1 //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the RAGreedy function pass for register allocation in
10 // optimized builds.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RegAllocGreedy.h"
15 #include "AllocationOrder.h"
16 #include "InterferenceCache.h"
17 #include "LiveDebugVariables.h"
18 #include "RegAllocBase.h"
19 #include "RegAllocEvictionAdvisor.h"
20 #include "SpillPlacement.h"
21 #include "SplitKit.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/BitVector.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/IndexedMap.h"
26 #include "llvm/ADT/MapVector.h"
27 #include "llvm/ADT/SetVector.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include "llvm/ADT/SmallSet.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/ADT/StringRef.h"
33 #include "llvm/Analysis/AliasAnalysis.h"
34 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
35 #include "llvm/CodeGen/CalcSpillWeights.h"
36 #include "llvm/CodeGen/EdgeBundles.h"
37 #include "llvm/CodeGen/LiveInterval.h"
38 #include "llvm/CodeGen/LiveIntervalUnion.h"
39 #include "llvm/CodeGen/LiveIntervals.h"
40 #include "llvm/CodeGen/LiveRangeEdit.h"
41 #include "llvm/CodeGen/LiveRegMatrix.h"
42 #include "llvm/CodeGen/LiveStacks.h"
43 #include "llvm/CodeGen/MachineBasicBlock.h"
44 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
45 #include "llvm/CodeGen/MachineDominators.h"
46 #include "llvm/CodeGen/MachineFrameInfo.h"
47 #include "llvm/CodeGen/MachineFunction.h"
48 #include "llvm/CodeGen/MachineFunctionPass.h"
49 #include "llvm/CodeGen/MachineInstr.h"
50 #include "llvm/CodeGen/MachineLoopInfo.h"
51 #include "llvm/CodeGen/MachineOperand.h"
52 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
53 #include "llvm/CodeGen/MachineRegisterInfo.h"
54 #include "llvm/CodeGen/RegAllocRegistry.h"
55 #include "llvm/CodeGen/RegisterClassInfo.h"
56 #include "llvm/CodeGen/SlotIndexes.h"
57 #include "llvm/CodeGen/Spiller.h"
58 #include "llvm/CodeGen/TargetInstrInfo.h"
59 #include "llvm/CodeGen/TargetRegisterInfo.h"
60 #include "llvm/CodeGen/TargetSubtargetInfo.h"
61 #include "llvm/CodeGen/VirtRegMap.h"
62 #include "llvm/IR/DebugInfoMetadata.h"
63 #include "llvm/IR/Function.h"
64 #include "llvm/IR/LLVMContext.h"
65 #include "llvm/MC/MCRegisterInfo.h"
66 #include "llvm/Pass.h"
67 #include "llvm/Support/BlockFrequency.h"
68 #include "llvm/Support/BranchProbability.h"
69 #include "llvm/Support/CommandLine.h"
70 #include "llvm/Support/Debug.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/Timer.h"
73 #include "llvm/Support/raw_ostream.h"
74 #include "llvm/Target/TargetMachine.h"
75 #include <algorithm>
76 #include <cassert>
77 #include <cstdint>
78 #include <utility>
79 
80 using namespace llvm;
81 
82 #define DEBUG_TYPE "regalloc"
83 
84 STATISTIC(NumGlobalSplits, "Number of split global live ranges");
85 STATISTIC(NumLocalSplits,  "Number of split local live ranges");
86 STATISTIC(NumEvicted,      "Number of interferences evicted");
87 
88 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode(
89     "split-spill-mode", cl::Hidden,
90     cl::desc("Spill mode for splitting live ranges"),
91     cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"),
92                clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"),
93                clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")),
94     cl::init(SplitEditor::SM_Speed));
95 
96 static cl::opt<unsigned>
97 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden,
98                              cl::desc("Last chance recoloring max depth"),
99                              cl::init(5));
100 
101 static cl::opt<unsigned> LastChanceRecoloringMaxInterference(
102     "lcr-max-interf", cl::Hidden,
103     cl::desc("Last chance recoloring maximum number of considered"
104              " interference at a time"),
105     cl::init(8));
106 
107 static cl::opt<bool> ExhaustiveSearch(
108     "exhaustive-register-search", cl::NotHidden,
109     cl::desc("Exhaustive Search for registers bypassing the depth "
110              "and interference cutoffs of last chance recoloring"),
111     cl::Hidden);
112 
113 static cl::opt<bool> EnableDeferredSpilling(
114     "enable-deferred-spilling", cl::Hidden,
115     cl::desc("Instead of spilling a variable right away, defer the actual "
116              "code insertion to the end of the allocation. That way the "
117              "allocator might still find a suitable coloring for this "
118              "variable because of other evicted variables."),
119     cl::init(false));
120 
121 // FIXME: Find a good default for this flag and remove the flag.
