1 //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the RAGreedy function pass for register allocation in 11 // optimized builds. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AllocationOrder.h" 16 #include "InterferenceCache.h" 17 #include "LiveDebugVariables.h" 18 #include "RegAllocBase.h" 19 #include "SpillPlacement.h" 20 #include "Spiller.h" 21 #include "SplitKit.h" 22 #include "llvm/ADT/ArrayRef.h" 23 #include "llvm/ADT/BitVector.h" 24 #include "llvm/ADT/DenseMap.h" 25 #include "llvm/ADT/IndexedMap.h" 26 #include "llvm/ADT/MapVector.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/SmallPtrSet.h" 29 #include "llvm/ADT/SmallSet.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/ADT/StringRef.h" 33 #include "llvm/Analysis/AliasAnalysis.h" 34 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 35 #include "llvm/CodeGen/CalcSpillWeights.h" 36 #include "llvm/CodeGen/EdgeBundles.h" 37 #include "llvm/CodeGen/LiveInterval.h" 38 #include "llvm/CodeGen/LiveIntervalUnion.h" 39 #include "llvm/CodeGen/LiveIntervals.h" 40 #include "llvm/CodeGen/LiveRangeEdit.h" 41 #include "llvm/CodeGen/LiveRegMatrix.h" 42 #include "llvm/CodeGen/LiveStacks.h" 43 #include "llvm/CodeGen/MachineBasicBlock.h" 44 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 45 #include "llvm/CodeGen/MachineDominators.h" 46 #include "llvm/CodeGen/MachineFrameInfo.h" 47 #include "llvm/CodeGen/MachineFunction.h" 48 #include "llvm/CodeGen/MachineFunctionPass.h" 49 #include "llvm/CodeGen/MachineInstr.h" 50 #include "llvm/CodeGen/MachineLoopInfo.h" 51 #include "llvm/CodeGen/MachineOperand.h" 52 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 53 #include "llvm/CodeGen/MachineRegisterInfo.h" 54 #include "llvm/CodeGen/RegAllocRegistry.h" 55 #include "llvm/CodeGen/RegisterClassInfo.h" 56 #include "llvm/CodeGen/SlotIndexes.h" 57 #include "llvm/CodeGen/TargetInstrInfo.h" 58 #include "llvm/CodeGen/TargetRegisterInfo.h" 59 #include "llvm/CodeGen/TargetSubtargetInfo.h" 60 #include "llvm/CodeGen/VirtRegMap.h" 61 #include "llvm/IR/Function.h" 62 #include "llvm/IR/LLVMContext.h" 63 #include "llvm/MC/MCRegisterInfo.h" 64 #include "llvm/Pass.h" 65 #include "llvm/Support/BlockFrequency.h" 66 #include "llvm/Support/BranchProbability.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Debug.h" 69 #include "llvm/Support/MathExtras.h" 70 #include "llvm/Support/Timer.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include "llvm/Target/TargetMachine.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cstdint> 76 #include <memory> 77 #include <queue> 78 #include <tuple> 79 #include <utility> 80 81 using namespace llvm; 82 83 #define DEBUG_TYPE "regalloc" 84 85 STATISTIC(NumGlobalSplits, "Number of split global live ranges"); 86 STATISTIC(NumLocalSplits, "Number of split local live ranges"); 87 STATISTIC(NumEvicted, "Number of interferences evicted"); 88 89 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode( 90 "split-spill-mode", cl::Hidden, 91 cl::desc("Spill mode for splitting live ranges"), 92 cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"), 93 clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"), 94 clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")), 95 cl::init(SplitEditor::SM_Speed)); 96 97 static cl::opt<unsigned> 98 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden, 99 cl::desc("Last chance recoloring max depth"), 100 cl::init(5)); 101 102 static cl::opt<unsigned> LastChanceRecoloringMaxInterference( 103 "lcr-max-interf", cl::Hidden, 104 cl::desc("Last chance recoloring maximum number of considered" 105 " interference at a time"), 106 cl::init(8)); 107 108 static cl::opt<bool> ExhaustiveSearch( 109 "exhaustive-register-search", cl::NotHidden, 110 cl::desc("Exhaustive Search for registers bypassing the depth " 111 "and interference cutoffs of last chance recoloring"), 112 cl::Hidden); 113 114 static cl::opt<bool> EnableLocalReassignment( 115 "enable-local-reassign", cl::Hidden, 116 cl::desc("Local reassignment can yield better allocation decisions, but " 117 "may be compile time intensive"), 118 cl::init(false)); 119 120 static cl::opt<bool> EnableDeferredSpilling( 121 "enable-deferred-spilling", cl::Hidden, 122 cl::desc("Instead of spilling a variable right away, defer the actual " 123 "code insertion to the end of the allocation. That way the " 124 "allocator might still find a suitable coloring for this " 125 "variable because of other evicted variables."), 126 cl::init(false)); 127 128 // FIXME: Find a good default for this flag and remove the flag. 129 static cl::opt<unsigned> 130 CSRFirstTimeCost("regalloc-csr-first-time-cost", 131 cl::desc("Cost for first time use of callee-saved register."), 132 cl::init(0), cl::Hidden); 133 134 static cl::opt<bool> ConsiderLocalIntervalCost( 135 "condsider-local-interval-cost", cl::Hidden, 136 cl::desc("Consider the cost of local intervals created by a split " 137 "candidate when choosing the best split candidate."), 138 cl::init(false)); 139 140 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator", 141 createGreedyRegisterAllocator); 142 143 namespace { 144 145 class RAGreedy : public MachineFunctionPass, 146 public RegAllocBase, 147 private LiveRangeEdit::Delegate { 148 // Convenient shortcuts. 149 using PQueue = std::priority_queue<std::pair<unsigned, unsigned>>; 150 using SmallLISet = SmallPtrSet<LiveInterval *, 4>; 151 using SmallVirtRegSet = SmallSet<unsigned, 16>; 152 153 // context 154 MachineFunction *MF; 155 156 // Shortcuts to some useful interface. 157 const TargetInstrInfo *TII; 158 const TargetRegisterInfo *TRI; 159 RegisterClassInfo RCI; 160 161 // analyses 162 SlotIndexes *Indexes; 163 MachineBlockFrequencyInfo *MBFI; 164 MachineDominatorTree *DomTree; 165 MachineLoopInfo *Loops; 166 MachineOptimizationRemarkEmitter *ORE; 167 EdgeBundles *Bundles; 168 SpillPlacement *SpillPlacer; 169 LiveDebugVariables *DebugVars; 170 AliasAnalysis *AA; 171 172 // state 173 std::unique_ptr<Spiller> SpillerInstance; 174 PQueue Queue; 175 unsigned NextCascade; 176 177 // Live ranges pass through a number of stages as we try to allocate them. 178 // Some of the stages may also create new live ranges: 179 // 180 // - Region splitting. 181 // - Per-block splitting. 182 // - Local splitting. 183 // - Spilling. 184 // 185 // Ranges produced by one of the stages skip the previous stages when they are 186 // dequeued. This improves performance because we can skip interference checks 187 // that are unlikely to give any results. It also guarantees that the live 188 // range splitting algorithm terminates, something that is otherwise hard to 189 // ensure. 190 enum LiveRangeStage { 191 /// Newly created live range that has never been queued. 192 RS_New, 193 194 /// Only attempt assignment and eviction. Then requeue as RS_Split. 195 RS_Assign, 196 197 /// Attempt live range splitting if assignment is impossible. 198 RS_Split, 199 200 /// Attempt more aggressive live range splitting that is guaranteed to make 201 /// progress. This is used for split products that may not be making 202 /// progress. 203 RS_Split2, 204 205 /// Live range will be spilled. No more splitting will be attempted. 206 RS_Spill, 207 208 209 /// Live range is in memory. Because of other evictions, it might get moved 210 /// in a register in the end. 211 RS_Memory, 212 213 /// There is nothing more we can do to this live range. Abort compilation 214 /// if it can't be assigned. 215 RS_Done 216 }; 217 218 // Enum CutOffStage to keep a track whether the register allocation failed 219 // because of the cutoffs encountered in last chance recoloring. 220 // Note: This is used as bitmask. New value should be next power of 2. 221 enum CutOffStage { 222 // No cutoffs encountered 223 CO_None = 0, 224 225 // lcr-max-depth cutoff encountered 226 CO_Depth = 1, 227 228 // lcr-max-interf cutoff encountered 229 CO_Interf = 2 230 }; 231 232 uint8_t CutOffInfo; 233 234 #ifndef NDEBUG 235 static const char *const StageName[]; 236 #endif 237 238 // RegInfo - Keep additional information about each live range. 239 struct RegInfo { 240 LiveRangeStage Stage = RS_New; 241 242 // Cascade - Eviction loop prevention. See canEvictInterference(). 243 unsigned Cascade = 0; 244 245 RegInfo() = default; 246 }; 247 248 IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo; 249 250 LiveRangeStage getStage(const LiveInterval &VirtReg) const { 251 return ExtraRegInfo[VirtReg.reg].Stage; 252 } 253 254 void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) { 255 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 256 ExtraRegInfo[VirtReg.reg].Stage = Stage; 257 } 258 259 template<typename Iterator> 260 void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) { 261 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 262 for (;Begin != End; ++Begin) { 263 unsigned Reg = *Begin; 264 if (ExtraRegInfo[Reg].Stage == RS_New) 265 ExtraRegInfo[Reg].Stage = NewStage; 266 } 267 } 268 269 /// Cost of evicting interference. 270 struct EvictionCost { 271 unsigned BrokenHints = 0; ///< Total number of broken hints. 272 float MaxWeight = 0; ///< Maximum spill weight evicted. 273 274 EvictionCost() = default; 275 276 bool isMax() const { return BrokenHints == ~0u; } 277 278 void setMax() { BrokenHints = ~0u; } 279 280 void setBrokenHints(unsigned NHints) { BrokenHints = NHints; } 281 282 bool operator<(const EvictionCost &O) const { 283 return std::tie(BrokenHints, MaxWeight) < 284 std::tie(O.BrokenHints, O.MaxWeight); 285 } 286 }; 287 288 /// EvictionTrack - Keeps track of past evictions in order to optimize region 289 /// split decision. 290 class EvictionTrack { 291 292 public: 293 using EvictorInfo = 294 std::pair<unsigned /* evictor */, unsigned /* physreg */>; 295 using EvicteeInfo = llvm::MapVector<unsigned /* evictee */, EvictorInfo>; 296 297 private: 298 /// Each Vreg that has been evicted in the last stage of selectOrSplit will 299 /// be mapped to the evictor Vreg and the PhysReg it was evicted from. 300 EvicteeInfo Evictees; 301 302 public: 303 /// \brief Clear all eviction information. 304 void clear() { Evictees.clear(); } 305 306 /// \brief Clear eviction information for the given evictee Vreg. 307 /// E.g. when Vreg get's a new allocation, the old eviction info is no 308 /// longer relevant. 309 /// \param Evictee The evictee Vreg for whom we want to clear collected 310 /// eviction info. 311 void clearEvicteeInfo(unsigned Evictee) { Evictees.erase(Evictee); } 312 313 /// \brief Track new eviction. 314 /// The Evictor vreg has evicted the Evictee vreg from Physreg. 315 /// \praram PhysReg The phisical register Evictee was evicted from. 316 /// \praram Evictor The evictor Vreg that evicted Evictee. 317 /// \praram Evictee The evictee Vreg. 318 void addEviction(unsigned PhysReg, unsigned Evictor, unsigned Evictee) { 319 Evictees[Evictee].first = Evictor; 320 Evictees[Evictee].second = PhysReg; 321 } 322 323 /// Return the Evictor Vreg which evicted Evictee Vreg from PhysReg. 324 /// \praram Evictee The evictee vreg. 325 /// \return The Evictor vreg which evicted Evictee vreg from PhysReg. 0 if 326 /// nobody has evicted Evictee from PhysReg. 327 EvictorInfo getEvictor(unsigned Evictee) { 328 if (Evictees.count(Evictee)) { 329 return Evictees[Evictee]; 330 } 331 332 return EvictorInfo(0, 0); 333 } 334 }; 335 336 // Keeps track of past evictions in order to optimize region split decision. 337 EvictionTrack LastEvicted; 338 339 // splitting state. 340 std::unique_ptr<SplitAnalysis> SA; 341 std::unique_ptr<SplitEditor> SE; 342 343 /// Cached per-block interference maps 344 InterferenceCache IntfCache; 345 346 /// All basic blocks where the current register has uses. 347 SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints; 348 349 /// Global live range splitting candidate info. 350 struct GlobalSplitCandidate { 351 // Register intended for assignment, or 0. 352 unsigned PhysReg; 353 354 // SplitKit interval index for this candidate. 355 unsigned IntvIdx; 356 357 // Interference for PhysReg. 358 InterferenceCache::Cursor Intf; 359 360 // Bundles where this candidate should be live. 361 BitVector LiveBundles; 362 SmallVector<unsigned, 8> ActiveBlocks; 363 364 void reset(InterferenceCache &Cache, unsigned Reg) { 365 PhysReg = Reg; 366 IntvIdx = 0; 367 Intf.setPhysReg(Cache, Reg); 368 LiveBundles.clear(); 369 ActiveBlocks.clear(); 370 } 371 372 // Set B[i] = C for every live bundle where B[i] was NoCand. 373 unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) { 374 unsigned Count = 0; 375 for (unsigned i : LiveBundles.set_bits()) 376 if (B[i] == NoCand) { 377 B[i] = C; 378 Count++; 379 } 380 return Count; 381 } 382 }; 383 384 /// Candidate info for each PhysReg in AllocationOrder. 385 /// This vector never shrinks, but grows to the size of the largest register 386 /// class. 387 SmallVector<GlobalSplitCandidate, 32> GlobalCand; 388 389 enum : unsigned { NoCand = ~0u }; 390 391 /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to 392 /// NoCand which indicates the stack interval. 393 SmallVector<unsigned, 32> BundleCand; 394 395 /// Callee-save register cost, calculated once per machine function. 396 BlockFrequency CSRCost; 397 398 /// Run or not the local reassignment heuristic. This information is 399 /// obtained from the TargetSubtargetInfo. 400 bool EnableLocalReassign; 401 402 /// Enable or not the consideration of the cost of local intervals created 403 /// by a split candidate when choosing the best split candidate. 404 bool EnableAdvancedRASplitCost; 405 406 /// Set of broken hints that may be reconciled later because of eviction. 407 SmallSetVector<LiveInterval *, 8> SetOfBrokenHints; 408 409 public: 410 RAGreedy(); 411 412 /// Return the pass name. 413 StringRef getPassName() const override { return "Greedy Register Allocator"; } 414 415 /// RAGreedy analysis usage. 416 void getAnalysisUsage(AnalysisUsage &AU) const override; 417 void releaseMemory() override; 418 Spiller &spiller() override { return *SpillerInstance; } 419 void enqueue(LiveInterval *LI) override; 420 LiveInterval *dequeue() override; 421 unsigned selectOrSplit(LiveInterval&, SmallVectorImpl<unsigned>&) override; 422 void aboutToRemoveInterval(LiveInterval &) override; 423 424 /// Perform register allocation. 