1 //===-- RegAllocGreedy.cpp - greedy register allocator --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the RAGreedy function pass for register allocation in 11 // optimized builds. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AllocationOrder.h" 16 #include "InterferenceCache.h" 17 #include "LiveDebugVariables.h" 18 #include "RegAllocBase.h" 19 #include "SpillPlacement.h" 20 #include "Spiller.h" 21 #include "SplitKit.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/CodeGen/CalcSpillWeights.h" 25 #include "llvm/CodeGen/EdgeBundles.h" 26 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 27 #include "llvm/CodeGen/LiveRangeEdit.h" 28 #include "llvm/CodeGen/LiveRegMatrix.h" 29 #include "llvm/CodeGen/LiveStackAnalysis.h" 30 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 31 #include "llvm/CodeGen/MachineDominators.h" 32 #include "llvm/CodeGen/MachineFunctionPass.h" 33 #include "llvm/CodeGen/MachineLoopInfo.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/Passes.h" 36 #include "llvm/CodeGen/RegAllocRegistry.h" 37 #include "llvm/CodeGen/RegisterClassInfo.h" 38 #include "llvm/CodeGen/VirtRegMap.h" 39 #include "llvm/IR/LLVMContext.h" 40 #include "llvm/PassAnalysisSupport.h" 41 #include "llvm/Support/BranchProbability.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/Timer.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include "llvm/Target/TargetInstrInfo.h" 48 #include "llvm/Target/TargetSubtargetInfo.h" 49 #include <queue> 50 51 using namespace llvm; 52 53 #define DEBUG_TYPE "regalloc" 54 55 STATISTIC(NumGlobalSplits, "Number of split global live ranges"); 56 STATISTIC(NumLocalSplits, "Number of split local live ranges"); 57 STATISTIC(NumEvicted, "Number of interferences evicted"); 58 59 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode( 60 "split-spill-mode", cl::Hidden, 61 cl::desc("Spill mode for splitting live ranges"), 62 cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"), 63 clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"), 64 clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed"), 65 clEnumValEnd), 66 cl::init(SplitEditor::SM_Speed)); 67 68 static cl::opt<unsigned> 69 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden, 70 cl::desc("Last chance recoloring max depth"), 71 cl::init(5)); 72 73 static cl::opt<unsigned> LastChanceRecoloringMaxInterference( 74 "lcr-max-interf", cl::Hidden, 75 cl::desc("Last chance recoloring maximum number of considered" 76 " interference at a time"), 77 cl::init(8)); 78 79 static cl::opt<bool> 80 ExhaustiveSearch("exhaustive-register-search", cl::NotHidden, 81 cl::desc("Exhaustive Search for registers bypassing the depth " 82 "and interference cutoffs of last chance recoloring")); 83 84 static cl::opt<bool> EnableLocalReassignment( 85 "enable-local-reassign", cl::Hidden, 86 cl::desc("Local reassignment can yield better allocation decisions, but " 87 "may be compile time intensive"), 88 cl::init(false)); 89 90 static cl::opt<bool> EnableDeferredSpilling( 91 "enable-deferred-spilling", cl::Hidden, 92 cl::desc("Instead of spilling a variable right away, defer the actual " 93 "code insertion to the end of the allocation. That way the " 94 "allocator might still find a suitable coloring for this " 95 "variable because of other evicted variables."), 96 cl::init(false)); 97 98 // FIXME: Find a good default for this flag and remove the flag. 99 static cl::opt<unsigned> 100 CSRFirstTimeCost("regalloc-csr-first-time-cost", 101 cl::desc("Cost for first time use of callee-saved register."), 102 cl::init(0), cl::Hidden); 103 104 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator", 105 createGreedyRegisterAllocator); 106 107 namespace { 108 class RAGreedy : public MachineFunctionPass, 109 public RegAllocBase, 110 private LiveRangeEdit::Delegate { 111 // Convenient shortcuts. 112 typedef std::priority_queue<std::pair<unsigned, unsigned> > PQueue; 113 typedef SmallPtrSet<LiveInterval *, 4> SmallLISet; 114 typedef SmallSet<unsigned, 16> SmallVirtRegSet; 115 116 // context 117 MachineFunction *MF; 118 119 // Shortcuts to some useful interface. 120 const TargetInstrInfo *TII; 121 const TargetRegisterInfo *TRI; 122 RegisterClassInfo RCI; 123 124 // analyses 125 SlotIndexes *Indexes; 126 MachineBlockFrequencyInfo *MBFI; 127 MachineDominatorTree *DomTree; 128 MachineLoopInfo *Loops; 129 EdgeBundles *Bundles; 130 SpillPlacement *SpillPlacer; 131 LiveDebugVariables *DebugVars; 132 AliasAnalysis *AA; 133 134 // state 135 std::unique_ptr<Spiller> SpillerInstance; 136 PQueue Queue; 137 unsigned NextCascade; 138 139 // Live ranges pass through a number of stages as we try to allocate them. 140 // Some of the stages may also create new live ranges: 141 // 142 // - Region splitting. 143 // - Per-block splitting. 144 // - Local splitting. 145 // - Spilling. 146 // 147 // Ranges produced by one of the stages skip the previous stages when they are 148 // dequeued. This improves performance because we can skip interference checks 149 // that are unlikely to give any results. It also guarantees that the live 150 // range splitting algorithm terminates, something that is otherwise hard to 151 // ensure. 152 enum LiveRangeStage { 153 /// Newly created live range that has never been queued. 154 RS_New, 155 156 /// Only attempt assignment and eviction. Then requeue as RS_Split. 157 RS_Assign, 158 159 /// Attempt live range splitting if assignment is impossible. 160 RS_Split, 161 162 /// Attempt more aggressive live range splitting that is guaranteed to make 163 /// progress. This is used for split products that may not be making 164 /// progress. 165 RS_Split2, 166 167 /// Live range will be spilled. No more splitting will be attempted. 168 RS_Spill, 169 170 171 /// Live range is in memory. Because of other evictions, it might get moved 172 /// in a register in the end. 173 RS_Memory, 174 175 /// There is nothing more we can do to this live range. Abort compilation 176 /// if it can't be assigned. 177 RS_Done 178 }; 179 180 // Enum CutOffStage to keep a track whether the register allocation failed 181 // because of the cutoffs encountered in last chance recoloring. 182 // Note: This is used as bitmask. New value should be next power of 2. 183 enum CutOffStage { 184 // No cutoffs encountered 185 CO_None = 0, 186 187 // lcr-max-depth cutoff encountered 188 CO_Depth = 1, 189 190 // lcr-max-interf cutoff encountered 191 CO_Interf = 2 192 }; 193 194 uint8_t CutOffInfo; 195 196 #ifndef NDEBUG 197 static const char *const StageName[]; 198 #endif 199 200 // RegInfo - Keep additional information about each live range. 201 struct RegInfo { 202 LiveRangeStage Stage; 203 204 // Cascade - Eviction loop prevention. See canEvictInterference(). 205 unsigned Cascade; 206 207 RegInfo() : Stage(RS_New), Cascade(0) {} 208 }; 209 210 IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo; 211 212 LiveRangeStage getStage(const LiveInterval &VirtReg) const { 213 return ExtraRegInfo[VirtReg.reg].Stage; 214 } 215 216 void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) { 217 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 218 ExtraRegInfo[VirtReg.reg].Stage = Stage; 219 } 220 221 template<typename Iterator> 222 void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) { 223 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 224 for (;Begin != End; ++Begin) { 225 unsigned Reg = *Begin; 226 if (ExtraRegInfo[Reg].Stage == RS_New) 227 ExtraRegInfo[Reg].Stage = NewStage; 228 } 229 } 230 231 /// Cost of evicting interference. 232 struct EvictionCost { 233 unsigned BrokenHints; ///< Total number of broken hints. 234 float MaxWeight; ///< Maximum spill weight evicted. 235 236 EvictionCost(): BrokenHints(0), MaxWeight(0) {} 237 238 bool isMax() const { return BrokenHints == ~0u; } 239 240 void setMax() { BrokenHints = ~0u; } 241 242 void setBrokenHints(unsigned NHints) { BrokenHints = NHints; } 243 244 bool operator<(const EvictionCost &O) const { 245 return std::tie(BrokenHints, MaxWeight) < 246 std::tie(O.BrokenHints, O.MaxWeight); 247 } 248 }; 249 250 // splitting state. 251 std::unique_ptr<SplitAnalysis> SA; 252 std::unique_ptr<SplitEditor> SE; 253 254 /// Cached per-block interference maps 255 InterferenceCache IntfCache; 256 257 /// All basic blocks where the current register has uses. 258 SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints; 259 260 /// Global live range splitting candidate info. 261 struct GlobalSplitCandidate { 262 // Register intended for assignment, or 0. 263 unsigned PhysReg; 264 265 // SplitKit interval index for this candidate. 266 unsigned IntvIdx; 267 268 // Interference for PhysReg. 269 InterferenceCache::Cursor Intf; 270 271 // Bundles where this candidate should be live. 272 BitVector LiveBundles; 273 SmallVector<unsigned, 8> ActiveBlocks; 274 275 void reset(InterferenceCache &Cache, unsigned Reg) { 276 PhysReg = Reg; 277 IntvIdx = 0; 278 Intf.setPhysReg(Cache, Reg); 279 LiveBundles.clear(); 280 ActiveBlocks.clear(); 281 } 282 283 // Set B[i] = C for every live bundle where B[i] was NoCand. 284 unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) { 285 unsigned Count = 0; 286 for (int i = LiveBundles.find_first(); i >= 0; 287 i = LiveBundles.find_next(i)) 288 if (B[i] == NoCand) { 289 B[i] = C; 290 Count++; 291 } 292 return Count; 293 } 294 }; 295 296 /// Candidate info for each PhysReg in AllocationOrder. 297 /// This vector never shrinks, but grows to the size of the largest register 298 /// class. 299 SmallVector<GlobalSplitCandidate, 32> GlobalCand; 300 301 enum : unsigned { NoCand = ~0u }; 302 303 /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to 304 /// NoCand which indicates the stack interval. 305 SmallVector<unsigned, 32> BundleCand; 306 307 /// Callee-save register cost, calculated once per machine function. 308 BlockFrequency CSRCost; 309 310 /// Run or not the local reassignment heuristic. This information is 311 /// obtained from the TargetSubtargetInfo. 312 bool EnableLocalReassign; 313 314 /// Set of broken hints that may be reconciled later because of eviction. 315 SmallSetVector<LiveInterval *, 8> SetOfBrokenHints; 316 317 public: 318 RAGreedy(); 319 320 /// Return the pass name. 321 StringRef getPassName() const override { return "Greedy Register Allocator"; } 322 323 /// RAGreedy analysis usage. 324 void getAnalysisUsage(AnalysisUsage &AU) const override; 325 void releaseMemory() override; 326 Spiller &spiller() override { return *SpillerInstance; } 327 void enqueue(LiveInterval *LI) override; 328 LiveInterval *dequeue() override; 329 unsigned selectOrSplit(LiveInterval&, SmallVectorImpl<unsigned>&) override; 330 void aboutToRemoveInterval(LiveInterval &) override; 331 332 /// Perform register allocation. 333 bool runOnMachineFunction(MachineFunction &mf) override; 334 335 MachineFunctionProperties getRequiredProperties() const override { 336 return MachineFunctionProperties().set( 337 MachineFunctionProperties::Property::NoPHIs); 338 } 339 340 static char ID; 341 342 private: 343 unsigned selectOrSplitImpl(LiveInterval &, SmallVectorImpl<unsigned> &, 344 SmallVirtRegSet &, unsigned = 0); 345 346 bool LRE_CanEraseVirtReg(unsigned) override; 347 void LRE_WillShrinkVirtReg(unsigned) override; 348 void LRE_DidCloneVirtReg(unsigned, unsigned) override; 349 void enqueue(PQueue &CurQueue, LiveInterval *LI); 350 LiveInterval *dequeue(PQueue &CurQueue); 351 352 BlockFrequency calcSpillCost(); 353 bool addSplitConstraints(InterferenceCache::Cursor, BlockFrequency&); 354 void addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>); 355 void growRegion(GlobalSplitCandidate &Cand); 356 BlockFrequency calcGlobalSplitCost(GlobalSplitCandidate&); 357 bool calcCompactRegion(GlobalSplitCandidate&); 358 void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>); 359 void calcGapWeights(unsigned, SmallVectorImpl<float>&); 360 unsigned canReassign(LiveInterval &VirtReg, unsigned PhysReg); 361 bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool); 362 bool canEvictInterference(LiveInterval&, unsigned, bool, EvictionCost&); 363 void evictInterference(LiveInterval&, unsigned, 364 SmallVectorImpl<unsigned>&); 365 bool mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg, 366 SmallLISet &RecoloringCandidates, 367 const SmallVirtRegSet &FixedRegisters); 368 369 unsigned tryAssign(LiveInterval&, AllocationOrder&, 370 SmallVectorImpl<unsigned>&); 371 unsigned tryEvict(LiveInterval&, AllocationOrder&, 372 SmallVectorImpl<unsigned>&, unsigned = ~0u); 373 unsigned tryRegionSplit(LiveInterval&, AllocationOrder&, 374 SmallVectorImpl<unsigned>&); 375 /// Calculate cost of region splitting. 