1 //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the RAGreedy function pass for register allocation in 10 // optimized builds. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "AllocationOrder.h" 15 #include "InterferenceCache.h" 16 #include "LiveDebugVariables.h" 17 #include "RegAllocBase.h" 18 #include "RegAllocEvictionAdvisor.h" 19 #include "SpillPlacement.h" 20 #include "SplitKit.h" 21 #include "llvm/ADT/ArrayRef.h" 22 #include "llvm/ADT/BitVector.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/IndexedMap.h" 25 #include "llvm/ADT/MapVector.h" 26 #include "llvm/ADT/SetVector.h" 27 #include "llvm/ADT/SmallPtrSet.h" 28 #include "llvm/ADT/SmallSet.h" 29 #include "llvm/ADT/SmallVector.h" 30 #include "llvm/ADT/Statistic.h" 31 #include "llvm/ADT/StringRef.h" 32 #include "llvm/Analysis/AliasAnalysis.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/CodeGen/CalcSpillWeights.h" 35 #include "llvm/CodeGen/EdgeBundles.h" 36 #include "llvm/CodeGen/LiveInterval.h" 37 #include "llvm/CodeGen/LiveIntervalUnion.h" 38 #include "llvm/CodeGen/LiveIntervals.h" 39 #include "llvm/CodeGen/LiveRangeEdit.h" 40 #include "llvm/CodeGen/LiveRegMatrix.h" 41 #include "llvm/CodeGen/LiveStacks.h" 42 #include "llvm/CodeGen/MachineBasicBlock.h" 43 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 44 #include "llvm/CodeGen/MachineDominators.h" 45 #include "llvm/CodeGen/MachineFrameInfo.h" 46 #include "llvm/CodeGen/MachineFunction.h" 47 #include "llvm/CodeGen/MachineFunctionPass.h" 48 #include "llvm/CodeGen/MachineInstr.h" 49 #include "llvm/CodeGen/MachineLoopInfo.h" 50 #include "llvm/CodeGen/MachineOperand.h" 51 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 52 #include "llvm/CodeGen/MachineRegisterInfo.h" 53 #include "llvm/CodeGen/RegAllocRegistry.h" 54 #include "llvm/CodeGen/RegisterClassInfo.h" 55 #include "llvm/CodeGen/SlotIndexes.h" 56 #include "llvm/CodeGen/Spiller.h" 57 #include "llvm/CodeGen/TargetInstrInfo.h" 58 #include "llvm/CodeGen/TargetRegisterInfo.h" 59 #include "llvm/CodeGen/TargetSubtargetInfo.h" 60 #include "llvm/CodeGen/VirtRegMap.h" 61 #include "llvm/IR/DebugInfoMetadata.h" 62 #include "llvm/IR/Function.h" 63 #include "llvm/IR/LLVMContext.h" 64 #include "llvm/MC/MCRegisterInfo.h" 65 #include "llvm/Pass.h" 66 #include "llvm/Support/BlockFrequency.h" 67 #include "llvm/Support/BranchProbability.h" 68 #include "llvm/Support/CommandLine.h" 69 #include "llvm/Support/Debug.h" 70 #include "llvm/Support/MathExtras.h" 71 #include "llvm/Support/Timer.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include "llvm/Target/TargetMachine.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstdint> 77 #include <memory> 78 #include <queue> 79 #include <tuple> 80 #include <utility> 81 82 using namespace llvm; 83 84 #define DEBUG_TYPE "regalloc" 85 86 STATISTIC(NumGlobalSplits, "Number of split global live ranges"); 87 STATISTIC(NumLocalSplits, "Number of split local live ranges"); 88 STATISTIC(NumEvicted, "Number of interferences evicted"); 89 90 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode( 91 "split-spill-mode", cl::Hidden, 92 cl::desc("Spill mode for splitting live ranges"), 93 cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"), 94 clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"), 95 clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")), 96 cl::init(SplitEditor::SM_Speed)); 97 98 static cl::opt<unsigned> 99 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden, 100 cl::desc("Last chance recoloring max depth"), 101 cl::init(5)); 102 103 static cl::opt<unsigned> LastChanceRecoloringMaxInterference( 104 "lcr-max-interf", cl::Hidden, 105 cl::desc("Last chance recoloring maximum number of considered" 106 " interference at a time"), 107 cl::init(8)); 108 109 static cl::opt<bool> ExhaustiveSearch( 110 "exhaustive-register-search", cl::NotHidden, 111 cl::desc("Exhaustive Search for registers bypassing the depth " 112 "and interference cutoffs of last chance recoloring"), 113 cl::Hidden); 114 115 static cl::opt<bool> EnableLocalReassignment( 116 "enable-local-reassign", cl::Hidden, 117 cl::desc("Local reassignment can yield better allocation decisions, but " 118 "may be compile time intensive"), 119 cl::init(false)); 120 121 static cl::opt<bool> EnableDeferredSpilling( 122 "enable-deferred-spilling", cl::Hidden, 123 cl::desc("Instead of spilling a variable right away, defer the actual " 124 "code insertion to the end of the allocation. That way the " 125 "allocator might still find a suitable coloring for this " 126 "variable because of other evicted variables."), 127 cl::init(false)); 128 129 // FIXME: Find a good default for this flag and remove the flag. 130 static cl::opt<unsigned> 131 CSRFirstTimeCost("regalloc-csr-first-time-cost", 132 cl::desc("Cost for first time use of callee-saved register."), 133 cl::init(0), cl::Hidden); 134 135 static cl::opt<bool> ConsiderLocalIntervalCost( 136 "consider-local-interval-cost", cl::Hidden, 137 cl::desc("Consider the cost of local intervals created by a split " 138 "candidate when choosing the best split candidate."), 139 cl::init(false)); 140 141 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator", 142 createGreedyRegisterAllocator); 143 144 namespace { 145 146 class RAGreedy : public MachineFunctionPass, 147 public RegAllocBase, 148 private LiveRangeEdit::Delegate { 149 // Convenient shortcuts. 150 using PQueue = std::priority_queue<std::pair<unsigned, unsigned>>; 151 using SmallLISet = SmallPtrSet<LiveInterval *, 4>; 152 153 // context 154 MachineFunction *MF; 155 156 // Shortcuts to some useful interface. 157 const TargetInstrInfo *TII; 158 const TargetRegisterInfo *TRI; 159 RegisterClassInfo RCI; 160 161 // analyses 162 SlotIndexes *Indexes; 163 MachineBlockFrequencyInfo *MBFI; 164 MachineDominatorTree *DomTree; 165 MachineLoopInfo *Loops; 166 MachineOptimizationRemarkEmitter *ORE; 167 EdgeBundles *Bundles; 168 SpillPlacement *SpillPlacer; 169 LiveDebugVariables *DebugVars; 170 AliasAnalysis *AA; 171 172 // state 173 std::unique_ptr<Spiller> SpillerInstance; 174 PQueue Queue; 175 unsigned NextCascade; 176 std::unique_ptr<VirtRegAuxInfo> VRAI; 177 178 // Enum CutOffStage to keep a track whether the register allocation failed 179 // because of the cutoffs encountered in last chance recoloring. 180 // Note: This is used as bitmask. New value should be next power of 2. 181 enum CutOffStage { 182 // No cutoffs encountered 183 CO_None = 0, 184 185 // lcr-max-depth cutoff encountered 186 CO_Depth = 1, 187 188 // lcr-max-interf cutoff encountered 189 CO_Interf = 2 190 }; 191 192 uint8_t CutOffInfo; 193 194 #ifndef NDEBUG 195 static const char *const StageName[]; 196 #endif 197 198 // RegInfo - Keep additional information about each live range. 199 struct RegInfo { 200 LiveRangeStage Stage = RS_New; 201 202 // Cascade - Eviction loop prevention. See canEvictInterference(). 203 unsigned Cascade = 0; 204 205 RegInfo() = default; 206 }; 207 208 IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo; 209 210 LiveRangeStage getStage(const LiveInterval &VirtReg) const { 211 return ExtraRegInfo[VirtReg.reg()].Stage; 212 } 213 214 void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) { 215 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 216 ExtraRegInfo[VirtReg.reg()].Stage = Stage; 217 } 218 219 template<typename Iterator> 220 void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) { 221 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 222 for (;Begin != End; ++Begin) { 223 Register Reg = *Begin; 224 if (ExtraRegInfo[Reg].Stage == RS_New) 225 ExtraRegInfo[Reg].Stage = NewStage; 226 } 227 } 228 229 /// EvictionTrack - Keeps track of past evictions in order to optimize region 230 /// split decision. 231 class EvictionTrack { 232 233 public: 234 using EvictorInfo = 235 std::pair<Register /* evictor */, MCRegister /* physreg */>; 236 using EvicteeInfo = llvm::DenseMap<Register /* evictee */, EvictorInfo>; 237 238 private: 239 /// Each Vreg that has been evicted in the last stage of selectOrSplit will 240 /// be mapped to the evictor Vreg and the PhysReg it was evicted from. 241 EvicteeInfo Evictees; 242 243 public: 244 /// Clear all eviction information. 245 void clear() { Evictees.clear(); } 246 247 /// Clear eviction information for the given evictee Vreg. 248 /// E.g. when Vreg get's a new allocation, the old eviction info is no 249 /// longer relevant. 250 /// \param Evictee The evictee Vreg for whom we want to clear collected 251 /// eviction info. 252 void clearEvicteeInfo(Register Evictee) { Evictees.erase(Evictee); } 253 254 /// Track new eviction. 255 /// The Evictor vreg has evicted the Evictee vreg from Physreg. 256 /// \param PhysReg The physical register Evictee was evicted from. 257 /// \param Evictor The evictor Vreg that evicted Evictee. 258 /// \param Evictee The evictee Vreg. 259 void addEviction(MCRegister PhysReg, Register Evictor, Register Evictee) { 260 Evictees[Evictee].first = Evictor; 261 Evictees[Evictee].second = PhysReg; 262 } 263 264 /// Return the Evictor Vreg which evicted Evictee Vreg from PhysReg. 265 /// \param Evictee The evictee vreg. 266 /// \return The Evictor vreg which evicted Evictee vreg from PhysReg. 0 if 267 /// nobody has evicted Evictee from PhysReg. 268 EvictorInfo getEvictor(Register Evictee) { 269 if (Evictees.count(Evictee)) { 270 return Evictees[Evictee]; 271 } 272 273 return EvictorInfo(0, 0); 274 } 275 }; 276 277 // Keeps track of past evictions in order to optimize region split decision. 278 EvictionTrack LastEvicted; 279 280 // splitting state. 281 std::unique_ptr<SplitAnalysis> SA; 282 std::unique_ptr<SplitEditor> SE; 283 284 /// Cached per-block interference maps 285 InterferenceCache IntfCache; 286 287 /// All basic blocks where the current register has uses. 288 SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints; 289 290 /// Global live range splitting candidate info. 291 struct GlobalSplitCandidate { 292 // Register intended for assignment, or 0. 293 MCRegister PhysReg; 294 295 // SplitKit interval index for this candidate. 296 unsigned IntvIdx; 297 298 // Interference for PhysReg. 299 InterferenceCache::Cursor Intf; 300 301 // Bundles where this candidate should be live. 302 BitVector LiveBundles; 303 SmallVector<unsigned, 8> ActiveBlocks; 304 305 void reset(InterferenceCache &Cache, MCRegister Reg) { 306 PhysReg = Reg; 307 IntvIdx = 0; 308 Intf.setPhysReg(Cache, Reg); 309 LiveBundles.clear(); 310 ActiveBlocks.clear(); 311 } 312 313 // Set B[I] = C for every live bundle where B[I] was NoCand. 314 unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) { 315 unsigned Count = 0; 316 for (unsigned I : LiveBundles.set_bits()) 317 if (B[I] == NoCand) { 318 B[I] = C; 319 Count++; 320 } 321 return Count; 322 } 323 }; 324 325 /// Candidate info for each PhysReg in AllocationOrder. 326 /// This vector never shrinks, but grows to the size of the largest register 327 /// class. 328 SmallVector<GlobalSplitCandidate, 32> GlobalCand; 329 330 enum : unsigned { NoCand = ~0u }; 331 332 /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to 333 /// NoCand which indicates the stack interval. 334 SmallVector<unsigned, 32> BundleCand; 335 336 /// Callee-save register cost, calculated once per machine function. 337 BlockFrequency CSRCost; 338 339 /// Run or not the local reassignment heuristic. This information is 340 /// obtained from the TargetSubtargetInfo. 341 bool EnableLocalReassign; 342 343 /// Enable or not the consideration of the cost of local intervals created 344 /// by a split candidate when choosing the best split candidate. 345 bool EnableAdvancedRASplitCost; 346 347 /// Set of broken hints that may be reconciled later because of eviction. 348 SmallSetVector<LiveInterval *, 8> SetOfBrokenHints; 349 350 /// The register cost values. This list will be recreated for each Machine 351 /// Function 352 ArrayRef<uint8_t> RegCosts; 353 354 public: 355 RAGreedy(const RegClassFilterFunc F = allocateAllRegClasses); 356 357 /// Return the pass name. 358 StringRef getPassName() const override { return "Greedy Register Allocator"; } 359 360 /// RAGreedy analysis usage. 361 void getAnalysisUsage(AnalysisUsage &AU) const override; 362 void releaseMemory() override; 363 Spiller &spiller() override { return *SpillerInstance; } 364 void enqueueImpl(LiveInterval *LI) override; 365 LiveInterval *dequeue() override; 366 MCRegister selectOrSplit(LiveInterval &, 367 SmallVectorImpl<Register> &) override; 368 void aboutToRemoveInterval(LiveInterval &) override; 369 370 /// Perform register allocation. 371 bool runOnMachineFunction(MachineFunction &mf) override; 372 373 MachineFunctionProperties getRequiredProperties() const override { 374 return MachineFunctionProperties().set( 375 MachineFunctionProperties::Property::NoPHIs); 376 } 377 378 MachineFunctionProperties getClearedProperties() const override { 379 return MachineFunctionProperties().set( 380 MachineFunctionProperties::Property::IsSSA); 381 } 382 383 static char ID; 384 385 private: 386 MCRegister selectOrSplitImpl(LiveInterval &, SmallVectorImpl<Register> &, 387 SmallVirtRegSet &, unsigned = 0); 388 389 bool LRE_CanEraseVirtReg(Register) override; 390 void LRE_WillShrinkVirtReg(Register) override; 391 void LRE_DidCloneVirtReg(Register, Register) override; 392 void enqueue(PQueue &CurQueue, LiveInterval *LI); 393 LiveInterval *dequeue(PQueue &CurQueue); 394 395 BlockFrequency calcSpillCost(); 396 bool addSplitConstraints(InterferenceCache::Cursor, BlockFrequency&); 397 bool addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>); 398 bool growRegion(GlobalSplitCandidate &Cand); 399 bool splitCanCauseEvictionChain(Register Evictee, GlobalSplitCandidate &Cand, 400 unsigned BBNumber, 401 const AllocationOrder &Order); 402 bool splitCanCauseLocalSpill(unsigned VirtRegToSplit, 403 GlobalSplitCandidate &Cand, unsigned BBNumber, 404 const AllocationOrder &Order); 405 BlockFrequency calcGlobalSplitCost(GlobalSplitCandidate &, 406 const AllocationOrder &Order, 407 bool *CanCauseEvictionChain); 408 bool calcCompactRegion(GlobalSplitCandidate&); 409 void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>); 410 void calcGapWeights(MCRegister, SmallVectorImpl<float> &); 411 Register canReassign(LiveInterval &VirtReg, Register PrevReg) const; 412 bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool) const; 413 bool canEvictInterference(LiveInterval &, MCRegister, bool, EvictionCost &, 414 const SmallVirtRegSet &) const; 415 bool canEvictInterferenceInRange(const LiveInterval &VirtReg, 416 MCRegister PhysReg, SlotIndex Start, 417 SlotIndex End, EvictionCost &MaxCost) const; 418 MCRegister getCheapestEvicteeWeight(const AllocationOrder &Order, 419 const LiveInterval &VirtReg, 420 SlotIndex Start, SlotIndex End, 421 float *BestEvictWeight) const; 422 void evictInterference(LiveInterval &, MCRegister, 423 SmallVectorImpl<Register> &); 424 bool mayRecolorAllInterferences(MCRegister PhysReg, LiveInterval &VirtReg, 425 SmallLISet &RecoloringCandidates, 426 const SmallVirtRegSet &FixedRegisters); 427 428 MCRegister tryAssign(LiveInterval&, AllocationOrder&, 429 SmallVectorImpl<Register>&, 430 const SmallVirtRegSet&); 431 MCRegister tryEvict(LiveInterval &, AllocationOrder &, 432 SmallVectorImpl<Register> &, uint8_t, 433 const SmallVirtRegSet &); 434 MCRegister tryRegionSplit(LiveInterval &, AllocationOrder &, 435 SmallVectorImpl<Register> &); 436 /// Calculate cost of region splitting. 437 unsigned calculateRegionSplitCost(LiveInterval &VirtReg, 438 AllocationOrder &Order, 439 BlockFrequency &BestCost, 440 unsigned &NumCands, bool IgnoreCSR, 441 bool *CanCauseEvictionChain = nullptr); 442 /// Perform region splitting. 