1 //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the RAGreedy function pass for register allocation in 10 // optimized builds. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RegAllocGreedy.h" 15 #include "AllocationOrder.h" 16 #include "InterferenceCache.h" 17 #include "LiveDebugVariables.h" 18 #include "RegAllocBase.h" 19 #include "RegAllocEvictionAdvisor.h" 20 #include "SpillPlacement.h" 21 #include "SplitKit.h" 22 #include "llvm/ADT/ArrayRef.h" 23 #include "llvm/ADT/BitVector.h" 24 #include "llvm/ADT/DenseMap.h" 25 #include "llvm/ADT/IndexedMap.h" 26 #include "llvm/ADT/MapVector.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/SmallPtrSet.h" 29 #include "llvm/ADT/SmallSet.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/ADT/StringRef.h" 33 #include "llvm/Analysis/AliasAnalysis.h" 34 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 35 #include "llvm/CodeGen/CalcSpillWeights.h" 36 #include "llvm/CodeGen/EdgeBundles.h" 37 #include "llvm/CodeGen/LiveInterval.h" 38 #include "llvm/CodeGen/LiveIntervalUnion.h" 39 #include "llvm/CodeGen/LiveIntervals.h" 40 #include "llvm/CodeGen/LiveRangeEdit.h" 41 #include "llvm/CodeGen/LiveRegMatrix.h" 42 #include "llvm/CodeGen/LiveStacks.h" 43 #include "llvm/CodeGen/MachineBasicBlock.h" 44 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 45 #include "llvm/CodeGen/MachineDominators.h" 46 #include "llvm/CodeGen/MachineFrameInfo.h" 47 #include "llvm/CodeGen/MachineFunction.h" 48 #include "llvm/CodeGen/MachineFunctionPass.h" 49 #include "llvm/CodeGen/MachineInstr.h" 50 #include "llvm/CodeGen/MachineLoopInfo.h" 51 #include "llvm/CodeGen/MachineOperand.h" 52 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 53 #include "llvm/CodeGen/MachineRegisterInfo.h" 54 #include "llvm/CodeGen/RegAllocRegistry.h" 55 #include "llvm/CodeGen/RegisterClassInfo.h" 56 #include "llvm/CodeGen/SlotIndexes.h" 57 #include "llvm/CodeGen/Spiller.h" 58 #include "llvm/CodeGen/TargetInstrInfo.h" 59 #include "llvm/CodeGen/TargetRegisterInfo.h" 60 #include "llvm/CodeGen/TargetSubtargetInfo.h" 61 #include "llvm/CodeGen/VirtRegMap.h" 62 #include "llvm/IR/DebugInfoMetadata.h" 63 #include "llvm/IR/Function.h" 64 #include "llvm/IR/LLVMContext.h" 65 #include "llvm/MC/MCRegisterInfo.h" 66 #include "llvm/Pass.h" 67 #include "llvm/Support/BlockFrequency.h" 68 #include "llvm/Support/BranchProbability.h" 69 #include "llvm/Support/CommandLine.h" 70 #include "llvm/Support/Debug.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/Timer.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include "llvm/Target/TargetMachine.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cstdint> 78 #include <memory> 79 #include <queue> 80 #include <tuple> 81 #include <utility> 82 83 using namespace llvm; 84 85 #define DEBUG_TYPE "regalloc" 86 87 STATISTIC(NumGlobalSplits, "Number of split global live ranges"); 88 STATISTIC(NumLocalSplits, "Number of split local live ranges"); 89 STATISTIC(NumEvicted, "Number of interferences evicted"); 90 91 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode( 92 "split-spill-mode", cl::Hidden, 93 cl::desc("Spill mode for splitting live ranges"), 94 cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"), 95 clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"), 96 clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")), 97 cl::init(SplitEditor::SM_Speed)); 98 99 static cl::opt<unsigned> 100 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden, 101 cl::desc("Last chance recoloring max depth"), 102 cl::init(5)); 103 104 static cl::opt<unsigned> LastChanceRecoloringMaxInterference( 105 "lcr-max-interf", cl::Hidden, 106 cl::desc("Last chance recoloring maximum number of considered" 107 " interference at a time"), 108 cl::init(8)); 109 110 static cl::opt<bool> ExhaustiveSearch( 111 "exhaustive-register-search", cl::NotHidden, 112 cl::desc("Exhaustive Search for registers bypassing the depth " 113 "and interference cutoffs of last chance recoloring"), 114 cl::Hidden); 115 116 static cl::opt<bool> EnableDeferredSpilling( 117 "enable-deferred-spilling", cl::Hidden, 118 cl::desc("Instead of spilling a variable right away, defer the actual " 119 "code insertion to the end of the allocation. That way the " 120 "allocator might still find a suitable coloring for this " 121 "variable because of other evicted variables."), 122 cl::init(false)); 123 124 // FIXME: Find a good default for this flag and remove the flag. 125 static cl::opt<unsigned> 126 CSRFirstTimeCost("regalloc-csr-first-time-cost", 127 cl::desc("Cost for first time use of callee-saved register."), 128 cl::init(0), cl::Hidden); 129 130 static cl::opt<bool> ConsiderLocalIntervalCost( 131 "consider-local-interval-cost", cl::Hidden, 132 cl::desc("Consider the cost of local intervals created by a split " 133 "candidate when choosing the best split candidate."), 134 cl::init(false)); 135 136 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator", 137 createGreedyRegisterAllocator); 138 139 char RAGreedy::ID = 0; 140 char &llvm::RAGreedyID = RAGreedy::ID; 141 142 INITIALIZE_PASS_BEGIN(RAGreedy, "greedy", 143 "Greedy Register Allocator", false, false) 144 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables) 145 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 146 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 147 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer) 148 INITIALIZE_PASS_DEPENDENCY(MachineScheduler) 149 INITIALIZE_PASS_DEPENDENCY(LiveStacks) 150 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 151 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 152 INITIALIZE_PASS_DEPENDENCY(VirtRegMap) 153 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix) 154 INITIALIZE_PASS_DEPENDENCY(EdgeBundles) 155 INITIALIZE_PASS_DEPENDENCY(SpillPlacement) 156 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass) 157 INITIALIZE_PASS_DEPENDENCY(RegAllocEvictionAdvisorAnalysis) 158 INITIALIZE_PASS_END(RAGreedy, "greedy", 159 "Greedy Register Allocator", false, false) 160 161 #ifndef NDEBUG 162 const char *const RAGreedy::StageName[] = { 163 "RS_New", 164 "RS_Assign", 165 "RS_Split", 166 "RS_Split2", 167 "RS_Spill", 168 "RS_Memory", 169 "RS_Done" 170 }; 171 #endif 172 173 // Hysteresis to use when comparing floats. 174 // This helps stabilize decisions based on float comparisons. 175 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875 176 177 FunctionPass* llvm::createGreedyRegisterAllocator() { 178 return new RAGreedy(); 179 } 180 181 namespace llvm { 182 FunctionPass* createGreedyRegisterAllocator( 183 std::function<bool(const TargetRegisterInfo &TRI, 184 const TargetRegisterClass &RC)> Ftor); 185 186 } 187 188 FunctionPass* llvm::createGreedyRegisterAllocator( 189 std::function<bool(const TargetRegisterInfo &TRI, 190 const TargetRegisterClass &RC)> Ftor) { 191 return new RAGreedy(Ftor); 192 } 193 194 RAGreedy::RAGreedy(RegClassFilterFunc F): 195 MachineFunctionPass(ID), 196 RegAllocBase(F) { 197 } 198 199 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const { 200 AU.setPreservesCFG(); 201 AU.addRequired<MachineBlockFrequencyInfo>(); 202 AU.addPreserved<MachineBlockFrequencyInfo>(); 203 AU.addRequired<AAResultsWrapperPass>(); 204 AU.addPreserved<AAResultsWrapperPass>(); 205 AU.addRequired<LiveIntervals>(); 206 AU.addPreserved<LiveIntervals>(); 207 AU.addRequired<SlotIndexes>(); 208 AU.addPreserved<SlotIndexes>(); 209 AU.addRequired<LiveDebugVariables>(); 210 AU.addPreserved<LiveDebugVariables>(); 211 AU.addRequired<LiveStacks>(); 212 AU.addPreserved<LiveStacks>(); 213 AU.addRequired<MachineDominatorTree>(); 214 AU.addPreserved<MachineDominatorTree>(); 215 AU.addRequired<MachineLoopInfo>(); 216 AU.addPreserved<MachineLoopInfo>(); 217 AU.addRequired<VirtRegMap>(); 218 AU.addPreserved<VirtRegMap>(); 219 AU.addRequired<LiveRegMatrix>(); 220 AU.addPreserved<LiveRegMatrix>(); 221 AU.addRequired<EdgeBundles>(); 222 AU.addRequired<SpillPlacement>(); 223 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 224 AU.addRequired<RegAllocEvictionAdvisorAnalysis>(); 225 MachineFunctionPass::getAnalysisUsage(AU); 226 } 227 228 //===----------------------------------------------------------------------===// 229 // LiveRangeEdit delegate methods 230 //===----------------------------------------------------------------------===// 231 232 bool RAGreedy::LRE_CanEraseVirtReg(Register VirtReg) { 233 LiveInterval &LI = LIS->getInterval(VirtReg); 234 if (VRM->hasPhys(VirtReg)) { 235 Matrix->unassign(LI); 236 aboutToRemoveInterval(LI); 237 return true; 238 } 239 // Unassigned virtreg is probably in the priority queue. 240 // RegAllocBase will erase it after dequeueing. 241 // Nonetheless, clear the live-range so that the debug 242 // dump will show the right state for that VirtReg. 243 LI.clear(); 244 return false; 245 } 246 247 void RAGreedy::LRE_WillShrinkVirtReg(Register VirtReg) { 248 if (!VRM->hasPhys(VirtReg)) 249 return; 250 251 // Register is assigned, put it back on the queue for reassignment. 252 LiveInterval &LI = LIS->getInterval(VirtReg); 253 Matrix->unassign(LI); 254 RegAllocBase::enqueue(&LI); 255 } 256 257 void RAGreedy::LRE_DidCloneVirtReg(Register New, Register Old) { 258 ExtraInfo->LRE_DidCloneVirtReg(New, Old); 259 } 260 261 void RAGreedy::ExtraRegInfo::LRE_DidCloneVirtReg(Register New, Register Old) { 262 // Cloning a register we haven't even heard about yet? Just ignore it. 263 if (!Info.inBounds(Old)) 264 return; 265 266 // LRE may clone a virtual register because dead code elimination causes it to 267 // be split into connected components. The new components are much smaller 268 // than the original, so they should get a new chance at being assigned. 269 // same stage as the parent. 270 Info[Old].Stage = RS_Assign; 271 Info.grow(New.id()); 272 Info[New] = Info[Old]; 273 } 274 275 void RAGreedy::releaseMemory() { 276 SpillerInstance.reset(); 277 GlobalCand.clear(); 278 } 279 280 void RAGreedy::enqueueImpl(LiveInterval *LI) { enqueue(Queue, LI); } 281 282 void RAGreedy::enqueue(PQueue &CurQueue, LiveInterval *LI) { 283 // Prioritize live ranges by size, assigning larger ranges first. 284 // The queue holds (size, reg) pairs. 285 const unsigned Size = LI->getSize(); 286 const Register Reg = LI->reg(); 287 assert(Reg.isVirtual() && "Can only enqueue virtual registers"); 288 unsigned Prio; 289 290 auto Stage = ExtraInfo->getOrInitStage(Reg); 291 if (Stage == RS_New) { 292 Stage = RS_Assign; 293 ExtraInfo->setStage(Reg, Stage); 294 } 295 if (Stage == RS_Split) { 296 // Unsplit ranges that couldn't be allocated immediately are deferred until 297 // everything else has been allocated. 298 Prio = Size; 299 } else if (Stage == RS_Memory) { 300 // Memory operand should be considered last. 301 // Change the priority such that Memory operand are assigned in 302 // the reverse order that they came in. 303 // TODO: Make this a member variable and probably do something about hints. 304 static unsigned MemOp = 0; 305 Prio = MemOp++; 306 } else { 307 // Giant live ranges fall back to the global assignment heuristic, which 308 // prevents excessive spilling in pathological cases. 309 bool ReverseLocal = TRI->reverseLocalAssignment(); 310 const TargetRegisterClass &RC = *MRI->getRegClass(Reg); 311 bool ForceGlobal = !ReverseLocal && 312 (Size / SlotIndex::InstrDist) > (2 * RCI.getNumAllocatableRegs(&RC)); 313 314 if (Stage == RS_Assign && !ForceGlobal && !LI->empty() && 315 LIS->intervalIsInOneMBB(*LI)) { 316 // Allocate original local ranges in linear instruction order. Since they 317 // are singly defined, this produces optimal coloring in the absence of 318 // global interference and other constraints. 319 if (!ReverseLocal) 320 Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex()); 321 else { 322 // Allocating bottom up may allow many short LRGs to be assigned first 323 // to one of the cheap registers. This could be much faster for very 324 // large blocks on targets with many physical registers. 325 Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex()); 326 } 327 Prio |= RC.AllocationPriority << 24; 328 } else { 329 // Allocate global and split ranges in long->short order. Long ranges that 330 // don't fit should be spilled (or split) ASAP so they don't create 331 // interference. Mark a bit to prioritize global above local ranges. 332 Prio = (1u << 29) + Size; 333 334 Prio |= RC.AllocationPriority << 24; 335 } 336 // Mark a higher bit to prioritize global and local above RS_Split. 337 Prio |= (1u << 31); 338 339 // Boost ranges that have a physical register hint. 340 if (VRM->hasKnownPreference(Reg)) 341 Prio |= (1u << 30); 342 } 343 // The virtual register number is a tie breaker for same-sized ranges. 344 // Give lower vreg numbers higher priority to assign them first. 345 CurQueue.push(std::make_pair(Prio, ~Reg)); 346 } 347 348 LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); } 349 350 LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) { 351 if (CurQueue.empty()) 352 return nullptr; 353 LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second); 354 CurQueue.pop(); 355 return LI; 356 } 357 358 //===----------------------------------------------------------------------===// 359 // Direct Assignment 360 //===----------------------------------------------------------------------===// 361 362 /// tryAssign - Try to assign VirtReg to an available register. 363 MCRegister RAGreedy::tryAssign(LiveInterval &VirtReg, 364 AllocationOrder &Order, 365 SmallVectorImpl<Register> &NewVRegs, 366 const SmallVirtRegSet &FixedRegisters) { 367 MCRegister PhysReg; 368 for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) { 369 assert(*I); 370 if (!Matrix->checkInterference(VirtReg, *I)) { 371 if (I.isHint()) 372 return *I; 373 else 374 PhysReg = *I; 375 } 376 } 377 if (!PhysReg.isValid()) 378 return PhysReg; 379 380 // PhysReg is available, but there may be a better choice. 381 382 // If we missed a simple hint, try to cheaply evict interference from the 383 // preferred register. 