtual register because dead code elimination causes it to
664   // be split into connected components. The new components are much smaller
665   // than the original, so they should get a new chance at being assigned.
666   // same stage as the parent.
667   ExtraRegInfo[Old].Stage = RS_Assign;
668   ExtraRegInfo.grow(New);
669   ExtraRegInfo[New] = ExtraRegInfo[Old];
670 }
671 
672 void RAGreedy::releaseMemory() {
673   SpillerInstance.reset();
674   ExtraRegInfo.clear();
675   GlobalCand.clear();
676 }
677 
678 void RAGreedy::enqueue(LiveInterval *LI) { enqueue(Queue, LI); }
679 
680 void RAGreedy::enqueue(PQueue &CurQueue, LiveInterval *LI) {
681   // Prioritize live ranges by size, assigning larger ranges first.
682   // The queue holds (size, reg) pairs.
683   const unsigned Size = LI->getSize();
684   const unsigned Reg = LI->reg;
685   assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
686          "Can only enqueue virtual registers");
687   unsigned Prio;
688 
689   ExtraRegInfo.grow(Reg);
690   if (ExtraRegInfo[Reg].Stage == RS_New)
691     ExtraRegInfo[Reg].Stage = RS_Assign;
692 
693   if (ExtraRegInfo[Reg].Stage == RS_Split) {
694     // Unsplit ranges that couldn't be allocated immediately are deferred until
695     // everything else has been allocated.
696     Prio = Size;
697   } else if (ExtraRegInfo[Reg].Stage == RS_Memory) {
698     // Memory operand should be considered last.
699     // Change the priority such that Memory operand are assigned in
700     // the reverse order that they came in.
701     // TODO: Make this a member variable and probably do something about hints.
702     static unsigned MemOp = 0;
703     Prio = MemOp++;
704   } else {
705     // Giant live ranges fall back to the global assignment heuristic, which
706     // prevents excessive spilling in pathological cases.
707     bool ReverseLocal = TRI->reverseLocalAssignment();
708     const TargetRegisterClass &RC = *MRI->getRegClass(Reg);
709     bool ForceGlobal = !ReverseLocal &&
710       (Size / SlotIndex::InstrDist) > (2 * RC.getNumRegs());
711 
712     if (ExtraRegInfo[Reg].Stage == RS_Assign && !ForceGlobal && !LI->empty() &&
713         LIS->intervalIsInOneMBB(*LI)) {
714       // Allocate original local ranges in linear instruction order. Since they
715       // are singly defined, this produces optimal coloring in the absence of
716       // global interference and other constraints.
717       if (!ReverseLocal)
718         Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex());
719       else {
720         // Allocating bottom up may allow many short LRGs to be assigned first
721         // to one of the cheap registers. This could be much faster for very
722         // large blocks on targets with many physical registers.
723         Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex());
724       }
725       Prio |= RC.AllocationPriority << 24;
726     } else {
727       // Allocate global and split ranges in long->short order. Long ranges that
728       // don't fit should be spilled (or split) ASAP so they don't create
729       // interference.  Mark a bit to prioritize global above local ranges.
730       Prio = (1u << 29) + Size;
731     }
732     // Mark a higher bit to prioritize global and local above RS_Split.
733     Prio |= (1u << 31);
734 
735     // Boost ranges that have a physical register hint.
736     if (VRM->hasKnownPreference(Reg))
737       Prio |= (1u << 30);
738   }
739   // The virtual register number is a tie breaker for same-sized ranges.
740   // Give lower vreg numbers higher priority to assign them first.
741   CurQueue.push(std::make_pair(Prio, ~Reg));
742 }
743 
744 LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); }
745 
746 LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) {
747   if (CurQueue.empty())
748     return nullptr;
749   LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second);
750   CurQueue.pop();
751   return LI;
752 }
753 
754 //===----------------------------------------------------------------------===//
755 //                            Direct Assignment
756 //===----------------------------------------------------------------------===//
757 
758 /// tryAssign - Try to assign VirtReg to an available register.
759 unsigned RAGreedy::tryAssign(LiveInterval &VirtReg,
760                              AllocationOrder &Order,
761                              SmallVectorImpl<unsigned> &NewVRegs) {
762   Order.rewind();
763   unsigned PhysReg;
764   while ((PhysReg = Order.next()))
765     if (!Matrix->checkInterference(VirtReg, PhysReg))
766       break;
767   if (!PhysReg || Order.isHint())
768     return PhysReg;
769 
770   // PhysReg is available, but there may be a better choice.
771 
772   // If we missed a simple hint, try to cheaply evict interference from the
773   // preferred register.
774   if (unsigned Hint = MRI->getSimpleHint(VirtReg.reg))
775     if (Order.isHint(Hint)) {
776       LLVM_DEBUG(dbgs() << "missed hint " << printReg(Hint, TRI) << '\n');
777       EvictionCost MaxCost;
778       MaxCost.setBrokenHints(1);
779       if (canEvictInterference(VirtReg, Hint, true, MaxCost)) {
780         evictInterference(VirtReg, Hint, NewVRegs);
781         return Hint;
782       }
783       // Record the missed hint, we may be able to recover
784       // at the end if the surrounding allocation changed.
785       SetOfBrokenHints.insert(&VirtReg);
786     }
787 
788   // Try to evict interference from a cheaper alternative.
789   unsigned Cost = TRI->getCostPerUse(PhysReg);
790 
791   // Most registers have 0 additional cost.
792   if (!Cost)
793     return PhysReg;
794 
795   LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is available at cost "
796                     << Cost << '\n');
797   unsigned CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost);
798   return CheapReg ? CheapReg : PhysReg;
799 }
800 
801 //===----------------------------------------------------------------------===//
802 //                         Interference eviction
803 //===----------------------------------------------------------------------===//
804 
805 unsigned RAGreedy::canReassign(LiveInterval &VirtReg, unsigned PrevReg) {
806   AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo, Matrix);
807   unsigned PhysReg;
808   while ((PhysReg = Order.next())) {
809     if (PhysReg == PrevReg)
810       continue;
811 
812     MCRegUnitIterator Units(PhysReg, TRI);
813     for (; Units.isValid(); ++Units) {
814       // Instantiate a "subquery", not to be confused with the Queries array.
815       LiveIntervalUnion::Query subQ(VirtReg, Matrix->getLiveUnions()[*Units]);
816       if (subQ.checkInterference())
817         break;
818     }
819     // If no units have interference, break out with the current PhysReg.
820     if (!Units.isValid())
821       break;
822   }
823   if (PhysReg)
824     LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg << " from "
825                       << printReg(PrevReg, TRI) << " to "
826                       << printReg(PhysReg, TRI) << '\n');
827   return PhysReg;
828 }
829 
830 /// shouldEvict - determine if A should evict the assigned live range B. The
831 /// eviction policy defined by this function together with the allocation order
832 /// defined by enqueue() decides which registers ultimately end up being split
833 /// and spilled.
834 ///
835 /// Cascade numbers are used to prevent infinite loops if this function is a
836 /// cyclic relation.
837 ///
838 /// @param A          The live range to be assigned.
839 /// @param IsHint     True when A is about to be assigned to its preferred
840 ///                   register.
841 /// @param B          The live range to be evicted.
842 /// @param BreaksHint True when B is already assigned to its preferred register.
843 bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint,
844                            LiveInterval &B, bool BreaksHint) {
845   bool CanSplit = getStage(B) < RS_Spill;
846 
847   // Be fairly aggressive about following hints as long as the evictee can be
848   // split.
849   if (CanSplit && IsHint && !BreaksHint)
850     return true;
851 
852   if (A.weight > B.weight) {
853     LLVM_DEBUG(dbgs() << "should evict: " << B << " w= " << B.weight << '\n');
854     return true;
855   }
856   return false;
857 }
858 
859 /// canEvictInterference - Return true if all interferences between VirtReg and
860 /// PhysReg can be evicted.
861 ///
862 /// @param VirtReg Live range that is about to be assigned.
863 /// @param PhysReg Desired register for assignment.
864 /// @param IsHint  True when PhysReg is VirtReg's preferred register.
865 /// @param MaxCost Only look for cheaper candidates and update with new cost
866 ///                when returning true.
867 /// @returns True when interference can be evicted cheaper than MaxCost.
868 bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg,
869                                     bool IsHint, EvictionCost &MaxCost) {
870   // It is only possible to evict virtual register interference.
871   if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg)
872     return false;
873 
874   bool IsLocal = LIS->intervalIsInOneMBB(VirtReg);
875 
876   // Find VirtReg's cascade number. This will be unassigned if VirtReg was never
877   // involved in an eviction before. If a cascade number was assigned, deny
878   // evicting anything with the same or a newer cascade number. This prevents
879   // infinite eviction loops.
880   //
881   // This works out so a register without a cascade number is allowed to evict
882   // anything, and it can be evicted by anything.
883   unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
884   if (!Cascade)
885     Cascade = NextCascade;
886 
887   EvictionCost Cost;
888   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
889     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
890     // If there is 10 or more interferences, chances are one is heavier.
891     if (Q.collectInterferingVRegs(10) >= 10)
892       return false;
893 
894     // Check if any interfering live range is heavier than MaxWeight.
895     for (unsigned i = Q.interferingVRegs().size(); i; --i) {
896       LiveInterval *Intf = Q.interferingVRegs()[i - 1];
897       assert(TargetRegisterInfo::isVirtualRegister(Intf->reg) &&
898              "Only expecting virtual register interference from query");
899       // Never evict spill products. They cannot split or spill.
900       if (getStage(*Intf) == RS_Done)
901         return false;
902       // Once a live range becomes small enough, it is urgent that we find a
903       // register for it. This is indicated by an infinite spill weight. These
904       // urgent live ranges get to evict almost anything.
905       //
906       // Also allow urgent evictions of unspillable ranges from a strictly
907       // larger allocation order.
908       bool Urgent = !VirtReg.isSpillable() &&
909         (Intf->isSpillable() ||
910          RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg)) <
911          RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(Intf->reg)));
912       // Only evict older cascades or live ranges without a cascade.
913       unsigned IntfCascade = ExtraRegInfo[Intf->reg].Cascade;
914       if (Cascade <= IntfCascade) {
915         if (!Urgent)
916           return false;
917         // We permit breaking cascades for urgent evictions. It should be the
918         // last resort, though, so make it really expensive.
919         Cost.BrokenHints += 10;
920       }
921       // Would this break a satisfied hint?
922       bool BreaksHint = VRM->hasPreferredPhys(Intf->reg);
923       // Update eviction cost.
924       Cost.BrokenHints += BreaksHint;
925       Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight);
926       // Abort if this would be too expensive.
927       if (!(Cost < MaxCost))
928         return false;
929       if (Urgent)
930         continue;
931       // Apply the eviction policy for non-urgent evictions.
932       if (!shouldEvict(VirtReg, IsHint, *Intf, BreaksHint))
933         return false;
934       // If !MaxCost.isMax(), then we're just looking for a cheap register.
935       // Evicting another local live range in this case could lead to suboptimal
936       // coloring.
937       if (!MaxCost.isMax() && IsLocal && LIS->intervalIsInOneMBB(*Intf) &&
938           (!EnableLocalReassign || !canReassign(*Intf, PhysReg))) {
939         return false;
940       }
941     }
942   }
943   MaxCost = Cost;
944   return true;
945 }
946 
947 /// Return true if all interferences between VirtReg and PhysReg between
948 /// Start and End can be evicted.
949 ///
950 /// \param VirtReg Live range that is about to be assigned.
951 /// \param PhysReg Desired register for assignment.
952 /// \param Start   Start of range to look for interferences.
953 /// \param End     End of range to look for interferences.
954 /// \param MaxCost Only look for cheaper candidates and update with new cost
955 ///                when returning true.
956 /// \return True when interference can be evicted cheaper than MaxCost.
957 bool RAGreedy::canEvictInterferenceInRange(LiveInterval &VirtReg,
958                                            unsigned PhysReg, SlotIndex Start,
959                                            SlotIndex End,
960                                            EvictionCost &MaxCost) {
961   EvictionCost Cost;
962 
963   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
964     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
965 
966     // Check if any interfering live range is heavier than MaxWeight.
967     for (unsigned i = Q.interferingVRegs().size(); i; --i) {
968       LiveInterval *Intf = Q.interferingVRegs()[i - 1];
969 
970       // Check if interference overlast the segment in interest.
971       if (!Intf->overlaps(Start, End))
972         continue;
973 
974       // Cannot evict non virtual reg interference.
975       if (!TargetRegisterInfo::isVirtualRegister(Intf->reg))
976         return false;
977       // Never evict spill products. They cannot split or spill.
978       if (getStage(*Intf) == RS_Done)
979         return false;
980 
981       // Would this break a satisfied hint?
982       bool BreaksHint = VRM->hasPreferredPhys(Intf->reg);
983       // Update eviction cost.
984       Cost.BrokenHints += BreaksHint;
985       Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight);
986       // Abort if this would be too expensive.