443 unsigned doRegionSplit(LiveInterval &VirtReg, unsigned BestCand, 444 bool HasCompact, 445 SmallVectorImpl<Register> &NewVRegs); 446 /// Check other options before using a callee-saved register for the first 447 /// time. 448 MCRegister tryAssignCSRFirstTime(LiveInterval &VirtReg, 449 AllocationOrder &Order, MCRegister PhysReg, 450 uint8_t &CostPerUseLimit, 451 SmallVectorImpl<Register> &NewVRegs); 452 void initializeCSRCost(); 453 unsigned tryBlockSplit(LiveInterval&, AllocationOrder&, 454 SmallVectorImpl<Register>&); 455 unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&, 456 SmallVectorImpl<Register>&); 457 unsigned tryLocalSplit(LiveInterval&, AllocationOrder&, 458 SmallVectorImpl<Register>&); 459 unsigned trySplit(LiveInterval&, AllocationOrder&, 460 SmallVectorImpl<Register>&, 461 const SmallVirtRegSet&); 462 unsigned tryLastChanceRecoloring(LiveInterval &, AllocationOrder &, 463 SmallVectorImpl<Register> &, 464 SmallVirtRegSet &, unsigned); 465 bool tryRecoloringCandidates(PQueue &, SmallVectorImpl<Register> &, 466 SmallVirtRegSet &, unsigned); 467 void tryHintRecoloring(LiveInterval &); 468 void tryHintsRecoloring(); 469 470 /// Model the information carried by one end of a copy. 471 struct HintInfo { 472 /// The frequency of the copy. 473 BlockFrequency Freq; 474 /// The virtual register or physical register. 475 Register Reg; 476 /// Its currently assigned register. 477 /// In case of a physical register Reg == PhysReg. 478 MCRegister PhysReg; 479 480 HintInfo(BlockFrequency Freq, Register Reg, MCRegister PhysReg) 481 : Freq(Freq), Reg(Reg), PhysReg(PhysReg) {} 482 }; 483 using HintsInfo = SmallVector<HintInfo, 4>; 484 485 BlockFrequency getBrokenHintFreq(const HintsInfo &, MCRegister); 486 void collectHintInfo(Register, HintsInfo &); 487 488 bool isUnusedCalleeSavedReg(MCRegister PhysReg) const; 489 490 /// Greedy RA statistic to remark. 491 struct RAGreedyStats { 492 unsigned Reloads = 0; 493 unsigned FoldedReloads = 0; 494 unsigned ZeroCostFoldedReloads = 0; 495 unsigned Spills = 0; 496 unsigned FoldedSpills = 0; 497 unsigned Copies = 0; 498 float ReloadsCost = 0.0f; 499 float FoldedReloadsCost = 0.0f; 500 float SpillsCost = 0.0f; 501 float FoldedSpillsCost = 0.0f; 502 float CopiesCost = 0.0f; 503 504 bool isEmpty() { 505 return !(Reloads || FoldedReloads || Spills || FoldedSpills || 506 ZeroCostFoldedReloads || Copies); 507 } 508 509 void add(RAGreedyStats other) { 510 Reloads += other.Reloads; 511 FoldedReloads += other.FoldedReloads; 512 ZeroCostFoldedReloads += other.ZeroCostFoldedReloads; 513 Spills += other.Spills; 514 FoldedSpills += other.FoldedSpills; 515 Copies += other.Copies; 516 ReloadsCost += other.ReloadsCost; 517 FoldedReloadsCost += other.FoldedReloadsCost; 518 SpillsCost += other.SpillsCost; 519 FoldedSpillsCost += other.FoldedSpillsCost; 520 CopiesCost += other.CopiesCost; 521 } 522 523 void report(MachineOptimizationRemarkMissed &R); 524 }; 525 526 /// Compute statistic for a basic block. 527 RAGreedyStats computeStats(MachineBasicBlock &MBB); 528 529 /// Compute and report statistic through a remark. 530 RAGreedyStats reportStats(MachineLoop *L); 531 532 /// Report the statistic for each loop. 533 void reportStats(); 534 }; 535 536 } // end anonymous namespace 537 538 char RAGreedy::ID = 0; 539 char &llvm::RAGreedyID = RAGreedy::ID; 540 541 INITIALIZE_PASS_BEGIN(RAGreedy, "greedy", 542 "Greedy Register Allocator", false, false) 543 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables) 544 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 545 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 546 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer) 547 INITIALIZE_PASS_DEPENDENCY(MachineScheduler) 548 INITIALIZE_PASS_DEPENDENCY(LiveStacks) 549 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 550 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 551 INITIALIZE_PASS_DEPENDENCY(VirtRegMap) 552 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix) 553 INITIALIZE_PASS_DEPENDENCY(EdgeBundles) 554 INITIALIZE_PASS_DEPENDENCY(SpillPlacement) 555 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass) 556 INITIALIZE_PASS_END(RAGreedy, "greedy", 557 "Greedy Register Allocator", false, false) 558 559 #ifndef NDEBUG 560 const char *const RAGreedy::StageName[] = { 561 "RS_New", 562 "RS_Assign", 563 "RS_Split", 564 "RS_Split2", 565 "RS_Spill", 566 "RS_Memory", 567 "RS_Done" 568 }; 569 #endif 570 571 // Hysteresis to use when comparing floats. 572 // This helps stabilize decisions based on float comparisons. 573 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875 574 575 FunctionPass* llvm::createGreedyRegisterAllocator() { 576 return new RAGreedy(); 577 } 578 579 namespace llvm { 580 FunctionPass* createGreedyRegisterAllocator( 581 std::function<bool(const TargetRegisterInfo &TRI, 582 const TargetRegisterClass &RC)> Ftor); 583 584 } 585 586 FunctionPass* llvm::createGreedyRegisterAllocator( 587 std::function<bool(const TargetRegisterInfo &TRI, 588 const TargetRegisterClass &RC)> Ftor) { 589 return new RAGreedy(Ftor); 590 } 591 592 RAGreedy::RAGreedy(RegClassFilterFunc F): 593 MachineFunctionPass(ID), 594 RegAllocBase(F) { 595 } 596 597 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const { 598 AU.setPreservesCFG(); 599 AU.addRequired<MachineBlockFrequencyInfo>(); 600 AU.addPreserved<MachineBlockFrequencyInfo>(); 601 AU.addRequired<AAResultsWrapperPass>(); 602 AU.addPreserved<AAResultsWrapperPass>(); 603 AU.addRequired<LiveIntervals>(); 604 AU.addPreserved<LiveIntervals>(); 605 AU.addRequired<SlotIndexes>(); 606 AU.addPreserved<SlotIndexes>(); 607 AU.addRequired<LiveDebugVariables>(); 608 AU.addPreserved<LiveDebugVariables>(); 609 AU.addRequired<LiveStacks>(); 610 AU.addPreserved<LiveStacks>(); 611 AU.addRequired<MachineDominatorTree>(); 612 AU.addPreserved<MachineDominatorTree>(); 613 AU.addRequired<MachineLoopInfo>(); 614 AU.addPreserved<MachineLoopInfo>(); 615 AU.addRequired<VirtRegMap>(); 616 AU.addPreserved<VirtRegMap>(); 617 AU.addRequired<LiveRegMatrix>(); 618 AU.addPreserved<LiveRegMatrix>(); 619 AU.addRequired<EdgeBundles>(); 620 AU.addRequired<SpillPlacement>(); 621 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 622 MachineFunctionPass::getAnalysisUsage(AU); 623 } 624 625 //===----------------------------------------------------------------------===// 626 // LiveRangeEdit delegate methods 627 //===----------------------------------------------------------------------===// 628 629 bool RAGreedy::LRE_CanEraseVirtReg(Register VirtReg) { 630 LiveInterval &LI = LIS->getInterval(VirtReg); 631 if (VRM->hasPhys(VirtReg)) { 632 Matrix->unassign(LI); 633 aboutToRemoveInterval(LI); 634 return true; 635 } 636 // Unassigned virtreg is probably in the priority queue. 637 // RegAllocBase will erase it after dequeueing. 638 // Nonetheless, clear the live-range so that the debug 639 // dump will show the right state for that VirtReg. 640 LI.clear(); 641 return false; 642 } 643 644 void RAGreedy::LRE_WillShrinkVirtReg(Register VirtReg) { 645 if (!VRM->hasPhys(VirtReg)) 646 return; 647 648 // Register is assigned, put it back on the queue for reassignment. 649 LiveInterval &LI = LIS->getInterval(VirtReg); 650 Matrix->unassign(LI); 651 RegAllocBase::enqueue(&LI); 652 } 653 654 void RAGreedy::LRE_DidCloneVirtReg(Register New, Register Old) { 655 // Cloning a register we haven't even heard about yet? Just ignore it. 656 if (!ExtraRegInfo.inBounds(Old)) 657 return; 658 659 // LRE may clone a virtual register because dead code elimination causes it to 660 // be split into connected components. The new components are much smaller 661 // than the original, so they should get a new chance at being assigned. 662 // same stage as the parent. 663 ExtraRegInfo[Old].Stage = RS_Assign; 664 ExtraRegInfo.grow(New); 665 ExtraRegInfo[New] = ExtraRegInfo[Old]; 666 } 667 668 void RAGreedy::releaseMemory() { 669 SpillerInstance.reset(); 670 ExtraRegInfo.clear(); 671 GlobalCand.clear(); 672 } 673 674 void RAGreedy::enqueueImpl(LiveInterval *LI) { enqueue(Queue, LI); } 675 676 void RAGreedy::enqueue(PQueue &CurQueue, LiveInterval *LI) { 677 // Prioritize live ranges by size, assigning larger ranges first. 678 // The queue holds (size, reg) pairs. 679 const unsigned Size = LI->getSize(); 680 const Register Reg = LI->reg(); 681 assert(Reg.isVirtual() && "Can only enqueue virtual registers"); 682 unsigned Prio; 683 684 ExtraRegInfo.grow(Reg); 685 if (ExtraRegInfo[Reg].Stage == RS_New) 686 ExtraRegInfo[Reg].Stage = RS_Assign; 687 688 if (ExtraRegInfo[Reg].Stage == RS_Split) { 689 // Unsplit ranges that couldn't be allocated immediately are deferred until 690 // everything else has been allocated. 691 Prio = Size; 692 } else if (ExtraRegInfo[Reg].Stage == RS_Memory) { 693 // Memory operand should be considered last. 694 // Change the priority such that Memory operand are assigned in 695 // the reverse order that they came in. 696 // TODO: Make this a member variable and probably do something about hints. 697 static unsigned MemOp = 0; 698 Prio = MemOp++; 699 } else { 700 // Giant live ranges fall back to the global assignment heuristic, which 701 // prevents excessive spilling in pathological cases. 702 bool ReverseLocal = TRI->reverseLocalAssignment(); 703 const TargetRegisterClass &RC = *MRI->getRegClass(Reg); 704 bool ForceGlobal = !ReverseLocal && 705 (Size / SlotIndex::InstrDist) > (2 * RCI.getNumAllocatableRegs(&RC)); 706 707 if (ExtraRegInfo[Reg].Stage == RS_Assign && !ForceGlobal && !LI->empty() && 708 LIS->intervalIsInOneMBB(*LI)) { 709 // Allocate original local ranges in linear instruction order. Since they 710 // are singly defined, this produces optimal coloring in the absence of 711 // global interference and other constraints. 712 if (!ReverseLocal) 713 Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex()); 714 else { 715 // Allocating bottom up may allow many short LRGs to be assigned first 716 // to one of the cheap registers. This could be much faster for very 717 // large blocks on targets with many physical registers. 718 Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex()); 719 } 720 Prio |= RC.AllocationPriority << 24; 721 } else { 722 // Allocate global and split ranges in long->short order. Long ranges that 723 // don't fit should be spilled (or split) ASAP so they don't create 724 // interference. Mark a bit to prioritize global above local ranges. 725 Prio = (1u << 29) + Size; 726 727 Prio |= RC.AllocationPriority << 24; 728 } 729 // Mark a higher bit to prioritize global and local above RS_Split. 730 Prio |= (1u << 31); 731 732 // Boost ranges that have a physical register hint. 733 if (VRM->hasKnownPreference(Reg)) 734 Prio |= (1u << 30); 735 } 736 // The virtual register number is a tie breaker for same-sized ranges. 737 // Give lower vreg numbers higher priority to assign them first. 738 CurQueue.push(std::make_pair(Prio, ~Reg)); 739 } 740 741 LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); } 742 743 LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) { 744 if (CurQueue.empty()) 745 return nullptr; 746 LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second); 747 CurQueue.pop(); 748 return LI; 749 } 750 751 //===----------------------------------------------------------------------===// 752 // Direct Assignment 753 //===----------------------------------------------------------------------===// 754 755 /// tryAssign - Try to assign VirtReg to an available register. 756 MCRegister RAGreedy::tryAssign(LiveInterval &VirtReg, 757 AllocationOrder &Order, 758 SmallVectorImpl<Register> &NewVRegs, 759 const SmallVirtRegSet &FixedRegisters) { 760 MCRegister PhysReg; 761 for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) { 762 assert(*I); 763 if (!Matrix->checkInterference(VirtReg, *I)) { 764 if (I.isHint()) 765 return *I; 766 else 767 PhysReg = *I; 768 } 769 } 770 if (!PhysReg.isValid()) 771 return PhysReg; 772 773 // PhysReg is available, but there may be a better choice. 774 775 // If we missed a simple hint, try to cheaply evict interference from the 776 // preferred register. 777 if (Register Hint = MRI->getSimpleHint(VirtReg.reg())) 778 if (Order.isHint(Hint)) { 779 MCRegister PhysHint = Hint.asMCReg(); 780 LLVM_DEBUG(dbgs() << "missed hint " << printReg(PhysHint, TRI) << '\n'); 781 EvictionCost MaxCost; 782 MaxCost.setBrokenHints(1); 783 if (canEvictInterference(VirtReg, PhysHint, true, MaxCost, 784 FixedRegisters)) { 785 evictInterference(VirtReg, PhysHint, NewVRegs); 786 return PhysHint; 787 } 788 // Record the missed hint, we may be able to recover 789 // at the end if the surrounding allocation changed. 790 SetOfBrokenHints.insert(&VirtReg); 791 } 792 793 // Try to evict interference from a cheaper alternative. 794 uint8_t Cost = RegCosts[PhysReg]; 795 796 // Most registers have 0 additional cost. 797 if (!Cost) 798 return PhysReg; 799 800 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is available at cost " 801 << (unsigned)Cost << '\n'); 802 MCRegister CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost, FixedRegisters); 803 return CheapReg ? CheapReg : PhysReg; 804 } 805 806 //===----------------------------------------------------------------------===// 807 // Interference eviction 808 //===----------------------------------------------------------------------===// 809 810 Register RAGreedy::canReassign(LiveInterval &VirtReg, Register PrevReg) const { 811 auto Order = 812 AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix); 813 MCRegister PhysReg; 814 for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) { 815 if ((*I).id() == PrevReg.id()) 816 continue; 817 818 MCRegUnitIterator Units(*I, TRI); 819 for (; Units.isValid(); ++Units) { 820 // Instantiate a "subquery", not to be confused with the Queries array. 821 LiveIntervalUnion::Query subQ(VirtReg, Matrix->getLiveUnions()[*Units]); 822 if (subQ.checkInterference()) 823 break; 824 } 825 // If no units have interference, break out with the current PhysReg. 826 if (!Units.isValid()) 827 PhysReg = *I; 828 } 829 if (PhysReg) 830 LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg << " from " 831 << printReg(PrevReg, TRI) << " to " 832 << printReg(PhysReg, TRI) << '\n'); 833 return PhysReg; 834 } 835 836 /// shouldEvict - determine if A should evict the assigned live range B. The 837 /// eviction policy defined by this function together with the allocation order 838 /// defined by enqueue() decides which registers ultimately end up being split 839 /// and spilled. 840 /// 841 /// Cascade numbers are used to prevent infinite loops if this function is a 842 /// cyclic relation. 843 /// 844 /// @param A The live range to be assigned. 845 /// @param IsHint True when A is about to be assigned to its preferred 846 /// register. 847 /// @param B The live range to be evicted. 848 /// @param BreaksHint True when B is already assigned to its preferred register. 849 bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint, 850 LiveInterval &B, bool BreaksHint) const { 851 bool CanSplit = getStage(B) < RS_Spill; 852 853 // Be fairly aggressive about following hints as long as the evictee can be 854 // split. 855 if (CanSplit && IsHint && !BreaksHint) 856 return true; 857 858 if (A.weight() > B.weight()) { 859 LLVM_DEBUG(dbgs() << "should evict: " << B << " w= " << B.weight() << '\n'); 860 return true; 861 } 862 return false; 863 } 864 865 /// canEvictInterference - Return true if all interferences between VirtReg and 866 /// PhysReg can be evicted. 867 /// 868 /// @param VirtReg Live range that is about to be assigned. 869 /// @param PhysReg Desired register for assignment. 870 /// @param IsHint True when PhysReg is VirtReg's preferred register. 871 /// @param MaxCost Only look for cheaper candidates and update with new cost 872 /// when returning true. 873 /// @returns True when interference can be evicted cheaper than MaxCost. 