384 if (Register Hint = MRI->getSimpleHint(VirtReg.reg())) 385 if (Order.isHint(Hint)) { 386 MCRegister PhysHint = Hint.asMCReg(); 387 LLVM_DEBUG(dbgs() << "missed hint " << printReg(PhysHint, TRI) << '\n'); 388 389 if (EvictAdvisor->canEvictHintInterference(VirtReg, PhysHint, 390 FixedRegisters)) { 391 evictInterference(VirtReg, PhysHint, NewVRegs); 392 return PhysHint; 393 } 394 // Record the missed hint, we may be able to recover 395 // at the end if the surrounding allocation changed. 396 SetOfBrokenHints.insert(&VirtReg); 397 } 398 399 // Try to evict interference from a cheaper alternative. 400 uint8_t Cost = RegCosts[PhysReg]; 401 402 // Most registers have 0 additional cost. 403 if (!Cost) 404 return PhysReg; 405 406 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is available at cost " 407 << (unsigned)Cost << '\n'); 408 MCRegister CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost, FixedRegisters); 409 return CheapReg ? CheapReg : PhysReg; 410 } 411 412 //===----------------------------------------------------------------------===// 413 // Interference eviction 414 //===----------------------------------------------------------------------===// 415 416 Register RegAllocEvictionAdvisor::canReassign(LiveInterval &VirtReg, 417 Register PrevReg) const { 418 auto Order = 419 AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix); 420 MCRegister PhysReg; 421 for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) { 422 if ((*I).id() == PrevReg.id()) 423 continue; 424 425 MCRegUnitIterator Units(*I, TRI); 426 for (; Units.isValid(); ++Units) { 427 // Instantiate a "subquery", not to be confused with the Queries array. 428 LiveIntervalUnion::Query subQ(VirtReg, Matrix->getLiveUnions()[*Units]); 429 if (subQ.checkInterference()) 430 break; 431 } 432 // If no units have interference, break out with the current PhysReg. 433 if (!Units.isValid()) 434 PhysReg = *I; 435 } 436 if (PhysReg) 437 LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg << " from " 438 << printReg(PrevReg, TRI) << " to " 439 << printReg(PhysReg, TRI) << '\n'); 440 return PhysReg; 441 } 442 443 /// shouldEvict - determine if A should evict the assigned live range B. The 444 /// eviction policy defined by this function together with the allocation order 445 /// defined by enqueue() decides which registers ultimately end up being split 446 /// and spilled. 447 /// 448 /// Cascade numbers are used to prevent infinite loops if this function is a 449 /// cyclic relation. 450 /// 451 /// @param A The live range to be assigned. 452 /// @param IsHint True when A is about to be assigned to its preferred 453 /// register. 454 /// @param B The live range to be evicted. 455 /// @param BreaksHint True when B is already assigned to its preferred register. 456 bool DefaultEvictionAdvisor::shouldEvict(LiveInterval &A, bool IsHint, 457 LiveInterval &B, 458 bool BreaksHint) const { 459 bool CanSplit = RA.getExtraInfo().getStage(B) < RS_Spill; 460 461 // Be fairly aggressive about following hints as long as the evictee can be 462 // split. 463 if (CanSplit && IsHint && !BreaksHint) 464 return true; 465 466 if (A.weight() > B.weight()) { 467 LLVM_DEBUG(dbgs() << "should evict: " << B << " w= " << B.weight() << '\n'); 468 return true; 469 } 470 return false; 471 } 472 473 /// canEvictHintInterference - return true if the interference for VirtReg 474 /// on the PhysReg, which is VirtReg's hint, can be evicted in favor of VirtReg. 475 bool DefaultEvictionAdvisor::canEvictHintInterference( 476 LiveInterval &VirtReg, MCRegister PhysReg, 477 const SmallVirtRegSet &FixedRegisters) const { 478 EvictionCost MaxCost; 479 MaxCost.setBrokenHints(1); 480 return canEvictInterferenceBasedOnCost(VirtReg, PhysReg, true, MaxCost, 481 FixedRegisters); 482 } 483 484 /// canEvictInterferenceBasedOnCost - Return true if all interferences between 485 /// VirtReg and PhysReg can be evicted. 486 /// 487 /// @param VirtReg Live range that is about to be assigned. 488 /// @param PhysReg Desired register for assignment. 489 /// @param IsHint True when PhysReg is VirtReg's preferred register. 490 /// @param MaxCost Only look for cheaper candidates and update with new cost 491 /// when returning true. 492 /// @returns True when interference can be evicted cheaper than MaxCost. 493 bool DefaultEvictionAdvisor::canEvictInterferenceBasedOnCost( 494 LiveInterval &VirtReg, MCRegister PhysReg, bool IsHint, 495 EvictionCost &MaxCost, const SmallVirtRegSet &FixedRegisters) const { 496 // It is only possible to evict virtual register interference. 497 if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg) 498 return false; 499 500 bool IsLocal = VirtReg.empty() || LIS->intervalIsInOneMBB(VirtReg); 501 502 // Find VirtReg's cascade number. This will be unassigned if VirtReg was never 503 // involved in an eviction before. If a cascade number was assigned, deny 504 // evicting anything with the same or a newer cascade number. This prevents 505 // infinite eviction loops. 506 // 507 // This works out so a register without a cascade number is allowed to evict 508 // anything, and it can be evicted by anything. 509 unsigned Cascade = RA.getExtraInfo().getCascadeOrCurrentNext(VirtReg.reg()); 510 511 EvictionCost Cost; 512 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 513 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 514 // If there is 10 or more interferences, chances are one is heavier. 515 const auto &Interferences = Q.interferingVRegs(10); 516 if (Interferences.size() >= 10) 517 return false; 518 519 // Check if any interfering live range is heavier than MaxWeight. 520 for (LiveInterval *Intf : reverse(Interferences)) { 521 assert(Register::isVirtualRegister(Intf->reg()) && 522 "Only expecting virtual register interference from query"); 523 524 // Do not allow eviction of a virtual register if we are in the middle 525 // of last-chance recoloring and this virtual register is one that we 526 // have scavenged a physical register for. 527 if (FixedRegisters.count(Intf->reg())) 528 return false; 529 530 // Never evict spill products. They cannot split or spill. 531 if (RA.getExtraInfo().getStage(*Intf) == RS_Done) 532 return false; 533 // Once a live range becomes small enough, it is urgent that we find a 534 // register for it. This is indicated by an infinite spill weight. These 535 // urgent live ranges get to evict almost anything. 536 // 537 // Also allow urgent evictions of unspillable ranges from a strictly 538 // larger allocation order. 539 bool Urgent = 540 !VirtReg.isSpillable() && 541 (Intf->isSpillable() || 542 RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg())) < 543 RegClassInfo.getNumAllocatableRegs( 544 MRI->getRegClass(Intf->reg()))); 545 // Only evict older cascades or live ranges without a cascade. 546 unsigned IntfCascade = RA.getExtraInfo().getCascade(Intf->reg()); 547 if (Cascade <= IntfCascade) { 548 if (!Urgent) 549 return false; 550 // We permit breaking cascades for urgent evictions. It should be the 551 // last resort, though, so make it really expensive. 552 Cost.BrokenHints += 10; 553 } 554 // Would this break a satisfied hint? 555 bool BreaksHint = VRM->hasPreferredPhys(Intf->reg()); 556 // Update eviction cost. 557 Cost.BrokenHints += BreaksHint; 558 Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight()); 559 // Abort if this would be too expensive. 560 if (!(Cost < MaxCost)) 561 return false; 562 if (Urgent) 563 continue; 564 // Apply the eviction policy for non-urgent evictions. 565 if (!shouldEvict(VirtReg, IsHint, *Intf, BreaksHint)) 566 return false; 567 // If !MaxCost.isMax(), then we're just looking for a cheap register. 568 // Evicting another local live range in this case could lead to suboptimal 569 // coloring. 570 if (!MaxCost.isMax() && IsLocal && LIS->intervalIsInOneMBB(*Intf) && 571 (!EnableLocalReassign || !canReassign(*Intf, PhysReg))) { 572 return false; 573 } 574 } 575 } 576 MaxCost = Cost; 577 return true; 578 } 579 580 /// Return true if all interferences between VirtReg and PhysReg between 581 /// Start and End can be evicted. 582 /// 583 /// \param VirtReg Live range that is about to be assigned. 584 /// \param PhysReg Desired register for assignment. 585 /// \param Start Start of range to look for interferences. 586 /// \param End End of range to look for interferences. 587 /// \param MaxCost Only look for cheaper candidates and update with new cost 588 /// when returning true. 589 /// \return True when interference can be evicted cheaper than MaxCost. 590 bool RAGreedy::canEvictInterferenceInRange(const LiveInterval &VirtReg, 591 MCRegister PhysReg, SlotIndex Start, 592 SlotIndex End, 593 EvictionCost &MaxCost) const { 594 EvictionCost Cost; 595 596 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 597 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 598 599 // Check if any interfering live range is heavier than MaxWeight. 600 for (const LiveInterval *Intf : reverse(Q.interferingVRegs())) { 601 // Check if interference overlast the segment in interest. 602 if (!Intf->overlaps(Start, End)) 603 continue; 604 605 // Cannot evict non virtual reg interference. 606 if (!Register::isVirtualRegister(Intf->reg())) 607 return false; 608 // Never evict spill products. They cannot split or spill. 609 if (ExtraInfo->getStage(*Intf) == RS_Done) 610 return false; 611 612 // Would this break a satisfied hint? 613 bool BreaksHint = VRM->hasPreferredPhys(Intf->reg()); 614 // Update eviction cost. 615 Cost.BrokenHints += BreaksHint; 616 Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight()); 617 // Abort if this would be too expensive. 618 if (!(Cost < MaxCost)) 619 return false; 620 } 621 } 622 623 if (Cost.MaxWeight == 0) 624 return false; 625 626 MaxCost = Cost; 627 return true; 628 } 629 630 /// Return the physical register that will be best 631 /// candidate for eviction by a local split interval that will be created 632 /// between Start and End. 633 /// 634 /// \param Order The allocation order 635 /// \param VirtReg Live range that is about to be assigned. 636 /// \param Start Start of range to look for interferences 637 /// \param End End of range to look for interferences 638 /// \param BestEvictweight The eviction cost of that eviction 639 /// \return The PhysReg which is the best candidate for eviction and the 640 /// eviction cost in BestEvictweight 641 MCRegister RAGreedy::getCheapestEvicteeWeight(const AllocationOrder &Order, 642 const LiveInterval &VirtReg, 643 SlotIndex Start, SlotIndex End, 644 float *BestEvictweight) const { 645 EvictionCost BestEvictCost; 646 BestEvictCost.setMax(); 647 BestEvictCost.MaxWeight = VirtReg.weight(); 648 MCRegister BestEvicteePhys; 649 650 // Go over all physical registers and find the best candidate for eviction 651 for (MCRegister PhysReg : Order.getOrder()) { 652 653 if (!canEvictInterferenceInRange(VirtReg, PhysReg, Start, End, 654 BestEvictCost)) 655 continue; 656 657 // Best so far. 658 BestEvicteePhys = PhysReg; 659 } 660 *BestEvictweight = BestEvictCost.MaxWeight; 661 return BestEvicteePhys; 662 } 663 664 /// evictInterference - Evict any interferring registers that prevent VirtReg 665 /// from being assigned to Physreg. This assumes that canEvictInterference 666 /// returned true. 667 void RAGreedy::evictInterference(LiveInterval &VirtReg, MCRegister PhysReg, 668 SmallVectorImpl<Register> &NewVRegs) { 669 // Make sure that VirtReg has a cascade number, and assign that cascade 670 // number to every evicted register. These live ranges than then only be 671 // evicted by a newer cascade, preventing infinite loops. 672 unsigned Cascade = ExtraInfo->getOrAssignNewCascade(VirtReg.reg()); 673 674 LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg, TRI) 675 << " interference: Cascade " << Cascade << '\n'); 676 677 // Collect all interfering virtregs first. 678 SmallVector<LiveInterval*, 8> Intfs; 679 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 680 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 681 // We usually have the interfering VRegs cached so collectInterferingVRegs() 682 // should be fast, we may need to recalculate if when different physregs 683 // overlap the same register unit so we had different SubRanges queried 684 // against it. 685 ArrayRef<LiveInterval*> IVR = Q.interferingVRegs(); 686 Intfs.append(IVR.begin(), IVR.end()); 687 } 688 689 // Evict them second. This will invalidate the queries. 690 for (LiveInterval *Intf : Intfs) { 691 // The same VirtReg may be present in multiple RegUnits. Skip duplicates. 692 if (!VRM->hasPhys(Intf->reg())) 693 continue; 694 695 LastEvicted.addEviction(PhysReg, VirtReg.reg(), Intf->reg()); 696 697 Matrix->unassign(*Intf); 698 assert((ExtraInfo->getCascade(Intf->reg()) < Cascade || 699 VirtReg.isSpillable() < Intf->isSpillable()) && 700 "Cannot decrease cascade number, illegal eviction"); 701 ExtraInfo->setCascade(Intf->reg(), Cascade); 702 ++NumEvicted; 703 NewVRegs.push_back(Intf->reg()); 704 } 705 } 706 707 /// Returns true if the given \p PhysReg is a callee saved register and has not 708 /// been used for allocation yet. 709 bool RegAllocEvictionAdvisor::isUnusedCalleeSavedReg(MCRegister PhysReg) const { 710 MCRegister CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg); 711 if (!CSR) 712 return false; 713 714 return !Matrix->isPhysRegUsed(PhysReg); 715 } 716 717 Optional<unsigned> 718 RegAllocEvictionAdvisor::getOrderLimit(const LiveInterval &VirtReg, 719 const AllocationOrder &Order, 720 unsigned CostPerUseLimit) const { 721 unsigned OrderLimit = Order.getOrder().size(); 722 723 if (CostPerUseLimit < uint8_t(~0u)) { 724 // Check of any registers in RC are below CostPerUseLimit. 725 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg()); 726 uint8_t MinCost = RegClassInfo.getMinCost(RC); 727 if (MinCost >= CostPerUseLimit) { 728 LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = " 729 << MinCost << ", no cheaper registers to be found.\n"); 730 return None; 731 } 732 733 // It is normal for register classes to have a long tail of registers with 734 // the same cost. We don't need to look at them if they're too expensive. 735 if (RegCosts[Order.getOrder().back()] >= CostPerUseLimit) { 736 OrderLimit = RegClassInfo.getLastCostChange(RC); 737 LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit 738 << " regs.