987       if (!(Cost < MaxCost))
988         return false;
989     }
990   }
991 
992   if (Cost.MaxWeight == 0)
993     return false;
994 
995   MaxCost = Cost;
996   return true;
997 }
998 
999 /// Return the physical register that will be best
1000 /// candidate for eviction by a local split interval that will be created
1001 /// between Start and End.
1002 ///
1003 /// \param Order            The allocation order
1004 /// \param VirtReg          Live range that is about to be assigned.
1005 /// \param Start            Start of range to look for interferences
1006 /// \param End              End of range to look for interferences
1007 /// \param BestEvictweight  The eviction cost of that eviction
1008 /// \return The PhysReg which is the best candidate for eviction and the
1009 /// eviction cost in BestEvictweight
1010 unsigned RAGreedy::getCheapestEvicteeWeight(const AllocationOrder &Order,
1011                                             LiveInterval &VirtReg,
1012                                             SlotIndex Start, SlotIndex End,
1013                                             float *BestEvictweight) {
1014   EvictionCost BestEvictCost;
1015   BestEvictCost.setMax();
1016   BestEvictCost.MaxWeight = VirtReg.weight;
1017   unsigned BestEvicteePhys = 0;
1018 
1019   // Go over all physical registers and find the best candidate for eviction
1020   for (auto PhysReg : Order.getOrder()) {
1021 
1022     if (!canEvictInterferenceInRange(VirtReg, PhysReg, Start, End,
1023                                      BestEvictCost))
1024       continue;
1025 
1026     // Best so far.
1027     BestEvicteePhys = PhysReg;
1028   }
1029   *BestEvictweight = BestEvictCost.MaxWeight;
1030   return BestEvicteePhys;
1031 }
1032 
1033 /// evictInterference - Evict any interferring registers that prevent VirtReg
1034 /// from being assigned to Physreg. This assumes that canEvictInterference
1035 /// returned true.
1036 void RAGreedy::evictInterference(LiveInterval &VirtReg, unsigned PhysReg,
1037                                  SmallVectorImpl<unsigned> &NewVRegs) {
1038   // Make sure that VirtReg has a cascade number, and assign that cascade
1039   // number to every evicted register. These live ranges than then only be
1040   // evicted by a newer cascade, preventing infinite loops.
1041   unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
1042   if (!Cascade)
1043     Cascade = ExtraRegInfo[VirtReg.reg].Cascade = NextCascade++;
1044 
1045   LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg, TRI)
1046                     << " interference: Cascade " << Cascade << '\n');
1047 
1048   // Collect all interfering virtregs first.
1049   SmallVector<LiveInterval*, 8> Intfs;
1050   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1051     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
1052     // We usually have the interfering VRegs cached so collectInterferingVRegs()
1053     // should be fast, we may need to recalculate if when different physregs
1054     // overlap the same register unit so we had different SubRanges queried
1055     // against it.
1056     Q.collectInterferingVRegs();
1057     ArrayRef<LiveInterval*> IVR = Q.interferingVRegs();
1058     Intfs.append(IVR.begin(), IVR.end());
1059   }
1060 
1061   // Evict them second. This will invalidate the queries.
1062   for (unsigned i = 0, e = Intfs.size(); i != e; ++i) {
1063     LiveInterval *Intf = Intfs[i];
1064     // The same VirtReg may be present in multiple RegUnits. Skip duplicates.
1065     if (!VRM->hasPhys(Intf->reg))
1066       continue;
1067 
1068     LastEvicted.addEviction(PhysReg, VirtReg.reg, Intf->reg);
1069 
1070     Matrix->unassign(*Intf);
1071     assert((ExtraRegInfo[Intf->reg].Cascade < Cascade ||
1072             VirtReg.isSpillable() < Intf->isSpillable()) &&
1073            "Cannot decrease cascade number, illegal eviction");
1074     ExtraRegInfo[Intf->reg].Cascade = Cascade;
1075     ++NumEvicted;
1076     NewVRegs.push_back(Intf->reg);
1077   }
1078 }
1079 
1080 /// Returns true if the given \p PhysReg is a callee saved register and has not
1081 /// been used for allocation yet.
1082 bool RAGreedy::isUnusedCalleeSavedReg(unsigned PhysReg) const {
1083   unsigned CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg);
1084   if (CSR == 0)
1085     return false;
1086 
1087   return !Matrix->isPhysRegUsed(PhysReg);
1088 }
1089 
1090 /// tryEvict - Try to evict all interferences for a physreg.
1091 /// @param  VirtReg Currently unassigned virtual register.
1092 /// @param  Order   Physregs to try.
1093 /// @return         Physreg to assign VirtReg, or 0.
1094 unsigned RAGreedy::tryEvict(LiveInterval &VirtReg,
1095                             AllocationOrder &Order,
1096                             SmallVectorImpl<unsigned> &NewVRegs,
1097                             unsigned CostPerUseLimit) {
1098   NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription,
1099                      TimePassesIsEnabled);
1100 
1101   // Keep track of the cheapest interference seen so far.
1102   EvictionCost BestCost;
1103   BestCost.setMax();
1104   unsigned BestPhys = 0;
1105   unsigned OrderLimit = Order.getOrder().size();
1106 
1107   // When we are just looking for a reduced cost per use, don't break any
1108   // hints, and only evict smaller spill weights.
1109   if (CostPerUseLimit < ~0u) {
1110     BestCost.BrokenHints = 0;
1111     BestCost.MaxWeight = VirtReg.weight;
1112 
1113     // Check of any registers in RC are below CostPerUseLimit.
1114     const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg);
1115     unsigned MinCost = RegClassInfo.getMinCost(RC);
1116     if (MinCost >= CostPerUseLimit) {
1117       LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = "
1118                         << MinCost << ", no cheaper registers to be found.\n");
1119       return 0;
1120     }
1121 
1122     // It is normal for register classes to have a long tail of registers with
1123     // the same cost. We don't need to look at them if they're too expensive.
1124     if (TRI->getCostPerUse(Order.getOrder().back()) >= CostPerUseLimit) {
1125       OrderLimit = RegClassInfo.getLastCostChange(RC);
1126       LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit
1127                         << " regs.\n");
1128     }
1129   }
1130 
1131   Order.rewind();
1132   while (unsigned PhysReg = Order.next(OrderLimit)) {
1133     if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit)
1134       continue;
1135     // The first use of a callee-saved register in a function has cost 1.
1136     // Don't start using a CSR when the CostPerUseLimit is low.
1137     if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) {
1138       LLVM_DEBUG(
1139           dbgs() << printReg(PhysReg, TRI) << " would clobber CSR "
1140                  << printReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI)
1141                  << '\n');
1142       continue;
1143     }
1144 
1145     if (!canEvictInterference(VirtReg, PhysReg, false, BestCost))
1146       continue;
1147 
1148     // Best so far.
1149     BestPhys = PhysReg;
1150 
1151     // Stop if the hint can be used.
1152     if (Order.isHint())
1153       break;
1154   }
1155 
1156   if (!BestPhys)
1157     return 0;
1158 
1159   evictInterference(VirtReg, BestPhys, NewVRegs);
1160   return BestPhys;
1161 }
1162 
1163 //===----------------------------------------------------------------------===//
1164 //                              Region Splitting
1165 //===----------------------------------------------------------------------===//
1166 
1167 /// addSplitConstraints - Fill out the SplitConstraints vector based on the
1168 /// interference pattern in Physreg and its aliases. Add the constraints to
1169 /// SpillPlacement and return the static cost of this split in Cost, assuming
1170 /// that all preferences in SplitConstraints are met.
1171 /// Return false if there are no bundles with positive bias.
1172 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
1173                                    BlockFrequency &Cost) {
1174   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1175 
1176   // Reset interference dependent info.
1177   SplitConstraints.resize(UseBlocks.size());
1178   BlockFrequency StaticCost = 0;
1179   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1180     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1181     SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
1182 
1183     BC.Number = BI.MBB->getNumber();
1184     Intf.moveToBlock(BC.Number);
1185     BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
1186     BC.Exit = BI.LiveOut ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
1187     BC.ChangesValue = BI.FirstDef.isValid();
1188 
1189     if (!Intf.hasInterference())
1190       continue;
1191 
1192     // Number of spill code instructions to insert.
1193     unsigned Ins = 0;
1194 
1195     // Interference for the live-in value.
1196     if (BI.LiveIn) {
1197       if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) {
1198         BC.Entry = SpillPlacement::MustSpill;
1199         ++Ins;
1200       } else if (Intf.first() < BI.FirstInstr) {
1201         BC.Entry = SpillPlacement::PrefSpill;
1202         ++Ins;
1203       } else if (Intf.first() < BI.LastInstr) {
1204         ++Ins;
1205       }
1206     }
1207 
1208     // Interference for the live-out value.
1209     if (BI.LiveOut) {
1210       if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) {
1211         BC.Exit = SpillPlacement::MustSpill;
1212         ++Ins;
1213       } else if (Intf.last() > BI.LastInstr) {
1214         BC.Exit = SpillPlacement::PrefSpill;
1215         ++Ins;
1216       } else if (Intf.last() > BI.FirstInstr) {
1217         ++Ins;
1218       }
1219     }
1220 
1221     // Accumulate the total frequency of inserted spill code.
1222     while (Ins--)
1223       StaticCost += SpillPlacer->getBlockFrequency(BC.Number);
1224   }
1225   Cost = StaticCost;
1226 
1227   // Add constraints for use-blocks. Note that these are the only constraints
1228   // that may add a positive bias, it is downhill from here.
1229   SpillPlacer->addConstraints(SplitConstraints);
1230   return SpillPlacer->scanActiveBundles();
1231 }
1232 
1233 /// addThroughConstraints - Add constraints and links to SpillPlacer from the
1234 /// live-through blocks in Blocks.
1235 void RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
1236                                      ArrayRef<unsigned> Blocks) {
1237   const unsigned GroupSize = 8;
1238   SpillPlacement::BlockConstraint BCS[GroupSize];
1239   unsigned TBS[GroupSize];
1240   unsigned B = 0, T = 0;
1241 
1242   for (unsigned i = 0; i != Blocks.size(); ++i) {
1243     unsigned Number = Blocks[i];
1244     Intf.moveToBlock(Number);
1245 
1246     if (!Intf.hasInterference()) {
1247       assert(T < GroupSize && "Array overflow");
1248       TBS[T] = Number;
1249       if (++T == GroupSize) {
1250         SpillPlacer->addLinks(makeArrayRef(TBS, T));
1251         T = 0;
1252       }
1253       continue;
1254     }
1255 
1256     assert(B < GroupSize && "Array overflow");
1257     BCS[B].Number = Number;
1258 
1259     // Interference for the live-in value.
1260     if (Intf.first() <= Indexes->getMBBStartIdx(Number))
1261       BCS[B].Entry = SpillPlacement::MustSpill;
1262     else
1263       BCS[B].Entry = SpillPlacement::PrefSpill;
1264 
1265     // Interference for the live-out value.
1266     if (Intf.last() >= SA->getLastSplitPoint(Number))
1267       BCS[B].Exit = SpillPlacement::MustSpill;
1268     else
1269       BCS[B].Exit = SpillPlacement::PrefSpill;
1270 
1271     if (++B == GroupSize) {
1272       SpillPlacer->addConstraints(makeArrayRef(BCS, B));
1273       B = 0;
1274     }
1275   }
1276 
1277   SpillPlacer->addConstraints(makeArrayRef(BCS, B));
1278   SpillPlacer->addLinks(makeArrayRef(TBS, T));
1279 }
1280 
1281 void RAGreedy::growRegion(GlobalSplitCandidate &Cand) {
1282   // Keep track of through blocks that have not been added to SpillPlacer.
1283   BitVector Todo = SA->getThroughBlocks();
1284   SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
1285   unsigned AddedTo = 0;
1286 #ifndef NDEBUG
1287   unsigned Visited = 0;
1288 #endif
1289 
1290   while (true) {
1291     ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
1292     // Find new through blocks in the periphery of PrefRegBundles.
1293     for (int i = 0, e = NewBundles.size(); i != e; ++i) {
1294       unsigned Bundle = NewBundles[i];
1295       // Look at all blocks connected to Bundle in the full graph.
1296       ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
1297       for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
1298            I != E; ++I) {
1299         unsigned Block = *I;
1300         if (!Todo.test(Block))
1301           continue;
1302         Todo.reset(Block);
1303         // This is a new through block. Add it to SpillPlacer later.
1304         ActiveBlocks.push_back(Block);
1305 #ifndef NDEBUG
1306         ++Visited;
1307 #endif
1308       }
1309     }
1310     // Any new blocks to add?
1311     if (ActiveBlocks.size() == AddedTo)
1312       break;
1313 
1314     // Compute through constraints from the interference, or assume that all
1315     // through blocks prefer spilling when forming compact regions.
1316     auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo);
1317     if (Cand.PhysReg)
1318       addThroughConstraints(Cand.Intf, NewBlocks);
1319     else
1320       // Provide a strong negative bias on through blocks to prevent unwanted
1321       // liveness on loop backedges.