122 static cl::opt<unsigned>
123 CSRFirstTimeCost("regalloc-csr-first-time-cost",
124               cl::desc("Cost for first time use of callee-saved register."),
125               cl::init(0), cl::Hidden);
126 
127 static cl::opt<bool> ConsiderLocalIntervalCost(
128     "consider-local-interval-cost", cl::Hidden,
129     cl::desc("Consider the cost of local intervals created by a split "
130              "candidate when choosing the best split candidate."),
131     cl::init(false));
132 
133 static cl::opt<long> GrowRegionComplexityBudget(
134     "grow-region-complexity-budget",
135     cl::desc("growRegion() does not scale with the number of BB edges, so "
136              "limit its budget and bail out once we reach the limit."),
137     cl::init(10000), cl::Hidden);
138 
139 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
140                                        createGreedyRegisterAllocator);
141 
142 char RAGreedy::ID = 0;
143 char &llvm::RAGreedyID = RAGreedy::ID;
144 
145 INITIALIZE_PASS_BEGIN(RAGreedy, "greedy",
146                 "Greedy Register Allocator", false, false)
147 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
148 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
149 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
150 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer)
151 INITIALIZE_PASS_DEPENDENCY(MachineScheduler)
152 INITIALIZE_PASS_DEPENDENCY(LiveStacks)
153 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
154 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
155 INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
156 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix)
157 INITIALIZE_PASS_DEPENDENCY(EdgeBundles)
158 INITIALIZE_PASS_DEPENDENCY(SpillPlacement)
159 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass)
160 INITIALIZE_PASS_DEPENDENCY(RegAllocEvictionAdvisorAnalysis)
161 INITIALIZE_PASS_END(RAGreedy, "greedy",
162                 "Greedy Register Allocator", false, false)
163 
164 #ifndef NDEBUG
165 const char *const RAGreedy::StageName[] = {
166     "RS_New",
167     "RS_Assign",
168     "RS_Split",
169     "RS_Split2",
170     "RS_Spill",
171     "RS_Memory",
172     "RS_Done"
173 };
174 #endif
175 
176 // Hysteresis to use when comparing floats.
177 // This helps stabilize decisions based on float comparisons.
178 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875
179 
180 FunctionPass* llvm::createGreedyRegisterAllocator() {
181   return new RAGreedy();
182 }
183 
184 namespace llvm {
185 FunctionPass* createGreedyRegisterAllocator(
186   std::function<bool(const TargetRegisterInfo &TRI,
187                      const TargetRegisterClass &RC)> Ftor);
188 
189 }
190 
191 FunctionPass* llvm::createGreedyRegisterAllocator(
192   std::function<bool(const TargetRegisterInfo &TRI,
193                      const TargetRegisterClass &RC)> Ftor) {
194   return new RAGreedy(Ftor);
195 }
196 
197 RAGreedy::RAGreedy(RegClassFilterFunc F):
198   MachineFunctionPass(ID),
199   RegAllocBase(F) {
200 }
201 
202 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
203   AU.setPreservesCFG();
204   AU.addRequired<MachineBlockFrequencyInfo>();
205   AU.addPreserved<MachineBlockFrequencyInfo>();
206   AU.addRequired<AAResultsWrapperPass>();
207   AU.addPreserved<AAResultsWrapperPass>();
208   AU.addRequired<LiveIntervals>();
209   AU.addPreserved<LiveIntervals>();
210   AU.addRequired<SlotIndexes>();
211   AU.addPreserved<SlotIndexes>();
212   AU.addRequired<LiveDebugVariables>();
213   AU.addPreserved<LiveDebugVariables>();
214   AU.addRequired<LiveStacks>();
215   AU.addPreserved<LiveStacks>();
216   AU.addRequired<MachineDominatorTree>();
217   AU.addPreserved<MachineDominatorTree>();
218   AU.addRequired<MachineLoopInfo>();
219   AU.addPreserved<MachineLoopInfo>();
220   AU.addRequired<VirtRegMap>();
221   AU.addPreserved<VirtRegMap>();
222   AU.addRequired<LiveRegMatrix>();
223   AU.addPreserved<LiveRegMatrix>();
224   AU.addRequired<EdgeBundles>();
225   AU.addRequired<SpillPlacement>();
226   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
227   AU.addRequired<RegAllocEvictionAdvisorAnalysis>();
228   MachineFunctionPass::getAnalysisUsage(AU);
229 }
230 
231 //===----------------------------------------------------------------------===//
232 //                     LiveRangeEdit delegate methods
233 //===----------------------------------------------------------------------===//
234 
235 bool RAGreedy::LRE_CanEraseVirtReg(Register VirtReg) {
236   LiveInterval &LI = LIS->getInterval(VirtReg);
237   if (VRM->hasPhys(VirtReg)) {
238     Matrix->unassign(LI);
239     aboutToRemoveInterval(LI);
240     return true;
241   }
242   // Unassigned virtreg is probably in the priority queue.