\n"); 739 } 740 } 741 return OrderLimit; 742 } 743 744 bool RegAllocEvictionAdvisor::canAllocatePhysReg(unsigned CostPerUseLimit, 745 MCRegister PhysReg) const { 746 if (RegCosts[PhysReg] >= CostPerUseLimit) 747 return false; 748 // The first use of a callee-saved register in a function has cost 1. 749 // Don't start using a CSR when the CostPerUseLimit is low. 750 if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) { 751 LLVM_DEBUG( 752 dbgs() << printReg(PhysReg, TRI) << " would clobber CSR " 753 << printReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI) 754 << '\n'); 755 return false; 756 } 757 return true; 758 } 759 760 MCRegister DefaultEvictionAdvisor::tryFindEvictionCandidate( 761 LiveInterval &VirtReg, const AllocationOrder &Order, 762 uint8_t CostPerUseLimit, const SmallVirtRegSet &FixedRegisters) const { 763 // Keep track of the cheapest interference seen so far. 764 EvictionCost BestCost; 765 BestCost.setMax(); 766 MCRegister BestPhys; 767 auto MaybeOrderLimit = getOrderLimit(VirtReg, Order, CostPerUseLimit); 768 if (!MaybeOrderLimit) 769 return MCRegister::NoRegister; 770 unsigned OrderLimit = *MaybeOrderLimit; 771 772 // When we are just looking for a reduced cost per use, don't break any 773 // hints, and only evict smaller spill weights. 774 if (CostPerUseLimit < uint8_t(~0u)) { 775 BestCost.BrokenHints = 0; 776 BestCost.MaxWeight = VirtReg.weight(); 777 } 778 779 for (auto I = Order.begin(), E = Order.getOrderLimitEnd(OrderLimit); I != E; 780 ++I) { 781 MCRegister PhysReg = *I; 782 assert(PhysReg); 783 if (!canAllocatePhysReg(CostPerUseLimit, PhysReg) || 784 !canEvictInterferenceBasedOnCost(VirtReg, PhysReg, false, BestCost, 785 FixedRegisters)) 786 continue; 787 788 // Best so far. 789 BestPhys = PhysReg; 790 791 // Stop if the hint can be used. 792 if (I.isHint()) 793 break; 794 } 795 return BestPhys; 796 } 797 798 /// tryEvict - Try to evict all interferences for a physreg. 799 /// @param VirtReg Currently unassigned virtual register. 800 /// @param Order Physregs to try. 801 /// @return Physreg to assign VirtReg, or 0. 802 MCRegister RAGreedy::tryEvict(LiveInterval &VirtReg, AllocationOrder &Order, 803 SmallVectorImpl<Register> &NewVRegs, 804 uint8_t CostPerUseLimit, 805 const SmallVirtRegSet &FixedRegisters) { 806 NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription, 807 TimePassesIsEnabled); 808 809 MCRegister BestPhys = EvictAdvisor->tryFindEvictionCandidate( 810 VirtReg, Order, CostPerUseLimit, FixedRegisters); 811 if (BestPhys.isValid()) 812 evictInterference(VirtReg, BestPhys, NewVRegs); 813 return BestPhys; 814 } 815 816 //===----------------------------------------------------------------------===// 817 // Region Splitting 818 //===----------------------------------------------------------------------===// 819 820 /// addSplitConstraints - Fill out the SplitConstraints vector based on the 821 /// interference pattern in Physreg and its aliases. Add the constraints to 822 /// SpillPlacement and return the static cost of this split in Cost, assuming 823 /// that all preferences in SplitConstraints are met. 824 /// Return false if there are no bundles with positive bias. 825 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf, 826 BlockFrequency &Cost) { 827 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 828 829 // Reset interference dependent info. 830 SplitConstraints.resize(UseBlocks.size()); 831 BlockFrequency StaticCost = 0; 832 for (unsigned I = 0; I != UseBlocks.size(); ++I) { 833 const SplitAnalysis::BlockInfo &BI = UseBlocks[I]; 834 SpillPlacement::BlockConstraint &BC = SplitConstraints[I]; 835 836 BC.Number = BI.MBB->getNumber(); 837 Intf.moveToBlock(BC.Number); 838 BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare; 839 BC.Exit = (BI.LiveOut && 840 !LIS->getInstructionFromIndex(BI.LastInstr)->isImplicitDef()) 841 ? SpillPlacement::PrefReg 842 : SpillPlacement::DontCare; 843 BC.ChangesValue = BI.FirstDef.isValid(); 844 845 if (!Intf.hasInterference()) 846 continue; 847 848 // Number of spill code instructions to insert. 849 unsigned Ins = 0; 850 851 // Interference for the live-in value. 852 if (BI.LiveIn) { 853 if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) { 854 BC.Entry = SpillPlacement::MustSpill; 855 ++Ins; 856 } else if (Intf.first() < BI.FirstInstr) { 857 BC.Entry = SpillPlacement::PrefSpill; 858 ++Ins; 859 } else if (Intf.first() < BI.LastInstr) { 860 ++Ins; 861 } 862 863 // Abort if the spill cannot be inserted at the MBB' start 864 if (((BC.Entry == SpillPlacement::MustSpill) || 865 (BC.Entry == SpillPlacement::PrefSpill)) && 866 SlotIndex::isEarlierInstr(BI.FirstInstr, 867 SA->getFirstSplitPoint(BC.Number))) 868 return false; 869 } 870 871 // Interference for the live-out value. 872 if (BI.LiveOut) { 873 if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) { 874 BC.Exit = SpillPlacement::MustSpill; 875 ++Ins; 876 } else if (Intf.last() > BI.LastInstr) { 877 BC.Exit = SpillPlacement::PrefSpill; 878 ++Ins; 879 } else if (Intf.last() > BI.FirstInstr) { 880 ++Ins; 881 } 882 } 883 884 // Accumulate the total frequency of inserted spill code. 885 while (Ins--) 886 StaticCost += SpillPlacer->getBlockFrequency(BC.Number); 887 } 888 Cost = StaticCost; 889 890 // Add constraints for use-blocks. Note that these are the only constraints 891 // that may add a positive bias, it is downhill from here. 892 SpillPlacer->addConstraints(SplitConstraints); 893 return SpillPlacer->scanActiveBundles(); 894 } 895 896 /// addThroughConstraints - Add constraints and links to SpillPlacer from the 897 /// live-through blocks in Blocks. 898 bool RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf, 899 ArrayRef<unsigned> Blocks) { 900 const unsigned GroupSize = 8; 901 SpillPlacement::BlockConstraint BCS[GroupSize]; 902 unsigned TBS[GroupSize]; 903 unsigned B = 0, T = 0; 904 905 for (unsigned Number : Blocks) { 906 Intf.moveToBlock(Number); 907 908 if (!Intf.hasInterference()) { 909 assert(T < GroupSize && "Array overflow"); 910 TBS[T] = Number; 911 if (++T == GroupSize) { 912 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 913 T = 0; 914 } 915 continue; 916 } 917 918 assert(B < GroupSize && "Array overflow"); 919 BCS[B].Number = Number; 920 921 // Abort if the spill cannot be inserted at the MBB' start 922 MachineBasicBlock *MBB = MF->getBlockNumbered(Number); 923 auto FirstNonDebugInstr = MBB->getFirstNonDebugInstr(); 924 if (FirstNonDebugInstr != MBB->end() && 925 SlotIndex::isEarlierInstr(LIS->getInstructionIndex(*FirstNonDebugInstr), 926 SA->getFirstSplitPoint(Number))) 927 return false; 928 // Interference for the live-in value. 929 if (Intf.first() <= Indexes->getMBBStartIdx(Number)) 930 BCS[B].Entry = SpillPlacement::MustSpill; 931 else 932 BCS[B].Entry = SpillPlacement::PrefSpill; 933 934 // Interference for the live-out value. 935 if (Intf.last() >= SA->getLastSplitPoint(Number)) 936 BCS[B].Exit = SpillPlacement::MustSpill; 937 else 938 BCS[B].Exit = SpillPlacement::PrefSpill; 939 940 if (++B == GroupSize) { 941 SpillPlacer->addConstraints(makeArrayRef(BCS, B)); 942 B = 0; 943 } 944 } 945 946 SpillPlacer->addConstraints(makeArrayRef(BCS, B)); 947 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 948 return true; 949 } 950 951 bool RAGreedy::growRegion(GlobalSplitCandidate &Cand) { 952 // Keep track of through blocks that have not been added to SpillPlacer. 953 BitVector Todo = SA->getThroughBlocks(); 954 SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks; 955 unsigned AddedTo = 0; 956 #ifndef NDEBUG 957 unsigned Visited = 0; 958 #endif 959 960 while (true) { 961 ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive(); 962 // Find new through blocks in the periphery of PrefRegBundles. 963 for (unsigned Bundle : NewBundles) { 964 // Look at all blocks connected to Bundle in the full graph. 965 ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle); 966 for (unsigned Block : Blocks) { 967 if (!Todo.test(Block)) 968 continue; 969 Todo.reset(Block); 970 // This is a new through block. Add it to SpillPlacer later. 971 ActiveBlocks.push_back(Block); 972 #ifndef NDEBUG 973 ++Visited; 974 #endif 975 } 976 } 977 // Any new blocks to add? 978 if (ActiveBlocks.size() == AddedTo) 979 break; 980 981 // Compute through constraints from the interference, or assume that all 982 // through blocks prefer spilling when forming compact regions. 983 auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo); 984 if (Cand.PhysReg) { 985 if (!addThroughConstraints(Cand.Intf, NewBlocks)) 986 return false; 987 } else 988 // Provide a strong negative bias on through blocks to prevent unwanted 989 // liveness on loop backedges. 990 SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true); 991 AddedTo = ActiveBlocks.size(); 992 993 // Perhaps iterating can enable more bundles? 994 SpillPlacer->iterate(); 995 } 996 LLVM_DEBUG(dbgs() << ", v=" << Visited); 997 return true; 998 } 999 1000 /// calcCompactRegion - Compute the set of edge bundles that should be live 1001 /// when splitting the current live range into compact regions. Compact 1002 /// regions can be computed without looking at interference. They are the 1003 /// regions formed by removing all the live-through blocks from the live range. 1004 /// 1005 /// Returns false if the current live range is already compact, or if the 1006 /// compact regions would form single block regions anyway. 1007 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) { 1008 // Without any through blocks, the live range is already compact. 1009 if (!SA->getNumThroughBlocks()) 1010 return false; 1011 1012 // Compact regions don't correspond to any physreg. 1013 Cand.reset(IntfCache, MCRegister::NoRegister); 1014 1015 LLVM_DEBUG(dbgs() << "Compact region bundles"); 1016 1017 // Use the spill placer to determine the live bundles. GrowRegion pretends 1018 // that all the through blocks have interference when PhysReg is unset. 1019 SpillPlacer->prepare(Cand.LiveBundles); 1020 1021 // The static split cost will be zero since Cand.Intf reports no interference. 1022 BlockFrequency Cost; 1023 if (!addSplitConstraints(Cand.Intf, Cost)) { 1024 LLVM_DEBUG(dbgs() << ", none.\n"); 1025 return false; 1026 } 1027 1028 if (!growRegion(Cand)) { 1029 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n"); 1030 return false; 1031 } 1032 1033 SpillPlacer->finish(); 1034 1035 if (!Cand.LiveBundles.any()) { 1036 LLVM_DEBUG(dbgs() << ", none.\n"); 1037 return false; 1038 } 1039 1040 LLVM_DEBUG({ 1041 for (int I : Cand.LiveBundles.set_bits()) 1042 dbgs() << " EB#" << I; 1043 dbgs() << ".\n"; 1044 }); 1045 return true; 1046 } 1047 1048 /// calcSpillCost - Compute how expensive it would be to split the live range in 1049 /// SA around all use blocks instead of forming bundle regions. 1050 BlockFrequency RAGreedy::calcSpillCost() { 1051 BlockFrequency Cost = 0; 1052 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1053 for (const SplitAnalysis::BlockInfo &BI : UseBlocks) { 1054 unsigned Number = BI.MBB->getNumber(); 1055 // We normally only need one spill instruction - a load or a store. 1056 Cost += SpillPlacer->getBlockFrequency(Number); 1057 1058 // Unless the value is redefined in the block. 1059 if (BI.LiveIn && BI.LiveOut && BI.FirstDef) 1060 Cost += SpillPlacer->getBlockFrequency(Number); 1061 } 1062 return Cost; 1063 } 1064 1065 /// Check if splitting Evictee will create a local split interval in 1066 /// basic block number BBNumber that may cause a bad eviction chain. This is 1067 /// intended to prevent bad eviction sequences like: 1068 /// movl %ebp, 8(%esp) # 4-byte Spill 1069 /// movl %ecx, %ebp 1070 /// movl %ebx, %ecx 1071 /// movl %edi, %ebx 1072 /// movl %edx, %edi 1073 /// cltd 1074 /// idivl %esi 1075 /// movl %edi, %edx 1076 /// movl %ebx, %edi 1077 /// movl %ecx, %ebx 1078 /// movl %ebp, %ecx 1079 /// movl 16(%esp), %ebp # 4 - byte Reload 1080 /// 1081 /// Such sequences are created in 2 scenarios: 1082 /// 1083 /// Scenario #1: 1084 /// %0 is evicted from physreg0 by %1. 1085 /// Evictee %0 is intended for region splitting with split candidate 1086 /// physreg0 (the reg %0 was evicted from). 1087 /// Region splitting creates a local interval because of interference with the 1088 /// evictor %1 (normally region splitting creates 2 interval, the "by reg" 1089 /// and "by stack" intervals and local interval created when interference 1090 /// occurs). 1091 /// One of the split intervals ends up evicting %2 from physreg1. 1092 /// Evictee %2 is intended for region splitting with split candidate 1093 /// physreg1. 1094 /// One of the split intervals ends up evicting %3 from physreg2, etc. 1095 /// 1096 /// Scenario #2 1097 /// %0 is evicted from physreg0 by %1. 1098 /// %2 is evicted from physreg2 by %3 etc. 1099 /// Evictee %0 is intended for region splitting with split candidate 1100 /// physreg1. 1101 /// Region splitting creates a local interval because of interference with the 1102 /// evictor %1. 1103 /// One of the split intervals ends up evicting back original evictor %1 1104 /// from physreg0 (the reg %0 was evicted from). 1105 /// Another evictee %2 is intended for region splitting with split candidate 1106 /// physreg1. 1107 /// One of the split intervals ends up evicting %3 from physreg2, etc. 1108 /// 1109 /// \param Evictee The register considered to be split. 1110 /// \param Cand The split candidate that determines the physical register 1111 /// we are splitting for and the interferences. 1112 /// \param BBNumber The number of a BB for which the region split process will 1113 /// create a local split interval. 1114 /// \param Order The physical registers that may get evicted by a split 1115 /// artifact of Evictee. 1116 /// \return True if splitting Evictee may cause a bad eviction chain, false 1117 /// otherwise. 1118 bool RAGreedy::splitCanCauseEvictionChain(Register Evictee, 1119 GlobalSplitCandidate &Cand, 1120 unsigned BBNumber, 1121 const AllocationOrder &Order) { 1122 EvictionTrack::EvictorInfo VregEvictorInfo = LastEvicted.getEvictor(Evictee); 1123 unsigned Evictor = VregEvictorInfo.first; 1124 MCRegister PhysReg = VregEvictorInfo.second; 1125 1126 // No actual evictor. 