1322       SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true);
1323     AddedTo = ActiveBlocks.size();
1324 
1325     // Perhaps iterating can enable more bundles?
1326     SpillPlacer->iterate();
1327   }
1328   LLVM_DEBUG(dbgs() << ", v=" << Visited);
1329 }
1330 
1331 /// calcCompactRegion - Compute the set of edge bundles that should be live
1332 /// when splitting the current live range into compact regions.  Compact
1333 /// regions can be computed without looking at interference.  They are the
1334 /// regions formed by removing all the live-through blocks from the live range.
1335 ///
1336 /// Returns false if the current live range is already compact, or if the
1337 /// compact regions would form single block regions anyway.
1338 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) {
1339   // Without any through blocks, the live range is already compact.
1340   if (!SA->getNumThroughBlocks())
1341     return false;
1342 
1343   // Compact regions don't correspond to any physreg.
1344   Cand.reset(IntfCache, 0);
1345 
1346   LLVM_DEBUG(dbgs() << "Compact region bundles");
1347 
1348   // Use the spill placer to determine the live bundles. GrowRegion pretends
1349   // that all the through blocks have interference when PhysReg is unset.
1350   SpillPlacer->prepare(Cand.LiveBundles);
1351 
1352   // The static split cost will be zero since Cand.Intf reports no interference.
1353   BlockFrequency Cost;
1354   if (!addSplitConstraints(Cand.Intf, Cost)) {
1355     LLVM_DEBUG(dbgs() << ", none.\n");
1356     return false;
1357   }
1358 
1359   growRegion(Cand);
1360   SpillPlacer->finish();
1361 
1362   if (!Cand.LiveBundles.any()) {
1363     LLVM_DEBUG(dbgs() << ", none.\n");
1364     return false;
1365   }
1366 
1367   LLVM_DEBUG({
1368     for (int i : Cand.LiveBundles.set_bits())
1369       dbgs() << " EB#" << i;
1370     dbgs() << ".\n";
1371   });
1372   return true;
1373 }
1374 
1375 /// calcSpillCost - Compute how expensive it would be to split the live range in
1376 /// SA around all use blocks instead of forming bundle regions.
1377 BlockFrequency RAGreedy::calcSpillCost() {
1378   BlockFrequency Cost = 0;
1379   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1380   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1381     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1382     unsigned Number = BI.MBB->getNumber();
1383     // We normally only need one spill instruction - a load or a store.
1384     Cost += SpillPlacer->getBlockFrequency(Number);
1385 
1386     // Unless the value is redefined in the block.
1387     if (BI.LiveIn && BI.LiveOut && BI.FirstDef)
1388       Cost += SpillPlacer->getBlockFrequency(Number);
1389   }
1390   return Cost;
1391 }
1392 
1393 /// Check if splitting Evictee will create a local split interval in
1394 /// basic block number BBNumber that may cause a bad eviction chain. This is
1395 /// intended to prevent bad eviction sequences like:
1396 /// movl	%ebp, 8(%esp)           # 4-byte Spill
1397 /// movl	%ecx, %ebp
1398 /// movl	%ebx, %ecx
1399 /// movl	%edi, %ebx
1400 /// movl	%edx, %edi
1401 /// cltd
1402 /// idivl	%esi
1403 /// movl	%edi, %edx
1404 /// movl	%ebx, %edi
1405 /// movl	%ecx, %ebx
1406 /// movl	%ebp, %ecx
1407 /// movl	16(%esp), %ebp          # 4 - byte Reload
1408 ///
1409 /// Such sequences are created in 2 scenarios:
1410 ///
1411 /// Scenario #1:
1412 /// %0 is evicted from physreg0 by %1.
1413 /// Evictee %0 is intended for region splitting with split candidate
1414 /// physreg0 (the reg %0 was evicted from).
1415 /// Region splitting creates a local interval because of interference with the
1416 /// evictor %1 (normally region splitting creates 2 interval, the "by reg"
1417 /// and "by stack" intervals and local interval created when interference
1418 /// occurs).
1419 /// One of the split intervals ends up evicting %2 from physreg1.
1420 /// Evictee %2 is intended for region splitting with split candidate
1421 /// physreg1.
1422 /// One of the split intervals ends up evicting %3 from physreg2, etc.
1423 ///
1424 /// Scenario #2
1425 /// %0 is evicted from physreg0 by %1.
1426 /// %2 is evicted from physreg2 by %3 etc.
1427 /// Evictee %0 is intended for region splitting with split candidate
1428 /// physreg1.
1429 /// Region splitting creates a local interval because of interference with the
1430 /// evictor %1.
1431 /// One of the split intervals ends up evicting back original evictor %1
1432 /// from physreg0 (the reg %0 was evicted from).
1433 /// Another evictee %2 is intended for region splitting with split candidate
1434 /// physreg1.
1435 /// One of the split intervals ends up evicting %3 from physreg2, etc.
1436 ///
1437 /// \param Evictee  The register considered to be split.
1438 /// \param Cand     The split candidate that determines the physical register
1439 ///                 we are splitting for and the interferences.
1440 /// \param BBNumber The number of a BB for which the region split process will
1441 ///                 create a local split interval.
1442 /// \param Order    The physical registers that may get evicted by a split
1443 ///                 artifact of Evictee.
1444 /// \return True if splitting Evictee may cause a bad eviction chain, false
1445 /// otherwise.
1446 bool RAGreedy::splitCanCauseEvictionChain(unsigned Evictee,
1447                                           GlobalSplitCandidate &Cand,
1448                                           unsigned BBNumber,
1449                                           const AllocationOrder &Order) {
1450   EvictionTrack::EvictorInfo VregEvictorInfo = LastEvicted.getEvictor(Evictee);
1451   unsigned Evictor = VregEvictorInfo.first;
1452   unsigned PhysReg = VregEvictorInfo.second;
1453 
1454   // No actual evictor.
1455   if (!Evictor || !PhysReg)
1456     return false;
1457 
1458   float MaxWeight = 0;
1459   unsigned FutureEvictedPhysReg =
1460       getCheapestEvicteeWeight(Order, LIS->getInterval(Evictee),
1461                                Cand.Intf.first(), Cand.Intf.last(), &MaxWeight);
1462 
1463   // The bad eviction chain occurs when either the split candidate is the
1464   // evicting reg or one of the split artifact will evict the evicting reg.
1465   if ((PhysReg != Cand.PhysReg) && (PhysReg != FutureEvictedPhysReg))
1466     return false;
1467 
1468   Cand.Intf.moveToBlock(BBNumber);
1469 
1470   // Check to see if the Evictor contains interference (with Evictee) in the
1471   // given BB. If so, this interference caused the eviction of Evictee from
1472   // PhysReg. This suggest that we will create a local interval during the
1473   // region split to avoid this interference This local interval may cause a bad
1474   // eviction chain.
1475   if (!LIS->hasInterval(Evictor))
1476     return false;
1477   LiveInterval &EvictorLI = LIS->getInterval(Evictor);
1478   if (EvictorLI.FindSegmentContaining(Cand.Intf.first()) == EvictorLI.end())
1479     return false;
1480 
1481   // Now, check to see if the local interval we will create is going to be
1482   // expensive enough to evict somebody If so, this may cause a bad eviction
1483   // chain.
1484   VirtRegAuxInfo VRAI(*MF, *LIS, VRM, getAnalysis<MachineLoopInfo>(), *MBFI);
1485   float splitArtifactWeight =
1486       VRAI.futureWeight(LIS->getInterval(Evictee),
1487                         Cand.Intf.first().getPrevIndex(), Cand.Intf.last());
1488   if (splitArtifactWeight >= 0 && splitArtifactWeight < MaxWeight)
1489     return false;
1490 
1491   return true;
1492 }
1493 
1494 /// Check if splitting VirtRegToSplit will create a local split interval
1495 /// in basic block number BBNumber that may cause a spill.
1496 ///
1497 /// \param VirtRegToSplit The register considered to be split.
1498 /// \param Cand           The split candidate that determines the physical
1499 ///                       register we are splitting for and the interferences.
1500 /// \param BBNumber       The number of a BB for which the region split process
1501 ///                       will create a local split interval.
1502 /// \param Order          The physical registers that may get evicted by a
1503 ///                       split artifact of VirtRegToSplit.
1504 /// \return True if splitting VirtRegToSplit may cause a spill, false
1505 /// otherwise.
1506 bool RAGreedy::splitCanCauseLocalSpill(unsigned VirtRegToSplit,
1507                                        GlobalSplitCandidate &Cand,
1508                                        unsigned BBNumber,
1509                                        const AllocationOrder &Order) {
1510   Cand.Intf.moveToBlock(BBNumber);
1511 
1512   // Check if the local interval will find a non interfereing assignment.
1513   for (auto PhysReg : Order.getOrder()) {
1514     if (!Matrix->checkInterference(Cand.Intf.first().getPrevIndex(),
1515                                    Cand.Intf.last(), PhysReg))
1516       return false;
1517   }
1518 
1519   // Check if the local interval will evict a cheaper interval.
1520   float CheapestEvictWeight = 0;
1521   unsigned FutureEvictedPhysReg = getCheapestEvicteeWeight(
1522       Order, LIS->getInterval(VirtRegToSplit), Cand.Intf.first(),
1523       Cand.Intf.last(), &CheapestEvictWeight);
1524 
1525   // Have we found an interval that can be evicted?
1526   if (FutureEvictedPhysReg) {
1527     VirtRegAuxInfo VRAI(*MF, *LIS, VRM, getAnalysis<MachineLoopInfo>(), *MBFI);
1528     float splitArtifactWeight =
1529         VRAI.futureWeight(LIS->getInterval(VirtRegToSplit),
1530                           Cand.Intf.first().getPrevIndex(), Cand.Intf.last());
1531     // Will the weight of the local interval be higher than the cheapest evictee
1532     // weight? If so it will evict it and will not cause a spill.
1533     if (splitArtifactWeight >= 0 && splitArtifactWeight > CheapestEvictWeight)
1534       return false;
1535   }
1536 
1537   // The local interval is not able to find non interferencing assignment and
1538   // not able to evict a less worthy interval, therfore, it can cause a spill.
1539   return true;
1540 }
1541 
1542 /// calcGlobalSplitCost - Return the global split cost of following the split
1543 /// pattern in LiveBundles. This cost should be added to the local cost of the
1544 /// interference pattern in SplitConstraints.
1545 ///
1546 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand,
1547                                              const AllocationOrder &Order,
1548                                              bool *CanCauseEvictionChain) {
1549   BlockFrequency GlobalCost = 0;
1550   const BitVector &LiveBundles = Cand.LiveBundles;
1551   unsigned VirtRegToSplit = SA->getParent().reg;
1552   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1553   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1554     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1555     SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
1556     bool RegIn  = LiveBundles[Bundles->getBundle(BC.Number, false)];
1557     bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)];
1558     unsigned Ins = 0;
1559 
1560     Cand.Intf.moveToBlock(BC.Number);
1561     // Check wheather a local interval is going to be created during the region
1562     // split. Calculate adavanced spilt cost (cost of local intervals) if option
1563     // is enabled.
1564     if (EnableAdvancedRASplitCost && Cand.Intf.hasInterference() && BI.LiveIn &&
1565         BI.LiveOut && RegIn && RegOut) {
1566 
1567       if (CanCauseEvictionChain &&
1568           splitCanCauseEvictionChain(VirtRegToSplit, Cand, BC.Number, Order)) {
1569         // This interference causes our eviction from this assignment, we might
1570         // evict somebody else and eventually someone will spill, add that cost.
1571         // See splitCanCauseEvictionChain for detailed description of scenarios.
1572         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1573         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1574 
1575         *CanCauseEvictionChain = true;
1576 
1577       } else if (splitCanCauseLocalSpill(VirtRegToSplit, Cand, BC.Number,
1578                                          Order)) {
1579         // This interference causes local interval to spill, add that cost.
1580         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1581         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1582       }
1583     }
1584 
1585     if (BI.LiveIn)
1586       Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
1587     if (BI.LiveOut)
1588       Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
1589     while (Ins--)
1590       GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1591   }
1592 
1593   for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) {
1594     unsigned Number = Cand.ActiveBlocks[i];
1595     bool RegIn  = LiveBundles[Bundles->getBundle(Number, false)];
1596     bool RegOut = LiveBundles[Bundles->getBundle(Number, true)];
1597     if (!RegIn && !RegOut)
1598       continue;
1599     if (RegIn && RegOut) {
1600       // We need double spill code if this block has interference.
1601       Cand.Intf.moveToBlock(Number);
1602       if (Cand.Intf.hasInterference()) {
1603         GlobalCost += SpillPlacer->getBlockFrequency(Number);
1604         GlobalCost += SpillPlacer->getBlockFrequency(Number);
1605 
1606         // Check wheather a local interval is going to be created during the
1607         // region split.