243   // RegAllocBase will erase it after dequeueing.
244   // Nonetheless, clear the live-range so that the debug
245   // dump will show the right state for that VirtReg.
246   LI.clear();
247   return false;
248 }
249 
250 void RAGreedy::LRE_WillShrinkVirtReg(Register VirtReg) {
251   if (!VRM->hasPhys(VirtReg))
252     return;
253 
254   // Register is assigned, put it back on the queue for reassignment.
255   LiveInterval &LI = LIS->getInterval(VirtReg);
256   Matrix->unassign(LI);
257   RegAllocBase::enqueue(&LI);
258 }
259 
260 void RAGreedy::LRE_DidCloneVirtReg(Register New, Register Old) {
261   ExtraInfo->LRE_DidCloneVirtReg(New, Old);
262 }
263 
264 void RAGreedy::ExtraRegInfo::LRE_DidCloneVirtReg(Register New, Register Old) {
265   // Cloning a register we haven't even heard about yet?  Just ignore it.
266   if (!Info.inBounds(Old))
267     return;
268 
269   // LRE may clone a virtual register because dead code elimination causes it to
270   // be split into connected components. The new components are much smaller
271   // than the original, so they should get a new chance at being assigned.
272   // same stage as the parent.
273   Info[Old].Stage = RS_Assign;
274   Info.grow(New.id());
275   Info[New] = Info[Old];
276 }
277 
278 void RAGreedy::releaseMemory() {
279   SpillerInstance.reset();
280   GlobalCand.clear();
281 }
282 
283 void RAGreedy::enqueueImpl(const LiveInterval *LI) { enqueue(Queue, LI); }
284 
285 void RAGreedy::enqueue(PQueue &CurQueue, const LiveInterval *LI) {
286   // Prioritize live ranges by size, assigning larger ranges first.
287   // The queue holds (size, reg) pairs.
288   const unsigned Size = LI->getSize();
289   const Register Reg = LI->reg();
290   assert(Reg.isVirtual() && "Can only enqueue virtual registers");
291   unsigned Prio;
292 
293   auto Stage = ExtraInfo->getOrInitStage(Reg);
294   if (Stage == RS_New) {
295     Stage = RS_Assign;
296     ExtraInfo->setStage(Reg, Stage);
297   }
298   if (Stage == RS_Split) {
299     // Unsplit ranges that couldn't be allocated immediately are deferred until
300     // everything else has been allocated.
301     Prio = Size;
302   } else if (Stage == RS_Memory) {
303     // Memory operand should be considered last.
304     // Change the priority such that Memory operand are assigned in
305     // the reverse order that they came in.
306     // TODO: Make this a member variable and probably do something about hints.
307     static unsigned MemOp = 0;
308     Prio = MemOp++;
309   } else {
310     // Giant live ranges fall back to the global assignment heuristic, which
311     // prevents excessive spilling in pathological cases.
