1 //===-- RegAllocGreedy.cpp - greedy register allocator --------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the RAGreedy function pass for register allocation in
11 // optimized builds.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "AllocationOrder.h"
16 #include "InterferenceCache.h"
17 #include "LiveDebugVariables.h"
18 #include "RegAllocBase.h"
19 #include "SpillPlacement.h"
20 #include "Spiller.h"
21 #include "SplitKit.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/CodeGen/CalcSpillWeights.h"
25 #include "llvm/CodeGen/EdgeBundles.h"
26 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
27 #include "llvm/CodeGen/LiveRangeEdit.h"
28 #include "llvm/CodeGen/LiveRegMatrix.h"
29 #include "llvm/CodeGen/LiveStackAnalysis.h"
30 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
31 #include "llvm/CodeGen/MachineDominators.h"
32 #include "llvm/CodeGen/MachineFunctionPass.h"
33 #include "llvm/CodeGen/MachineLoopInfo.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/Passes.h"
36 #include "llvm/CodeGen/RegAllocRegistry.h"
37 #include "llvm/CodeGen/RegisterClassInfo.h"
38 #include "llvm/CodeGen/VirtRegMap.h"
39 #include "llvm/IR/LLVMContext.h"
40 #include "llvm/PassAnalysisSupport.h"
41 #include "llvm/Support/BranchProbability.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/Timer.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include "llvm/Target/TargetInstrInfo.h"
48 #include "llvm/Target/TargetSubtargetInfo.h"
49 #include <queue>
50 
51 using namespace llvm;
52 
53 #define DEBUG_TYPE "regalloc"
54 
55 STATISTIC(NumGlobalSplits, "Number of split global live ranges");
56 STATISTIC(NumLocalSplits,  "Number of split local live ranges");
57 STATISTIC(NumEvicted,      "Number of interferences evicted");
58 
59 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode(
60     "split-spill-mode", cl::Hidden,
61     cl::desc("Spill mode for splitting live ranges"),
62     cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"),
63                clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"),
64                clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed"),
65                clEnumValEnd),
66     cl::init(SplitEditor::SM_Speed));
67 
68 static cl::opt<unsigned>
69 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden,
70                              cl::desc("Last chance recoloring max depth"),
71                              cl::init(5));
72 
73 static cl::opt<unsigned> LastChanceRecoloringMaxInterference(
74     "lcr-max-interf", cl::Hidden,
75     cl::desc("Last chance recoloring maximum number of considered"
76              " interference at a time"),
77     cl::init(8));
78 
79 static cl::opt<bool>
80 ExhaustiveSearch("exhaustive-register-search", cl::NotHidden,
81                  cl::desc("Exhaustive Search for registers bypassing the depth "
82                           "and interference cutoffs of last chance recoloring"));
83 
84 static cl::opt<bool> EnableLocalReassignment(
85     "enable-local-reassign", cl::Hidden,
86     cl::desc("Local reassignment can yield better allocation decisions, but "
87              "may be compile time intensive"),
88     cl::init(false));
89 
90 static cl::opt<bool> EnableDeferredSpilling(
91     "enable-deferred-spilling", cl::Hidden,
92     cl::desc("Instead of spilling a variable right away, defer the actual "
93              "code insertion to the end of the allocation. That way the "
94              "allocator might still find a suitable coloring for this "
95              "variable because of other evicted variables."),
96     cl::init(false));
97 
98 // FIXME: Find a good default for this flag and remove the flag.
99 static cl::opt<unsigned>
100 CSRFirstTimeCost("regalloc-csr-first-time-cost",
101               cl::desc("Cost for first time use of callee-saved register."),
102               cl::init(0), cl::Hidden);
103 
104 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
105                                        createGreedyRegisterAllocator);
106 
107 namespace {
108 class RAGreedy : public MachineFunctionPass,
109                  public RegAllocBase,
110                  private LiveRangeEdit::Delegate {
111   // Convenient shortcuts.
112   typedef std::priority_queue<std::pair<unsigned, unsigned> > PQueue;
113   typedef SmallPtrSet<LiveInterval *, 4> SmallLISet;
114   typedef SmallSet<unsigned, 16> SmallVirtRegSet;
115 
116   // context
117   MachineFunction *MF;
118 
119   // Shortcuts to some useful interface.
120   const TargetInstrInfo *TII;
121   const TargetRegisterInfo *TRI;
122   RegisterClassInfo RCI;
123 
124   // analyses
125   SlotIndexes *Indexes;
126   MachineBlockFrequencyInfo *MBFI;
127   MachineDominatorTree *DomTree;
128   MachineLoopInfo *Loops;
129   EdgeBundles *Bundles;
130   SpillPlacement *SpillPlacer;
131   LiveDebugVariables *DebugVars;
132   AliasAnalysis *AA;
133 
134   // state
135   std::unique_ptr<Spiller> SpillerInstance;
136   PQueue Queue;
137   unsigned NextCascade;
138 
139   // Live ranges pass through a number of stages as we try to allocate them.
140   // Some of the stages may also create new live ranges:
141   //
142   // - Region splitting.
143   // - Per-block splitting.
144   // - Local splitting.
145   // - Spilling.
146   //
147   // Ranges produced by one of the stages skip the previous stages when they are
148   // dequeued. This improves performance because we can skip interference checks
149   // that are unlikely to give any results. It also guarantees that the live
150   // range splitting algorithm terminates, something that is otherwise hard to
151   // ensure.
152   enum LiveRangeStage {
153     /// Newly created live range that has never been queued.
154     RS_New,
155 
156     /// Only attempt assignment and eviction. Then requeue as RS_Split.
157     RS_Assign,
158 
159     /// Attempt live range splitting if assignment is impossible.
160     RS_Split,
161 
162     /// Attempt more aggressive live range splitting that is guaranteed to make
163     /// progress.  This is used for split products that may not be making
164     /// progress.
165     RS_Split2,
166 
167     /// Live range will be spilled.  No more splitting will be attempted.
168     RS_Spill,
169 
170 
171     /// Live range is in memory. Because of other evictions, it might get moved
172     /// in a register in the end.
173     RS_Memory,
174 
175     /// There is nothing more we can do to this live range.  Abort compilation
176     /// if it can't be assigned.
177     RS_Done
178   };
179 
180   // Enum CutOffStage to keep a track whether the register allocation failed
181   // because of the cutoffs encountered in last chance recoloring.
182   // Note: This is used as bitmask. New value should be next power of 2.
183   enum CutOffStage {
184     // No cutoffs encountered
185     CO_None = 0,
186 
187     // lcr-max-depth cutoff encountered
188     CO_Depth = 1,
189 
190     // lcr-max-interf cutoff encountered
191     CO_Interf = 2
192   };
193 
194   uint8_t CutOffInfo;
195 
196 #ifndef NDEBUG
197   static const char *const StageName[];
198 #endif
199 
200   // RegInfo - Keep additional information about each live range.
201   struct RegInfo {
202     LiveRangeStage Stage;
203 
204     // Cascade - Eviction loop prevention. See canEvictInterference().
205     unsigned Cascade;
206 
207     RegInfo() : Stage(RS_New), Cascade(0) {}
208   };
209 
210   IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo;
211 
212   LiveRangeStage getStage(const LiveInterval &VirtReg) const {
213     return ExtraRegInfo[VirtReg.reg].Stage;
214   }
215 
216   void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) {
217     ExtraRegInfo.resize(MRI->getNumVirtRegs());
218     ExtraRegInfo[VirtReg.reg].Stage = Stage;
219   }
220 
221   template<typename Iterator>
222   void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) {
223     ExtraRegInfo.resize(MRI->getNumVirtRegs());
224     for (;Begin != End; ++Begin) {
225       unsigned Reg = *Begin;
226       if (ExtraRegInfo[Reg].Stage == RS_New)
227         ExtraRegInfo[Reg].Stage = NewStage;
228     }
229   }
230 
231   /// Cost of evicting interference.
232   struct EvictionCost {
233     unsigned BrokenHints; ///< Total number of broken hints.
234     float MaxWeight;      ///< Maximum spill weight evicted.
235 
236     EvictionCost(): BrokenHints(0), MaxWeight(0) {}
237 
238     bool isMax() const { return BrokenHints == ~0u; }
239 
240     void setMax() { BrokenHints = ~0u; }
241 
242     void setBrokenHints(unsigned NHints) { BrokenHints = NHints; }
243 
244     bool operator<(const EvictionCost &O) const {
245       return std::tie(BrokenHints, MaxWeight) <
246              std::tie(O.BrokenHints, O.MaxWeight);
247     }
248   };
249 
250   // splitting state.
251   std::unique_ptr<SplitAnalysis> SA;
252   std::unique_ptr<SplitEditor> SE;
253 
254   /// Cached per-block interference maps
255   InterferenceCache IntfCache;
256 
257   /// All basic blocks where the current register has uses.
258   SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints;
259 
260   /// Global live range splitting candidate info.
261   struct GlobalSplitCandidate {
262     // Register intended for assignment, or 0.
263     unsigned PhysReg;
264 
265     // SplitKit interval index for this candidate.
266     unsigned IntvIdx;
267 
268     // Interference for PhysReg.
269     InterferenceCache::Cursor Intf;
270 
271     // Bundles where this candidate should be live.
272     BitVector LiveBundles;
273     SmallVector<unsigned, 8> ActiveBlocks;
274 
275     void reset(InterferenceCache &Cache, unsigned Reg) {
276       PhysReg = Reg;
277       IntvIdx = 0;
278       Intf.setPhysReg(Cache, Reg);
279       LiveBundles.clear();
280       ActiveBlocks.clear();
281     }
282 
283     // Set B[i] = C for every live bundle where B[i] was NoCand.
284     unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) {
285       unsigned Count = 0;
286       for (int i = LiveBundles.find_first(); i >= 0;
287            i = LiveBundles.find_next(i))
288         if (B[i] == NoCand) {
289           B[i] = C;
290           Count++;
291         }
292       return Count;
293     }
294   };
295 
296   /// Candidate info for each PhysReg in AllocationOrder.
297   /// This vector never shrinks, but grows to the size of the largest register
298   /// class.
299   SmallVector<GlobalSplitCandidate, 32> GlobalCand;
300 
301   enum : unsigned { NoCand = ~0u };
302 
303   /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to
304   /// NoCand which indicates the stack interval.
305   SmallVector<unsigned, 32> BundleCand;
306 
307   /// Callee-save register cost, calculated once per machine function.
308   BlockFrequency CSRCost;
309 
310   /// Run or not the local reassignment heuristic. This information is
311   /// obtained from the TargetSubtargetInfo.
312   bool EnableLocalReassign;
313 
314   /// Set of broken hints that may be reconciled later because of eviction.
315   SmallSetVector<LiveInterval *, 8> SetOfBrokenHints;
316 
317 public:
318   RAGreedy();
319 
320   /// Return the pass name.
321   StringRef getPassName() const override { return "Greedy Register Allocator"; }
322 
323   /// RAGreedy analysis usage.
324   void getAnalysisUsage(AnalysisUsage &AU) const override;
325   void releaseMemory() override;
326   Spiller &spiller() override { return *SpillerInstance; }
327   void enqueue(LiveInterval *LI) override;
328   LiveInterval *dequeue() override;
329   unsigned selectOrSplit(LiveInterval&, SmallVectorImpl<unsigned>&) override;
330   void aboutToRemoveInterval(LiveInterval &) override;
331 
332   /// Perform register allocation.
333   bool runOnMachineFunction(MachineFunction &mf) override;
334 
335   MachineFunctionProperties getRequiredProperties() const override {
336     return MachineFunctionProperties().set(
337         MachineFunctionProperties::Property::NoPHIs);
338   }
339 
340   static char ID;
341 
342 private:
343   unsigned selectOrSplitImpl(LiveInterval &, SmallVectorImpl<unsigned> &,
344                              SmallVirtRegSet &, unsigned = 0);
345 
346   bool LRE_CanEraseVirtReg(unsigned) override;
347   void LRE_WillShrinkVirtReg(unsigned) override;
348   void LRE_DidCloneVirtReg(unsigned, unsigned) override;
349   void enqueue(PQueue &CurQueue, LiveInterval *LI);
350   LiveInterval *dequeue(PQueue &CurQueue);
351 
352   BlockFrequency calcSpillCost();
353   bool addSplitConstraints(InterferenceCache::Cursor, BlockFrequency&);
354   void addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>);
355   void growRegion(GlobalSplitCandidate &Cand);
356   BlockFrequency calcGlobalSplitCost(GlobalSplitCandidate&);
357   bool calcCompactRegion(GlobalSplitCandidate&);
358   void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>);
359   void calcGapWeights(unsigned, SmallVectorImpl<float>&);
360   unsigned canReassign(LiveInterval &VirtReg, unsigned PhysReg);
361   bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool);
362   bool canEvictInterference(LiveInterval&, unsigned, bool, EvictionCost&);
363   void evictInterference(LiveInterval&, unsigned,
364                          SmallVectorImpl<unsigned>&);
365   bool mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg,
366                                   SmallLISet &RecoloringCandidates,
367                                   const SmallVirtRegSet &FixedRegisters);
368 
369   unsigned tryAssign(LiveInterval&, AllocationOrder&,
370                      SmallVectorImpl<unsigned>&);
371   unsigned tryEvict(LiveInterval&, AllocationOrder&,
372                     SmallVectorImpl<unsigned>&, unsigned = ~0u);
373   unsigned tryRegionSplit(LiveInterval&, AllocationOrder&,
374                           SmallVectorImpl<unsigned>&);
375   /// Calculate cost of region splitting.