1608         if (EnableAdvancedRASplitCost && CanCauseEvictionChain &&
1609             splitCanCauseEvictionChain(VirtRegToSplit, Cand, Number, Order)) {
1610           // This interference cause our eviction from this assignment, we might
1611           // evict somebody else, add that cost.
1612           // See splitCanCauseEvictionChain for detailed description of
1613           // scenarios.
1614           GlobalCost += SpillPlacer->getBlockFrequency(Number);
1615           GlobalCost += SpillPlacer->getBlockFrequency(Number);
1616 
1617           *CanCauseEvictionChain = true;
1618         }
1619       }
1620       continue;
1621     }
1622     // live-in / stack-out or stack-in live-out.
1623     GlobalCost += SpillPlacer->getBlockFrequency(Number);
1624   }
1625   return GlobalCost;
1626 }
1627 
1628 /// splitAroundRegion - Split the current live range around the regions
1629 /// determined by BundleCand and GlobalCand.
1630 ///
1631 /// Before calling this function, GlobalCand and BundleCand must be initialized
1632 /// so each bundle is assigned to a valid candidate, or NoCand for the
1633 /// stack-bound bundles.  The shared SA/SE SplitAnalysis and SplitEditor
1634 /// objects must be initialized for the current live range, and intervals
1635 /// created for the used candidates.
1636 ///
1637 /// @param LREdit    The LiveRangeEdit object handling the current split.
1638 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value
1639 ///                  must appear in this list.
1640 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit,
1641                                  ArrayRef<unsigned> UsedCands) {
1642   // These are the intervals created for new global ranges. We may create more
1643   // intervals for local ranges.
1644   const unsigned NumGlobalIntvs = LREdit.size();
1645   LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs
1646                     << " globals.\n");
1647   assert(NumGlobalIntvs && "No global intervals configured");
1648 
1649   // Isolate even single instructions when dealing with a proper sub-class.
1650   // That guarantees register class inflation for the stack interval because it
1651   // is all copies.
1652   unsigned Reg = SA->getParent().reg;
1653   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1654 
1655   // First handle all the blocks with uses.
1656   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1657   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1658     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1659     unsigned Number = BI.MBB->getNumber();
1660     unsigned IntvIn = 0, IntvOut = 0;
1661     SlotIndex IntfIn, IntfOut;
1662     if (BI.LiveIn) {
1663       unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
1664       if (CandIn != NoCand) {
1665         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1666         IntvIn = Cand.IntvIdx;
1667         Cand.Intf.moveToBlock(Number);
1668         IntfIn = Cand.Intf.first();
1669       }
1670     }
1671     if (BI.LiveOut) {
1672       unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
1673       if (CandOut != NoCand) {
1674         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1675         IntvOut = Cand.IntvIdx;
1676         Cand.Intf.moveToBlock(Number);
1677         IntfOut = Cand.Intf.last();
1678       }
1679     }
1680 
1681     // Create separate intervals for isolated blocks with multiple uses.
1682     if (!IntvIn && !IntvOut) {
1683       LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " isolated.\n");
1684       if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1685         SE->splitSingleBlock(BI);
1686       continue;
1687     }
1688 
1689     if (IntvIn && IntvOut)
1690       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1691     else if (IntvIn)
1692       SE->splitRegInBlock(BI, IntvIn, IntfIn);
1693     else
1694       SE->splitRegOutBlock(BI, IntvOut, IntfOut);
1695   }
1696 
1697   // Handle live-through blocks. The relevant live-through blocks are stored in
1698   // the ActiveBlocks list with each candidate. We need to filter out
1699   // duplicates.
1700   BitVector Todo = SA->getThroughBlocks();
1701   for (unsigned c = 0; c != UsedCands.size(); ++c) {
1702     ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks;
1703     for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
1704       unsigned Number = Blocks[i];
1705       if (!Todo.test(Number))
1706         continue;
1707       Todo.reset(Number);
1708 
1709       unsigned IntvIn = 0, IntvOut = 0;
1710       SlotIndex IntfIn, IntfOut;
1711 
1712       unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
1713       if (CandIn != NoCand) {
1714         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1715         IntvIn = Cand.IntvIdx;
1716         Cand.Intf.moveToBlock(Number);
1717         IntfIn = Cand.Intf.first();
1718       }
1719 
1720       unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
1721       if (CandOut != NoCand) {
1722         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1723         IntvOut = Cand.IntvIdx;
1724         Cand.Intf.moveToBlock(Number);
1725         IntfOut = Cand.Intf.last();
1726       }
1727       if (!IntvIn && !IntvOut)
1728         continue;
1729       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1730     }
1731   }
1732 
1733   ++NumGlobalSplits;
1734 
1735   SmallVector<unsigned, 8> IntvMap;
1736   SE->finish(&IntvMap);
1737   DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
1738 
1739   ExtraRegInfo.resize(MRI->getNumVirtRegs());
1740   unsigned OrigBlocks = SA->getNumLiveBlocks();
1741 
1742   // Sort out the new intervals created by splitting. We get four kinds:
1743   // - Remainder intervals should not be split again.
1744   // - Candidate intervals can be assigned to Cand.PhysReg.
1745   // - Block-local splits are candidates for local splitting.
1746   // - DCE leftovers should go back on the queue.
1747   for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
1748     LiveInterval &Reg = LIS->getInterval(LREdit.get(i));
1749 
1750     // Ignore old intervals from DCE.
1751     if (getStage(Reg) != RS_New)
1752       continue;
1753 
1754     // Remainder interval. Don't try splitting again, spill if it doesn't
1755     // allocate.
1756     if (IntvMap[i] == 0) {
1757       setStage(Reg, RS_Spill);
1758       continue;
1759     }
1760 
1761     // Global intervals. Allow repeated splitting as long as the number of live
1762     // blocks is strictly decreasing.
1763     if (IntvMap[i] < NumGlobalIntvs) {
1764       if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
1765         LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
1766                           << " blocks as original.\n");
1767         // Don't allow repeated splitting as a safe guard against looping.
1768         setStage(Reg, RS_Split2);
1769       }
1770       continue;
1771     }
1772 
1773     // Other intervals are treated as new. This includes local intervals created
1774     // for blocks with multiple uses, and anything created by DCE.
1775   }
1776 
1777   if (VerifyEnabled)
1778     MF->verify(this, "After splitting live range around region");
1779 }
1780 
1781 // Global split has high compile time cost especially for large live range.
1782 // Return false for the case here where the potential benefit will never
1783 // worth the cost.
1784 unsigned RAGreedy::isSplitBenefitWorthCost(LiveInterval &VirtReg) {
1785   MachineInstr *MI = MRI->getUniqueVRegDef(VirtReg.reg);
1786   if (MI && TII->isTriviallyReMaterializable(*MI, AA) &&
1787       VirtReg.size() > HugeSizeForSplit)
1788     return false;
1789   return true;
1790 }
1791 
1792 unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1793                                   SmallVectorImpl<unsigned> &NewVRegs) {
1794   if (!isSplitBenefitWorthCost(VirtReg))
1795     return 0;
1796   unsigned NumCands = 0;
1797   BlockFrequency SpillCost = calcSpillCost();
1798   BlockFrequency BestCost;
1799 
1800   // Check if we can split this live range around a compact region.
1801   bool HasCompact = calcCompactRegion(GlobalCand.front());
1802   if (HasCompact) {
1803     // Yes, keep GlobalCand[0] as the compact region candidate.
1804     NumCands = 1;
1805     BestCost = BlockFrequency::getMaxFrequency();
1806   } else {
1807     // No benefit from the compact region, our fallback will be per-block
1808     // splitting. Make sure we find a solution that is cheaper than spilling.
1809     BestCost = SpillCost;
1810     LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = ";
1811                MBFI->printBlockFreq(dbgs(), BestCost) << '\n');
1812   }
1813 
1814   bool CanCauseEvictionChain = false;
1815   unsigned BestCand =
1816       calculateRegionSplitCost(VirtReg, Order, BestCost, NumCands,
1817                                false /*IgnoreCSR*/, &CanCauseEvictionChain);
1818 
1819   // Split candidates with compact regions can cause a bad eviction sequence.
1820   // See splitCanCauseEvictionChain for detailed description of scenarios.
1821   // To avoid it, we need to comapre the cost with the spill cost and not the
1822   // current max frequency.
1823   if (HasCompact && (BestCost > SpillCost) && (BestCand != NoCand) &&
1824     CanCauseEvictionChain) {
1825     return 0;
1826   }
1827 
1828   // No solutions found, fall back to single block splitting.
1829   if (!HasCompact && BestCand == NoCand)
1830     return 0;
1831 
1832   return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs);
1833 }
1834 
1835 unsigned RAGreedy::calculateRegionSplitCost(LiveInterval &VirtReg,
1836                                             AllocationOrder &Order,
1837                                             BlockFrequency &BestCost,
1838                                             unsigned &NumCands, bool IgnoreCSR,
1839                                             bool *CanCauseEvictionChain) {
1840   unsigned BestCand = NoCand;
1841   Order.rewind();
1842   while (unsigned PhysReg = Order.next()) {
1843     if (IgnoreCSR && isUnusedCalleeSavedReg(PhysReg))
1844       continue;
1845 
1846     // Discard bad candidates before we run out of interference cache cursors.
1847     // This will only affect register classes with a lot of registers (>32).
1848     if (NumCands == IntfCache.getMaxCursors()) {
1849       unsigned WorstCount = ~0u;
1850       unsigned Worst = 0;
1851       for (unsigned i = 0; i != NumCands; ++i) {
1852         if (i == BestCand || !GlobalCand[i].PhysReg)
1853           continue;
1854         unsigned Count = GlobalCand[i].LiveBundles.count();
1855         if (Count < WorstCount) {
1856           Worst = i;
1857           WorstCount = Count;
1858         }
1859       }
1860       --NumCands;
1861       GlobalCand[Worst] = GlobalCand[NumCands];
1862       if (BestCand == NumCands)
1863         BestCand = Worst;
1864     }
1865 
1866     if (GlobalCand.size() <= NumCands)
1867       GlobalCand.resize(NumCands+1);
1868     GlobalSplitCandidate &Cand = GlobalCand[NumCands];
1869     Cand.reset(IntfCache, PhysReg);
1870 
1871     SpillPlacer->prepare(Cand.LiveBundles);
1872     BlockFrequency Cost;
1873     if (!addSplitConstraints(Cand.Intf, Cost)) {
1874       LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tno positive bundles\n");
1875       continue;
1876     }
1877     LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tstatic = ";
1878                MBFI->printBlockFreq(dbgs(), Cost));
1879     if (Cost >= BestCost) {
1880       LLVM_DEBUG({
1881         if (BestCand == NoCand)
1882           dbgs() << " worse than no bundles\n";
1883         else
1884           dbgs() << " worse than "
1885                  << printReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
1886       });
1887       continue;
1888     }
1889     growRegion(Cand);
1890 
1891     SpillPlacer->finish();
1892 
1893     // No live bundles, defer to splitSingleBlocks().
1894     if (!Cand.LiveBundles.any()) {
1895       LLVM_DEBUG(dbgs() << " no bundles.\n");
1896       continue;
1897     }
1898 
1899     bool HasEvictionChain = false;
1900     Cost += calcGlobalSplitCost(Cand, Order, &HasEvictionChain);
1901     LLVM_DEBUG({
1902       dbgs() << ", total = ";
1903       MBFI->printBlockFreq(dbgs(), Cost) << " with bundles";
1904       for (int i : Cand.LiveBundles.set_bits())
1905         dbgs() << " EB#" << i;
1906       dbgs() << ".\n";
1907     });
1908     if (Cost < BestCost) {
1909       BestCand = NumCands;
1910       BestCost = Cost;
1911       // See splitCanCauseEvictionChain for detailed description of bad
1912       // eviction chain scenarios.
1913       if (CanCauseEvictionChain)
1914         *CanCauseEvictionChain = HasEvictionChain;
1915     }
1916     ++NumCands;
1917   }
1918 
1919   if (CanCauseEvictionChain && BestCand != NoCand) {
1920     // See splitCanCauseEvictionChain for detailed description of bad
1921     // eviction chain scenarios.
1922     LLVM_DEBUG(dbgs() << "Best split candidate of vreg "
1923                       << printReg(VirtReg.reg, TRI) << "  may ");
1924     if (!(*CanCauseEvictionChain))
1925       LLVM_DEBUG(dbgs() << "not ");
1926     LLVM_DEBUG(dbgs() << "cause bad eviction chain\n");
1927   }
1928 
1929   return BestCand;
1930 }
1931 
1932 unsigned RAGreedy::doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
1933                                  bool HasCompact,
1934                                  SmallVectorImpl<unsigned> &NewVRegs) {
1935   SmallVector<unsigned, 8> UsedCands;
1936   // Prepare split editor.
1937   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1938   SE->reset(LREdit, SplitSpillMode);
1939 
1940   // Assign all edge bundles to the preferred candidate, or NoCand.
1941   BundleCand.assign(Bundles->getNumBundles(), NoCand);
1942 
1943   // Assign bundles for the best candidate region.