376 unsigned calculateRegionSplitCost(LiveInterval &VirtReg, 377 AllocationOrder &Order, 378 BlockFrequency &BestCost, 379 unsigned &NumCands, bool IgnoreCSR); 380 /// Perform region splitting. 381 unsigned doRegionSplit(LiveInterval &VirtReg, unsigned BestCand, 382 bool HasCompact, 383 SmallVectorImpl<unsigned> &NewVRegs); 384 /// Check other options before using a callee-saved register for the first 385 /// time. 386 unsigned tryAssignCSRFirstTime(LiveInterval &VirtReg, AllocationOrder &Order, 387 unsigned PhysReg, unsigned &CostPerUseLimit, 388 SmallVectorImpl<unsigned> &NewVRegs); 389 void initializeCSRCost(); 390 unsigned tryBlockSplit(LiveInterval&, AllocationOrder&, 391 SmallVectorImpl<unsigned>&); 392 unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&, 393 SmallVectorImpl<unsigned>&); 394 unsigned tryLocalSplit(LiveInterval&, AllocationOrder&, 395 SmallVectorImpl<unsigned>&); 396 unsigned trySplit(LiveInterval&, AllocationOrder&, 397 SmallVectorImpl<unsigned>&); 398 unsigned tryLastChanceRecoloring(LiveInterval &, AllocationOrder &, 399 SmallVectorImpl<unsigned> &, 400 SmallVirtRegSet &, unsigned); 401 bool tryRecoloringCandidates(PQueue &, SmallVectorImpl<unsigned> &, 402 SmallVirtRegSet &, unsigned); 403 void tryHintRecoloring(LiveInterval &); 404 void tryHintsRecoloring(); 405 406 /// Model the information carried by one end of a copy. 407 struct HintInfo { 408 /// The frequency of the copy. 409 BlockFrequency Freq; 410 /// The virtual register or physical register. 411 unsigned Reg; 412 /// Its currently assigned register. 413 /// In case of a physical register Reg == PhysReg. 414 unsigned PhysReg; 415 HintInfo(BlockFrequency Freq, unsigned Reg, unsigned PhysReg) 416 : Freq(Freq), Reg(Reg), PhysReg(PhysReg) {} 417 }; 418 typedef SmallVector<HintInfo, 4> HintsInfo; 419 BlockFrequency getBrokenHintFreq(const HintsInfo &, unsigned); 420 void collectHintInfo(unsigned, HintsInfo &); 421 422 bool isUnusedCalleeSavedReg(unsigned PhysReg) const; 423 }; 424 } // end anonymous namespace 425 426 char RAGreedy::ID = 0; 427 428 #ifndef NDEBUG 429 const char *const RAGreedy::StageName[] = { 430 "RS_New", 431 "RS_Assign", 432 "RS_Split", 433 "RS_Split2", 434 "RS_Spill", 435 "RS_Memory", 436 "RS_Done" 437 }; 438 #endif 439 440 // Hysteresis to use when comparing floats. 441 // This helps stabilize decisions based on float comparisons. 442 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875 443 444 445 FunctionPass* llvm::createGreedyRegisterAllocator() { 446 return new RAGreedy(); 447 } 448 449 RAGreedy::RAGreedy(): MachineFunctionPass(ID) { 450 initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry()); 451 initializeSlotIndexesPass(*PassRegistry::getPassRegistry()); 452 initializeLiveIntervalsPass(*PassRegistry::getPassRegistry()); 453 initializeSlotIndexesPass(*PassRegistry::getPassRegistry()); 454 initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry()); 455 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry()); 456 initializeLiveStacksPass(*PassRegistry::getPassRegistry()); 457 initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry()); 458 initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry()); 459 initializeVirtRegMapPass(*PassRegistry::getPassRegistry()); 460 initializeLiveRegMatrixPass(*PassRegistry::getPassRegistry()); 461 initializeEdgeBundlesPass(*PassRegistry::getPassRegistry()); 462 initializeSpillPlacementPass(*PassRegistry::getPassRegistry()); 463 } 464 465 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const { 466 AU.setPreservesCFG(); 467 AU.addRequired<MachineBlockFrequencyInfo>(); 468 AU.addPreserved<MachineBlockFrequencyInfo>(); 469 AU.addRequired<AAResultsWrapperPass>(); 470 AU.addPreserved<AAResultsWrapperPass>(); 471 AU.addRequired<LiveIntervals>(); 472 AU.addPreserved<LiveIntervals>(); 473 AU.addRequired<SlotIndexes>(); 474 AU.addPreserved<SlotIndexes>(); 475 AU.addRequired<LiveDebugVariables>(); 476 AU.addPreserved<LiveDebugVariables>(); 477 AU.addRequired<LiveStacks>(); 478 AU.addPreserved<LiveStacks>(); 479 AU.addRequired<MachineDominatorTree>(); 480 AU.addPreserved<MachineDominatorTree>(); 481 AU.addRequired<MachineLoopInfo>(); 482 AU.addPreserved<MachineLoopInfo>(); 483 AU.addRequired<VirtRegMap>(); 484 AU.addPreserved<VirtRegMap>(); 485 AU.addRequired<LiveRegMatrix>(); 486 AU.addPreserved<LiveRegMatrix>(); 487 AU.addRequired<EdgeBundles>(); 488 AU.addRequired<SpillPlacement>(); 489 MachineFunctionPass::getAnalysisUsage(AU); 490 } 491 492 493 //===----------------------------------------------------------------------===// 494 // LiveRangeEdit delegate methods 495 //===----------------------------------------------------------------------===// 496 497 bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) { 498 if (VRM->hasPhys(VirtReg)) { 499 LiveInterval &LI = LIS->getInterval(VirtReg); 500 Matrix->unassign(LI); 501 aboutToRemoveInterval(LI); 502 return true; 503 } 504 // Unassigned virtreg is probably in the priority queue. 505 // RegAllocBase will erase it after dequeueing. 506 return false; 507 } 508 509 void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) { 510 if (!VRM->hasPhys(VirtReg)) 511 return; 512 513 // Register is assigned, put it back on the queue for reassignment. 514 LiveInterval &LI = LIS->getInterval(VirtReg); 515 Matrix->unassign(LI); 516 enqueue(&LI); 517 } 518 519 void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) { 520 // Cloning a register we haven't even heard about yet? Just ignore it. 521 if (!ExtraRegInfo.inBounds(Old)) 522 return; 523 524 // LRE may clone a virtual register because dead code elimination causes it to 525 // be split into connected components. The new components are much smaller 526 // than the original, so they should get a new chance at being assigned. 527 // same stage as the parent. 528 ExtraRegInfo[Old].Stage = RS_Assign; 529 ExtraRegInfo.grow(New); 530 ExtraRegInfo[New] = ExtraRegInfo[Old]; 531 } 532 533 void RAGreedy::releaseMemory() { 534 SpillerInstance.reset(); 535 ExtraRegInfo.clear(); 536 GlobalCand.clear(); 537 } 538 539 void RAGreedy::enqueue(LiveInterval *LI) { enqueue(Queue, LI); } 540 541 void RAGreedy::enqueue(PQueue &CurQueue, LiveInterval *LI) { 542 // Prioritize live ranges by size, assigning larger ranges first. 543 // The queue holds (size, reg) pairs. 544 const unsigned Size = LI->getSize(); 545 const unsigned Reg = LI->reg; 546 assert(TargetRegisterInfo::isVirtualRegister(Reg) && 547 "Can only enqueue virtual registers"); 548 unsigned Prio; 549 550 ExtraRegInfo.grow(Reg); 551 if (ExtraRegInfo[Reg].Stage == RS_New) 552 ExtraRegInfo[Reg].Stage = RS_Assign; 553 554 if (ExtraRegInfo[Reg].Stage == RS_Split) { 555 // Unsplit ranges that couldn't be allocated immediately are deferred until 556 // everything else has been allocated. 557 Prio = Size; 558 } else if (ExtraRegInfo[Reg].Stage == RS_Memory) { 559 // Memory operand should be considered last. 560 // Change the priority such that Memory operand are assigned in 561 // the reverse order that they came in. 562 // TODO: Make this a member variable and probably do something about hints. 563 static unsigned MemOp = 0; 564 Prio = MemOp++; 565 } else { 566 // Giant live ranges fall back to the global assignment heuristic, which 567 // prevents excessive spilling in pathological cases. 568 bool ReverseLocal = TRI->reverseLocalAssignment(); 569 const TargetRegisterClass &RC = *MRI->getRegClass(Reg); 570 bool ForceGlobal = !ReverseLocal && 571 (Size / SlotIndex::InstrDist) > (2 * RC.getNumRegs()); 572 573 if (ExtraRegInfo[Reg].Stage == RS_Assign && !ForceGlobal && !LI->empty() && 574 LIS->intervalIsInOneMBB(*LI)) { 575 // Allocate original local ranges in linear instruction order. Since they 576 // are singly defined, this produces optimal coloring in the absence of 577 // global interference and other constraints. 578 if (!ReverseLocal) 579 Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex()); 580 else { 581 // Allocating bottom up may allow many short LRGs to be assigned first 582 // to one of the cheap registers. This could be much faster for very 583 // large blocks on targets with many physical registers. 584 Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex()); 585 } 586 Prio |= RC.AllocationPriority << 24; 587 } else { 588 // Allocate global and split ranges in long->short order. Long ranges that 589 // don't fit should be spilled (or split) ASAP so they don't create 590 // interference. Mark a bit to prioritize global above local ranges. 591 Prio = (1u << 29) + Size; 592 } 593 // Mark a higher bit to prioritize global and local above RS_Split. 594 Prio |= (1u << 31); 595 596 // Boost ranges that have a physical register hint. 597 if (VRM->hasKnownPreference(Reg)) 598 Prio |= (1u << 30); 599 } 600 // The virtual register number is a tie breaker for same-sized ranges. 601 // Give lower vreg numbers higher priority to assign them first. 602 CurQueue.push(std::make_pair(Prio, ~Reg)); 603 } 604 605 LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); } 606 607 LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) { 608 if (CurQueue.empty()) 609 return nullptr; 610 LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second); 611 CurQueue.pop(); 612 return LI; 613 } 614 615 616 //===----------------------------------------------------------------------===// 617 // Direct Assignment 618 //===----------------------------------------------------------------------===// 619 620 /// tryAssign - Try to assign VirtReg to an available register. 621 unsigned RAGreedy::tryAssign(LiveInterval &VirtReg, 622 AllocationOrder &Order, 623 SmallVectorImpl<unsigned> &NewVRegs) { 624 Order.rewind(); 625 unsigned PhysReg; 626 while ((PhysReg = Order.next())) 627 if (!Matrix->checkInterference(VirtReg, PhysReg)) 628 break; 629 if (!PhysReg || Order.isHint()) 630 return PhysReg; 631 632 // PhysReg is available, but there may be a better choice. 633 634 // If we missed a simple hint, try to cheaply evict interference from the 635 // preferred register. 636 if (unsigned Hint = MRI->getSimpleHint(VirtReg.reg)) 637 if (Order.isHint(Hint)) { 638 DEBUG(dbgs() << "missed hint " << PrintReg(Hint, TRI) << '\n'); 639 EvictionCost MaxCost; 640 MaxCost.setBrokenHints(1); 641 if (canEvictInterference(VirtReg, Hint, true, MaxCost)) { 642 evictInterference(VirtReg, Hint, NewVRegs); 643 return Hint; 644 } 645 } 646 647 // Try to evict interference from a cheaper alternative. 648 unsigned Cost = TRI->getCostPerUse(PhysReg); 649 650 // Most registers have 0 additional cost. 651 if (!Cost) 652 return PhysReg; 653 654 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is available at cost " << Cost 655 << '\n'); 656 unsigned CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost); 657 return CheapReg ? CheapReg : PhysReg; 658 } 659 660 661 //===----------------------------------------------------------------------===// 662 // Interference eviction 663 //===----------------------------------------------------------------------===// 664 665 unsigned RAGreedy::canReassign(LiveInterval &VirtReg, unsigned PrevReg) { 666 AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo, Matrix); 667 unsigned PhysReg; 668 while ((PhysReg = Order.next())) { 669 if (PhysReg == PrevReg) 670 continue; 671 672 MCRegUnitIterator Units(PhysReg, TRI); 673 for (; Units.isValid(); ++Units) { 674 // Instantiate a "subquery", not to be confused with the Queries array. 675 LiveIntervalUnion::Query subQ(&VirtReg, &Matrix->getLiveUnions()[*Units]); 676 if (subQ.checkInterference()) 677 break; 678 } 679 // If no units have interference, break out with the current PhysReg. 680 if (!Units.isValid()) 681 break; 682 } 683 if (PhysReg) 684 DEBUG(dbgs() << "can reassign: " << VirtReg << " from " 685 << PrintReg(PrevReg, TRI) << " to " << PrintReg(PhysReg, TRI) 686 << '\n'); 687 return PhysReg; 688 } 689 690 /// shouldEvict - determine if A should evict the assigned live range B. The 691 /// eviction policy defined by this function together with the allocation order 692 /// defined by enqueue() decides which registers ultimately end up being split 693 /// and spilled. 694 /// 695 /// Cascade numbers are used to prevent infinite loops if this function is a 696 /// cyclic relation. 