425 bool runOnMachineFunction(MachineFunction &mf) override; 426 427 MachineFunctionProperties getRequiredProperties() const override { 428 return MachineFunctionProperties().set( 429 MachineFunctionProperties::Property::NoPHIs); 430 } 431 432 static char ID; 433 434 private: 435 unsigned selectOrSplitImpl(LiveInterval &, SmallVectorImpl<unsigned> &, 436 SmallVirtRegSet &, unsigned = 0); 437 438 bool LRE_CanEraseVirtReg(unsigned) override; 439 void LRE_WillShrinkVirtReg(unsigned) override; 440 void LRE_DidCloneVirtReg(unsigned, unsigned) override; 441 void enqueue(PQueue &CurQueue, LiveInterval *LI); 442 LiveInterval *dequeue(PQueue &CurQueue); 443 444 BlockFrequency calcSpillCost(); 445 bool addSplitConstraints(InterferenceCache::Cursor, BlockFrequency&); 446 void addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>); 447 void growRegion(GlobalSplitCandidate &Cand); 448 bool splitCanCauseEvictionChain(unsigned Evictee, GlobalSplitCandidate &Cand, 449 unsigned BBNumber, 450 const AllocationOrder &Order); 451 BlockFrequency calcGlobalSplitCost(GlobalSplitCandidate &, 452 const AllocationOrder &Order, 453 bool *CanCauseEvictionChain); 454 bool calcCompactRegion(GlobalSplitCandidate&); 455 void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>); 456 void calcGapWeights(unsigned, SmallVectorImpl<float>&); 457 unsigned canReassign(LiveInterval &VirtReg, unsigned PhysReg); 458 bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool); 459 bool canEvictInterference(LiveInterval&, unsigned, bool, EvictionCost&); 460 bool canEvictInterferenceInRange(LiveInterval &VirtReg, unsigned PhysReg, 461 SlotIndex Start, SlotIndex End, 462 EvictionCost &MaxCost); 463 unsigned getCheapestEvicteeWeight(const AllocationOrder &Order, 464 LiveInterval &VirtReg, SlotIndex Start, 465 SlotIndex End, float *BestEvictWeight); 466 void evictInterference(LiveInterval&, unsigned, 467 SmallVectorImpl<unsigned>&); 468 bool mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg, 469 SmallLISet &RecoloringCandidates, 470 const SmallVirtRegSet &FixedRegisters); 471 472 unsigned tryAssign(LiveInterval&, AllocationOrder&, 473 SmallVectorImpl<unsigned>&); 474 unsigned tryEvict(LiveInterval&, AllocationOrder&, 475 SmallVectorImpl<unsigned>&, unsigned = ~0u); 476 unsigned tryRegionSplit(LiveInterval&, AllocationOrder&, 477 SmallVectorImpl<unsigned>&); 478 /// Calculate cost of region splitting. 479 unsigned calculateRegionSplitCost(LiveInterval &VirtReg, 480 AllocationOrder &Order, 481 BlockFrequency &BestCost, 482 unsigned &NumCands, bool IgnoreCSR, 483 bool *CanCauseEvictionChain = nullptr); 484 /// Perform region splitting. 485 unsigned doRegionSplit(LiveInterval &VirtReg, unsigned BestCand, 486 bool HasCompact, 487 SmallVectorImpl<unsigned> &NewVRegs); 488 /// Check other options before using a callee-saved register for the first 489 /// time. 490 unsigned tryAssignCSRFirstTime(LiveInterval &VirtReg, AllocationOrder &Order, 491 unsigned PhysReg, unsigned &CostPerUseLimit, 492 SmallVectorImpl<unsigned> &NewVRegs); 493 void initializeCSRCost(); 494 unsigned tryBlockSplit(LiveInterval&, AllocationOrder&, 495 SmallVectorImpl<unsigned>&); 496 unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&, 497 SmallVectorImpl<unsigned>&); 498 unsigned tryLocalSplit(LiveInterval&, AllocationOrder&, 499 SmallVectorImpl<unsigned>&); 500 unsigned trySplit(LiveInterval&, AllocationOrder&, 501 SmallVectorImpl<unsigned>&); 502 unsigned tryLastChanceRecoloring(LiveInterval &, AllocationOrder &, 503 SmallVectorImpl<unsigned> &, 504 SmallVirtRegSet &, unsigned); 505 bool tryRecoloringCandidates(PQueue &, SmallVectorImpl<unsigned> &, 506 SmallVirtRegSet &, unsigned); 507 void tryHintRecoloring(LiveInterval &); 508 void tryHintsRecoloring(); 509 510 /// Model the information carried by one end of a copy. 511 struct HintInfo { 512 /// The frequency of the copy. 513 BlockFrequency Freq; 514 /// The virtual register or physical register. 515 unsigned Reg; 516 /// Its currently assigned register. 517 /// In case of a physical register Reg == PhysReg. 518 unsigned PhysReg; 519 520 HintInfo(BlockFrequency Freq, unsigned Reg, unsigned PhysReg) 521 : Freq(Freq), Reg(Reg), PhysReg(PhysReg) {} 522 }; 523 using HintsInfo = SmallVector<HintInfo, 4>; 524 525 BlockFrequency getBrokenHintFreq(const HintsInfo &, unsigned); 526 void collectHintInfo(unsigned, HintsInfo &); 527 528 bool isUnusedCalleeSavedReg(unsigned PhysReg) const; 529 530 /// Compute and report the number of spills and reloads for a loop. 531 void reportNumberOfSplillsReloads(MachineLoop *L, unsigned &Reloads, 532 unsigned &FoldedReloads, unsigned &Spills, 533 unsigned &FoldedSpills); 534 535 /// Report the number of spills and reloads for each loop. 536 void reportNumberOfSplillsReloads() { 537 for (MachineLoop *L : *Loops) { 538 unsigned Reloads, FoldedReloads, Spills, FoldedSpills; 539 reportNumberOfSplillsReloads(L, Reloads, FoldedReloads, Spills, 540 FoldedSpills); 541 } 542 } 543 }; 544 545 } // end anonymous namespace 546 547 char RAGreedy::ID = 0; 548 char &llvm::RAGreedyID = RAGreedy::ID; 549 550 INITIALIZE_PASS_BEGIN(RAGreedy, "greedy", 551 "Greedy Register Allocator", false, false) 552 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables) 553 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 554 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 555 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer) 556 INITIALIZE_PASS_DEPENDENCY(MachineScheduler) 557 INITIALIZE_PASS_DEPENDENCY(LiveStacks) 558 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 559 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 560 INITIALIZE_PASS_DEPENDENCY(VirtRegMap) 561 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix) 562 INITIALIZE_PASS_DEPENDENCY(EdgeBundles) 563 INITIALIZE_PASS_DEPENDENCY(SpillPlacement) 564 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass) 565 INITIALIZE_PASS_END(RAGreedy, "greedy", 566 "Greedy Register Allocator", false, false) 567 568 #ifndef NDEBUG 569 const char *const RAGreedy::StageName[] = { 570 "RS_New", 571 "RS_Assign", 572 "RS_Split", 573 "RS_Split2", 574 "RS_Spill", 575 "RS_Memory", 576 "RS_Done" 577 }; 578 #endif 579 580 // Hysteresis to use when comparing floats. 581 // This helps stabilize decisions based on float comparisons. 582 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875 583 584 FunctionPass* llvm::createGreedyRegisterAllocator() { 585 return new RAGreedy(); 586 } 587 588 RAGreedy::RAGreedy(): MachineFunctionPass(ID) { 589 } 590 591 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const { 592 AU.setPreservesCFG(); 593 AU.addRequired<MachineBlockFrequencyInfo>(); 594 AU.addPreserved<MachineBlockFrequencyInfo>(); 595 AU.addRequired<AAResultsWrapperPass>(); 596 AU.addPreserved<AAResultsWrapperPass>(); 597 AU.addRequired<LiveIntervals>(); 598 AU.addPreserved<LiveIntervals>(); 599 AU.addRequired<SlotIndexes>(); 600 AU.addPreserved<SlotIndexes>(); 601 AU.addRequired<LiveDebugVariables>(); 602 AU.addPreserved<LiveDebugVariables>(); 603 AU.addRequired<LiveStacks>(); 604 AU.addPreserved<LiveStacks>(); 605 AU.addRequired<MachineDominatorTree>(); 606 AU.addPreserved<MachineDominatorTree>(); 607 AU.addRequired<MachineLoopInfo>(); 608 AU.addPreserved<MachineLoopInfo>(); 609 AU.addRequired<VirtRegMap>(); 610 AU.addPreserved<VirtRegMap>(); 611 AU.addRequired<LiveRegMatrix>(); 612 AU.addPreserved<LiveRegMatrix>(); 613 AU.addRequired<EdgeBundles>(); 614 AU.addRequired<SpillPlacement>(); 615 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 616 MachineFunctionPass::getAnalysisUsage(AU); 617 } 618 619 //===----------------------------------------------------------------------===// 620 // LiveRangeEdit delegate methods 621 //===----------------------------------------------------------------------===// 622 623 bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) { 624 LiveInterval &LI = LIS->getInterval(VirtReg); 625 if (VRM->hasPhys(VirtReg)) { 626 Matrix->unassign(LI); 627 aboutToRemoveInterval(LI); 628 return true; 629 } 630 // Unassigned virtreg is probably in the priority queue. 631 // RegAllocBase will erase it after dequeueing. 632 // Nonetheless, clear the live-range so that the debug 633 // dump will show the right state for that VirtReg. 634 LI.clear(); 635 return false; 636 } 637 638 void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) { 639 if (!VRM->hasPhys(VirtReg)) 640 return; 641 642 // Register is assigned, put it back on the queue for reassignment. 643 LiveInterval &LI = LIS->getInterval(VirtReg); 644 Matrix->unassign(LI); 645 enqueue(&LI); 646 } 647 648 void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) { 649 // Cloning a register we haven't even heard about yet? Just ignore it. 650 if (!ExtraRegInfo.inBounds(Old)) 651 return; 652 653 // LRE may clone a virtual register because dead code elimination causes it to 654 // be split into connected components. The new components are much smaller 655 // than the original, so they should get a new chance at being assigned. 656 // same stage as the parent. 657 ExtraRegInfo[Old].Stage = RS_Assign; 658 ExtraRegInfo.grow(New); 659 ExtraRegInfo[New] = ExtraRegInfo[Old]; 660 } 661 662 void RAGreedy::releaseMemory() { 663 SpillerInstance.reset(); 664 ExtraRegInfo.clear(); 665 GlobalCand.clear(); 666 } 667 668 void RAGreedy::enqueue(LiveInterval *LI) { enqueue(Queue, LI); } 669 670 void RAGreedy::enqueue(PQueue &CurQueue, LiveInterval *LI) { 671 // Prioritize live ranges by size, assigning larger ranges first. 672 // The queue holds (size, reg) pairs. 673 const unsigned Size = LI->getSize(); 674 const unsigned Reg = LI->reg; 675 assert(TargetRegisterInfo::isVirtualRegister(Reg) && 676 "Can only enqueue virtual registers"); 677 unsigned Prio; 678 679 ExtraRegInfo.grow(Reg); 680 if (ExtraRegInfo[Reg].Stage == RS_New) 681 ExtraRegInfo[Reg].Stage = RS_Assign; 682 683 if (ExtraRegInfo[Reg].Stage == RS_Split) { 684 // Unsplit ranges that couldn't be allocated immediately are deferred until 685 // everything else has been allocated. 686 Prio = Size; 687 } else if (ExtraRegInfo[Reg].Stage == RS_Memory) { 688 // Memory operand should be considered last. 689 // Change the priority such that Memory operand are assigned in 690 // the reverse order that they came in. 691 // TODO: Make this a member variable and probably do something about hints. 692 static unsigned MemOp = 0; 693 Prio = MemOp++; 694 } else { 695 // Giant live ranges fall back to the global assignment heuristic, which 696 // prevents excessive spilling in pathological cases. 697 bool ReverseLocal = TRI->reverseLocalAssignment(); 698 const TargetRegisterClass &RC = *MRI->getRegClass(Reg); 699 bool ForceGlobal = !ReverseLocal && 700 (Size / SlotIndex::InstrDist) > (2 * RC.getNumRegs()); 701 702 if (ExtraRegInfo[Reg].Stage == RS_Assign && !ForceGlobal && !LI->empty() && 703 LIS->intervalIsInOneMBB(*LI)) { 704 // Allocate original local ranges in linear instruction order. Since they 705 // are singly defined, this produces optimal coloring in the absence of 706 // global interference and other constraints. 707 if (!ReverseLocal) 708 Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex()); 709 else { 710 // Allocating bottom up may allow many short LRGs to be assigned first 711 // to one of the cheap registers. This could be much faster for very 712 // large blocks on targets with many physical registers. 713 Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex()); 714 } 715 Prio |= RC.AllocationPriority << 24; 716 } else { 717 // Allocate global and split ranges in long->short order. Long ranges that 718 // don't fit should be spilled (or split) ASAP so they don't create 719 // interference. Mark a bit to prioritize global above local ranges. 720 Prio = (1u << 29) + Size; 721 } 722 // Mark a higher bit to prioritize global and local above RS_Split. 723 Prio |= (1u << 31); 724 725 // Boost ranges that have a physical register hint. 726 if (VRM->hasKnownPreference(Reg)) 727 Prio |= (1u << 30); 728 } 729 // The virtual register number is a tie breaker for same-sized ranges. 730 // Give lower vreg numbers higher priority to assign them first. 731 CurQueue.push(std::make_pair(Prio, ~Reg)); 732 } 733 734 LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); } 735 736 LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) { 737 if (CurQueue.empty()) 738 return nullptr; 739 LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second); 740 CurQueue.pop(); 741 return LI; 742 } 743 744 //===----------------------------------------------------------------------===// 745 // Direct Assignment 746 //===----------------------------------------------------------------------===// 747 748 /// tryAssign - Try to assign VirtReg to an available register. 749 unsigned RAGreedy::tryAssign(LiveInterval &VirtReg, 750 AllocationOrder &Order, 751 SmallVectorImpl<unsigned> &NewVRegs) { 752 Order.rewind(); 753 unsigned PhysReg; 754 while ((PhysReg = Order.next())) 755 if (!Matrix->checkInterference(VirtReg, PhysReg)) 756 break; 757 if (!PhysReg || Order.isHint()) 758 return PhysReg; 759 760 // PhysReg is available, but there may be a better choice. 761 762 // If we missed a simple hint, try to cheaply evict interference from the 763 // preferred register. 764 if (unsigned Hint = MRI->getSimpleHint(VirtReg.reg)) 765 if (Order.isHint(Hint)) { 766 DEBUG(dbgs() << "missed hint " << printReg(Hint, TRI) << '\n'); 767 EvictionCost MaxCost; 768 MaxCost.setBrokenHints(1); 769 if (canEvictInterference(VirtReg, Hint, true, MaxCost)) { 770 evictInterference(VirtReg, Hint, NewVRegs); 771 return Hint; 772 } 773 // Record the missed hint, we may be able to recover 774 // at the end if the surrounding allocation changed. 775 SetOfBrokenHints.insert(&VirtReg); 776 } 777 778 // Try to evict interference from a cheaper alternative. 779 unsigned Cost = TRI->getCostPerUse(PhysReg); 780 781 // Most registers have 0 additional cost. 782 if (!Cost) 783 return PhysReg; 784 785 DEBUG(dbgs() << printReg(PhysReg, TRI) << " is available at cost " << Cost 786 << '\n'); 787 unsigned CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost); 788 return CheapReg ? CheapReg : PhysReg; 789 } 790 791 //===----------------------------------------------------------------------===// 792 // Interference eviction 793 //===----------------------------------------------------------------------===// 794 795 unsigned RAGreedy::canReassign(LiveInterval &VirtReg, unsigned PrevReg) { 796 AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo, Matrix); 797 unsigned PhysReg; 798 while ((PhysReg = Order.next())) { 799 if (PhysReg == PrevReg) 800 continue; 801 802 MCRegUnitIterator Units(PhysReg, TRI); 803 for (; Units.isValid(); ++Units) { 804 // Instantiate a "subquery", not to be confused with the Queries array. 805 LiveIntervalUnion::Query subQ(VirtReg, Matrix->getLiveUnions()[*Units]); 806 if (subQ.checkInterference()) 807 break; 808 } 809 // If no units have interference, break out with the current PhysReg. 810 if (!Units.isValid()) 811 break; 812 } 813 if (PhysReg) 814 DEBUG(dbgs() << "can reassign: " << VirtReg << " from " 815 << printReg(PrevReg, TRI) << " to " << printReg(PhysReg, TRI) 816 << '\n'); 817 return PhysReg; 818 } 819 820 /// shouldEvict - determine if A should evict the assigned live range B. The 821 /// eviction policy defined by this function together with the allocation order 822 /// defined by enqueue() decides which registers ultimately end up being split 823 /// and spilled. 