1944   if (BestCand != NoCand) {
1945     GlobalSplitCandidate &Cand = GlobalCand[BestCand];
1946     if (unsigned B = Cand.getBundles(BundleCand, BestCand)) {
1947       UsedCands.push_back(BestCand);
1948       Cand.IntvIdx = SE->openIntv();
1949       LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand.PhysReg, TRI) << " in "
1950                         << B << " bundles, intv " << Cand.IntvIdx << ".\n");
1951       (void)B;
1952     }
1953   }
1954 
1955   // Assign bundles for the compact region.
1956   if (HasCompact) {
1957     GlobalSplitCandidate &Cand = GlobalCand.front();
1958     assert(!Cand.PhysReg && "Compact region has no physreg");
1959     if (unsigned B = Cand.getBundles(BundleCand, 0)) {
1960       UsedCands.push_back(0);
1961       Cand.IntvIdx = SE->openIntv();
1962       LLVM_DEBUG(dbgs() << "Split for compact region in " << B
1963                         << " bundles, intv " << Cand.IntvIdx << ".\n");
1964       (void)B;
1965     }
1966   }
1967 
1968   splitAroundRegion(LREdit, UsedCands);
1969   return 0;
1970 }
1971 
1972 //===----------------------------------------------------------------------===//
1973 //                            Per-Block Splitting
1974 //===----------------------------------------------------------------------===//
1975 
1976 /// tryBlockSplit - Split a global live range around every block with uses. This
1977 /// creates a lot of local live ranges, that will be split by tryLocalSplit if
1978 /// they don't allocate.
1979 unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1980                                  SmallVectorImpl<unsigned> &NewVRegs) {
1981   assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed");
1982   unsigned Reg = VirtReg.reg;
1983   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1984   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1985   SE->reset(LREdit, SplitSpillMode);
1986   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1987   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1988     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1989     if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1990       SE->splitSingleBlock(BI);
1991   }
1992   // No blocks were split.
1993   if (LREdit.empty())
1994     return 0;
1995 
1996   // We did split for some blocks.
1997   SmallVector<unsigned, 8> IntvMap;
1998   SE->finish(&IntvMap);
1999 
2000   // Tell LiveDebugVariables about the new ranges.
2001   DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
2002 
2003   ExtraRegInfo.resize(MRI->getNumVirtRegs());
2004 
2005   // Sort out the new intervals created by splitting. The remainder interval
2006   // goes straight to spilling, the new local ranges get to stay RS_New.
2007   for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
2008     LiveInterval &LI = LIS->getInterval(LREdit.get(i));
2009     if (getStage(LI) == RS_New && IntvMap[i] == 0)
2010       setStage(LI, RS_Spill);
2011   }
2012 
2013   if (VerifyEnabled)
2014     MF->verify(this, "After splitting live range around basic blocks");
2015   return 0;
2016 }
2017 
2018 //===----------------------------------------------------------------------===//
2019 //                         Per-Instruction Splitting
2020 //===----------------------------------------------------------------------===//
2021 
2022 /// Get the number of allocatable registers that match the constraints of \p Reg
2023 /// on \p MI and that are also in \p SuperRC.
2024 static unsigned getNumAllocatableRegsForConstraints(
2025     const MachineInstr *MI, unsigned Reg, const TargetRegisterClass *SuperRC,
2026     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
2027     const RegisterClassInfo &RCI) {
2028   assert(SuperRC && "Invalid register class");
2029 
2030   const TargetRegisterClass *ConstrainedRC =
2031       MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI,
2032                                              /* ExploreBundle */ true);
2033   if (!ConstrainedRC)
2034     return 0;
2035   return RCI.getNumAllocatableRegs(ConstrainedRC);
2036 }
2037 
2038 /// tryInstructionSplit - Split a live range around individual instructions.
2039 /// This is normally not worthwhile since the spiller is doing essentially the
2040 /// same thing. However, when the live range is in a constrained register
2041 /// class, it may help to insert copies such that parts of the live range can
2042 /// be moved to a larger register class.
2043 ///
2044 /// This is similar to spilling to a larger register class.
2045 unsigned
2046 RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
2047                               SmallVectorImpl<unsigned> &NewVRegs) {
2048   const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg);
2049   // There is no point to this if there are no larger sub-classes.
2050   if (!RegClassInfo.isProperSubClass(CurRC))
2051     return 0;
2052 
2053   // Always enable split spill mode, since we're effectively spilling to a
2054   // register.
2055   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2056   SE->reset(LREdit, SplitEditor::SM_Size);
2057 
2058   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
2059   if (Uses.size() <= 1)
2060     return 0;
2061 
2062   LLVM_DEBUG(dbgs() << "Split around " << Uses.size()
2063                     << " individual instrs.\n");
2064 
2065   const TargetRegisterClass *SuperRC =
2066       TRI->getLargestLegalSuperClass(CurRC, *MF);
2067   unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC);
2068   // Split around every non-copy instruction if this split will relax
2069   // the constraints on the virtual register.
2070   // Otherwise, splitting just inserts uncoalescable copies that do not help
2071   // the allocation.
2072   for (unsigned i = 0; i != Uses.size(); ++i) {
2073     if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Uses[i]))
2074       if (MI->isFullCopy() ||
2075           SuperRCNumAllocatableRegs ==
2076               getNumAllocatableRegsForConstraints(MI, VirtReg.reg, SuperRC, TII,
2077                                                   TRI, RCI)) {
2078         LLVM_DEBUG(dbgs() << "    skip:\t" << Uses[i] << '\t' << *MI);
2079         continue;
2080       }
2081     SE->openIntv();
2082     SlotIndex SegStart = SE->enterIntvBefore(Uses[i]);
2083     SlotIndex SegStop  = SE->leaveIntvAfter(Uses[i]);
2084     SE->useIntv(SegStart, SegStop);
2085   }
2086 
2087   if (LREdit.empty()) {
2088     LLVM_DEBUG(dbgs() << "All uses were copies.\n");
2089     return 0;
2090   }
2091 
2092   SmallVector<unsigned, 8> IntvMap;
2093   SE->finish(&IntvMap);
2094   DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS);
2095   ExtraRegInfo.resize(MRI->getNumVirtRegs());
2096 
2097   // Assign all new registers to RS_Spill. This was the last chance.
2098   setStage(LREdit.begin(), LREdit.end(), RS_Spill);
2099   return 0;
2100 }
2101 
2102 //===----------------------------------------------------------------------===//
2103 //                             Local Splitting
2104 //===----------------------------------------------------------------------===//
2105 
2106 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted
2107 /// in order to use PhysReg between two entries in SA->UseSlots.
2108 ///
2109 /// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1].
2110 ///
2111 void RAGreedy::calcGapWeights(unsigned PhysReg,
2112                               SmallVectorImpl<float> &GapWeight) {
2113   assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
2114   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
2115   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
2116   const unsigned NumGaps = Uses.size()-1;
2117 
2118   // Start and end points for the interference check.
2119   SlotIndex StartIdx =
2120     BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr;
2121   SlotIndex StopIdx =
2122     BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr;
2123 
2124   GapWeight.assign(NumGaps, 0.0f);
2125 
2126   // Add interference from each overlapping register.
2127   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2128     if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units)
2129           .checkInterference())
2130       continue;
2131 
2132     // We know that VirtReg is a continuous interval from FirstInstr to
2133     // LastInstr, so we don't need InterferenceQuery.
2134     //
2135     // Interference that overlaps an instruction is counted in both gaps
2136     // surrounding the instruction. The exception is interference before
2137     // StartIdx and after StopIdx.
2138     //
2139     LiveIntervalUnion::SegmentIter IntI =
2140       Matrix->getLiveUnions()[*Units] .find(StartIdx);
2141     for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
2142       // Skip the gaps before IntI.
2143       while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
2144         if (++Gap == NumGaps)
2145           break;
2146       if (Gap == NumGaps)
2147         break;
2148 
2149       // Update the gaps covered by IntI.
2150       const float weight = IntI.value()->weight;
2151       for (; Gap != NumGaps; ++Gap) {
2152         GapWeight[Gap] = std::max(GapWeight[Gap], weight);
2153         if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
2154           break;
2155       }
2156       if (Gap == NumGaps)
2157         break;
2158     }
2159   }
2160 
2161   // Add fixed interference.
2162   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2163     const LiveRange &LR = LIS->getRegUnit(*Units);
2164     LiveRange::const_iterator I = LR.find(StartIdx);
2165     LiveRange::const_iterator E = LR.end();
2166 
2167     // Same loop as above. Mark any overlapped gaps as HUGE_VALF.
2168     for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) {
2169       while (Uses[Gap+1].getBoundaryIndex() < I->start)
2170         if (++Gap == NumGaps)
2171           break;
2172       if (Gap == NumGaps)
2173         break;
2174 
2175       for (; Gap != NumGaps; ++Gap) {
2176         GapWeight[Gap] = huge_valf;
2177         if (Uses[Gap+1].getBaseIndex() >= I->end)
2178           break;
2179       }
2180       if (Gap == NumGaps)
2181         break;
2182     }
2183   }
2184 }
2185 
2186 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
2187 /// basic block.
2188 ///
2189 unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
2190                                  SmallVectorImpl<unsigned> &NewVRegs) {
2191   // TODO: the function currently only handles a single UseBlock; it should be
2192   // possible to generalize.
2193   if (SA->getUseBlocks().size() != 1)
2194     return 0;
2195 
2196   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
2197 
2198   // Note that it is possible to have an interval that is live-in or live-out
2199   // while only covering a single block - A phi-def can use undef values from
2200   // predecessors, and the block could be a single-block loop.
2201   // We don't bother doing anything clever about such a case, we simply assume
2202   // that the interval is continuous from FirstInstr to LastInstr. We should
2203   // make sure that we don't do anything illegal to such an interval, though.
2204 
2205   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
2206   if (Uses.size() <= 2)
2207     return 0;
2208   const unsigned NumGaps = Uses.size()-1;
2209 
2210   LLVM_DEBUG({
2211     dbgs() << "tryLocalSplit: ";
2212     for (unsigned i = 0, e = Uses.size(); i != e; ++i)
2213       dbgs() << ' ' << Uses[i];
2214     dbgs() << '\n';
2215   });
2216 
2217   // If VirtReg is live across any register mask operands, compute a list of
2218   // gaps with register masks.
2219   SmallVector<unsigned, 8> RegMaskGaps;
2220   if (Matrix->checkRegMaskInterference(VirtReg)) {
2221     // Get regmask slots for the whole block.
2222     ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber());
2223     LLVM_DEBUG(dbgs() << RMS.size() << " regmasks in block:");
2224     // Constrain to VirtReg's live range.
2225     unsigned ri = std::lower_bound(RMS.begin(), RMS.end(),
2226                                    Uses.front().getRegSlot()) - RMS.begin();
2227     unsigned re = RMS.size();
2228     for (unsigned i = 0; i != NumGaps && ri != re; ++i) {
2229       // Look for Uses[i] <= RMS <= Uses[i+1].
2230       assert(!SlotIndex::isEarlierInstr(RMS[ri], Uses[i]));
2231       if (SlotIndex::isEarlierInstr(Uses[i+1], RMS[ri]))
2232         continue;
2233       // Skip a regmask on the same instruction as the last use. It doesn't
2234       // overlap the live range.
2235       if (SlotIndex::isSameInstr(Uses[i+1], RMS[ri]) && i+1 == NumGaps)
2236         break;
2237       LLVM_DEBUG(dbgs() << ' ' << RMS[ri] << ':' << Uses[i] << '-'
2238                         << Uses[i + 1]);
2239       RegMaskGaps.push_back(i);
2240       // Advance ri to the next gap. A regmask on one of the uses counts in
2241       // both gaps.
2242       while (ri != re && SlotIndex::isEarlierInstr(RMS[ri], Uses[i+1]))
2243         ++ri;
2244     }
2245     LLVM_DEBUG(dbgs() << '\n');
2246   }
2247 
2248   // Since we allow local split results to be split again, there is a risk of
2249   // creating infinite loops. It is tempting to require that the new live
2250   // ranges have less instructions than the original. That would guarantee
2251   // convergence, but it is too strict. A live range with 3 instructions can be
2252   // split 2+3 (including the COPY), and we want to allow that.
2253   //
2254   // Instead we use these rules:
2255   //
2256   // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the
2257   //    noop split, of course).
2258   // 2. Require progress be made for ranges with getStage() == RS_Split2. All
2259   //    the new ranges must have fewer instructions than before the split.
2260   // 3. New ranges with the same number of instructions are marked RS_Split2,
2261   //    smaller ranges are marked RS_New.
2262   //
2263   // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
2264   // excessive splitting and infinite loops.
2265   //
2266   bool ProgressRequired = getStage(VirtReg) >= RS_Split2;
2267 
2268   // Best split candidate.