697 /// 698 /// @param A The live range to be assigned. 699 /// @param IsHint True when A is about to be assigned to its preferred 700 /// register. 701 /// @param B The live range to be evicted. 702 /// @param BreaksHint True when B is already assigned to its preferred register. 703 bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint, 704 LiveInterval &B, bool BreaksHint) { 705 bool CanSplit = getStage(B) < RS_Spill; 706 707 // Be fairly aggressive about following hints as long as the evictee can be 708 // split. 709 if (CanSplit && IsHint && !BreaksHint) 710 return true; 711 712 if (A.weight > B.weight) { 713 DEBUG(dbgs() << "should evict: " << B << " w= " << B.weight << '\n'); 714 return true; 715 } 716 return false; 717 } 718 719 /// canEvictInterference - Return true if all interferences between VirtReg and 720 /// PhysReg can be evicted. 721 /// 722 /// @param VirtReg Live range that is about to be assigned. 723 /// @param PhysReg Desired register for assignment. 724 /// @param IsHint True when PhysReg is VirtReg's preferred register. 725 /// @param MaxCost Only look for cheaper candidates and update with new cost 726 /// when returning true. 727 /// @returns True when interference can be evicted cheaper than MaxCost. 728 bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg, 729 bool IsHint, EvictionCost &MaxCost) { 730 // It is only possible to evict virtual register interference. 731 if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg) 732 return false; 733 734 bool IsLocal = LIS->intervalIsInOneMBB(VirtReg); 735 736 // Find VirtReg's cascade number. This will be unassigned if VirtReg was never 737 // involved in an eviction before. If a cascade number was assigned, deny 738 // evicting anything with the same or a newer cascade number. This prevents 739 // infinite eviction loops. 740 // 741 // This works out so a register without a cascade number is allowed to evict 742 // anything, and it can be evicted by anything. 743 unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade; 744 if (!Cascade) 745 Cascade = NextCascade; 746 747 EvictionCost Cost; 748 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 749 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 750 // If there is 10 or more interferences, chances are one is heavier. 751 if (Q.collectInterferingVRegs(10) >= 10) 752 return false; 753 754 // Check if any interfering live range is heavier than MaxWeight. 755 for (unsigned i = Q.interferingVRegs().size(); i; --i) { 756 LiveInterval *Intf = Q.interferingVRegs()[i - 1]; 757 assert(TargetRegisterInfo::isVirtualRegister(Intf->reg) && 758 "Only expecting virtual register interference from query"); 759 // Never evict spill products. They cannot split or spill. 760 if (getStage(*Intf) == RS_Done) 761 return false; 762 // Once a live range becomes small enough, it is urgent that we find a 763 // register for it. This is indicated by an infinite spill weight. These 764 // urgent live ranges get to evict almost anything. 765 // 766 // Also allow urgent evictions of unspillable ranges from a strictly 767 // larger allocation order. 768 bool Urgent = !VirtReg.isSpillable() && 769 (Intf->isSpillable() || 770 RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg)) < 771 RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(Intf->reg))); 772 // Only evict older cascades or live ranges without a cascade. 773 unsigned IntfCascade = ExtraRegInfo[Intf->reg].Cascade; 774 if (Cascade <= IntfCascade) { 775 if (!Urgent) 776 return false; 777 // We permit breaking cascades for urgent evictions. It should be the 778 // last resort, though, so make it really expensive. 779 Cost.BrokenHints += 10; 780 } 781 // Would this break a satisfied hint? 782 bool BreaksHint = VRM->hasPreferredPhys(Intf->reg); 783 // Update eviction cost. 784 Cost.BrokenHints += BreaksHint; 785 Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight); 786 // Abort if this would be too expensive. 787 if (!(Cost < MaxCost)) 788 return false; 789 if (Urgent) 790 continue; 791 // Apply the eviction policy for non-urgent evictions. 792 if (!shouldEvict(VirtReg, IsHint, *Intf, BreaksHint)) 793 return false; 794 // If !MaxCost.isMax(), then we're just looking for a cheap register. 795 // Evicting another local live range in this case could lead to suboptimal 796 // coloring. 797 if (!MaxCost.isMax() && IsLocal && LIS->intervalIsInOneMBB(*Intf) && 798 (!EnableLocalReassign || !canReassign(*Intf, PhysReg))) { 799 return false; 800 } 801 } 802 } 803 MaxCost = Cost; 804 return true; 805 } 806 807 /// evictInterference - Evict any interferring registers that prevent VirtReg 808 /// from being assigned to Physreg. This assumes that canEvictInterference 809 /// returned true. 810 void RAGreedy::evictInterference(LiveInterval &VirtReg, unsigned PhysReg, 811 SmallVectorImpl<unsigned> &NewVRegs) { 812 // Make sure that VirtReg has a cascade number, and assign that cascade 813 // number to every evicted register. These live ranges than then only be 814 // evicted by a newer cascade, preventing infinite loops. 815 unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade; 816 if (!Cascade) 817 Cascade = ExtraRegInfo[VirtReg.reg].Cascade = NextCascade++; 818 819 DEBUG(dbgs() << "evicting " << PrintReg(PhysReg, TRI) 820 << " interference: Cascade " << Cascade << '\n'); 821 822 // Collect all interfering virtregs first. 823 SmallVector<LiveInterval*, 8> Intfs; 824 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 825 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 826 assert(Q.seenAllInterferences() && "Didn't check all interfererences."); 827 ArrayRef<LiveInterval*> IVR = Q.interferingVRegs(); 828 Intfs.append(IVR.begin(), IVR.end()); 829 } 830 831 // Evict them second. This will invalidate the queries. 832 for (unsigned i = 0, e = Intfs.size(); i != e; ++i) { 833 LiveInterval *Intf = Intfs[i]; 834 // The same VirtReg may be present in multiple RegUnits. Skip duplicates. 835 if (!VRM->hasPhys(Intf->reg)) 836 continue; 837 Matrix->unassign(*Intf); 838 assert((ExtraRegInfo[Intf->reg].Cascade < Cascade || 839 VirtReg.isSpillable() < Intf->isSpillable()) && 840 "Cannot decrease cascade number, illegal eviction"); 841 ExtraRegInfo[Intf->reg].Cascade = Cascade; 842 ++NumEvicted; 843 NewVRegs.push_back(Intf->reg); 844 } 845 } 846 847 /// Returns true if the given \p PhysReg is a callee saved register and has not 848 /// been used for allocation yet. 849 bool RAGreedy::isUnusedCalleeSavedReg(unsigned PhysReg) const { 850 unsigned CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg); 851 if (CSR == 0) 852 return false; 853 854 return !Matrix->isPhysRegUsed(PhysReg); 855 } 856 857 /// tryEvict - Try to evict all interferences for a physreg. 858 /// @param VirtReg Currently unassigned virtual register. 859 /// @param Order Physregs to try. 860 /// @return Physreg to assign VirtReg, or 0. 861 unsigned RAGreedy::tryEvict(LiveInterval &VirtReg, 862 AllocationOrder &Order, 863 SmallVectorImpl<unsigned> &NewVRegs, 864 unsigned CostPerUseLimit) { 865 NamedRegionTimer T("Evict", TimerGroupName, TimePassesIsEnabled); 866 867 // Keep track of the cheapest interference seen so far. 868 EvictionCost BestCost; 869 BestCost.setMax(); 870 unsigned BestPhys = 0; 871 unsigned OrderLimit = Order.getOrder().size(); 872 873 // When we are just looking for a reduced cost per use, don't break any 874 // hints, and only evict smaller spill weights. 875 if (CostPerUseLimit < ~0u) { 876 BestCost.BrokenHints = 0; 877 BestCost.MaxWeight = VirtReg.weight; 878 879 // Check of any registers in RC are below CostPerUseLimit. 880 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg); 881 unsigned MinCost = RegClassInfo.getMinCost(RC); 882 if (MinCost >= CostPerUseLimit) { 883 DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = " << MinCost 884 << ", no cheaper registers to be found.\n"); 885 return 0; 886 } 887 888 // It is normal for register classes to have a long tail of registers with 889 // the same cost. We don't need to look at them if they're too expensive. 890 if (TRI->getCostPerUse(Order.getOrder().back()) >= CostPerUseLimit) { 891 OrderLimit = RegClassInfo.getLastCostChange(RC); 892 DEBUG(dbgs() << "Only trying the first " << OrderLimit << " regs.\n"); 893 } 894 } 895 896 Order.rewind(); 897 while (unsigned PhysReg = Order.next(OrderLimit)) { 898 if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit) 899 continue; 900 // The first use of a callee-saved register in a function has cost 1. 901 // Don't start using a CSR when the CostPerUseLimit is low. 902 if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) { 903 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " would clobber CSR " 904 << PrintReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI) 905 << '\n'); 906 continue; 907 } 908 909 if (!canEvictInterference(VirtReg, PhysReg, false, BestCost)) 910 continue; 911 912 // Best so far. 913 BestPhys = PhysReg; 914 915 // Stop if the hint can be used. 916 if (Order.isHint()) 917 break; 918 } 919 920 if (!BestPhys) 921 return 0; 922 923 evictInterference(VirtReg, BestPhys, NewVRegs); 924 return BestPhys; 925 } 926 927 928 //===----------------------------------------------------------------------===// 929 // Region Splitting 930 //===----------------------------------------------------------------------===// 931 932 /// addSplitConstraints - Fill out the SplitConstraints vector based on the 933 /// interference pattern in Physreg and its aliases. Add the constraints to 934 /// SpillPlacement and return the static cost of this split in Cost, assuming 935 /// that all preferences in SplitConstraints are met. 936 /// Return false if there are no bundles with positive bias. 937 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf, 938 BlockFrequency &Cost) { 939 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 940 941 // Reset interference dependent info. 942 SplitConstraints.resize(UseBlocks.size()); 943 BlockFrequency StaticCost = 0; 944 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 945 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 946 SpillPlacement::BlockConstraint &BC = SplitConstraints[i]; 947 948 BC.Number = BI.MBB->getNumber(); 949 Intf.moveToBlock(BC.Number); 950 BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare; 951 BC.Exit = BI.LiveOut ? SpillPlacement::PrefReg : SpillPlacement::DontCare; 952 BC.ChangesValue = BI.FirstDef.isValid(); 953 954 if (!Intf.hasInterference()) 955 continue; 956 957 // Number of spill code instructions to insert. 958 unsigned Ins = 0; 959 960 // Interference for the live-in value. 961 if (BI.LiveIn) { 962 if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) { 963 BC.Entry = SpillPlacement::MustSpill; 964 ++Ins; 965 } else if (Intf.first() < BI.FirstInstr) { 966 BC.Entry = SpillPlacement::PrefSpill; 967 ++Ins; 968 } else if (Intf.first() < BI.LastInstr) { 969 ++Ins; 970 } 971 } 972 973 // Interference for the live-out value. 974 if (BI.LiveOut) { 975 if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) { 976 BC.Exit = SpillPlacement::MustSpill; 977 ++Ins; 978 } else if (Intf.last() > BI.LastInstr) { 979 BC.Exit = SpillPlacement::PrefSpill; 980 ++Ins; 981 } else if (Intf.last() > BI.FirstInstr) { 982 ++Ins; 983 } 984 } 985 986 // Accumulate the total frequency of inserted spill code. 987 while (Ins--) 988 StaticCost += SpillPlacer->getBlockFrequency(BC.Number); 989 } 990 Cost = StaticCost; 991 992 // Add constraints for use-blocks. Note that these are the only constraints 993 // that may add a positive bias, it is downhill from here. 994 SpillPlacer->addConstraints(SplitConstraints); 995 return SpillPlacer->scanActiveBundles(); 996 } 997 998 999 /// addThroughConstraints - Add constraints and links to SpillPlacer from the 1000 /// live-through blocks in Blocks. 1001 void RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf, 1002 ArrayRef<unsigned> Blocks) { 1003 const unsigned GroupSize = 8; 1004 SpillPlacement::BlockConstraint BCS[GroupSize]; 1005 unsigned TBS[GroupSize]; 1006 unsigned B = 0, T = 0; 1007 1008 for (unsigned i = 0; i != Blocks.size(); ++i) { 1009 unsigned Number = Blocks[i]; 1010 Intf.moveToBlock(Number); 1011 1012 if (!Intf.hasInterference()) { 1013 assert(T < GroupSize && "Array overflow"); 1014 TBS[T] = Number; 1015 if (++T == GroupSize) { 1016 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 1017 T = 0; 1018 } 1019 continue; 1020 } 1021 1022 assert(B < GroupSize && "Array overflow"); 1023 BCS[B].Number = Number; 1024 1025 // Interference for the live-in value. 