874 bool RAGreedy::canEvictInterference( 875 LiveInterval &VirtReg, MCRegister PhysReg, bool IsHint, 876 EvictionCost &MaxCost, const SmallVirtRegSet &FixedRegisters) const { 877 // It is only possible to evict virtual register interference. 878 if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg) 879 return false; 880 881 bool IsLocal = LIS->intervalIsInOneMBB(VirtReg); 882 883 // Find VirtReg's cascade number. This will be unassigned if VirtReg was never 884 // involved in an eviction before. If a cascade number was assigned, deny 885 // evicting anything with the same or a newer cascade number. This prevents 886 // infinite eviction loops. 887 // 888 // This works out so a register without a cascade number is allowed to evict 889 // anything, and it can be evicted by anything. 890 unsigned Cascade = ExtraRegInfo[VirtReg.reg()].Cascade; 891 if (!Cascade) 892 Cascade = NextCascade; 893 894 EvictionCost Cost; 895 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 896 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 897 // If there is 10 or more interferences, chances are one is heavier. 898 const auto &Interferences = Q.interferingVRegs(10); 899 if (Interferences.size() >= 10) 900 return false; 901 902 // Check if any interfering live range is heavier than MaxWeight. 903 for (LiveInterval *Intf : reverse(Interferences)) { 904 assert(Register::isVirtualRegister(Intf->reg()) && 905 "Only expecting virtual register interference from query"); 906 907 // Do not allow eviction of a virtual register if we are in the middle 908 // of last-chance recoloring and this virtual register is one that we 909 // have scavenged a physical register for. 910 if (FixedRegisters.count(Intf->reg())) 911 return false; 912 913 // Never evict spill products. They cannot split or spill. 914 if (getStage(*Intf) == RS_Done) 915 return false; 916 // Once a live range becomes small enough, it is urgent that we find a 917 // register for it. This is indicated by an infinite spill weight. These 918 // urgent live ranges get to evict almost anything. 919 // 920 // Also allow urgent evictions of unspillable ranges from a strictly 921 // larger allocation order. 922 bool Urgent = 923 !VirtReg.isSpillable() && 924 (Intf->isSpillable() || 925 RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg())) < 926 RegClassInfo.getNumAllocatableRegs( 927 MRI->getRegClass(Intf->reg()))); 928 // Only evict older cascades or live ranges without a cascade. 929 unsigned IntfCascade = ExtraRegInfo[Intf->reg()].Cascade; 930 if (Cascade <= IntfCascade) { 931 if (!Urgent) 932 return false; 933 // We permit breaking cascades for urgent evictions. It should be the 934 // last resort, though, so make it really expensive. 935 Cost.BrokenHints += 10; 936 } 937 // Would this break a satisfied hint? 938 bool BreaksHint = VRM->hasPreferredPhys(Intf->reg()); 939 // Update eviction cost. 940 Cost.BrokenHints += BreaksHint; 941 Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight()); 942 // Abort if this would be too expensive. 943 if (!(Cost < MaxCost)) 944 return false; 945 if (Urgent) 946 continue; 947 // Apply the eviction policy for non-urgent evictions. 948 if (!shouldEvict(VirtReg, IsHint, *Intf, BreaksHint)) 949 return false; 950 // If !MaxCost.isMax(), then we're just looking for a cheap register. 951 // Evicting another local live range in this case could lead to suboptimal 952 // coloring. 953 if (!MaxCost.isMax() && IsLocal && LIS->intervalIsInOneMBB(*Intf) && 954 (!EnableLocalReassign || !canReassign(*Intf, PhysReg))) { 955 return false; 956 } 957 } 958 } 959 MaxCost = Cost; 960 return true; 961 } 962 963 /// Return true if all interferences between VirtReg and PhysReg between 964 /// Start and End can be evicted. 965 /// 966 /// \param VirtReg Live range that is about to be assigned. 967 /// \param PhysReg Desired register for assignment. 968 /// \param Start Start of range to look for interferences. 969 /// \param End End of range to look for interferences. 970 /// \param MaxCost Only look for cheaper candidates and update with new cost 971 /// when returning true. 972 /// \return True when interference can be evicted cheaper than MaxCost. 973 bool RAGreedy::canEvictInterferenceInRange(const LiveInterval &VirtReg, 974 MCRegister PhysReg, SlotIndex Start, 975 SlotIndex End, 976 EvictionCost &MaxCost) const { 977 EvictionCost Cost; 978 979 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 980 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 981 982 // Check if any interfering live range is heavier than MaxWeight. 983 for (const LiveInterval *Intf : reverse(Q.interferingVRegs())) { 984 // Check if interference overlast the segment in interest. 985 if (!Intf->overlaps(Start, End)) 986 continue; 987 988 // Cannot evict non virtual reg interference. 989 if (!Register::isVirtualRegister(Intf->reg())) 990 return false; 991 // Never evict spill products. They cannot split or spill. 992 if (getStage(*Intf) == RS_Done) 993 return false; 994 995 // Would this break a satisfied hint? 996 bool BreaksHint = VRM->hasPreferredPhys(Intf->reg()); 997 // Update eviction cost. 998 Cost.BrokenHints += BreaksHint; 999 Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight()); 1000 // Abort if this would be too expensive. 1001 if (!(Cost < MaxCost)) 1002 return false; 1003 } 1004 } 1005 1006 if (Cost.MaxWeight == 0) 1007 return false; 1008 1009 MaxCost = Cost; 1010 return true; 1011 } 1012 1013 /// Return the physical register that will be best 1014 /// candidate for eviction by a local split interval that will be created 1015 /// between Start and End. 1016 /// 1017 /// \param Order The allocation order 1018 /// \param VirtReg Live range that is about to be assigned. 1019 /// \param Start Start of range to look for interferences 1020 /// \param End End of range to look for interferences 1021 /// \param BestEvictweight The eviction cost of that eviction 1022 /// \return The PhysReg which is the best candidate for eviction and the 1023 /// eviction cost in BestEvictweight 1024 MCRegister RAGreedy::getCheapestEvicteeWeight(const AllocationOrder &Order, 1025 const LiveInterval &VirtReg, 1026 SlotIndex Start, SlotIndex End, 1027 float *BestEvictweight) const { 1028 EvictionCost BestEvictCost; 1029 BestEvictCost.setMax(); 1030 BestEvictCost.MaxWeight = VirtReg.weight(); 1031 MCRegister BestEvicteePhys; 1032 1033 // Go over all physical registers and find the best candidate for eviction 1034 for (MCRegister PhysReg : Order.getOrder()) { 1035 1036 if (!canEvictInterferenceInRange(VirtReg, PhysReg, Start, End, 1037 BestEvictCost)) 1038 continue; 1039 1040 // Best so far. 1041 BestEvicteePhys = PhysReg; 1042 } 1043 *BestEvictweight = BestEvictCost.MaxWeight; 1044 return BestEvicteePhys; 1045 } 1046 1047 /// evictInterference - Evict any interferring registers that prevent VirtReg 1048 /// from being assigned to Physreg. This assumes that canEvictInterference 1049 /// returned true. 1050 void RAGreedy::evictInterference(LiveInterval &VirtReg, MCRegister PhysReg, 1051 SmallVectorImpl<Register> &NewVRegs) { 1052 // Make sure that VirtReg has a cascade number, and assign that cascade 1053 // number to every evicted register. These live ranges than then only be 1054 // evicted by a newer cascade, preventing infinite loops. 1055 unsigned Cascade = ExtraRegInfo[VirtReg.reg()].Cascade; 1056 if (!Cascade) 1057 Cascade = ExtraRegInfo[VirtReg.reg()].Cascade = NextCascade++; 1058 1059 LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg, TRI) 1060 << " interference: Cascade " << Cascade << '\n'); 1061 1062 // Collect all interfering virtregs first. 1063 SmallVector<LiveInterval*, 8> Intfs; 1064 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 1065 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 1066 // We usually have the interfering VRegs cached so collectInterferingVRegs() 1067 // should be fast, we may need to recalculate if when different physregs 1068 // overlap the same register unit so we had different SubRanges queried 1069 // against it. 1070 ArrayRef<LiveInterval*> IVR = Q.interferingVRegs(); 1071 Intfs.append(IVR.begin(), IVR.end()); 1072 } 1073 1074 // Evict them second. This will invalidate the queries. 1075 for (LiveInterval *Intf : Intfs) { 1076 // The same VirtReg may be present in multiple RegUnits. Skip duplicates. 1077 if (!VRM->hasPhys(Intf->reg())) 1078 continue; 1079 1080 LastEvicted.addEviction(PhysReg, VirtReg.reg(), Intf->reg()); 1081 1082 Matrix->unassign(*Intf); 1083 assert((ExtraRegInfo[Intf->reg()].Cascade < Cascade || 1084 VirtReg.isSpillable() < Intf->isSpillable()) && 1085 "Cannot decrease cascade number, illegal eviction"); 1086 ExtraRegInfo[Intf->reg()].Cascade = Cascade; 1087 ++NumEvicted; 1088 NewVRegs.push_back(Intf->reg()); 1089 } 1090 } 1091 1092 /// Returns true if the given \p PhysReg is a callee saved register and has not 1093 /// been used for allocation yet. 1094 bool RAGreedy::isUnusedCalleeSavedReg(MCRegister PhysReg) const { 1095 MCRegister CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg); 1096 if (!CSR) 1097 return false; 1098 1099 return !Matrix->isPhysRegUsed(PhysReg); 1100 } 1101 1102 /// tryEvict - Try to evict all interferences for a physreg. 1103 /// @param VirtReg Currently unassigned virtual register. 1104 /// @param Order Physregs to try. 1105 /// @return Physreg to assign VirtReg, or 0. 1106 MCRegister RAGreedy::tryEvict(LiveInterval &VirtReg, AllocationOrder &Order, 1107 SmallVectorImpl<Register> &NewVRegs, 1108 uint8_t CostPerUseLimit, 1109 const SmallVirtRegSet &FixedRegisters) { 1110 NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription, 1111 TimePassesIsEnabled); 1112 1113 // Keep track of the cheapest interference seen so far. 1114 EvictionCost BestCost; 1115 BestCost.setMax(); 1116 MCRegister BestPhys; 1117 unsigned OrderLimit = Order.getOrder().size(); 1118 1119 // When we are just looking for a reduced cost per use, don't break any 1120 // hints, and only evict smaller spill weights. 1121 if (CostPerUseLimit < uint8_t(~0u)) { 1122 BestCost.BrokenHints = 0; 1123 BestCost.MaxWeight = VirtReg.weight(); 1124 1125 // Check of any registers in RC are below CostPerUseLimit. 1126 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg()); 1127 uint8_t MinCost = RegClassInfo.getMinCost(RC); 1128 if (MinCost >= CostPerUseLimit) { 1129 LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = " 1130 << MinCost << ", no cheaper registers to be found.\n"); 1131 return 0; 1132 } 1133 1134 // It is normal for register classes to have a long tail of registers with 1135 // the same cost. We don't need to look at them if they're too expensive. 1136 if (RegCosts[Order.getOrder().back()] >= CostPerUseLimit) { 1137 OrderLimit = RegClassInfo.getLastCostChange(RC); 1138 LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit 1139 << " regs.\n"); 1140 } 1141 } 1142 1143 for (auto I = Order.begin(), E = Order.getOrderLimitEnd(OrderLimit); I != E; 1144 ++I) { 1145 MCRegister PhysReg = *I; 1146 assert(PhysReg); 1147 if (RegCosts[PhysReg] >= CostPerUseLimit) 1148 continue; 1149 // The first use of a callee-saved register in a function has cost 1. 1150 // Don't start using a CSR when the CostPerUseLimit is low. 1151 if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) { 1152 LLVM_DEBUG( 1153 dbgs() << printReg(PhysReg, TRI) << " would clobber CSR " 1154 << printReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI) 1155 << '\n'); 1156 continue; 1157 } 1158 1159 if (!canEvictInterference(VirtReg, PhysReg, false, BestCost, 1160 FixedRegisters)) 1161 continue; 1162 1163 // Best so far. 1164 BestPhys = PhysReg; 1165 1166 // Stop if the hint can be used. 1167 if (I.isHint()) 1168 break; 1169 } 1170 1171 if (BestPhys.isValid()) 1172 evictInterference(VirtReg, BestPhys, NewVRegs); 1173 return BestPhys; 1174 } 1175 1176 //===----------------------------------------------------------------------===// 1177 // Region Splitting 1178 //===----------------------------------------------------------------------===// 1179 1180 /// addSplitConstraints - Fill out the SplitConstraints vector based on the 1181 /// interference pattern in Physreg and its aliases. Add the constraints to 1182 /// SpillPlacement and return the static cost of this split in Cost, assuming 1183 /// that all preferences in SplitConstraints are met. 1184 /// Return false if there are no bundles with positive bias. 1185 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf, 1186 BlockFrequency &Cost) { 1187 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1188 1189 // Reset interference dependent info. 1190 SplitConstraints.resize(UseBlocks.size()); 1191 BlockFrequency StaticCost = 0; 1192 for (unsigned I = 0; I != UseBlocks.size(); ++I) { 1193 const SplitAnalysis::BlockInfo &BI = UseBlocks[I]; 1194 SpillPlacement::BlockConstraint &BC = SplitConstraints[I]; 1195 1196 BC.Number = BI.MBB->getNumber(); 1197 Intf.moveToBlock(BC.Number); 1198 BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare; 1199 BC.Exit = (BI.LiveOut && 1200 !LIS->getInstructionFromIndex(BI.LastInstr)->isImplicitDef()) 1201 ? SpillPlacement::PrefReg 1202 : SpillPlacement::DontCare; 1203 BC.ChangesValue = BI.FirstDef.isValid(); 1204 1205 if (!Intf.hasInterference()) 1206 continue; 1207 1208 // Number of spill code instructions to insert. 1209 unsigned Ins = 0; 1210 1211 // Interference for the live-in value. 1212 if (BI.LiveIn) { 1213 if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) { 1214 BC.Entry = SpillPlacement::MustSpill; 1215 ++Ins; 1216 } else if (Intf.first() < BI.FirstInstr) { 1217 BC.Entry = SpillPlacement::PrefSpill; 1218 ++Ins; 1219 } else if (Intf.first() < BI.LastInstr) { 1220 ++Ins; 1221 } 1222 1223 // Abort if the spill cannot be inserted at the MBB' start 1224 if (((BC.Entry == SpillPlacement::MustSpill) || 1225 (BC.Entry == SpillPlacement::PrefSpill)) && 1226 SlotIndex::isEarlierInstr(BI.FirstInstr, 1227 SA->getFirstSplitPoint(BC.Number))) 1228 return false; 1229 } 1230 1231 // Interference for the live-out value. 1232 if (BI.LiveOut) { 1233 if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) { 1234 BC.Exit = SpillPlacement::MustSpill; 1235 ++Ins; 1236 } else if (Intf.last() > BI.LastInstr) { 1237 BC.Exit = SpillPlacement::PrefSpill; 1238 ++Ins; 1239 } else if (Intf.last() > BI.FirstInstr) { 1240 ++Ins; 1241 } 1242 } 1243 1244 // Accumulate the total frequency of inserted spill code. 1245 while (Ins--) 1246 StaticCost += SpillPlacer->getBlockFrequency(BC.Number); 1247 } 1248 Cost = StaticCost; 1249 1250 // Add constraints for use-blocks. Note that these are the only constraints 1251 // that may add a positive bias, it is downhill from here. 1252 SpillPlacer->addConstraints(SplitConstraints); 1253 return SpillPlacer->scanActiveBundles(); 1254 } 1255 1256 /// addThroughConstraints - Add constraints and links to SpillPlacer from the 1257 /// live-through blocks in Blocks. 1258 bool RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf, 1259 ArrayRef<unsigned> Blocks) { 1260 const unsigned GroupSize = 8; 1261 SpillPlacement::BlockConstraint BCS[GroupSize]; 1262 unsigned TBS[GroupSize]; 1263 unsigned B = 0, T = 0; 1264 1265 for (unsigned Number : Blocks) { 1266 Intf.moveToBlock(Number); 1267 1268 if (!Intf.hasInterference()) { 1269 assert(T < GroupSize && "Array overflow"); 1270 TBS[T] = Number; 1271 if (++T == GroupSize) { 1272 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 1273 T = 0; 1274 } 1275 continue; 1276 } 1277 1278 assert(B < GroupSize && "Array overflow"); 1279 BCS[B].Number = Number; 1280 1281 // Abort if the spill cannot be inserted at the MBB' start 1282 MachineBasicBlock *MBB = MF->getBlockNumbered(Number); 1283 auto FirstNonDebugInstr = MBB->getFirstNonDebugInstr(); 1284 if (FirstNonDebugInstr != MBB->end() && 1285 SlotIndex::isEarlierInstr(LIS->getInstructionIndex(*FirstNonDebugInstr), 1286 SA->getFirstSplitPoint(Number))) 1287 return false; 1288 // Interference for the live-in value. 