824 /// 825 /// Cascade numbers are used to prevent infinite loops if this function is a 826 /// cyclic relation. 827 /// 828 /// @param A The live range to be assigned. 829 /// @param IsHint True when A is about to be assigned to its preferred 830 /// register. 831 /// @param B The live range to be evicted. 832 /// @param BreaksHint True when B is already assigned to its preferred register. 833 bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint, 834 LiveInterval &B, bool BreaksHint) { 835 bool CanSplit = getStage(B) < RS_Spill; 836 837 // Be fairly aggressive about following hints as long as the evictee can be 838 // split. 839 if (CanSplit && IsHint && !BreaksHint) 840 return true; 841 842 if (A.weight > B.weight) { 843 DEBUG(dbgs() << "should evict: " << B << " w= " << B.weight << '\n'); 844 return true; 845 } 846 return false; 847 } 848 849 /// canEvictInterference - Return true if all interferences between VirtReg and 850 /// PhysReg can be evicted. 851 /// 852 /// @param VirtReg Live range that is about to be assigned. 853 /// @param PhysReg Desired register for assignment. 854 /// @param IsHint True when PhysReg is VirtReg's preferred register. 855 /// @param MaxCost Only look for cheaper candidates and update with new cost 856 /// when returning true. 857 /// @returns True when interference can be evicted cheaper than MaxCost. 858 bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg, 859 bool IsHint, EvictionCost &MaxCost) { 860 // It is only possible to evict virtual register interference. 861 if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg) 862 return false; 863 864 bool IsLocal = LIS->intervalIsInOneMBB(VirtReg); 865 866 // Find VirtReg's cascade number. This will be unassigned if VirtReg was never 867 // involved in an eviction before. If a cascade number was assigned, deny 868 // evicting anything with the same or a newer cascade number. This prevents 869 // infinite eviction loops. 870 // 871 // This works out so a register without a cascade number is allowed to evict 872 // anything, and it can be evicted by anything. 873 unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade; 874 if (!Cascade) 875 Cascade = NextCascade; 876 877 EvictionCost Cost; 878 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 879 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 880 // If there is 10 or more interferences, chances are one is heavier. 881 if (Q.collectInterferingVRegs(10) >= 10) 882 return false; 883 884 // Check if any interfering live range is heavier than MaxWeight. 885 for (unsigned i = Q.interferingVRegs().size(); i; --i) { 886 LiveInterval *Intf = Q.interferingVRegs()[i - 1]; 887 assert(TargetRegisterInfo::isVirtualRegister(Intf->reg) && 888 "Only expecting virtual register interference from query"); 889 // Never evict spill products. They cannot split or spill. 890 if (getStage(*Intf) == RS_Done) 891 return false; 892 // Once a live range becomes small enough, it is urgent that we find a 893 // register for it. This is indicated by an infinite spill weight. These 894 // urgent live ranges get to evict almost anything. 895 // 896 // Also allow urgent evictions of unspillable ranges from a strictly 897 // larger allocation order. 898 bool Urgent = !VirtReg.isSpillable() && 899 (Intf->isSpillable() || 900 RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg)) < 901 RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(Intf->reg))); 902 // Only evict older cascades or live ranges without a cascade. 903 unsigned IntfCascade = ExtraRegInfo[Intf->reg].Cascade; 904 if (Cascade <= IntfCascade) { 905 if (!Urgent) 906 return false; 907 // We permit breaking cascades for urgent evictions. It should be the 908 // last resort, though, so make it really expensive. 909 Cost.BrokenHints += 10; 910 } 911 // Would this break a satisfied hint? 912 bool BreaksHint = VRM->hasPreferredPhys(Intf->reg); 913 // Update eviction cost. 914 Cost.BrokenHints += BreaksHint; 915 Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight); 916 // Abort if this would be too expensive. 917 if (!(Cost < MaxCost)) 918 return false; 919 if (Urgent) 920 continue; 921 // Apply the eviction policy for non-urgent evictions. 922 if (!shouldEvict(VirtReg, IsHint, *Intf, BreaksHint)) 923 return false; 924 // If !MaxCost.isMax(), then we're just looking for a cheap register. 925 // Evicting another local live range in this case could lead to suboptimal 926 // coloring. 927 if (!MaxCost.isMax() && IsLocal && LIS->intervalIsInOneMBB(*Intf) && 928 (!EnableLocalReassign || !canReassign(*Intf, PhysReg))) { 929 return false; 930 } 931 } 932 } 933 MaxCost = Cost; 934 return true; 935 } 936 937 /// \brief Return true if all interferences between VirtReg and PhysReg between 938 /// Start and End can be evicted. 939 /// 940 /// \param VirtReg Live range that is about to be assigned. 941 /// \param PhysReg Desired register for assignment. 942 /// \param Start Start of range to look for interferences. 943 /// \param End End of range to look for interferences. 944 /// \param MaxCost Only look for cheaper candidates and update with new cost 945 /// when returning true. 946 /// \return True when interference can be evicted cheaper than MaxCost. 947 bool RAGreedy::canEvictInterferenceInRange(LiveInterval &VirtReg, 948 unsigned PhysReg, SlotIndex Start, 949 SlotIndex End, 950 EvictionCost &MaxCost) { 951 EvictionCost Cost; 952 953 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 954 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 955 956 // Check if any interfering live range is heavier than MaxWeight. 957 for (unsigned i = Q.interferingVRegs().size(); i; --i) { 958 LiveInterval *Intf = Q.interferingVRegs()[i - 1]; 959 960 // Check if interference overlast the segment in interest. 961 if (!Intf->overlaps(Start, End)) 962 continue; 963 964 // Cannot evict non virtual reg interference. 965 if (!TargetRegisterInfo::isVirtualRegister(Intf->reg)) 966 return false; 967 // Never evict spill products. They cannot split or spill. 968 if (getStage(*Intf) == RS_Done) 969 return false; 970 971 // Would this break a satisfied hint? 972 bool BreaksHint = VRM->hasPreferredPhys(Intf->reg); 973 // Update eviction cost. 974 Cost.BrokenHints += BreaksHint; 975 Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight); 976 // Abort if this would be too expensive. 977 if (!(Cost < MaxCost)) 978 return false; 979 } 980 } 981 982 if (Cost.MaxWeight == 0) 983 return false; 984 985 MaxCost = Cost; 986 return true; 987 } 988 989 /// \brief Return tthe physical register that will be best 990 /// candidate for eviction by a local split interval that will be created 991 /// between Start and End. 992 /// 993 /// \param Order The allocation order 994 /// \param VirtReg Live range that is about to be assigned. 995 /// \param Start Start of range to look for interferences 996 /// \param End End of range to look for interferences 997 /// \param BestEvictweight The eviction cost of that eviction 998 /// \return The PhysReg which is the best candidate for eviction and the 999 /// eviction cost in BestEvictweight 1000 unsigned RAGreedy::getCheapestEvicteeWeight(const AllocationOrder &Order, 1001 LiveInterval &VirtReg, 1002 SlotIndex Start, SlotIndex End, 1003 float *BestEvictweight) { 1004 EvictionCost BestEvictCost; 1005 BestEvictCost.setMax(); 1006 BestEvictCost.MaxWeight = VirtReg.weight; 1007 unsigned BestEvicteePhys = 0; 1008 1009 // Go over all physical registers and find the best candidate for eviction 1010 for (auto PhysReg : Order.getOrder()) { 1011 1012 if (!canEvictInterferenceInRange(VirtReg, PhysReg, Start, End, 1013 BestEvictCost)) 1014 continue; 1015 1016 // Best so far. 1017 BestEvicteePhys = PhysReg; 1018 } 1019 *BestEvictweight = BestEvictCost.MaxWeight; 1020 return BestEvicteePhys; 1021 } 1022 1023 /// evictInterference - Evict any interferring registers that prevent VirtReg 1024 /// from being assigned to Physreg. This assumes that canEvictInterference 1025 /// returned true. 1026 void RAGreedy::evictInterference(LiveInterval &VirtReg, unsigned PhysReg, 1027 SmallVectorImpl<unsigned> &NewVRegs) { 1028 // Make sure that VirtReg has a cascade number, and assign that cascade 1029 // number to every evicted register. These live ranges than then only be 1030 // evicted by a newer cascade, preventing infinite loops. 1031 unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade; 1032 if (!Cascade) 1033 Cascade = ExtraRegInfo[VirtReg.reg].Cascade = NextCascade++; 1034 1035 DEBUG(dbgs() << "evicting " << printReg(PhysReg, TRI) 1036 << " interference: Cascade " << Cascade << '\n'); 1037 1038 // Collect all interfering virtregs first. 1039 SmallVector<LiveInterval*, 8> Intfs; 1040 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 1041 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 1042 // We usually have the interfering VRegs cached so collectInterferingVRegs() 1043 // should be fast, we may need to recalculate if when different physregs 1044 // overlap the same register unit so we had different SubRanges queried 1045 // against it. 1046 Q.collectInterferingVRegs(); 1047 ArrayRef<LiveInterval*> IVR = Q.interferingVRegs(); 1048 Intfs.append(IVR.begin(), IVR.end()); 1049 } 1050 1051 // Evict them second. This will invalidate the queries. 1052 for (unsigned i = 0, e = Intfs.size(); i != e; ++i) { 1053 LiveInterval *Intf = Intfs[i]; 1054 // The same VirtReg may be present in multiple RegUnits. Skip duplicates. 1055 if (!VRM->hasPhys(Intf->reg)) 1056 continue; 1057 1058 LastEvicted.addEviction(PhysReg, VirtReg.reg, Intf->reg); 1059 1060 Matrix->unassign(*Intf); 1061 assert((ExtraRegInfo[Intf->reg].Cascade < Cascade || 1062 VirtReg.isSpillable() < Intf->isSpillable()) && 1063 "Cannot decrease cascade number, illegal eviction"); 1064 ExtraRegInfo[Intf->reg].Cascade = Cascade; 1065 ++NumEvicted; 1066 NewVRegs.push_back(Intf->reg); 1067 } 1068 } 1069 1070 /// Returns true if the given \p PhysReg is a callee saved register and has not 1071 /// been used for allocation yet. 1072 bool RAGreedy::isUnusedCalleeSavedReg(unsigned PhysReg) const { 1073 unsigned CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg); 1074 if (CSR == 0) 1075 return false; 1076 1077 return !Matrix->isPhysRegUsed(PhysReg); 1078 } 1079 1080 /// tryEvict - Try to evict all interferences for a physreg. 1081 /// @param VirtReg Currently unassigned virtual register. 1082 /// @param Order Physregs to try. 1083 /// @return Physreg to assign VirtReg, or 0. 1084 unsigned RAGreedy::tryEvict(LiveInterval &VirtReg, 1085 AllocationOrder &Order, 1086 SmallVectorImpl<unsigned> &NewVRegs, 1087 unsigned CostPerUseLimit) { 1088 NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription, 1089 TimePassesIsEnabled); 1090 1091 // Keep track of the cheapest interference seen so far. 1092 EvictionCost BestCost; 1093 BestCost.setMax(); 1094 unsigned BestPhys = 0; 1095 unsigned OrderLimit = Order.getOrder().size(); 1096 1097 // When we are just looking for a reduced cost per use, don't break any 1098 // hints, and only evict smaller spill weights. 1099 if (CostPerUseLimit < ~0u) { 1100 BestCost.BrokenHints = 0; 1101 BestCost.MaxWeight = VirtReg.weight; 1102 1103 // Check of any registers in RC are below CostPerUseLimit. 1104 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg); 1105 unsigned MinCost = RegClassInfo.getMinCost(RC); 1106 if (MinCost >= CostPerUseLimit) { 1107 DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = " << MinCost 1108 << ", no cheaper registers to be found.\n"); 1109 return 0; 1110 } 1111 1112 // It is normal for register classes to have a long tail of registers with 1113 // the same cost. We don't need to look at them if they're too expensive. 1114 if (TRI->getCostPerUse(Order.getOrder().back()) >= CostPerUseLimit) { 1115 OrderLimit = RegClassInfo.getLastCostChange(RC); 1116 DEBUG(dbgs() << "Only trying the first " << OrderLimit << " regs.\n"); 1117 } 1118 } 1119 1120 Order.rewind(); 1121 while (unsigned PhysReg = Order.next(OrderLimit)) { 1122 if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit) 1123 continue; 1124 // The first use of a callee-saved register in a function has cost 1. 1125 // Don't start using a CSR when the CostPerUseLimit is low. 1126 if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) { 1127 DEBUG(dbgs() << printReg(PhysReg, TRI) << " would clobber CSR " 1128 << printReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI) 1129 << '\n'); 1130 continue; 1131 } 1132 1133 if (!canEvictInterference(VirtReg, PhysReg, false, BestCost)) 1134 continue; 1135 1136 // Best so far. 1137 BestPhys = PhysReg; 1138 1139 // Stop if the hint can be used. 1140 if (Order.isHint()) 1141 break; 1142 } 1143 1144 if (!BestPhys) 1145 return 0; 1146 1147 evictInterference(VirtReg, BestPhys, NewVRegs); 1148 return BestPhys; 1149 } 1150 1151 //===----------------------------------------------------------------------===// 1152 // Region Splitting 1153 //===----------------------------------------------------------------------===// 1154 1155 /// addSplitConstraints - Fill out the SplitConstraints vector based on the 1156 /// interference pattern in Physreg and its aliases. Add the constraints to 1157 /// SpillPlacement and return the static cost of this split in Cost, assuming 1158 /// that all preferences in SplitConstraints are met. 1159 /// Return false if there are no bundles with positive bias. 1160 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf, 1161 BlockFrequency &Cost) { 1162 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1163 1164 // Reset interference dependent info. 1165 SplitConstraints.resize(UseBlocks.size()); 1166 BlockFrequency StaticCost = 0; 1167 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1168 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1169 SpillPlacement::BlockConstraint &BC = SplitConstraints[i]; 1170 1171 BC.Number = BI.MBB->getNumber(); 1172 Intf.moveToBlock(BC.Number); 1173 BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare; 1174 BC.Exit = BI.LiveOut ? SpillPlacement::PrefReg : SpillPlacement::DontCare; 1175 BC.ChangesValue = BI.FirstDef.isValid(); 1176 1177 if (!Intf.hasInterference()) 1178 continue; 1179 1180 // Number of spill code instructions to insert. 1181 unsigned Ins = 0; 1182 1183 // Interference for the live-in value. 1184 if (BI.LiveIn) { 1185 if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) { 1186 BC.Entry = SpillPlacement::MustSpill; 1187 ++Ins; 1188 } else if (Intf.first() < BI.FirstInstr) { 1189 BC.Entry = SpillPlacement::PrefSpill; 1190 ++Ins; 1191 } else if (Intf.first() < BI.LastInstr) { 1192 ++Ins; 1193 } 1194 } 1195 1196 // Interference for the live-out value. 