312     bool ReverseLocal = TRI->reverseLocalAssignment();
313     const TargetRegisterClass &RC = *MRI->getRegClass(Reg);
314     bool ForceGlobal = !ReverseLocal &&
315       (Size / SlotIndex::InstrDist) > (2 * RCI.getNumAllocatableRegs(&RC));
316 
317     if (Stage == RS_Assign && !ForceGlobal && !LI->empty() &&
318         LIS->intervalIsInOneMBB(*LI)) {
319       // Allocate original local ranges in linear instruction order. Since they
320       // are singly defined, this produces optimal coloring in the absence of
321       // global interference and other constraints.
322       if (!ReverseLocal)
323         Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex());
324       else {
325         // Allocating bottom up may allow many short LRGs to be assigned first
326         // to one of the cheap registers. This could be much faster for very
327         // large blocks on targets with many physical registers.
328         Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex());
329       }
330       Prio |= RC.AllocationPriority << 24;
331     } else {
332       // Allocate global and split ranges in long->short order. Long ranges that
333       // don't fit should be spilled (or split) ASAP so they don't create
334       // interference.  Mark a bit to prioritize global above local ranges.
335       Prio = (1u << 29) + Size;
336 
337       Prio |= RC.AllocationPriority << 24;
338     }
339     // Mark a higher bit to prioritize global and local above RS_Split.
340     Prio |= (1u << 31);
341 
342     // Boost ranges that have a physical register hint.
343     if (VRM->hasKnownPreference(Reg))
344       Prio |= (1u << 30);
345   }
346   // The virtual register number is a tie breaker for same-sized ranges.
347   // Give lower vreg numbers higher priority to assign them first.
348   CurQueue.push(std::make_pair(Prio, ~Reg));
349 }
350 
351 const LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); }
352 
353 const LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) {
354   if (CurQueue.empty())
355     return nullptr;
356   LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second);
357   CurQueue.pop();
358   return LI;
359 }
360 
361 //===----------------------------------------------------------------------===//
362 //                            Direct Assignment
363 //===----------------------------------------------------------------------===//
364 
365 /// tryAssign - Try to assign VirtReg to an available register.
366 MCRegister RAGreedy::tryAssign(const LiveInterval &VirtReg,
367                                AllocationOrder &Order,
368                                SmallVectorImpl<Register> &NewVRegs,
369                                const SmallVirtRegSet &FixedRegisters) {
370   MCRegister PhysReg;
371   for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) {
372     assert(*I);
373     if (!Matrix->checkInterference(VirtReg, *I)) {
374       if (I.isHint())
375         return *I;
376       else
377         PhysReg = *I;
378     }
379   }
380   if (!PhysReg.isValid())
381     return PhysReg;
382 
383   // PhysReg is available, but there may be a better choice.
384 
385   // If we missed a simple hint, try to cheaply evict interference from the
386   // preferred register.
387   if (Register Hint = MRI->getSimpleHint(VirtReg.reg()))
388     if (Order.isHint(Hint)) {
389       MCRegister PhysHint = Hint.asMCReg();
390       LLVM_DEBUG(dbgs() << "missed hint " << printReg(PhysHint, TRI) << '\n');
391 
392       if (EvictAdvisor->canEvictHintInterference(VirtReg, PhysHint,
393                                                  FixedRegisters)) {
394         evictInterference(VirtReg, PhysHint, NewVRegs);
395         return PhysHint;
396       }
397       // Record the missed hint, we may be able to recover
398       // at the end if the surrounding allocation changed.
399       SetOfBrokenHints.insert(&VirtReg);
400     }
401 
402   // Try to evict interference from a cheaper alternative.
403   uint8_t Cost = RegCosts[PhysReg];
404 
405   // Most registers have 0 additional cost.
406   if (!Cost)
407     return PhysReg;
408 
409   LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is available at cost "
410                     << (unsigned)Cost << '\n');
411   MCRegister CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost, FixedRegisters);
412   return CheapReg ? CheapReg : PhysReg;
413 }
414 
415 //===----------------------------------------------------------------------===//
416 //                         Interference eviction
417 //===----------------------------------------------------------------------===//
418 
419 Register RegAllocEvictionAdvisor::canReassign(const LiveInterval &VirtReg,
420                                               Register PrevReg) const {
421   auto Order =
422       AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix);
423   MCRegister PhysReg;
424   for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) {
425     if ((*I).id() == PrevReg.id())
426       continue;
427 
428     MCRegUnitIterator Units(*I, TRI);
429     for (; Units.isValid(); ++Units) {
430       // Instantiate a "subquery", not to be confused with the Queries array.