1289 if (Intf.first() <= Indexes->getMBBStartIdx(Number)) 1290 BCS[B].Entry = SpillPlacement::MustSpill; 1291 else 1292 BCS[B].Entry = SpillPlacement::PrefSpill; 1293 1294 // Interference for the live-out value. 1295 if (Intf.last() >= SA->getLastSplitPoint(Number)) 1296 BCS[B].Exit = SpillPlacement::MustSpill; 1297 else 1298 BCS[B].Exit = SpillPlacement::PrefSpill; 1299 1300 if (++B == GroupSize) { 1301 SpillPlacer->addConstraints(makeArrayRef(BCS, B)); 1302 B = 0; 1303 } 1304 } 1305 1306 SpillPlacer->addConstraints(makeArrayRef(BCS, B)); 1307 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 1308 return true; 1309 } 1310 1311 bool RAGreedy::growRegion(GlobalSplitCandidate &Cand) { 1312 // Keep track of through blocks that have not been added to SpillPlacer. 1313 BitVector Todo = SA->getThroughBlocks(); 1314 SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks; 1315 unsigned AddedTo = 0; 1316 #ifndef NDEBUG 1317 unsigned Visited = 0; 1318 #endif 1319 1320 while (true) { 1321 ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive(); 1322 // Find new through blocks in the periphery of PrefRegBundles. 1323 for (unsigned Bundle : NewBundles) { 1324 // Look at all blocks connected to Bundle in the full graph. 1325 ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle); 1326 for (unsigned Block : Blocks) { 1327 if (!Todo.test(Block)) 1328 continue; 1329 Todo.reset(Block); 1330 // This is a new through block. Add it to SpillPlacer later. 1331 ActiveBlocks.push_back(Block); 1332 #ifndef NDEBUG 1333 ++Visited; 1334 #endif 1335 } 1336 } 1337 // Any new blocks to add? 1338 if (ActiveBlocks.size() == AddedTo) 1339 break; 1340 1341 // Compute through constraints from the interference, or assume that all 1342 // through blocks prefer spilling when forming compact regions. 1343 auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo); 1344 if (Cand.PhysReg) { 1345 if (!addThroughConstraints(Cand.Intf, NewBlocks)) 1346 return false; 1347 } else 1348 // Provide a strong negative bias on through blocks to prevent unwanted 1349 // liveness on loop backedges. 1350 SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true); 1351 AddedTo = ActiveBlocks.size(); 1352 1353 // Perhaps iterating can enable more bundles? 1354 SpillPlacer->iterate(); 1355 } 1356 LLVM_DEBUG(dbgs() << ", v=" << Visited); 1357 return true; 1358 } 1359 1360 /// calcCompactRegion - Compute the set of edge bundles that should be live 1361 /// when splitting the current live range into compact regions. Compact 1362 /// regions can be computed without looking at interference. They are the 1363 /// regions formed by removing all the live-through blocks from the live range. 1364 /// 1365 /// Returns false if the current live range is already compact, or if the 1366 /// compact regions would form single block regions anyway. 1367 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) { 1368 // Without any through blocks, the live range is already compact. 1369 if (!SA->getNumThroughBlocks()) 1370 return false; 1371 1372 // Compact regions don't correspond to any physreg. 1373 Cand.reset(IntfCache, MCRegister::NoRegister); 1374 1375 LLVM_DEBUG(dbgs() << "Compact region bundles"); 1376 1377 // Use the spill placer to determine the live bundles. GrowRegion pretends 1378 // that all the through blocks have interference when PhysReg is unset. 1379 SpillPlacer->prepare(Cand.LiveBundles); 1380 1381 // The static split cost will be zero since Cand.Intf reports no interference. 1382 BlockFrequency Cost; 1383 if (!addSplitConstraints(Cand.Intf, Cost)) { 1384 LLVM_DEBUG(dbgs() << ", none.\n"); 1385 return false; 1386 } 1387 1388 if (!growRegion(Cand)) { 1389 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n"); 1390 return false; 1391 } 1392 1393 SpillPlacer->finish(); 1394 1395 if (!Cand.LiveBundles.any()) { 1396 LLVM_DEBUG(dbgs() << ", none.\n"); 1397 return false; 1398 } 1399 1400 LLVM_DEBUG({ 1401 for (int I : Cand.LiveBundles.set_bits()) 1402 dbgs() << " EB#" << I; 1403 dbgs() << ".\n"; 1404 }); 1405 return true; 1406 } 1407 1408 /// calcSpillCost - Compute how expensive it would be to split the live range in 1409 /// SA around all use blocks instead of forming bundle regions. 1410 BlockFrequency RAGreedy::calcSpillCost() { 1411 BlockFrequency Cost = 0; 1412 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1413 for (const SplitAnalysis::BlockInfo &BI : UseBlocks) { 1414 unsigned Number = BI.MBB->getNumber(); 1415 // We normally only need one spill instruction - a load or a store. 1416 Cost += SpillPlacer->getBlockFrequency(Number); 1417 1418 // Unless the value is redefined in the block. 1419 if (BI.LiveIn && BI.LiveOut && BI.FirstDef) 1420 Cost += SpillPlacer->getBlockFrequency(Number); 1421 } 1422 return Cost; 1423 } 1424 1425 /// Check if splitting Evictee will create a local split interval in 1426 /// basic block number BBNumber that may cause a bad eviction chain. This is 1427 /// intended to prevent bad eviction sequences like: 1428 /// movl %ebp, 8(%esp) # 4-byte Spill 1429 /// movl %ecx, %ebp 1430 /// movl %ebx, %ecx 1431 /// movl %edi, %ebx 1432 /// movl %edx, %edi 1433 /// cltd 1434 /// idivl %esi 1435 /// movl %edi, %edx 1436 /// movl %ebx, %edi 1437 /// movl %ecx, %ebx 1438 /// movl %ebp, %ecx 1439 /// movl 16(%esp), %ebp # 4 - byte Reload 1440 /// 1441 /// Such sequences are created in 2 scenarios: 1442 /// 1443 /// Scenario #1: 1444 /// %0 is evicted from physreg0 by %1. 1445 /// Evictee %0 is intended for region splitting with split candidate 1446 /// physreg0 (the reg %0 was evicted from). 1447 /// Region splitting creates a local interval because of interference with the 1448 /// evictor %1 (normally region splitting creates 2 interval, the "by reg" 1449 /// and "by stack" intervals and local interval created when interference 1450 /// occurs). 1451 /// One of the split intervals ends up evicting %2 from physreg1. 1452 /// Evictee %2 is intended for region splitting with split candidate 1453 /// physreg1. 1454 /// One of the split intervals ends up evicting %3 from physreg2, etc. 1455 /// 1456 /// Scenario #2 1457 /// %0 is evicted from physreg0 by %1. 1458 /// %2 is evicted from physreg2 by %3 etc. 1459 /// Evictee %0 is intended for region splitting with split candidate 1460 /// physreg1. 1461 /// Region splitting creates a local interval because of interference with the 1462 /// evictor %1. 1463 /// One of the split intervals ends up evicting back original evictor %1 1464 /// from physreg0 (the reg %0 was evicted from). 1465 /// Another evictee %2 is intended for region splitting with split candidate 1466 /// physreg1. 1467 /// One of the split intervals ends up evicting %3 from physreg2, etc. 1468 /// 1469 /// \param Evictee The register considered to be split. 1470 /// \param Cand The split candidate that determines the physical register 1471 /// we are splitting for and the interferences. 1472 /// \param BBNumber The number of a BB for which the region split process will 1473 /// create a local split interval. 1474 /// \param Order The physical registers that may get evicted by a split 1475 /// artifact of Evictee. 1476 /// \return True if splitting Evictee may cause a bad eviction chain, false 1477 /// otherwise. 1478 bool RAGreedy::splitCanCauseEvictionChain(Register Evictee, 1479 GlobalSplitCandidate &Cand, 1480 unsigned BBNumber, 1481 const AllocationOrder &Order) { 1482 EvictionTrack::EvictorInfo VregEvictorInfo = LastEvicted.getEvictor(Evictee); 1483 unsigned Evictor = VregEvictorInfo.first; 1484 MCRegister PhysReg = VregEvictorInfo.second; 1485 1486 // No actual evictor. 1487 if (!Evictor || !PhysReg) 1488 return false; 1489 1490 float MaxWeight = 0; 1491 MCRegister FutureEvictedPhysReg = 1492 getCheapestEvicteeWeight(Order, LIS->getInterval(Evictee), 1493 Cand.Intf.first(), Cand.Intf.last(), &MaxWeight); 1494 1495 // The bad eviction chain occurs when either the split candidate is the 1496 // evicting reg or one of the split artifact will evict the evicting reg. 1497 if ((PhysReg != Cand.PhysReg) && (PhysReg != FutureEvictedPhysReg)) 1498 return false; 1499 1500 Cand.Intf.moveToBlock(BBNumber); 1501 1502 // Check to see if the Evictor contains interference (with Evictee) in the 1503 // given BB. If so, this interference caused the eviction of Evictee from 1504 // PhysReg. This suggest that we will create a local interval during the 1505 // region split to avoid this interference This local interval may cause a bad 1506 // eviction chain. 1507 if (!LIS->hasInterval(Evictor)) 1508 return false; 1509 LiveInterval &EvictorLI = LIS->getInterval(Evictor); 1510 if (EvictorLI.FindSegmentContaining(Cand.Intf.first()) == EvictorLI.end()) 1511 return false; 1512 1513 // Now, check to see if the local interval we will create is going to be 1514 // expensive enough to evict somebody If so, this may cause a bad eviction 1515 // chain. 1516 float splitArtifactWeight = 1517 VRAI->futureWeight(LIS->getInterval(Evictee), 1518 Cand.Intf.first().getPrevIndex(), Cand.Intf.last()); 1519 if (splitArtifactWeight >= 0 && splitArtifactWeight < MaxWeight) 1520 return false; 1521 1522 return true; 1523 } 1524 1525 /// Check if splitting VirtRegToSplit will create a local split interval 1526 /// in basic block number BBNumber that may cause a spill. 1527 /// 1528 /// \param VirtRegToSplit The register considered to be split. 1529 /// \param Cand The split candidate that determines the physical 1530 /// register we are splitting for and the interferences. 1531 /// \param BBNumber The number of a BB for which the region split process 1532 /// will create a local split interval. 1533 /// \param Order The physical registers that may get evicted by a 1534 /// split artifact of VirtRegToSplit. 1535 /// \return True if splitting VirtRegToSplit may cause a spill, false 1536 /// otherwise. 1537 bool RAGreedy::splitCanCauseLocalSpill(unsigned VirtRegToSplit, 1538 GlobalSplitCandidate &Cand, 1539 unsigned BBNumber, 1540 const AllocationOrder &Order) { 1541 Cand.Intf.moveToBlock(BBNumber); 1542 1543 // Check if the local interval will find a non interfereing assignment. 1544 for (auto PhysReg : Order.getOrder()) { 1545 if (!Matrix->checkInterference(Cand.Intf.first().getPrevIndex(), 1546 Cand.Intf.last(), PhysReg)) 1547 return false; 1548 } 1549 1550 // The local interval is not able to find non interferencing assignment 1551 // and not able to evict a less worthy interval, therfore, it can cause a 1552 // spill. 1553 return true; 1554 } 1555 1556 /// calcGlobalSplitCost - Return the global split cost of following the split 1557 /// pattern in LiveBundles. This cost should be added to the local cost of the 1558 /// interference pattern in SplitConstraints. 1559 /// 1560 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand, 1561 const AllocationOrder &Order, 1562 bool *CanCauseEvictionChain) { 1563 BlockFrequency GlobalCost = 0; 1564 const BitVector &LiveBundles = Cand.LiveBundles; 1565 Register VirtRegToSplit = SA->getParent().reg(); 1566 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1567 for (unsigned I = 0; I != UseBlocks.size(); ++I) { 1568 const SplitAnalysis::BlockInfo &BI = UseBlocks[I]; 1569 SpillPlacement::BlockConstraint &BC = SplitConstraints[I]; 1570 bool RegIn = LiveBundles[Bundles->getBundle(BC.Number, false)]; 1571 bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)]; 1572 unsigned Ins = 0; 1573 1574 Cand.Intf.moveToBlock(BC.Number); 1575 // Check wheather a local interval is going to be created during the region 1576 // split. Calculate adavanced spilt cost (cost of local intervals) if option 1577 // is enabled. 1578 if (EnableAdvancedRASplitCost && Cand.Intf.hasInterference() && BI.LiveIn && 1579 BI.LiveOut && RegIn && RegOut) { 1580 1581 if (CanCauseEvictionChain && 1582 splitCanCauseEvictionChain(VirtRegToSplit, Cand, BC.Number, Order)) { 1583 // This interference causes our eviction from this assignment, we might 1584 // evict somebody else and eventually someone will spill, add that cost. 1585 // See splitCanCauseEvictionChain for detailed description of scenarios. 1586 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1587 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1588 1589 *CanCauseEvictionChain = true; 1590 1591 } else if (splitCanCauseLocalSpill(VirtRegToSplit, Cand, BC.Number, 1592 Order)) { 1593 // This interference causes local interval to spill, add that cost. 1594 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1595 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1596 } 1597 } 1598 1599 if (BI.LiveIn) 1600 Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg); 1601 if (BI.LiveOut) 1602 Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg); 1603 while (Ins--) 1604 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1605 } 1606 1607 for (unsigned Number : Cand.ActiveBlocks) { 1608 bool RegIn = LiveBundles[Bundles->getBundle(Number, false)]; 1609 bool RegOut = LiveBundles[Bundles->getBundle(Number, true)]; 1610 if (!RegIn && !RegOut) 1611 continue; 1612 if (RegIn && RegOut) { 1613 // We need double spill code if this block has interference. 1614 Cand.Intf.moveToBlock(Number); 1615 if (Cand.Intf.hasInterference()) { 1616 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1617 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1618 1619 // Check wheather a local interval is going to be created during the 1620 // region split. 1621 if (EnableAdvancedRASplitCost && CanCauseEvictionChain && 1622 splitCanCauseEvictionChain(VirtRegToSplit, Cand, Number, Order)) { 1623 // This interference cause our eviction from this assignment, we might 1624 // evict somebody else, add that cost. 1625 // See splitCanCauseEvictionChain for detailed description of 1626 // scenarios. 1627 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1628 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1629 1630 *CanCauseEvictionChain = true; 1631 } 1632 } 1633 continue; 1634 } 1635 // live-in / stack-out or stack-in live-out. 1636 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1637 } 1638 return GlobalCost; 1639 } 1640 1641 /// splitAroundRegion - Split the current live range around the regions 1642 /// determined by BundleCand and GlobalCand. 1643 /// 1644 /// Before calling this function, GlobalCand and BundleCand must be initialized 1645 /// so each bundle is assigned to a valid candidate, or NoCand for the 1646 /// stack-bound bundles. The shared SA/SE SplitAnalysis and SplitEditor 1647 /// objects must be initialized for the current live range, and intervals 1648 /// created for the used candidates. 1649 /// 1650 /// @param LREdit The LiveRangeEdit object handling the current split. 1651 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value 1652 /// must appear in this list. 1653 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit, 1654 ArrayRef<unsigned> UsedCands) { 1655 // These are the intervals created for new global ranges. We may create more 1656 // intervals for local ranges. 1657 const unsigned NumGlobalIntvs = LREdit.size(); 1658 LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs 1659 << " globals.\n"); 1660 assert(NumGlobalIntvs && "No global intervals configured"); 1661 1662 // Isolate even single instructions when dealing with a proper sub-class. 1663 // That guarantees register class inflation for the stack interval because it 1664 // is all copies. 