376   unsigned calculateRegionSplitCost(LiveInterval &VirtReg,
377                                     AllocationOrder &Order,
378                                     BlockFrequency &BestCost,
379                                     unsigned &NumCands, bool IgnoreCSR);
380   /// Perform region splitting.
381   unsigned doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
382                          bool HasCompact,
383                          SmallVectorImpl<unsigned> &NewVRegs);
384   /// Check other options before using a callee-saved register for the first
385   /// time.
386   unsigned tryAssignCSRFirstTime(LiveInterval &VirtReg, AllocationOrder &Order,
387                                  unsigned PhysReg, unsigned &CostPerUseLimit,
388                                  SmallVectorImpl<unsigned> &NewVRegs);
389   void initializeCSRCost();
390   unsigned tryBlockSplit(LiveInterval&, AllocationOrder&,
391                          SmallVectorImpl<unsigned>&);
392   unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&,
393                                SmallVectorImpl<unsigned>&);
394   unsigned tryLocalSplit(LiveInterval&, AllocationOrder&,
395     SmallVectorImpl<unsigned>&);
396   unsigned trySplit(LiveInterval&, AllocationOrder&,
397                     SmallVectorImpl<unsigned>&);
398   unsigned tryLastChanceRecoloring(LiveInterval &, AllocationOrder &,
399                                    SmallVectorImpl<unsigned> &,
400                                    SmallVirtRegSet &, unsigned);
401   bool tryRecoloringCandidates(PQueue &, SmallVectorImpl<unsigned> &,
402                                SmallVirtRegSet &, unsigned);
403   void tryHintRecoloring(LiveInterval &);
404   void tryHintsRecoloring();
405 
406   /// Model the information carried by one end of a copy.
407   struct HintInfo {
408     /// The frequency of the copy.
409     BlockFrequency Freq;
410     /// The virtual register or physical register.
411     unsigned Reg;
412     /// Its currently assigned register.
413     /// In case of a physical register Reg == PhysReg.
414     unsigned PhysReg;
415     HintInfo(BlockFrequency Freq, unsigned Reg, unsigned PhysReg)
416         : Freq(Freq), Reg(Reg), PhysReg(PhysReg) {}
417   };
418   typedef SmallVector<HintInfo, 4> HintsInfo;
419   BlockFrequency getBrokenHintFreq(const HintsInfo &, unsigned);
420   void collectHintInfo(unsigned, HintsInfo &);
421 
422   bool isUnusedCalleeSavedReg(unsigned PhysReg) const;
423 };
424 } // end anonymous namespace
425 
426 char RAGreedy::ID = 0;
427 
428 #ifndef NDEBUG
429 const char *const RAGreedy::StageName[] = {
430     "RS_New",
431     "RS_Assign",
432     "RS_Split",
433     "RS_Split2",
434     "RS_Spill",
435     "RS_Memory",
436     "RS_Done"
437 };
438 #endif
439 
440 // Hysteresis to use when comparing floats.
441 // This helps stabilize decisions based on float comparisons.
442 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875
443 
444 
445 FunctionPass* llvm::createGreedyRegisterAllocator() {
446   return new RAGreedy();
447 }
448 
449 RAGreedy::RAGreedy(): MachineFunctionPass(ID) {
450   initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
451   initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
452   initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
453   initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
454   initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
455   initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
456   initializeLiveStacksPass(*PassRegistry::getPassRegistry());
457   initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
458   initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
459   initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
460   initializeLiveRegMatrixPass(*PassRegistry::getPassRegistry());
461   initializeEdgeBundlesPass(*PassRegistry::getPassRegistry());
462   initializeSpillPlacementPass(*PassRegistry::getPassRegistry());
463 }
464 
465 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
466   AU.setPreservesCFG();
467   AU.addRequired<MachineBlockFrequencyInfo>();
468   AU.addPreserved<MachineBlockFrequencyInfo>();
469   AU.addRequired<AAResultsWrapperPass>();
470   AU.addPreserved<AAResultsWrapperPass>();
471   AU.addRequired<LiveIntervals>();
472   AU.addPreserved<LiveIntervals>();
473   AU.addRequired<SlotIndexes>();
474   AU.addPreserved<SlotIndexes>();
475   AU.addRequired<LiveDebugVariables>();
476   AU.addPreserved<LiveDebugVariables>();
477   AU.addRequired<LiveStacks>();
478   AU.addPreserved<LiveStacks>();
479   AU.addRequired<MachineDominatorTree>();
480   AU.addPreserved<MachineDominatorTree>();
481   AU.addRequired<MachineLoopInfo>();
482   AU.addPreserved<MachineLoopInfo>();
483   AU.addRequired<VirtRegMap>();
484   AU.addPreserved<VirtRegMap>();
485   AU.addRequired<LiveRegMatrix>();
486   AU.addPreserved<LiveRegMatrix>();
487   AU.addRequired<EdgeBundles>();
488   AU.addRequired<SpillPlacement>();
489   MachineFunctionPass::getAnalysisUsage(AU);
490 }
491 
492 
493 //===----------------------------------------------------------------------===//
494 //                     LiveRangeEdit delegate methods
495 //===----------------------------------------------------------------------===//
496 
497 bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) {
498   if (VRM->hasPhys(VirtReg)) {
499     LiveInterval &LI = LIS->getInterval(VirtReg);
500     Matrix->unassign(LI);
501     aboutToRemoveInterval(LI);
502     return true;
503   }
504   // Unassigned virtreg is probably in the priority queue.
505   // RegAllocBase will erase it after dequeueing.
506   return false;
507 }
508 
509 void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) {
510   if (!VRM->hasPhys(VirtReg))
511     return;
512 
513   // Register is assigned, put it back on the queue for reassignment.
514   LiveInterval &LI = LIS->getInterval(VirtReg);
515   Matrix->unassign(LI);
516   enqueue(&LI);
517 }
518 
519 void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) {
520   // Cloning a register we haven't even heard about yet?  Just ignore it.
521   if (!ExtraRegInfo.inBounds(Old))
522     return;
523 
524   // LRE may clone a virtual register because dead code elimination causes it to
525   // be split into connected components. The new components are much smaller
526   // than the original, so they should get a new chance at being assigned.
527   // same stage as the parent.
528   ExtraRegInfo[Old].Stage = RS_Assign;
529   ExtraRegInfo.grow(New);
530   ExtraRegInfo[New] = ExtraRegInfo[Old];
531 }
532 
533 void RAGreedy::releaseMemory() {
534   SpillerInstance.reset();
535   ExtraRegInfo.clear();
536   GlobalCand.clear();
537 }
538 
539 void RAGreedy::enqueue(LiveInterval *LI) { enqueue(Queue, LI); }
540 
541 void RAGreedy::enqueue(PQueue &CurQueue, LiveInterval *LI) {
542   // Prioritize live ranges by size, assigning larger ranges first.
543   // The queue holds (size, reg) pairs.
544   const unsigned Size = LI->getSize();
545   const unsigned Reg = LI->reg;
546   assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
547          "Can only enqueue virtual registers");
548   unsigned Prio;
549 
550   ExtraRegInfo.grow(Reg);
551   if (ExtraRegInfo[Reg].Stage == RS_New)
552     ExtraRegInfo[Reg].Stage = RS_Assign;
553 
554   if (ExtraRegInfo[Reg].Stage == RS_Split) {
555     // Unsplit ranges that couldn't be allocated immediately are deferred until
556     // everything else has been allocated.
557     Prio = Size;
558   } else if (ExtraRegInfo[Reg].Stage == RS_Memory) {
559     // Memory operand should be considered last.
560     // Change the priority such that Memory operand are assigned in
561     // the reverse order that they came in.
562     // TODO: Make this a member variable and probably do something about hints.
563     static unsigned MemOp = 0;
564     Prio = MemOp++;
565   } else {
566     // Giant live ranges fall back to the global assignment heuristic, which
567     // prevents excessive spilling in pathological cases.
568     bool ReverseLocal = TRI->reverseLocalAssignment();
569     const TargetRegisterClass &RC = *MRI->getRegClass(Reg);
570     bool ForceGlobal = !ReverseLocal &&
571       (Size / SlotIndex::InstrDist) > (2 * RC.getNumRegs());
572 
573     if (ExtraRegInfo[Reg].Stage == RS_Assign && !ForceGlobal && !LI->empty() &&
574         LIS->intervalIsInOneMBB(*LI)) {
575       // Allocate original local ranges in linear instruction order. Since they
576       // are singly defined, this produces optimal coloring in the absence of
577       // global interference and other constraints.
578       if (!ReverseLocal)
579         Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex());
580       else {
581         // Allocating bottom up may allow many short LRGs to be assigned first
582         // to one of the cheap registers. This could be much faster for very
583         // large blocks on targets with many physical registers.
584         Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex());
585       }
586       Prio |= RC.AllocationPriority << 24;
587     } else {
588       // Allocate global and split ranges in long->short order. Long ranges that
589       // don't fit should be spilled (or split) ASAP so they don't create
590       // interference.  Mark a bit to prioritize global above local ranges.
591       Prio = (1u << 29) + Size;
592     }
593     // Mark a higher bit to prioritize global and local above RS_Split.
594     Prio |= (1u << 31);
595 
596     // Boost ranges that have a physical register hint.
597     if (VRM->hasKnownPreference(Reg))
598       Prio |= (1u << 30);
599   }
600   // The virtual register number is a tie breaker for same-sized ranges.
601   // Give lower vreg numbers higher priority to assign them first.
602   CurQueue.push(std::make_pair(Prio, ~Reg));
603 }
604 
605 LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); }
606 
607 LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) {
608   if (CurQueue.empty())
609     return nullptr;
610   LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second);
611   CurQueue.pop();
612   return LI;
613 }
614 
615 
616 //===----------------------------------------------------------------------===//
617 //                            Direct Assignment
618 //===----------------------------------------------------------------------===//
619 
620 /// tryAssign - Try to assign VirtReg to an available register.
621 unsigned RAGreedy::tryAssign(LiveInterval &VirtReg,
622                              AllocationOrder &Order,
623                              SmallVectorImpl<unsigned> &NewVRegs) {
624   Order.rewind();
625   unsigned PhysReg;
626   while ((PhysReg = Order.next()))
627     if (!Matrix->checkInterference(VirtReg, PhysReg))
628       break;
629   if (!PhysReg || Order.isHint())
630     return PhysReg;
631 
632   // PhysReg is available, but there may be a better choice.
633 
634   // If we missed a simple hint, try to cheaply evict interference from the
635   // preferred register.
636   if (unsigned Hint = MRI->getSimpleHint(VirtReg.reg))
637     if (Order.isHint(Hint)) {
638       DEBUG(dbgs() << "missed hint " << PrintReg(Hint, TRI) << '\n');
639       EvictionCost MaxCost;
640       MaxCost.setBrokenHints(1);
641       if (canEvictInterference(VirtReg, Hint, true, MaxCost)) {
642         evictInterference(VirtReg, Hint, NewVRegs);
643         return Hint;
644       }
645     }
646 
647   // Try to evict interference from a cheaper alternative.
648   unsigned Cost = TRI->getCostPerUse(PhysReg);
649 
650   // Most registers have 0 additional cost.
651   if (!Cost)
652     return PhysReg;
653 
654   DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is available at cost " << Cost
655                << '\n');
656   unsigned CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost);
657   return CheapReg ? CheapReg : PhysReg;
658 }
659 
660 
661 //===----------------------------------------------------------------------===//
662 //                         Interference eviction
663 //===----------------------------------------------------------------------===//
664 
665 unsigned RAGreedy::canReassign(LiveInterval &VirtReg, unsigned PrevReg) {
666   AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo, Matrix);
667   unsigned PhysReg;
668   while ((PhysReg = Order.next())) {
669     if (PhysReg == PrevReg)
670       continue;
671 
672     MCRegUnitIterator Units(PhysReg, TRI);
673     for (; Units.isValid(); ++Units) {
674       // Instantiate a "subquery", not to be confused with the Queries array.
675       LiveIntervalUnion::Query subQ(&VirtReg, &Matrix->getLiveUnions()[*Units]);
676       if (subQ.checkInterference())
677         break;
678     }
679     // If no units have interference, break out with the current PhysReg.