2269   unsigned BestBefore = NumGaps;
2270   unsigned BestAfter = 0;
2271   float BestDiff = 0;
2272 
2273   const float blockFreq =
2274     SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() *
2275     (1.0f / MBFI->getEntryFreq());
2276   SmallVector<float, 8> GapWeight;
2277 
2278   Order.rewind();
2279   while (unsigned PhysReg = Order.next()) {
2280     // Keep track of the largest spill weight that would need to be evicted in
2281     // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1].
2282     calcGapWeights(PhysReg, GapWeight);
2283 
2284     // Remove any gaps with regmask clobbers.
2285     if (Matrix->checkRegMaskInterference(VirtReg, PhysReg))
2286       for (unsigned i = 0, e = RegMaskGaps.size(); i != e; ++i)
2287         GapWeight[RegMaskGaps[i]] = huge_valf;
2288 
2289     // Try to find the best sequence of gaps to close.
2290     // The new spill weight must be larger than any gap interference.
2291 
2292     // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
2293     unsigned SplitBefore = 0, SplitAfter = 1;
2294 
2295     // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
2296     // It is the spill weight that needs to be evicted.
2297     float MaxGap = GapWeight[0];
2298 
2299     while (true) {
2300       // Live before/after split?
2301       const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
2302       const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
2303 
2304       LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << ' ' << Uses[SplitBefore]
2305                         << '-' << Uses[SplitAfter] << " i=" << MaxGap);
2306 
2307       // Stop before the interval gets so big we wouldn't be making progress.
2308       if (!LiveBefore && !LiveAfter) {
2309         LLVM_DEBUG(dbgs() << " all\n");
2310         break;
2311       }
2312       // Should the interval be extended or shrunk?
2313       bool Shrink = true;
2314 
2315       // How many gaps would the new range have?
2316       unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
2317 
2318       // Legally, without causing looping?
2319       bool Legal = !ProgressRequired || NewGaps < NumGaps;
2320 
2321       if (Legal && MaxGap < huge_valf) {
2322         // Estimate the new spill weight. Each instruction reads or writes the
2323         // register. Conservatively assume there are no read-modify-write
2324         // instructions.
2325         //
2326         // Try to guess the size of the new interval.
2327         const float EstWeight = normalizeSpillWeight(
2328             blockFreq * (NewGaps + 1),
2329             Uses[SplitBefore].distance(Uses[SplitAfter]) +
2330                 (LiveBefore + LiveAfter) * SlotIndex::InstrDist,
2331             1);
2332         // Would this split be possible to allocate?
2333         // Never allocate all gaps, we wouldn't be making progress.
2334         LLVM_DEBUG(dbgs() << " w=" << EstWeight);
2335         if (EstWeight * Hysteresis >= MaxGap) {
2336           Shrink = false;
2337           float Diff = EstWeight - MaxGap;
2338           if (Diff > BestDiff) {
2339             LLVM_DEBUG(dbgs() << " (best)");
2340             BestDiff = Hysteresis * Diff;
2341             BestBefore = SplitBefore;
2342             BestAfter = SplitAfter;
2343           }
2344         }
2345       }
2346 
2347       // Try to shrink.
2348       if (Shrink) {
2349         if (++SplitBefore < SplitAfter) {
2350           LLVM_DEBUG(dbgs() << " shrink\n");
2351           // Recompute the max when necessary.
2352           if (GapWeight[SplitBefore - 1] >= MaxGap) {
2353             MaxGap = GapWeight[SplitBefore];
2354             for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i)
2355               MaxGap = std::max(MaxGap, GapWeight[i]);
2356           }
2357           continue;
2358         }
2359         MaxGap = 0;
2360       }
2361 
2362       // Try to extend the interval.
2363       if (SplitAfter >= NumGaps) {
2364         LLVM_DEBUG(dbgs() << " end\n");
2365         break;
2366       }
2367 
2368       LLVM_DEBUG(dbgs() << " extend\n");
2369       MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
2370     }
2371   }
2372 
2373   // Didn't find any candidates?
2374   if (BestBefore == NumGaps)
2375     return 0;
2376 
2377   LLVM_DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] << '-'
2378                     << Uses[BestAfter] << ", " << BestDiff << ", "
2379                     << (BestAfter - BestBefore + 1) << " instrs\n");
2380 
2381   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2382   SE->reset(LREdit);
2383 
2384   SE->openIntv();
2385   SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
2386   SlotIndex SegStop  = SE->leaveIntvAfter(Uses[BestAfter]);
2387   SE->useIntv(SegStart, SegStop);
2388   SmallVector<unsigned, 8> IntvMap;
2389   SE->finish(&IntvMap);
2390   DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS);
2391 
2392   // If the new range has the same number of instructions as before, mark it as
2393   // RS_Split2 so the next split will be forced to make progress. Otherwise,
2394   // leave the new intervals as RS_New so they can compete.
2395   bool LiveBefore = BestBefore != 0 || BI.LiveIn;
2396   bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
2397   unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
2398   if (NewGaps >= NumGaps) {
2399     LLVM_DEBUG(dbgs() << "Tagging non-progress ranges: ");
2400     assert(!ProgressRequired && "Didn't make progress when it was required.");
2401     for (unsigned i = 0, e = IntvMap.size(); i != e; ++i)
2402       if (IntvMap[i] == 1) {
2403         setStage(LIS->getInterval(LREdit.get(i)), RS_Split2);
2404         LLVM_DEBUG(dbgs() << printReg(LREdit.get(i)));
2405       }
2406     LLVM_DEBUG(dbgs() << '\n');
2407   }
2408   ++NumLocalSplits;
2409 
2410   return 0;
2411 }
2412 
2413 //===----------------------------------------------------------------------===//
2414 //                          Live Range Splitting
2415 //===----------------------------------------------------------------------===//
2416 
2417 /// trySplit - Try to split VirtReg or one of its interferences, making it
2418 /// assignable.
2419 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
2420 unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
2421                             SmallVectorImpl<unsigned>&NewVRegs) {
2422   // Ranges must be Split2 or less.
2423   if (getStage(VirtReg) >= RS_Spill)
2424     return 0;
2425 
2426   // Local intervals are handled separately.
2427   if (LIS->intervalIsInOneMBB(VirtReg)) {
2428     NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName,
2429                        TimerGroupDescription, TimePassesIsEnabled);
2430     SA->analyze(&VirtReg);
2431     unsigned PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs);
2432     if (PhysReg || !NewVRegs.empty())
2433       return PhysReg;
2434     return tryInstructionSplit(VirtReg, Order, NewVRegs);
2435   }
2436 
2437   NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName,
2438                      TimerGroupDescription, TimePassesIsEnabled);
2439 
2440   SA->analyze(&VirtReg);
2441 
2442   // FIXME: SplitAnalysis may repair broken live ranges coming from the
2443   // coalescer. That may cause the range to become allocatable which means that
2444   // tryRegionSplit won't be making progress. This check should be replaced with
2445   // an assertion when the coalescer is fixed.
2446   if (SA->didRepairRange()) {
2447     // VirtReg has changed, so all cached queries are invalid.
2448     Matrix->invalidateVirtRegs();
2449     if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs))
2450       return PhysReg;
2451   }
2452 
2453   // First try to split around a region spanning multiple blocks. RS_Split2
2454   // ranges already made dubious progress with region splitting, so they go
2455   // straight to single block splitting.
2456   if (getStage(VirtReg) < RS_Split2) {
2457     unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
2458     if (PhysReg || !NewVRegs.empty())
2459       return PhysReg;
2460   }
2461 
2462   // Then isolate blocks.
2463   return tryBlockSplit(VirtReg, Order, NewVRegs);
2464 }
2465 
2466 //===----------------------------------------------------------------------===//
2467 //                          Last Chance Recoloring
2468 //===----------------------------------------------------------------------===//
2469 
2470 /// Return true if \p reg has any tied def operand.
2471 static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg) {
2472   for (const MachineOperand &MO : MRI->def_operands(reg))
2473     if (MO.isTied())
2474       return true;
2475 
2476   return false;
2477 }
2478 
2479 /// mayRecolorAllInterferences - Check if the virtual registers that
2480 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be
2481 /// recolored to free \p PhysReg.
2482 /// When true is returned, \p RecoloringCandidates has been augmented with all
2483 /// the live intervals that need to be recolored in order to free \p PhysReg
2484 /// for \p VirtReg.
2485 /// \p FixedRegisters contains all the virtual registers that cannot be
2486 /// recolored.
2487 bool
2488 RAGreedy::mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg,
2489                                      SmallLISet &RecoloringCandidates,
2490                                      const SmallVirtRegSet &FixedRegisters) {
2491   const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg);
2492 
2493   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2494     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
2495     // If there is LastChanceRecoloringMaxInterference or more interferences,
2496     // chances are one would not be recolorable.
2497     if (Q.collectInterferingVRegs(LastChanceRecoloringMaxInterference) >=
2498         LastChanceRecoloringMaxInterference && !ExhaustiveSearch) {
2499       LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n");
2500       CutOffInfo |= CO_Interf;
2501       return false;
2502     }
2503     for (unsigned i = Q.interferingVRegs().size(); i; --i) {
2504       LiveInterval *Intf = Q.interferingVRegs()[i - 1];
2505       // If Intf is done and sit on the same register class as VirtReg,
2506       // it would not be recolorable as it is in the same state as VirtReg.
2507       // However, if VirtReg has tied defs and Intf doesn't, then
2508       // there is still a point in examining if it can be recolorable.
2509       if (((getStage(*Intf) == RS_Done &&
2510             MRI->getRegClass(Intf->reg) == CurRC) &&
2511            !(hasTiedDef(MRI, VirtReg.reg) && !hasTiedDef(MRI, Intf->reg))) ||
2512           FixedRegisters.count(Intf->reg)) {
2513         LLVM_DEBUG(
2514             dbgs() << "Early abort: the interference is not recolorable.\n");
2515         return false;
2516       }
2517       RecoloringCandidates.insert(Intf);
2518     }
2519   }
2520   return true;
2521 }
2522 
2523 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring
2524 /// its interferences.
2525 /// Last chance recoloring chooses a color for \p VirtReg and recolors every
2526 /// virtual register that was using it. The recoloring process may recursively
2527 /// use the last chance recoloring. Therefore, when a virtual register has been
2528 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot
2529 /// be last-chance-recolored again during this recoloring "session".
2530 /// E.g.,
2531 /// Let
2532 /// vA can use {R1, R2    }
2533 /// vB can use {    R2, R3}
2534 /// vC can use {R1        }
2535 /// Where vA, vB, and vC cannot be split anymore (they are reloads for
2536 /// instance) and they all interfere.
2537 ///
2538 /// vA is assigned R1
2539 /// vB is assigned R2
2540 /// vC tries to evict vA but vA is already done.
2541 /// Regular register allocation fails.
2542 ///
2543 /// Last chance recoloring kicks in:
2544 /// vC does as if vA was evicted => vC uses R1.
2545 /// vC is marked as fixed.
2546 /// vA needs to find a color.
2547 /// None are available.
2548 /// vA cannot evict vC: vC is a fixed virtual register now.
2549 /// vA does as if vB was evicted => vA uses R2.
2550 /// vB needs to find a color.
2551 /// R3 is available.
2552 /// Recoloring => vC = R1, vA = R2, vB = R3
2553 ///
2554 /// \p Order defines the preferred allocation order for \p VirtReg.
2555 /// \p NewRegs will contain any new virtual register that have been created
2556 /// (split, spill) during the process and that must be assigned.
2557 /// \p FixedRegisters contains all the virtual registers that cannot be
2558 /// recolored.
2559 /// \p Depth gives the current depth of the last chance recoloring.
2560 /// \return a physical register that can be used for VirtReg or ~0u if none
2561 /// exists.
2562 unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg,
2563                                            AllocationOrder &Order,
2564                                            SmallVectorImpl<unsigned> &NewVRegs,
2565                                            SmallVirtRegSet &FixedRegisters,
2566                                            unsigned Depth) {
2567   LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n');
2568   // Ranges must be Done.
2569   assert((getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) &&
2570          "Last chance recoloring should really be last chance");
2571   // Set the max depth to LastChanceRecoloringMaxDepth.
2572   // We may want to reconsider that if we end up with a too large search space
2573   // for target with hundreds of registers.
2574   // Indeed, in that case we may want to cut the search space earlier.
2575   if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) {
2576     LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n");
2577     CutOffInfo |= CO_Depth;
2578     return ~0u;
2579   }
2580 
2581   // Set of Live intervals that will need to be recolored.
2582   SmallLISet RecoloringCandidates;
2583   // Record the original mapping virtual register to physical register in case
2584   // the recoloring fails.
2585   DenseMap<unsigned, unsigned> VirtRegToPhysReg;
2586   // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in
2587   // this recoloring "session".
2588   FixedRegisters.insert(VirtReg.reg);
2589   SmallVector<unsigned, 4> CurrentNewVRegs;
2590 
2591   Order.rewind();
2592   while (unsigned PhysReg = Order.next()) {
2593     LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg << " to "
2594                       << printReg(PhysReg, TRI) << '\n');
2595     RecoloringCandidates.clear();
2596     VirtRegToPhysReg.clear();
2597     CurrentNewVRegs.clear();
2598 
2599     // It is only possible to recolor virtual register interference.