1665 Register Reg = SA->getParent().reg(); 1666 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 1667 1668 // First handle all the blocks with uses. 1669 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1670 for (const SplitAnalysis::BlockInfo &BI : UseBlocks) { 1671 unsigned Number = BI.MBB->getNumber(); 1672 unsigned IntvIn = 0, IntvOut = 0; 1673 SlotIndex IntfIn, IntfOut; 1674 if (BI.LiveIn) { 1675 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)]; 1676 if (CandIn != NoCand) { 1677 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 1678 IntvIn = Cand.IntvIdx; 1679 Cand.Intf.moveToBlock(Number); 1680 IntfIn = Cand.Intf.first(); 1681 } 1682 } 1683 if (BI.LiveOut) { 1684 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)]; 1685 if (CandOut != NoCand) { 1686 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 1687 IntvOut = Cand.IntvIdx; 1688 Cand.Intf.moveToBlock(Number); 1689 IntfOut = Cand.Intf.last(); 1690 } 1691 } 1692 1693 // Create separate intervals for isolated blocks with multiple uses. 1694 if (!IntvIn && !IntvOut) { 1695 LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " isolated.\n"); 1696 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 1697 SE->splitSingleBlock(BI); 1698 continue; 1699 } 1700 1701 if (IntvIn && IntvOut) 1702 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1703 else if (IntvIn) 1704 SE->splitRegInBlock(BI, IntvIn, IntfIn); 1705 else 1706 SE->splitRegOutBlock(BI, IntvOut, IntfOut); 1707 } 1708 1709 // Handle live-through blocks. The relevant live-through blocks are stored in 1710 // the ActiveBlocks list with each candidate. We need to filter out 1711 // duplicates. 1712 BitVector Todo = SA->getThroughBlocks(); 1713 for (unsigned c = 0; c != UsedCands.size(); ++c) { 1714 ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks; 1715 for (unsigned Number : Blocks) { 1716 if (!Todo.test(Number)) 1717 continue; 1718 Todo.reset(Number); 1719 1720 unsigned IntvIn = 0, IntvOut = 0; 1721 SlotIndex IntfIn, IntfOut; 1722 1723 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)]; 1724 if (CandIn != NoCand) { 1725 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 1726 IntvIn = Cand.IntvIdx; 1727 Cand.Intf.moveToBlock(Number); 1728 IntfIn = Cand.Intf.first(); 1729 } 1730 1731 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)]; 1732 if (CandOut != NoCand) { 1733 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 1734 IntvOut = Cand.IntvIdx; 1735 Cand.Intf.moveToBlock(Number); 1736 IntfOut = Cand.Intf.last(); 1737 } 1738 if (!IntvIn && !IntvOut) 1739 continue; 1740 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1741 } 1742 } 1743 1744 ++NumGlobalSplits; 1745 1746 SmallVector<unsigned, 8> IntvMap; 1747 SE->finish(&IntvMap); 1748 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 1749 1750 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 1751 unsigned OrigBlocks = SA->getNumLiveBlocks(); 1752 1753 // Sort out the new intervals created by splitting. We get four kinds: 1754 // - Remainder intervals should not be split again. 1755 // - Candidate intervals can be assigned to Cand.PhysReg. 1756 // - Block-local splits are candidates for local splitting. 1757 // - DCE leftovers should go back on the queue. 1758 for (unsigned I = 0, E = LREdit.size(); I != E; ++I) { 1759 LiveInterval &Reg = LIS->getInterval(LREdit.get(I)); 1760 1761 // Ignore old intervals from DCE. 1762 if (getStage(Reg) != RS_New) 1763 continue; 1764 1765 // Remainder interval. Don't try splitting again, spill if it doesn't 1766 // allocate. 1767 if (IntvMap[I] == 0) { 1768 setStage(Reg, RS_Spill); 1769 continue; 1770 } 1771 1772 // Global intervals. Allow repeated splitting as long as the number of live 1773 // blocks is strictly decreasing. 1774 if (IntvMap[I] < NumGlobalIntvs) { 1775 if (SA->countLiveBlocks(&Reg) >= OrigBlocks) { 1776 LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks 1777 << " blocks as original.\n"); 1778 // Don't allow repeated splitting as a safe guard against looping. 1779 setStage(Reg, RS_Split2); 1780 } 1781 continue; 1782 } 1783 1784 // Other intervals are treated as new. This includes local intervals created 1785 // for blocks with multiple uses, and anything created by DCE. 1786 } 1787 1788 if (VerifyEnabled) 1789 MF->verify(this, "After splitting live range around region"); 1790 } 1791 1792 MCRegister RAGreedy::tryRegionSplit(LiveInterval &VirtReg, 1793 AllocationOrder &Order, 1794 SmallVectorImpl<Register> &NewVRegs) { 1795 if (!TRI->shouldRegionSplitForVirtReg(*MF, VirtReg)) 1796 return MCRegister::NoRegister; 1797 unsigned NumCands = 0; 1798 BlockFrequency SpillCost = calcSpillCost(); 1799 BlockFrequency BestCost; 1800 1801 // Check if we can split this live range around a compact region. 1802 bool HasCompact = calcCompactRegion(GlobalCand.front()); 1803 if (HasCompact) { 1804 // Yes, keep GlobalCand[0] as the compact region candidate. 1805 NumCands = 1; 1806 BestCost = BlockFrequency::getMaxFrequency(); 1807 } else { 1808 // No benefit from the compact region, our fallback will be per-block 1809 // splitting. Make sure we find a solution that is cheaper than spilling. 1810 BestCost = SpillCost; 1811 LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = "; 1812 MBFI->printBlockFreq(dbgs(), BestCost) << '\n'); 1813 } 1814 1815 bool CanCauseEvictionChain = false; 1816 unsigned BestCand = 1817 calculateRegionSplitCost(VirtReg, Order, BestCost, NumCands, 1818 false /*IgnoreCSR*/, &CanCauseEvictionChain); 1819 1820 // Split candidates with compact regions can cause a bad eviction sequence. 1821 // See splitCanCauseEvictionChain for detailed description of scenarios. 1822 // To avoid it, we need to comapre the cost with the spill cost and not the 1823 // current max frequency. 1824 if (HasCompact && (BestCost > SpillCost) && (BestCand != NoCand) && 1825 CanCauseEvictionChain) { 1826 return MCRegister::NoRegister; 1827 } 1828 1829 // No solutions found, fall back to single block splitting. 1830 if (!HasCompact && BestCand == NoCand) 1831 return MCRegister::NoRegister; 1832 1833 return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs); 1834 } 1835 1836 unsigned RAGreedy::calculateRegionSplitCost(LiveInterval &VirtReg, 1837 AllocationOrder &Order, 1838 BlockFrequency &BestCost, 1839 unsigned &NumCands, bool IgnoreCSR, 1840 bool *CanCauseEvictionChain) { 1841 unsigned BestCand = NoCand; 1842 for (MCPhysReg PhysReg : Order) { 1843 assert(PhysReg); 1844 if (IgnoreCSR && isUnusedCalleeSavedReg(PhysReg)) 1845 continue; 1846 1847 // Discard bad candidates before we run out of interference cache cursors. 1848 // This will only affect register classes with a lot of registers (>32). 1849 if (NumCands == IntfCache.getMaxCursors()) { 1850 unsigned WorstCount = ~0u; 1851 unsigned Worst = 0; 1852 for (unsigned CandIndex = 0; CandIndex != NumCands; ++CandIndex) { 1853 if (CandIndex == BestCand || !GlobalCand[CandIndex].PhysReg) 1854 continue; 1855 unsigned Count = GlobalCand[CandIndex].LiveBundles.count(); 1856 if (Count < WorstCount) { 1857 Worst = CandIndex; 1858 WorstCount = Count; 1859 } 1860 } 1861 --NumCands; 1862 GlobalCand[Worst] = GlobalCand[NumCands]; 1863 if (BestCand == NumCands) 1864 BestCand = Worst; 1865 } 1866 1867 if (GlobalCand.size() <= NumCands) 1868 GlobalCand.resize(NumCands+1); 1869 GlobalSplitCandidate &Cand = GlobalCand[NumCands]; 1870 Cand.reset(IntfCache, PhysReg); 1871 1872 SpillPlacer->prepare(Cand.LiveBundles); 1873 BlockFrequency Cost; 1874 if (!addSplitConstraints(Cand.Intf, Cost)) { 1875 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tno positive bundles\n"); 1876 continue; 1877 } 1878 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tstatic = "; 1879 MBFI->printBlockFreq(dbgs(), Cost)); 1880 if (Cost >= BestCost) { 1881 LLVM_DEBUG({ 1882 if (BestCand == NoCand) 1883 dbgs() << " worse than no bundles\n"; 1884 else 1885 dbgs() << " worse than " 1886 << printReg(GlobalCand[BestCand].PhysReg, TRI) << '\n'; 1887 }); 1888 continue; 1889 } 1890 if (!growRegion(Cand)) { 1891 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n"); 1892 continue; 1893 } 1894 1895 SpillPlacer->finish(); 1896 1897 // No live bundles, defer to splitSingleBlocks(). 1898 if (!Cand.LiveBundles.any()) { 1899 LLVM_DEBUG(dbgs() << " no bundles.\n"); 1900 continue; 1901 } 1902 1903 bool HasEvictionChain = false; 1904 Cost += calcGlobalSplitCost(Cand, Order, &HasEvictionChain); 1905 LLVM_DEBUG({ 1906 dbgs() << ", total = "; 1907 MBFI->printBlockFreq(dbgs(), Cost) << " with bundles"; 1908 for (int I : Cand.LiveBundles.set_bits()) 1909 dbgs() << " EB#" << I; 1910 dbgs() << ".\n"; 1911 }); 1912 if (Cost < BestCost) { 1913 BestCand = NumCands; 1914 BestCost = Cost; 1915 // See splitCanCauseEvictionChain for detailed description of bad 1916 // eviction chain scenarios. 1917 if (CanCauseEvictionChain) 1918 *CanCauseEvictionChain = HasEvictionChain; 1919 } 1920 ++NumCands; 1921 } 1922 1923 if (CanCauseEvictionChain && BestCand != NoCand) { 1924 // See splitCanCauseEvictionChain for detailed description of bad 1925 // eviction chain scenarios. 1926 LLVM_DEBUG(dbgs() << "Best split candidate of vreg " 1927 << printReg(VirtReg.reg(), TRI) << " may "); 1928 if (!(*CanCauseEvictionChain)) 1929 LLVM_DEBUG(dbgs() << "not "); 1930 LLVM_DEBUG(dbgs() << "cause bad eviction chain\n"); 1931 } 1932 1933 return BestCand; 1934 } 1935 1936 unsigned RAGreedy::doRegionSplit(LiveInterval &VirtReg, unsigned BestCand, 1937 bool HasCompact, 1938 SmallVectorImpl<Register> &NewVRegs) { 1939 SmallVector<unsigned, 8> UsedCands; 1940 // Prepare split editor. 1941 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1942 SE->reset(LREdit, SplitSpillMode); 1943 1944 // Assign all edge bundles to the preferred candidate, or NoCand. 1945 BundleCand.assign(Bundles->getNumBundles(), NoCand); 1946 1947 // Assign bundles for the best candidate region. 1948 if (BestCand != NoCand) { 1949 GlobalSplitCandidate &Cand = GlobalCand[BestCand]; 1950 if (unsigned B = Cand.getBundles(BundleCand, BestCand)) { 1951 UsedCands.push_back(BestCand); 1952 Cand.IntvIdx = SE->openIntv(); 1953 LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand.PhysReg, TRI) << " in " 1954 << B << " bundles, intv " << Cand.IntvIdx << ".\n"); 1955 (void)B; 1956 } 1957 } 1958 1959 // Assign bundles for the compact region. 1960 if (HasCompact) { 1961 GlobalSplitCandidate &Cand = GlobalCand.front(); 1962 assert(!Cand.PhysReg && "Compact region has no physreg"); 1963 if (unsigned B = Cand.getBundles(BundleCand, 0)) { 1964 UsedCands.push_back(0); 1965 Cand.IntvIdx = SE->openIntv(); 1966 LLVM_DEBUG(dbgs() << "Split for compact region in " << B 1967 << " bundles, intv " << Cand.IntvIdx << ".\n"); 1968 (void)B; 1969 } 1970 } 1971 1972 splitAroundRegion(LREdit, UsedCands); 1973 return 0; 1974 } 1975 1976 //===----------------------------------------------------------------------===// 1977 // Per-Block Splitting 1978 //===----------------------------------------------------------------------===// 1979 1980 /// tryBlockSplit - Split a global live range around every block with uses. This 1981 /// creates a lot of local live ranges, that will be split by tryLocalSplit if 1982 /// they don't allocate. 1983 unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order, 1984 SmallVectorImpl<Register> &NewVRegs) { 1985 assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed"); 1986 Register Reg = VirtReg.reg(); 1987 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 1988 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1989 SE->reset(LREdit, SplitSpillMode); 1990 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1991 for (const SplitAnalysis::BlockInfo &BI : UseBlocks) { 1992 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 1993 SE->splitSingleBlock(BI); 1994 } 1995 // No blocks were split. 1996 if (LREdit.empty()) 1997 return 0; 1998 1999 // We did split for some blocks. 2000 SmallVector<unsigned, 8> IntvMap; 2001 SE->finish(&IntvMap); 2002 2003 // Tell LiveDebugVariables about the new ranges. 2004 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 2005 2006 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 2007 2008 // Sort out the new intervals created by splitting. The remainder interval 2009 // goes straight to spilling, the new local ranges get to stay RS_New. 2010 for (unsigned I = 0, E = LREdit.size(); I != E; ++I) { 2011 LiveInterval &LI = LIS->getInterval(LREdit.get(I)); 2012 if (getStage(LI) == RS_New && IntvMap[I] == 0) 2013 setStage(LI, RS_Spill); 2014 } 2015 2016 if (VerifyEnabled) 2017 MF->verify(this, "After splitting live range around basic blocks"); 2018 return 0; 2019 } 2020 2021 //===----------------------------------------------------------------------===// 2022 // Per-Instruction Splitting 2023 //===----------------------------------------------------------------------===// 2024 2025 /// Get the number of allocatable registers that match the constraints of \p Reg 2026 /// on \p MI and that are also in \p SuperRC. 2027 static unsigned getNumAllocatableRegsForConstraints( 2028 const MachineInstr *MI, Register Reg, const TargetRegisterClass *SuperRC, 2029 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI, 2030 const RegisterClassInfo &RCI) { 2031 assert(SuperRC && "Invalid register class"); 2032 2033 const TargetRegisterClass *ConstrainedRC = 2034 MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI, 2035 /* ExploreBundle */ true); 2036 if (!ConstrainedRC) 2037 return 0; 2038 return RCI.getNumAllocatableRegs(ConstrainedRC); 2039 } 2040 2041 /// tryInstructionSplit - Split a live range around individual instructions. 2042 /// This is normally not worthwhile since the spiller is doing essentially the 2043 /// same thing. However, when the live range is in a constrained register 2044 /// class, it may help to insert copies such that parts of the live range can 2045 /// be moved to a larger register class. 2046 /// 2047 /// This is similar to spilling to a larger register class. 2048 unsigned 2049 RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order, 2050 SmallVectorImpl<Register> &NewVRegs) { 2051 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg()); 2052 // There is no point to this if there are no larger sub-classes. 2053 if (!RegClassInfo.isProperSubClass(CurRC)) 2054 return 0; 2055 2056 // Always enable split spill mode, since we're effectively spilling to a 2057 // register. 2058 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2059 SE->reset(LREdit, SplitEditor::SM_Size); 2060 2061 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 2062 if (Uses.size() <= 1) 2063 return 0; 2064 2065 LLVM_DEBUG(dbgs() << "Split around " << Uses.size() 2066 << " individual instrs.\n"); 2067 2068 const TargetRegisterClass *SuperRC = 2069 TRI->getLargestLegalSuperClass(CurRC, *MF); 2070 unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC); 2071 // Split around every non-copy instruction if this split will relax 2072 // the constraints on the virtual register. 2073 // Otherwise, splitting just inserts uncoalescable copies that do not help 2074 // the allocation. 2075 for (const SlotIndex Use : Uses) { 2076 if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Use)) 2077 if (MI->isFullCopy() || 2078 SuperRCNumAllocatableRegs == 2079 getNumAllocatableRegsForConstraints(MI, VirtReg.reg(), SuperRC, 2080 TII, TRI, RCI)) { 2081 LLVM_DEBUG(dbgs() << " skip:\t" << Use << '\t' << *MI); 2082 continue; 2083 } 2084 SE->openIntv(); 2085 SlotIndex SegStart = SE->enterIntvBefore(Use); 2086 SlotIndex SegStop = SE->leaveIntvAfter(Use); 2087 SE->useIntv(SegStart, SegStop); 2088 } 2089 2090 if (LREdit.empty()) { 2091 LLVM_DEBUG(dbgs() << "All uses were copies.\n"); 2092 return 0; 2093 } 2094 2095 SmallVector<unsigned, 8> IntvMap; 2096 SE->finish(&IntvMap); 2097 DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS); 2098 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 2099 2100 // Assign all new registers to RS_Spill. This was the last chance. 