1197 if (BI.LiveOut) { 1198 if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) { 1199 BC.Exit = SpillPlacement::MustSpill; 1200 ++Ins; 1201 } else if (Intf.last() > BI.LastInstr) { 1202 BC.Exit = SpillPlacement::PrefSpill; 1203 ++Ins; 1204 } else if (Intf.last() > BI.FirstInstr) { 1205 ++Ins; 1206 } 1207 } 1208 1209 // Accumulate the total frequency of inserted spill code. 1210 while (Ins--) 1211 StaticCost += SpillPlacer->getBlockFrequency(BC.Number); 1212 } 1213 Cost = StaticCost; 1214 1215 // Add constraints for use-blocks. Note that these are the only constraints 1216 // that may add a positive bias, it is downhill from here. 1217 SpillPlacer->addConstraints(SplitConstraints); 1218 return SpillPlacer->scanActiveBundles(); 1219 } 1220 1221 /// addThroughConstraints - Add constraints and links to SpillPlacer from the 1222 /// live-through blocks in Blocks. 1223 void RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf, 1224 ArrayRef<unsigned> Blocks) { 1225 const unsigned GroupSize = 8; 1226 SpillPlacement::BlockConstraint BCS[GroupSize]; 1227 unsigned TBS[GroupSize]; 1228 unsigned B = 0, T = 0; 1229 1230 for (unsigned i = 0; i != Blocks.size(); ++i) { 1231 unsigned Number = Blocks[i]; 1232 Intf.moveToBlock(Number); 1233 1234 if (!Intf.hasInterference()) { 1235 assert(T < GroupSize && "Array overflow"); 1236 TBS[T] = Number; 1237 if (++T == GroupSize) { 1238 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 1239 T = 0; 1240 } 1241 continue; 1242 } 1243 1244 assert(B < GroupSize && "Array overflow"); 1245 BCS[B].Number = Number; 1246 1247 // Interference for the live-in value. 1248 if (Intf.first() <= Indexes->getMBBStartIdx(Number)) 1249 BCS[B].Entry = SpillPlacement::MustSpill; 1250 else 1251 BCS[B].Entry = SpillPlacement::PrefSpill; 1252 1253 // Interference for the live-out value. 1254 if (Intf.last() >= SA->getLastSplitPoint(Number)) 1255 BCS[B].Exit = SpillPlacement::MustSpill; 1256 else 1257 BCS[B].Exit = SpillPlacement::PrefSpill; 1258 1259 if (++B == GroupSize) { 1260 SpillPlacer->addConstraints(makeArrayRef(BCS, B)); 1261 B = 0; 1262 } 1263 } 1264 1265 SpillPlacer->addConstraints(makeArrayRef(BCS, B)); 1266 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 1267 } 1268 1269 void RAGreedy::growRegion(GlobalSplitCandidate &Cand) { 1270 // Keep track of through blocks that have not been added to SpillPlacer. 1271 BitVector Todo = SA->getThroughBlocks(); 1272 SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks; 1273 unsigned AddedTo = 0; 1274 #ifndef NDEBUG 1275 unsigned Visited = 0; 1276 #endif 1277 1278 while (true) { 1279 ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive(); 1280 // Find new through blocks in the periphery of PrefRegBundles. 1281 for (int i = 0, e = NewBundles.size(); i != e; ++i) { 1282 unsigned Bundle = NewBundles[i]; 1283 // Look at all blocks connected to Bundle in the full graph. 1284 ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle); 1285 for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end(); 1286 I != E; ++I) { 1287 unsigned Block = *I; 1288 if (!Todo.test(Block)) 1289 continue; 1290 Todo.reset(Block); 1291 // This is a new through block. Add it to SpillPlacer later. 1292 ActiveBlocks.push_back(Block); 1293 #ifndef NDEBUG 1294 ++Visited; 1295 #endif 1296 } 1297 } 1298 // Any new blocks to add? 1299 if (ActiveBlocks.size() == AddedTo) 1300 break; 1301 1302 // Compute through constraints from the interference, or assume that all 1303 // through blocks prefer spilling when forming compact regions. 1304 auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo); 1305 if (Cand.PhysReg) 1306 addThroughConstraints(Cand.Intf, NewBlocks); 1307 else 1308 // Provide a strong negative bias on through blocks to prevent unwanted 1309 // liveness on loop backedges. 1310 SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true); 1311 AddedTo = ActiveBlocks.size(); 1312 1313 // Perhaps iterating can enable more bundles? 1314 SpillPlacer->iterate(); 1315 } 1316 DEBUG(dbgs() << ", v=" << Visited); 1317 } 1318 1319 /// calcCompactRegion - Compute the set of edge bundles that should be live 1320 /// when splitting the current live range into compact regions. Compact 1321 /// regions can be computed without looking at interference. They are the 1322 /// regions formed by removing all the live-through blocks from the live range. 1323 /// 1324 /// Returns false if the current live range is already compact, or if the 1325 /// compact regions would form single block regions anyway. 1326 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) { 1327 // Without any through blocks, the live range is already compact. 1328 if (!SA->getNumThroughBlocks()) 1329 return false; 1330 1331 // Compact regions don't correspond to any physreg. 1332 Cand.reset(IntfCache, 0); 1333 1334 DEBUG(dbgs() << "Compact region bundles"); 1335 1336 // Use the spill placer to determine the live bundles. GrowRegion pretends 1337 // that all the through blocks have interference when PhysReg is unset. 1338 SpillPlacer->prepare(Cand.LiveBundles); 1339 1340 // The static split cost will be zero since Cand.Intf reports no interference. 1341 BlockFrequency Cost; 1342 if (!addSplitConstraints(Cand.Intf, Cost)) { 1343 DEBUG(dbgs() << ", none.\n"); 1344 return false; 1345 } 1346 1347 growRegion(Cand); 1348 SpillPlacer->finish(); 1349 1350 if (!Cand.LiveBundles.any()) { 1351 DEBUG(dbgs() << ", none.\n"); 1352 return false; 1353 } 1354 1355 DEBUG({ 1356 for (int i : Cand.LiveBundles.set_bits()) 1357 dbgs() << " EB#" << i; 1358 dbgs() << ".\n"; 1359 }); 1360 return true; 1361 } 1362 1363 /// calcSpillCost - Compute how expensive it would be to split the live range in 1364 /// SA around all use blocks instead of forming bundle regions. 1365 BlockFrequency RAGreedy::calcSpillCost() { 1366 BlockFrequency Cost = 0; 1367 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1368 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1369 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1370 unsigned Number = BI.MBB->getNumber(); 1371 // We normally only need one spill instruction - a load or a store. 1372 Cost += SpillPlacer->getBlockFrequency(Number); 1373 1374 // Unless the value is redefined in the block. 1375 if (BI.LiveIn && BI.LiveOut && BI.FirstDef) 1376 Cost += SpillPlacer->getBlockFrequency(Number); 1377 } 1378 return Cost; 1379 } 1380 1381 /// \brief Check if splitting Evictee will create a local split interval in 1382 /// basic block number BBNumber that may cause a bad eviction chain. This is 1383 /// intended to prevent bad eviction sequences like: 1384 /// movl %ebp, 8(%esp) # 4-byte Spill 1385 /// movl %ecx, %ebp 1386 /// movl %ebx, %ecx 1387 /// movl %edi, %ebx 1388 /// movl %edx, %edi 1389 /// cltd 1390 /// idivl %esi 1391 /// movl %edi, %edx 1392 /// movl %ebx, %edi 1393 /// movl %ecx, %ebx 1394 /// movl %ebp, %ecx 1395 /// movl 16(%esp), %ebp # 4 - byte Reload 1396 /// 1397 /// Such sequences are created in 2 scenarios: 1398 /// 1399 /// Scenario #1: 1400 /// %0 is evicted from physreg0 by %1. 1401 /// Evictee %0 is intended for region splitting with split candidate 1402 /// physreg0 (the reg %0 was evicted from). 1403 /// Region splitting creates a local interval because of interference with the 1404 /// evictor %1 (normally region spliitting creates 2 interval, the "by reg" 1405 /// and "by stack" intervals and local interval created when interference 1406 /// occurs). 1407 /// One of the split intervals ends up evicting %2 from physreg1. 1408 /// Evictee %2 is intended for region splitting with split candidate 1409 /// physreg1. 1410 /// One of the split intervals ends up evicting %3 from physreg2, etc. 1411 /// 1412 /// Scenario #2 1413 /// %0 is evicted from physreg0 by %1. 1414 /// %2 is evicted from physreg2 by %3 etc. 1415 /// Evictee %0 is intended for region splitting with split candidate 1416 /// physreg1. 1417 /// Region splitting creates a local interval because of interference with the 1418 /// evictor %1. 1419 /// One of the split intervals ends up evicting back original evictor %1 1420 /// from physreg0 (the reg %0 was evicted from). 1421 /// Another evictee %2 is intended for region splitting with split candidate 1422 /// physreg1. 1423 /// One of the split intervals ends up evicting %3 from physreg2, etc. 1424 /// 1425 /// \param Evictee The register considered to be split. 1426 /// \param Cand The split candidate that determines the physical register 1427 /// we are splitting for and the interferences. 1428 /// \param BBNumber The number of a BB for which the region split process will 1429 /// create a local split interval. 1430 /// \param Order The phisical registers that may get evicted by a split 1431 /// artifact of Evictee. 1432 /// \return True if splitting Evictee may cause a bad eviction chain, false 1433 /// otherwise. 1434 bool RAGreedy::splitCanCauseEvictionChain(unsigned Evictee, 1435 GlobalSplitCandidate &Cand, 1436 unsigned BBNumber, 1437 const AllocationOrder &Order) { 1438 EvictionTrack::EvictorInfo VregEvictorInfo = LastEvicted.getEvictor(Evictee); 1439 unsigned Evictor = VregEvictorInfo.first; 1440 unsigned PhysReg = VregEvictorInfo.second; 1441 1442 // No actual evictor. 1443 if (!Evictor || !PhysReg) 1444 return false; 1445 1446 float MaxWeight = 0; 1447 unsigned FutureEvictedPhysReg = 1448 getCheapestEvicteeWeight(Order, LIS->getInterval(Evictee), 1449 Cand.Intf.first(), Cand.Intf.last(), &MaxWeight); 1450 1451 // The bad eviction chain occurs when either the split candidate the 1452 // evited reg or one of the split artifact will evict the evicting reg. 1453 if ((PhysReg != Cand.PhysReg) && (PhysReg != FutureEvictedPhysReg)) 1454 return false; 1455 1456 Cand.Intf.moveToBlock(BBNumber); 1457 1458 // Check to see if the Evictor contains interference (with Evictee) in the 1459 // given BB. If so, this interference caused the eviction of Evictee from 1460 // PhysReg. This suggest that we will create a local interval during the 1461 // region split to avoid this interference This local interval may cause a bad 1462 // eviction chain. 1463 if (!LIS->hasInterval(Evictor)) 1464 return false; 1465 LiveInterval &EvictorLI = LIS->getInterval(Evictor); 1466 if (EvictorLI.FindSegmentContaining(Cand.Intf.first()) == EvictorLI.end()) 1467 return false; 1468 1469 // Now, check to see if the local interval we will create is going to be 1470 // expensive enough to evict somebody If so, this may cause a bad eviction 1471 // chain. 1472 VirtRegAuxInfo VRAI(*MF, *LIS, VRM, getAnalysis<MachineLoopInfo>(), *MBFI); 1473 float splitArtifactWeight = 1474 VRAI.futureWeight(LIS->getInterval(Evictee), 1475 Cand.Intf.first().getPrevIndex(), Cand.Intf.last()); 1476 if (splitArtifactWeight >= 0 && splitArtifactWeight < MaxWeight) 1477 return false; 1478 1479 return true; 1480 } 1481 1482 /// calcGlobalSplitCost - Return the global split cost of following the split 1483 /// pattern in LiveBundles. This cost should be added to the local cost of the 1484 /// interference pattern in SplitConstraints. 1485 /// 1486 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand, 1487 const AllocationOrder &Order, 1488 bool *CanCauseEvictionChain) { 1489 BlockFrequency GlobalCost = 0; 1490 const BitVector &LiveBundles = Cand.LiveBundles; 1491 unsigned VirtRegToSplit = SA->getParent().reg; 1492 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1493 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1494 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1495 SpillPlacement::BlockConstraint &BC = SplitConstraints[i]; 1496 bool RegIn = LiveBundles[Bundles->getBundle(BC.Number, false)]; 1497 bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)]; 1498 unsigned Ins = 0; 1499 1500 Cand.Intf.moveToBlock(BC.Number); 1501 // Check wheather a local interval is going to be created during the region 1502 // split. 1503 if (EnableAdvancedRASplitCost && CanCauseEvictionChain && 1504 Cand.Intf.hasInterference() && BI.LiveIn && BI.LiveOut && RegIn && 1505 RegOut) { 1506 1507 if (splitCanCauseEvictionChain(VirtRegToSplit, Cand, BC.Number, Order)) { 1508 // This interfernce cause our eviction from this assignment, we might 1509 // evict somebody else, add that cost. 1510 // See splitCanCauseEvictionChain for detailed description of scenarios. 1511 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1512 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1513 1514 *CanCauseEvictionChain = true; 1515 } 1516 } 1517 1518 if (BI.LiveIn) 1519 Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg); 1520 if (BI.LiveOut) 1521 Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg); 1522 while (Ins--) 1523 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1524 } 1525 1526 for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) { 1527 unsigned Number = Cand.ActiveBlocks[i]; 1528 bool RegIn = LiveBundles[Bundles->getBundle(Number, false)]; 1529 bool RegOut = LiveBundles[Bundles->getBundle(Number, true)]; 1530 if (!RegIn && !RegOut) 1531 continue; 1532 if (RegIn && RegOut) { 1533 // We need double spill code if this block has interference. 1534 Cand.Intf.moveToBlock(Number); 1535 if (Cand.Intf.hasInterference()) { 1536 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1537 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1538 1539 // Check wheather a local interval is going to be created during the 1540 // region split. 1541 if (EnableAdvancedRASplitCost && CanCauseEvictionChain && 1542 splitCanCauseEvictionChain(VirtRegToSplit, Cand, Number, Order)) { 1543 // This interfernce cause our eviction from this assignment, we might 1544 // evict somebody else, add that cost. 1545 // See splitCanCauseEvictionChain for detailed description of 1546 // scenarios. 1547 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1548 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1549 1550 *CanCauseEvictionChain = true; 1551 } 1552 } 1553 continue; 1554 } 1555 // live-in / stack-out or stack-in live-out. 1556 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1557 } 1558 return GlobalCost; 1559 } 1560 1561 /// splitAroundRegion - Split the current live range around the regions 1562 /// determined by BundleCand and GlobalCand. 1563 /// 1564 /// Before calling this function, GlobalCand and BundleCand must be initialized 1565 /// so each bundle is assigned to a valid candidate, or NoCand for the 1566 /// stack-bound bundles. The shared SA/SE SplitAnalysis and SplitEditor 1567 /// objects must be initialized for the current live range, and intervals 1568 /// created for the used candidates. 1569 /// 1570 /// @param LREdit The LiveRangeEdit object handling the current split. 1571 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value 1572 /// must appear in this list. 1573 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit, 1574 ArrayRef<unsigned> UsedCands) { 1575 // These are the intervals created for new global ranges. We may create more 1576 // intervals for local ranges. 