2600     if (Matrix->checkInterference(VirtReg, PhysReg) >
2601         LiveRegMatrix::IK_VirtReg) {
2602       LLVM_DEBUG(
2603           dbgs() << "Some interferences are not with virtual registers.\n");
2604 
2605       continue;
2606     }
2607 
2608     // Early give up on this PhysReg if it is obvious we cannot recolor all
2609     // the interferences.
2610     if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates,
2611                                     FixedRegisters)) {
2612       LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n");
2613       continue;
2614     }
2615 
2616     // RecoloringCandidates contains all the virtual registers that interfer
2617     // with VirtReg on PhysReg (or one of its aliases).
2618     // Enqueue them for recoloring and perform the actual recoloring.
2619     PQueue RecoloringQueue;
2620     for (SmallLISet::iterator It = RecoloringCandidates.begin(),
2621                               EndIt = RecoloringCandidates.end();
2622          It != EndIt; ++It) {
2623       unsigned ItVirtReg = (*It)->reg;
2624       enqueue(RecoloringQueue, *It);
2625       assert(VRM->hasPhys(ItVirtReg) &&
2626              "Interferences are supposed to be with allocated variables");
2627 
2628       // Record the current allocation.
2629       VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg);
2630       // unset the related struct.
2631       Matrix->unassign(**It);
2632     }
2633 
2634     // Do as if VirtReg was assigned to PhysReg so that the underlying
2635     // recoloring has the right information about the interferes and
2636     // available colors.
2637     Matrix->assign(VirtReg, PhysReg);
2638 
2639     // Save the current recoloring state.
2640     // If we cannot recolor all the interferences, we will have to start again
2641     // at this point for the next physical register.
2642     SmallVirtRegSet SaveFixedRegisters(FixedRegisters);
2643     if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs,
2644                                 FixedRegisters, Depth)) {
2645       // Push the queued vregs into the main queue.
2646       for (unsigned NewVReg : CurrentNewVRegs)
2647         NewVRegs.push_back(NewVReg);
2648       // Do not mess up with the global assignment process.
2649       // I.e., VirtReg must be unassigned.
2650       Matrix->unassign(VirtReg);
2651       return PhysReg;
2652     }
2653 
2654     LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to "
2655                       << printReg(PhysReg, TRI) << '\n');
2656 
2657     // The recoloring attempt failed, undo the changes.
2658     FixedRegisters = SaveFixedRegisters;
2659     Matrix->unassign(VirtReg);
2660 
2661     // For a newly created vreg which is also in RecoloringCandidates,
2662     // don't add it to NewVRegs because its physical register will be restored
2663     // below. Other vregs in CurrentNewVRegs are created by calling
2664     // selectOrSplit and should be added into NewVRegs.
2665     for (SmallVectorImpl<unsigned>::iterator Next = CurrentNewVRegs.begin(),
2666                                              End = CurrentNewVRegs.end();
2667          Next != End; ++Next) {
2668       if (RecoloringCandidates.count(&LIS->getInterval(*Next)))
2669         continue;
2670       NewVRegs.push_back(*Next);
2671     }
2672 
2673     for (SmallLISet::iterator It = RecoloringCandidates.begin(),
2674                               EndIt = RecoloringCandidates.end();
2675          It != EndIt; ++It) {
2676       unsigned ItVirtReg = (*It)->reg;
2677       if (VRM->hasPhys(ItVirtReg))
2678         Matrix->unassign(**It);
2679       unsigned ItPhysReg = VirtRegToPhysReg[ItVirtReg];
2680       Matrix->assign(**It, ItPhysReg);
2681     }
2682   }
2683 
2684   // Last chance recoloring did not worked either, give up.
2685   return ~0u;
2686 }
2687 
2688 /// tryRecoloringCandidates - Try to assign a new color to every register
2689 /// in \RecoloringQueue.
2690 /// \p NewRegs will contain any new virtual register created during the
2691 /// recoloring process.
2692 /// \p FixedRegisters[in/out] contains all the registers that have been
2693 /// recolored.
2694 /// \return true if all virtual registers in RecoloringQueue were successfully
2695 /// recolored, false otherwise.
2696 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue,
2697                                        SmallVectorImpl<unsigned> &NewVRegs,
2698                                        SmallVirtRegSet &FixedRegisters,
2699                                        unsigned Depth) {
2700   while (!RecoloringQueue.empty()) {
2701     LiveInterval *LI = dequeue(RecoloringQueue);
2702     LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI << '\n');
2703     unsigned PhysReg;
2704     PhysReg = selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, Depth + 1);
2705     // When splitting happens, the live-range may actually be empty.
2706     // In that case, this is okay to continue the recoloring even
2707     // if we did not find an alternative color for it. Indeed,
2708     // there will not be anything to color for LI in the end.
2709     if (PhysReg == ~0u || (!PhysReg && !LI->empty()))
2710       return false;
2711 
2712     if (!PhysReg) {
2713       assert(LI->empty() && "Only empty live-range do not require a register");
2714       LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2715                         << " succeeded. Empty LI.\n");
2716       continue;
2717     }
2718     LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2719                       << " succeeded with: " << printReg(PhysReg, TRI) << '\n');
2720 
2721     Matrix->assign(*LI, PhysReg);
2722     FixedRegisters.insert(LI->reg);
2723   }
2724   return true;
2725 }
2726 
2727 //===----------------------------------------------------------------------===//
2728 //                            Main Entry Point
2729 //===----------------------------------------------------------------------===//
2730 
2731 unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg,
2732                                  SmallVectorImpl<unsigned> &NewVRegs) {
2733   CutOffInfo = CO_None;
2734   LLVMContext &Ctx = MF->getFunction().getContext();
2735   SmallVirtRegSet FixedRegisters;
2736   unsigned Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters);
2737   if (Reg == ~0U && (CutOffInfo != CO_None)) {
2738     uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf);
2739     if (CutOffEncountered == CO_Depth)
2740       Ctx.emitError("register allocation failed: maximum depth for recoloring "
2741                     "reached. Use -fexhaustive-register-search to skip "
2742                     "cutoffs");
2743     else if (CutOffEncountered == CO_Interf)
2744       Ctx.emitError("register allocation failed: maximum interference for "
2745                     "recoloring reached. Use -fexhaustive-register-search "
2746                     "to skip cutoffs");
2747     else if (CutOffEncountered == (CO_Depth | CO_Interf))
2748       Ctx.emitError("register allocation failed: maximum interference and "
2749                     "depth for recoloring reached. Use "
2750                     "-fexhaustive-register-search to skip cutoffs");
2751   }
2752   return Reg;
2753 }
2754 
2755 /// Using a CSR for the first time has a cost because it causes push|pop
2756 /// to be added to prologue|epilogue. Splitting a cold section of the live
2757 /// range can have lower cost than using the CSR for the first time;
2758 /// Spilling a live range in the cold path can have lower cost than using
2759 /// the CSR for the first time. Returns the physical register if we decide
2760 /// to use the CSR; otherwise return 0.
2761 unsigned RAGreedy::tryAssignCSRFirstTime(LiveInterval &VirtReg,
2762                                          AllocationOrder &Order,
2763                                          unsigned PhysReg,
2764                                          unsigned &CostPerUseLimit,
2765                                          SmallVectorImpl<unsigned> &NewVRegs) {
2766   if (getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) {
2767     // We choose spill over using the CSR for the first time if the spill cost
2768     // is lower than CSRCost.
2769     SA->analyze(&VirtReg);
2770     if (calcSpillCost() >= CSRCost)
2771       return PhysReg;
2772 
2773     // We are going to spill, set CostPerUseLimit to 1 to make sure that
2774     // we will not use a callee-saved register in tryEvict.
2775     CostPerUseLimit = 1;
2776     return 0;
2777   }
2778   if (getStage(VirtReg) < RS_Split) {
2779     // We choose pre-splitting over using the CSR for the first time if
2780     // the cost of splitting is lower than CSRCost.
2781     SA->analyze(&VirtReg);
2782     unsigned NumCands = 0;
2783     BlockFrequency BestCost = CSRCost; // Don't modify CSRCost.
2784     unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost,
2785                                                  NumCands, true /*IgnoreCSR*/);
2786     if (BestCand == NoCand)
2787       // Use the CSR if we can't find a region split below CSRCost.
2788       return PhysReg;
2789 
2790     // Perform the actual pre-splitting.
2791     doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs);
2792     return 0;
2793   }
2794   return PhysReg;
2795 }
2796 
2797 void RAGreedy::aboutToRemoveInterval(LiveInterval &LI) {
2798   // Do not keep invalid information around.
2799   SetOfBrokenHints.remove(&LI);
2800 }
2801 
2802 void RAGreedy::initializeCSRCost() {
2803   // We use the larger one out of the command-line option and the value report
2804   // by TRI.
2805   CSRCost = BlockFrequency(
2806       std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost()));
2807   if (!CSRCost.getFrequency())
2808     return;
2809 
2810   // Raw cost is relative to Entry == 2^14; scale it appropriately.
2811   uint64_t ActualEntry = MBFI->getEntryFreq();
2812   if (!ActualEntry) {
2813     CSRCost = 0;
2814     return;
2815   }
2816   uint64_t FixedEntry = 1 << 14;
2817   if (ActualEntry < FixedEntry)
2818     CSRCost *= BranchProbability(ActualEntry, FixedEntry);
2819   else if (ActualEntry <= UINT32_MAX)
2820     // Invert the fraction and divide.
2821     CSRCost /= BranchProbability(FixedEntry, ActualEntry);
2822   else
2823     // Can't use BranchProbability in general, since it takes 32-bit numbers.
2824     CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry);
2825 }
2826 
2827 /// Collect the hint info for \p Reg.
2828 /// The results are stored into \p Out.
2829 /// \p Out is not cleared before being populated.
2830 void RAGreedy::collectHintInfo(unsigned Reg, HintsInfo &Out) {
2831   for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) {
2832     if (!Instr.isFullCopy())
2833       continue;
2834     // Look for the other end of the copy.
2835     unsigned OtherReg = Instr.getOperand(0).getReg();
2836     if (OtherReg == Reg) {
2837       OtherReg = Instr.getOperand(1).getReg();
2838       if (OtherReg == Reg)
2839         continue;
2840     }
2841     // Get the current assignment.
2842     unsigned OtherPhysReg = TargetRegisterInfo::isPhysicalRegister(OtherReg)
2843                                 ? OtherReg
2844                                 : VRM->getPhys(OtherReg);
2845     // Push the collected information.
2846     Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg,
2847                            OtherPhysReg));
2848   }
2849 }
2850 
2851 /// Using the given \p List, compute the cost of the broken hints if
2852 /// \p PhysReg was used.
2853 /// \return The cost of \p List for \p PhysReg.
2854 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List,
2855                                            unsigned PhysReg) {
2856   BlockFrequency Cost = 0;
2857   for (const HintInfo &Info : List) {
2858     if (Info.PhysReg != PhysReg)
2859       Cost += Info.Freq;
2860   }
2861   return Cost;
2862 }
2863 
2864 /// Using the register assigned to \p VirtReg, try to recolor
2865 /// all the live ranges that are copy-related with \p VirtReg.
2866 /// The recoloring is then propagated to all the live-ranges that have
2867 /// been recolored and so on, until no more copies can be coalesced or
2868 /// it is not profitable.
2869 /// For a given live range, profitability is determined by the sum of the
2870 /// frequencies of the non-identity copies it would introduce with the old
2871 /// and new register.
2872 void RAGreedy::tryHintRecoloring(LiveInterval &VirtReg) {
2873   // We have a broken hint, check if it is possible to fix it by
2874   // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted
2875   // some register and PhysReg may be available for the other live-ranges.
2876   SmallSet<unsigned, 4> Visited;
2877   SmallVector<unsigned, 2> RecoloringCandidates;
2878   HintsInfo Info;
2879   unsigned Reg = VirtReg.reg;
2880   unsigned PhysReg = VRM->getPhys(Reg);
2881   // Start the recoloring algorithm from the input live-interval, then
2882   // it will propagate to the ones that are copy-related with it.
2883   Visited.insert(Reg);
2884   RecoloringCandidates.push_back(Reg);
2885 
2886   LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg, TRI)
2887                     << '(' << printReg(PhysReg, TRI) << ")\n");
2888 
2889   do {
2890     Reg = RecoloringCandidates.pop_back_val();
2891 
2892     // We cannot recolor physical register.
2893     if (TargetRegisterInfo::isPhysicalRegister(Reg))
2894       continue;
2895 
2896     assert(VRM->hasPhys(Reg) && "We have unallocated variable!!");
2897 
2898     // Get the live interval mapped with this virtual register to be able
2899     // to check for the interference with the new color.
2900     LiveInterval &LI = LIS->getInterval(Reg);
2901     unsigned CurrPhys = VRM->getPhys(Reg);
2902     // Check that the new color matches the register class constraints and
2903     // that it is free for this live range.