680     if (!Units.isValid())
681       break;
682   }
683   if (PhysReg)
684     DEBUG(dbgs() << "can reassign: " << VirtReg << " from "
685           << PrintReg(PrevReg, TRI) << " to " << PrintReg(PhysReg, TRI)
686           << '\n');
687   return PhysReg;
688 }
689 
690 /// shouldEvict - determine if A should evict the assigned live range B. The
691 /// eviction policy defined by this function together with the allocation order
692 /// defined by enqueue() decides which registers ultimately end up being split
693 /// and spilled.
694 ///
695 /// Cascade numbers are used to prevent infinite loops if this function is a
696 /// cyclic relation.
697 ///
698 /// @param A          The live range to be assigned.
699 /// @param IsHint     True when A is about to be assigned to its preferred
700 ///                   register.
701 /// @param B          The live range to be evicted.
702 /// @param BreaksHint True when B is already assigned to its preferred register.
703 bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint,
704                            LiveInterval &B, bool BreaksHint) {
705   bool CanSplit = getStage(B) < RS_Spill;
706 
707   // Be fairly aggressive about following hints as long as the evictee can be
708   // split.
709   if (CanSplit && IsHint && !BreaksHint)
710     return true;
711 
712   if (A.weight > B.weight) {
713     DEBUG(dbgs() << "should evict: " << B << " w= " << B.weight << '\n');
714     return true;
715   }
716   return false;
717 }
718 
719 /// canEvictInterference - Return true if all interferences between VirtReg and
720 /// PhysReg can be evicted.
721 ///
722 /// @param VirtReg Live range that is about to be assigned.
723 /// @param PhysReg Desired register for assignment.
724 /// @param IsHint  True when PhysReg is VirtReg's preferred register.
725 /// @param MaxCost Only look for cheaper candidates and update with new cost
726 ///                when returning true.
727 /// @returns True when interference can be evicted cheaper than MaxCost.
728 bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg,
729                                     bool IsHint, EvictionCost &MaxCost) {
730   // It is only possible to evict virtual register interference.
731   if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg)
732     return false;
733 
734   bool IsLocal = LIS->intervalIsInOneMBB(VirtReg);
735 
736   // Find VirtReg's cascade number. This will be unassigned if VirtReg was never
737   // involved in an eviction before. If a cascade number was assigned, deny
738   // evicting anything with the same or a newer cascade number. This prevents
739   // infinite eviction loops.
740   //
741   // This works out so a register without a cascade number is allowed to evict
742   // anything, and it can be evicted by anything.
743   unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
744   if (!Cascade)
745     Cascade = NextCascade;
746 
747   EvictionCost Cost;
748   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
749     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
750     // If there is 10 or more interferences, chances are one is heavier.
751     if (Q.collectInterferingVRegs(10) >= 10)
752       return false;
753 
754     // Check if any interfering live range is heavier than MaxWeight.
755     for (unsigned i = Q.interferingVRegs().size(); i; --i) {
756       LiveInterval *Intf = Q.interferingVRegs()[i - 1];
757       assert(TargetRegisterInfo::isVirtualRegister(Intf->reg) &&
758              "Only expecting virtual register interference from query");
759       // Never evict spill products. They cannot split or spill.
760       if (getStage(*Intf) == RS_Done)
761         return false;
762       // Once a live range becomes small enough, it is urgent that we find a
763       // register for it. This is indicated by an infinite spill weight. These
764       // urgent live ranges get to evict almost anything.
765       //
766       // Also allow urgent evictions of unspillable ranges from a strictly
767       // larger allocation order.
768       bool Urgent = !VirtReg.isSpillable() &&
769         (Intf->isSpillable() ||
770          RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg)) <
771          RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(Intf->reg)));
772       // Only evict older cascades or live ranges without a cascade.
773       unsigned IntfCascade = ExtraRegInfo[Intf->reg].Cascade;
774       if (Cascade <= IntfCascade) {
775         if (!Urgent)
776           return false;
777         // We permit breaking cascades for urgent evictions. It should be the
778         // last resort, though, so make it really expensive.
779         Cost.BrokenHints += 10;
780       }
781       // Would this break a satisfied hint?
782       bool BreaksHint = VRM->hasPreferredPhys(Intf->reg);
783       // Update eviction cost.
784       Cost.BrokenHints += BreaksHint;
785       Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight);
786       // Abort if this would be too expensive.
787       if (!(Cost < MaxCost))
788         return false;
789       if (Urgent)
790         continue;
791       // Apply the eviction policy for non-urgent evictions.
792       if (!shouldEvict(VirtReg, IsHint, *Intf, BreaksHint))
793         return false;
794       // If !MaxCost.isMax(), then we're just looking for a cheap register.
795       // Evicting another local live range in this case could lead to suboptimal
796       // coloring.
797       if (!MaxCost.isMax() && IsLocal && LIS->intervalIsInOneMBB(*Intf) &&
798           (!EnableLocalReassign || !canReassign(*Intf, PhysReg))) {
799         return false;
800       }
801     }
802   }
803   MaxCost = Cost;
804   return true;
805 }
806 
807 /// evictInterference - Evict any interferring registers that prevent VirtReg
808 /// from being assigned to Physreg. This assumes that canEvictInterference
809 /// returned true.
810 void RAGreedy::evictInterference(LiveInterval &VirtReg, unsigned PhysReg,
811                                  SmallVectorImpl<unsigned> &NewVRegs) {
812   // Make sure that VirtReg has a cascade number, and assign that cascade
813   // number to every evicted register. These live ranges than then only be
814   // evicted by a newer cascade, preventing infinite loops.
815   unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
816   if (!Cascade)
817     Cascade = ExtraRegInfo[VirtReg.reg].Cascade = NextCascade++;
818 
819   DEBUG(dbgs() << "evicting " << PrintReg(PhysReg, TRI)
820                << " interference: Cascade " << Cascade << '\n');
821 
822   // Collect all interfering virtregs first.
823   SmallVector<LiveInterval*, 8> Intfs;
824   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
825     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
826     assert(Q.seenAllInterferences() && "Didn't check all interfererences.");
827     ArrayRef<LiveInterval*> IVR = Q.interferingVRegs();
828     Intfs.append(IVR.begin(), IVR.end());
829   }
830 
831   // Evict them second. This will invalidate the queries.
832   for (unsigned i = 0, e = Intfs.size(); i != e; ++i) {
833     LiveInterval *Intf = Intfs[i];
834     // The same VirtReg may be present in multiple RegUnits. Skip duplicates.
835     if (!VRM->hasPhys(Intf->reg))
836       continue;
837     Matrix->unassign(*Intf);
838     assert((ExtraRegInfo[Intf->reg].Cascade < Cascade ||
839             VirtReg.isSpillable() < Intf->isSpillable()) &&
840            "Cannot decrease cascade number, illegal eviction");
841     ExtraRegInfo[Intf->reg].Cascade = Cascade;
842     ++NumEvicted;
843     NewVRegs.push_back(Intf->reg);
844   }
845 }
846 
847 /// Returns true if the given \p PhysReg is a callee saved register and has not
848 /// been used for allocation yet.
849 bool RAGreedy::isUnusedCalleeSavedReg(unsigned PhysReg) const {
850   unsigned CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg);
851   if (CSR == 0)
852     return false;
853 
854   return !Matrix->isPhysRegUsed(PhysReg);
855 }
856 
857 /// tryEvict - Try to evict all interferences for a physreg.
858 /// @param  VirtReg Currently unassigned virtual register.
859 /// @param  Order   Physregs to try.
860 /// @return         Physreg to assign VirtReg, or 0.
861 unsigned RAGreedy::tryEvict(LiveInterval &VirtReg,
862                             AllocationOrder &Order,
863                             SmallVectorImpl<unsigned> &NewVRegs,
864                             unsigned CostPerUseLimit) {
865   NamedRegionTimer T("Evict", TimerGroupName, TimePassesIsEnabled);
866 
867   // Keep track of the cheapest interference seen so far.
868   EvictionCost BestCost;
869   BestCost.setMax();
870   unsigned BestPhys = 0;
871   unsigned OrderLimit = Order.getOrder().size();
872 
873   // When we are just looking for a reduced cost per use, don't break any
874   // hints, and only evict smaller spill weights.
875   if (CostPerUseLimit < ~0u) {
876     BestCost.BrokenHints = 0;
877     BestCost.MaxWeight = VirtReg.weight;
878 
879     // Check of any registers in RC are below CostPerUseLimit.
880     const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg);
881     unsigned MinCost = RegClassInfo.getMinCost(RC);
882     if (MinCost >= CostPerUseLimit) {
883       DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = " << MinCost
884                    << ", no cheaper registers to be found.\n");
885       return 0;
886     }
887 
888     // It is normal for register classes to have a long tail of registers with
889     // the same cost. We don't need to look at them if they're too expensive.
890     if (TRI->getCostPerUse(Order.getOrder().back()) >= CostPerUseLimit) {
891       OrderLimit = RegClassInfo.getLastCostChange(RC);
892       DEBUG(dbgs() << "Only trying the first " << OrderLimit << " regs.\n");
893     }
894   }
895 
896   Order.rewind();
897   while (unsigned PhysReg = Order.next(OrderLimit)) {
898     if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit)
899       continue;
900     // The first use of a callee-saved register in a function has cost 1.
901     // Don't start using a CSR when the CostPerUseLimit is low.
902     if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) {
903       DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " would clobber CSR "
904             << PrintReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI)
905             << '\n');
906       continue;
907     }
908 
909     if (!canEvictInterference(VirtReg, PhysReg, false, BestCost))
910       continue;
911 
912     // Best so far.
913     BestPhys = PhysReg;
914 
915     // Stop if the hint can be used.
916     if (Order.isHint())
917       break;
918   }
919 
920   if (!BestPhys)
921     return 0;
922 
923   evictInterference(VirtReg, BestPhys, NewVRegs);
924   return BestPhys;
925 }
926 
927 
928 //===----------------------------------------------------------------------===//
929 //                              Region Splitting
930 //===----------------------------------------------------------------------===//
931 
932 /// addSplitConstraints - Fill out the SplitConstraints vector based on the
933 /// interference pattern in Physreg and its aliases. Add the constraints to
934 /// SpillPlacement and return the static cost of this split in Cost, assuming
935 /// that all preferences in SplitConstraints are met.
936 /// Return false if there are no bundles with positive bias.
937 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
938                                    BlockFrequency &Cost) {
939   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
940 
941   // Reset interference dependent info.
942   SplitConstraints.resize(UseBlocks.size());
943   BlockFrequency StaticCost = 0;
944   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
945     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
946     SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
947 
948     BC.Number = BI.MBB->getNumber();
949     Intf.moveToBlock(BC.Number);
950     BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
951     BC.Exit = BI.LiveOut ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
952     BC.ChangesValue = BI.FirstDef.isValid();
953 
954     if (!Intf.hasInterference())
955       continue;
956 
957     // Number of spill code instructions to insert.
958     unsigned Ins = 0;
959 
960     // Interference for the live-in value.
961     if (BI.LiveIn) {
962       if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) {
963         BC.Entry = SpillPlacement::MustSpill;
964         ++Ins;
965       } else if (Intf.first() < BI.FirstInstr) {
966         BC.Entry = SpillPlacement::PrefSpill;
967         ++Ins;
968       } else if (Intf.first() < BI.LastInstr) {
969         ++Ins;
970       }
971     }
972 
973     // Interference for the live-out value.
974     if (BI.LiveOut) {
975       if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) {
976         BC.Exit = SpillPlacement::MustSpill;
977         ++Ins;
978       } else if (Intf.last() > BI.LastInstr) {
979         BC.Exit = SpillPlacement::PrefSpill;
980         ++Ins;
981       } else if (Intf.last() > BI.FirstInstr) {
982         ++Ins;
983       }
984     }
985 
986     // Accumulate the total frequency of inserted spill code.
987     while (Ins--)
988       StaticCost += SpillPlacer->getBlockFrequency(BC.Number);
989   }
990   Cost = StaticCost;
991 
992   // Add constraints for use-blocks. Note that these are the only constraints
993   // that may add a positive bias, it is downhill from here.
994   SpillPlacer->addConstraints(SplitConstraints);
995   return SpillPlacer->scanActiveBundles();
996 }
997 
998 
999 /// addThroughConstraints - Add constraints and links to SpillPlacer from the
1000 /// live-through blocks in Blocks.
1001 void RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
1002                                      ArrayRef<unsigned> Blocks) {
1003   const unsigned GroupSize = 8;
1004   SpillPlacement::BlockConstraint BCS[GroupSize];
1005   unsigned TBS[GroupSize];
1006   unsigned B = 0, T = 0;
1007 
1008   for (unsigned i = 0; i != Blocks.size(); ++i) {
1009     unsigned Number = Blocks[i];
1010     Intf.moveToBlock(Number);
1011 
1012     if (!Intf.hasInterference()) {
1013       assert(T < GroupSize && "Array overflow");
1014       TBS[T] = Number;
1015       if (++T == GroupSize) {
1016         SpillPlacer->addLinks(makeArrayRef(TBS, T));
1017         T = 0;
1018       }
1019       continue;
1020     }
1021 
1022     assert(B < GroupSize && "Array overflow");
1023     BCS[B].Number = Number;
1024 
1025     // Interference for the live-in value.