2101 setStage(LREdit.begin(), LREdit.end(), RS_Spill); 2102 return 0; 2103 } 2104 2105 //===----------------------------------------------------------------------===// 2106 // Local Splitting 2107 //===----------------------------------------------------------------------===// 2108 2109 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted 2110 /// in order to use PhysReg between two entries in SA->UseSlots. 2111 /// 2112 /// GapWeight[I] represents the gap between UseSlots[I] and UseSlots[I + 1]. 2113 /// 2114 void RAGreedy::calcGapWeights(MCRegister PhysReg, 2115 SmallVectorImpl<float> &GapWeight) { 2116 assert(SA->getUseBlocks().size() == 1 && "Not a local interval"); 2117 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 2118 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 2119 const unsigned NumGaps = Uses.size()-1; 2120 2121 // Start and end points for the interference check. 2122 SlotIndex StartIdx = 2123 BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr; 2124 SlotIndex StopIdx = 2125 BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr; 2126 2127 GapWeight.assign(NumGaps, 0.0f); 2128 2129 // Add interference from each overlapping register. 2130 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 2131 if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units) 2132 .checkInterference()) 2133 continue; 2134 2135 // We know that VirtReg is a continuous interval from FirstInstr to 2136 // LastInstr, so we don't need InterferenceQuery. 2137 // 2138 // Interference that overlaps an instruction is counted in both gaps 2139 // surrounding the instruction. The exception is interference before 2140 // StartIdx and after StopIdx. 2141 // 2142 LiveIntervalUnion::SegmentIter IntI = 2143 Matrix->getLiveUnions()[*Units] .find(StartIdx); 2144 for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) { 2145 // Skip the gaps before IntI. 2146 while (Uses[Gap+1].getBoundaryIndex() < IntI.start()) 2147 if (++Gap == NumGaps) 2148 break; 2149 if (Gap == NumGaps) 2150 break; 2151 2152 // Update the gaps covered by IntI. 2153 const float weight = IntI.value()->weight(); 2154 for (; Gap != NumGaps; ++Gap) { 2155 GapWeight[Gap] = std::max(GapWeight[Gap], weight); 2156 if (Uses[Gap+1].getBaseIndex() >= IntI.stop()) 2157 break; 2158 } 2159 if (Gap == NumGaps) 2160 break; 2161 } 2162 } 2163 2164 // Add fixed interference. 2165 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 2166 const LiveRange &LR = LIS->getRegUnit(*Units); 2167 LiveRange::const_iterator I = LR.find(StartIdx); 2168 LiveRange::const_iterator E = LR.end(); 2169 2170 // Same loop as above. Mark any overlapped gaps as HUGE_VALF. 2171 for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) { 2172 while (Uses[Gap+1].getBoundaryIndex() < I->start) 2173 if (++Gap == NumGaps) 2174 break; 2175 if (Gap == NumGaps) 2176 break; 2177 2178 for (; Gap != NumGaps; ++Gap) { 2179 GapWeight[Gap] = huge_valf; 2180 if (Uses[Gap+1].getBaseIndex() >= I->end) 2181 break; 2182 } 2183 if (Gap == NumGaps) 2184 break; 2185 } 2186 } 2187 } 2188 2189 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only 2190 /// basic block. 2191 /// 2192 unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order, 2193 SmallVectorImpl<Register> &NewVRegs) { 2194 // TODO: the function currently only handles a single UseBlock; it should be 2195 // possible to generalize. 2196 if (SA->getUseBlocks().size() != 1) 2197 return 0; 2198 2199 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 2200 2201 // Note that it is possible to have an interval that is live-in or live-out 2202 // while only covering a single block - A phi-def can use undef values from 2203 // predecessors, and the block could be a single-block loop. 2204 // We don't bother doing anything clever about such a case, we simply assume 2205 // that the interval is continuous from FirstInstr to LastInstr. We should 2206 // make sure that we don't do anything illegal to such an interval, though. 2207 2208 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 2209 if (Uses.size() <= 2) 2210 return 0; 2211 const unsigned NumGaps = Uses.size()-1; 2212 2213 LLVM_DEBUG({ 2214 dbgs() << "tryLocalSplit: "; 2215 for (const auto &Use : Uses) 2216 dbgs() << ' ' << Use; 2217 dbgs() << '\n'; 2218 }); 2219 2220 // If VirtReg is live across any register mask operands, compute a list of 2221 // gaps with register masks. 2222 SmallVector<unsigned, 8> RegMaskGaps; 2223 if (Matrix->checkRegMaskInterference(VirtReg)) { 2224 // Get regmask slots for the whole block. 2225 ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber()); 2226 LLVM_DEBUG(dbgs() << RMS.size() << " regmasks in block:"); 2227 // Constrain to VirtReg's live range. 2228 unsigned RI = 2229 llvm::lower_bound(RMS, Uses.front().getRegSlot()) - RMS.begin(); 2230 unsigned RE = RMS.size(); 2231 for (unsigned I = 0; I != NumGaps && RI != RE; ++I) { 2232 // Look for Uses[I] <= RMS <= Uses[I + 1]. 2233 assert(!SlotIndex::isEarlierInstr(RMS[RI], Uses[I])); 2234 if (SlotIndex::isEarlierInstr(Uses[I + 1], RMS[RI])) 2235 continue; 2236 // Skip a regmask on the same instruction as the last use. It doesn't 2237 // overlap the live range. 2238 if (SlotIndex::isSameInstr(Uses[I + 1], RMS[RI]) && I + 1 == NumGaps) 2239 break; 2240 LLVM_DEBUG(dbgs() << ' ' << RMS[RI] << ':' << Uses[I] << '-' 2241 << Uses[I + 1]); 2242 RegMaskGaps.push_back(I); 2243 // Advance ri to the next gap. A regmask on one of the uses counts in 2244 // both gaps. 2245 while (RI != RE && SlotIndex::isEarlierInstr(RMS[RI], Uses[I + 1])) 2246 ++RI; 2247 } 2248 LLVM_DEBUG(dbgs() << '\n'); 2249 } 2250 2251 // Since we allow local split results to be split again, there is a risk of 2252 // creating infinite loops. It is tempting to require that the new live 2253 // ranges have less instructions than the original. That would guarantee 2254 // convergence, but it is too strict. A live range with 3 instructions can be 2255 // split 2+3 (including the COPY), and we want to allow that. 2256 // 2257 // Instead we use these rules: 2258 // 2259 // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the 2260 // noop split, of course). 2261 // 2. Require progress be made for ranges with getStage() == RS_Split2. All 2262 // the new ranges must have fewer instructions than before the split. 2263 // 3. New ranges with the same number of instructions are marked RS_Split2, 2264 // smaller ranges are marked RS_New. 2265 // 2266 // These rules allow a 3 -> 2+3 split once, which we need. They also prevent 2267 // excessive splitting and infinite loops. 2268 // 2269 bool ProgressRequired = getStage(VirtReg) >= RS_Split2; 2270 2271 // Best split candidate. 2272 unsigned BestBefore = NumGaps; 2273 unsigned BestAfter = 0; 2274 float BestDiff = 0; 2275 2276 const float blockFreq = 2277 SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() * 2278 (1.0f / MBFI->getEntryFreq()); 2279 SmallVector<float, 8> GapWeight; 2280 2281 for (MCPhysReg PhysReg : Order) { 2282 assert(PhysReg); 2283 // Keep track of the largest spill weight that would need to be evicted in 2284 // order to make use of PhysReg between UseSlots[I] and UseSlots[I + 1]. 2285 calcGapWeights(PhysReg, GapWeight); 2286 2287 // Remove any gaps with regmask clobbers. 2288 if (Matrix->checkRegMaskInterference(VirtReg, PhysReg)) 2289 for (unsigned I = 0, E = RegMaskGaps.size(); I != E; ++I) 2290 GapWeight[RegMaskGaps[I]] = huge_valf; 2291 2292 // Try to find the best sequence of gaps to close. 2293 // The new spill weight must be larger than any gap interference. 2294 2295 // We will split before Uses[SplitBefore] and after Uses[SplitAfter]. 2296 unsigned SplitBefore = 0, SplitAfter = 1; 2297 2298 // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]). 2299 // It is the spill weight that needs to be evicted. 2300 float MaxGap = GapWeight[0]; 2301 2302 while (true) { 2303 // Live before/after split? 2304 const bool LiveBefore = SplitBefore != 0 || BI.LiveIn; 2305 const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut; 2306 2307 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << ' ' << Uses[SplitBefore] 2308 << '-' << Uses[SplitAfter] << " I=" << MaxGap); 2309 2310 // Stop before the interval gets so big we wouldn't be making progress. 2311 if (!LiveBefore && !LiveAfter) { 2312 LLVM_DEBUG(dbgs() << " all\n"); 2313 break; 2314 } 2315 // Should the interval be extended or shrunk? 2316 bool Shrink = true; 2317 2318 // How many gaps would the new range have? 2319 unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter; 2320 2321 // Legally, without causing looping? 2322 bool Legal = !ProgressRequired || NewGaps < NumGaps; 2323 2324 if (Legal && MaxGap < huge_valf) { 2325 // Estimate the new spill weight. Each instruction reads or writes the 2326 // register. Conservatively assume there are no read-modify-write 2327 // instructions. 2328 // 2329 // Try to guess the size of the new interval. 2330 const float EstWeight = normalizeSpillWeight( 2331 blockFreq * (NewGaps + 1), 2332 Uses[SplitBefore].distance(Uses[SplitAfter]) + 2333 (LiveBefore + LiveAfter) * SlotIndex::InstrDist, 2334 1); 2335 // Would this split be possible to allocate? 2336 // Never allocate all gaps, we wouldn't be making progress. 2337 LLVM_DEBUG(dbgs() << " w=" << EstWeight); 2338 if (EstWeight * Hysteresis >= MaxGap) { 2339 Shrink = false; 2340 float Diff = EstWeight - MaxGap; 2341 if (Diff > BestDiff) { 2342 LLVM_DEBUG(dbgs() << " (best)"); 2343 BestDiff = Hysteresis * Diff; 2344 BestBefore = SplitBefore; 2345 BestAfter = SplitAfter; 2346 } 2347 } 2348 } 2349 2350 // Try to shrink. 2351 if (Shrink) { 2352 if (++SplitBefore < SplitAfter) { 2353 LLVM_DEBUG(dbgs() << " shrink\n"); 2354 // Recompute the max when necessary. 2355 if (GapWeight[SplitBefore - 1] >= MaxGap) { 2356 MaxGap = GapWeight[SplitBefore]; 2357 for (unsigned I = SplitBefore + 1; I != SplitAfter; ++I) 2358 MaxGap = std::max(MaxGap, GapWeight[I]); 2359 } 2360 continue; 2361 } 2362 MaxGap = 0; 2363 } 2364 2365 // Try to extend the interval. 2366 if (SplitAfter >= NumGaps) { 2367 LLVM_DEBUG(dbgs() << " end\n"); 2368 break; 2369 } 2370 2371 LLVM_DEBUG(dbgs() << " extend\n"); 2372 MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]); 2373 } 2374 } 2375 2376 // Didn't find any candidates? 2377 if (BestBefore == NumGaps) 2378 return 0; 2379 2380 LLVM_DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] << '-' 2381 << Uses[BestAfter] << ", " << BestDiff << ", " 2382 << (BestAfter - BestBefore + 1) << " instrs\n"); 2383 2384 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2385 SE->reset(LREdit); 2386 2387 SE->openIntv(); 2388 SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]); 2389 SlotIndex SegStop = SE->leaveIntvAfter(Uses[BestAfter]); 2390 SE->useIntv(SegStart, SegStop); 2391 SmallVector<unsigned, 8> IntvMap; 2392 SE->finish(&IntvMap); 2393 DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS); 2394 2395 // If the new range has the same number of instructions as before, mark it as 2396 // RS_Split2 so the next split will be forced to make progress. Otherwise, 2397 // leave the new intervals as RS_New so they can compete. 2398 bool LiveBefore = BestBefore != 0 || BI.LiveIn; 2399 bool LiveAfter = BestAfter != NumGaps || BI.LiveOut; 2400 unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter; 2401 if (NewGaps >= NumGaps) { 2402 LLVM_DEBUG(dbgs() << "Tagging non-progress ranges:"); 2403 assert(!ProgressRequired && "Didn't make progress when it was required."); 2404 for (unsigned I = 0, E = IntvMap.size(); I != E; ++I) 2405 if (IntvMap[I] == 1) { 2406 setStage(LIS->getInterval(LREdit.get(I)), RS_Split2); 2407 LLVM_DEBUG(dbgs() << ' ' << printReg(LREdit.get(I))); 2408 } 2409 LLVM_DEBUG(dbgs() << '\n'); 2410 } 2411 ++NumLocalSplits; 2412 2413 return 0; 2414 } 2415 2416 //===----------------------------------------------------------------------===// 2417 // Live Range Splitting 2418 //===----------------------------------------------------------------------===// 2419 2420 /// trySplit - Try to split VirtReg or one of its interferences, making it 2421 /// assignable. 2422 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs. 2423 unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order, 2424 SmallVectorImpl<Register> &NewVRegs, 2425 const SmallVirtRegSet &FixedRegisters) { 2426 // Ranges must be Split2 or less. 2427 if (getStage(VirtReg) >= RS_Spill) 2428 return 0; 2429 2430 // Local intervals are handled separately. 2431 if (LIS->intervalIsInOneMBB(VirtReg)) { 2432 NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName, 2433 TimerGroupDescription, TimePassesIsEnabled); 2434 SA->analyze(&VirtReg); 2435 Register PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs); 2436 if (PhysReg || !NewVRegs.empty()) 2437 return PhysReg; 2438 return tryInstructionSplit(VirtReg, Order, NewVRegs); 2439 } 2440 2441 NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName, 2442 TimerGroupDescription, TimePassesIsEnabled); 2443 2444 SA->analyze(&VirtReg); 2445 2446 // First try to split around a region spanning multiple blocks. RS_Split2 2447 // ranges already made dubious progress with region splitting, so they go 2448 // straight to single block splitting. 2449 if (getStage(VirtReg) < RS_Split2) { 2450 MCRegister PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs); 2451 if (PhysReg || !NewVRegs.empty()) 2452 return PhysReg; 2453 } 2454 2455 // Then isolate blocks. 2456 return tryBlockSplit(VirtReg, Order, NewVRegs); 2457 } 2458 2459 //===----------------------------------------------------------------------===// 2460 // Last Chance Recoloring 2461 //===----------------------------------------------------------------------===// 2462 2463 /// Return true if \p reg has any tied def operand. 2464 static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg) { 2465 for (const MachineOperand &MO : MRI->def_operands(reg)) 2466 if (MO.isTied()) 2467 return true; 2468 2469 return false; 2470 } 2471 2472 /// mayRecolorAllInterferences - Check if the virtual registers that 2473 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be 2474 /// recolored to free \p PhysReg. 2475 /// When true is returned, \p RecoloringCandidates has been augmented with all 2476 /// the live intervals that need to be recolored in order to free \p PhysReg 2477 /// for \p VirtReg. 2478 /// \p FixedRegisters contains all the virtual registers that cannot be 2479 /// recolored. 2480 bool RAGreedy::mayRecolorAllInterferences( 2481 MCRegister PhysReg, LiveInterval &VirtReg, SmallLISet &RecoloringCandidates, 2482 const SmallVirtRegSet &FixedRegisters) { 2483 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg()); 2484 2485 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 2486 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 2487 // If there is LastChanceRecoloringMaxInterference or more interferences, 2488 // chances are one would not be recolorable. 2489 if (Q.interferingVRegs(LastChanceRecoloringMaxInterference).size() >= 2490 LastChanceRecoloringMaxInterference && 2491 !ExhaustiveSearch) { 2492 LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n"); 2493 CutOffInfo |= CO_Interf; 2494 return false; 2495 } 2496 for (LiveInterval *Intf : reverse(Q.interferingVRegs())) { 2497 // If Intf is done and sit on the same register class as VirtReg, 2498 // it would not be recolorable as it is in the same state as VirtReg. 2499 // However, if VirtReg has tied defs and Intf doesn't, then 2500 // there is still a point in examining if it can be recolorable. 2501 if (((getStage(*Intf) == RS_Done && 2502 MRI->getRegClass(Intf->reg()) == CurRC) && 2503 !