1577 const unsigned NumGlobalIntvs = LREdit.size(); 1578 DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs << " globals.\n"); 1579 assert(NumGlobalIntvs && "No global intervals configured"); 1580 1581 // Isolate even single instructions when dealing with a proper sub-class. 1582 // That guarantees register class inflation for the stack interval because it 1583 // is all copies. 1584 unsigned Reg = SA->getParent().reg; 1585 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 1586 1587 // First handle all the blocks with uses. 1588 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1589 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1590 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1591 unsigned Number = BI.MBB->getNumber(); 1592 unsigned IntvIn = 0, IntvOut = 0; 1593 SlotIndex IntfIn, IntfOut; 1594 if (BI.LiveIn) { 1595 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)]; 1596 if (CandIn != NoCand) { 1597 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 1598 IntvIn = Cand.IntvIdx; 1599 Cand.Intf.moveToBlock(Number); 1600 IntfIn = Cand.Intf.first(); 1601 } 1602 } 1603 if (BI.LiveOut) { 1604 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)]; 1605 if (CandOut != NoCand) { 1606 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 1607 IntvOut = Cand.IntvIdx; 1608 Cand.Intf.moveToBlock(Number); 1609 IntfOut = Cand.Intf.last(); 1610 } 1611 } 1612 1613 // Create separate intervals for isolated blocks with multiple uses. 1614 if (!IntvIn && !IntvOut) { 1615 DEBUG(dbgs() << printMBBReference(*BI.MBB) << " isolated.\n"); 1616 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 1617 SE->splitSingleBlock(BI); 1618 continue; 1619 } 1620 1621 if (IntvIn && IntvOut) 1622 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1623 else if (IntvIn) 1624 SE->splitRegInBlock(BI, IntvIn, IntfIn); 1625 else 1626 SE->splitRegOutBlock(BI, IntvOut, IntfOut); 1627 } 1628 1629 // Handle live-through blocks. The relevant live-through blocks are stored in 1630 // the ActiveBlocks list with each candidate. We need to filter out 1631 // duplicates. 1632 BitVector Todo = SA->getThroughBlocks(); 1633 for (unsigned c = 0; c != UsedCands.size(); ++c) { 1634 ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks; 1635 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { 1636 unsigned Number = Blocks[i]; 1637 if (!Todo.test(Number)) 1638 continue; 1639 Todo.reset(Number); 1640 1641 unsigned IntvIn = 0, IntvOut = 0; 1642 SlotIndex IntfIn, IntfOut; 1643 1644 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)]; 1645 if (CandIn != NoCand) { 1646 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 1647 IntvIn = Cand.IntvIdx; 1648 Cand.Intf.moveToBlock(Number); 1649 IntfIn = Cand.Intf.first(); 1650 } 1651 1652 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)]; 1653 if (CandOut != NoCand) { 1654 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 1655 IntvOut = Cand.IntvIdx; 1656 Cand.Intf.moveToBlock(Number); 1657 IntfOut = Cand.Intf.last(); 1658 } 1659 if (!IntvIn && !IntvOut) 1660 continue; 1661 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1662 } 1663 } 1664 1665 ++NumGlobalSplits; 1666 1667 SmallVector<unsigned, 8> IntvMap; 1668 SE->finish(&IntvMap); 1669 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 1670 1671 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 1672 unsigned OrigBlocks = SA->getNumLiveBlocks(); 1673 1674 // Sort out the new intervals created by splitting. We get four kinds: 1675 // - Remainder intervals should not be split again. 1676 // - Candidate intervals can be assigned to Cand.PhysReg. 1677 // - Block-local splits are candidates for local splitting. 1678 // - DCE leftovers should go back on the queue. 1679 for (unsigned i = 0, e = LREdit.size(); i != e; ++i) { 1680 LiveInterval &Reg = LIS->getInterval(LREdit.get(i)); 1681 1682 // Ignore old intervals from DCE. 1683 if (getStage(Reg) != RS_New) 1684 continue; 1685 1686 // Remainder interval. Don't try splitting again, spill if it doesn't 1687 // allocate. 1688 if (IntvMap[i] == 0) { 1689 setStage(Reg, RS_Spill); 1690 continue; 1691 } 1692 1693 // Global intervals. Allow repeated splitting as long as the number of live 1694 // blocks is strictly decreasing. 1695 if (IntvMap[i] < NumGlobalIntvs) { 1696 if (SA->countLiveBlocks(&Reg) >= OrigBlocks) { 1697 DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks 1698 << " blocks as original.\n"); 1699 // Don't allow repeated splitting as a safe guard against looping. 1700 setStage(Reg, RS_Split2); 1701 } 1702 continue; 1703 } 1704 1705 // Other intervals are treated as new. This includes local intervals created 1706 // for blocks with multiple uses, and anything created by DCE. 1707 } 1708 1709 if (VerifyEnabled) 1710 MF->verify(this, "After splitting live range around region"); 1711 } 1712 1713 unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order, 1714 SmallVectorImpl<unsigned> &NewVRegs) { 1715 unsigned NumCands = 0; 1716 BlockFrequency SpillCost = calcSpillCost(); 1717 BlockFrequency BestCost; 1718 1719 // Check if we can split this live range around a compact region. 1720 bool HasCompact = calcCompactRegion(GlobalCand.front()); 1721 if (HasCompact) { 1722 // Yes, keep GlobalCand[0] as the compact region candidate. 1723 NumCands = 1; 1724 BestCost = BlockFrequency::getMaxFrequency(); 1725 } else { 1726 // No benefit from the compact region, our fallback will be per-block 1727 // splitting. Make sure we find a solution that is cheaper than spilling. 1728 BestCost = SpillCost; 1729 DEBUG(dbgs() << "Cost of isolating all blocks = "; 1730 MBFI->printBlockFreq(dbgs(), BestCost) << '\n'); 1731 } 1732 1733 bool CanCauseEvictionChain = false; 1734 unsigned BestCand = 1735 calculateRegionSplitCost(VirtReg, Order, BestCost, NumCands, 1736 false /*IgnoreCSR*/, &CanCauseEvictionChain); 1737 1738 // Split candidates with compact regions can cause a bad eviction sequence. 1739 // See splitCanCauseEvictionChain for detailed description of scenarios. 1740 // To avoid it, we need to comapre the cost with the spill cost and not the 1741 // current max frequency. 1742 if (HasCompact && (BestCost > SpillCost) && (BestCand != NoCand) && 1743 CanCauseEvictionChain) { 1744 return 0; 1745 } 1746 1747 // No solutions found, fall back to single block splitting. 1748 if (!HasCompact && BestCand == NoCand) 1749 return 0; 1750 1751 return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs); 1752 } 1753 1754 unsigned RAGreedy::calculateRegionSplitCost(LiveInterval &VirtReg, 1755 AllocationOrder &Order, 1756 BlockFrequency &BestCost, 1757 unsigned &NumCands, bool IgnoreCSR, 1758 bool *CanCauseEvictionChain) { 1759 unsigned BestCand = NoCand; 1760 Order.rewind(); 1761 while (unsigned PhysReg = Order.next()) { 1762 if (IgnoreCSR && isUnusedCalleeSavedReg(PhysReg)) 1763 continue; 1764 1765 // Discard bad candidates before we run out of interference cache cursors. 1766 // This will only affect register classes with a lot of registers (>32). 1767 if (NumCands == IntfCache.getMaxCursors()) { 1768 unsigned WorstCount = ~0u; 1769 unsigned Worst = 0; 1770 for (unsigned i = 0; i != NumCands; ++i) { 1771 if (i == BestCand || !GlobalCand[i].PhysReg) 1772 continue; 1773 unsigned Count = GlobalCand[i].LiveBundles.count(); 1774 if (Count < WorstCount) { 1775 Worst = i; 1776 WorstCount = Count; 1777 } 1778 } 1779 --NumCands; 1780 GlobalCand[Worst] = GlobalCand[NumCands]; 1781 if (BestCand == NumCands) 1782 BestCand = Worst; 1783 } 1784 1785 if (GlobalCand.size() <= NumCands) 1786 GlobalCand.resize(NumCands+1); 1787 GlobalSplitCandidate &Cand = GlobalCand[NumCands]; 1788 Cand.reset(IntfCache, PhysReg); 1789 1790 SpillPlacer->prepare(Cand.LiveBundles); 1791 BlockFrequency Cost; 1792 if (!addSplitConstraints(Cand.Intf, Cost)) { 1793 DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tno positive bundles\n"); 1794 continue; 1795 } 1796 DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tstatic = "; 1797 MBFI->printBlockFreq(dbgs(), Cost)); 1798 if (Cost >= BestCost) { 1799 DEBUG({ 1800 if (BestCand == NoCand) 1801 dbgs() << " worse than no bundles\n"; 1802 else 1803 dbgs() << " worse than " 1804 << printReg(GlobalCand[BestCand].PhysReg, TRI) << '\n'; 1805 }); 1806 continue; 1807 } 1808 growRegion(Cand); 1809 1810 SpillPlacer->finish(); 1811 1812 // No live bundles, defer to splitSingleBlocks(). 1813 if (!Cand.LiveBundles.any()) { 1814 DEBUG(dbgs() << " no bundles.\n"); 1815 continue; 1816 } 1817 1818 bool HasEvictionChain = false; 1819 Cost += calcGlobalSplitCost(Cand, Order, &HasEvictionChain); 1820 DEBUG({ 1821 dbgs() << ", total = "; MBFI->printBlockFreq(dbgs(), Cost) 1822 << " with bundles"; 1823 for (int i : Cand.LiveBundles.set_bits()) 1824 dbgs() << " EB#" << i; 1825 dbgs() << ".\n"; 1826 }); 1827 if (Cost < BestCost) { 1828 BestCand = NumCands; 1829 BestCost = Cost; 1830 // See splitCanCauseEvictionChain for detailed description of bad 1831 // eviction chain scenarios. 1832 if (CanCauseEvictionChain) 1833 *CanCauseEvictionChain = HasEvictionChain; 1834 } 1835 ++NumCands; 1836 } 1837 1838 if (CanCauseEvictionChain && BestCand != NoCand) { 1839 // See splitCanCauseEvictionChain for detailed description of bad 1840 // eviction chain scenarios. 1841 DEBUG(dbgs() << "Best split candidate of vreg " 1842 << printReg(VirtReg.reg, TRI) << " may "); 1843 if (!(*CanCauseEvictionChain)) 1844 DEBUG(dbgs() << "not "); 1845 DEBUG(dbgs() << "cause bad eviction chain\n"); 1846 } 1847 1848 return BestCand; 1849 } 1850 1851 unsigned RAGreedy::doRegionSplit(LiveInterval &VirtReg, unsigned BestCand, 1852 bool HasCompact, 1853 SmallVectorImpl<unsigned> &NewVRegs) { 1854 SmallVector<unsigned, 8> UsedCands; 1855 // Prepare split editor. 1856 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1857 SE->reset(LREdit, SplitSpillMode); 1858 1859 // Assign all edge bundles to the preferred candidate, or NoCand. 1860 BundleCand.assign(Bundles->getNumBundles(), NoCand); 1861 1862 // Assign bundles for the best candidate region. 1863 if (BestCand != NoCand) { 1864 GlobalSplitCandidate &Cand = GlobalCand[BestCand]; 1865 if (unsigned B = Cand.getBundles(BundleCand, BestCand)) { 1866 UsedCands.push_back(BestCand); 1867 Cand.IntvIdx = SE->openIntv(); 1868 DEBUG(dbgs() << "Split for " << printReg(Cand.PhysReg, TRI) << " in " 1869 << B << " bundles, intv " << Cand.IntvIdx << ".\n"); 1870 (void)B; 1871 } 1872 } 1873 1874 // Assign bundles for the compact region. 1875 if (HasCompact) { 1876 GlobalSplitCandidate &Cand = GlobalCand.front(); 1877 assert(!Cand.PhysReg && "Compact region has no physreg"); 1878 if (unsigned B = Cand.getBundles(BundleCand, 0)) { 1879 UsedCands.push_back(0); 1880 Cand.IntvIdx = SE->openIntv(); 1881 DEBUG(dbgs() << "Split for compact region in " << B << " bundles, intv " 1882 << Cand.IntvIdx << ".\n"); 1883 (void)B; 1884 } 1885 } 1886 1887 splitAroundRegion(LREdit, UsedCands); 1888 return 0; 1889 } 1890 1891 //===----------------------------------------------------------------------===// 1892 // Per-Block Splitting 1893 //===----------------------------------------------------------------------===// 1894 1895 /// tryBlockSplit - Split a global live range around every block with uses. This 1896 /// creates a lot of local live ranges, that will be split by tryLocalSplit if 1897 /// they don't allocate. 1898 unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order, 1899 SmallVectorImpl<unsigned> &NewVRegs) { 1900 assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed"); 1901 unsigned Reg = VirtReg.reg; 1902 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 1903 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1904 SE->reset(LREdit, SplitSpillMode); 1905 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1906 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1907 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1908 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 1909 SE->splitSingleBlock(BI); 1910 } 1911 // No blocks were split. 1912 if (LREdit.empty()) 1913 return 0; 1914 1915 // We did split for some blocks. 1916 SmallVector<unsigned, 8> IntvMap; 1917 SE->finish(&IntvMap); 1918 1919 // Tell LiveDebugVariables about the new ranges. 1920 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 1921 1922 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 1923 1924 // Sort out the new intervals created by splitting. The remainder interval 1925 // goes straight to spilling, the new local ranges get to stay RS_New. 1926 for (unsigned i = 0, e = LREdit.size(); i != e; ++i) { 1927 LiveInterval &LI = LIS->getInterval(LREdit.get(i)); 1928 if (getStage(LI) == RS_New && IntvMap[i] == 0) 1929 setStage(LI, RS_Spill); 1930 } 1931 1932 if (VerifyEnabled) 1933 MF->verify(this, "After splitting live range around basic blocks"); 1934 return 0; 1935 } 1936 1937 //===----------------------------------------------------------------------===// 1938 // Per-Instruction Splitting 1939 //===----------------------------------------------------------------------===// 1940 1941 /// Get the number of allocatable registers that match the constraints of \p Reg 1942 /// on \p MI and that are also in \p SuperRC. 1943 static unsigned getNumAllocatableRegsForConstraints( 1944 const MachineInstr *MI, unsigned Reg, const TargetRegisterClass *SuperRC, 1945 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI, 1946 const RegisterClassInfo &RCI) { 1947 assert(SuperRC && "Invalid register class"); 1948 1949 const TargetRegisterClass *ConstrainedRC = 1950 MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI, 1951 /* ExploreBundle */ true); 1952 if (!ConstrainedRC) 1953 return 0; 1954 return RCI.getNumAllocatableRegs(ConstrainedRC); 1955 } 1956 1957 /// tryInstructionSplit - Split a live range around individual instructions. 1958 /// This is normally not worthwhile since the spiller is doing essentially the 1959 /// same thing. However, when the live range is in a constrained register 1960 /// class, it may help to insert copies such that parts of the live range can 1961 /// be moved to a larger register class. 1962 /// 1963 /// This is similar to spilling to a larger register class. 1964 unsigned 1965 RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order, 1966 SmallVectorImpl<unsigned> &NewVRegs) { 1967 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg); 1968 // There is no point to this if there are no larger sub-classes. 1969 if (!RegClassInfo.isProperSubClass(CurRC)) 1970 return 0; 1971 1972 // Always enable split spill mode, since we're effectively spilling to a 1973 // register. 1974 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1975 SE->reset(LREdit, SplitEditor::SM_Size); 1976 1977 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 1978 if (Uses.size() <= 1) 1979 return 0; 1980 1981 DEBUG(dbgs() << "Split around " << Uses.size() << " individual instrs.