1026 if (Intf.first() <= Indexes->getMBBStartIdx(Number)) 1027 BCS[B].Entry = SpillPlacement::MustSpill; 1028 else 1029 BCS[B].Entry = SpillPlacement::PrefSpill; 1030 1031 // Interference for the live-out value. 1032 if (Intf.last() >= SA->getLastSplitPoint(Number)) 1033 BCS[B].Exit = SpillPlacement::MustSpill; 1034 else 1035 BCS[B].Exit = SpillPlacement::PrefSpill; 1036 1037 if (++B == GroupSize) { 1038 SpillPlacer->addConstraints(makeArrayRef(BCS, B)); 1039 B = 0; 1040 } 1041 } 1042 1043 SpillPlacer->addConstraints(makeArrayRef(BCS, B)); 1044 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 1045 } 1046 1047 void RAGreedy::growRegion(GlobalSplitCandidate &Cand) { 1048 // Keep track of through blocks that have not been added to SpillPlacer. 1049 BitVector Todo = SA->getThroughBlocks(); 1050 SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks; 1051 unsigned AddedTo = 0; 1052 #ifndef NDEBUG 1053 unsigned Visited = 0; 1054 #endif 1055 1056 for (;;) { 1057 ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive(); 1058 // Find new through blocks in the periphery of PrefRegBundles. 1059 for (int i = 0, e = NewBundles.size(); i != e; ++i) { 1060 unsigned Bundle = NewBundles[i]; 1061 // Look at all blocks connected to Bundle in the full graph. 1062 ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle); 1063 for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end(); 1064 I != E; ++I) { 1065 unsigned Block = *I; 1066 if (!Todo.test(Block)) 1067 continue; 1068 Todo.reset(Block); 1069 // This is a new through block. Add it to SpillPlacer later. 1070 ActiveBlocks.push_back(Block); 1071 #ifndef NDEBUG 1072 ++Visited; 1073 #endif 1074 } 1075 } 1076 // Any new blocks to add? 1077 if (ActiveBlocks.size() == AddedTo) 1078 break; 1079 1080 // Compute through constraints from the interference, or assume that all 1081 // through blocks prefer spilling when forming compact regions. 1082 auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo); 1083 if (Cand.PhysReg) 1084 addThroughConstraints(Cand.Intf, NewBlocks); 1085 else 1086 // Provide a strong negative bias on through blocks to prevent unwanted 1087 // liveness on loop backedges. 1088 SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true); 1089 AddedTo = ActiveBlocks.size(); 1090 1091 // Perhaps iterating can enable more bundles? 1092 SpillPlacer->iterate(); 1093 } 1094 DEBUG(dbgs() << ", v=" << Visited); 1095 } 1096 1097 /// calcCompactRegion - Compute the set of edge bundles that should be live 1098 /// when splitting the current live range into compact regions. Compact 1099 /// regions can be computed without looking at interference. They are the 1100 /// regions formed by removing all the live-through blocks from the live range. 1101 /// 1102 /// Returns false if the current live range is already compact, or if the 1103 /// compact regions would form single block regions anyway. 1104 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) { 1105 // Without any through blocks, the live range is already compact. 1106 if (!SA->getNumThroughBlocks()) 1107 return false; 1108 1109 // Compact regions don't correspond to any physreg. 1110 Cand.reset(IntfCache, 0); 1111 1112 DEBUG(dbgs() << "Compact region bundles"); 1113 1114 // Use the spill placer to determine the live bundles. GrowRegion pretends 1115 // that all the through blocks have interference when PhysReg is unset. 1116 SpillPlacer->prepare(Cand.LiveBundles); 1117 1118 // The static split cost will be zero since Cand.Intf reports no interference. 1119 BlockFrequency Cost; 1120 if (!addSplitConstraints(Cand.Intf, Cost)) { 1121 DEBUG(dbgs() << ", none.\n"); 1122 return false; 1123 } 1124 1125 growRegion(Cand); 1126 SpillPlacer->finish(); 1127 1128 if (!Cand.LiveBundles.any()) { 1129 DEBUG(dbgs() << ", none.\n"); 1130 return false; 1131 } 1132 1133 DEBUG({ 1134 for (int i = Cand.LiveBundles.find_first(); i>=0; 1135 i = Cand.LiveBundles.find_next(i)) 1136 dbgs() << " EB#" << i; 1137 dbgs() << ".\n"; 1138 }); 1139 return true; 1140 } 1141 1142 /// calcSpillCost - Compute how expensive it would be to split the live range in 1143 /// SA around all use blocks instead of forming bundle regions. 1144 BlockFrequency RAGreedy::calcSpillCost() { 1145 BlockFrequency Cost = 0; 1146 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1147 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1148 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1149 unsigned Number = BI.MBB->getNumber(); 1150 // We normally only need one spill instruction - a load or a store. 1151 Cost += SpillPlacer->getBlockFrequency(Number); 1152 1153 // Unless the value is redefined in the block. 1154 if (BI.LiveIn && BI.LiveOut && BI.FirstDef) 1155 Cost += SpillPlacer->getBlockFrequency(Number); 1156 } 1157 return Cost; 1158 } 1159 1160 /// calcGlobalSplitCost - Return the global split cost of following the split 1161 /// pattern in LiveBundles. This cost should be added to the local cost of the 1162 /// interference pattern in SplitConstraints. 1163 /// 1164 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand) { 1165 BlockFrequency GlobalCost = 0; 1166 const BitVector &LiveBundles = Cand.LiveBundles; 1167 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1168 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1169 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1170 SpillPlacement::BlockConstraint &BC = SplitConstraints[i]; 1171 bool RegIn = LiveBundles[Bundles->getBundle(BC.Number, 0)]; 1172 bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, 1)]; 1173 unsigned Ins = 0; 1174 1175 if (BI.LiveIn) 1176 Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg); 1177 if (BI.LiveOut) 1178 Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg); 1179 while (Ins--) 1180 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1181 } 1182 1183 for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) { 1184 unsigned Number = Cand.ActiveBlocks[i]; 1185 bool RegIn = LiveBundles[Bundles->getBundle(Number, 0)]; 1186 bool RegOut = LiveBundles[Bundles->getBundle(Number, 1)]; 1187 if (!RegIn && !RegOut) 1188 continue; 1189 if (RegIn && RegOut) { 1190 // We need double spill code if this block has interference. 1191 Cand.Intf.moveToBlock(Number); 1192 if (Cand.Intf.hasInterference()) { 1193 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1194 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1195 } 1196 continue; 1197 } 1198 // live-in / stack-out or stack-in live-out. 1199 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1200 } 1201 return GlobalCost; 1202 } 1203 1204 /// splitAroundRegion - Split the current live range around the regions 1205 /// determined by BundleCand and GlobalCand. 1206 /// 1207 /// Before calling this function, GlobalCand and BundleCand must be initialized 1208 /// so each bundle is assigned to a valid candidate, or NoCand for the 1209 /// stack-bound bundles. The shared SA/SE SplitAnalysis and SplitEditor 1210 /// objects must be initialized for the current live range, and intervals 1211 /// created for the used candidates. 1212 /// 1213 /// @param LREdit The LiveRangeEdit object handling the current split. 1214 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value 1215 /// must appear in this list. 1216 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit, 1217 ArrayRef<unsigned> UsedCands) { 1218 // These are the intervals created for new global ranges. We may create more 1219 // intervals for local ranges. 1220 const unsigned NumGlobalIntvs = LREdit.size(); 1221 DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs << " globals.\n"); 1222 assert(NumGlobalIntvs && "No global intervals configured"); 1223 1224 // Isolate even single instructions when dealing with a proper sub-class. 1225 // That guarantees register class inflation for the stack interval because it 1226 // is all copies. 1227 unsigned Reg = SA->getParent().reg; 1228 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 1229 1230 // First handle all the blocks with uses. 1231 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1232 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1233 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1234 unsigned Number = BI.MBB->getNumber(); 1235 unsigned IntvIn = 0, IntvOut = 0; 1236 SlotIndex IntfIn, IntfOut; 1237 if (BI.LiveIn) { 1238 unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)]; 1239 if (CandIn != NoCand) { 1240 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 1241 IntvIn = Cand.IntvIdx; 1242 Cand.Intf.moveToBlock(Number); 1243 IntfIn = Cand.Intf.first(); 1244 } 1245 } 1246 if (BI.LiveOut) { 1247 unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)]; 1248 if (CandOut != NoCand) { 1249 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 1250 IntvOut = Cand.IntvIdx; 1251 Cand.Intf.moveToBlock(Number); 1252 IntfOut = Cand.Intf.last(); 1253 } 1254 } 1255 1256 // Create separate intervals for isolated blocks with multiple uses. 1257 if (!IntvIn && !IntvOut) { 1258 DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " isolated.\n"); 1259 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 1260 SE->splitSingleBlock(BI); 1261 continue; 1262 } 1263 1264 if (IntvIn && IntvOut) 1265 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1266 else if (IntvIn) 1267 SE->splitRegInBlock(BI, IntvIn, IntfIn); 1268 else 1269 SE->splitRegOutBlock(BI, IntvOut, IntfOut); 1270 } 1271 1272 // Handle live-through blocks. The relevant live-through blocks are stored in 1273 // the ActiveBlocks list with each candidate. We need to filter out 1274 // duplicates. 1275 BitVector Todo = SA->getThroughBlocks(); 1276 for (unsigned c = 0; c != UsedCands.size(); ++c) { 1277 ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks; 1278 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { 1279 unsigned Number = Blocks[i]; 1280 if (!Todo.test(Number)) 1281 continue; 1282 Todo.reset(Number); 1283 1284 unsigned IntvIn = 0, IntvOut = 0; 1285 SlotIndex IntfIn, IntfOut; 1286 1287 unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)]; 1288 if (CandIn != NoCand) { 1289 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 1290 IntvIn = Cand.IntvIdx; 1291 Cand.Intf.moveToBlock(Number); 1292 IntfIn = Cand.Intf.first(); 1293 } 1294 1295 unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)]; 1296 if (CandOut != NoCand) { 1297 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 1298 IntvOut = Cand.IntvIdx; 1299 Cand.Intf.moveToBlock(Number); 1300 IntfOut = Cand.Intf.last(); 1301 } 1302 if (!IntvIn && !IntvOut) 1303 continue; 1304 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1305 } 1306 } 1307 1308 ++NumGlobalSplits; 1309 1310 SmallVector<unsigned, 8> IntvMap; 1311 SE->finish(&IntvMap); 1312 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 1313 1314 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 1315 unsigned OrigBlocks = SA->getNumLiveBlocks(); 1316 1317 // Sort out the new intervals created by splitting. We get four kinds: 1318 // - Remainder intervals should not be split again. 1319 // - Candidate intervals can be assigned to Cand.PhysReg. 1320 // - Block-local splits are candidates for local splitting. 1321 // - DCE leftovers should go back on the queue. 1322 for (unsigned i = 0, e = LREdit.size(); i != e; ++i) { 1323 LiveInterval &Reg = LIS->getInterval(LREdit.get(i)); 1324 1325 // Ignore old intervals from DCE. 1326 if (getStage(Reg) != RS_New) 1327 continue; 1328 1329 // Remainder interval. Don't try splitting again, spill if it doesn't 1330 // allocate. 1331 if (IntvMap[i] == 0) { 1332 setStage(Reg, RS_Spill); 1333 continue; 1334 } 1335 1336 // Global intervals. Allow repeated splitting as long as the number of live 1337 // blocks is strictly decreasing. 1338 if (IntvMap[i] < NumGlobalIntvs) { 1339 if (SA->countLiveBlocks(&Reg) >= OrigBlocks) { 1340 DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks 1341 << " blocks as original.\n"); 1342 // Don't allow repeated splitting as a safe guard against looping. 1343 setStage(Reg, RS_Split2); 1344 } 1345 continue; 1346 } 1347 1348 // Other intervals are treated as new. This includes local intervals created 1349 // for blocks with multiple uses, and anything created by DCE. 1350 } 1351 1352 if (VerifyEnabled) 1353 MF->verify(this, "After splitting live range around region"); 1354 } 1355 1356 unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order, 1357 SmallVectorImpl<unsigned> &NewVRegs) { 1358 unsigned NumCands = 0; 1359 BlockFrequency BestCost; 1360 1361 // Check if we can split this live range around a compact region. 