1127 if (!Evictor || !PhysReg) 1128 return false; 1129 1130 float MaxWeight = 0; 1131 MCRegister FutureEvictedPhysReg = 1132 getCheapestEvicteeWeight(Order, LIS->getInterval(Evictee), 1133 Cand.Intf.first(), Cand.Intf.last(), &MaxWeight); 1134 1135 // The bad eviction chain occurs when either the split candidate is the 1136 // evicting reg or one of the split artifact will evict the evicting reg. 1137 if ((PhysReg != Cand.PhysReg) && (PhysReg != FutureEvictedPhysReg)) 1138 return false; 1139 1140 Cand.Intf.moveToBlock(BBNumber); 1141 1142 // Check to see if the Evictor contains interference (with Evictee) in the 1143 // given BB. If so, this interference caused the eviction of Evictee from 1144 // PhysReg. This suggest that we will create a local interval during the 1145 // region split to avoid this interference This local interval may cause a bad 1146 // eviction chain. 1147 if (!LIS->hasInterval(Evictor)) 1148 return false; 1149 LiveInterval &EvictorLI = LIS->getInterval(Evictor); 1150 if (EvictorLI.FindSegmentContaining(Cand.Intf.first()) == EvictorLI.end()) 1151 return false; 1152 1153 // Now, check to see if the local interval we will create is going to be 1154 // expensive enough to evict somebody If so, this may cause a bad eviction 1155 // chain. 1156 float splitArtifactWeight = 1157 VRAI->futureWeight(LIS->getInterval(Evictee), 1158 Cand.Intf.first().getPrevIndex(), Cand.Intf.last()); 1159 if (splitArtifactWeight >= 0 && splitArtifactWeight < MaxWeight) 1160 return false; 1161 1162 return true; 1163 } 1164 1165 /// Check if splitting VirtRegToSplit will create a local split interval 1166 /// in basic block number BBNumber that may cause a spill. 1167 /// 1168 /// \param VirtRegToSplit The register considered to be split. 1169 /// \param Cand The split candidate that determines the physical 1170 /// register we are splitting for and the interferences. 1171 /// \param BBNumber The number of a BB for which the region split process 1172 /// will create a local split interval. 1173 /// \param Order The physical registers that may get evicted by a 1174 /// split artifact of VirtRegToSplit. 1175 /// \return True if splitting VirtRegToSplit may cause a spill, false 1176 /// otherwise. 1177 bool RAGreedy::splitCanCauseLocalSpill(unsigned VirtRegToSplit, 1178 GlobalSplitCandidate &Cand, 1179 unsigned BBNumber, 1180 const AllocationOrder &Order) { 1181 Cand.Intf.moveToBlock(BBNumber); 1182 1183 // Check if the local interval will find a non interfereing assignment. 1184 for (auto PhysReg : Order.getOrder()) { 1185 if (!Matrix->checkInterference(Cand.Intf.first().getPrevIndex(), 1186 Cand.Intf.last(), PhysReg)) 1187 return false; 1188 } 1189 1190 // The local interval is not able to find non interferencing assignment 1191 // and not able to evict a less worthy interval, therfore, it can cause a 1192 // spill. 1193 return true; 1194 } 1195 1196 /// calcGlobalSplitCost - Return the global split cost of following the split 1197 /// pattern in LiveBundles. This cost should be added to the local cost of the 1198 /// interference pattern in SplitConstraints. 1199 /// 1200 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand, 1201 const AllocationOrder &Order, 1202 bool *CanCauseEvictionChain) { 1203 BlockFrequency GlobalCost = 0; 1204 const BitVector &LiveBundles = Cand.LiveBundles; 1205 Register VirtRegToSplit = SA->getParent().reg(); 1206 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1207 for (unsigned I = 0; I != UseBlocks.size(); ++I) { 1208 const SplitAnalysis::BlockInfo &BI = UseBlocks[I]; 1209 SpillPlacement::BlockConstraint &BC = SplitConstraints[I]; 1210 bool RegIn = LiveBundles[Bundles->getBundle(BC.Number, false)]; 1211 bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)]; 1212 unsigned Ins = 0; 1213 1214 Cand.Intf.moveToBlock(BC.Number); 1215 // Check wheather a local interval is going to be created during the region 1216 // split. Calculate adavanced spilt cost (cost of local intervals) if option 1217 // is enabled. 1218 if (EnableAdvancedRASplitCost && Cand.Intf.hasInterference() && BI.LiveIn && 1219 BI.LiveOut && RegIn && RegOut) { 1220 1221 if (CanCauseEvictionChain && 1222 splitCanCauseEvictionChain(VirtRegToSplit, Cand, BC.Number, Order)) { 1223 // This interference causes our eviction from this assignment, we might 1224 // evict somebody else and eventually someone will spill, add that cost. 1225 // See splitCanCauseEvictionChain for detailed description of scenarios. 1226 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1227 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1228 1229 *CanCauseEvictionChain = true; 1230 1231 } else if (splitCanCauseLocalSpill(VirtRegToSplit, Cand, BC.Number, 1232 Order)) { 1233 // This interference causes local interval to spill, add that cost. 1234 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1235 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1236 } 1237 } 1238 1239 if (BI.LiveIn) 1240 Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg); 1241 if (BI.LiveOut) 1242 Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg); 1243 while (Ins--) 1244 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1245 } 1246 1247 for (unsigned Number : Cand.ActiveBlocks) { 1248 bool RegIn = LiveBundles[Bundles->getBundle(Number, false)]; 1249 bool RegOut = LiveBundles[Bundles->getBundle(Number, true)]; 1250 if (!RegIn && !RegOut) 1251 continue; 1252 if (RegIn && RegOut) { 1253 // We need double spill code if this block has interference. 1254 Cand.Intf.moveToBlock(Number); 1255 if (Cand.Intf.hasInterference()) { 1256 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1257 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1258 1259 // Check wheather a local interval is going to be created during the 1260 // region split. 1261 if (EnableAdvancedRASplitCost && CanCauseEvictionChain && 1262 splitCanCauseEvictionChain(VirtRegToSplit, Cand, Number, Order)) { 1263 // This interference cause our eviction from this assignment, we might 1264 // evict somebody else, add that cost. 1265 // See splitCanCauseEvictionChain for detailed description of 1266 // scenarios. 1267 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1268 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1269 1270 *CanCauseEvictionChain = true; 1271 } 1272 } 1273 continue; 1274 } 1275 // live-in / stack-out or stack-in live-out. 1276 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1277 } 1278 return GlobalCost; 1279 } 1280 1281 /// splitAroundRegion - Split the current live range around the regions 1282 /// determined by BundleCand and GlobalCand. 1283 /// 1284 /// Before calling this function, GlobalCand and BundleCand must be initialized 1285 /// so each bundle is assigned to a valid candidate, or NoCand for the 1286 /// stack-bound bundles. The shared SA/SE SplitAnalysis and SplitEditor 1287 /// objects must be initialized for the current live range, and intervals 1288 /// created for the used candidates. 1289 /// 1290 /// @param LREdit The LiveRangeEdit object handling the current split. 1291 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value 1292 /// must appear in this list. 1293 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit, 1294 ArrayRef<unsigned> UsedCands) { 1295 // These are the intervals created for new global ranges. We may create more 1296 // intervals for local ranges. 1297 const unsigned NumGlobalIntvs = LREdit.size(); 1298 LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs 1299 << " globals.\n"); 1300 assert(NumGlobalIntvs && "No global intervals configured"); 1301 1302 // Isolate even single instructions when dealing with a proper sub-class. 1303 // That guarantees register class inflation for the stack interval because it 1304 // is all copies. 1305 Register Reg = SA->getParent().reg(); 1306 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 1307 1308 // First handle all the blocks with uses. 1309 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1310 for (const SplitAnalysis::BlockInfo &BI : UseBlocks) { 1311 unsigned Number = BI.MBB->getNumber(); 1312 unsigned IntvIn = 0, IntvOut = 0; 1313 SlotIndex IntfIn, IntfOut; 1314 if (BI.LiveIn) { 1315 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)]; 1316 if (CandIn != NoCand) { 1317 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 1318 IntvIn = Cand.IntvIdx; 1319 Cand.Intf.moveToBlock(Number); 1320 IntfIn = Cand.Intf.first(); 1321 } 1322 } 1323 if (BI.LiveOut) { 1324 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)]; 1325 if (CandOut != NoCand) { 1326 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 1327 IntvOut = Cand.IntvIdx; 1328 Cand.Intf.moveToBlock(Number); 1329 IntfOut = Cand.Intf.last(); 1330 } 1331 } 1332 1333 // Create separate intervals for isolated blocks with multiple uses. 1334 if (!IntvIn && !IntvOut) { 1335 LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " isolated.\n"); 1336 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 1337 SE->splitSingleBlock(BI); 1338 continue; 1339 } 1340 1341 if (IntvIn && IntvOut) 1342 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1343 else if (IntvIn) 1344 SE->splitRegInBlock(BI, IntvIn, IntfIn); 1345 else 1346 SE->splitRegOutBlock(BI, IntvOut, IntfOut); 1347 } 1348 1349 // Handle live-through blocks. The relevant live-through blocks are stored in 1350 // the ActiveBlocks list with each candidate. We need to filter out 1351 // duplicates. 1352 BitVector Todo = SA->getThroughBlocks(); 1353 for (unsigned UsedCand : UsedCands) { 1354 ArrayRef<unsigned> Blocks = GlobalCand[UsedCand].ActiveBlocks; 1355 for (unsigned Number : Blocks) { 1356 if (!Todo.test(Number)) 1357 continue; 1358 Todo.reset(Number); 1359 1360 unsigned IntvIn = 0, IntvOut = 0; 1361 SlotIndex IntfIn, IntfOut; 1362 1363 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)]; 1364 if (CandIn != NoCand) { 1365 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 1366 IntvIn = Cand.IntvIdx; 1367 Cand.Intf.moveToBlock(Number); 1368 IntfIn = Cand.Intf.first(); 1369 } 1370 1371 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)]; 1372 if (CandOut != NoCand) { 1373 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 1374 IntvOut = Cand.IntvIdx; 1375 Cand.Intf.moveToBlock(Number); 1376 IntfOut = Cand.Intf.last(); 1377 } 1378 if (!IntvIn && !IntvOut) 1379 continue; 1380 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1381 } 1382 } 1383 1384 ++NumGlobalSplits; 1385 1386 SmallVector<unsigned, 8> IntvMap; 1387 SE->finish(&IntvMap); 1388 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 1389 1390 unsigned OrigBlocks = SA->getNumLiveBlocks(); 1391 1392 // Sort out the new intervals created by splitting. We get four kinds: 1393 // - Remainder intervals should not be split again. 1394 // - Candidate intervals can be assigned to Cand.PhysReg. 1395 // - Block-local splits are candidates for local splitting. 1396 // - DCE leftovers should go back on the queue. 1397 for (unsigned I = 0, E = LREdit.size(); I != E; ++I) { 1398 const LiveInterval &Reg = LIS->getInterval(LREdit.get(I)); 1399 1400 // Ignore old intervals from DCE. 1401 if (ExtraInfo->getOrInitStage(Reg.reg()) != RS_New) 1402 continue; 1403 1404 // Remainder interval. Don't try splitting again, spill if it doesn't 1405 // allocate. 1406 if (IntvMap[I] == 0) { 1407 ExtraInfo->setStage(Reg, RS_Spill); 1408 continue; 1409 } 1410 1411 // Global intervals. Allow repeated splitting as long as the number of live 1412 // blocks is strictly decreasing. 1413 if (IntvMap[I] < NumGlobalIntvs) { 1414 if (SA->countLiveBlocks(&Reg) >= OrigBlocks) { 1415 LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks 1416 << " blocks as original.\n"); 1417 // Don't allow repeated splitting as a safe guard against looping. 1418 ExtraInfo->setStage(Reg, RS_Split2); 1419 } 1420 continue; 1421 } 1422 1423 // Other intervals are treated as new. This includes local intervals created 1424 // for blocks with multiple uses, and anything created by DCE. 1425 } 1426 1427 if (VerifyEnabled) 1428 MF->verify(this, "After splitting live range around region"); 1429 } 1430 1431 MCRegister RAGreedy::tryRegionSplit(LiveInterval &VirtReg, 1432 AllocationOrder &Order, 1433 SmallVectorImpl<Register> &NewVRegs) { 1434 if (!TRI->shouldRegionSplitForVirtReg(*MF, VirtReg)) 1435 return MCRegister::NoRegister; 1436 unsigned NumCands = 0; 1437 BlockFrequency SpillCost = calcSpillCost(); 1438 BlockFrequency BestCost; 1439 1440 // Check if we can split this live range around a compact region. 1441 bool HasCompact = calcCompactRegion(GlobalCand.front()); 1442 if (HasCompact) { 1443 // Yes, keep GlobalCand[0] as the compact region candidate. 1444 NumCands = 1; 1445 BestCost = BlockFrequency::getMaxFrequency(); 1446 } else { 1447 // No benefit from the compact region, our fallback will be per-block 1448 // splitting. Make sure we find a solution that is cheaper than spilling. 1449 BestCost = SpillCost; 1450 LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = "; 1451 MBFI->printBlockFreq(dbgs(), BestCost) << '\n'); 1452 } 1453 1454 bool CanCauseEvictionChain = false; 1455 unsigned BestCand = 1456 calculateRegionSplitCost(VirtReg, Order, BestCost, NumCands, 1457 false /*IgnoreCSR*/, &CanCauseEvictionChain); 1458 1459 // Split candidates with compact regions can cause a bad eviction sequence. 1460 // See splitCanCauseEvictionChain for detailed description of scenarios. 1461 // To avoid it, we need to comapre the cost with the spill cost and not the 1462 // current max frequency. 1463 if (HasCompact && (BestCost > SpillCost) && (BestCand != NoCand) && 1464 CanCauseEvictionChain) { 1465 return MCRegister::NoRegister; 1466 } 1467 1468 // No solutions found, fall back to single block splitting. 1469 if (!HasCompact && BestCand == NoCand) 1470 return MCRegister::NoRegister; 1471 1472 return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs); 1473 } 1474 1475 unsigned RAGreedy::calculateRegionSplitCost(LiveInterval &VirtReg, 1476 AllocationOrder &Order, 1477 BlockFrequency &BestCost, 1478 unsigned &NumCands, bool IgnoreCSR, 1479 bool *CanCauseEvictionChain) { 1480 unsigned BestCand = NoCand; 1481 for (MCPhysReg PhysReg : Order) { 1482 assert(PhysReg); 1483 if (IgnoreCSR && EvictAdvisor->isUnusedCalleeSavedReg(PhysReg)) 1484 continue; 1485 1486 // Discard bad candidates before we run out of interference cache cursors. 