1026     if (Intf.first() <= Indexes->getMBBStartIdx(Number))
1027       BCS[B].Entry = SpillPlacement::MustSpill;
1028     else
1029       BCS[B].Entry = SpillPlacement::PrefSpill;
1030 
1031     // Interference for the live-out value.
1032     if (Intf.last() >= SA->getLastSplitPoint(Number))
1033       BCS[B].Exit = SpillPlacement::MustSpill;
1034     else
1035       BCS[B].Exit = SpillPlacement::PrefSpill;
1036 
1037     if (++B == GroupSize) {
1038       SpillPlacer->addConstraints(makeArrayRef(BCS, B));
1039       B = 0;
1040     }
1041   }
1042 
1043   SpillPlacer->addConstraints(makeArrayRef(BCS, B));
1044   SpillPlacer->addLinks(makeArrayRef(TBS, T));
1045 }
1046 
1047 void RAGreedy::growRegion(GlobalSplitCandidate &Cand) {
1048   // Keep track of through blocks that have not been added to SpillPlacer.
1049   BitVector Todo = SA->getThroughBlocks();
1050   SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
1051   unsigned AddedTo = 0;
1052 #ifndef NDEBUG
1053   unsigned Visited = 0;
1054 #endif
1055 
1056   for (;;) {
1057     ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
1058     // Find new through blocks in the periphery of PrefRegBundles.
1059     for (int i = 0, e = NewBundles.size(); i != e; ++i) {
1060       unsigned Bundle = NewBundles[i];
1061       // Look at all blocks connected to Bundle in the full graph.
1062       ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
1063       for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
1064            I != E; ++I) {
1065         unsigned Block = *I;
1066         if (!Todo.test(Block))
1067           continue;
1068         Todo.reset(Block);
1069         // This is a new through block. Add it to SpillPlacer later.
1070         ActiveBlocks.push_back(Block);
1071 #ifndef NDEBUG
1072         ++Visited;
1073 #endif
1074       }
1075     }
1076     // Any new blocks to add?
1077     if (ActiveBlocks.size() == AddedTo)
1078       break;
1079 
1080     // Compute through constraints from the interference, or assume that all
1081     // through blocks prefer spilling when forming compact regions.
1082     auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo);
1083     if (Cand.PhysReg)
1084       addThroughConstraints(Cand.Intf, NewBlocks);
1085     else
1086       // Provide a strong negative bias on through blocks to prevent unwanted
1087       // liveness on loop backedges.
1088       SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true);
1089     AddedTo = ActiveBlocks.size();
1090 
1091     // Perhaps iterating can enable more bundles?
1092     SpillPlacer->iterate();
1093   }
1094   DEBUG(dbgs() << ", v=" << Visited);
1095 }
1096 
1097 /// calcCompactRegion - Compute the set of edge bundles that should be live
1098 /// when splitting the current live range into compact regions.  Compact
1099 /// regions can be computed without looking at interference.  They are the
1100 /// regions formed by removing all the live-through blocks from the live range.
1101 ///
1102 /// Returns false if the current live range is already compact, or if the
1103 /// compact regions would form single block regions anyway.
1104 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) {
1105   // Without any through blocks, the live range is already compact.
1106   if (!SA->getNumThroughBlocks())
1107     return false;
1108 
1109   // Compact regions don't correspond to any physreg.
1110   Cand.reset(IntfCache, 0);
1111 
1112   DEBUG(dbgs() << "Compact region bundles");
1113 
1114   // Use the spill placer to determine the live bundles. GrowRegion pretends
1115   // that all the through blocks have interference when PhysReg is unset.
1116   SpillPlacer->prepare(Cand.LiveBundles);
1117 
1118   // The static split cost will be zero since Cand.Intf reports no interference.
1119   BlockFrequency Cost;
1120   if (!addSplitConstraints(Cand.Intf, Cost)) {
1121     DEBUG(dbgs() << ", none.\n");
1122     return false;
1123   }
1124 
1125   growRegion(Cand);
1126   SpillPlacer->finish();
1127 
1128   if (!Cand.LiveBundles.any()) {
1129     DEBUG(dbgs() << ", none.\n");
1130     return false;
1131   }
1132 
1133   DEBUG({
1134     for (int i = Cand.LiveBundles.find_first(); i>=0;
1135          i = Cand.LiveBundles.find_next(i))
1136     dbgs() << " EB#" << i;
1137     dbgs() << ".\n";
1138   });
1139   return true;
1140 }
1141 
1142 /// calcSpillCost - Compute how expensive it would be to split the live range in
1143 /// SA around all use blocks instead of forming bundle regions.
1144 BlockFrequency RAGreedy::calcSpillCost() {
1145   BlockFrequency Cost = 0;
1146   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1147   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1148     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1149     unsigned Number = BI.MBB->getNumber();
1150     // We normally only need one spill instruction - a load or a store.
1151     Cost += SpillPlacer->getBlockFrequency(Number);
1152 
1153     // Unless the value is redefined in the block.
1154     if (BI.LiveIn && BI.LiveOut && BI.FirstDef)
1155       Cost += SpillPlacer->getBlockFrequency(Number);
1156   }
1157   return Cost;
1158 }
1159 
1160 /// calcGlobalSplitCost - Return the global split cost of following the split
1161 /// pattern in LiveBundles. This cost should be added to the local cost of the
1162 /// interference pattern in SplitConstraints.
1163 ///
1164 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand) {
1165   BlockFrequency GlobalCost = 0;
1166   const BitVector &LiveBundles = Cand.LiveBundles;
1167   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1168   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1169     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1170     SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
1171     bool RegIn  = LiveBundles[Bundles->getBundle(BC.Number, 0)];
1172     bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, 1)];
1173     unsigned Ins = 0;
1174 
1175     if (BI.LiveIn)
1176       Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
1177     if (BI.LiveOut)
1178       Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
1179     while (Ins--)
1180       GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1181   }
1182 
1183   for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) {
1184     unsigned Number = Cand.ActiveBlocks[i];
1185     bool RegIn  = LiveBundles[Bundles->getBundle(Number, 0)];
1186     bool RegOut = LiveBundles[Bundles->getBundle(Number, 1)];
1187     if (!RegIn && !RegOut)
1188       continue;
1189     if (RegIn && RegOut) {
1190       // We need double spill code if this block has interference.
1191       Cand.Intf.moveToBlock(Number);
1192       if (Cand.Intf.hasInterference()) {
1193         GlobalCost += SpillPlacer->getBlockFrequency(Number);
1194         GlobalCost += SpillPlacer->getBlockFrequency(Number);
1195       }
1196       continue;
1197     }
1198     // live-in / stack-out or stack-in live-out.
1199     GlobalCost += SpillPlacer->getBlockFrequency(Number);
1200   }
1201   return GlobalCost;
1202 }
1203 
1204 /// splitAroundRegion - Split the current live range around the regions
1205 /// determined by BundleCand and GlobalCand.
1206 ///
1207 /// Before calling this function, GlobalCand and BundleCand must be initialized
1208 /// so each bundle is assigned to a valid candidate, or NoCand for the
1209 /// stack-bound bundles.  The shared SA/SE SplitAnalysis and SplitEditor
1210 /// objects must be initialized for the current live range, and intervals
1211 /// created for the used candidates.
1212 ///
1213 /// @param LREdit    The LiveRangeEdit object handling the current split.
1214 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value
1215 ///                  must appear in this list.
1216 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit,
1217                                  ArrayRef<unsigned> UsedCands) {
1218   // These are the intervals created for new global ranges. We may create more
1219   // intervals for local ranges.
1220   const unsigned NumGlobalIntvs = LREdit.size();
1221   DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs << " globals.\n");
1222   assert(NumGlobalIntvs && "No global intervals configured");
1223 
1224   // Isolate even single instructions when dealing with a proper sub-class.
1225   // That guarantees register class inflation for the stack interval because it
1226   // is all copies.
1227   unsigned Reg = SA->getParent().reg;
1228   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1229 
1230   // First handle all the blocks with uses.
1231   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1232   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1233     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1234     unsigned Number = BI.MBB->getNumber();
1235     unsigned IntvIn = 0, IntvOut = 0;
1236     SlotIndex IntfIn, IntfOut;
1237     if (BI.LiveIn) {
1238       unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)];
1239       if (CandIn != NoCand) {
1240         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1241         IntvIn = Cand.IntvIdx;
1242         Cand.Intf.moveToBlock(Number);
1243         IntfIn = Cand.Intf.first();
1244       }
1245     }
1246     if (BI.LiveOut) {
1247       unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)];
1248       if (CandOut != NoCand) {
1249         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1250         IntvOut = Cand.IntvIdx;
1251         Cand.Intf.moveToBlock(Number);
1252         IntfOut = Cand.Intf.last();
1253       }
1254     }
1255 
1256     // Create separate intervals for isolated blocks with multiple uses.
1257     if (!IntvIn && !IntvOut) {
1258       DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " isolated.\n");
1259       if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1260         SE->splitSingleBlock(BI);
1261       continue;
1262     }
1263 
1264     if (IntvIn && IntvOut)
1265       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1266     else if (IntvIn)
1267       SE->splitRegInBlock(BI, IntvIn, IntfIn);
1268     else
1269       SE->splitRegOutBlock(BI, IntvOut, IntfOut);
1270   }
1271 
1272   // Handle live-through blocks. The relevant live-through blocks are stored in
1273   // the ActiveBlocks list with each candidate. We need to filter out
1274   // duplicates.
1275   BitVector Todo = SA->getThroughBlocks();
1276   for (unsigned c = 0; c != UsedCands.size(); ++c) {
1277     ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks;
1278     for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
1279       unsigned Number = Blocks[i];
1280       if (!Todo.test(Number))
1281         continue;
1282       Todo.reset(Number);
1283 
1284       unsigned IntvIn = 0, IntvOut = 0;
1285       SlotIndex IntfIn, IntfOut;
1286 
1287       unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)];
1288       if (CandIn != NoCand) {
1289         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1290         IntvIn = Cand.IntvIdx;
1291         Cand.Intf.moveToBlock(Number);
1292         IntfIn = Cand.Intf.first();
1293       }
1294 
1295       unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)];
1296       if (CandOut != NoCand) {
1297         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1298         IntvOut = Cand.IntvIdx;
1299         Cand.Intf.moveToBlock(Number);
1300         IntfOut = Cand.Intf.last();
1301       }
1302       if (!IntvIn && !IntvOut)
1303         continue;
1304       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1305     }
1306   }
1307 
1308   ++NumGlobalSplits;
1309 
1310   SmallVector<unsigned, 8> IntvMap;
1311   SE->finish(&IntvMap);
1312   DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
1313 
1314   ExtraRegInfo.resize(MRI->getNumVirtRegs());
1315   unsigned OrigBlocks = SA->getNumLiveBlocks();
1316 
1317   // Sort out the new intervals created by splitting. We get four kinds:
1318   // - Remainder intervals should not be split again.
1319   // - Candidate intervals can be assigned to Cand.PhysReg.
1320   // - Block-local splits are candidates for local splitting.
1321   // - DCE leftovers should go back on the queue.
1322   for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
1323     LiveInterval &Reg = LIS->getInterval(LREdit.get(i));
1324 
1325     // Ignore old intervals from DCE.
1326     if (getStage(Reg) != RS_New)
1327       continue;
1328 
1329     // Remainder interval. Don't try splitting again, spill if it doesn't
1330     // allocate.
1331     if (IntvMap[i] == 0) {
1332       setStage(Reg, RS_Spill);
1333       continue;
1334     }
1335 
1336     // Global intervals. Allow repeated splitting as long as the number of live
1337     // blocks is strictly decreasing.
1338     if (IntvMap[i] < NumGlobalIntvs) {
1339       if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
1340         DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
1341                      << " blocks as original.\n");
1342         // Don't allow repeated splitting as a safe guard against looping.
1343         setStage(Reg, RS_Split2);
1344       }
1345       continue;
1346     }
1347 
1348     // Other intervals are treated as new. This includes local intervals created
1349     // for blocks with multiple uses, and anything created by DCE.
1350   }
1351 
1352   if (VerifyEnabled)
1353     MF->verify(this, "After splitting live range around region");
1354 }
1355 
1356 unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1357                                   SmallVectorImpl<unsigned> &NewVRegs) {
1358   unsigned NumCands = 0;
1359   BlockFrequency BestCost;
1360 
1361   // Check if we can split this live range around a compact region.
1362   bool HasCompact = calcCompactRegion(GlobalCand.front());
1363   if (HasCompact) {
1364     // Yes, keep GlobalCand[0] as the compact region candidate.
1365     NumCands = 1;
1366     BestCost = BlockFrequency::getMaxFrequency();
1367   } else {
1368     // No benefit from the compact region, our fallback will be per-block
1369     // splitting. Make sure we find a solution that is cheaper than spilling.