1362 bool HasCompact = calcCompactRegion(GlobalCand.front()); 1363 if (HasCompact) { 1364 // Yes, keep GlobalCand[0] as the compact region candidate. 1365 NumCands = 1; 1366 BestCost = BlockFrequency::getMaxFrequency(); 1367 } else { 1368 // No benefit from the compact region, our fallback will be per-block 1369 // splitting. Make sure we find a solution that is cheaper than spilling. 1370 BestCost = calcSpillCost(); 1371 DEBUG(dbgs() << "Cost of isolating all blocks = "; 1372 MBFI->printBlockFreq(dbgs(), BestCost) << '\n'); 1373 } 1374 1375 unsigned BestCand = 1376 calculateRegionSplitCost(VirtReg, Order, BestCost, NumCands, 1377 false/*IgnoreCSR*/); 1378 1379 // No solutions found, fall back to single block splitting. 1380 if (!HasCompact && BestCand == NoCand) 1381 return 0; 1382 1383 return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs); 1384 } 1385 1386 unsigned RAGreedy::calculateRegionSplitCost(LiveInterval &VirtReg, 1387 AllocationOrder &Order, 1388 BlockFrequency &BestCost, 1389 unsigned &NumCands, 1390 bool IgnoreCSR) { 1391 unsigned BestCand = NoCand; 1392 Order.rewind(); 1393 while (unsigned PhysReg = Order.next()) { 1394 if (IgnoreCSR && isUnusedCalleeSavedReg(PhysReg)) 1395 continue; 1396 1397 // Discard bad candidates before we run out of interference cache cursors. 1398 // This will only affect register classes with a lot of registers (>32). 1399 if (NumCands == IntfCache.getMaxCursors()) { 1400 unsigned WorstCount = ~0u; 1401 unsigned Worst = 0; 1402 for (unsigned i = 0; i != NumCands; ++i) { 1403 if (i == BestCand || !GlobalCand[i].PhysReg) 1404 continue; 1405 unsigned Count = GlobalCand[i].LiveBundles.count(); 1406 if (Count < WorstCount) { 1407 Worst = i; 1408 WorstCount = Count; 1409 } 1410 } 1411 --NumCands; 1412 GlobalCand[Worst] = GlobalCand[NumCands]; 1413 if (BestCand == NumCands) 1414 BestCand = Worst; 1415 } 1416 1417 if (GlobalCand.size() <= NumCands) 1418 GlobalCand.resize(NumCands+1); 1419 GlobalSplitCandidate &Cand = GlobalCand[NumCands]; 1420 Cand.reset(IntfCache, PhysReg); 1421 1422 SpillPlacer->prepare(Cand.LiveBundles); 1423 BlockFrequency Cost; 1424 if (!addSplitConstraints(Cand.Intf, Cost)) { 1425 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tno positive bundles\n"); 1426 continue; 1427 } 1428 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tstatic = "; 1429 MBFI->printBlockFreq(dbgs(), Cost)); 1430 if (Cost >= BestCost) { 1431 DEBUG({ 1432 if (BestCand == NoCand) 1433 dbgs() << " worse than no bundles\n"; 1434 else 1435 dbgs() << " worse than " 1436 << PrintReg(GlobalCand[BestCand].PhysReg, TRI) << '\n'; 1437 }); 1438 continue; 1439 } 1440 growRegion(Cand); 1441 1442 SpillPlacer->finish(); 1443 1444 // No live bundles, defer to splitSingleBlocks(). 1445 if (!Cand.LiveBundles.any()) { 1446 DEBUG(dbgs() << " no bundles.\n"); 1447 continue; 1448 } 1449 1450 Cost += calcGlobalSplitCost(Cand); 1451 DEBUG({ 1452 dbgs() << ", total = "; MBFI->printBlockFreq(dbgs(), Cost) 1453 << " with bundles"; 1454 for (int i = Cand.LiveBundles.find_first(); i>=0; 1455 i = Cand.LiveBundles.find_next(i)) 1456 dbgs() << " EB#" << i; 1457 dbgs() << ".\n"; 1458 }); 1459 if (Cost < BestCost) { 1460 BestCand = NumCands; 1461 BestCost = Cost; 1462 } 1463 ++NumCands; 1464 } 1465 return BestCand; 1466 } 1467 1468 unsigned RAGreedy::doRegionSplit(LiveInterval &VirtReg, unsigned BestCand, 1469 bool HasCompact, 1470 SmallVectorImpl<unsigned> &NewVRegs) { 1471 SmallVector<unsigned, 8> UsedCands; 1472 // Prepare split editor. 1473 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1474 SE->reset(LREdit, SplitSpillMode); 1475 1476 // Assign all edge bundles to the preferred candidate, or NoCand. 1477 BundleCand.assign(Bundles->getNumBundles(), NoCand); 1478 1479 // Assign bundles for the best candidate region. 1480 if (BestCand != NoCand) { 1481 GlobalSplitCandidate &Cand = GlobalCand[BestCand]; 1482 if (unsigned B = Cand.getBundles(BundleCand, BestCand)) { 1483 UsedCands.push_back(BestCand); 1484 Cand.IntvIdx = SE->openIntv(); 1485 DEBUG(dbgs() << "Split for " << PrintReg(Cand.PhysReg, TRI) << " in " 1486 << B << " bundles, intv " << Cand.IntvIdx << ".\n"); 1487 (void)B; 1488 } 1489 } 1490 1491 // Assign bundles for the compact region. 1492 if (HasCompact) { 1493 GlobalSplitCandidate &Cand = GlobalCand.front(); 1494 assert(!Cand.PhysReg && "Compact region has no physreg"); 1495 if (unsigned B = Cand.getBundles(BundleCand, 0)) { 1496 UsedCands.push_back(0); 1497 Cand.IntvIdx = SE->openIntv(); 1498 DEBUG(dbgs() << "Split for compact region in " << B << " bundles, intv " 1499 << Cand.IntvIdx << ".\n"); 1500 (void)B; 1501 } 1502 } 1503 1504 splitAroundRegion(LREdit, UsedCands); 1505 return 0; 1506 } 1507 1508 1509 //===----------------------------------------------------------------------===// 1510 // Per-Block Splitting 1511 //===----------------------------------------------------------------------===// 1512 1513 /// tryBlockSplit - Split a global live range around every block with uses. This 1514 /// creates a lot of local live ranges, that will be split by tryLocalSplit if 1515 /// they don't allocate. 1516 unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order, 1517 SmallVectorImpl<unsigned> &NewVRegs) { 1518 assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed"); 1519 unsigned Reg = VirtReg.reg; 1520 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 1521 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1522 SE->reset(LREdit, SplitSpillMode); 1523 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1524 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1525 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1526 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 1527 SE->splitSingleBlock(BI); 1528 } 1529 // No blocks were split. 1530 if (LREdit.empty()) 1531 return 0; 1532 1533 // We did split for some blocks. 1534 SmallVector<unsigned, 8> IntvMap; 1535 SE->finish(&IntvMap); 1536 1537 // Tell LiveDebugVariables about the new ranges. 1538 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 1539 1540 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 1541 1542 // Sort out the new intervals created by splitting. The remainder interval 1543 // goes straight to spilling, the new local ranges get to stay RS_New. 1544 for (unsigned i = 0, e = LREdit.size(); i != e; ++i) { 1545 LiveInterval &LI = LIS->getInterval(LREdit.get(i)); 1546 if (getStage(LI) == RS_New && IntvMap[i] == 0) 1547 setStage(LI, RS_Spill); 1548 } 1549 1550 if (VerifyEnabled) 1551 MF->verify(this, "After splitting live range around basic blocks"); 1552 return 0; 1553 } 1554 1555 1556 //===----------------------------------------------------------------------===// 1557 // Per-Instruction Splitting 1558 //===----------------------------------------------------------------------===// 1559 1560 /// Get the number of allocatable registers that match the constraints of \p Reg 1561 /// on \p MI and that are also in \p SuperRC. 1562 static unsigned getNumAllocatableRegsForConstraints( 1563 const MachineInstr *MI, unsigned Reg, const TargetRegisterClass *SuperRC, 1564 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI, 1565 const RegisterClassInfo &RCI) { 1566 assert(SuperRC && "Invalid register class"); 1567 1568 const TargetRegisterClass *ConstrainedRC = 1569 MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI, 1570 /* ExploreBundle */ true); 1571 if (!ConstrainedRC) 1572 return 0; 1573 return RCI.getNumAllocatableRegs(ConstrainedRC); 1574 } 1575 1576 /// tryInstructionSplit - Split a live range around individual instructions. 1577 /// This is normally not worthwhile since the spiller is doing essentially the 1578 /// same thing. However, when the live range is in a constrained register 1579 /// class, it may help to insert copies such that parts of the live range can 1580 /// be moved to a larger register class. 1581 /// 1582 /// This is similar to spilling to a larger register class. 1583 unsigned 1584 RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order, 1585 SmallVectorImpl<unsigned> &NewVRegs) { 1586 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg); 1587 // There is no point to this if there are no larger sub-classes. 1588 if (!RegClassInfo.isProperSubClass(CurRC)) 1589 return 0; 1590 1591 // Always enable split spill mode, since we're effectively spilling to a 1592 // register. 1593 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1594 SE->reset(LREdit, SplitEditor::SM_Size); 1595 1596 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 1597 if (Uses.size() <= 1) 1598 return 0; 1599 1600 DEBUG(dbgs() << "Split around " << Uses.size() << " individual instrs.\n"); 1601 1602 const TargetRegisterClass *SuperRC = 1603 TRI->getLargestLegalSuperClass(CurRC, *MF); 1604 unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC); 1605 // Split around every non-copy instruction if this split will relax 1606 // the constraints on the virtual register. 1607 // Otherwise, splitting just inserts uncoalescable copies that do not help 1608 // the allocation. 1609 for (unsigned i = 0; i != Uses.size(); ++i) { 1610 if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Uses[i])) 1611 if (MI->isFullCopy() || 1612 SuperRCNumAllocatableRegs == 1613 getNumAllocatableRegsForConstraints(MI, VirtReg.reg, SuperRC, TII, 1614 TRI, RCI)) { 1615 DEBUG(dbgs() << " skip:\t" << Uses[i] << '\t' << *MI); 1616 continue; 1617 } 1618 SE->openIntv(); 1619 SlotIndex SegStart = SE->enterIntvBefore(Uses[i]); 1620 SlotIndex SegStop = SE->leaveIntvAfter(Uses[i]); 1621 SE->useIntv(SegStart, SegStop); 1622 } 1623 1624 if (LREdit.empty()) { 1625 DEBUG(dbgs() << "All uses were copies.\n"); 1626 return 0; 1627 } 1628 1629 SmallVector<unsigned, 8> IntvMap; 1630 SE->finish(&IntvMap); 1631 DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS); 1632 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 1633 1634 // Assign all new registers to RS_Spill. This was the last chance. 1635 setStage(LREdit.begin(), LREdit.end(), RS_Spill); 1636 return 0; 1637 } 1638 1639 1640 //===----------------------------------------------------------------------===// 1641 // Local Splitting 1642 //===----------------------------------------------------------------------===// 1643 1644 1645 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted 1646 /// in order to use PhysReg between two entries in SA->UseSlots. 1647 /// 1648 /// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1]. 1649 /// 1650 void RAGreedy::calcGapWeights(unsigned PhysReg, 1651 SmallVectorImpl<float> &GapWeight) { 1652 assert(SA->getUseBlocks().size() == 1 && "Not a local interval"); 1653 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 1654 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 1655 const unsigned NumGaps = Uses.size()-1; 1656 1657 // Start and end points for the interference check. 1658 SlotIndex StartIdx = 1659 BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr; 1660 SlotIndex StopIdx = 1661 BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr; 1662 1663 GapWeight.assign(NumGaps, 0.0f); 1664 1665 // Add interference from each overlapping register. 1666 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 1667 if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units) 1668 .checkInterference()) 1669 continue; 1670 1671 // We know that VirtReg is a continuous interval from FirstInstr to 1672 // LastInstr, so we don't need InterferenceQuery. 1673 // 1674 // Interference that overlaps an instruction is counted in both gaps 1675 // surrounding the instruction. The exception is interference before 1676 // StartIdx and after StopIdx. 1677 // 1678 LiveIntervalUnion::SegmentIter IntI = 1679 Matrix->getLiveUnions()[*Units] .find(StartIdx); 1680 for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) { 1681 // Skip the gaps before IntI. 1682 while (Uses[Gap+1].getBoundaryIndex() < IntI.start()) 1683 if (++Gap == NumGaps) 1684 break; 1685 if (Gap == NumGaps) 1686 break; 1687 1688 // Update the gaps covered by IntI. 1689 const float weight = IntI.value()->weight; 1690 for (; Gap != NumGaps; ++Gap) { 1691 GapWeight[Gap] = std::max(GapWeight[Gap], weight); 1692 if (Uses[Gap+1].getBaseIndex() >= IntI.stop()) 1693 break; 1694 } 1695 if (Gap == NumGaps) 1696 break; 1697 } 1698 } 1699 1700 // Add fixed interference. 