431       LiveIntervalUnion::Query subQ(VirtReg, Matrix->getLiveUnions()[*Units]);
432       if (subQ.checkInterference())
433         break;
434     }
435     // If no units have interference, break out with the current PhysReg.
436     if (!Units.isValid())
437       PhysReg = *I;
438   }
439   if (PhysReg)
440     LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg << " from "
441                       << printReg(PrevReg, TRI) << " to "
442                       << printReg(PhysReg, TRI) << '\n');
443   return PhysReg;
444 }
445 
446 /// Return true if all interferences between VirtReg and PhysReg between
447 /// Start and End can be evicted.
448 ///
449 /// \param VirtReg Live range that is about to be assigned.
450 /// \param PhysReg Desired register for assignment.
451 /// \param Start   Start of range to look for interferences.
452 /// \param End     End of range to look for interferences.
453 /// \param MaxCost Only look for cheaper candidates and update with new cost
454 ///                when returning true.
455 /// \return True when interference can be evicted cheaper than MaxCost.
456 bool RAGreedy::canEvictInterferenceInRange(const LiveInterval &VirtReg,
457                                            MCRegister PhysReg, SlotIndex Start,
458                                            SlotIndex End,
459                                            EvictionCost &MaxCost) const {
460   EvictionCost Cost;
461 
462   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
463     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
464 
465     // Check if any interfering live range is heavier than MaxWeight.
466     for (const LiveInterval *Intf : reverse(Q.interferingVRegs())) {
467       // Check if interference overlast the segment in interest.
468       if (!Intf->overlaps(Start, End))
469         continue;
470 
471       // Cannot evict non virtual reg interference.
472       if (!Register::isVirtualRegister(Intf->reg()))
473         return false;
474       // Never evict spill products. They cannot split or spill.
475       if (ExtraInfo->getStage(*Intf) == RS_Done)
476         return false;
477 
478       // Would this break a satisfied hint?
479       bool BreaksHint = VRM->hasPreferredPhys(Intf->reg());
480       // Update eviction cost.
481       Cost.BrokenHints += BreaksHint;
482       Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight());
483       // Abort if this would be too expensive.
484       if (!(Cost < MaxCost))
485         return false;
486     }
487   }
488 
489   if (Cost.MaxWeight == 0)
490     return false;
491 
492   MaxCost = Cost;
493   return true;
494 }
495 
496 /// Return the physical register that will be best
497 /// candidate for eviction by a local split interval that will be created
498 /// between Start and End.
499 ///
500 /// \param Order            The allocation order
501 /// \param VirtReg          Live range that is about to be assigned.
502 /// \param Start            Start of range to look for interferences
503 /// \param End              End of range to look for interferences
504 /// \param BestEvictweight  The eviction cost of that eviction
505 /// \return The PhysReg which is the best candidate for eviction and the
506 /// eviction cost in BestEvictweight
507 MCRegister RAGreedy::getCheapestEvicteeWeight(const AllocationOrder &Order,
508                                               const LiveInterval &VirtReg,
509                                               SlotIndex Start, SlotIndex End,
510                                               float *BestEvictweight) const {
511   EvictionCost BestEvictCost;
512   BestEvictCost.setMax();
513   BestEvictCost.MaxWeight = VirtReg.weight();
514   MCRegister BestEvicteePhys;
515 
516   // Go over all physical registers and find the best candidate for eviction
517   for (MCRegister PhysReg : Order.getOrder()) {
518 
519     if (!canEvictInterferenceInRange(VirtReg, PhysReg, Start, End,
520                                      BestEvictCost))
521       continue;
522 
523     // Best so far.
524     BestEvicteePhys = PhysReg;
525   }
526   *BestEvictweight = BestEvictCost.MaxWeight;
527   return BestEvicteePhys;
528 }
529 
530 /// evictInterference - Evict any interferring registers that prevent VirtReg
531 /// from being assigned to Physreg. This assumes that canEvictInterference
532 /// returned true.
533 void RAGreedy::evictInterference(const LiveInterval &VirtReg,
534                                  MCRegister PhysReg,
535                                  SmallVectorImpl<Register> &NewVRegs) {
536   // Make sure that VirtReg has a cascade number, and assign that cascade
537   // number to every evicted register. These live ranges than then only be
538   // evicted by a newer cascade, preventing infinite loops.