1370     BestCost = calcSpillCost();
1371     DEBUG(dbgs() << "Cost of isolating all blocks = ";
1372                  MBFI->printBlockFreq(dbgs(), BestCost) << '\n');
1373   }
1374 
1375   unsigned BestCand =
1376       calculateRegionSplitCost(VirtReg, Order, BestCost, NumCands,
1377                                false/*IgnoreCSR*/);
1378 
1379   // No solutions found, fall back to single block splitting.
1380   if (!HasCompact && BestCand == NoCand)
1381     return 0;
1382 
1383   return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs);
1384 }
1385 
1386 unsigned RAGreedy::calculateRegionSplitCost(LiveInterval &VirtReg,
1387                                             AllocationOrder &Order,
1388                                             BlockFrequency &BestCost,
1389                                             unsigned &NumCands,
1390                                             bool IgnoreCSR) {
1391   unsigned BestCand = NoCand;
1392   Order.rewind();
1393   while (unsigned PhysReg = Order.next()) {
1394     if (IgnoreCSR && isUnusedCalleeSavedReg(PhysReg))
1395       continue;
1396 
1397     // Discard bad candidates before we run out of interference cache cursors.
1398     // This will only affect register classes with a lot of registers (>32).
1399     if (NumCands == IntfCache.getMaxCursors()) {
1400       unsigned WorstCount = ~0u;
1401       unsigned Worst = 0;
1402       for (unsigned i = 0; i != NumCands; ++i) {
1403         if (i == BestCand || !GlobalCand[i].PhysReg)
1404           continue;
1405         unsigned Count = GlobalCand[i].LiveBundles.count();
1406         if (Count < WorstCount) {
1407           Worst = i;
1408           WorstCount = Count;
1409         }
1410       }
1411       --NumCands;
1412       GlobalCand[Worst] = GlobalCand[NumCands];
1413       if (BestCand == NumCands)
1414         BestCand = Worst;
1415     }
1416 
1417     if (GlobalCand.size() <= NumCands)
1418       GlobalCand.resize(NumCands+1);
1419     GlobalSplitCandidate &Cand = GlobalCand[NumCands];
1420     Cand.reset(IntfCache, PhysReg);
1421 
1422     SpillPlacer->prepare(Cand.LiveBundles);
1423     BlockFrequency Cost;
1424     if (!addSplitConstraints(Cand.Intf, Cost)) {
1425       DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tno positive bundles\n");
1426       continue;
1427     }
1428     DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tstatic = ";
1429                  MBFI->printBlockFreq(dbgs(), Cost));
1430     if (Cost >= BestCost) {
1431       DEBUG({
1432         if (BestCand == NoCand)
1433           dbgs() << " worse than no bundles\n";
1434         else
1435           dbgs() << " worse than "
1436                  << PrintReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
1437       });
1438       continue;
1439     }
1440     growRegion(Cand);
1441 
1442     SpillPlacer->finish();
1443 
1444     // No live bundles, defer to splitSingleBlocks().
1445     if (!Cand.LiveBundles.any()) {
1446       DEBUG(dbgs() << " no bundles.\n");
1447       continue;
1448     }
1449 
1450     Cost += calcGlobalSplitCost(Cand);
1451     DEBUG({
1452       dbgs() << ", total = "; MBFI->printBlockFreq(dbgs(), Cost)
1453                                 << " with bundles";
1454       for (int i = Cand.LiveBundles.find_first(); i>=0;
1455            i = Cand.LiveBundles.find_next(i))
1456         dbgs() << " EB#" << i;
1457       dbgs() << ".\n";
1458     });
1459     if (Cost < BestCost) {
1460       BestCand = NumCands;
1461       BestCost = Cost;
1462     }
1463     ++NumCands;
1464   }
1465   return BestCand;
1466 }
1467 
1468 unsigned RAGreedy::doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
1469                                  bool HasCompact,
1470                                  SmallVectorImpl<unsigned> &NewVRegs) {
1471   SmallVector<unsigned, 8> UsedCands;
1472   // Prepare split editor.
1473   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1474   SE->reset(LREdit, SplitSpillMode);
1475 
1476   // Assign all edge bundles to the preferred candidate, or NoCand.
1477   BundleCand.assign(Bundles->getNumBundles(), NoCand);
1478 
1479   // Assign bundles for the best candidate region.
1480   if (BestCand != NoCand) {
1481     GlobalSplitCandidate &Cand = GlobalCand[BestCand];
1482     if (unsigned B = Cand.getBundles(BundleCand, BestCand)) {
1483       UsedCands.push_back(BestCand);
1484       Cand.IntvIdx = SE->openIntv();
1485       DEBUG(dbgs() << "Split for " << PrintReg(Cand.PhysReg, TRI) << " in "
1486                    << B << " bundles, intv " << Cand.IntvIdx << ".\n");
1487       (void)B;
1488     }
1489   }
1490 
1491   // Assign bundles for the compact region.
1492   if (HasCompact) {
1493     GlobalSplitCandidate &Cand = GlobalCand.front();
1494     assert(!Cand.PhysReg && "Compact region has no physreg");
1495     if (unsigned B = Cand.getBundles(BundleCand, 0)) {
1496       UsedCands.push_back(0);
1497       Cand.IntvIdx = SE->openIntv();
1498       DEBUG(dbgs() << "Split for compact region in " << B << " bundles, intv "
1499                    << Cand.IntvIdx << ".\n");
1500       (void)B;
1501     }
1502   }
1503 
1504   splitAroundRegion(LREdit, UsedCands);
1505   return 0;
1506 }
1507 
1508 
1509 //===----------------------------------------------------------------------===//
1510 //                            Per-Block Splitting
1511 //===----------------------------------------------------------------------===//
1512 
1513 /// tryBlockSplit - Split a global live range around every block with uses. This
1514 /// creates a lot of local live ranges, that will be split by tryLocalSplit if
1515 /// they don't allocate.
1516 unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1517                                  SmallVectorImpl<unsigned> &NewVRegs) {
1518   assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed");
1519   unsigned Reg = VirtReg.reg;
1520   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1521   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1522   SE->reset(LREdit, SplitSpillMode);
1523   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1524   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1525     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1526     if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1527       SE->splitSingleBlock(BI);
1528   }
1529   // No blocks were split.
1530   if (LREdit.empty())
1531     return 0;
1532 
1533   // We did split for some blocks.
1534   SmallVector<unsigned, 8> IntvMap;
1535   SE->finish(&IntvMap);
1536 
1537   // Tell LiveDebugVariables about the new ranges.
1538   DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
1539 
1540   ExtraRegInfo.resize(MRI->getNumVirtRegs());
1541 
1542   // Sort out the new intervals created by splitting. The remainder interval
1543   // goes straight to spilling, the new local ranges get to stay RS_New.
1544   for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
1545     LiveInterval &LI = LIS->getInterval(LREdit.get(i));
1546     if (getStage(LI) == RS_New && IntvMap[i] == 0)
1547       setStage(LI, RS_Spill);
1548   }
1549 
1550   if (VerifyEnabled)
1551     MF->verify(this, "After splitting live range around basic blocks");
1552   return 0;
1553 }
1554 
1555 
1556 //===----------------------------------------------------------------------===//
1557 //                         Per-Instruction Splitting
1558 //===----------------------------------------------------------------------===//
1559 
1560 /// Get the number of allocatable registers that match the constraints of \p Reg
1561 /// on \p MI and that are also in \p SuperRC.
1562 static unsigned getNumAllocatableRegsForConstraints(
1563     const MachineInstr *MI, unsigned Reg, const TargetRegisterClass *SuperRC,
1564     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
1565     const RegisterClassInfo &RCI) {
1566   assert(SuperRC && "Invalid register class");
1567 
1568   const TargetRegisterClass *ConstrainedRC =
1569       MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI,
1570                                              /* ExploreBundle */ true);
1571   if (!ConstrainedRC)
1572     return 0;
1573   return RCI.getNumAllocatableRegs(ConstrainedRC);
1574 }
1575 
1576 /// tryInstructionSplit - Split a live range around individual instructions.
1577 /// This is normally not worthwhile since the spiller is doing essentially the
1578 /// same thing. However, when the live range is in a constrained register
1579 /// class, it may help to insert copies such that parts of the live range can
1580 /// be moved to a larger register class.
1581 ///
1582 /// This is similar to spilling to a larger register class.
1583 unsigned
1584 RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1585                               SmallVectorImpl<unsigned> &NewVRegs) {
1586   const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg);
1587   // There is no point to this if there are no larger sub-classes.
1588   if (!RegClassInfo.isProperSubClass(CurRC))
1589     return 0;
1590 
1591   // Always enable split spill mode, since we're effectively spilling to a
1592   // register.
1593   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1594   SE->reset(LREdit, SplitEditor::SM_Size);
1595 
1596   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1597   if (Uses.size() <= 1)
1598     return 0;
1599 
1600   DEBUG(dbgs() << "Split around " << Uses.size() << " individual instrs.\n");
1601 
1602   const TargetRegisterClass *SuperRC =
1603       TRI->getLargestLegalSuperClass(CurRC, *MF);
1604   unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC);
1605   // Split around every non-copy instruction if this split will relax
1606   // the constraints on the virtual register.
1607   // Otherwise, splitting just inserts uncoalescable copies that do not help
1608   // the allocation.
1609   for (unsigned i = 0; i != Uses.size(); ++i) {
1610     if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Uses[i]))
1611       if (MI->isFullCopy() ||
1612           SuperRCNumAllocatableRegs ==
1613               getNumAllocatableRegsForConstraints(MI, VirtReg.reg, SuperRC, TII,
1614                                                   TRI, RCI)) {
1615         DEBUG(dbgs() << "    skip:\t" << Uses[i] << '\t' << *MI);
1616         continue;
1617       }
1618     SE->openIntv();
1619     SlotIndex SegStart = SE->enterIntvBefore(Uses[i]);
1620     SlotIndex SegStop  = SE->leaveIntvAfter(Uses[i]);
1621     SE->useIntv(SegStart, SegStop);
1622   }
1623 
1624   if (LREdit.empty()) {
1625     DEBUG(dbgs() << "All uses were copies.\n");
1626     return 0;
1627   }
1628 
1629   SmallVector<unsigned, 8> IntvMap;
1630   SE->finish(&IntvMap);
1631   DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS);
1632   ExtraRegInfo.resize(MRI->getNumVirtRegs());
1633 
1634   // Assign all new registers to RS_Spill. This was the last chance.
1635   setStage(LREdit.begin(), LREdit.end(), RS_Spill);
1636   return 0;
1637 }
1638 
1639 
1640 //===----------------------------------------------------------------------===//
1641 //                             Local Splitting
1642 //===----------------------------------------------------------------------===//
1643 
1644 
1645 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted
1646 /// in order to use PhysReg between two entries in SA->UseSlots.
1647 ///
1648 /// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1].
1649 ///
1650 void RAGreedy::calcGapWeights(unsigned PhysReg,
1651                               SmallVectorImpl<float> &GapWeight) {
1652   assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
1653   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1654   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1655   const unsigned NumGaps = Uses.size()-1;
1656 
1657   // Start and end points for the interference check.
1658   SlotIndex StartIdx =
1659     BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr;
1660   SlotIndex StopIdx =
1661     BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr;
1662 
1663   GapWeight.assign(NumGaps, 0.0f);
1664 
1665   // Add interference from each overlapping register.
1666   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1667     if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units)
1668           .checkInterference())
1669       continue;
1670 
1671     // We know that VirtReg is a continuous interval from FirstInstr to
1672     // LastInstr, so we don't need InterferenceQuery.
1673     //
1674     // Interference that overlaps an instruction is counted in both gaps
1675     // surrounding the instruction. The exception is interference before
1676     // StartIdx and after StopIdx.
1677     //
1678     LiveIntervalUnion::SegmentIter IntI =
1679       Matrix->getLiveUnions()[*Units] .find(StartIdx);
1680     for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
1681       // Skip the gaps before IntI.
1682       while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
1683         if (++Gap == NumGaps)
1684           break;
1685       if (Gap == NumGaps)
1686         break;
1687 
1688       // Update the gaps covered by IntI.
1689       const float weight = IntI.value()->weight;
1690       for (; Gap != NumGaps; ++Gap) {
1691         GapWeight[Gap] = std::max(GapWeight[Gap], weight);
1692         if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
1693           break;
1694       }
1695       if (Gap == NumGaps)
1696         break;
1697     }
1698   }
1699 
1700   // Add fixed interference.
1701   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1702     const LiveRange &LR = LIS->getRegUnit(*Units);
1703     LiveRange::const_iterator I = LR.find(StartIdx);
1704     LiveRange::const_iterator E = LR.end();
1705 
1706     // Same loop as above. Mark any overlapped gaps as HUGE_VALF.