(hasTiedDef(MRI, VirtReg.reg()) && 2504 !hasTiedDef(MRI, Intf->reg()))) || 2505 FixedRegisters.count(Intf->reg())) { 2506 LLVM_DEBUG( 2507 dbgs() << "Early abort: the interference is not recolorable.\n"); 2508 return false; 2509 } 2510 RecoloringCandidates.insert(Intf); 2511 } 2512 } 2513 return true; 2514 } 2515 2516 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring 2517 /// its interferences. 2518 /// Last chance recoloring chooses a color for \p VirtReg and recolors every 2519 /// virtual register that was using it. The recoloring process may recursively 2520 /// use the last chance recoloring. Therefore, when a virtual register has been 2521 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot 2522 /// be last-chance-recolored again during this recoloring "session". 2523 /// E.g., 2524 /// Let 2525 /// vA can use {R1, R2 } 2526 /// vB can use { R2, R3} 2527 /// vC can use {R1 } 2528 /// Where vA, vB, and vC cannot be split anymore (they are reloads for 2529 /// instance) and they all interfere. 2530 /// 2531 /// vA is assigned R1 2532 /// vB is assigned R2 2533 /// vC tries to evict vA but vA is already done. 2534 /// Regular register allocation fails. 2535 /// 2536 /// Last chance recoloring kicks in: 2537 /// vC does as if vA was evicted => vC uses R1. 2538 /// vC is marked as fixed. 2539 /// vA needs to find a color. 2540 /// None are available. 2541 /// vA cannot evict vC: vC is a fixed virtual register now. 2542 /// vA does as if vB was evicted => vA uses R2. 2543 /// vB needs to find a color. 2544 /// R3 is available. 2545 /// Recoloring => vC = R1, vA = R2, vB = R3 2546 /// 2547 /// \p Order defines the preferred allocation order for \p VirtReg. 2548 /// \p NewRegs will contain any new virtual register that have been created 2549 /// (split, spill) during the process and that must be assigned. 2550 /// \p FixedRegisters contains all the virtual registers that cannot be 2551 /// recolored. 2552 /// \p Depth gives the current depth of the last chance recoloring. 2553 /// \return a physical register that can be used for VirtReg or ~0u if none 2554 /// exists. 2555 unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg, 2556 AllocationOrder &Order, 2557 SmallVectorImpl<Register> &NewVRegs, 2558 SmallVirtRegSet &FixedRegisters, 2559 unsigned Depth) { 2560 if (!TRI->shouldUseLastChanceRecoloringForVirtReg(*MF, VirtReg)) 2561 return ~0u; 2562 2563 LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n'); 2564 // Ranges must be Done. 2565 assert((getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) && 2566 "Last chance recoloring should really be last chance"); 2567 // Set the max depth to LastChanceRecoloringMaxDepth. 2568 // We may want to reconsider that if we end up with a too large search space 2569 // for target with hundreds of registers. 2570 // Indeed, in that case we may want to cut the search space earlier. 2571 if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) { 2572 LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n"); 2573 CutOffInfo |= CO_Depth; 2574 return ~0u; 2575 } 2576 2577 // Set of Live intervals that will need to be recolored. 2578 SmallLISet RecoloringCandidates; 2579 // Record the original mapping virtual register to physical register in case 2580 // the recoloring fails. 2581 DenseMap<Register, MCRegister> VirtRegToPhysReg; 2582 // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in 2583 // this recoloring "session". 2584 assert(!FixedRegisters.count(VirtReg.reg())); 2585 FixedRegisters.insert(VirtReg.reg()); 2586 SmallVector<Register, 4> CurrentNewVRegs; 2587 2588 for (MCRegister PhysReg : Order) { 2589 assert(PhysReg.isValid()); 2590 LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg << " to " 2591 << printReg(PhysReg, TRI) << '\n'); 2592 RecoloringCandidates.clear(); 2593 VirtRegToPhysReg.clear(); 2594 CurrentNewVRegs.clear(); 2595 2596 // It is only possible to recolor virtual register interference. 2597 if (Matrix->checkInterference(VirtReg, PhysReg) > 2598 LiveRegMatrix::IK_VirtReg) { 2599 LLVM_DEBUG( 2600 dbgs() << "Some interferences are not with virtual registers.\n"); 2601 2602 continue; 2603 } 2604 2605 // Early give up on this PhysReg if it is obvious we cannot recolor all 2606 // the interferences. 2607 if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates, 2608 FixedRegisters)) { 2609 LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n"); 2610 continue; 2611 } 2612 2613 // RecoloringCandidates contains all the virtual registers that interfer 2614 // with VirtReg on PhysReg (or one of its aliases). 2615 // Enqueue them for recoloring and perform the actual recoloring. 2616 PQueue RecoloringQueue; 2617 for (LiveInterval *RC : RecoloringCandidates) { 2618 Register ItVirtReg = RC->reg(); 2619 enqueue(RecoloringQueue, RC); 2620 assert(VRM->hasPhys(ItVirtReg) && 2621 "Interferences are supposed to be with allocated variables"); 2622 2623 // Record the current allocation. 2624 VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg); 2625 // unset the related struct. 2626 Matrix->unassign(*RC); 2627 } 2628 2629 // Do as if VirtReg was assigned to PhysReg so that the underlying 2630 // recoloring has the right information about the interferes and 2631 // available colors. 2632 Matrix->assign(VirtReg, PhysReg); 2633 2634 // Save the current recoloring state. 2635 // If we cannot recolor all the interferences, we will have to start again 2636 // at this point for the next physical register. 2637 SmallVirtRegSet SaveFixedRegisters(FixedRegisters); 2638 if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs, 2639 FixedRegisters, Depth)) { 2640 // Push the queued vregs into the main queue. 2641 for (Register NewVReg : CurrentNewVRegs) 2642 NewVRegs.push_back(NewVReg); 2643 // Do not mess up with the global assignment process. 2644 // I.e., VirtReg must be unassigned. 2645 Matrix->unassign(VirtReg); 2646 return PhysReg; 2647 } 2648 2649 LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to " 2650 << printReg(PhysReg, TRI) << '\n'); 2651 2652 // The recoloring attempt failed, undo the changes. 2653 FixedRegisters = SaveFixedRegisters; 2654 Matrix->unassign(VirtReg); 2655 2656 // For a newly created vreg which is also in RecoloringCandidates, 2657 // don't add it to NewVRegs because its physical register will be restored 2658 // below. Other vregs in CurrentNewVRegs are created by calling 2659 // selectOrSplit and should be added into NewVRegs. 2660 for (Register &R : CurrentNewVRegs) { 2661 if (RecoloringCandidates.count(&LIS->getInterval(R))) 2662 continue; 2663 NewVRegs.push_back(R); 2664 } 2665 2666 for (LiveInterval *RC : RecoloringCandidates) { 2667 Register ItVirtReg = RC->reg(); 2668 if (VRM->hasPhys(ItVirtReg)) 2669 Matrix->unassign(*RC); 2670 MCRegister ItPhysReg = VirtRegToPhysReg[ItVirtReg]; 2671 Matrix->assign(*RC, ItPhysReg); 2672 } 2673 } 2674 2675 // Last chance recoloring did not worked either, give up. 2676 return ~0u; 2677 } 2678 2679 /// tryRecoloringCandidates - Try to assign a new color to every register 2680 /// in \RecoloringQueue. 2681 /// \p NewRegs will contain any new virtual register created during the 2682 /// recoloring process. 2683 /// \p FixedRegisters[in/out] contains all the registers that have been 2684 /// recolored. 2685 /// \return true if all virtual registers in RecoloringQueue were successfully 2686 /// recolored, false otherwise. 2687 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue, 2688 SmallVectorImpl<Register> &NewVRegs, 2689 SmallVirtRegSet &FixedRegisters, 2690 unsigned Depth) { 2691 while (!RecoloringQueue.empty()) { 2692 LiveInterval *LI = dequeue(RecoloringQueue); 2693 LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI << '\n'); 2694 MCRegister PhysReg = 2695 selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, Depth + 1); 2696 // When splitting happens, the live-range may actually be empty. 2697 // In that case, this is okay to continue the recoloring even 2698 // if we did not find an alternative color for it. Indeed, 2699 // there will not be anything to color for LI in the end. 2700 if (PhysReg == ~0u || (!PhysReg && !LI->empty())) 2701 return false; 2702 2703 if (!PhysReg) { 2704 assert(LI->empty() && "Only empty live-range do not require a register"); 2705 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI 2706 << " succeeded. Empty LI.\n"); 2707 continue; 2708 } 2709 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI 2710 << " succeeded with: " << printReg(PhysReg, TRI) << '\n'); 2711 2712 Matrix->assign(*LI, PhysReg); 2713 FixedRegisters.insert(LI->reg()); 2714 } 2715 return true; 2716 } 2717 2718 //===----------------------------------------------------------------------===// 2719 // Main Entry Point 2720 //===----------------------------------------------------------------------===// 2721 2722 MCRegister RAGreedy::selectOrSplit(LiveInterval &VirtReg, 2723 SmallVectorImpl<Register> &NewVRegs) { 2724 CutOffInfo = CO_None; 2725 LLVMContext &Ctx = MF->getFunction().getContext(); 2726 SmallVirtRegSet FixedRegisters; 2727 MCRegister Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters); 2728 if (Reg == ~0U && (CutOffInfo != CO_None)) { 2729 uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf); 2730 if (CutOffEncountered == CO_Depth) 2731 Ctx.emitError("register allocation failed: maximum depth for recoloring " 2732 "reached. Use -fexhaustive-register-search to skip " 2733 "cutoffs"); 2734 else if (CutOffEncountered == CO_Interf) 2735 Ctx.emitError("register allocation failed: maximum interference for " 2736 "recoloring reached. Use -fexhaustive-register-search " 2737 "to skip cutoffs"); 2738 else if (CutOffEncountered == (CO_Depth | CO_Interf)) 2739 Ctx.emitError("register allocation failed: maximum interference and " 2740 "depth for recoloring reached. Use " 2741 "-fexhaustive-register-search to skip cutoffs"); 2742 } 2743 return Reg; 2744 } 2745 2746 /// Using a CSR for the first time has a cost because it causes push|pop 2747 /// to be added to prologue|epilogue. Splitting a cold section of the live 2748 /// range can have lower cost than using the CSR for the first time; 2749 /// Spilling a live range in the cold path can have lower cost than using 2750 /// the CSR for the first time. Returns the physical register if we decide 2751 /// to use the CSR; otherwise return 0. 2752 MCRegister 2753 RAGreedy::tryAssignCSRFirstTime(LiveInterval &VirtReg, AllocationOrder &Order, 2754 MCRegister PhysReg, uint8_t &CostPerUseLimit, 2755 SmallVectorImpl<Register> &NewVRegs) { 2756 if (getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) { 2757 // We choose spill over using the CSR for the first time if the spill cost 2758 // is lower than CSRCost. 2759 SA->analyze(&VirtReg); 2760 if (calcSpillCost() >= CSRCost) 2761 return PhysReg; 2762 2763 // We are going to spill, set CostPerUseLimit to 1 to make sure that 2764 // we will not use a callee-saved register in tryEvict. 2765 CostPerUseLimit = 1; 2766 return 0; 2767 } 2768 if (getStage(VirtReg) < RS_Split) { 2769 // We choose pre-splitting over using the CSR for the first time if 2770 // the cost of splitting is lower than CSRCost. 2771 SA->analyze(&VirtReg); 2772 unsigned NumCands = 0; 2773 BlockFrequency BestCost = CSRCost; // Don't modify CSRCost. 2774 unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost, 2775 NumCands, true /*IgnoreCSR*/); 2776 if (BestCand == NoCand) 2777 // Use the CSR if we can't find a region split below CSRCost. 2778 return PhysReg; 2779 2780 // Perform the actual pre-splitting. 2781 doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs); 2782 return 0; 2783 } 2784 return PhysReg; 2785 } 2786 2787 void RAGreedy::aboutToRemoveInterval(LiveInterval &LI) { 2788 // Do not keep invalid information around. 2789 SetOfBrokenHints.remove(&LI); 2790 } 2791 2792 void RAGreedy::initializeCSRCost() { 2793 // We use the larger one out of the command-line option and the value report 2794 // by TRI. 2795 CSRCost = BlockFrequency( 2796 std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost())); 2797 if (!CSRCost.getFrequency()) 2798 return; 2799 2800 // Raw cost is relative to Entry == 2^14; scale it appropriately. 2801 uint64_t ActualEntry = MBFI->getEntryFreq(); 2802 if (!ActualEntry) { 2803 CSRCost = 0; 2804 return; 2805 } 2806 uint64_t FixedEntry = 1 << 14; 2807 if (ActualEntry < FixedEntry) 2808 CSRCost *= BranchProbability(ActualEntry, FixedEntry); 2809 else if (ActualEntry <= UINT32_MAX) 2810 // Invert the fraction and divide. 2811 CSRCost /= BranchProbability(FixedEntry, ActualEntry); 2812 else 2813 // Can't use BranchProbability in general, since it takes 32-bit numbers. 2814 CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry); 2815 } 2816 2817 /// Collect the hint info for \p Reg. 2818 /// The results are stored into \p Out. 2819 /// \p Out is not cleared before being populated. 2820 void RAGreedy::collectHintInfo(Register Reg, HintsInfo &Out) { 2821 for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) { 2822 if (!Instr.isFullCopy()) 2823 continue; 2824 // Look for the other end of the copy. 2825 Register OtherReg = Instr.getOperand(0).getReg(); 2826 if (OtherReg == Reg) { 2827 OtherReg = Instr.getOperand(1).getReg(); 2828 if (OtherReg == Reg) 2829 continue; 2830 } 2831 // Get the current assignment. 2832 MCRegister OtherPhysReg = 2833 OtherReg.isPhysical() ? OtherReg.asMCReg() : VRM->getPhys(OtherReg); 2834 // Push the collected information. 2835 Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg, 2836 OtherPhysReg)); 2837 } 2838 } 2839 2840 /// Using the given \p List, compute the cost of the broken hints if 2841 /// \p PhysReg was used. 2842 /// \return The cost of \p List for \p PhysReg. 2843 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List, 2844 MCRegister PhysReg) { 2845 BlockFrequency Cost = 0; 2846 for (const HintInfo &Info : List) { 2847 if (Info.PhysReg != PhysReg) 2848 Cost += Info.Freq; 2849 } 2850 return Cost; 2851 } 2852 2853 /// Using the register assigned to \p VirtReg, try to recolor 2854 /// all the live ranges that are copy-related with \p VirtReg. 2855 /// The recoloring is then propagated to all the live-ranges that have 2856 /// been recolored and so on, until no more copies can be coalesced or 2857 /// it is not profitable. 2858 /// For a given live range, profitability is determined by the sum of the 2859 /// frequencies of the non-identity copies it would introduce with the old 2860 /// and new register. 2861 void RAGreedy::tryHintRecoloring(LiveInterval &VirtReg) { 2862 // We have a broken hint, check if it is possible to fix it by 2863 // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted 2864 // some register and PhysReg may be available for the other live-ranges. 2865 SmallSet<Register, 4> Visited; 2866 SmallVector<unsigned, 2> RecoloringCandidates; 2867 HintsInfo Info; 2868 Register Reg = VirtReg.reg(); 2869 MCRegister PhysReg = VRM->getPhys(Reg); 2870 // Start the recoloring algorithm from the input live-interval, then 2871 // it will propagate to the ones that are copy-related with it. 2872 Visited.insert(Reg); 2873 RecoloringCandidates.push_back(Reg); 2874 2875 LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg, TRI) 2876 << '(' << printReg(PhysReg, TRI) << ")\n"); 2877 2878 do { 2879 Reg = RecoloringCandidates.pop_back_val(); 2880 2881 // We cannot recolor physical register. 2882 if (Register::isPhysicalRegister(Reg)) 2883 continue; 2884 2885 // This may be a skipped class 2886 if (!VRM->hasPhys(Reg)) { 2887 assert(!ShouldAllocateClass(*TRI, *MRI->getRegClass(Reg)) && 2888 "We have an unallocated variable which should have been handled"); 2889 continue; 2890 } 2891 2892 // Get the live interval mapped with this virtual register to be able 2893 // to check for the interference with the new color. 