1701 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 1702 const LiveRange &LR = LIS->getRegUnit(*Units); 1703 LiveRange::const_iterator I = LR.find(StartIdx); 1704 LiveRange::const_iterator E = LR.end(); 1705 1706 // Same loop as above. Mark any overlapped gaps as HUGE_VALF. 1707 for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) { 1708 while (Uses[Gap+1].getBoundaryIndex() < I->start) 1709 if (++Gap == NumGaps) 1710 break; 1711 if (Gap == NumGaps) 1712 break; 1713 1714 for (; Gap != NumGaps; ++Gap) { 1715 GapWeight[Gap] = llvm::huge_valf; 1716 if (Uses[Gap+1].getBaseIndex() >= I->end) 1717 break; 1718 } 1719 if (Gap == NumGaps) 1720 break; 1721 } 1722 } 1723 } 1724 1725 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only 1726 /// basic block. 1727 /// 1728 unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order, 1729 SmallVectorImpl<unsigned> &NewVRegs) { 1730 assert(SA->getUseBlocks().size() == 1 && "Not a local interval"); 1731 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 1732 1733 // Note that it is possible to have an interval that is live-in or live-out 1734 // while only covering a single block - A phi-def can use undef values from 1735 // predecessors, and the block could be a single-block loop. 1736 // We don't bother doing anything clever about such a case, we simply assume 1737 // that the interval is continuous from FirstInstr to LastInstr. We should 1738 // make sure that we don't do anything illegal to such an interval, though. 1739 1740 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 1741 if (Uses.size() <= 2) 1742 return 0; 1743 const unsigned NumGaps = Uses.size()-1; 1744 1745 DEBUG({ 1746 dbgs() << "tryLocalSplit: "; 1747 for (unsigned i = 0, e = Uses.size(); i != e; ++i) 1748 dbgs() << ' ' << Uses[i]; 1749 dbgs() << '\n'; 1750 }); 1751 1752 // If VirtReg is live across any register mask operands, compute a list of 1753 // gaps with register masks. 1754 SmallVector<unsigned, 8> RegMaskGaps; 1755 if (Matrix->checkRegMaskInterference(VirtReg)) { 1756 // Get regmask slots for the whole block. 1757 ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber()); 1758 DEBUG(dbgs() << RMS.size() << " regmasks in block:"); 1759 // Constrain to VirtReg's live range. 1760 unsigned ri = std::lower_bound(RMS.begin(), RMS.end(), 1761 Uses.front().getRegSlot()) - RMS.begin(); 1762 unsigned re = RMS.size(); 1763 for (unsigned i = 0; i != NumGaps && ri != re; ++i) { 1764 // Look for Uses[i] <= RMS <= Uses[i+1]. 1765 assert(!SlotIndex::isEarlierInstr(RMS[ri], Uses[i])); 1766 if (SlotIndex::isEarlierInstr(Uses[i+1], RMS[ri])) 1767 continue; 1768 // Skip a regmask on the same instruction as the last use. It doesn't 1769 // overlap the live range. 1770 if (SlotIndex::isSameInstr(Uses[i+1], RMS[ri]) && i+1 == NumGaps) 1771 break; 1772 DEBUG(dbgs() << ' ' << RMS[ri] << ':' << Uses[i] << '-' << Uses[i+1]); 1773 RegMaskGaps.push_back(i); 1774 // Advance ri to the next gap. A regmask on one of the uses counts in 1775 // both gaps. 1776 while (ri != re && SlotIndex::isEarlierInstr(RMS[ri], Uses[i+1])) 1777 ++ri; 1778 } 1779 DEBUG(dbgs() << '\n'); 1780 } 1781 1782 // Since we allow local split results to be split again, there is a risk of 1783 // creating infinite loops. It is tempting to require that the new live 1784 // ranges have less instructions than the original. That would guarantee 1785 // convergence, but it is too strict. A live range with 3 instructions can be 1786 // split 2+3 (including the COPY), and we want to allow that. 1787 // 1788 // Instead we use these rules: 1789 // 1790 // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the 1791 // noop split, of course). 1792 // 2. Require progress be made for ranges with getStage() == RS_Split2. All 1793 // the new ranges must have fewer instructions than before the split. 1794 // 3. New ranges with the same number of instructions are marked RS_Split2, 1795 // smaller ranges are marked RS_New. 1796 // 1797 // These rules allow a 3 -> 2+3 split once, which we need. They also prevent 1798 // excessive splitting and infinite loops. 1799 // 1800 bool ProgressRequired = getStage(VirtReg) >= RS_Split2; 1801 1802 // Best split candidate. 1803 unsigned BestBefore = NumGaps; 1804 unsigned BestAfter = 0; 1805 float BestDiff = 0; 1806 1807 const float blockFreq = 1808 SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() * 1809 (1.0f / MBFI->getEntryFreq()); 1810 SmallVector<float, 8> GapWeight; 1811 1812 Order.rewind(); 1813 while (unsigned PhysReg = Order.next()) { 1814 // Keep track of the largest spill weight that would need to be evicted in 1815 // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1]. 1816 calcGapWeights(PhysReg, GapWeight); 1817 1818 // Remove any gaps with regmask clobbers. 1819 if (Matrix->checkRegMaskInterference(VirtReg, PhysReg)) 1820 for (unsigned i = 0, e = RegMaskGaps.size(); i != e; ++i) 1821 GapWeight[RegMaskGaps[i]] = llvm::huge_valf; 1822 1823 // Try to find the best sequence of gaps to close. 1824 // The new spill weight must be larger than any gap interference. 1825 1826 // We will split before Uses[SplitBefore] and after Uses[SplitAfter]. 1827 unsigned SplitBefore = 0, SplitAfter = 1; 1828 1829 // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]). 1830 // It is the spill weight that needs to be evicted. 1831 float MaxGap = GapWeight[0]; 1832 1833 for (;;) { 1834 // Live before/after split? 1835 const bool LiveBefore = SplitBefore != 0 || BI.LiveIn; 1836 const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut; 1837 1838 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << ' ' 1839 << Uses[SplitBefore] << '-' << Uses[SplitAfter] 1840 << " i=" << MaxGap); 1841 1842 // Stop before the interval gets so big we wouldn't be making progress. 1843 if (!LiveBefore && !LiveAfter) { 1844 DEBUG(dbgs() << " all\n"); 1845 break; 1846 } 1847 // Should the interval be extended or shrunk? 1848 bool Shrink = true; 1849 1850 // How many gaps would the new range have? 1851 unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter; 1852 1853 // Legally, without causing looping? 1854 bool Legal = !ProgressRequired || NewGaps < NumGaps; 1855 1856 if (Legal && MaxGap < llvm::huge_valf) { 1857 // Estimate the new spill weight. Each instruction reads or writes the 1858 // register. Conservatively assume there are no read-modify-write 1859 // instructions. 1860 // 1861 // Try to guess the size of the new interval. 1862 const float EstWeight = normalizeSpillWeight( 1863 blockFreq * (NewGaps + 1), 1864 Uses[SplitBefore].distance(Uses[SplitAfter]) + 1865 (LiveBefore + LiveAfter) * SlotIndex::InstrDist, 1866 1); 1867 // Would this split be possible to allocate? 1868 // Never allocate all gaps, we wouldn't be making progress. 1869 DEBUG(dbgs() << " w=" << EstWeight); 1870 if (EstWeight * Hysteresis >= MaxGap) { 1871 Shrink = false; 1872 float Diff = EstWeight - MaxGap; 1873 if (Diff > BestDiff) { 1874 DEBUG(dbgs() << " (best)"); 1875 BestDiff = Hysteresis * Diff; 1876 BestBefore = SplitBefore; 1877 BestAfter = SplitAfter; 1878 } 1879 } 1880 } 1881 1882 // Try to shrink. 1883 if (Shrink) { 1884 if (++SplitBefore < SplitAfter) { 1885 DEBUG(dbgs() << " shrink\n"); 1886 // Recompute the max when necessary. 1887 if (GapWeight[SplitBefore - 1] >= MaxGap) { 1888 MaxGap = GapWeight[SplitBefore]; 1889 for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i) 1890 MaxGap = std::max(MaxGap, GapWeight[i]); 1891 } 1892 continue; 1893 } 1894 MaxGap = 0; 1895 } 1896 1897 // Try to extend the interval. 1898 if (SplitAfter >= NumGaps) { 1899 DEBUG(dbgs() << " end\n"); 1900 break; 1901 } 1902 1903 DEBUG(dbgs() << " extend\n"); 1904 MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]); 1905 } 1906 } 1907 1908 // Didn't find any candidates? 1909 if (BestBefore == NumGaps) 1910 return 0; 1911 1912 DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] 1913 << '-' << Uses[BestAfter] << ", " << BestDiff 1914 << ", " << (BestAfter - BestBefore + 1) << " instrs\n"); 1915 1916 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1917 SE->reset(LREdit); 1918 1919 SE->openIntv(); 1920 SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]); 1921 SlotIndex SegStop = SE->leaveIntvAfter(Uses[BestAfter]); 1922 SE->useIntv(SegStart, SegStop); 1923 SmallVector<unsigned, 8> IntvMap; 1924 SE->finish(&IntvMap); 1925 DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS); 1926 1927 // If the new range has the same number of instructions as before, mark it as 1928 // RS_Split2 so the next split will be forced to make progress. Otherwise, 1929 // leave the new intervals as RS_New so they can compete. 1930 bool LiveBefore = BestBefore != 0 || BI.LiveIn; 1931 bool LiveAfter = BestAfter != NumGaps || BI.LiveOut; 1932 unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter; 1933 if (NewGaps >= NumGaps) { 1934 DEBUG(dbgs() << "Tagging non-progress ranges: "); 1935 assert(!ProgressRequired && "Didn't make progress when it was required."); 1936 for (unsigned i = 0, e = IntvMap.size(); i != e; ++i) 1937 if (IntvMap[i] == 1) { 1938 setStage(LIS->getInterval(LREdit.get(i)), RS_Split2); 1939 DEBUG(dbgs() << PrintReg(LREdit.get(i))); 1940 } 1941 DEBUG(dbgs() << '\n'); 1942 } 1943 ++NumLocalSplits; 1944 1945 return 0; 1946 } 1947 1948 //===----------------------------------------------------------------------===// 1949 // Live Range Splitting 1950 //===----------------------------------------------------------------------===// 1951 1952 /// trySplit - Try to split VirtReg or one of its interferences, making it 1953 /// assignable. 1954 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs. 1955 unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order, 1956 SmallVectorImpl<unsigned>&NewVRegs) { 1957 // Ranges must be Split2 or less. 1958 if (getStage(VirtReg) >= RS_Spill) 1959 return 0; 1960 1961 // Local intervals are handled separately. 1962 if (LIS->intervalIsInOneMBB(VirtReg)) { 1963 NamedRegionTimer T("Local Splitting", TimerGroupName, TimePassesIsEnabled); 1964 SA->analyze(&VirtReg); 1965 unsigned PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs); 1966 if (PhysReg || !NewVRegs.empty()) 1967 return PhysReg; 1968 return tryInstructionSplit(VirtReg, Order, NewVRegs); 1969 } 1970 1971 NamedRegionTimer T("Global Splitting", TimerGroupName, TimePassesIsEnabled); 1972 1973 SA->analyze(&VirtReg); 1974 1975 // FIXME: SplitAnalysis may repair broken live ranges coming from the 1976 // coalescer. That may cause the range to become allocatable which means that 1977 // tryRegionSplit won't be making progress. This check should be replaced with 1978 // an assertion when the coalescer is fixed. 1979 if (SA->didRepairRange()) { 1980 // VirtReg has changed, so all cached queries are invalid. 1981 Matrix->invalidateVirtRegs(); 1982 if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs)) 1983 return PhysReg; 1984 } 1985 1986 // First try to split around a region spanning multiple blocks. RS_Split2 1987 // ranges already made dubious progress with region splitting, so they go 1988 // straight to single block splitting. 1989 if (getStage(VirtReg) < RS_Split2) { 1990 unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs); 1991 if (PhysReg || !NewVRegs.empty()) 1992 return PhysReg; 1993 } 1994 1995 // Then isolate blocks. 1996 return tryBlockSplit(VirtReg, Order, NewVRegs); 1997 } 1998 1999 //===----------------------------------------------------------------------===// 2000 // Last Chance Recoloring 2001 //===----------------------------------------------------------------------===// 2002 2003 /// mayRecolorAllInterferences - Check if the virtual registers that 2004 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be 2005 /// recolored to free \p PhysReg. 2006 /// When true is returned, \p RecoloringCandidates has been augmented with all 2007 /// the live intervals that need to be recolored in order to free \p PhysReg 2008 /// for \p VirtReg. 2009 /// \p FixedRegisters contains all the virtual registers that cannot be 2010 /// recolored. 2011 bool 2012 RAGreedy::mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg, 2013 SmallLISet &RecoloringCandidates, 2014 const SmallVirtRegSet &FixedRegisters) { 2015 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg); 2016 2017 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 2018 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 2019 // If there is LastChanceRecoloringMaxInterference or more interferences, 2020 // chances are one would not be recolorable. 