1707     for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) {
1708       while (Uses[Gap+1].getBoundaryIndex() < I->start)
1709         if (++Gap == NumGaps)
1710           break;
1711       if (Gap == NumGaps)
1712         break;
1713 
1714       for (; Gap != NumGaps; ++Gap) {
1715         GapWeight[Gap] = llvm::huge_valf;
1716         if (Uses[Gap+1].getBaseIndex() >= I->end)
1717           break;
1718       }
1719       if (Gap == NumGaps)
1720         break;
1721     }
1722   }
1723 }
1724 
1725 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
1726 /// basic block.
1727 ///
1728 unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1729                                  SmallVectorImpl<unsigned> &NewVRegs) {
1730   assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
1731   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1732 
1733   // Note that it is possible to have an interval that is live-in or live-out
1734   // while only covering a single block - A phi-def can use undef values from
1735   // predecessors, and the block could be a single-block loop.
1736   // We don't bother doing anything clever about such a case, we simply assume
1737   // that the interval is continuous from FirstInstr to LastInstr. We should
1738   // make sure that we don't do anything illegal to such an interval, though.
1739 
1740   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1741   if (Uses.size() <= 2)
1742     return 0;
1743   const unsigned NumGaps = Uses.size()-1;
1744 
1745   DEBUG({
1746     dbgs() << "tryLocalSplit: ";
1747     for (unsigned i = 0, e = Uses.size(); i != e; ++i)
1748       dbgs() << ' ' << Uses[i];
1749     dbgs() << '\n';
1750   });
1751 
1752   // If VirtReg is live across any register mask operands, compute a list of
1753   // gaps with register masks.
1754   SmallVector<unsigned, 8> RegMaskGaps;
1755   if (Matrix->checkRegMaskInterference(VirtReg)) {
1756     // Get regmask slots for the whole block.
1757     ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber());
1758     DEBUG(dbgs() << RMS.size() << " regmasks in block:");
1759     // Constrain to VirtReg's live range.
1760     unsigned ri = std::lower_bound(RMS.begin(), RMS.end(),
1761                                    Uses.front().getRegSlot()) - RMS.begin();
1762     unsigned re = RMS.size();
1763     for (unsigned i = 0; i != NumGaps && ri != re; ++i) {
1764       // Look for Uses[i] <= RMS <= Uses[i+1].
1765       assert(!SlotIndex::isEarlierInstr(RMS[ri], Uses[i]));
1766       if (SlotIndex::isEarlierInstr(Uses[i+1], RMS[ri]))
1767         continue;
1768       // Skip a regmask on the same instruction as the last use. It doesn't
1769       // overlap the live range.
1770       if (SlotIndex::isSameInstr(Uses[i+1], RMS[ri]) && i+1 == NumGaps)
1771         break;
1772       DEBUG(dbgs() << ' ' << RMS[ri] << ':' << Uses[i] << '-' << Uses[i+1]);
1773       RegMaskGaps.push_back(i);
1774       // Advance ri to the next gap. A regmask on one of the uses counts in
1775       // both gaps.
1776       while (ri != re && SlotIndex::isEarlierInstr(RMS[ri], Uses[i+1]))
1777         ++ri;
1778     }
1779     DEBUG(dbgs() << '\n');
1780   }
1781 
1782   // Since we allow local split results to be split again, there is a risk of
1783   // creating infinite loops. It is tempting to require that the new live
1784   // ranges have less instructions than the original. That would guarantee
1785   // convergence, but it is too strict. A live range with 3 instructions can be
1786   // split 2+3 (including the COPY), and we want to allow that.
1787   //
1788   // Instead we use these rules:
1789   //
1790   // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the
1791   //    noop split, of course).
1792   // 2. Require progress be made for ranges with getStage() == RS_Split2. All
1793   //    the new ranges must have fewer instructions than before the split.
1794   // 3. New ranges with the same number of instructions are marked RS_Split2,
1795   //    smaller ranges are marked RS_New.
1796   //
1797   // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
1798   // excessive splitting and infinite loops.
1799   //
1800   bool ProgressRequired = getStage(VirtReg) >= RS_Split2;
1801 
1802   // Best split candidate.
1803   unsigned BestBefore = NumGaps;
1804   unsigned BestAfter = 0;
1805   float BestDiff = 0;
1806 
1807   const float blockFreq =
1808     SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() *
1809     (1.0f / MBFI->getEntryFreq());
1810   SmallVector<float, 8> GapWeight;
1811 
1812   Order.rewind();
1813   while (unsigned PhysReg = Order.next()) {
1814     // Keep track of the largest spill weight that would need to be evicted in
1815     // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1].
1816     calcGapWeights(PhysReg, GapWeight);
1817 
1818     // Remove any gaps with regmask clobbers.
1819     if (Matrix->checkRegMaskInterference(VirtReg, PhysReg))
1820       for (unsigned i = 0, e = RegMaskGaps.size(); i != e; ++i)
1821         GapWeight[RegMaskGaps[i]] = llvm::huge_valf;
1822 
1823     // Try to find the best sequence of gaps to close.
1824     // The new spill weight must be larger than any gap interference.
1825 
1826     // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
1827     unsigned SplitBefore = 0, SplitAfter = 1;
1828 
1829     // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
1830     // It is the spill weight that needs to be evicted.
1831     float MaxGap = GapWeight[0];
1832 
1833     for (;;) {
1834       // Live before/after split?
1835       const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
1836       const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
1837 
1838       DEBUG(dbgs() << PrintReg(PhysReg, TRI) << ' '
1839                    << Uses[SplitBefore] << '-' << Uses[SplitAfter]
1840                    << " i=" << MaxGap);
1841 
1842       // Stop before the interval gets so big we wouldn't be making progress.
1843       if (!LiveBefore && !LiveAfter) {
1844         DEBUG(dbgs() << " all\n");
1845         break;
1846       }
1847       // Should the interval be extended or shrunk?
1848       bool Shrink = true;
1849 
1850       // How many gaps would the new range have?
1851       unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
1852 
1853       // Legally, without causing looping?
1854       bool Legal = !ProgressRequired || NewGaps < NumGaps;
1855 
1856       if (Legal && MaxGap < llvm::huge_valf) {
1857         // Estimate the new spill weight. Each instruction reads or writes the
1858         // register. Conservatively assume there are no read-modify-write
1859         // instructions.
1860         //
1861         // Try to guess the size of the new interval.
1862         const float EstWeight = normalizeSpillWeight(
1863             blockFreq * (NewGaps + 1),
1864             Uses[SplitBefore].distance(Uses[SplitAfter]) +
1865                 (LiveBefore + LiveAfter) * SlotIndex::InstrDist,
1866             1);
1867         // Would this split be possible to allocate?
1868         // Never allocate all gaps, we wouldn't be making progress.
1869         DEBUG(dbgs() << " w=" << EstWeight);
1870         if (EstWeight * Hysteresis >= MaxGap) {
1871           Shrink = false;
1872           float Diff = EstWeight - MaxGap;
1873           if (Diff > BestDiff) {
1874             DEBUG(dbgs() << " (best)");
1875             BestDiff = Hysteresis * Diff;
1876             BestBefore = SplitBefore;
1877             BestAfter = SplitAfter;
1878           }
1879         }
1880       }
1881 
1882       // Try to shrink.
1883       if (Shrink) {
1884         if (++SplitBefore < SplitAfter) {
1885           DEBUG(dbgs() << " shrink\n");
1886           // Recompute the max when necessary.
1887           if (GapWeight[SplitBefore - 1] >= MaxGap) {
1888             MaxGap = GapWeight[SplitBefore];
1889             for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i)
1890               MaxGap = std::max(MaxGap, GapWeight[i]);
1891           }
1892           continue;
1893         }
1894         MaxGap = 0;
1895       }
1896 
1897       // Try to extend the interval.
1898       if (SplitAfter >= NumGaps) {
1899         DEBUG(dbgs() << " end\n");
1900         break;
1901       }
1902 
1903       DEBUG(dbgs() << " extend\n");
1904       MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
1905     }
1906   }
1907 
1908   // Didn't find any candidates?
1909   if (BestBefore == NumGaps)
1910     return 0;
1911 
1912   DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore]
1913                << '-' << Uses[BestAfter] << ", " << BestDiff
1914                << ", " << (BestAfter - BestBefore + 1) << " instrs\n");
1915 
1916   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1917   SE->reset(LREdit);
1918 
1919   SE->openIntv();
1920   SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
1921   SlotIndex SegStop  = SE->leaveIntvAfter(Uses[BestAfter]);
1922   SE->useIntv(SegStart, SegStop);
1923   SmallVector<unsigned, 8> IntvMap;
1924   SE->finish(&IntvMap);
1925   DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS);
1926 
1927   // If the new range has the same number of instructions as before, mark it as
1928   // RS_Split2 so the next split will be forced to make progress. Otherwise,
1929   // leave the new intervals as RS_New so they can compete.
1930   bool LiveBefore = BestBefore != 0 || BI.LiveIn;
1931   bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
1932   unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
1933   if (NewGaps >= NumGaps) {
1934     DEBUG(dbgs() << "Tagging non-progress ranges: ");
1935     assert(!ProgressRequired && "Didn't make progress when it was required.");
1936     for (unsigned i = 0, e = IntvMap.size(); i != e; ++i)
1937       if (IntvMap[i] == 1) {
1938         setStage(LIS->getInterval(LREdit.get(i)), RS_Split2);
1939         DEBUG(dbgs() << PrintReg(LREdit.get(i)));
1940       }
1941     DEBUG(dbgs() << '\n');
1942   }
1943   ++NumLocalSplits;
1944 
1945   return 0;
1946 }
1947 
1948 //===----------------------------------------------------------------------===//
1949 //                          Live Range Splitting
1950 //===----------------------------------------------------------------------===//
1951 
1952 /// trySplit - Try to split VirtReg or one of its interferences, making it
1953 /// assignable.
1954 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
1955 unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
1956                             SmallVectorImpl<unsigned>&NewVRegs) {
1957   // Ranges must be Split2 or less.
1958   if (getStage(VirtReg) >= RS_Spill)
1959     return 0;
1960 
1961   // Local intervals are handled separately.
1962   if (LIS->intervalIsInOneMBB(VirtReg)) {
1963     NamedRegionTimer T("Local Splitting", TimerGroupName, TimePassesIsEnabled);
1964     SA->analyze(&VirtReg);
1965     unsigned PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs);
1966     if (PhysReg || !NewVRegs.empty())
1967       return PhysReg;
1968     return tryInstructionSplit(VirtReg, Order, NewVRegs);
1969   }
1970 
1971   NamedRegionTimer T("Global Splitting", TimerGroupName, TimePassesIsEnabled);
1972 
1973   SA->analyze(&VirtReg);
1974 
1975   // FIXME: SplitAnalysis may repair broken live ranges coming from the
1976   // coalescer. That may cause the range to become allocatable which means that
1977   // tryRegionSplit won't be making progress. This check should be replaced with
1978   // an assertion when the coalescer is fixed.
1979   if (SA->didRepairRange()) {
1980     // VirtReg has changed, so all cached queries are invalid.
1981     Matrix->invalidateVirtRegs();
1982     if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs))
1983       return PhysReg;
1984   }
1985 
1986   // First try to split around a region spanning multiple blocks. RS_Split2
1987   // ranges already made dubious progress with region splitting, so they go
1988   // straight to single block splitting.
1989   if (getStage(VirtReg) < RS_Split2) {
1990     unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
1991     if (PhysReg || !NewVRegs.empty())
1992       return PhysReg;
1993   }
1994 
1995   // Then isolate blocks.
1996   return tryBlockSplit(VirtReg, Order, NewVRegs);
1997 }
1998 
1999 //===----------------------------------------------------------------------===//
2000 //                          Last Chance Recoloring
2001 //===----------------------------------------------------------------------===//
2002 
2003 /// mayRecolorAllInterferences - Check if the virtual registers that
2004 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be
2005 /// recolored to free \p PhysReg.
2006 /// When true is returned, \p RecoloringCandidates has been augmented with all
2007 /// the live intervals that need to be recolored in order to free \p PhysReg
2008 /// for \p VirtReg.
2009 /// \p FixedRegisters contains all the virtual registers that cannot be
2010 /// recolored.
2011 bool
2012 RAGreedy::mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg,
2013                                      SmallLISet &RecoloringCandidates,
2014                                      const SmallVirtRegSet &FixedRegisters) {
2015   const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg);
2016 
2017   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2018     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
2019     // If there is LastChanceRecoloringMaxInterference or more interferences,
2020     // chances are one would not be recolorable.
2021     if (Q.collectInterferingVRegs(LastChanceRecoloringMaxInterference) >=
2022         LastChanceRecoloringMaxInterference && !ExhaustiveSearch) {
2023       DEBUG(dbgs() << "Early abort: too many interferences.\n");
2024       CutOffInfo |= CO_Interf;
2025       return false;
2026     }
2027     for (unsigned i = Q.interferingVRegs().size(); i; --i) {
2028       LiveInterval *Intf = Q.interferingVRegs()[i - 1];
2029       // If Intf is done and sit on the same register class as VirtReg,
2030       // it would not be recolorable as it is in the same state as VirtReg.