1487 // This will only affect register classes with a lot of registers (>32). 1488 if (NumCands == IntfCache.getMaxCursors()) { 1489 unsigned WorstCount = ~0u; 1490 unsigned Worst = 0; 1491 for (unsigned CandIndex = 0; CandIndex != NumCands; ++CandIndex) { 1492 if (CandIndex == BestCand || !GlobalCand[CandIndex].PhysReg) 1493 continue; 1494 unsigned Count = GlobalCand[CandIndex].LiveBundles.count(); 1495 if (Count < WorstCount) { 1496 Worst = CandIndex; 1497 WorstCount = Count; 1498 } 1499 } 1500 --NumCands; 1501 GlobalCand[Worst] = GlobalCand[NumCands]; 1502 if (BestCand == NumCands) 1503 BestCand = Worst; 1504 } 1505 1506 if (GlobalCand.size() <= NumCands) 1507 GlobalCand.resize(NumCands+1); 1508 GlobalSplitCandidate &Cand = GlobalCand[NumCands]; 1509 Cand.reset(IntfCache, PhysReg); 1510 1511 SpillPlacer->prepare(Cand.LiveBundles); 1512 BlockFrequency Cost; 1513 if (!addSplitConstraints(Cand.Intf, Cost)) { 1514 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tno positive bundles\n"); 1515 continue; 1516 } 1517 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tstatic = "; 1518 MBFI->printBlockFreq(dbgs(), Cost)); 1519 if (Cost >= BestCost) { 1520 LLVM_DEBUG({ 1521 if (BestCand == NoCand) 1522 dbgs() << " worse than no bundles\n"; 1523 else 1524 dbgs() << " worse than " 1525 << printReg(GlobalCand[BestCand].PhysReg, TRI) << '\n'; 1526 }); 1527 continue; 1528 } 1529 if (!growRegion(Cand)) { 1530 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n"); 1531 continue; 1532 } 1533 1534 SpillPlacer->finish(); 1535 1536 // No live bundles, defer to splitSingleBlocks(). 1537 if (!Cand.LiveBundles.any()) { 1538 LLVM_DEBUG(dbgs() << " no bundles.\n"); 1539 continue; 1540 } 1541 1542 bool HasEvictionChain = false; 1543 Cost += calcGlobalSplitCost(Cand, Order, &HasEvictionChain); 1544 LLVM_DEBUG({ 1545 dbgs() << ", total = "; 1546 MBFI->printBlockFreq(dbgs(), Cost) << " with bundles"; 1547 for (int I : Cand.LiveBundles.set_bits()) 1548 dbgs() << " EB#" << I; 1549 dbgs() << ".\n"; 1550 }); 1551 if (Cost < BestCost) { 1552 BestCand = NumCands; 1553 BestCost = Cost; 1554 // See splitCanCauseEvictionChain for detailed description of bad 1555 // eviction chain scenarios. 1556 if (CanCauseEvictionChain) 1557 *CanCauseEvictionChain = HasEvictionChain; 1558 } 1559 ++NumCands; 1560 } 1561 1562 if (CanCauseEvictionChain && BestCand != NoCand) { 1563 // See splitCanCauseEvictionChain for detailed description of bad 1564 // eviction chain scenarios. 1565 LLVM_DEBUG(dbgs() << "Best split candidate of vreg " 1566 << printReg(VirtReg.reg(), TRI) << " may "); 1567 if (!(*CanCauseEvictionChain)) 1568 LLVM_DEBUG(dbgs() << "not "); 1569 LLVM_DEBUG(dbgs() << "cause bad eviction chain\n"); 1570 } 1571 1572 return BestCand; 1573 } 1574 1575 unsigned RAGreedy::doRegionSplit(LiveInterval &VirtReg, unsigned BestCand, 1576 bool HasCompact, 1577 SmallVectorImpl<Register> &NewVRegs) { 1578 SmallVector<unsigned, 8> UsedCands; 1579 // Prepare split editor. 1580 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1581 SE->reset(LREdit, SplitSpillMode); 1582 1583 // Assign all edge bundles to the preferred candidate, or NoCand. 1584 BundleCand.assign(Bundles->getNumBundles(), NoCand); 1585 1586 // Assign bundles for the best candidate region. 1587 if (BestCand != NoCand) { 1588 GlobalSplitCandidate &Cand = GlobalCand[BestCand]; 1589 if (unsigned B = Cand.getBundles(BundleCand, BestCand)) { 1590 UsedCands.push_back(BestCand); 1591 Cand.IntvIdx = SE->openIntv(); 1592 LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand.PhysReg, TRI) << " in " 1593 << B << " bundles, intv " << Cand.IntvIdx << ".\n"); 1594 (void)B; 1595 } 1596 } 1597 1598 // Assign bundles for the compact region. 1599 if (HasCompact) { 1600 GlobalSplitCandidate &Cand = GlobalCand.front(); 1601 assert(!Cand.PhysReg && "Compact region has no physreg"); 1602 if (unsigned B = Cand.getBundles(BundleCand, 0)) { 1603 UsedCands.push_back(0); 1604 Cand.IntvIdx = SE->openIntv(); 1605 LLVM_DEBUG(dbgs() << "Split for compact region in " << B 1606 << " bundles, intv " << Cand.IntvIdx << ".\n"); 1607 (void)B; 1608 } 1609 } 1610 1611 splitAroundRegion(LREdit, UsedCands); 1612 return 0; 1613 } 1614 1615 //===----------------------------------------------------------------------===// 1616 // Per-Block Splitting 1617 //===----------------------------------------------------------------------===// 1618 1619 /// tryBlockSplit - Split a global live range around every block with uses. This 1620 /// creates a lot of local live ranges, that will be split by tryLocalSplit if 1621 /// they don't allocate. 1622 unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order, 1623 SmallVectorImpl<Register> &NewVRegs) { 1624 assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed"); 1625 Register Reg = VirtReg.reg(); 1626 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 1627 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1628 SE->reset(LREdit, SplitSpillMode); 1629 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1630 for (const SplitAnalysis::BlockInfo &BI : UseBlocks) { 1631 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 1632 SE->splitSingleBlock(BI); 1633 } 1634 // No blocks were split. 1635 if (LREdit.empty()) 1636 return 0; 1637 1638 // We did split for some blocks. 1639 SmallVector<unsigned, 8> IntvMap; 1640 SE->finish(&IntvMap); 1641 1642 // Tell LiveDebugVariables about the new ranges. 1643 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 1644 1645 // Sort out the new intervals created by splitting. The remainder interval 1646 // goes straight to spilling, the new local ranges get to stay RS_New. 1647 for (unsigned I = 0, E = LREdit.size(); I != E; ++I) { 1648 const LiveInterval &LI = LIS->getInterval(LREdit.get(I)); 1649 if (ExtraInfo->getOrInitStage(LI.reg()) == RS_New && IntvMap[I] == 0) 1650 ExtraInfo->setStage(LI, RS_Spill); 1651 } 1652 1653 if (VerifyEnabled) 1654 MF->verify(this, "After splitting live range around basic blocks"); 1655 return 0; 1656 } 1657 1658 //===----------------------------------------------------------------------===// 1659 // Per-Instruction Splitting 1660 //===----------------------------------------------------------------------===// 1661 1662 /// Get the number of allocatable registers that match the constraints of \p Reg 1663 /// on \p MI and that are also in \p SuperRC. 1664 static unsigned getNumAllocatableRegsForConstraints( 1665 const MachineInstr *MI, Register Reg, const TargetRegisterClass *SuperRC, 1666 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI, 1667 const RegisterClassInfo &RCI) { 1668 assert(SuperRC && "Invalid register class"); 1669 1670 const TargetRegisterClass *ConstrainedRC = 1671 MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI, 1672 /* ExploreBundle */ true); 1673 if (!ConstrainedRC) 1674 return 0; 1675 return RCI.getNumAllocatableRegs(ConstrainedRC); 1676 } 1677 1678 /// tryInstructionSplit - Split a live range around individual instructions. 1679 /// This is normally not worthwhile since the spiller is doing essentially the 1680 /// same thing. However, when the live range is in a constrained register 1681 /// class, it may help to insert copies such that parts of the live range can 1682 /// be moved to a larger register class. 1683 /// 1684 /// This is similar to spilling to a larger register class. 1685 unsigned 1686 RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order, 1687 SmallVectorImpl<Register> &NewVRegs) { 1688 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg()); 1689 // There is no point to this if there are no larger sub-classes. 1690 if (!RegClassInfo.isProperSubClass(CurRC)) 1691 return 0; 1692 1693 // Always enable split spill mode, since we're effectively spilling to a 1694 // register. 1695 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1696 SE->reset(LREdit, SplitEditor::SM_Size); 1697 1698 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 1699 if (Uses.size() <= 1) 1700 return 0; 1701 1702 LLVM_DEBUG(dbgs() << "Split around " << Uses.size() 1703 << " individual instrs.\n"); 1704 1705 const TargetRegisterClass *SuperRC = 1706 TRI->getLargestLegalSuperClass(CurRC, *MF); 1707 unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC); 1708 // Split around every non-copy instruction if this split will relax 1709 // the constraints on the virtual register. 1710 // Otherwise, splitting just inserts uncoalescable copies that do not help 1711 // the allocation. 1712 for (const SlotIndex Use : Uses) { 1713 if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Use)) 1714 if (MI->isFullCopy() || 1715 SuperRCNumAllocatableRegs == 1716 getNumAllocatableRegsForConstraints(MI, VirtReg.reg(), SuperRC, 1717 TII, TRI, RCI)) { 1718 LLVM_DEBUG(dbgs() << " skip:\t" << Use << '\t' << *MI); 1719 continue; 1720 } 1721 SE->openIntv(); 1722 SlotIndex SegStart = SE->enterIntvBefore(Use); 1723 SlotIndex SegStop = SE->leaveIntvAfter(Use); 1724 SE->useIntv(SegStart, SegStop); 1725 } 1726 1727 if (LREdit.empty()) { 1728 LLVM_DEBUG(dbgs() << "All uses were copies.\n"); 1729 return 0; 1730 } 1731 1732 SmallVector<unsigned, 8> IntvMap; 1733 SE->finish(&IntvMap); 1734 DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS); 1735 // Assign all new registers to RS_Spill. This was the last chance. 1736 ExtraInfo->setStage(LREdit.begin(), LREdit.end(), RS_Spill); 1737 return 0; 1738 } 1739 1740 //===----------------------------------------------------------------------===// 1741 // Local Splitting 1742 //===----------------------------------------------------------------------===// 1743 1744 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted 1745 /// in order to use PhysReg between two entries in SA->UseSlots. 1746 /// 1747 /// GapWeight[I] represents the gap between UseSlots[I] and UseSlots[I + 1]. 1748 /// 1749 void RAGreedy::calcGapWeights(MCRegister PhysReg, 1750 SmallVectorImpl<float> &GapWeight) { 1751 assert(SA->getUseBlocks().size() == 1 && "Not a local interval"); 1752 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 1753 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 1754 const unsigned NumGaps = Uses.size()-1; 1755 1756 // Start and end points for the interference check. 1757 SlotIndex StartIdx = 1758 BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr; 1759 SlotIndex StopIdx = 1760 BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr; 1761 1762 GapWeight.assign(NumGaps, 0.0f); 1763 1764 // Add interference from each overlapping register. 1765 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 1766 if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units) 1767 .checkInterference()) 1768 continue; 1769 1770 // We know that VirtReg is a continuous interval from FirstInstr to 1771 // LastInstr, so we don't need InterferenceQuery. 1772 // 1773 // Interference that overlaps an instruction is counted in both gaps 1774 // surrounding the instruction. The exception is interference before 1775 // StartIdx and after StopIdx. 1776 // 1777 LiveIntervalUnion::SegmentIter IntI = 1778 Matrix->getLiveUnions()[*Units] .find(StartIdx); 1779 for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) { 1780 // Skip the gaps before IntI. 1781 while (Uses[Gap+1].getBoundaryIndex() < IntI.start()) 1782 if (++Gap == NumGaps) 1783 break; 1784 if (Gap == NumGaps) 1785 break; 1786 1787 // Update the gaps covered by IntI. 1788 const float weight = IntI.value()->weight(); 1789 for (; Gap != NumGaps; ++Gap) { 1790 GapWeight[Gap] = std::max(GapWeight[Gap], weight); 1791 if (Uses[Gap+1].getBaseIndex() >= IntI.stop()) 1792 break; 1793 } 1794 if (Gap == NumGaps) 1795 break; 1796 } 1797 } 1798 1799 // Add fixed interference. 1800 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 1801 const LiveRange &LR = LIS->getRegUnit(*Units); 1802 LiveRange::const_iterator I = LR.find(StartIdx); 1803 LiveRange::const_iterator E = LR.end(); 1804 1805 // Same loop as above. Mark any overlapped gaps as HUGE_VALF. 1806 for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) { 1807 while (Uses[Gap+1].getBoundaryIndex() < I->start) 1808 if (++Gap == NumGaps) 1809 break; 1810 if (Gap == NumGaps) 1811 break; 1812 1813 for (; Gap != NumGaps; ++Gap) { 1814 GapWeight[Gap] = huge_valf; 1815 if (Uses[Gap+1].getBaseIndex() >= I->end) 1816 break; 1817 } 1818 if (Gap == NumGaps) 1819 break; 1820 } 1821 } 1822 } 1823 1824 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only 1825 /// basic block. 1826 /// 1827 unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order, 1828 SmallVectorImpl<Register> &NewVRegs) { 1829 // TODO: the function currently only handles a single UseBlock; it should be 1830 // possible to generalize. 1831 if (SA->getUseBlocks().size() != 1) 1832 return 0; 1833 1834 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 1835 1836 // Note that it is possible to have an interval that is live-in or live-out 1837 // while only covering a single block - A phi-def can use undef values from 1838 // predecessors, and the block could be a single-block loop. 1839 // We don't bother doing anything clever about such a case, we simply assume 1840 // that the interval is continuous from FirstInstr to LastInstr. We should 1841 // make sure that we don't do anything illegal to such an interval, though. 1842 1843 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 1844 if (Uses.size() <= 2) 1845 return 0; 1846 const unsigned NumGaps = Uses.size()-1; 1847 1848 LLVM_DEBUG({ 1849 dbgs() << "tryLocalSplit: "; 1850 for (const auto &Use : Uses) 1851 dbgs() << ' ' << Use; 1852 dbgs() << '\n'; 1853 }); 1854 1855 // If VirtReg is live across any register mask operands, compute a list of 1856 // gaps with register masks. 1857 SmallVector<unsigned, 8> RegMaskGaps; 1858 if (Matrix->checkRegMaskInterference(VirtReg)) { 1859 // Get regmask slots for the whole block. 1860 ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber()); 1861 LLVM_DEBUG(dbgs() << RMS.size() << " regmasks in block:"); 1862 // Constrain to VirtReg's live range. 