\n"); 1982 1983 const TargetRegisterClass *SuperRC = 1984 TRI->getLargestLegalSuperClass(CurRC, *MF); 1985 unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC); 1986 // Split around every non-copy instruction if this split will relax 1987 // the constraints on the virtual register. 1988 // Otherwise, splitting just inserts uncoalescable copies that do not help 1989 // the allocation. 1990 for (unsigned i = 0; i != Uses.size(); ++i) { 1991 if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Uses[i])) 1992 if (MI->isFullCopy() || 1993 SuperRCNumAllocatableRegs == 1994 getNumAllocatableRegsForConstraints(MI, VirtReg.reg, SuperRC, TII, 1995 TRI, RCI)) { 1996 DEBUG(dbgs() << " skip:\t" << Uses[i] << '\t' << *MI); 1997 continue; 1998 } 1999 SE->openIntv(); 2000 SlotIndex SegStart = SE->enterIntvBefore(Uses[i]); 2001 SlotIndex SegStop = SE->leaveIntvAfter(Uses[i]); 2002 SE->useIntv(SegStart, SegStop); 2003 } 2004 2005 if (LREdit.empty()) { 2006 DEBUG(dbgs() << "All uses were copies.\n"); 2007 return 0; 2008 } 2009 2010 SmallVector<unsigned, 8> IntvMap; 2011 SE->finish(&IntvMap); 2012 DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS); 2013 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 2014 2015 // Assign all new registers to RS_Spill. This was the last chance. 2016 setStage(LREdit.begin(), LREdit.end(), RS_Spill); 2017 return 0; 2018 } 2019 2020 //===----------------------------------------------------------------------===// 2021 // Local Splitting 2022 //===----------------------------------------------------------------------===// 2023 2024 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted 2025 /// in order to use PhysReg between two entries in SA->UseSlots. 2026 /// 2027 /// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1]. 2028 /// 2029 void RAGreedy::calcGapWeights(unsigned PhysReg, 2030 SmallVectorImpl<float> &GapWeight) { 2031 assert(SA->getUseBlocks().size() == 1 && "Not a local interval"); 2032 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 2033 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 2034 const unsigned NumGaps = Uses.size()-1; 2035 2036 // Start and end points for the interference check. 2037 SlotIndex StartIdx = 2038 BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr; 2039 SlotIndex StopIdx = 2040 BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr; 2041 2042 GapWeight.assign(NumGaps, 0.0f); 2043 2044 // Add interference from each overlapping register. 2045 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 2046 if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units) 2047 .checkInterference()) 2048 continue; 2049 2050 // We know that VirtReg is a continuous interval from FirstInstr to 2051 // LastInstr, so we don't need InterferenceQuery. 2052 // 2053 // Interference that overlaps an instruction is counted in both gaps 2054 // surrounding the instruction. The exception is interference before 2055 // StartIdx and after StopIdx. 2056 // 2057 LiveIntervalUnion::SegmentIter IntI = 2058 Matrix->getLiveUnions()[*Units] .find(StartIdx); 2059 for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) { 2060 // Skip the gaps before IntI. 2061 while (Uses[Gap+1].getBoundaryIndex() < IntI.start()) 2062 if (++Gap == NumGaps) 2063 break; 2064 if (Gap == NumGaps) 2065 break; 2066 2067 // Update the gaps covered by IntI. 2068 const float weight = IntI.value()->weight; 2069 for (; Gap != NumGaps; ++Gap) { 2070 GapWeight[Gap] = std::max(GapWeight[Gap], weight); 2071 if (Uses[Gap+1].getBaseIndex() >= IntI.stop()) 2072 break; 2073 } 2074 if (Gap == NumGaps) 2075 break; 2076 } 2077 } 2078 2079 // Add fixed interference. 2080 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 2081 const LiveRange &LR = LIS->getRegUnit(*Units); 2082 LiveRange::const_iterator I = LR.find(StartIdx); 2083 LiveRange::const_iterator E = LR.end(); 2084 2085 // Same loop as above. Mark any overlapped gaps as HUGE_VALF. 2086 for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) { 2087 while (Uses[Gap+1].getBoundaryIndex() < I->start) 2088 if (++Gap == NumGaps) 2089 break; 2090 if (Gap == NumGaps) 2091 break; 2092 2093 for (; Gap != NumGaps; ++Gap) { 2094 GapWeight[Gap] = huge_valf; 2095 if (Uses[Gap+1].getBaseIndex() >= I->end) 2096 break; 2097 } 2098 if (Gap == NumGaps) 2099 break; 2100 } 2101 } 2102 } 2103 2104 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only 2105 /// basic block. 2106 /// 2107 unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order, 2108 SmallVectorImpl<unsigned> &NewVRegs) { 2109 assert(SA->getUseBlocks().size() == 1 && "Not a local interval"); 2110 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 2111 2112 // Note that it is possible to have an interval that is live-in or live-out 2113 // while only covering a single block - A phi-def can use undef values from 2114 // predecessors, and the block could be a single-block loop. 2115 // We don't bother doing anything clever about such a case, we simply assume 2116 // that the interval is continuous from FirstInstr to LastInstr. We should 2117 // make sure that we don't do anything illegal to such an interval, though. 2118 2119 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 2120 if (Uses.size() <= 2) 2121 return 0; 2122 const unsigned NumGaps = Uses.size()-1; 2123 2124 DEBUG({ 2125 dbgs() << "tryLocalSplit: "; 2126 for (unsigned i = 0, e = Uses.size(); i != e; ++i) 2127 dbgs() << ' ' << Uses[i]; 2128 dbgs() << '\n'; 2129 }); 2130 2131 // If VirtReg is live across any register mask operands, compute a list of 2132 // gaps with register masks. 2133 SmallVector<unsigned, 8> RegMaskGaps; 2134 if (Matrix->checkRegMaskInterference(VirtReg)) { 2135 // Get regmask slots for the whole block. 2136 ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber()); 2137 DEBUG(dbgs() << RMS.size() << " regmasks in block:"); 2138 // Constrain to VirtReg's live range. 2139 unsigned ri = std::lower_bound(RMS.begin(), RMS.end(), 2140 Uses.front().getRegSlot()) - RMS.begin(); 2141 unsigned re = RMS.size(); 2142 for (unsigned i = 0; i != NumGaps && ri != re; ++i) { 2143 // Look for Uses[i] <= RMS <= Uses[i+1]. 2144 assert(!SlotIndex::isEarlierInstr(RMS[ri], Uses[i])); 2145 if (SlotIndex::isEarlierInstr(Uses[i+1], RMS[ri])) 2146 continue; 2147 // Skip a regmask on the same instruction as the last use. It doesn't 2148 // overlap the live range. 2149 if (SlotIndex::isSameInstr(Uses[i+1], RMS[ri]) && i+1 == NumGaps) 2150 break; 2151 DEBUG(dbgs() << ' ' << RMS[ri] << ':' << Uses[i] << '-' << Uses[i+1]); 2152 RegMaskGaps.push_back(i); 2153 // Advance ri to the next gap. A regmask on one of the uses counts in 2154 // both gaps. 2155 while (ri != re && SlotIndex::isEarlierInstr(RMS[ri], Uses[i+1])) 2156 ++ri; 2157 } 2158 DEBUG(dbgs() << '\n'); 2159 } 2160 2161 // Since we allow local split results to be split again, there is a risk of 2162 // creating infinite loops. It is tempting to require that the new live 2163 // ranges have less instructions than the original. That would guarantee 2164 // convergence, but it is too strict. A live range with 3 instructions can be 2165 // split 2+3 (including the COPY), and we want to allow that. 2166 // 2167 // Instead we use these rules: 2168 // 2169 // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the 2170 // noop split, of course). 2171 // 2. Require progress be made for ranges with getStage() == RS_Split2. All 2172 // the new ranges must have fewer instructions than before the split. 2173 // 3. New ranges with the same number of instructions are marked RS_Split2, 2174 // smaller ranges are marked RS_New. 2175 // 2176 // These rules allow a 3 -> 2+3 split once, which we need. They also prevent 2177 // excessive splitting and infinite loops. 2178 // 2179 bool ProgressRequired = getStage(VirtReg) >= RS_Split2; 2180 2181 // Best split candidate. 2182 unsigned BestBefore = NumGaps; 2183 unsigned BestAfter = 0; 2184 float BestDiff = 0; 2185 2186 const float blockFreq = 2187 SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() * 2188 (1.0f / MBFI->getEntryFreq()); 2189 SmallVector<float, 8> GapWeight; 2190 2191 Order.rewind(); 2192 while (unsigned PhysReg = Order.next()) { 2193 // Keep track of the largest spill weight that would need to be evicted in 2194 // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1]. 2195 calcGapWeights(PhysReg, GapWeight); 2196 2197 // Remove any gaps with regmask clobbers. 2198 if (Matrix->checkRegMaskInterference(VirtReg, PhysReg)) 2199 for (unsigned i = 0, e = RegMaskGaps.size(); i != e; ++i) 2200 GapWeight[RegMaskGaps[i]] = huge_valf; 2201 2202 // Try to find the best sequence of gaps to close. 2203 // The new spill weight must be larger than any gap interference. 2204 2205 // We will split before Uses[SplitBefore] and after Uses[SplitAfter]. 2206 unsigned SplitBefore = 0, SplitAfter = 1; 2207 2208 // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]). 2209 // It is the spill weight that needs to be evicted. 2210 float MaxGap = GapWeight[0]; 2211 2212 while (true) { 2213 // Live before/after split? 2214 const bool LiveBefore = SplitBefore != 0 || BI.LiveIn; 2215 const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut; 2216 2217 DEBUG(dbgs() << printReg(PhysReg, TRI) << ' ' 2218 << Uses[SplitBefore] << '-' << Uses[SplitAfter] 2219 << " i=" << MaxGap); 2220 2221 // Stop before the interval gets so big we wouldn't be making progress. 2222 if (!LiveBefore && !LiveAfter) { 2223 DEBUG(dbgs() << " all\n"); 2224 break; 2225 } 2226 // Should the interval be extended or shrunk? 2227 bool Shrink = true; 2228 2229 // How many gaps would the new range have? 2230 unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter; 2231 2232 // Legally, without causing looping? 2233 bool Legal = !ProgressRequired || NewGaps < NumGaps; 2234 2235 if (Legal && MaxGap < huge_valf) { 2236 // Estimate the new spill weight. Each instruction reads or writes the 2237 // register. Conservatively assume there are no read-modify-write 2238 // instructions. 2239 // 2240 // Try to guess the size of the new interval. 2241 const float EstWeight = normalizeSpillWeight( 2242 blockFreq * (NewGaps + 1), 2243 Uses[SplitBefore].distance(Uses[SplitAfter]) + 2244 (LiveBefore + LiveAfter) * SlotIndex::InstrDist, 2245 1); 2246 // Would this split be possible to allocate? 2247 // Never allocate all gaps, we wouldn't be making progress. 2248 DEBUG(dbgs() << " w=" << EstWeight); 2249 if (EstWeight * Hysteresis >= MaxGap) { 2250 Shrink = false; 2251 float Diff = EstWeight - MaxGap; 2252 if (Diff > BestDiff) { 2253 DEBUG(dbgs() << " (best)"); 2254 BestDiff = Hysteresis * Diff; 2255 BestBefore = SplitBefore; 2256 BestAfter = SplitAfter; 2257 } 2258 } 2259 } 2260 2261 // Try to shrink. 2262 if (Shrink) { 2263 if (++SplitBefore < SplitAfter) { 2264 DEBUG(dbgs() << " shrink\n"); 2265 // Recompute the max when necessary. 2266 if (GapWeight[SplitBefore - 1] >= MaxGap) { 2267 MaxGap = GapWeight[SplitBefore]; 2268 for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i) 2269 MaxGap = std::max(MaxGap, GapWeight[i]); 2270 } 2271 continue; 2272 } 2273 MaxGap = 0; 2274 } 2275 2276 // Try to extend the interval. 2277 if (SplitAfter >= NumGaps) { 2278 DEBUG(dbgs() << " end\n"); 2279 break; 2280 } 2281 2282 DEBUG(dbgs() << " extend\n"); 2283 MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]); 2284 } 2285 } 2286 2287 // Didn't find any candidates? 2288 if (BestBefore == NumGaps) 2289 return 0; 2290 2291 DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] 2292 << '-' << Uses[BestAfter] << ", " << BestDiff 2293 << ", " << (BestAfter - BestBefore + 1) << " instrs\n"); 2294 2295 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2296 SE->reset(LREdit); 2297 2298 SE->openIntv(); 2299 SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]); 2300 SlotIndex SegStop = SE->leaveIntvAfter(Uses[BestAfter]); 2301 SE->useIntv(SegStart, SegStop); 2302 SmallVector<unsigned, 8> IntvMap; 2303 SE->finish(&IntvMap); 2304 DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS); 2305 2306 // If the new range has the same number of instructions as before, mark it as 2307 // RS_Split2 so the next split will be forced to make progress. Otherwise, 2308 // leave the new intervals as RS_New so they can compete. 2309 bool LiveBefore = BestBefore != 0 || BI.LiveIn; 2310 bool LiveAfter = BestAfter != NumGaps || BI.LiveOut; 2311 unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter; 2312 if (NewGaps >= NumGaps) { 2313 DEBUG(dbgs() << "Tagging non-progress ranges: "); 2314 assert(!ProgressRequired && "Didn't make progress when it was required."); 2315 for (unsigned i = 0, e = IntvMap.size(); i != e; ++i) 2316 if (IntvMap[i] == 1) { 2317 setStage(LIS->getInterval(LREdit.get(i)), RS_Split2); 2318 DEBUG(dbgs() << printReg(LREdit.get(i))); 2319 } 2320 DEBUG(dbgs() << '\n'); 2321 } 2322 ++NumLocalSplits; 2323 2324 return 0; 2325 } 2326 2327 //===----------------------------------------------------------------------===// 2328 // Live Range Splitting 2329 //===----------------------------------------------------------------------===// 2330 2331 /// trySplit - Try to split VirtReg or one of its interferences, making it 2332 /// assignable. 2333 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs. 2334 unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order, 2335 SmallVectorImpl<unsigned>&NewVRegs) { 2336 // Ranges must be Split2 or less. 2337 if (getStage(VirtReg) >= RS_Spill) 2338 return 0; 2339 2340 // Local intervals are handled separately. 2341 if (LIS->intervalIsInOneMBB(VirtReg)) { 2342 NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName, 2343 TimerGroupDescription, TimePassesIsEnabled); 2344 SA->analyze(&VirtReg); 2345 unsigned PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs); 2346 if (PhysReg || !NewVRegs.empty()) 2347 return PhysReg; 2348 return tryInstructionSplit(VirtReg, Order, NewVRegs); 2349 } 2350 2351 NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName, 2352 TimerGroupDescription, TimePassesIsEnabled); 2353 2354 SA->analyze(&VirtReg); 2355 2356 // FIXME: SplitAnalysis may repair broken live ranges coming from the 2357 // coalescer. That may cause the range to become allocatable which means that 2358 // tryRegionSplit won't be making progress. This check should be replaced with 2359 // an assertion when the coalescer is fixed. 2360 if (SA->didRepairRange()) { 2361 // VirtReg has changed, so all cached queries are invalid. 2362 Matrix->invalidateVirtRegs(); 2363 if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs)) 2364 return PhysReg; 2365 } 2366 2367 // First try to split around a region spanning multiple blocks. RS_Split2 2368 // ranges already made dubious progress with region splitting, so they go 2369 // straight to single block splitting. 