2021 if (Q.collectInterferingVRegs(LastChanceRecoloringMaxInterference) >= 2022 LastChanceRecoloringMaxInterference && !ExhaustiveSearch) { 2023 DEBUG(dbgs() << "Early abort: too many interferences.\n"); 2024 CutOffInfo |= CO_Interf; 2025 return false; 2026 } 2027 for (unsigned i = Q.interferingVRegs().size(); i; --i) { 2028 LiveInterval *Intf = Q.interferingVRegs()[i - 1]; 2029 // If Intf is done and sit on the same register class as VirtReg, 2030 // it would not be recolorable as it is in the same state as VirtReg. 2031 if ((getStage(*Intf) == RS_Done && 2032 MRI->getRegClass(Intf->reg) == CurRC) || 2033 FixedRegisters.count(Intf->reg)) { 2034 DEBUG(dbgs() << "Early abort: the inteference is not recolorable.\n"); 2035 return false; 2036 } 2037 RecoloringCandidates.insert(Intf); 2038 } 2039 } 2040 return true; 2041 } 2042 2043 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring 2044 /// its interferences. 2045 /// Last chance recoloring chooses a color for \p VirtReg and recolors every 2046 /// virtual register that was using it. The recoloring process may recursively 2047 /// use the last chance recoloring. Therefore, when a virtual register has been 2048 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot 2049 /// be last-chance-recolored again during this recoloring "session". 2050 /// E.g., 2051 /// Let 2052 /// vA can use {R1, R2 } 2053 /// vB can use { R2, R3} 2054 /// vC can use {R1 } 2055 /// Where vA, vB, and vC cannot be split anymore (they are reloads for 2056 /// instance) and they all interfere. 2057 /// 2058 /// vA is assigned R1 2059 /// vB is assigned R2 2060 /// vC tries to evict vA but vA is already done. 2061 /// Regular register allocation fails. 2062 /// 2063 /// Last chance recoloring kicks in: 2064 /// vC does as if vA was evicted => vC uses R1. 2065 /// vC is marked as fixed. 2066 /// vA needs to find a color. 2067 /// None are available. 2068 /// vA cannot evict vC: vC is a fixed virtual register now. 2069 /// vA does as if vB was evicted => vA uses R2. 2070 /// vB needs to find a color. 2071 /// R3 is available. 2072 /// Recoloring => vC = R1, vA = R2, vB = R3 2073 /// 2074 /// \p Order defines the preferred allocation order for \p VirtReg. 2075 /// \p NewRegs will contain any new virtual register that have been created 2076 /// (split, spill) during the process and that must be assigned. 2077 /// \p FixedRegisters contains all the virtual registers that cannot be 2078 /// recolored. 2079 /// \p Depth gives the current depth of the last chance recoloring. 2080 /// \return a physical register that can be used for VirtReg or ~0u if none 2081 /// exists. 2082 unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg, 2083 AllocationOrder &Order, 2084 SmallVectorImpl<unsigned> &NewVRegs, 2085 SmallVirtRegSet &FixedRegisters, 2086 unsigned Depth) { 2087 DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n'); 2088 // Ranges must be Done. 2089 assert((getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) && 2090 "Last chance recoloring should really be last chance"); 2091 // Set the max depth to LastChanceRecoloringMaxDepth. 2092 // We may want to reconsider that if we end up with a too large search space 2093 // for target with hundreds of registers. 2094 // Indeed, in that case we may want to cut the search space earlier. 2095 if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) { 2096 DEBUG(dbgs() << "Abort because max depth has been reached.\n"); 2097 CutOffInfo |= CO_Depth; 2098 return ~0u; 2099 } 2100 2101 // Set of Live intervals that will need to be recolored. 2102 SmallLISet RecoloringCandidates; 2103 // Record the original mapping virtual register to physical register in case 2104 // the recoloring fails. 2105 DenseMap<unsigned, unsigned> VirtRegToPhysReg; 2106 // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in 2107 // this recoloring "session". 2108 FixedRegisters.insert(VirtReg.reg); 2109 // Remember the ID of the last vreg in case the recoloring fails. 2110 unsigned LastVReg = 2111 TargetRegisterInfo::index2VirtReg(MRI->getNumVirtRegs() - 1); 2112 SmallVector<unsigned, 4> CurrentNewVRegs; 2113 2114 Order.rewind(); 2115 while (unsigned PhysReg = Order.next()) { 2116 DEBUG(dbgs() << "Try to assign: " << VirtReg << " to " 2117 << PrintReg(PhysReg, TRI) << '\n'); 2118 RecoloringCandidates.clear(); 2119 VirtRegToPhysReg.clear(); 2120 CurrentNewVRegs.clear(); 2121 2122 // It is only possible to recolor virtual register interference. 2123 if (Matrix->checkInterference(VirtReg, PhysReg) > 2124 LiveRegMatrix::IK_VirtReg) { 2125 DEBUG(dbgs() << "Some inteferences are not with virtual registers.\n"); 2126 2127 continue; 2128 } 2129 2130 // Early give up on this PhysReg if it is obvious we cannot recolor all 2131 // the interferences. 2132 if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates, 2133 FixedRegisters)) { 2134 DEBUG(dbgs() << "Some inteferences cannot be recolored.\n"); 2135 continue; 2136 } 2137 2138 // RecoloringCandidates contains all the virtual registers that interfer 2139 // with VirtReg on PhysReg (or one of its aliases). 2140 // Enqueue them for recoloring and perform the actual recoloring. 2141 PQueue RecoloringQueue; 2142 for (SmallLISet::iterator It = RecoloringCandidates.begin(), 2143 EndIt = RecoloringCandidates.end(); 2144 It != EndIt; ++It) { 2145 unsigned ItVirtReg = (*It)->reg; 2146 enqueue(RecoloringQueue, *It); 2147 assert(VRM->hasPhys(ItVirtReg) && 2148 "Interferences are supposed to be with allocated vairables"); 2149 2150 // Record the current allocation. 2151 VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg); 2152 // unset the related struct. 2153 Matrix->unassign(**It); 2154 } 2155 2156 // Do as if VirtReg was assigned to PhysReg so that the underlying 2157 // recoloring has the right information about the interferes and 2158 // available colors. 2159 Matrix->assign(VirtReg, PhysReg); 2160 2161 // Save the current recoloring state. 2162 // If we cannot recolor all the interferences, we will have to start again 2163 // at this point for the next physical register. 2164 SmallVirtRegSet SaveFixedRegisters(FixedRegisters); 2165 if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs, 2166 FixedRegisters, Depth)) { 2167 // Push the queued vregs into the main queue. 2168 for (unsigned NewVReg : CurrentNewVRegs) 2169 NewVRegs.push_back(NewVReg); 2170 // Do not mess up with the global assignment process. 2171 // I.e., VirtReg must be unassigned. 2172 Matrix->unassign(VirtReg); 2173 return PhysReg; 2174 } 2175 2176 DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to " 2177 << PrintReg(PhysReg, TRI) << '\n'); 2178 2179 // The recoloring attempt failed, undo the changes. 2180 FixedRegisters = SaveFixedRegisters; 2181 Matrix->unassign(VirtReg); 2182 2183 // When we move a register from RS_Assign to RS_Split, we do not 2184 // actually do anything with it. I.e., it should not end up in NewVRegs. 2185 // For the other cases, since we created new live-ranges, we need to 2186 // process them. 2187 for (SmallVectorImpl<unsigned>::iterator Next = CurrentNewVRegs.begin(), 2188 End = CurrentNewVRegs.end(); 2189 Next != End; ++Next) { 2190 if (*Next <= LastVReg && getStage(LIS->getInterval(*Next)) == RS_Split) 2191 continue; 2192 NewVRegs.push_back(*Next); 2193 } 2194 2195 for (SmallLISet::iterator It = RecoloringCandidates.begin(), 2196 EndIt = RecoloringCandidates.end(); 2197 It != EndIt; ++It) { 2198 unsigned ItVirtReg = (*It)->reg; 2199 if (VRM->hasPhys(ItVirtReg)) 2200 Matrix->unassign(**It); 2201 unsigned ItPhysReg = VirtRegToPhysReg[ItVirtReg]; 2202 Matrix->assign(**It, ItPhysReg); 2203 } 2204 } 2205 2206 // Last chance recoloring did not worked either, give up. 2207 return ~0u; 2208 } 2209 2210 /// tryRecoloringCandidates - Try to assign a new color to every register 2211 /// in \RecoloringQueue. 2212 /// \p NewRegs will contain any new virtual register created during the 2213 /// recoloring process. 2214 /// \p FixedRegisters[in/out] contains all the registers that have been 2215 /// recolored. 2216 /// \return true if all virtual registers in RecoloringQueue were successfully 2217 /// recolored, false otherwise. 2218 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue, 2219 SmallVectorImpl<unsigned> &NewVRegs, 2220 SmallVirtRegSet &FixedRegisters, 2221 unsigned Depth) { 2222 while (!RecoloringQueue.empty()) { 2223 LiveInterval *LI = dequeue(RecoloringQueue); 2224 DEBUG(dbgs() << "Try to recolor: " << *LI << '\n'); 2225 unsigned PhysReg; 2226 PhysReg = selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, Depth + 1); 2227 if (PhysReg == ~0u || !PhysReg) 2228 return false; 2229 DEBUG(dbgs() << "Recoloring of " << *LI 2230 << " succeeded with: " << PrintReg(PhysReg, TRI) << '\n'); 2231 Matrix->assign(*LI, PhysReg); 2232 FixedRegisters.insert(LI->reg); 2233 } 2234 return true; 2235 } 2236 2237 //===----------------------------------------------------------------------===// 2238 // Main Entry Point 2239 //===----------------------------------------------------------------------===// 2240 2241 unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg, 2242 SmallVectorImpl<unsigned> &NewVRegs) { 2243 CutOffInfo = CO_None; 2244 LLVMContext &Ctx = MF->getFunction()->getContext(); 2245 SmallVirtRegSet FixedRegisters; 2246 unsigned Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters); 2247 if (Reg == ~0U && (CutOffInfo != CO_None)) { 2248 uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf); 2249 if (CutOffEncountered == CO_Depth) 2250 Ctx.emitError("register allocation failed: maximum depth for recoloring " 2251 "reached. Use -fexhaustive-register-search to skip " 2252 "cutoffs"); 2253 else if (CutOffEncountered == CO_Interf) 2254 Ctx.emitError("register allocation failed: maximum interference for " 2255 "recoloring reached. Use -fexhaustive-register-search " 2256 "to skip cutoffs"); 2257 else if (CutOffEncountered == (CO_Depth | CO_Interf)) 2258 Ctx.emitError("register allocation failed: maximum interference and " 2259 "depth for recoloring reached. Use " 2260 "-fexhaustive-register-search to skip cutoffs"); 2261 } 2262 return Reg; 2263 } 2264 2265 /// Using a CSR for the first time has a cost because it causes push|pop 2266 /// to be added to prologue|epilogue. Splitting a cold section of the live 2267 /// range can have lower cost than using the CSR for the first time; 2268 /// Spilling a live range in the cold path can have lower cost than using 2269 /// the CSR for the first time. Returns the physical register if we decide 2270 /// to use the CSR; otherwise return 0. 2271 unsigned RAGreedy::tryAssignCSRFirstTime(LiveInterval &VirtReg, 2272 AllocationOrder &Order, 2273 unsigned PhysReg, 2274 unsigned &CostPerUseLimit, 2275 SmallVectorImpl<unsigned> &NewVRegs) { 2276 if (getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) { 2277 // We choose spill over using the CSR for the first time if the spill cost 2278 // is lower than CSRCost. 2279 SA->analyze(&VirtReg); 2280 if (calcSpillCost() >= CSRCost) 2281 return PhysReg; 2282 2283 // We are going to spill, set CostPerUseLimit to 1 to make sure that 2284 // we will not use a callee-saved register in tryEvict. 2285 CostPerUseLimit = 1; 2286 return 0; 2287 } 2288 if (getStage(VirtReg) < RS_Split) { 2289 // We choose pre-splitting over using the CSR for the first time if 2290 // the cost of splitting is lower than CSRCost. 2291 SA->analyze(&VirtReg); 2292 unsigned NumCands = 0; 2293 BlockFrequency BestCost = CSRCost; // Don't modify CSRCost. 2294 unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost, 2295 NumCands, true /*IgnoreCSR*/); 2296 if (BestCand == NoCand) 2297 // Use the CSR if we can't find a region split below CSRCost. 2298 return PhysReg; 2299 2300 // Perform the actual pre-splitting. 2301 doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs); 2302 return 0; 2303 } 2304 return PhysReg; 2305 } 2306 2307 void RAGreedy::aboutToRemoveInterval(LiveInterval &LI) { 2308 // Do not keep invalid information around. 2309 SetOfBrokenHints.remove(&LI); 2310 } 2311 2312 void RAGreedy::initializeCSRCost() { 2313 // We use the larger one out of the command-line option and the value report 2314 // by TRI. 2315 CSRCost = BlockFrequency( 2316 std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost())); 2317 if (!CSRCost.getFrequency()) 2318 return; 2319 2320 // Raw cost is relative to Entry == 2^14; scale it appropriately. 