2031       if ((getStage(*Intf) == RS_Done &&
2032            MRI->getRegClass(Intf->reg) == CurRC) ||
2033           FixedRegisters.count(Intf->reg)) {
2034         DEBUG(dbgs() << "Early abort: the inteference is not recolorable.\n");
2035         return false;
2036       }
2037       RecoloringCandidates.insert(Intf);
2038     }
2039   }
2040   return true;
2041 }
2042 
2043 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring
2044 /// its interferences.
2045 /// Last chance recoloring chooses a color for \p VirtReg and recolors every
2046 /// virtual register that was using it. The recoloring process may recursively
2047 /// use the last chance recoloring. Therefore, when a virtual register has been
2048 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot
2049 /// be last-chance-recolored again during this recoloring "session".
2050 /// E.g.,
2051 /// Let
2052 /// vA can use {R1, R2    }
2053 /// vB can use {    R2, R3}
2054 /// vC can use {R1        }
2055 /// Where vA, vB, and vC cannot be split anymore (they are reloads for
2056 /// instance) and they all interfere.
2057 ///
2058 /// vA is assigned R1
2059 /// vB is assigned R2
2060 /// vC tries to evict vA but vA is already done.
2061 /// Regular register allocation fails.
2062 ///
2063 /// Last chance recoloring kicks in:
2064 /// vC does as if vA was evicted => vC uses R1.
2065 /// vC is marked as fixed.
2066 /// vA needs to find a color.
2067 /// None are available.
2068 /// vA cannot evict vC: vC is a fixed virtual register now.
2069 /// vA does as if vB was evicted => vA uses R2.
2070 /// vB needs to find a color.
2071 /// R3 is available.
2072 /// Recoloring => vC = R1, vA = R2, vB = R3
2073 ///
2074 /// \p Order defines the preferred allocation order for \p VirtReg.
2075 /// \p NewRegs will contain any new virtual register that have been created
2076 /// (split, spill) during the process and that must be assigned.
2077 /// \p FixedRegisters contains all the virtual registers that cannot be
2078 /// recolored.
2079 /// \p Depth gives the current depth of the last chance recoloring.
2080 /// \return a physical register that can be used for VirtReg or ~0u if none
2081 /// exists.
2082 unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg,
2083                                            AllocationOrder &Order,
2084                                            SmallVectorImpl<unsigned> &NewVRegs,
2085                                            SmallVirtRegSet &FixedRegisters,
2086                                            unsigned Depth) {
2087   DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n');
2088   // Ranges must be Done.
2089   assert((getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) &&
2090          "Last chance recoloring should really be last chance");
2091   // Set the max depth to LastChanceRecoloringMaxDepth.
2092   // We may want to reconsider that if we end up with a too large search space
2093   // for target with hundreds of registers.
2094   // Indeed, in that case we may want to cut the search space earlier.
2095   if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) {
2096     DEBUG(dbgs() << "Abort because max depth has been reached.\n");
2097     CutOffInfo |= CO_Depth;
2098     return ~0u;
2099   }
2100 
2101   // Set of Live intervals that will need to be recolored.
2102   SmallLISet RecoloringCandidates;
2103   // Record the original mapping virtual register to physical register in case
2104   // the recoloring fails.
2105   DenseMap<unsigned, unsigned> VirtRegToPhysReg;
2106   // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in
2107   // this recoloring "session".
2108   FixedRegisters.insert(VirtReg.reg);
2109   // Remember the ID of the last vreg in case the recoloring fails.
2110   unsigned LastVReg =
2111       TargetRegisterInfo::index2VirtReg(MRI->getNumVirtRegs() - 1);
2112   SmallVector<unsigned, 4> CurrentNewVRegs;
2113 
2114   Order.rewind();
2115   while (unsigned PhysReg = Order.next()) {
2116     DEBUG(dbgs() << "Try to assign: " << VirtReg << " to "
2117                  << PrintReg(PhysReg, TRI) << '\n');
2118     RecoloringCandidates.clear();
2119     VirtRegToPhysReg.clear();
2120     CurrentNewVRegs.clear();
2121 
2122     // It is only possible to recolor virtual register interference.
2123     if (Matrix->checkInterference(VirtReg, PhysReg) >
2124         LiveRegMatrix::IK_VirtReg) {
2125       DEBUG(dbgs() << "Some inteferences are not with virtual registers.\n");
2126 
2127       continue;
2128     }
2129 
2130     // Early give up on this PhysReg if it is obvious we cannot recolor all
2131     // the interferences.
2132     if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates,
2133                                     FixedRegisters)) {
2134       DEBUG(dbgs() << "Some inteferences cannot be recolored.\n");
2135       continue;
2136     }
2137 
2138     // RecoloringCandidates contains all the virtual registers that interfer
2139     // with VirtReg on PhysReg (or one of its aliases).
2140     // Enqueue them for recoloring and perform the actual recoloring.
2141     PQueue RecoloringQueue;
2142     for (SmallLISet::iterator It = RecoloringCandidates.begin(),
2143                               EndIt = RecoloringCandidates.end();
2144          It != EndIt; ++It) {
2145       unsigned ItVirtReg = (*It)->reg;
2146       enqueue(RecoloringQueue, *It);
2147       assert(VRM->hasPhys(ItVirtReg) &&
2148              "Interferences are supposed to be with allocated vairables");
2149 
2150       // Record the current allocation.
2151       VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg);
2152       // unset the related struct.
2153       Matrix->unassign(**It);
2154     }
2155 
2156     // Do as if VirtReg was assigned to PhysReg so that the underlying
2157     // recoloring has the right information about the interferes and
2158     // available colors.
2159     Matrix->assign(VirtReg, PhysReg);
2160 
2161     // Save the current recoloring state.
2162     // If we cannot recolor all the interferences, we will have to start again
2163     // at this point for the next physical register.
2164     SmallVirtRegSet SaveFixedRegisters(FixedRegisters);
2165     if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs,
2166                                 FixedRegisters, Depth)) {
2167       // Push the queued vregs into the main queue.
2168       for (unsigned NewVReg : CurrentNewVRegs)
2169         NewVRegs.push_back(NewVReg);
2170       // Do not mess up with the global assignment process.
2171       // I.e., VirtReg must be unassigned.
2172       Matrix->unassign(VirtReg);
2173       return PhysReg;
2174     }
2175 
2176     DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to "
2177                  << PrintReg(PhysReg, TRI) << '\n');
2178 
2179     // The recoloring attempt failed, undo the changes.
2180     FixedRegisters = SaveFixedRegisters;
2181     Matrix->unassign(VirtReg);
2182 
2183     // When we move a register from RS_Assign to RS_Split, we do not
2184     // actually do anything with it. I.e., it should not end up in NewVRegs.
2185     // For the other cases, since we created new live-ranges, we need to
2186     // process them.
2187     for (SmallVectorImpl<unsigned>::iterator Next = CurrentNewVRegs.begin(),
2188                                              End = CurrentNewVRegs.end();
2189          Next != End; ++Next) {
2190       if (*Next <= LastVReg && getStage(LIS->getInterval(*Next)) == RS_Split)
2191         continue;
2192       NewVRegs.push_back(*Next);
2193     }
2194 
2195     for (SmallLISet::iterator It = RecoloringCandidates.begin(),
2196                               EndIt = RecoloringCandidates.end();
2197          It != EndIt; ++It) {
2198       unsigned ItVirtReg = (*It)->reg;
2199       if (VRM->hasPhys(ItVirtReg))
2200         Matrix->unassign(**It);
2201       unsigned ItPhysReg = VirtRegToPhysReg[ItVirtReg];
2202       Matrix->assign(**It, ItPhysReg);
2203     }
2204   }
2205 
2206   // Last chance recoloring did not worked either, give up.
2207   return ~0u;
2208 }
2209 
2210 /// tryRecoloringCandidates - Try to assign a new color to every register
2211 /// in \RecoloringQueue.
2212 /// \p NewRegs will contain any new virtual register created during the
2213 /// recoloring process.
2214 /// \p FixedRegisters[in/out] contains all the registers that have been
2215 /// recolored.
2216 /// \return true if all virtual registers in RecoloringQueue were successfully
2217 /// recolored, false otherwise.
2218 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue,
2219                                        SmallVectorImpl<unsigned> &NewVRegs,
2220                                        SmallVirtRegSet &FixedRegisters,
2221                                        unsigned Depth) {
2222   while (!RecoloringQueue.empty()) {
2223     LiveInterval *LI = dequeue(RecoloringQueue);
2224     DEBUG(dbgs() << "Try to recolor: " << *LI << '\n');
2225     unsigned PhysReg;
2226     PhysReg = selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, Depth + 1);
2227     if (PhysReg == ~0u || !PhysReg)
2228       return false;
2229     DEBUG(dbgs() << "Recoloring of " << *LI
2230                  << " succeeded with: " << PrintReg(PhysReg, TRI) << '\n');
2231     Matrix->assign(*LI, PhysReg);
2232     FixedRegisters.insert(LI->reg);
2233   }
2234   return true;
2235 }
2236 
2237 //===----------------------------------------------------------------------===//
2238 //                            Main Entry Point
2239 //===----------------------------------------------------------------------===//
2240 
2241 unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg,
2242                                  SmallVectorImpl<unsigned> &NewVRegs) {
2243   CutOffInfo = CO_None;
2244   LLVMContext &Ctx = MF->getFunction()->getContext();
2245   SmallVirtRegSet FixedRegisters;
2246   unsigned Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters);
2247   if (Reg == ~0U && (CutOffInfo != CO_None)) {
2248     uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf);
2249     if (CutOffEncountered == CO_Depth)
2250       Ctx.emitError("register allocation failed: maximum depth for recoloring "
2251                     "reached. Use -fexhaustive-register-search to skip "
2252                     "cutoffs");
2253     else if (CutOffEncountered == CO_Interf)
2254       Ctx.emitError("register allocation failed: maximum interference for "
2255                     "recoloring reached. Use -fexhaustive-register-search "
2256                     "to skip cutoffs");
2257     else if (CutOffEncountered == (CO_Depth | CO_Interf))
2258       Ctx.emitError("register allocation failed: maximum interference and "
2259                     "depth for recoloring reached. Use "
2260                     "-fexhaustive-register-search to skip cutoffs");
2261   }
2262   return Reg;
2263 }
2264 
2265 /// Using a CSR for the first time has a cost because it causes push|pop
2266 /// to be added to prologue|epilogue. Splitting a cold section of the live
2267 /// range can have lower cost than using the CSR for the first time;
2268 /// Spilling a live range in the cold path can have lower cost than using
2269 /// the CSR for the first time. Returns the physical register if we decide
2270 /// to use the CSR; otherwise return 0.
2271 unsigned RAGreedy::tryAssignCSRFirstTime(LiveInterval &VirtReg,
2272                                          AllocationOrder &Order,
2273                                          unsigned PhysReg,
2274                                          unsigned &CostPerUseLimit,
2275                                          SmallVectorImpl<unsigned> &NewVRegs) {
2276   if (getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) {
2277     // We choose spill over using the CSR for the first time if the spill cost
2278     // is lower than CSRCost.
2279     SA->analyze(&VirtReg);
2280     if (calcSpillCost() >= CSRCost)
2281       return PhysReg;
2282 
2283     // We are going to spill, set CostPerUseLimit to 1 to make sure that
2284     // we will not use a callee-saved register in tryEvict.
2285     CostPerUseLimit = 1;
2286     return 0;
2287   }
2288   if (getStage(VirtReg) < RS_Split) {
2289     // We choose pre-splitting over using the CSR for the first time if
2290     // the cost of splitting is lower than CSRCost.
2291     SA->analyze(&VirtReg);
2292     unsigned NumCands = 0;
2293     BlockFrequency BestCost = CSRCost; // Don't modify CSRCost.
2294     unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost,
2295                                                  NumCands, true /*IgnoreCSR*/);
2296     if (BestCand == NoCand)
2297       // Use the CSR if we can't find a region split below CSRCost.
2298       return PhysReg;
2299 
2300     // Perform the actual pre-splitting.
2301     doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs);
2302     return 0;
2303   }
2304   return PhysReg;
2305 }
2306 
2307 void RAGreedy::aboutToRemoveInterval(LiveInterval &LI) {
2308   // Do not keep invalid information around.
2309   SetOfBrokenHints.remove(&LI);
2310 }
2311 
2312 void RAGreedy::initializeCSRCost() {
2313   // We use the larger one out of the command-line option and the value report
2314   // by TRI.
2315   CSRCost = BlockFrequency(
2316       std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost()));
2317   if (!CSRCost.getFrequency())
2318     return;
2319 
2320   // Raw cost is relative to Entry == 2^14; scale it appropriately.