539   unsigned Cascade = ExtraInfo->getOrAssignNewCascade(VirtReg.reg());
540 
541   LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg, TRI)
542                     << " interference: Cascade " << Cascade << '\n');
543 
544   // Collect all interfering virtregs first.
545   SmallVector<const LiveInterval *, 8> Intfs;
546   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
547     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
548     // We usually have the interfering VRegs cached so collectInterferingVRegs()
549     // should be fast, we may need to recalculate if when different physregs
550     // overlap the same register unit so we had different SubRanges queried
551     // against it.
552     ArrayRef<const LiveInterval *> IVR = Q.interferingVRegs();
553     Intfs.append(IVR.begin(), IVR.end());
554   }
555 
556   // Evict them second. This will invalidate the queries.
557   for (const LiveInterval *Intf : Intfs) {
558     // The same VirtReg may be present in multiple RegUnits. Skip duplicates.
559     if (!VRM->hasPhys(Intf->reg()))
560       continue;
561 
562     LastEvicted.addEviction(PhysReg, VirtReg.reg(), Intf->reg());
563 
564     Matrix->unassign(*Intf);
565     assert((ExtraInfo->getCascade(Intf->reg()) < Cascade ||
566             VirtReg.isSpillable() < Intf->isSpillable()) &&
567            "Cannot decrease cascade number, illegal eviction");
568     ExtraInfo->setCascade(Intf->reg(), Cascade);
569     ++NumEvicted;
570     NewVRegs.push_back(Intf->reg());
571   }
572 }
573 
574 /// Returns true if the given \p PhysReg is a callee saved register and has not
575 /// been used for allocation yet.
576 bool RegAllocEvictionAdvisor::isUnusedCalleeSavedReg(MCRegister PhysReg) const {
577   MCRegister CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg);
578   if (!CSR)
579     return false;
580 
581   return !Matrix->isPhysRegUsed(PhysReg);
582 }
583 
584 Optional<unsigned>
585 RegAllocEvictionAdvisor::getOrderLimit(const LiveInterval &VirtReg,
586                                        const AllocationOrder &Order,
587                                        unsigned CostPerUseLimit) const {
588   unsigned OrderLimit = Order.getOrder().size();
589 
590   if (CostPerUseLimit < uint8_t(~0u)) {
591     // Check of any registers in RC are below CostPerUseLimit.
592     const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg());
593     uint8_t MinCost = RegClassInfo.getMinCost(RC);
594     if (MinCost >= CostPerUseLimit) {
595       LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = "
596                         << MinCost << ", no cheaper registers to be found.\n");
597       return None;
598     }
599 
600     // It is normal for register classes to have a long tail of registers with
601     // the same cost. We don't need to look at them if they're too expensive.
602     if (RegCosts[Order.getOrder().back()] >= CostPerUseLimit) {
603       OrderLimit = RegClassInfo.getLastCostChange(RC);
604       LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit
605                         << " regs.\n");
606     }
607   }
608   return OrderLimit;
609 }
610 
611 bool RegAllocEvictionAdvisor::canAllocatePhysReg(unsigned CostPerUseLimit,
612                                                  MCRegister PhysReg) const {
613   if (RegCosts[PhysReg] >= CostPerUseLimit)
614     return false;
615   // The first use of a callee-saved register in a function has cost 1.
616   // Don't start using a CSR when the CostPerUseLimit is low.
617   if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) {
618     LLVM_DEBUG(
619         dbgs() << printReg(PhysReg, TRI) << " would clobber CSR "
620                << printReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI)
621                << '\n');
622     return false;
623   }
624   return true;
625 }
626 
627 /// tryEvict - Try to evict all interferences for a physreg.
628 /// @param  VirtReg Currently unassigned virtual register.
629 /// @param  Order   Physregs to try.
630 /// @return         Physreg to assign VirtReg, or 0.