2321 uint64_t ActualEntry = MBFI->getEntryFreq(); 2322 if (!ActualEntry) { 2323 CSRCost = 0; 2324 return; 2325 } 2326 uint64_t FixedEntry = 1 << 14; 2327 if (ActualEntry < FixedEntry) 2328 CSRCost *= BranchProbability(ActualEntry, FixedEntry); 2329 else if (ActualEntry <= UINT32_MAX) 2330 // Invert the fraction and divide. 2331 CSRCost /= BranchProbability(FixedEntry, ActualEntry); 2332 else 2333 // Can't use BranchProbability in general, since it takes 32-bit numbers. 2334 CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry); 2335 } 2336 2337 /// \brief Collect the hint info for \p Reg. 2338 /// The results are stored into \p Out. 2339 /// \p Out is not cleared before being populated. 2340 void RAGreedy::collectHintInfo(unsigned Reg, HintsInfo &Out) { 2341 for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) { 2342 if (!Instr.isFullCopy()) 2343 continue; 2344 // Look for the other end of the copy. 2345 unsigned OtherReg = Instr.getOperand(0).getReg(); 2346 if (OtherReg == Reg) { 2347 OtherReg = Instr.getOperand(1).getReg(); 2348 if (OtherReg == Reg) 2349 continue; 2350 } 2351 // Get the current assignment. 2352 unsigned OtherPhysReg = TargetRegisterInfo::isPhysicalRegister(OtherReg) 2353 ? OtherReg 2354 : VRM->getPhys(OtherReg); 2355 // Push the collected information. 2356 Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg, 2357 OtherPhysReg)); 2358 } 2359 } 2360 2361 /// \brief Using the given \p List, compute the cost of the broken hints if 2362 /// \p PhysReg was used. 2363 /// \return The cost of \p List for \p PhysReg. 2364 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List, 2365 unsigned PhysReg) { 2366 BlockFrequency Cost = 0; 2367 for (const HintInfo &Info : List) { 2368 if (Info.PhysReg != PhysReg) 2369 Cost += Info.Freq; 2370 } 2371 return Cost; 2372 } 2373 2374 /// \brief Using the register assigned to \p VirtReg, try to recolor 2375 /// all the live ranges that are copy-related with \p VirtReg. 2376 /// The recoloring is then propagated to all the live-ranges that have 2377 /// been recolored and so on, until no more copies can be coalesced or 2378 /// it is not profitable. 2379 /// For a given live range, profitability is determined by the sum of the 2380 /// frequencies of the non-identity copies it would introduce with the old 2381 /// and new register. 2382 void RAGreedy::tryHintRecoloring(LiveInterval &VirtReg) { 2383 // We have a broken hint, check if it is possible to fix it by 2384 // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted 2385 // some register and PhysReg may be available for the other live-ranges. 2386 SmallSet<unsigned, 4> Visited; 2387 SmallVector<unsigned, 2> RecoloringCandidates; 2388 HintsInfo Info; 2389 unsigned Reg = VirtReg.reg; 2390 unsigned PhysReg = VRM->getPhys(Reg); 2391 // Start the recoloring algorithm from the input live-interval, then 2392 // it will propagate to the ones that are copy-related with it. 2393 Visited.insert(Reg); 2394 RecoloringCandidates.push_back(Reg); 2395 2396 DEBUG(dbgs() << "Trying to reconcile hints for: " << PrintReg(Reg, TRI) << '(' 2397 << PrintReg(PhysReg, TRI) << ")\n"); 2398 2399 do { 2400 Reg = RecoloringCandidates.pop_back_val(); 2401 2402 // We cannot recolor physcal register. 2403 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 2404 continue; 2405 2406 assert(VRM->hasPhys(Reg) && "We have unallocated variable!!"); 2407 2408 // Get the live interval mapped with this virtual register to be able 2409 // to check for the interference with the new color. 2410 LiveInterval &LI = LIS->getInterval(Reg); 2411 unsigned CurrPhys = VRM->getPhys(Reg); 2412 // Check that the new color matches the register class constraints and 2413 // that it is free for this live range. 2414 if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) || 2415 Matrix->checkInterference(LI, PhysReg))) 2416 continue; 2417 2418 DEBUG(dbgs() << PrintReg(Reg, TRI) << '(' << PrintReg(CurrPhys, TRI) 2419 << ") is recolorable.\n"); 2420 2421 // Gather the hint info. 2422 Info.clear(); 2423 collectHintInfo(Reg, Info); 2424 // Check if recoloring the live-range will increase the cost of the 2425 // non-identity copies. 2426 if (CurrPhys != PhysReg) { 2427 DEBUG(dbgs() << "Checking profitability:\n"); 2428 BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys); 2429 BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg); 2430 DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency() 2431 << "\nNew Cost: " << NewCopiesCost.getFrequency() << '\n'); 2432 if (OldCopiesCost < NewCopiesCost) { 2433 DEBUG(dbgs() << "=> Not profitable.\n"); 2434 continue; 2435 } 2436 // At this point, the cost is either cheaper or equal. If it is 2437 // equal, we consider this is profitable because it may expose 2438 // more recoloring opportunities. 2439 DEBUG(dbgs() << "=> Profitable.\n"); 2440 // Recolor the live-range. 2441 Matrix->unassign(LI); 2442 Matrix->assign(LI, PhysReg); 2443 } 2444 // Push all copy-related live-ranges to keep reconciling the broken 2445 // hints. 2446 for (const HintInfo &HI : Info) { 2447 if (Visited.insert(HI.Reg).second) 2448 RecoloringCandidates.push_back(HI.Reg); 2449 } 2450 } while (!RecoloringCandidates.empty()); 2451 } 2452 2453 /// \brief Try to recolor broken hints. 2454 /// Broken hints may be repaired by recoloring when an evicted variable 2455 /// freed up a register for a larger live-range. 2456 /// Consider the following example: 2457 /// BB1: 2458 /// a = 2459 /// b = 2460 /// BB2: 2461 /// ... 2462 /// = b 2463 /// = a 2464 /// Let us assume b gets split: 2465 /// BB1: 2466 /// a = 2467 /// b = 2468 /// BB2: 2469 /// c = b 2470 /// ... 2471 /// d = c 2472 /// = d 2473 /// = a 2474 /// Because of how the allocation work, b, c, and d may be assigned different 2475 /// colors. Now, if a gets evicted later: 2476 /// BB1: 2477 /// a = 2478 /// st a, SpillSlot 2479 /// b = 2480 /// BB2: 2481 /// c = b 2482 /// ... 2483 /// d = c 2484 /// = d 2485 /// e = ld SpillSlot 2486 /// = e 2487 /// This is likely that we can assign the same register for b, c, and d, 2488 /// getting rid of 2 copies. 2489 void RAGreedy::tryHintsRecoloring() { 2490 for (LiveInterval *LI : SetOfBrokenHints) { 2491 assert(TargetRegisterInfo::isVirtualRegister(LI->reg) && 2492 "Recoloring is possible only for virtual registers"); 2493 // Some dead defs may be around (e.g., because of debug uses). 2494 // Ignore those. 2495 if (!VRM->hasPhys(LI->reg)) 2496 continue; 2497 tryHintRecoloring(*LI); 2498 } 2499 } 2500 2501 unsigned RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg, 2502 SmallVectorImpl<unsigned> &NewVRegs, 2503 SmallVirtRegSet &FixedRegisters, 2504 unsigned Depth) { 2505 unsigned CostPerUseLimit = ~0u; 2506 // First try assigning a free register. 2507 AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo, Matrix); 2508 if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs)) { 2509 // When NewVRegs is not empty, we may have made decisions such as evicting 2510 // a virtual register, go with the earlier decisions and use the physical 2511 // register. 2512 if (CSRCost.getFrequency() && isUnusedCalleeSavedReg(PhysReg) && 2513 NewVRegs.empty()) { 2514 unsigned CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg, 2515 CostPerUseLimit, NewVRegs); 2516 if (CSRReg || !NewVRegs.empty()) 2517 // Return now if we decide to use a CSR or create new vregs due to 2518 // pre-splitting. 2519 return CSRReg; 2520 } else 2521 return PhysReg; 2522 } 2523 2524 LiveRangeStage Stage = getStage(VirtReg); 2525 DEBUG(dbgs() << StageName[Stage] 2526 << " Cascade " << ExtraRegInfo[VirtReg.reg].Cascade << '\n'); 2527 2528 // Try to evict a less worthy live range, but only for ranges from the primary 2529 // queue. The RS_Split ranges already failed to do this, and they should not 2530 // get a second chance until they have been split. 2531 if (Stage != RS_Split) 2532 if (unsigned PhysReg = 2533 tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit)) { 2534 unsigned Hint = MRI->getSimpleHint(VirtReg.reg); 2535 // If VirtReg has a hint and that hint is broken record this 2536 // virtual register as a recoloring candidate for broken hint. 2537 // Indeed, since we evicted a variable in its neighborhood it is 2538 // likely we can at least partially recolor some of the 2539 // copy-related live-ranges. 2540 if (Hint && Hint != PhysReg) 2541 SetOfBrokenHints.insert(&VirtReg); 2542 return PhysReg; 2543 } 2544 2545 assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs"); 2546 2547 // The first time we see a live range, don't try to split or spill. 2548 // Wait until the second time, when all smaller ranges have been allocated. 2549 // This gives a better picture of the interference to split around. 2550 if (Stage < RS_Split) { 2551 setStage(VirtReg, RS_Split); 2552 DEBUG(dbgs() << "wait for second round\n"); 2553 NewVRegs.push_back(VirtReg.reg); 2554 return 0; 2555 } 2556 2557 // If we couldn't allocate a register from spilling, there is probably some 2558 // invalid inline assembly. The base class wil report it. 2559 if (Stage >= RS_Done || !VirtReg.isSpillable()) 2560 return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters, 2561 Depth); 2562 2563 // Try splitting VirtReg or interferences. 2564 unsigned NewVRegSizeBefore = NewVRegs.size(); 2565 unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs); 2566 if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore)) 2567 return PhysReg; 2568 2569 // Finally spill VirtReg itself. 2570 if (EnableDeferredSpilling && getStage(VirtReg) < RS_Memory) { 2571 // TODO: This is experimental and in particular, we do not model 2572 // the live range splitting done by spilling correctly. 2573 // We would need a deep integration with the spiller to do the 2574 // right thing here. Anyway, that is still good for early testing. 2575 setStage(VirtReg, RS_Memory); 2576 DEBUG(dbgs() << "Do as if this register is in memory\n"); 2577 NewVRegs.push_back(VirtReg.reg); 2578 } else { 2579 NamedRegionTimer T("Spiller", TimerGroupName, TimePassesIsEnabled); 2580 LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2581 spiller().spill(LRE); 2582 setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done); 2583 2584 if (VerifyEnabled) 2585 MF->verify(this, "After spilling"); 2586 } 2587 2588 // The live virtual register requesting allocation was spilled, so tell 2589 // the caller not to allocate anything during this round. 2590 return 0; 2591 } 2592 2593 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) { 2594 DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n" 2595 << "********** Function: " << mf.getName() << '\n'); 2596 2597 MF = &mf; 2598 TRI = MF->getSubtarget().getRegisterInfo(); 2599 TII = MF->getSubtarget().getInstrInfo(); 2600 RCI.runOnMachineFunction(mf); 2601 2602 EnableLocalReassign = EnableLocalReassignment || 2603 MF->getSubtarget().enableRALocalReassignment( 2604 MF->getTarget().getOptLevel()); 2605 2606 if (VerifyEnabled) 2607 MF->verify(this, "Before greedy register allocator"); 2608 2609 RegAllocBase::init(getAnalysis<VirtRegMap>(), 2610 getAnalysis<LiveIntervals>(), 2611 getAnalysis<LiveRegMatrix>()); 2612 Indexes = &getAnalysis<SlotIndexes>(); 2613 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 2614 DomTree = &getAnalysis<MachineDominatorTree>(); 2615 SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM)); 2616 Loops = &getAnalysis<MachineLoopInfo>(); 2617 Bundles = &getAnalysis<EdgeBundles>(); 2618 SpillPlacer = &getAnalysis<SpillPlacement>(); 2619 DebugVars = &getAnalysis<LiveDebugVariables>(); 2620 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2621 2622 initializeCSRCost(); 2623 2624 calculateSpillWeightsAndHints(*LIS, mf, VRM, *Loops, *MBFI); 2625 2626 DEBUG(LIS->dump()); 2627 2628 SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops)); 2629 SE.reset(new SplitEditor(*SA, *AA, *LIS, *VRM, *DomTree, *MBFI)); 2630 ExtraRegInfo.clear(); 2631 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 2632 NextCascade = 1; 2633 IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI); 2634 GlobalCand.resize(32); // This will grow as needed. 2635 SetOfBrokenHints.clear(); 2636 2637 allocatePhysRegs(); 2638 tryHintsRecoloring(); 2639 postOptimization(); 2640 2641 releaseMemory(); 2642 return true; 2643 } 2644