2894 LiveInterval &LI = LIS->getInterval(Reg); 2895 MCRegister CurrPhys = VRM->getPhys(Reg); 2896 // Check that the new color matches the register class constraints and 2897 // that it is free for this live range. 2898 if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) || 2899 Matrix->checkInterference(LI, PhysReg))) 2900 continue; 2901 2902 LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << '(' << printReg(CurrPhys, TRI) 2903 << ") is recolorable.\n"); 2904 2905 // Gather the hint info. 2906 Info.clear(); 2907 collectHintInfo(Reg, Info); 2908 // Check if recoloring the live-range will increase the cost of the 2909 // non-identity copies. 2910 if (CurrPhys != PhysReg) { 2911 LLVM_DEBUG(dbgs() << "Checking profitability:\n"); 2912 BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys); 2913 BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg); 2914 LLVM_DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency() 2915 << "\nNew Cost: " << NewCopiesCost.getFrequency() 2916 << '\n'); 2917 if (OldCopiesCost < NewCopiesCost) { 2918 LLVM_DEBUG(dbgs() << "=> Not profitable.\n"); 2919 continue; 2920 } 2921 // At this point, the cost is either cheaper or equal. If it is 2922 // equal, we consider this is profitable because it may expose 2923 // more recoloring opportunities. 2924 LLVM_DEBUG(dbgs() << "=> Profitable.\n"); 2925 // Recolor the live-range. 2926 Matrix->unassign(LI); 2927 Matrix->assign(LI, PhysReg); 2928 } 2929 // Push all copy-related live-ranges to keep reconciling the broken 2930 // hints. 2931 for (const HintInfo &HI : Info) { 2932 if (Visited.insert(HI.Reg).second) 2933 RecoloringCandidates.push_back(HI.Reg); 2934 } 2935 } while (!RecoloringCandidates.empty()); 2936 } 2937 2938 /// Try to recolor broken hints. 2939 /// Broken hints may be repaired by recoloring when an evicted variable 2940 /// freed up a register for a larger live-range. 2941 /// Consider the following example: 2942 /// BB1: 2943 /// a = 2944 /// b = 2945 /// BB2: 2946 /// ... 2947 /// = b 2948 /// = a 2949 /// Let us assume b gets split: 2950 /// BB1: 2951 /// a = 2952 /// b = 2953 /// BB2: 2954 /// c = b 2955 /// ... 2956 /// d = c 2957 /// = d 2958 /// = a 2959 /// Because of how the allocation work, b, c, and d may be assigned different 2960 /// colors. Now, if a gets evicted later: 2961 /// BB1: 2962 /// a = 2963 /// st a, SpillSlot 2964 /// b = 2965 /// BB2: 2966 /// c = b 2967 /// ... 2968 /// d = c 2969 /// = d 2970 /// e = ld SpillSlot 2971 /// = e 2972 /// This is likely that we can assign the same register for b, c, and d, 2973 /// getting rid of 2 copies. 2974 void RAGreedy::tryHintsRecoloring() { 2975 for (LiveInterval *LI : SetOfBrokenHints) { 2976 assert(Register::isVirtualRegister(LI->reg()) && 2977 "Recoloring is possible only for virtual registers"); 2978 // Some dead defs may be around (e.g., because of debug uses). 2979 // Ignore those. 2980 if (!VRM->hasPhys(LI->reg())) 2981 continue; 2982 tryHintRecoloring(*LI); 2983 } 2984 } 2985 2986 MCRegister RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg, 2987 SmallVectorImpl<Register> &NewVRegs, 2988 SmallVirtRegSet &FixedRegisters, 2989 unsigned Depth) { 2990 uint8_t CostPerUseLimit = uint8_t(~0u); 2991 // First try assigning a free register. 2992 auto Order = 2993 AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix); 2994 if (MCRegister PhysReg = 2995 tryAssign(VirtReg, Order, NewVRegs, FixedRegisters)) { 2996 // If VirtReg got an assignment, the eviction info is no longer relevant. 2997 LastEvicted.clearEvicteeInfo(VirtReg.reg()); 2998 // When NewVRegs is not empty, we may have made decisions such as evicting 2999 // a virtual register, go with the earlier decisions and use the physical 3000 // register. 3001 if (CSRCost.getFrequency() && isUnusedCalleeSavedReg(PhysReg) && 3002 NewVRegs.empty()) { 3003 MCRegister CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg, 3004 CostPerUseLimit, NewVRegs); 3005 if (CSRReg || !NewVRegs.empty()) 3006 // Return now if we decide to use a CSR or create new vregs due to 3007 // pre-splitting. 3008 return CSRReg; 3009 } else 3010 return PhysReg; 3011 } 3012 3013 LiveRangeStage Stage = getStage(VirtReg); 3014 LLVM_DEBUG(dbgs() << StageName[Stage] << " Cascade " 3015 << ExtraRegInfo[VirtReg.reg()].Cascade << '\n'); 3016 3017 // Try to evict a less worthy live range, but only for ranges from the primary 3018 // queue. The RS_Split ranges already failed to do this, and they should not 3019 // get a second chance until they have been split. 3020 if (Stage != RS_Split) 3021 if (Register PhysReg = 3022 tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit, 3023 FixedRegisters)) { 3024 Register Hint = MRI->getSimpleHint(VirtReg.reg()); 3025 // If VirtReg has a hint and that hint is broken record this 3026 // virtual register as a recoloring candidate for broken hint. 3027 // Indeed, since we evicted a variable in its neighborhood it is 3028 // likely we can at least partially recolor some of the 3029 // copy-related live-ranges. 3030 if (Hint && Hint != PhysReg) 3031 SetOfBrokenHints.insert(&VirtReg); 3032 // If VirtReg eviction someone, the eviction info for it as an evictee is 3033 // no longer relevant. 3034 LastEvicted.clearEvicteeInfo(VirtReg.reg()); 3035 return PhysReg; 3036 } 3037 3038 assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs"); 3039 3040 // The first time we see a live range, don't try to split or spill. 3041 // Wait until the second time, when all smaller ranges have been allocated. 3042 // This gives a better picture of the interference to split around. 3043 if (Stage < RS_Split) { 3044 setStage(VirtReg, RS_Split); 3045 LLVM_DEBUG(dbgs() << "wait for second round\n"); 3046 NewVRegs.push_back(VirtReg.reg()); 3047 return 0; 3048 } 3049 3050 if (Stage < RS_Spill) { 3051 // Try splitting VirtReg or interferences. 3052 unsigned NewVRegSizeBefore = NewVRegs.size(); 3053 Register PhysReg = trySplit(VirtReg, Order, NewVRegs, FixedRegisters); 3054 if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore)) { 3055 // If VirtReg got split, the eviction info is no longer relevant. 3056 LastEvicted.clearEvicteeInfo(VirtReg.reg()); 3057 return PhysReg; 3058 } 3059 } 3060 3061 // If we couldn't allocate a register from spilling, there is probably some 3062 // invalid inline assembly. The base class will report it. 3063 if (Stage >= RS_Done || !VirtReg.isSpillable()) 3064 return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters, 3065 Depth); 3066 3067 // Finally spill VirtReg itself. 3068 if ((EnableDeferredSpilling || 3069 TRI->shouldUseDeferredSpillingForVirtReg(*MF, VirtReg)) && 3070 getStage(VirtReg) < RS_Memory) { 3071 // TODO: This is experimental and in particular, we do not model 3072 // the live range splitting done by spilling correctly. 3073 // We would need a deep integration with the spiller to do the 3074 // right thing here. Anyway, that is still good for early testing. 3075 setStage(VirtReg, RS_Memory); 3076 LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n"); 3077 NewVRegs.push_back(VirtReg.reg()); 3078 } else { 3079 NamedRegionTimer T("spill", "Spiller", TimerGroupName, 3080 TimerGroupDescription, TimePassesIsEnabled); 3081 LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 3082 spiller().spill(LRE); 3083 setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done); 3084 3085 // Tell LiveDebugVariables about the new ranges. Ranges not being covered by 3086 // the new regs are kept in LDV (still mapping to the old register), until 3087 // we rewrite spilled locations in LDV at a later stage. 3088 DebugVars->splitRegister(VirtReg.reg(), LRE.regs(), *LIS); 3089 3090 if (VerifyEnabled) 3091 MF->verify(this, "After spilling"); 3092 } 3093 3094 // The live virtual register requesting allocation was spilled, so tell 3095 // the caller not to allocate anything during this round. 3096 return 0; 3097 } 3098 3099 void RAGreedy::RAGreedyStats::report(MachineOptimizationRemarkMissed &R) { 3100 using namespace ore; 3101 if (Spills) { 3102 R << NV("NumSpills", Spills) << " spills "; 3103 R << NV("TotalSpillsCost", SpillsCost) << " total spills cost "; 3104 } 3105 if (FoldedSpills) { 3106 R << NV("NumFoldedSpills", FoldedSpills) << " folded spills "; 3107 R << NV("TotalFoldedSpillsCost", FoldedSpillsCost) 3108 << " total folded spills cost "; 3109 } 3110 if (Reloads) { 3111 R << NV("NumReloads", Reloads) << " reloads "; 3112 R << NV("TotalReloadsCost", ReloadsCost) << " total reloads cost "; 3113 } 3114 if (FoldedReloads) { 3115 R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads "; 3116 R << NV("TotalFoldedReloadsCost", FoldedReloadsCost) 3117 << " total folded reloads cost "; 3118 } 3119 if (ZeroCostFoldedReloads) 3120 R << NV("NumZeroCostFoldedReloads", ZeroCostFoldedReloads) 3121 << " zero cost folded reloads "; 3122 if (Copies) { 3123 R << NV("NumVRCopies", Copies) << " virtual registers copies "; 3124 R << NV("TotalCopiesCost", CopiesCost) << " total copies cost "; 3125 } 3126 } 3127 3128 RAGreedy::RAGreedyStats RAGreedy::computeStats(MachineBasicBlock &MBB) { 3129 RAGreedyStats Stats; 3130 const MachineFrameInfo &MFI = MF->getFrameInfo(); 3131 int FI; 3132 3133 auto isSpillSlotAccess = [&MFI](const MachineMemOperand *A) { 3134 return MFI.isSpillSlotObjectIndex(cast<FixedStackPseudoSourceValue>( 3135 A->getPseudoValue())->getFrameIndex()); 3136 }; 3137 auto isPatchpointInstr = [](const MachineInstr &MI) { 3138 return MI.getOpcode() == TargetOpcode::PATCHPOINT || 3139 MI.getOpcode() == TargetOpcode::STACKMAP || 3140 MI.getOpcode() == TargetOpcode::STATEPOINT; 3141 }; 3142 for (MachineInstr &MI : MBB) { 3143 if (MI.isCopy()) { 3144 MachineOperand &Dest = MI.getOperand(0); 3145 MachineOperand &Src = MI.getOperand(1); 3146 if (Dest.isReg() && Src.isReg() && Dest.getReg().isVirtual() && 3147 Src.getReg().isVirtual()) 3148 ++Stats.Copies; 3149 continue; 3150 } 3151 3152 SmallVector<const MachineMemOperand *, 2> Accesses; 3153 if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) { 3154 ++Stats.Reloads; 3155 continue; 3156 } 3157 if (TII->isStoreToStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) { 3158 ++Stats.Spills; 3159 continue; 3160 } 3161 if (TII->hasLoadFromStackSlot(MI, Accesses) && 3162 llvm::any_of(Accesses, isSpillSlotAccess)) { 3163 if (!isPatchpointInstr(MI)) { 3164 Stats.FoldedReloads += Accesses.size(); 3165 continue; 3166 } 3167 // For statepoint there may be folded and zero cost folded stack reloads. 3168 std::pair<unsigned, unsigned> NonZeroCostRange = 3169 TII->getPatchpointUnfoldableRange(MI); 3170 SmallSet<unsigned, 16> FoldedReloads; 3171 SmallSet<unsigned, 16> ZeroCostFoldedReloads; 3172 for (unsigned Idx = 0, E = MI.getNumOperands(); Idx < E; ++Idx) { 3173 MachineOperand &MO = MI.getOperand(Idx); 3174 if (!MO.isFI() || !MFI.isSpillSlotObjectIndex(MO.getIndex())) 3175 continue; 3176 if (Idx >= NonZeroCostRange.first && Idx < NonZeroCostRange.second) 3177 FoldedReloads.insert(MO.getIndex()); 3178 else 3179 ZeroCostFoldedReloads.insert(MO.getIndex()); 3180 } 3181 // If stack slot is used in folded reload it is not zero cost then. 3182 for (unsigned Slot : FoldedReloads) 3183 ZeroCostFoldedReloads.erase(Slot); 3184 Stats.FoldedReloads += FoldedReloads.size(); 3185 Stats.ZeroCostFoldedReloads += ZeroCostFoldedReloads.size(); 3186 continue; 3187 } 3188 Accesses.clear(); 3189 if (TII->hasStoreToStackSlot(MI, Accesses) && 3190 llvm::any_of(Accesses, isSpillSlotAccess)) { 3191 Stats.FoldedSpills += Accesses.size(); 3192 } 3193 } 3194 // Set cost of collected statistic by multiplication to relative frequency of 3195 // this basic block. 3196 float RelFreq = MBFI->getBlockFreqRelativeToEntryBlock(&MBB); 3197 Stats.ReloadsCost = RelFreq * Stats.Reloads; 3198 Stats.FoldedReloadsCost = RelFreq * Stats.FoldedReloads; 3199 Stats.SpillsCost = RelFreq * Stats.Spills; 3200 Stats.FoldedSpillsCost = RelFreq * Stats.FoldedSpills; 3201 Stats.CopiesCost = RelFreq * Stats.Copies; 3202 return Stats; 3203 } 3204 3205 RAGreedy::RAGreedyStats RAGreedy::reportStats(MachineLoop *L) { 3206 RAGreedyStats Stats; 3207 3208 // Sum up the spill and reloads in subloops. 3209 for (MachineLoop *SubLoop : *L) 3210 Stats.add(reportStats(SubLoop)); 3211 3212 for (MachineBasicBlock *MBB : L->getBlocks()) 3213 // Handle blocks that were not included in subloops. 3214 if (Loops->getLoopFor(MBB) == L) 3215 Stats.add(computeStats(*MBB)); 3216 3217 if (!Stats.isEmpty()) { 3218 using namespace ore; 3219 3220 ORE->emit([&]() { 3221 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReloadCopies", 3222 L->getStartLoc(), L->getHeader()); 3223 Stats.report(R); 3224 R << "generated in loop"; 3225 return R; 3226 }); 3227 } 3228 return Stats; 3229 } 3230 3231 void RAGreedy::reportStats() { 3232 if (!ORE->allowExtraAnalysis(DEBUG_TYPE)) 3233 return; 3234 RAGreedyStats Stats; 3235 for (MachineLoop *L : *Loops) 3236 Stats.add(reportStats(L)); 3237 // Process non-loop blocks. 3238 for (MachineBasicBlock &MBB : *MF) 3239 if (!Loops->getLoopFor(&MBB)) 3240 Stats.add(computeStats(MBB)); 3241 if (!Stats.isEmpty()) { 3242 using namespace ore; 3243 3244 ORE->emit([&]() { 3245 DebugLoc Loc; 3246 if (auto *SP = MF->getFunction().getSubprogram()) 3247 Loc = DILocation::get(SP->getContext(), SP->getLine(), 1, SP); 3248 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "SpillReloadCopies", Loc, 3249 &MF->front()); 3250 Stats.report(R); 3251 R << "generated in function"; 3252 return R; 3253 }); 3254 } 3255 } 3256 3257 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) { 3258 LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n" 3259 << "********** Function: " << mf.getName() << '\n'); 3260 3261 MF = &mf; 3262 TRI = MF->getSubtarget().getRegisterInfo(); 3263 TII = MF->getSubtarget().getInstrInfo(); 3264 RCI.runOnMachineFunction(mf); 3265 3266 EnableLocalReassign = EnableLocalReassignment || 3267 MF->getSubtarget().enableRALocalReassignment( 3268 MF->getTarget().getOptLevel()); 3269 3270 EnableAdvancedRASplitCost = 3271 ConsiderLocalIntervalCost.getNumOccurrences() 3272 ? ConsiderLocalIntervalCost 3273 : MF->getSubtarget().enableAdvancedRASplitCost(); 3274 3275 if (VerifyEnabled) 3276 MF->verify(this, "Before greedy register allocator"); 3277 3278 RegAllocBase::init(getAnalysis<VirtRegMap>(), 3279 getAnalysis<LiveIntervals>(), 3280 getAnalysis<LiveRegMatrix>()); 3281 Indexes = &getAnalysis<SlotIndexes>(); 3282 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 3283 DomTree = &getAnalysis<MachineDominatorTree>(); 3284 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 3285 Loops = &getAnalysis<MachineLoopInfo>(); 3286 Bundles = &getAnalysis<EdgeBundles>(); 3287 SpillPlacer = &getAnalysis<SpillPlacement>(); 3288 DebugVars = &getAnalysis<LiveDebugVariables>(); 3289 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3290 3291 initializeCSRCost(); 3292 3293 RegCosts = TRI->getRegisterCosts(*MF); 3294 3295 VRAI = std::make_unique<VirtRegAuxInfo>(*MF, *LIS, *VRM, *Loops, *MBFI); 3296 SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM, *VRAI)); 3297 3298 VRAI->calculateSpillWeightsAndHints(); 3299 3300 LLVM_DEBUG(LIS->dump()); 3301 3302 SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops)); 3303 SE.reset(new SplitEditor(*SA, *AA, *LIS, *VRM, *DomTree, *MBFI, *VRAI)); 3304 ExtraRegInfo.clear(); 3305 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 3306 NextCascade = 1; 3307 IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI); 3308 GlobalCand.resize(32); // This will grow as needed. 3309 SetOfBrokenHints.clear(); 3310 LastEvicted.clear(); 3311 3312 allocatePhysRegs(); 3313 tryHintsRecoloring(); 3314 3315 if (VerifyEnabled) 3316 MF->verify(this, "Before post optimization"); 3317 postOptimization(); 3318 reportStats(); 3319 3320 releaseMemory(); 3321 return true; 3322 } 3323