2370 if (getStage(VirtReg) < RS_Split2) { 2371 unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs); 2372 if (PhysReg || !NewVRegs.empty()) 2373 return PhysReg; 2374 } 2375 2376 // Then isolate blocks. 2377 return tryBlockSplit(VirtReg, Order, NewVRegs); 2378 } 2379 2380 //===----------------------------------------------------------------------===// 2381 // Last Chance Recoloring 2382 //===----------------------------------------------------------------------===// 2383 2384 /// Return true if \p reg has any tied def operand. 2385 static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg) { 2386 for (const MachineOperand &MO : MRI->def_operands(reg)) 2387 if (MO.isTied()) 2388 return true; 2389 2390 return false; 2391 } 2392 2393 /// mayRecolorAllInterferences - Check if the virtual registers that 2394 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be 2395 /// recolored to free \p PhysReg. 2396 /// When true is returned, \p RecoloringCandidates has been augmented with all 2397 /// the live intervals that need to be recolored in order to free \p PhysReg 2398 /// for \p VirtReg. 2399 /// \p FixedRegisters contains all the virtual registers that cannot be 2400 /// recolored. 2401 bool 2402 RAGreedy::mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg, 2403 SmallLISet &RecoloringCandidates, 2404 const SmallVirtRegSet &FixedRegisters) { 2405 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg); 2406 2407 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 2408 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 2409 // If there is LastChanceRecoloringMaxInterference or more interferences, 2410 // chances are one would not be recolorable. 2411 if (Q.collectInterferingVRegs(LastChanceRecoloringMaxInterference) >= 2412 LastChanceRecoloringMaxInterference && !ExhaustiveSearch) { 2413 DEBUG(dbgs() << "Early abort: too many interferences.\n"); 2414 CutOffInfo |= CO_Interf; 2415 return false; 2416 } 2417 for (unsigned i = Q.interferingVRegs().size(); i; --i) { 2418 LiveInterval *Intf = Q.interferingVRegs()[i - 1]; 2419 // If Intf is done and sit on the same register class as VirtReg, 2420 // it would not be recolorable as it is in the same state as VirtReg. 2421 // However, if VirtReg has tied defs and Intf doesn't, then 2422 // there is still a point in examining if it can be recolorable. 2423 if (((getStage(*Intf) == RS_Done && 2424 MRI->getRegClass(Intf->reg) == CurRC) && 2425 !(hasTiedDef(MRI, VirtReg.reg) && !hasTiedDef(MRI, Intf->reg))) || 2426 FixedRegisters.count(Intf->reg)) { 2427 DEBUG(dbgs() << "Early abort: the interference is not recolorable.\n"); 2428 return false; 2429 } 2430 RecoloringCandidates.insert(Intf); 2431 } 2432 } 2433 return true; 2434 } 2435 2436 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring 2437 /// its interferences. 2438 /// Last chance recoloring chooses a color for \p VirtReg and recolors every 2439 /// virtual register that was using it. The recoloring process may recursively 2440 /// use the last chance recoloring. Therefore, when a virtual register has been 2441 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot 2442 /// be last-chance-recolored again during this recoloring "session". 2443 /// E.g., 2444 /// Let 2445 /// vA can use {R1, R2 } 2446 /// vB can use { R2, R3} 2447 /// vC can use {R1 } 2448 /// Where vA, vB, and vC cannot be split anymore (they are reloads for 2449 /// instance) and they all interfere. 2450 /// 2451 /// vA is assigned R1 2452 /// vB is assigned R2 2453 /// vC tries to evict vA but vA is already done. 2454 /// Regular register allocation fails. 2455 /// 2456 /// Last chance recoloring kicks in: 2457 /// vC does as if vA was evicted => vC uses R1. 2458 /// vC is marked as fixed. 2459 /// vA needs to find a color. 2460 /// None are available. 2461 /// vA cannot evict vC: vC is a fixed virtual register now. 2462 /// vA does as if vB was evicted => vA uses R2. 2463 /// vB needs to find a color. 2464 /// R3 is available. 2465 /// Recoloring => vC = R1, vA = R2, vB = R3 2466 /// 2467 /// \p Order defines the preferred allocation order for \p VirtReg. 2468 /// \p NewRegs will contain any new virtual register that have been created 2469 /// (split, spill) during the process and that must be assigned. 2470 /// \p FixedRegisters contains all the virtual registers that cannot be 2471 /// recolored. 2472 /// \p Depth gives the current depth of the last chance recoloring. 2473 /// \return a physical register that can be used for VirtReg or ~0u if none 2474 /// exists. 2475 unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg, 2476 AllocationOrder &Order, 2477 SmallVectorImpl<unsigned> &NewVRegs, 2478 SmallVirtRegSet &FixedRegisters, 2479 unsigned Depth) { 2480 DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n'); 2481 // Ranges must be Done. 2482 assert((getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) && 2483 "Last chance recoloring should really be last chance"); 2484 // Set the max depth to LastChanceRecoloringMaxDepth. 2485 // We may want to reconsider that if we end up with a too large search space 2486 // for target with hundreds of registers. 2487 // Indeed, in that case we may want to cut the search space earlier. 2488 if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) { 2489 DEBUG(dbgs() << "Abort because max depth has been reached.\n"); 2490 CutOffInfo |= CO_Depth; 2491 return ~0u; 2492 } 2493 2494 // Set of Live intervals that will need to be recolored. 2495 SmallLISet RecoloringCandidates; 2496 // Record the original mapping virtual register to physical register in case 2497 // the recoloring fails. 2498 DenseMap<unsigned, unsigned> VirtRegToPhysReg; 2499 // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in 2500 // this recoloring "session". 2501 FixedRegisters.insert(VirtReg.reg); 2502 SmallVector<unsigned, 4> CurrentNewVRegs; 2503 2504 Order.rewind(); 2505 while (unsigned PhysReg = Order.next()) { 2506 DEBUG(dbgs() << "Try to assign: " << VirtReg << " to " 2507 << printReg(PhysReg, TRI) << '\n'); 2508 RecoloringCandidates.clear(); 2509 VirtRegToPhysReg.clear(); 2510 CurrentNewVRegs.clear(); 2511 2512 // It is only possible to recolor virtual register interference. 2513 if (Matrix->checkInterference(VirtReg, PhysReg) > 2514 LiveRegMatrix::IK_VirtReg) { 2515 DEBUG(dbgs() << "Some interferences are not with virtual registers.\n"); 2516 2517 continue; 2518 } 2519 2520 // Early give up on this PhysReg if it is obvious we cannot recolor all 2521 // the interferences. 2522 if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates, 2523 FixedRegisters)) { 2524 DEBUG(dbgs() << "Some interferences cannot be recolored.\n"); 2525 continue; 2526 } 2527 2528 // RecoloringCandidates contains all the virtual registers that interfer 2529 // with VirtReg on PhysReg (or one of its aliases). 2530 // Enqueue them for recoloring and perform the actual recoloring. 2531 PQueue RecoloringQueue; 2532 for (SmallLISet::iterator It = RecoloringCandidates.begin(), 2533 EndIt = RecoloringCandidates.end(); 2534 It != EndIt; ++It) { 2535 unsigned ItVirtReg = (*It)->reg; 2536 enqueue(RecoloringQueue, *It); 2537 assert(VRM->hasPhys(ItVirtReg) && 2538 "Interferences are supposed to be with allocated vairables"); 2539 2540 // Record the current allocation. 2541 VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg); 2542 // unset the related struct. 2543 Matrix->unassign(**It); 2544 } 2545 2546 // Do as if VirtReg was assigned to PhysReg so that the underlying 2547 // recoloring has the right information about the interferes and 2548 // available colors. 2549 Matrix->assign(VirtReg, PhysReg); 2550 2551 // Save the current recoloring state. 2552 // If we cannot recolor all the interferences, we will have to start again 2553 // at this point for the next physical register. 2554 SmallVirtRegSet SaveFixedRegisters(FixedRegisters); 2555 if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs, 2556 FixedRegisters, Depth)) { 2557 // Push the queued vregs into the main queue. 2558 for (unsigned NewVReg : CurrentNewVRegs) 2559 NewVRegs.push_back(NewVReg); 2560 // Do not mess up with the global assignment process. 2561 // I.e., VirtReg must be unassigned. 2562 Matrix->unassign(VirtReg); 2563 return PhysReg; 2564 } 2565 2566 DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to " 2567 << printReg(PhysReg, TRI) << '\n'); 2568 2569 // The recoloring attempt failed, undo the changes. 2570 FixedRegisters = SaveFixedRegisters; 2571 Matrix->unassign(VirtReg); 2572 2573 // For a newly created vreg which is also in RecoloringCandidates, 2574 // don't add it to NewVRegs because its physical register will be restored 2575 // below. Other vregs in CurrentNewVRegs are created by calling 2576 // selectOrSplit and should be added into NewVRegs. 2577 for (SmallVectorImpl<unsigned>::iterator Next = CurrentNewVRegs.begin(), 2578 End = CurrentNewVRegs.end(); 2579 Next != End; ++Next) { 2580 if (RecoloringCandidates.count(&LIS->getInterval(*Next))) 2581 continue; 2582 NewVRegs.push_back(*Next); 2583 } 2584 2585 for (SmallLISet::iterator It = RecoloringCandidates.begin(), 2586 EndIt = RecoloringCandidates.end(); 2587 It != EndIt; ++It) { 2588 unsigned ItVirtReg = (*It)->reg; 2589 if (VRM->hasPhys(ItVirtReg)) 2590 Matrix->unassign(**It); 2591 unsigned ItPhysReg = VirtRegToPhysReg[ItVirtReg]; 2592 Matrix->assign(**It, ItPhysReg); 2593 } 2594 } 2595 2596 // Last chance recoloring did not worked either, give up. 2597 return ~0u; 2598 } 2599 2600 /// tryRecoloringCandidates - Try to assign a new color to every register 2601 /// in \RecoloringQueue. 2602 /// \p NewRegs will contain any new virtual register created during the 2603 /// recoloring process. 2604 /// \p FixedRegisters[in/out] contains all the registers that have been 2605 /// recolored. 2606 /// \return true if all virtual registers in RecoloringQueue were successfully 2607 /// recolored, false otherwise. 2608 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue, 2609 SmallVectorImpl<unsigned> &NewVRegs, 2610 SmallVirtRegSet &FixedRegisters, 2611 unsigned Depth) { 2612 while (!RecoloringQueue.empty()) { 2613 LiveInterval *LI = dequeue(RecoloringQueue); 2614 DEBUG(dbgs() << "Try to recolor: " << *LI << '\n'); 2615 unsigned PhysReg; 2616 PhysReg = selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, Depth + 1); 2617 // When splitting happens, the live-range may actually be empty. 2618 // In that case, this is okay to continue the recoloring even 2619 // if we did not find an alternative color for it. Indeed, 2620 // there will not be anything to color for LI in the end. 2621 if (PhysReg == ~0u || (!PhysReg && !LI->empty())) 2622 return false; 2623 2624 if (!PhysReg) { 2625 assert(LI->empty() && "Only empty live-range do not require a register"); 2626 DEBUG(dbgs() << "Recoloring of " << *LI << " succeeded. Empty LI.\n"); 2627 continue; 2628 } 2629 DEBUG(dbgs() << "Recoloring of " << *LI 2630 << " succeeded with: " << printReg(PhysReg, TRI) << '\n'); 2631 2632 Matrix->assign(*LI, PhysReg); 2633 FixedRegisters.insert(LI->reg); 2634 } 2635 return true; 2636 } 2637 2638 //===----------------------------------------------------------------------===// 2639 // Main Entry Point 2640 //===----------------------------------------------------------------------===// 2641 2642 unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg, 2643 SmallVectorImpl<unsigned> &NewVRegs) { 2644 CutOffInfo = CO_None; 2645 LLVMContext &Ctx = MF->getFunction().getContext(); 2646 SmallVirtRegSet FixedRegisters; 2647 unsigned Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters); 2648 if (Reg == ~0U && (CutOffInfo != CO_None)) { 2649 uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf); 2650 if (CutOffEncountered == CO_Depth) 2651 Ctx.emitError("register allocation failed: maximum depth for recoloring " 2652 "reached. Use -fexhaustive-register-search to skip " 2653 "cutoffs"); 2654 else if (CutOffEncountered == CO_Interf) 2655 Ctx.emitError("register allocation failed: maximum interference for " 2656 "recoloring reached. Use -fexhaustive-register-search " 2657 "to skip cutoffs"); 2658 else if (CutOffEncountered == (CO_Depth | CO_Interf)) 2659 Ctx.emitError("register allocation failed: maximum interference and " 2660 "depth for recoloring reached. Use " 2661 "-fexhaustive-register-search to skip cutoffs"); 2662 } 2663 return Reg; 2664 } 2665 2666 /// Using a CSR for the first time has a cost because it causes push|pop 2667 /// to be added to prologue|epilogue. Splitting a cold section of the live 2668 /// range can have lower cost than using the CSR for the first time; 2669 /// Spilling a live range in the cold path can have lower cost than using 2670 /// the CSR for the first time. Returns the physical register if we decide 2671 /// to use the CSR; otherwise return 0. 2672 unsigned RAGreedy::tryAssignCSRFirstTime(LiveInterval &VirtReg, 2673 AllocationOrder &Order, 2674 unsigned PhysReg, 2675 unsigned &CostPerUseLimit, 2676 SmallVectorImpl<unsigned> &NewVRegs) { 2677 if (getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) { 2678 // We choose spill over using the CSR for the first time if the spill cost 2679 // is lower than CSRCost. 2680 SA->analyze(&VirtReg); 2681 if (calcSpillCost() >= CSRCost) 2682 return PhysReg; 2683 2684 // We are going to spill, set CostPerUseLimit to 1 to make sure that 2685 // we will not use a callee-saved register in tryEvict. 2686 CostPerUseLimit = 1; 2687 return 0; 2688 } 2689 if (getStage(VirtReg) < RS_Split) { 2690 // We choose pre-splitting over using the CSR for the first time if 2691 // the cost of splitting is lower than CSRCost. 2692 SA->analyze(&VirtReg); 2693 unsigned NumCands = 0; 2694 BlockFrequency BestCost = CSRCost; // Don't modify CSRCost. 2695 unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost, 2696 NumCands, true /*IgnoreCSR*/); 2697 if (BestCand == NoCand) 2698 // Use the CSR if we can't find a region split below CSRCost. 2699 return PhysReg; 2700 2701 // Perform the actual pre-splitting. 2702 doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs); 2703 return 0; 2704 } 2705 return PhysReg; 2706 } 2707 2708 void RAGreedy::aboutToRemoveInterval(LiveInterval &LI) { 2709 // Do not keep invalid information around. 2710 SetOfBrokenHints.remove(&LI); 2711 } 2712 2713 void RAGreedy::initializeCSRCost() { 2714 // We use the larger one out of the command-line option and the value report 2715 // by TRI. 2716 CSRCost = BlockFrequency( 2717 std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost())); 2718 if (!CSRCost.getFrequency()) 2719 return; 2720 2721 // Raw cost is relative to Entry == 2^14; scale it appropriately. 2722 uint64_t ActualEntry = MBFI->getEntryFreq(); 2723 if (!ActualEntry) { 2724 CSRCost = 0; 2725 return; 2726 } 2727 uint64_t FixedEntry = 1 << 14; 2728 if (ActualEntry < FixedEntry) 2729 CSRCost *= BranchProbability(ActualEntry, FixedEntry); 2730 else if (ActualEntry <= UINT32_MAX) 2731 // Invert the fraction and divide. 