1863 unsigned RI = 1864 llvm::lower_bound(RMS, Uses.front().getRegSlot()) - RMS.begin(); 1865 unsigned RE = RMS.size(); 1866 for (unsigned I = 0; I != NumGaps && RI != RE; ++I) { 1867 // Look for Uses[I] <= RMS <= Uses[I + 1]. 1868 assert(!SlotIndex::isEarlierInstr(RMS[RI], Uses[I])); 1869 if (SlotIndex::isEarlierInstr(Uses[I + 1], RMS[RI])) 1870 continue; 1871 // Skip a regmask on the same instruction as the last use. It doesn't 1872 // overlap the live range. 1873 if (SlotIndex::isSameInstr(Uses[I + 1], RMS[RI]) && I + 1 == NumGaps) 1874 break; 1875 LLVM_DEBUG(dbgs() << ' ' << RMS[RI] << ':' << Uses[I] << '-' 1876 << Uses[I + 1]); 1877 RegMaskGaps.push_back(I); 1878 // Advance ri to the next gap. A regmask on one of the uses counts in 1879 // both gaps. 1880 while (RI != RE && SlotIndex::isEarlierInstr(RMS[RI], Uses[I + 1])) 1881 ++RI; 1882 } 1883 LLVM_DEBUG(dbgs() << '\n'); 1884 } 1885 1886 // Since we allow local split results to be split again, there is a risk of 1887 // creating infinite loops. It is tempting to require that the new live 1888 // ranges have less instructions than the original. That would guarantee 1889 // convergence, but it is too strict. A live range with 3 instructions can be 1890 // split 2+3 (including the COPY), and we want to allow that. 1891 // 1892 // Instead we use these rules: 1893 // 1894 // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the 1895 // noop split, of course). 1896 // 2. Require progress be made for ranges with getStage() == RS_Split2. All 1897 // the new ranges must have fewer instructions than before the split. 1898 // 3. New ranges with the same number of instructions are marked RS_Split2, 1899 // smaller ranges are marked RS_New. 1900 // 1901 // These rules allow a 3 -> 2+3 split once, which we need. They also prevent 1902 // excessive splitting and infinite loops. 1903 // 1904 bool ProgressRequired = ExtraInfo->getStage(VirtReg) >= RS_Split2; 1905 1906 // Best split candidate. 1907 unsigned BestBefore = NumGaps; 1908 unsigned BestAfter = 0; 1909 float BestDiff = 0; 1910 1911 const float blockFreq = 1912 SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() * 1913 (1.0f / MBFI->getEntryFreq()); 1914 SmallVector<float, 8> GapWeight; 1915 1916 for (MCPhysReg PhysReg : Order) { 1917 assert(PhysReg); 1918 // Keep track of the largest spill weight that would need to be evicted in 1919 // order to make use of PhysReg between UseSlots[I] and UseSlots[I + 1]. 1920 calcGapWeights(PhysReg, GapWeight); 1921 1922 // Remove any gaps with regmask clobbers. 1923 if (Matrix->checkRegMaskInterference(VirtReg, PhysReg)) 1924 for (unsigned I = 0, E = RegMaskGaps.size(); I != E; ++I) 1925 GapWeight[RegMaskGaps[I]] = huge_valf; 1926 1927 // Try to find the best sequence of gaps to close. 1928 // The new spill weight must be larger than any gap interference. 1929 1930 // We will split before Uses[SplitBefore] and after Uses[SplitAfter]. 1931 unsigned SplitBefore = 0, SplitAfter = 1; 1932 1933 // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]). 1934 // It is the spill weight that needs to be evicted. 1935 float MaxGap = GapWeight[0]; 1936 1937 while (true) { 1938 // Live before/after split? 1939 const bool LiveBefore = SplitBefore != 0 || BI.LiveIn; 1940 const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut; 1941 1942 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << ' ' << Uses[SplitBefore] 1943 << '-' << Uses[SplitAfter] << " I=" << MaxGap); 1944 1945 // Stop before the interval gets so big we wouldn't be making progress. 1946 if (!LiveBefore && !LiveAfter) { 1947 LLVM_DEBUG(dbgs() << " all\n"); 1948 break; 1949 } 1950 // Should the interval be extended or shrunk? 1951 bool Shrink = true; 1952 1953 // How many gaps would the new range have? 1954 unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter; 1955 1956 // Legally, without causing looping? 1957 bool Legal = !ProgressRequired || NewGaps < NumGaps; 1958 1959 if (Legal && MaxGap < huge_valf) { 1960 // Estimate the new spill weight. Each instruction reads or writes the 1961 // register. Conservatively assume there are no read-modify-write 1962 // instructions. 1963 // 1964 // Try to guess the size of the new interval. 1965 const float EstWeight = normalizeSpillWeight( 1966 blockFreq * (NewGaps + 1), 1967 Uses[SplitBefore].distance(Uses[SplitAfter]) + 1968 (LiveBefore + LiveAfter) * SlotIndex::InstrDist, 1969 1); 1970 // Would this split be possible to allocate? 1971 // Never allocate all gaps, we wouldn't be making progress. 1972 LLVM_DEBUG(dbgs() << " w=" << EstWeight); 1973 if (EstWeight * Hysteresis >= MaxGap) { 1974 Shrink = false; 1975 float Diff = EstWeight - MaxGap; 1976 if (Diff > BestDiff) { 1977 LLVM_DEBUG(dbgs() << " (best)"); 1978 BestDiff = Hysteresis * Diff; 1979 BestBefore = SplitBefore; 1980 BestAfter = SplitAfter; 1981 } 1982 } 1983 } 1984 1985 // Try to shrink. 1986 if (Shrink) { 1987 if (++SplitBefore < SplitAfter) { 1988 LLVM_DEBUG(dbgs() << " shrink\n"); 1989 // Recompute the max when necessary. 1990 if (GapWeight[SplitBefore - 1] >= MaxGap) { 1991 MaxGap = GapWeight[SplitBefore]; 1992 for (unsigned I = SplitBefore + 1; I != SplitAfter; ++I) 1993 MaxGap = std::max(MaxGap, GapWeight[I]); 1994 } 1995 continue; 1996 } 1997 MaxGap = 0; 1998 } 1999 2000 // Try to extend the interval. 2001 if (SplitAfter >= NumGaps) { 2002 LLVM_DEBUG(dbgs() << " end\n"); 2003 break; 2004 } 2005 2006 LLVM_DEBUG(dbgs() << " extend\n"); 2007 MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]); 2008 } 2009 } 2010 2011 // Didn't find any candidates? 2012 if (BestBefore == NumGaps) 2013 return 0; 2014 2015 LLVM_DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] << '-' 2016 << Uses[BestAfter] << ", " << BestDiff << ", " 2017 << (BestAfter - BestBefore + 1) << " instrs\n"); 2018 2019 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2020 SE->reset(LREdit); 2021 2022 SE->openIntv(); 2023 SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]); 2024 SlotIndex SegStop = SE->leaveIntvAfter(Uses[BestAfter]); 2025 SE->useIntv(SegStart, SegStop); 2026 SmallVector<unsigned, 8> IntvMap; 2027 SE->finish(&IntvMap); 2028 DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS); 2029 // If the new range has the same number of instructions as before, mark it as 2030 // RS_Split2 so the next split will be forced to make progress. Otherwise, 2031 // leave the new intervals as RS_New so they can compete. 2032 bool LiveBefore = BestBefore != 0 || BI.LiveIn; 2033 bool LiveAfter = BestAfter != NumGaps || BI.LiveOut; 2034 unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter; 2035 if (NewGaps >= NumGaps) { 2036 LLVM_DEBUG(dbgs() << "Tagging non-progress ranges:"); 2037 assert(!ProgressRequired && "Didn't make progress when it was required."); 2038 for (unsigned I = 0, E = IntvMap.size(); I != E; ++I) 2039 if (IntvMap[I] == 1) { 2040 ExtraInfo->setStage(LIS->getInterval(LREdit.get(I)), RS_Split2); 2041 LLVM_DEBUG(dbgs() << ' ' << printReg(LREdit.get(I))); 2042 } 2043 LLVM_DEBUG(dbgs() << '\n'); 2044 } 2045 ++NumLocalSplits; 2046 2047 return 0; 2048 } 2049 2050 //===----------------------------------------------------------------------===// 2051 // Live Range Splitting 2052 //===----------------------------------------------------------------------===// 2053 2054 /// trySplit - Try to split VirtReg or one of its interferences, making it 2055 /// assignable. 2056 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs. 2057 unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order, 2058 SmallVectorImpl<Register> &NewVRegs, 2059 const SmallVirtRegSet &FixedRegisters) { 2060 // Ranges must be Split2 or less. 2061 if (ExtraInfo->getStage(VirtReg) >= RS_Spill) 2062 return 0; 2063 2064 // Local intervals are handled separately. 2065 if (LIS->intervalIsInOneMBB(VirtReg)) { 2066 NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName, 2067 TimerGroupDescription, TimePassesIsEnabled); 2068 SA->analyze(&VirtReg); 2069 Register PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs); 2070 if (PhysReg || !NewVRegs.empty()) 2071 return PhysReg; 2072 return tryInstructionSplit(VirtReg, Order, NewVRegs); 2073 } 2074 2075 NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName, 2076 TimerGroupDescription, TimePassesIsEnabled); 2077 2078 SA->analyze(&VirtReg); 2079 2080 // First try to split around a region spanning multiple blocks. RS_Split2 2081 // ranges already made dubious progress with region splitting, so they go 2082 // straight to single block splitting. 2083 if (ExtraInfo->getStage(VirtReg) < RS_Split2) { 2084 MCRegister PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs); 2085 if (PhysReg || !NewVRegs.empty()) 2086 return PhysReg; 2087 } 2088 2089 // Then isolate blocks. 2090 return tryBlockSplit(VirtReg, Order, NewVRegs); 2091 } 2092 2093 //===----------------------------------------------------------------------===// 2094 // Last Chance Recoloring 2095 //===----------------------------------------------------------------------===// 2096 2097 /// Return true if \p reg has any tied def operand. 2098 static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg) { 2099 for (const MachineOperand &MO : MRI->def_operands(reg)) 2100 if (MO.isTied()) 2101 return true; 2102 2103 return false; 2104 } 2105 2106 /// mayRecolorAllInterferences - Check if the virtual registers that 2107 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be 2108 /// recolored to free \p PhysReg. 2109 /// When true is returned, \p RecoloringCandidates has been augmented with all 2110 /// the live intervals that need to be recolored in order to free \p PhysReg 2111 /// for \p VirtReg. 2112 /// \p FixedRegisters contains all the virtual registers that cannot be 2113 /// recolored. 2114 bool RAGreedy::mayRecolorAllInterferences( 2115 MCRegister PhysReg, LiveInterval &VirtReg, SmallLISet &RecoloringCandidates, 2116 const SmallVirtRegSet &FixedRegisters) { 2117 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg()); 2118 2119 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 2120 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 2121 // If there is LastChanceRecoloringMaxInterference or more interferences, 2122 // chances are one would not be recolorable. 2123 if (Q.interferingVRegs(LastChanceRecoloringMaxInterference).size() >= 2124 LastChanceRecoloringMaxInterference && 2125 !ExhaustiveSearch) { 2126 LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n"); 2127 CutOffInfo |= CO_Interf; 2128 return false; 2129 } 2130 for (LiveInterval *Intf : reverse(Q.interferingVRegs())) { 2131 // If Intf is done and sit on the same register class as VirtReg, 2132 // it would not be recolorable as it is in the same state as VirtReg. 2133 // However, if VirtReg has tied defs and Intf doesn't, then 2134 // there is still a point in examining if it can be recolorable. 2135 if (((ExtraInfo->getStage(*Intf) == RS_Done && 2136 MRI->getRegClass(Intf->reg()) == CurRC) && 2137 !(hasTiedDef(MRI, VirtReg.reg()) && 2138 !hasTiedDef(MRI, Intf->reg()))) || 2139 FixedRegisters.count(Intf->reg())) { 2140 LLVM_DEBUG( 2141 dbgs() << "Early abort: the interference is not recolorable.\n"); 2142 return false; 2143 } 2144 RecoloringCandidates.insert(Intf); 2145 } 2146 } 2147 return true; 2148 } 2149 2150 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring 2151 /// its interferences. 2152 /// Last chance recoloring chooses a color for \p VirtReg and recolors every 2153 /// virtual register that was using it. The recoloring process may recursively 2154 /// use the last chance recoloring. Therefore, when a virtual register has been 2155 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot 2156 /// be last-chance-recolored again during this recoloring "session". 2157 /// E.g., 2158 /// Let 2159 /// vA can use {R1, R2 } 2160 /// vB can use { R2, R3} 2161 /// vC can use {R1 } 2162 /// Where vA, vB, and vC cannot be split anymore (they are reloads for 2163 /// instance) and they all interfere. 2164 /// 2165 /// vA is assigned R1 2166 /// vB is assigned R2 2167 /// vC tries to evict vA but vA is already done. 2168 /// Regular register allocation fails. 2169 /// 2170 /// Last chance recoloring kicks in: 2171 /// vC does as if vA was evicted => vC uses R1. 2172 /// vC is marked as fixed. 2173 /// vA needs to find a color. 2174 /// None are available. 2175 /// vA cannot evict vC: vC is a fixed virtual register now. 2176 /// vA does as if vB was evicted => vA uses R2. 2177 /// vB needs to find a color. 2178 /// R3 is available. 2179 /// Recoloring => vC = R1, vA = R2, vB = R3 2180 /// 2181 /// \p Order defines the preferred allocation order for \p VirtReg. 2182 /// \p NewRegs will contain any new virtual register that have been created 2183 /// (split, spill) during the process and that must be assigned. 2184 /// \p FixedRegisters contains all the virtual registers that cannot be 2185 /// recolored. 2186 /// \p Depth gives the current depth of the last chance recoloring. 2187 /// \return a physical register that can be used for VirtReg or ~0u if none 2188 /// exists. 2189 unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg, 2190 AllocationOrder &Order, 2191 SmallVectorImpl<Register> &NewVRegs, 2192 SmallVirtRegSet &FixedRegisters, 2193 unsigned Depth) { 2194 if (!TRI->shouldUseLastChanceRecoloringForVirtReg(*MF, VirtReg)) 2195 return ~0u; 2196 2197 LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n'); 2198 // Ranges must be Done. 2199 assert((ExtraInfo->getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) && 2200 "Last chance recoloring should really be last chance"); 2201 // Set the max depth to LastChanceRecoloringMaxDepth. 2202 // We may want to reconsider that if we end up with a too large search space 2203 // for target with hundreds of registers. 2204 // Indeed, in that case we may want to cut the search space earlier. 2205 if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) { 2206 LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n"); 2207 CutOffInfo |= CO_Depth; 2208 return ~0u; 2209 } 2210 2211 // Set of Live intervals that will need to be recolored. 2212 SmallLISet RecoloringCandidates; 2213 // Record the original mapping virtual register to physical register in case 2214 // the recoloring fails. 