2321   uint64_t ActualEntry = MBFI->getEntryFreq();
2322   if (!ActualEntry) {
2323     CSRCost = 0;
2324     return;
2325   }
2326   uint64_t FixedEntry = 1 << 14;
2327   if (ActualEntry < FixedEntry)
2328     CSRCost *= BranchProbability(ActualEntry, FixedEntry);
2329   else if (ActualEntry <= UINT32_MAX)
2330     // Invert the fraction and divide.
2331     CSRCost /= BranchProbability(FixedEntry, ActualEntry);
2332   else
2333     // Can't use BranchProbability in general, since it takes 32-bit numbers.
2334     CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry);
2335 }
2336 
2337 /// \brief Collect the hint info for \p Reg.
2338 /// The results are stored into \p Out.
2339 /// \p Out is not cleared before being populated.
2340 void RAGreedy::collectHintInfo(unsigned Reg, HintsInfo &Out) {
2341   for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) {
2342     if (!Instr.isFullCopy())
2343       continue;
2344     // Look for the other end of the copy.
2345     unsigned OtherReg = Instr.getOperand(0).getReg();
2346     if (OtherReg == Reg) {
2347       OtherReg = Instr.getOperand(1).getReg();
2348       if (OtherReg == Reg)
2349         continue;
2350     }
2351     // Get the current assignment.
2352     unsigned OtherPhysReg = TargetRegisterInfo::isPhysicalRegister(OtherReg)
2353                                 ? OtherReg
2354                                 : VRM->getPhys(OtherReg);
2355     // Push the collected information.
2356     Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg,
2357                            OtherPhysReg));
2358   }
2359 }
2360 
2361 /// \brief Using the given \p List, compute the cost of the broken hints if
2362 /// \p PhysReg was used.
2363 /// \return The cost of \p List for \p PhysReg.
2364 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List,
2365                                            unsigned PhysReg) {
2366   BlockFrequency Cost = 0;
2367   for (const HintInfo &Info : List) {
2368     if (Info.PhysReg != PhysReg)
2369       Cost += Info.Freq;
2370   }
2371   return Cost;
2372 }
2373 
2374 /// \brief Using the register assigned to \p VirtReg, try to recolor
2375 /// all the live ranges that are copy-related with \p VirtReg.
2376 /// The recoloring is then propagated to all the live-ranges that have
2377 /// been recolored and so on, until no more copies can be coalesced or
2378 /// it is not profitable.
2379 /// For a given live range, profitability is determined by the sum of the
2380 /// frequencies of the non-identity copies it would introduce with the old
2381 /// and new register.
2382 void RAGreedy::tryHintRecoloring(LiveInterval &VirtReg) {
2383   // We have a broken hint, check if it is possible to fix it by
2384   // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted
2385   // some register and PhysReg may be available for the other live-ranges.
2386   SmallSet<unsigned, 4> Visited;
2387   SmallVector<unsigned, 2> RecoloringCandidates;
2388   HintsInfo Info;
2389   unsigned Reg = VirtReg.reg;
2390   unsigned PhysReg = VRM->getPhys(Reg);
2391   // Start the recoloring algorithm from the input live-interval, then
2392   // it will propagate to the ones that are copy-related with it.
2393   Visited.insert(Reg);
2394   RecoloringCandidates.push_back(Reg);
2395 
2396   DEBUG(dbgs() << "Trying to reconcile hints for: " << PrintReg(Reg, TRI) << '('
2397                << PrintReg(PhysReg, TRI) << ")\n");
2398 
2399   do {
2400     Reg = RecoloringCandidates.pop_back_val();
2401 
2402     // We cannot recolor physcal register.
2403     if (TargetRegisterInfo::isPhysicalRegister(Reg))
2404       continue;
2405 
2406     assert(VRM->hasPhys(Reg) && "We have unallocated variable!!");
2407 
2408     // Get the live interval mapped with this virtual register to be able
2409     // to check for the interference with the new color.
2410     LiveInterval &LI = LIS->getInterval(Reg);
2411     unsigned CurrPhys = VRM->getPhys(Reg);
2412     // Check that the new color matches the register class constraints and
2413     // that it is free for this live range.
2414     if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) ||
2415                                 Matrix->checkInterference(LI, PhysReg)))
2416       continue;
2417 
2418     DEBUG(dbgs() << PrintReg(Reg, TRI) << '(' << PrintReg(CurrPhys, TRI)
2419                  << ") is recolorable.\n");
2420 
2421     // Gather the hint info.
2422     Info.clear();
2423     collectHintInfo(Reg, Info);
2424     // Check if recoloring the live-range will increase the cost of the
2425     // non-identity copies.
2426     if (CurrPhys != PhysReg) {
2427       DEBUG(dbgs() << "Checking profitability:\n");
2428       BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys);
2429       BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg);
2430       DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency()
2431                    << "\nNew Cost: " << NewCopiesCost.getFrequency() << '\n');
2432       if (OldCopiesCost < NewCopiesCost) {
2433         DEBUG(dbgs() << "=> Not profitable.\n");
2434         continue;
2435       }
2436       // At this point, the cost is either cheaper or equal. If it is
2437       // equal, we consider this is profitable because it may expose
2438       // more recoloring opportunities.
2439       DEBUG(dbgs() << "=> Profitable.\n");
2440       // Recolor the live-range.
2441       Matrix->unassign(LI);
2442       Matrix->assign(LI, PhysReg);
2443     }
2444     // Push all copy-related live-ranges to keep reconciling the broken
2445     // hints.
2446     for (const HintInfo &HI : Info) {
2447       if (Visited.insert(HI.Reg).second)
2448         RecoloringCandidates.push_back(HI.Reg);
2449     }
2450   } while (!RecoloringCandidates.empty());
2451 }
2452 
2453 /// \brief Try to recolor broken hints.
2454 /// Broken hints may be repaired by recoloring when an evicted variable
2455 /// freed up a register for a larger live-range.
2456 /// Consider the following example:
2457 /// BB1:
2458 ///   a =
2459 ///   b =
2460 /// BB2:
2461 ///   ...
2462 ///   = b
2463 ///   = a
2464 /// Let us assume b gets split:
2465 /// BB1:
2466 ///   a =
2467 ///   b =
2468 /// BB2:
2469 ///   c = b
2470 ///   ...
2471 ///   d = c
2472 ///   = d
2473 ///   = a
2474 /// Because of how the allocation work, b, c, and d may be assigned different
2475 /// colors. Now, if a gets evicted later:
2476 /// BB1:
2477 ///   a =
2478 ///   st a, SpillSlot
2479 ///   b =
2480 /// BB2:
2481 ///   c = b
2482 ///   ...
2483 ///   d = c
2484 ///   = d
2485 ///   e = ld SpillSlot
2486 ///   = e
2487 /// This is likely that we can assign the same register for b, c, and d,
2488 /// getting rid of 2 copies.
2489 void RAGreedy::tryHintsRecoloring() {
2490   for (LiveInterval *LI : SetOfBrokenHints) {
2491     assert(TargetRegisterInfo::isVirtualRegister(LI->reg) &&
2492            "Recoloring is possible only for virtual registers");
2493     // Some dead defs may be around (e.g., because of debug uses).
2494     // Ignore those.
2495     if (!VRM->hasPhys(LI->reg))
2496       continue;
2497     tryHintRecoloring(*LI);
2498   }
2499 }
2500 
2501 unsigned RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg,
2502                                      SmallVectorImpl<unsigned> &NewVRegs,
2503                                      SmallVirtRegSet &FixedRegisters,
2504                                      unsigned Depth) {
2505   unsigned CostPerUseLimit = ~0u;
2506   // First try assigning a free register.
2507   AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo, Matrix);
2508   if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs)) {
2509     // When NewVRegs is not empty, we may have made decisions such as evicting
2510     // a virtual register, go with the earlier decisions and use the physical
2511     // register.
2512     if (CSRCost.getFrequency() && isUnusedCalleeSavedReg(PhysReg) &&
2513         NewVRegs.empty()) {
2514       unsigned CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg,
2515                                               CostPerUseLimit, NewVRegs);
2516       if (CSRReg || !NewVRegs.empty())
2517         // Return now if we decide to use a CSR or create new vregs due to
2518         // pre-splitting.
2519         return CSRReg;
2520     } else
2521       return PhysReg;
2522   }
2523 
2524   LiveRangeStage Stage = getStage(VirtReg);
2525   DEBUG(dbgs() << StageName[Stage]
2526                << " Cascade " << ExtraRegInfo[VirtReg.reg].Cascade << '\n');
2527 
2528   // Try to evict a less worthy live range, but only for ranges from the primary
2529   // queue. The RS_Split ranges already failed to do this, and they should not
2530   // get a second chance until they have been split.
2531   if (Stage != RS_Split)
2532     if (unsigned PhysReg =
2533             tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit)) {
2534       unsigned Hint = MRI->getSimpleHint(VirtReg.reg);
2535       // If VirtReg has a hint and that hint is broken record this
2536       // virtual register as a recoloring candidate for broken hint.
2537       // Indeed, since we evicted a variable in its neighborhood it is
2538       // likely we can at least partially recolor some of the
2539       // copy-related live-ranges.
2540       if (Hint && Hint != PhysReg)
2541         SetOfBrokenHints.insert(&VirtReg);
2542       return PhysReg;
2543     }
2544 
2545   assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs");
2546 
2547   // The first time we see a live range, don't try to split or spill.
2548   // Wait until the second time, when all smaller ranges have been allocated.
2549   // This gives a better picture of the interference to split around.
2550   if (Stage < RS_Split) {
2551     setStage(VirtReg, RS_Split);
2552     DEBUG(dbgs() << "wait for second round\n");
2553     NewVRegs.push_back(VirtReg.reg);
2554     return 0;
2555   }
2556 
2557   // If we couldn't allocate a register from spilling, there is probably some
2558   // invalid inline assembly. The base class wil report it.
2559   if (Stage >= RS_Done || !VirtReg.isSpillable())
2560     return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters,
2561                                    Depth);
2562 
2563   // Try splitting VirtReg or interferences.
2564   unsigned NewVRegSizeBefore = NewVRegs.size();
2565   unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs);
2566   if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore))
2567     return PhysReg;
2568 
2569   // Finally spill VirtReg itself.
2570   if (EnableDeferredSpilling && getStage(VirtReg) < RS_Memory) {
2571     // TODO: This is experimental and in particular, we do not model
2572     // the live range splitting done by spilling correctly.
2573     // We would need a deep integration with the spiller to do the
2574     // right thing here. Anyway, that is still good for early testing.
2575     setStage(VirtReg, RS_Memory);
2576     DEBUG(dbgs() << "Do as if this register is in memory\n");
2577     NewVRegs.push_back(VirtReg.reg);
2578   } else {
2579     NamedRegionTimer T("Spiller", TimerGroupName, TimePassesIsEnabled);
2580     LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2581     spiller().spill(LRE);
2582     setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done);
2583 
2584     if (VerifyEnabled)
2585       MF->verify(this, "After spilling");
2586   }
2587 
2588   // The live virtual register requesting allocation was spilled, so tell
2589   // the caller not to allocate anything during this round.
2590   return 0;
2591 }
2592 
2593 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
2594   DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
2595                << "********** Function: " << mf.getName() << '\n');
2596 
2597   MF = &mf;
2598   TRI = MF->getSubtarget().getRegisterInfo();
2599   TII = MF->getSubtarget().getInstrInfo();
2600   RCI.runOnMachineFunction(mf);
2601 
2602   EnableLocalReassign = EnableLocalReassignment ||
2603                         MF->getSubtarget().enableRALocalReassignment(
2604                             MF->getTarget().getOptLevel());
2605 
2606   if (VerifyEnabled)
2607     MF->verify(this, "Before greedy register allocator");
2608 
2609   RegAllocBase::init(getAnalysis<VirtRegMap>(),
2610                      getAnalysis<LiveIntervals>(),
2611                      getAnalysis<LiveRegMatrix>());
2612   Indexes = &getAnalysis<SlotIndexes>();
2613   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
2614   DomTree = &getAnalysis<MachineDominatorTree>();
2615   SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
2616   Loops = &getAnalysis<MachineLoopInfo>();
2617   Bundles = &getAnalysis<EdgeBundles>();
2618   SpillPlacer = &getAnalysis<SpillPlacement>();
2619   DebugVars = &getAnalysis<LiveDebugVariables>();
2620   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2621 
2622   initializeCSRCost();
2623 
2624   calculateSpillWeightsAndHints(*LIS, mf, VRM, *Loops, *MBFI);
2625 
2626   DEBUG(LIS->dump());
2627 
2628   SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
2629   SE.reset(new SplitEditor(*SA, *AA, *LIS, *VRM, *DomTree, *MBFI));
2630   ExtraRegInfo.clear();
2631   ExtraRegInfo.resize(MRI->getNumVirtRegs());
2632   NextCascade = 1;
2633   IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI);
2634   GlobalCand.resize(32);  // This will grow as needed.
2635   SetOfBrokenHints.clear();
2636 
2637   allocatePhysRegs();
2638   tryHintsRecoloring();
2639   postOptimization();
2640 
2641   releaseMemory();
2642   return true;
2643 }
2644