2732 CSRCost /= BranchProbability(FixedEntry, ActualEntry); 2733 else 2734 // Can't use BranchProbability in general, since it takes 32-bit numbers. 2735 CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry); 2736 } 2737 2738 /// \brief Collect the hint info for \p Reg. 2739 /// The results are stored into \p Out. 2740 /// \p Out is not cleared before being populated. 2741 void RAGreedy::collectHintInfo(unsigned Reg, HintsInfo &Out) { 2742 for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) { 2743 if (!Instr.isFullCopy()) 2744 continue; 2745 // Look for the other end of the copy. 2746 unsigned OtherReg = Instr.getOperand(0).getReg(); 2747 if (OtherReg == Reg) { 2748 OtherReg = Instr.getOperand(1).getReg(); 2749 if (OtherReg == Reg) 2750 continue; 2751 } 2752 // Get the current assignment. 2753 unsigned OtherPhysReg = TargetRegisterInfo::isPhysicalRegister(OtherReg) 2754 ? OtherReg 2755 : VRM->getPhys(OtherReg); 2756 // Push the collected information. 2757 Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg, 2758 OtherPhysReg)); 2759 } 2760 } 2761 2762 /// \brief Using the given \p List, compute the cost of the broken hints if 2763 /// \p PhysReg was used. 2764 /// \return The cost of \p List for \p PhysReg. 2765 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List, 2766 unsigned PhysReg) { 2767 BlockFrequency Cost = 0; 2768 for (const HintInfo &Info : List) { 2769 if (Info.PhysReg != PhysReg) 2770 Cost += Info.Freq; 2771 } 2772 return Cost; 2773 } 2774 2775 /// \brief Using the register assigned to \p VirtReg, try to recolor 2776 /// all the live ranges that are copy-related with \p VirtReg. 2777 /// The recoloring is then propagated to all the live-ranges that have 2778 /// been recolored and so on, until no more copies can be coalesced or 2779 /// it is not profitable. 2780 /// For a given live range, profitability is determined by the sum of the 2781 /// frequencies of the non-identity copies it would introduce with the old 2782 /// and new register. 2783 void RAGreedy::tryHintRecoloring(LiveInterval &VirtReg) { 2784 // We have a broken hint, check if it is possible to fix it by 2785 // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted 2786 // some register and PhysReg may be available for the other live-ranges. 2787 SmallSet<unsigned, 4> Visited; 2788 SmallVector<unsigned, 2> RecoloringCandidates; 2789 HintsInfo Info; 2790 unsigned Reg = VirtReg.reg; 2791 unsigned PhysReg = VRM->getPhys(Reg); 2792 // Start the recoloring algorithm from the input live-interval, then 2793 // it will propagate to the ones that are copy-related with it. 2794 Visited.insert(Reg); 2795 RecoloringCandidates.push_back(Reg); 2796 2797 DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg, TRI) << '(' 2798 << printReg(PhysReg, TRI) << ")\n"); 2799 2800 do { 2801 Reg = RecoloringCandidates.pop_back_val(); 2802 2803 // We cannot recolor physical register. 2804 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 2805 continue; 2806 2807 assert(VRM->hasPhys(Reg) && "We have unallocated variable!!"); 2808 2809 // Get the live interval mapped with this virtual register to be able 2810 // to check for the interference with the new color. 2811 LiveInterval &LI = LIS->getInterval(Reg); 2812 unsigned CurrPhys = VRM->getPhys(Reg); 2813 // Check that the new color matches the register class constraints and 2814 // that it is free for this live range. 2815 if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) || 2816 Matrix->checkInterference(LI, PhysReg))) 2817 continue; 2818 2819 DEBUG(dbgs() << printReg(Reg, TRI) << '(' << printReg(CurrPhys, TRI) 2820 << ") is recolorable.\n"); 2821 2822 // Gather the hint info. 2823 Info.clear(); 2824 collectHintInfo(Reg, Info); 2825 // Check if recoloring the live-range will increase the cost of the 2826 // non-identity copies. 2827 if (CurrPhys != PhysReg) { 2828 DEBUG(dbgs() << "Checking profitability:\n"); 2829 BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys); 2830 BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg); 2831 DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency() 2832 << "\nNew Cost: " << NewCopiesCost.getFrequency() << '\n'); 2833 if (OldCopiesCost < NewCopiesCost) { 2834 DEBUG(dbgs() << "=> Not profitable.\n"); 2835 continue; 2836 } 2837 // At this point, the cost is either cheaper or equal. If it is 2838 // equal, we consider this is profitable because it may expose 2839 // more recoloring opportunities. 2840 DEBUG(dbgs() << "=> Profitable.\n"); 2841 // Recolor the live-range. 2842 Matrix->unassign(LI); 2843 Matrix->assign(LI, PhysReg); 2844 } 2845 // Push all copy-related live-ranges to keep reconciling the broken 2846 // hints. 2847 for (const HintInfo &HI : Info) { 2848 if (Visited.insert(HI.Reg).second) 2849 RecoloringCandidates.push_back(HI.Reg); 2850 } 2851 } while (!RecoloringCandidates.empty()); 2852 } 2853 2854 /// \brief Try to recolor broken hints. 2855 /// Broken hints may be repaired by recoloring when an evicted variable 2856 /// freed up a register for a larger live-range. 2857 /// Consider the following example: 2858 /// BB1: 2859 /// a = 2860 /// b = 2861 /// BB2: 2862 /// ... 2863 /// = b 2864 /// = a 2865 /// Let us assume b gets split: 2866 /// BB1: 2867 /// a = 2868 /// b = 2869 /// BB2: 2870 /// c = b 2871 /// ... 2872 /// d = c 2873 /// = d 2874 /// = a 2875 /// Because of how the allocation work, b, c, and d may be assigned different 2876 /// colors. Now, if a gets evicted later: 2877 /// BB1: 2878 /// a = 2879 /// st a, SpillSlot 2880 /// b = 2881 /// BB2: 2882 /// c = b 2883 /// ... 2884 /// d = c 2885 /// = d 2886 /// e = ld SpillSlot 2887 /// = e 2888 /// This is likely that we can assign the same register for b, c, and d, 2889 /// getting rid of 2 copies. 2890 void RAGreedy::tryHintsRecoloring() { 2891 for (LiveInterval *LI : SetOfBrokenHints) { 2892 assert(TargetRegisterInfo::isVirtualRegister(LI->reg) && 2893 "Recoloring is possible only for virtual registers"); 2894 // Some dead defs may be around (e.g., because of debug uses). 2895 // Ignore those. 2896 if (!VRM->hasPhys(LI->reg)) 2897 continue; 2898 tryHintRecoloring(*LI); 2899 } 2900 } 2901 2902 unsigned RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg, 2903 SmallVectorImpl<unsigned> &NewVRegs, 2904 SmallVirtRegSet &FixedRegisters, 2905 unsigned Depth) { 2906 unsigned CostPerUseLimit = ~0u; 2907 // First try assigning a free register. 2908 AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo, Matrix); 2909 if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs)) { 2910 // If VirtReg got an assignment, the eviction info is no longre relevant. 2911 LastEvicted.clearEvicteeInfo(VirtReg.reg); 2912 // When NewVRegs is not empty, we may have made decisions such as evicting 2913 // a virtual register, go with the earlier decisions and use the physical 2914 // register. 2915 if (CSRCost.getFrequency() && isUnusedCalleeSavedReg(PhysReg) && 2916 NewVRegs.empty()) { 2917 unsigned CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg, 2918 CostPerUseLimit, NewVRegs); 2919 if (CSRReg || !NewVRegs.empty()) 2920 // Return now if we decide to use a CSR or create new vregs due to 2921 // pre-splitting. 2922 return CSRReg; 2923 } else 2924 return PhysReg; 2925 } 2926 2927 LiveRangeStage Stage = getStage(VirtReg); 2928 DEBUG(dbgs() << StageName[Stage] 2929 << " Cascade " << ExtraRegInfo[VirtReg.reg].Cascade << '\n'); 2930 2931 // Try to evict a less worthy live range, but only for ranges from the primary 2932 // queue. The RS_Split ranges already failed to do this, and they should not 2933 // get a second chance until they have been split. 2934 if (Stage != RS_Split) 2935 if (unsigned PhysReg = 2936 tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit)) { 2937 unsigned Hint = MRI->getSimpleHint(VirtReg.reg); 2938 // If VirtReg has a hint and that hint is broken record this 2939 // virtual register as a recoloring candidate for broken hint. 2940 // Indeed, since we evicted a variable in its neighborhood it is 2941 // likely we can at least partially recolor some of the 2942 // copy-related live-ranges. 2943 if (Hint && Hint != PhysReg) 2944 SetOfBrokenHints.insert(&VirtReg); 2945 // If VirtReg eviction someone, the eviction info for it as an evictee is 2946 // no longre relevant. 2947 LastEvicted.clearEvicteeInfo(VirtReg.reg); 2948 return PhysReg; 2949 } 2950 2951 assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs"); 2952 2953 // The first time we see a live range, don't try to split or spill. 2954 // Wait until the second time, when all smaller ranges have been allocated. 2955 // This gives a better picture of the interference to split around. 2956 if (Stage < RS_Split) { 2957 setStage(VirtReg, RS_Split); 2958 DEBUG(dbgs() << "wait for second round\n"); 2959 NewVRegs.push_back(VirtReg.reg); 2960 return 0; 2961 } 2962 2963 if (Stage < RS_Spill) { 2964 // Try splitting VirtReg or interferences. 2965 unsigned NewVRegSizeBefore = NewVRegs.size(); 2966 unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs); 2967 if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore)) { 2968 // If VirtReg got split, the eviction info is no longre relevant. 2969 LastEvicted.clearEvicteeInfo(VirtReg.reg); 2970 return PhysReg; 2971 } 2972 } 2973 2974 // If we couldn't allocate a register from spilling, there is probably some 2975 // invalid inline assembly. The base class will report it. 2976 if (Stage >= RS_Done || !VirtReg.isSpillable()) 2977 return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters, 2978 Depth); 2979 2980 // Finally spill VirtReg itself. 2981 if (EnableDeferredSpilling && getStage(VirtReg) < RS_Memory) { 2982 // TODO: This is experimental and in particular, we do not model 2983 // the live range splitting done by spilling correctly. 2984 // We would need a deep integration with the spiller to do the 2985 // right thing here. Anyway, that is still good for early testing. 2986 setStage(VirtReg, RS_Memory); 2987 DEBUG(dbgs() << "Do as if this register is in memory\n"); 2988 NewVRegs.push_back(VirtReg.reg); 2989 } else { 2990 NamedRegionTimer T("spill", "Spiller", TimerGroupName, 2991 TimerGroupDescription, TimePassesIsEnabled); 2992 LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2993 spiller().spill(LRE); 2994 setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done); 2995 2996 if (VerifyEnabled) 2997 MF->verify(this, "After spilling"); 2998 } 2999 3000 // The live virtual register requesting allocation was spilled, so tell 3001 // the caller not to allocate anything during this round. 3002 return 0; 3003 } 3004 3005 void RAGreedy::reportNumberOfSplillsReloads(MachineLoop *L, unsigned &Reloads, 3006 unsigned &FoldedReloads, 3007 unsigned &Spills, 3008 unsigned &FoldedSpills) { 3009 Reloads = 0; 3010 FoldedReloads = 0; 3011 Spills = 0; 3012 FoldedSpills = 0; 3013 3014 // Sum up the spill and reloads in subloops. 3015 for (MachineLoop *SubLoop : *L) { 3016 unsigned SubReloads; 3017 unsigned SubFoldedReloads; 3018 unsigned SubSpills; 3019 unsigned SubFoldedSpills; 3020 3021 reportNumberOfSplillsReloads(SubLoop, SubReloads, SubFoldedReloads, 3022 SubSpills, SubFoldedSpills); 3023 Reloads += SubReloads; 3024 FoldedReloads += SubFoldedReloads; 3025 Spills += SubSpills; 3026 FoldedSpills += SubFoldedSpills; 3027 } 3028 3029 const MachineFrameInfo &MFI = MF->getFrameInfo(); 3030 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 3031 int FI; 3032 3033 for (MachineBasicBlock *MBB : L->getBlocks()) 3034 // Handle blocks that were not included in subloops. 3035 if (Loops->getLoopFor(MBB) == L) 3036 for (MachineInstr &MI : *MBB) { 3037 const MachineMemOperand *MMO; 3038 3039 if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) 3040 ++Reloads; 3041 else if (TII->hasLoadFromStackSlot(MI, MMO, FI) && 3042 MFI.isSpillSlotObjectIndex(FI)) 3043 ++FoldedReloads; 3044 else if (TII->isStoreToStackSlot(MI, FI) && 3045 MFI.isSpillSlotObjectIndex(FI)) 3046 ++Spills; 3047 else if (TII->hasStoreToStackSlot(MI, MMO, FI) && 3048 MFI.isSpillSlotObjectIndex(FI)) 3049 ++FoldedSpills; 3050 } 3051 3052 if (Reloads || FoldedReloads || Spills || FoldedSpills) { 3053 using namespace ore; 3054 3055 ORE->emit([&]() { 3056 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReload", 3057 L->getStartLoc(), L->getHeader()); 3058 if (Spills) 3059 R << NV("NumSpills", Spills) << " spills "; 3060 if (FoldedSpills) 3061 R << NV("NumFoldedSpills", FoldedSpills) << " folded spills "; 3062 if (Reloads) 3063 R << NV("NumReloads", Reloads) << " reloads "; 3064 if (FoldedReloads) 3065 R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads "; 3066 R << "generated in loop"; 3067 return R; 3068 }); 3069 } 3070 } 3071 3072 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) { 3073 DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n" 3074 << "********** Function: " << mf.getName() << '\n'); 3075 3076 MF = &mf; 3077 TRI = MF->getSubtarget().getRegisterInfo(); 3078 TII = MF->getSubtarget().getInstrInfo(); 3079 RCI.runOnMachineFunction(mf); 3080 3081 EnableLocalReassign = EnableLocalReassignment || 3082 MF->getSubtarget().enableRALocalReassignment( 3083 MF->getTarget().getOptLevel()); 3084 3085 EnableAdvancedRASplitCost = ConsiderLocalIntervalCost || 3086 MF->getSubtarget().enableAdvancedRASplitCost(); 3087 3088 if (VerifyEnabled) 3089 MF->verify(this, "Before greedy register allocator"); 3090 3091 RegAllocBase::init(getAnalysis<VirtRegMap>(), 3092 getAnalysis<LiveIntervals>(), 3093 getAnalysis<LiveRegMatrix>()); 3094 Indexes = &getAnalysis<SlotIndexes>(); 3095 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 3096 DomTree = &getAnalysis<MachineDominatorTree>(); 3097 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 3098 SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM)); 3099 Loops = &getAnalysis<MachineLoopInfo>(); 3100 Bundles = &getAnalysis<EdgeBundles>(); 3101 SpillPlacer = &getAnalysis<SpillPlacement>(); 3102 DebugVars = &getAnalysis<LiveDebugVariables>(); 3103 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3104 3105 initializeCSRCost(); 3106 3107 calculateSpillWeightsAndHints(*LIS, mf, VRM, *Loops, *MBFI); 3108 3109 DEBUG(LIS->dump()); 3110 3111 SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops)); 3112 SE.reset(new SplitEditor(*SA, *AA, *LIS, *VRM, *DomTree, *MBFI)); 3113 ExtraRegInfo.clear(); 3114 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 3115 NextCascade = 1; 3116 IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI); 3117 GlobalCand.resize(32); // This will grow as needed. 3118 SetOfBrokenHints.clear(); 3119 LastEvicted.clear(); 3120 3121 allocatePhysRegs(); 3122 tryHintsRecoloring(); 3123 postOptimization(); 3124 reportNumberOfSplillsReloads(); 3125 3126 releaseMemory(); 3127 return true; 3128 } 3129