2215 DenseMap<Register, MCRegister> VirtRegToPhysReg; 2216 // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in 2217 // this recoloring "session". 2218 assert(!FixedRegisters.count(VirtReg.reg())); 2219 FixedRegisters.insert(VirtReg.reg()); 2220 SmallVector<Register, 4> CurrentNewVRegs; 2221 2222 for (MCRegister PhysReg : Order) { 2223 assert(PhysReg.isValid()); 2224 LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg << " to " 2225 << printReg(PhysReg, TRI) << '\n'); 2226 RecoloringCandidates.clear(); 2227 VirtRegToPhysReg.clear(); 2228 CurrentNewVRegs.clear(); 2229 2230 // It is only possible to recolor virtual register interference. 2231 if (Matrix->checkInterference(VirtReg, PhysReg) > 2232 LiveRegMatrix::IK_VirtReg) { 2233 LLVM_DEBUG( 2234 dbgs() << "Some interferences are not with virtual registers.\n"); 2235 2236 continue; 2237 } 2238 2239 // Early give up on this PhysReg if it is obvious we cannot recolor all 2240 // the interferences. 2241 if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates, 2242 FixedRegisters)) { 2243 LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n"); 2244 continue; 2245 } 2246 2247 // RecoloringCandidates contains all the virtual registers that interfer 2248 // with VirtReg on PhysReg (or one of its aliases). 2249 // Enqueue them for recoloring and perform the actual recoloring. 2250 PQueue RecoloringQueue; 2251 for (LiveInterval *RC : RecoloringCandidates) { 2252 Register ItVirtReg = RC->reg(); 2253 enqueue(RecoloringQueue, RC); 2254 assert(VRM->hasPhys(ItVirtReg) && 2255 "Interferences are supposed to be with allocated variables"); 2256 2257 // Record the current allocation. 2258 VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg); 2259 // unset the related struct. 2260 Matrix->unassign(*RC); 2261 } 2262 2263 // Do as if VirtReg was assigned to PhysReg so that the underlying 2264 // recoloring has the right information about the interferes and 2265 // available colors. 2266 Matrix->assign(VirtReg, PhysReg); 2267 2268 // Save the current recoloring state. 2269 // If we cannot recolor all the interferences, we will have to start again 2270 // at this point for the next physical register. 2271 SmallVirtRegSet SaveFixedRegisters(FixedRegisters); 2272 if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs, 2273 FixedRegisters, Depth)) { 2274 // Push the queued vregs into the main queue. 2275 for (Register NewVReg : CurrentNewVRegs) 2276 NewVRegs.push_back(NewVReg); 2277 // Do not mess up with the global assignment process. 2278 // I.e., VirtReg must be unassigned. 2279 Matrix->unassign(VirtReg); 2280 return PhysReg; 2281 } 2282 2283 LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to " 2284 << printReg(PhysReg, TRI) << '\n'); 2285 2286 // The recoloring attempt failed, undo the changes. 2287 FixedRegisters = SaveFixedRegisters; 2288 Matrix->unassign(VirtReg); 2289 2290 // For a newly created vreg which is also in RecoloringCandidates, 2291 // don't add it to NewVRegs because its physical register will be restored 2292 // below. Other vregs in CurrentNewVRegs are created by calling 2293 // selectOrSplit and should be added into NewVRegs. 2294 for (Register &R : CurrentNewVRegs) { 2295 if (RecoloringCandidates.count(&LIS->getInterval(R))) 2296 continue; 2297 NewVRegs.push_back(R); 2298 } 2299 2300 for (LiveInterval *RC : RecoloringCandidates) { 2301 Register ItVirtReg = RC->reg(); 2302 if (VRM->hasPhys(ItVirtReg)) 2303 Matrix->unassign(*RC); 2304 MCRegister ItPhysReg = VirtRegToPhysReg[ItVirtReg]; 2305 Matrix->assign(*RC, ItPhysReg); 2306 } 2307 } 2308 2309 // Last chance recoloring did not worked either, give up. 2310 return ~0u; 2311 } 2312 2313 /// tryRecoloringCandidates - Try to assign a new color to every register 2314 /// in \RecoloringQueue. 2315 /// \p NewRegs will contain any new virtual register created during the 2316 /// recoloring process. 2317 /// \p FixedRegisters[in/out] contains all the registers that have been 2318 /// recolored. 2319 /// \return true if all virtual registers in RecoloringQueue were successfully 2320 /// recolored, false otherwise. 2321 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue, 2322 SmallVectorImpl<Register> &NewVRegs, 2323 SmallVirtRegSet &FixedRegisters, 2324 unsigned Depth) { 2325 while (!RecoloringQueue.empty()) { 2326 LiveInterval *LI = dequeue(RecoloringQueue); 2327 LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI << '\n'); 2328 MCRegister PhysReg = 2329 selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, Depth + 1); 2330 // When splitting happens, the live-range may actually be empty. 2331 // In that case, this is okay to continue the recoloring even 2332 // if we did not find an alternative color for it. Indeed, 2333 // there will not be anything to color for LI in the end. 2334 if (PhysReg == ~0u || (!PhysReg && !LI->empty())) 2335 return false; 2336 2337 if (!PhysReg) { 2338 assert(LI->empty() && "Only empty live-range do not require a register"); 2339 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI 2340 << " succeeded. Empty LI.\n"); 2341 continue; 2342 } 2343 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI 2344 << " succeeded with: " << printReg(PhysReg, TRI) << '\n'); 2345 2346 Matrix->assign(*LI, PhysReg); 2347 FixedRegisters.insert(LI->reg()); 2348 } 2349 return true; 2350 } 2351 2352 //===----------------------------------------------------------------------===// 2353 // Main Entry Point 2354 //===----------------------------------------------------------------------===// 2355 2356 MCRegister RAGreedy::selectOrSplit(LiveInterval &VirtReg, 2357 SmallVectorImpl<Register> &NewVRegs) { 2358 CutOffInfo = CO_None; 2359 LLVMContext &Ctx = MF->getFunction().getContext(); 2360 SmallVirtRegSet FixedRegisters; 2361 MCRegister Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters); 2362 if (Reg == ~0U && (CutOffInfo != CO_None)) { 2363 uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf); 2364 if (CutOffEncountered == CO_Depth) 2365 Ctx.emitError("register allocation failed: maximum depth for recoloring " 2366 "reached. Use -fexhaustive-register-search to skip " 2367 "cutoffs"); 2368 else if (CutOffEncountered == CO_Interf) 2369 Ctx.emitError("register allocation failed: maximum interference for " 2370 "recoloring reached. Use -fexhaustive-register-search " 2371 "to skip cutoffs"); 2372 else if (CutOffEncountered == (CO_Depth | CO_Interf)) 2373 Ctx.emitError("register allocation failed: maximum interference and " 2374 "depth for recoloring reached. Use " 2375 "-fexhaustive-register-search to skip cutoffs"); 2376 } 2377 return Reg; 2378 } 2379 2380 /// Using a CSR for the first time has a cost because it causes push|pop 2381 /// to be added to prologue|epilogue. Splitting a cold section of the live 2382 /// range can have lower cost than using the CSR for the first time; 2383 /// Spilling a live range in the cold path can have lower cost than using 2384 /// the CSR for the first time. Returns the physical register if we decide 2385 /// to use the CSR; otherwise return 0. 2386 MCRegister 2387 RAGreedy::tryAssignCSRFirstTime(LiveInterval &VirtReg, AllocationOrder &Order, 2388 MCRegister PhysReg, uint8_t &CostPerUseLimit, 2389 SmallVectorImpl<Register> &NewVRegs) { 2390 if (ExtraInfo->getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) { 2391 // We choose spill over using the CSR for the first time if the spill cost 2392 // is lower than CSRCost. 2393 SA->analyze(&VirtReg); 2394 if (calcSpillCost() >= CSRCost) 2395 return PhysReg; 2396 2397 // We are going to spill, set CostPerUseLimit to 1 to make sure that 2398 // we will not use a callee-saved register in tryEvict. 2399 CostPerUseLimit = 1; 2400 return 0; 2401 } 2402 if (ExtraInfo->getStage(VirtReg) < RS_Split) { 2403 // We choose pre-splitting over using the CSR for the first time if 2404 // the cost of splitting is lower than CSRCost. 2405 SA->analyze(&VirtReg); 2406 unsigned NumCands = 0; 2407 BlockFrequency BestCost = CSRCost; // Don't modify CSRCost. 2408 unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost, 2409 NumCands, true /*IgnoreCSR*/); 2410 if (BestCand == NoCand) 2411 // Use the CSR if we can't find a region split below CSRCost. 2412 return PhysReg; 2413 2414 // Perform the actual pre-splitting. 2415 doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs); 2416 return 0; 2417 } 2418 return PhysReg; 2419 } 2420 2421 void RAGreedy::aboutToRemoveInterval(LiveInterval &LI) { 2422 // Do not keep invalid information around. 2423 SetOfBrokenHints.remove(&LI); 2424 } 2425 2426 void RAGreedy::initializeCSRCost() { 2427 // We use the larger one out of the command-line option and the value report 2428 // by TRI. 2429 CSRCost = BlockFrequency( 2430 std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost())); 2431 if (!CSRCost.getFrequency()) 2432 return; 2433 2434 // Raw cost is relative to Entry == 2^14; scale it appropriately. 2435 uint64_t ActualEntry = MBFI->getEntryFreq(); 2436 if (!ActualEntry) { 2437 CSRCost = 0; 2438 return; 2439 } 2440 uint64_t FixedEntry = 1 << 14; 2441 if (ActualEntry < FixedEntry) 2442 CSRCost *= BranchProbability(ActualEntry, FixedEntry); 2443 else if (ActualEntry <= UINT32_MAX) 2444 // Invert the fraction and divide. 2445 CSRCost /= BranchProbability(FixedEntry, ActualEntry); 2446 else 2447 // Can't use BranchProbability in general, since it takes 32-bit numbers. 2448 CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry); 2449 } 2450 2451 /// Collect the hint info for \p Reg. 2452 /// The results are stored into \p Out. 2453 /// \p Out is not cleared before being populated. 2454 void RAGreedy::collectHintInfo(Register Reg, HintsInfo &Out) { 2455 for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) { 2456 if (!Instr.isFullCopy()) 2457 continue; 2458 // Look for the other end of the copy. 2459 Register OtherReg = Instr.getOperand(0).getReg(); 2460 if (OtherReg == Reg) { 2461 OtherReg = Instr.getOperand(1).getReg(); 2462 if (OtherReg == Reg) 2463 continue; 2464 } 2465 // Get the current assignment. 2466 MCRegister OtherPhysReg = 2467 OtherReg.isPhysical() ? OtherReg.asMCReg() : VRM->getPhys(OtherReg); 2468 // Push the collected information. 2469 Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg, 2470 OtherPhysReg)); 2471 } 2472 } 2473 2474 /// Using the given \p List, compute the cost of the broken hints if 2475 /// \p PhysReg was used. 2476 /// \return The cost of \p List for \p PhysReg. 2477 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List, 2478 MCRegister PhysReg) { 2479 BlockFrequency Cost = 0; 2480 for (const HintInfo &Info : List) { 2481 if (Info.PhysReg != PhysReg) 2482 Cost += Info.Freq; 2483 } 2484 return Cost; 2485 } 2486 2487 /// Using the register assigned to \p VirtReg, try to recolor 2488 /// all the live ranges that are copy-related with \p VirtReg. 2489 /// The recoloring is then propagated to all the live-ranges that have 2490 /// been recolored and so on, until no more copies can be coalesced or 2491 /// it is not profitable. 2492 /// For a given live range, profitability is determined by the sum of the 2493 /// frequencies of the non-identity copies it would introduce with the old 2494 /// and new register. 2495 void RAGreedy::tryHintRecoloring(LiveInterval &VirtReg) { 2496 // We have a broken hint, check if it is possible to fix it by 2497 // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted 2498 // some register and PhysReg may be available for the other live-ranges. 2499 SmallSet<Register, 4> Visited; 2500 SmallVector<unsigned, 2> RecoloringCandidates; 2501 HintsInfo Info; 2502 Register Reg = VirtReg.reg(); 2503 MCRegister PhysReg = VRM->getPhys(Reg); 2504 // Start the recoloring algorithm from the input live-interval, then 2505 // it will propagate to the ones that are copy-related with it. 2506 Visited.insert(Reg); 2507 RecoloringCandidates.push_back(Reg); 2508 2509 LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg, TRI) 2510 << '(' << printReg(PhysReg, TRI) << ")\n"); 2511 2512 do { 2513 Reg = RecoloringCandidates.pop_back_val(); 2514 2515 // We cannot recolor physical register. 2516 if (Register::isPhysicalRegister(Reg)) 2517 continue; 2518 2519 // This may be a skipped class 2520 if (!VRM->hasPhys(Reg)) { 2521 assert(!ShouldAllocateClass(*TRI, *MRI->getRegClass(Reg)) && 2522 "We have an unallocated variable which should have been handled"); 2523 continue; 2524 } 2525 2526 // Get the live interval mapped with this virtual register to be able 2527 // to check for the interference with the new color. 2528 LiveInterval &LI = LIS->getInterval(Reg); 2529 MCRegister CurrPhys = VRM->getPhys(Reg); 2530 // Check that the new color matches the register class constraints and 2531 // that it is free for this live range. 2532 if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) || 2533 Matrix->checkInterference(LI, PhysReg))) 2534 continue; 2535 2536 LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << '(' << printReg(CurrPhys, TRI) 2537 << ") is recolorable.\n"); 2538 2539 // Gather the hint info. 2540 Info.clear(); 2541 collectHintInfo(Reg, Info); 2542 // Check if recoloring the live-range will increase the cost of the 2543 // non-identity copies. 2544 if (CurrPhys != PhysReg) { 2545 LLVM_DEBUG(dbgs() << "Checking profitability:\n"); 2546 BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys); 2547 BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg); 2548 LLVM_DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency() 2549 << "\nNew Cost: " << NewCopiesCost.getFrequency() 2550 << '\n'); 2551 if (OldCopiesCost < NewCopiesCost) { 2552 LLVM_DEBUG(dbgs() << "=> Not profitable.\n"); 2553 continue; 2554 } 2555 // At this point, the cost is either cheaper or equal. If it is 2556 // equal, we consider this is profitable because it may expose 2557 // more recoloring opportunities. 2558 LLVM_DEBUG(dbgs() << "=> Profitable.\n"); 2559 // Recolor the live-range. 2560 Matrix->unassign(LI); 2561 Matrix->assign(LI, PhysReg); 2562 } 2563 // Push all copy-related live-ranges to keep reconciling the broken 2564 // hints. 