2904     if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) ||
2905                                 Matrix->checkInterference(LI, PhysReg)))
2906       continue;
2907 
2908     LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << '(' << printReg(CurrPhys, TRI)
2909                       << ") is recolorable.\n");
2910 
2911     // Gather the hint info.
2912     Info.clear();
2913     collectHintInfo(Reg, Info);
2914     // Check if recoloring the live-range will increase the cost of the
2915     // non-identity copies.
2916     if (CurrPhys != PhysReg) {
2917       LLVM_DEBUG(dbgs() << "Checking profitability:\n");
2918       BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys);
2919       BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg);
2920       LLVM_DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency()
2921                         << "\nNew Cost: " << NewCopiesCost.getFrequency()
2922                         << '\n');
2923       if (OldCopiesCost < NewCopiesCost) {
2924         LLVM_DEBUG(dbgs() << "=> Not profitable.\n");
2925         continue;
2926       }
2927       // At this point, the cost is either cheaper or equal. If it is
2928       // equal, we consider this is profitable because it may expose
2929       // more recoloring opportunities.
2930       LLVM_DEBUG(dbgs() << "=> Profitable.\n");
2931       // Recolor the live-range.
2932       Matrix->unassign(LI);
2933       Matrix->assign(LI, PhysReg);
2934     }
2935     // Push all copy-related live-ranges to keep reconciling the broken
2936     // hints.
2937     for (const HintInfo &HI : Info) {
2938       if (Visited.insert(HI.Reg).second)
2939         RecoloringCandidates.push_back(HI.Reg);
2940     }
2941   } while (!RecoloringCandidates.empty());
2942 }
2943 
2944 /// Try to recolor broken hints.
2945 /// Broken hints may be repaired by recoloring when an evicted variable
2946 /// freed up a register for a larger live-range.
2947 /// Consider the following example:
2948 /// BB1:
2949 ///   a =
2950 ///   b =
2951 /// BB2:
2952 ///   ...
2953 ///   = b
2954 ///   = a
2955 /// Let us assume b gets split:
2956 /// BB1:
2957 ///   a =
2958 ///   b =
2959 /// BB2:
2960 ///   c = b
2961 ///   ...
2962 ///   d = c
2963 ///   = d
2964 ///   = a
2965 /// Because of how the allocation work, b, c, and d may be assigned different
2966 /// colors. Now, if a gets evicted later:
2967 /// BB1:
2968 ///   a =
2969 ///   st a, SpillSlot
2970 ///   b =
2971 /// BB2:
2972 ///   c = b
2973 ///   ...
2974 ///   d = c
2975 ///   = d
2976 ///   e = ld SpillSlot
2977 ///   = e
2978 /// This is likely that we can assign the same register for b, c, and d,
2979 /// getting rid of 2 copies.
2980 void RAGreedy::tryHintsRecoloring() {
2981   for (LiveInterval *LI : SetOfBrokenHints) {
2982     assert(TargetRegisterInfo::isVirtualRegister(LI->reg) &&
2983            "Recoloring is possible only for virtual registers");
2984     // Some dead defs may be around (e.g., because of debug uses).
2985     // Ignore those.
2986     if (!VRM->hasPhys(LI->reg))
2987       continue;
2988     tryHintRecoloring(*LI);
2989   }
2990 }
2991 
2992 unsigned RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg,
2993                                      SmallVectorImpl<unsigned> &NewVRegs,
2994                                      SmallVirtRegSet &FixedRegisters,
2995                                      unsigned Depth) {
2996   unsigned CostPerUseLimit = ~0u;
2997   // First try assigning a free register.
2998   AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo, Matrix);
2999   if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs)) {
3000     // If VirtReg got an assignment, the eviction info is no longre relevant.
3001     LastEvicted.clearEvicteeInfo(VirtReg.reg);
3002     // When NewVRegs is not empty, we may have made decisions such as evicting
3003     // a virtual register, go with the earlier decisions and use the physical
3004     // register.
3005     if (CSRCost.getFrequency() && isUnusedCalleeSavedReg(PhysReg) &&
3006         NewVRegs.empty()) {
3007       unsigned CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg,
3008                                               CostPerUseLimit, NewVRegs);
3009       if (CSRReg || !NewVRegs.empty())
3010         // Return now if we decide to use a CSR or create new vregs due to
3011         // pre-splitting.
3012         return CSRReg;
3013     } else
3014       return PhysReg;
3015   }
3016 
3017   LiveRangeStage Stage = getStage(VirtReg);
3018   LLVM_DEBUG(dbgs() << StageName[Stage] << " Cascade "
3019                     << ExtraRegInfo[VirtReg.reg].Cascade << '\n');
3020 
3021   // Try to evict a less worthy live range, but only for ranges from the primary
3022   // queue. The RS_Split ranges already failed to do this, and they should not
3023   // get a second chance until they have been split.
3024   if (Stage != RS_Split)
3025     if (unsigned PhysReg =
3026             tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit)) {
3027       unsigned Hint = MRI->getSimpleHint(VirtReg.reg);
3028       // If VirtReg has a hint and that hint is broken record this
3029       // virtual register as a recoloring candidate for broken hint.
3030       // Indeed, since we evicted a variable in its neighborhood it is
3031       // likely we can at least partially recolor some of the
3032       // copy-related live-ranges.
3033       if (Hint && Hint != PhysReg)
3034         SetOfBrokenHints.insert(&VirtReg);
3035       // If VirtReg eviction someone, the eviction info for it as an evictee is
3036       // no longre relevant.
3037       LastEvicted.clearEvicteeInfo(VirtReg.reg);
3038       return PhysReg;
3039     }
3040 
3041   assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs");
3042 
3043   // The first time we see a live range, don't try to split or spill.
3044   // Wait until the second time, when all smaller ranges have been allocated.
3045   // This gives a better picture of the interference to split around.
3046   if (Stage < RS_Split) {
3047     setStage(VirtReg, RS_Split);
3048     LLVM_DEBUG(dbgs() << "wait for second round\n");
3049     NewVRegs.push_back(VirtReg.reg);
3050     return 0;
3051   }
3052 
3053   if (Stage < RS_Spill) {
3054     // Try splitting VirtReg or interferences.
3055     unsigned NewVRegSizeBefore = NewVRegs.size();
3056     unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs);
3057     if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore)) {
3058       // If VirtReg got split, the eviction info is no longre relevant.
3059       LastEvicted.clearEvicteeInfo(VirtReg.reg);
3060       return PhysReg;
3061     }
3062   }
3063 
3064   // If we couldn't allocate a register from spilling, there is probably some
3065   // invalid inline assembly. The base class will report it.
3066   if (Stage >= RS_Done || !VirtReg.isSpillable())
3067     return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters,
3068                                    Depth);
3069 
3070   // Finally spill VirtReg itself.
3071   if (EnableDeferredSpilling && getStage(VirtReg) < RS_Memory) {
3072     // TODO: This is experimental and in particular, we do not model
3073     // the live range splitting done by spilling correctly.
3074     // We would need a deep integration with the spiller to do the
3075     // right thing here. Anyway, that is still good for early testing.
3076     setStage(VirtReg, RS_Memory);
3077     LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n");
3078     NewVRegs.push_back(VirtReg.reg);
3079   } else {
3080     NamedRegionTimer T("spill", "Spiller", TimerGroupName,
3081                        TimerGroupDescription, TimePassesIsEnabled);
3082     LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
3083     spiller().spill(LRE);
3084     setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done);
3085 
3086     if (VerifyEnabled)
3087       MF->verify(this, "After spilling");
3088   }
3089 
3090   // The live virtual register requesting allocation was spilled, so tell
3091   // the caller not to allocate anything during this round.
3092   return 0;
3093 }
3094 
3095 void RAGreedy::reportNumberOfSplillsReloads(MachineLoop *L, unsigned &Reloads,
3096                                             unsigned &FoldedReloads,
3097                                             unsigned &Spills,
3098                                             unsigned &FoldedSpills) {
3099   Reloads = 0;
3100   FoldedReloads = 0;
3101   Spills = 0;
3102   FoldedSpills = 0;
3103 
3104   // Sum up the spill and reloads in subloops.
3105   for (MachineLoop *SubLoop : *L) {
3106     unsigned SubReloads;
3107     unsigned SubFoldedReloads;
3108     unsigned SubSpills;
3109     unsigned SubFoldedSpills;
3110 
3111     reportNumberOfSplillsReloads(SubLoop, SubReloads, SubFoldedReloads,
3112                                  SubSpills, SubFoldedSpills);
3113     Reloads += SubReloads;
3114     FoldedReloads += SubFoldedReloads;
3115     Spills += SubSpills;
3116     FoldedSpills += SubFoldedSpills;
3117   }
3118 
3119   const MachineFrameInfo &MFI = MF->getFrameInfo();
3120   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
3121   int FI;
3122 
3123   for (MachineBasicBlock *MBB : L->getBlocks())
3124     // Handle blocks that were not included in subloops.
3125     if (Loops->getLoopFor(MBB) == L)
3126       for (MachineInstr &MI : *MBB) {
3127         SmallVector<const MachineMemOperand *, 2> Accesses;
3128         auto isSpillSlotAccess = [&MFI](const MachineMemOperand *A) {
3129           return MFI.isSpillSlotObjectIndex(
3130               cast<FixedStackPseudoSourceValue>(A->getPseudoValue())
3131                   ->getFrameIndex());
3132         };
3133 
3134         if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI))
3135           ++Reloads;
3136         else if (TII->hasLoadFromStackSlot(MI, Accesses) &&
3137                  llvm::any_of(Accesses, isSpillSlotAccess))
3138           ++FoldedReloads;
3139         else if (TII->isStoreToStackSlot(MI, FI) &&
3140                  MFI.isSpillSlotObjectIndex(FI))
3141           ++Spills;
3142         else if (TII->hasStoreToStackSlot(MI, Accesses) &&
3143                  llvm::any_of(Accesses, isSpillSlotAccess))
3144           ++FoldedSpills;
3145       }
3146 
3147   if (Reloads || FoldedReloads || Spills || FoldedSpills) {
3148     using namespace ore;
3149 
3150     ORE->emit([&]() {
3151       MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReload",
3152                                         L->getStartLoc(), L->getHeader());
3153       if (Spills)
3154         R << NV("NumSpills", Spills) << " spills ";
3155       if (FoldedSpills)
3156         R << NV("NumFoldedSpills", FoldedSpills) << " folded spills ";
3157       if (Reloads)
3158         R << NV("NumReloads", Reloads) << " reloads ";
3159       if (FoldedReloads)
3160         R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads ";
3161       R << "generated in loop";
3162       return R;
3163     });
3164   }
3165 }
3166 
3167 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
3168   LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
3169                     << "********** Function: " << mf.getName() << '\n');
3170 
3171   MF = &mf;
3172   TRI = MF->getSubtarget().getRegisterInfo();
3173   TII = MF->getSubtarget().getInstrInfo();
3174   RCI.runOnMachineFunction(mf);
3175 
3176   EnableLocalReassign = EnableLocalReassignment ||
3177                         MF->getSubtarget().enableRALocalReassignment(
3178                             MF->getTarget().getOptLevel());
3179 
3180   EnableAdvancedRASplitCost = ConsiderLocalIntervalCost ||
3181                               MF->getSubtarget().enableAdvancedRASplitCost();
3182 
3183   if (VerifyEnabled)
3184     MF->verify(this, "Before greedy register allocator");
3185 
3186   RegAllocBase::init(getAnalysis<VirtRegMap>(),
3187                      getAnalysis<LiveIntervals>(),
3188                      getAnalysis<LiveRegMatrix>());
3189   Indexes = &getAnalysis<SlotIndexes>();
3190   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
3191   DomTree = &getAnalysis<MachineDominatorTree>();
3192   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
3193   SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
3194   Loops = &getAnalysis<MachineLoopInfo>();
3195   Bundles = &getAnalysis<EdgeBundles>();
3196   SpillPlacer = &getAnalysis<SpillPlacement>();
3197   DebugVars = &getAnalysis<LiveDebugVariables>();
3198   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
3199 
3200   initializeCSRCost();
3201 
3202   calculateSpillWeightsAndHints(*LIS, mf, VRM, *Loops, *MBFI);
3203 
3204   LLVM_DEBUG(LIS->dump());
3205 
3206   SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
3207   SE.reset(new SplitEditor(*SA, *AA, *LIS, *VRM, *DomTree, *MBFI));
3208   ExtraRegInfo.clear();
3209   ExtraRegInfo.resize(MRI->getNumVirtRegs());
3210   NextCascade = 1;
3211   IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI);
3212   GlobalCand.resize(32);  // This will grow as needed.
3213   SetOfBrokenHints.clear();
3214   LastEvicted.clear();
3215 
3216   allocatePhysRegs();
3217   tryHintsRecoloring();
3218   postOptimization();
3219   reportNumberOfSplillsReloads();
3220 
3221   releaseMemory();
3222   return true;
3223 }
3224