2565 for (const HintInfo &HI : Info) { 2566 if (Visited.insert(HI.Reg).second) 2567 RecoloringCandidates.push_back(HI.Reg); 2568 } 2569 } while (!RecoloringCandidates.empty()); 2570 } 2571 2572 /// Try to recolor broken hints. 2573 /// Broken hints may be repaired by recoloring when an evicted variable 2574 /// freed up a register for a larger live-range. 2575 /// Consider the following example: 2576 /// BB1: 2577 /// a = 2578 /// b = 2579 /// BB2: 2580 /// ... 2581 /// = b 2582 /// = a 2583 /// Let us assume b gets split: 2584 /// BB1: 2585 /// a = 2586 /// b = 2587 /// BB2: 2588 /// c = b 2589 /// ... 2590 /// d = c 2591 /// = d 2592 /// = a 2593 /// Because of how the allocation work, b, c, and d may be assigned different 2594 /// colors. Now, if a gets evicted later: 2595 /// BB1: 2596 /// a = 2597 /// st a, SpillSlot 2598 /// b = 2599 /// BB2: 2600 /// c = b 2601 /// ... 2602 /// d = c 2603 /// = d 2604 /// e = ld SpillSlot 2605 /// = e 2606 /// This is likely that we can assign the same register for b, c, and d, 2607 /// getting rid of 2 copies. 2608 void RAGreedy::tryHintsRecoloring() { 2609 for (LiveInterval *LI : SetOfBrokenHints) { 2610 assert(Register::isVirtualRegister(LI->reg()) && 2611 "Recoloring is possible only for virtual registers"); 2612 // Some dead defs may be around (e.g., because of debug uses). 2613 // Ignore those. 2614 if (!VRM->hasPhys(LI->reg())) 2615 continue; 2616 tryHintRecoloring(*LI); 2617 } 2618 } 2619 2620 MCRegister RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg, 2621 SmallVectorImpl<Register> &NewVRegs, 2622 SmallVirtRegSet &FixedRegisters, 2623 unsigned Depth) { 2624 uint8_t CostPerUseLimit = uint8_t(~0u); 2625 // First try assigning a free register. 2626 auto Order = 2627 AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix); 2628 if (MCRegister PhysReg = 2629 tryAssign(VirtReg, Order, NewVRegs, FixedRegisters)) { 2630 // If VirtReg got an assignment, the eviction info is no longer relevant. 2631 LastEvicted.clearEvicteeInfo(VirtReg.reg()); 2632 // When NewVRegs is not empty, we may have made decisions such as evicting 2633 // a virtual register, go with the earlier decisions and use the physical 2634 // register. 2635 if (CSRCost.getFrequency() && 2636 EvictAdvisor->isUnusedCalleeSavedReg(PhysReg) && NewVRegs.empty()) { 2637 MCRegister CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg, 2638 CostPerUseLimit, NewVRegs); 2639 if (CSRReg || !NewVRegs.empty()) 2640 // Return now if we decide to use a CSR or create new vregs due to 2641 // pre-splitting. 2642 return CSRReg; 2643 } else 2644 return PhysReg; 2645 } 2646 2647 LiveRangeStage Stage = ExtraInfo->getStage(VirtReg); 2648 LLVM_DEBUG(dbgs() << StageName[Stage] << " Cascade " 2649 << ExtraInfo->getCascade(VirtReg.reg()) << '\n'); 2650 2651 // Try to evict a less worthy live range, but only for ranges from the primary 2652 // queue. The RS_Split ranges already failed to do this, and they should not 2653 // get a second chance until they have been split. 2654 if (Stage != RS_Split) 2655 if (Register PhysReg = 2656 tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit, 2657 FixedRegisters)) { 2658 Register Hint = MRI->getSimpleHint(VirtReg.reg()); 2659 // If VirtReg has a hint and that hint is broken record this 2660 // virtual register as a recoloring candidate for broken hint. 2661 // Indeed, since we evicted a variable in its neighborhood it is 2662 // likely we can at least partially recolor some of the 2663 // copy-related live-ranges. 2664 if (Hint && Hint != PhysReg) 2665 SetOfBrokenHints.insert(&VirtReg); 2666 // If VirtReg eviction someone, the eviction info for it as an evictee is 2667 // no longer relevant. 2668 LastEvicted.clearEvicteeInfo(VirtReg.reg()); 2669 return PhysReg; 2670 } 2671 2672 assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs"); 2673 2674 // The first time we see a live range, don't try to split or spill. 2675 // Wait until the second time, when all smaller ranges have been allocated. 2676 // This gives a better picture of the interference to split around. 2677 if (Stage < RS_Split) { 2678 ExtraInfo->setStage(VirtReg, RS_Split); 2679 LLVM_DEBUG(dbgs() << "wait for second round\n"); 2680 NewVRegs.push_back(VirtReg.reg()); 2681 return 0; 2682 } 2683 2684 if (Stage < RS_Spill) { 2685 // Try splitting VirtReg or interferences. 2686 unsigned NewVRegSizeBefore = NewVRegs.size(); 2687 Register PhysReg = trySplit(VirtReg, Order, NewVRegs, FixedRegisters); 2688 if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore)) { 2689 // If VirtReg got split, the eviction info is no longer relevant. 2690 LastEvicted.clearEvicteeInfo(VirtReg.reg()); 2691 return PhysReg; 2692 } 2693 } 2694 2695 // If we couldn't allocate a register from spilling, there is probably some 2696 // invalid inline assembly. The base class will report it. 2697 if (Stage >= RS_Done || !VirtReg.isSpillable()) 2698 return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters, 2699 Depth); 2700 2701 // Finally spill VirtReg itself. 2702 if ((EnableDeferredSpilling || 2703 TRI->shouldUseDeferredSpillingForVirtReg(*MF, VirtReg)) && 2704 ExtraInfo->getStage(VirtReg) < RS_Memory) { 2705 // TODO: This is experimental and in particular, we do not model 2706 // the live range splitting done by spilling correctly. 2707 // We would need a deep integration with the spiller to do the 2708 // right thing here. Anyway, that is still good for early testing. 2709 ExtraInfo->setStage(VirtReg, RS_Memory); 2710 LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n"); 2711 NewVRegs.push_back(VirtReg.reg()); 2712 } else { 2713 NamedRegionTimer T("spill", "Spiller", TimerGroupName, 2714 TimerGroupDescription, TimePassesIsEnabled); 2715 LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2716 spiller().spill(LRE); 2717 ExtraInfo->setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done); 2718 2719 // Tell LiveDebugVariables about the new ranges. Ranges not being covered by 2720 // the new regs are kept in LDV (still mapping to the old register), until 2721 // we rewrite spilled locations in LDV at a later stage. 2722 DebugVars->splitRegister(VirtReg.reg(), LRE.regs(), *LIS); 2723 2724 if (VerifyEnabled) 2725 MF->verify(this, "After spilling"); 2726 } 2727 2728 // The live virtual register requesting allocation was spilled, so tell 2729 // the caller not to allocate anything during this round. 2730 return 0; 2731 } 2732 2733 void RAGreedy::RAGreedyStats::report(MachineOptimizationRemarkMissed &R) { 2734 using namespace ore; 2735 if (Spills) { 2736 R << NV("NumSpills", Spills) << " spills "; 2737 R << NV("TotalSpillsCost", SpillsCost) << " total spills cost "; 2738 } 2739 if (FoldedSpills) { 2740 R << NV("NumFoldedSpills", FoldedSpills) << " folded spills "; 2741 R << NV("TotalFoldedSpillsCost", FoldedSpillsCost) 2742 << " total folded spills cost "; 2743 } 2744 if (Reloads) { 2745 R << NV("NumReloads", Reloads) << " reloads "; 2746 R << NV("TotalReloadsCost", ReloadsCost) << " total reloads cost "; 2747 } 2748 if (FoldedReloads) { 2749 R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads "; 2750 R << NV("TotalFoldedReloadsCost", FoldedReloadsCost) 2751 << " total folded reloads cost "; 2752 } 2753 if (ZeroCostFoldedReloads) 2754 R << NV("NumZeroCostFoldedReloads", ZeroCostFoldedReloads) 2755 << " zero cost folded reloads "; 2756 if (Copies) { 2757 R << NV("NumVRCopies", Copies) << " virtual registers copies "; 2758 R << NV("TotalCopiesCost", CopiesCost) << " total copies cost "; 2759 } 2760 } 2761 2762 RAGreedy::RAGreedyStats RAGreedy::computeStats(MachineBasicBlock &MBB) { 2763 RAGreedyStats Stats; 2764 const MachineFrameInfo &MFI = MF->getFrameInfo(); 2765 int FI; 2766 2767 auto isSpillSlotAccess = [&MFI](const MachineMemOperand *A) { 2768 return MFI.isSpillSlotObjectIndex(cast<FixedStackPseudoSourceValue>( 2769 A->getPseudoValue())->getFrameIndex()); 2770 }; 2771 auto isPatchpointInstr = [](const MachineInstr &MI) { 2772 return MI.getOpcode() == TargetOpcode::PATCHPOINT || 2773 MI.getOpcode() == TargetOpcode::STACKMAP || 2774 MI.getOpcode() == TargetOpcode::STATEPOINT; 2775 }; 2776 for (MachineInstr &MI : MBB) { 2777 if (MI.isCopy()) { 2778 MachineOperand &Dest = MI.getOperand(0); 2779 MachineOperand &Src = MI.getOperand(1); 2780 if (Dest.isReg() && Src.isReg() && Dest.getReg().isVirtual() && 2781 Src.getReg().isVirtual()) 2782 ++Stats.Copies; 2783 continue; 2784 } 2785 2786 SmallVector<const MachineMemOperand *, 2> Accesses; 2787 if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) { 2788 ++Stats.Reloads; 2789 continue; 2790 } 2791 if (TII->isStoreToStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) { 2792 ++Stats.Spills; 2793 continue; 2794 } 2795 if (TII->hasLoadFromStackSlot(MI, Accesses) && 2796 llvm::any_of(Accesses, isSpillSlotAccess)) { 2797 if (!isPatchpointInstr(MI)) { 2798 Stats.FoldedReloads += Accesses.size(); 2799 continue; 2800 } 2801 // For statepoint there may be folded and zero cost folded stack reloads. 2802 std::pair<unsigned, unsigned> NonZeroCostRange = 2803 TII->getPatchpointUnfoldableRange(MI); 2804 SmallSet<unsigned, 16> FoldedReloads; 2805 SmallSet<unsigned, 16> ZeroCostFoldedReloads; 2806 for (unsigned Idx = 0, E = MI.getNumOperands(); Idx < E; ++Idx) { 2807 MachineOperand &MO = MI.getOperand(Idx); 2808 if (!MO.isFI() || !MFI.isSpillSlotObjectIndex(MO.getIndex())) 2809 continue; 2810 if (Idx >= NonZeroCostRange.first && Idx < NonZeroCostRange.second) 2811 FoldedReloads.insert(MO.getIndex()); 2812 else 2813 ZeroCostFoldedReloads.insert(MO.getIndex()); 2814 } 2815 // If stack slot is used in folded reload it is not zero cost then. 2816 for (unsigned Slot : FoldedReloads) 2817 ZeroCostFoldedReloads.erase(Slot); 2818 Stats.FoldedReloads += FoldedReloads.size(); 2819 Stats.ZeroCostFoldedReloads += ZeroCostFoldedReloads.size(); 2820 continue; 2821 } 2822 Accesses.clear(); 2823 if (TII->hasStoreToStackSlot(MI, Accesses) && 2824 llvm::any_of(Accesses, isSpillSlotAccess)) { 2825 Stats.FoldedSpills += Accesses.size(); 2826 } 2827 } 2828 // Set cost of collected statistic by multiplication to relative frequency of 2829 // this basic block. 2830 float RelFreq = MBFI->getBlockFreqRelativeToEntryBlock(&MBB); 2831 Stats.ReloadsCost = RelFreq * Stats.Reloads; 2832 Stats.FoldedReloadsCost = RelFreq * Stats.FoldedReloads; 2833 Stats.SpillsCost = RelFreq * Stats.Spills; 2834 Stats.FoldedSpillsCost = RelFreq * Stats.FoldedSpills; 2835 Stats.CopiesCost = RelFreq * Stats.Copies; 2836 return Stats; 2837 } 2838 2839 RAGreedy::RAGreedyStats RAGreedy::reportStats(MachineLoop *L) { 2840 RAGreedyStats Stats; 2841 2842 // Sum up the spill and reloads in subloops. 2843 for (MachineLoop *SubLoop : *L) 2844 Stats.add(reportStats(SubLoop)); 2845 2846 for (MachineBasicBlock *MBB : L->getBlocks()) 2847 // Handle blocks that were not included in subloops. 2848 if (Loops->getLoopFor(MBB) == L) 2849 Stats.add(computeStats(*MBB)); 2850 2851 if (!Stats.isEmpty()) { 2852 using namespace ore; 2853 2854 ORE->emit([&]() { 2855 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReloadCopies", 2856 L->getStartLoc(), L->getHeader()); 2857 Stats.report(R); 2858 R << "generated in loop"; 2859 return R; 2860 }); 2861 } 2862 return Stats; 2863 } 2864 2865 void RAGreedy::reportStats() { 2866 if (!ORE->allowExtraAnalysis(DEBUG_TYPE)) 2867 return; 2868 RAGreedyStats Stats; 2869 for (MachineLoop *L : *Loops) 2870 Stats.add(reportStats(L)); 2871 // Process non-loop blocks. 2872 for (MachineBasicBlock &MBB : *MF) 2873 if (!Loops->getLoopFor(&MBB)) 2874 Stats.add(computeStats(MBB)); 2875 if (!Stats.isEmpty()) { 2876 using namespace ore; 2877 2878 ORE->emit([&]() { 2879 DebugLoc Loc; 2880 if (auto *SP = MF->getFunction().getSubprogram()) 2881 Loc = DILocation::get(SP->getContext(), SP->getLine(), 1, SP); 2882 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "SpillReloadCopies", Loc, 2883 &MF->front()); 2884 Stats.report(R); 2885 R << "generated in function"; 2886 return R; 2887 }); 2888 } 2889 } 2890 2891 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) { 2892 LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n" 2893 << "********** Function: " << mf.getName() << '\n'); 2894 2895 MF = &mf; 2896 TRI = MF->getSubtarget().getRegisterInfo(); 2897 TII = MF->getSubtarget().getInstrInfo(); 2898 RCI.runOnMachineFunction(mf); 2899 2900 EnableAdvancedRASplitCost = 2901 ConsiderLocalIntervalCost.getNumOccurrences() 2902 ? ConsiderLocalIntervalCost 2903 : MF->getSubtarget().enableAdvancedRASplitCost(); 2904 2905 if (VerifyEnabled) 2906 MF->verify(this, "Before greedy register allocator"); 2907 2908 RegAllocBase::init(getAnalysis<VirtRegMap>(), 2909 getAnalysis<LiveIntervals>(), 2910 getAnalysis<LiveRegMatrix>()); 2911 Indexes = &getAnalysis<SlotIndexes>(); 2912 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 2913 DomTree = &getAnalysis<MachineDominatorTree>(); 2914 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 2915 Loops = &getAnalysis<MachineLoopInfo>(); 2916 Bundles = &getAnalysis<EdgeBundles>(); 2917 SpillPlacer = &getAnalysis<SpillPlacement>(); 2918 DebugVars = &getAnalysis<LiveDebugVariables>(); 2919 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2920 2921 initializeCSRCost(); 2922 2923 RegCosts = TRI->getRegisterCosts(*MF); 2924 2925 ExtraInfo.emplace(); 2926 EvictAdvisor = 2927 getAnalysis<RegAllocEvictionAdvisorAnalysis>().getAdvisor(*MF, *this); 2928 2929 VRAI = std::make_unique<VirtRegAuxInfo>(*MF, *LIS, *VRM, *Loops, *MBFI); 2930 SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM, *VRAI)); 2931 2932 VRAI->calculateSpillWeightsAndHints(); 2933 2934 LLVM_DEBUG(LIS->dump()); 2935 2936 SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops)); 2937 SE.reset(new SplitEditor(*SA, *AA, *LIS, *VRM, *DomTree, *MBFI, *VRAI)); 2938 2939 IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI); 2940 GlobalCand.resize(32); // This will grow as needed. 2941 SetOfBrokenHints.clear(); 2942 LastEvicted.clear(); 2943 2944 allocatePhysRegs(); 2945 tryHintsRecoloring(); 2946 2947 if (VerifyEnabled) 2948 MF->verify(this, "Before post optimization"); 2949 postOptimization(); 2950 reportStats(); 2951 2952 releaseMemory(); 2953 return true; 2954 } 2955