631 MCRegister RAGreedy::tryEvict(const LiveInterval &VirtReg,
632                               AllocationOrder &Order,
633                               SmallVectorImpl<Register> &NewVRegs,
634                               uint8_t CostPerUseLimit,
635                               const SmallVirtRegSet &FixedRegisters) {
636   NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription,
637                      TimePassesIsEnabled);
638 
639   MCRegister BestPhys = EvictAdvisor->tryFindEvictionCandidate(
640       VirtReg, Order, CostPerUseLimit, FixedRegisters);
641   if (BestPhys.isValid())
642     evictInterference(VirtReg, BestPhys, NewVRegs);
643   return BestPhys;
644 }
645 
646 //===----------------------------------------------------------------------===//
647 //                              Region Splitting
648 //===----------------------------------------------------------------------===//
649 
650 /// addSplitConstraints - Fill out the SplitConstraints vector based on the
651 /// interference pattern in Physreg and its aliases. Add the constraints to
652 /// SpillPlacement and return the static cost of this split in Cost, assuming
653 /// that all preferences in SplitConstraints are met.
654 /// Return false if there are no bundles with positive bias.
655 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
656                                    BlockFrequency &Cost) {
657   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
658 
659   // Reset interference dependent info.
660   SplitConstraints.resize(UseBlocks.size());
661   BlockFrequency StaticCost = 0;
662   for (unsigned I = 0; I != UseBlocks.size(); ++I) {
663     const SplitAnalysis::BlockInfo &BI = UseBlocks[I];
664     SpillPlacement::BlockConstraint &BC = SplitConstraints[I];
665 
666     BC.Number = BI.MBB->getNumber();
667     Intf.moveToBlock(BC.Number);
668     BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
669     BC.Exit = (BI.LiveOut &&
670                !LIS->getInstructionFromIndex(BI.LastInstr)->isImplicitDef())
671                   ? SpillPlacement::PrefReg
672                   : SpillPlacement::DontCare;
673     BC.ChangesValue = BI.FirstDef.isValid();
674 
675     if (!Intf.hasInterference())
676       continue;
677 
678     // Number of spill code instructions to insert.
679     unsigned Ins = 0;
680 
681     // Interference for the live-in value.
682     if (BI.LiveIn) {
683       if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) {
684         BC.Entry = SpillPlacement::MustSpill;
685         ++Ins;
686       } else if (Intf.first() < BI.FirstInstr) {
687         BC.Entry = SpillPlacement::PrefSpill;
688         ++Ins;
689       } else if (Intf.first() < BI.LastInstr) {
690         ++Ins;
691       }
692 
693       // Abort if the spill cannot be inserted at the MBB' start
694       if (((BC.Entry == SpillPlacement::MustSpill) ||
695            (BC.Entry == SpillPlacement::PrefSpill)) &&
696           SlotIndex::isEarlierInstr(BI.FirstInstr,
697                                     SA->getFirstSplitPoint(BC.Number)))
698         return false;
699     }
700 
701     // Interference for the live-out value.
702     if (BI.LiveOut) {
703       if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) {
704         BC.Exit = SpillPlacement::MustSpill;
705         ++Ins;
706       } else if (Intf.last() > BI.LastInstr) {
707         BC.Exit = SpillPlacement::PrefSpill;
708         ++Ins;
709       } else if (Intf.last() > BI.FirstInstr) {
710         ++Ins;
711       }
712     }
713 
714     // Accumulate the total frequency of inserted spill code.
715     while (Ins--)
716       StaticCost += SpillPlacer->getBlockFrequency(BC.Number);
717   }
718   Cost = StaticCost;
719 
720   // Add constraints for use-blocks. Note that these are the only constraints
721   // that may add a positive bias, it is downhill from here.
722   SpillPlacer->addConstraints(SplitConstraints);
723   return SpillPlacer->scanActiveBundles();
724 }
725 
726 /// addThroughConstraints - Add constraints and links to SpillPlacer from the
727 /// live-through blocks in Blocks.
728 bool RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
729                                      ArrayRef<unsigned> Blocks) {
730   const unsigned GroupSize = 8;
731   SpillPlacement::BlockConstraint BCS[GroupSize];
732   unsigned TBS[GroupSize];
733   unsigned B = 0, T = 0;
734 
735   for (unsigned Number : Blocks) {
736     Intf.moveToBlock(Number);
737 
738     if (!Intf.hasInterference()) {
739       assert(T < GroupSize && "Array overflow");
740       TBS[T] = Number;
741       if (++T == GroupSize) {
742         SpillPlacer->addLinks(makeArrayRef(TBS, T));
743         T = 0;
744       }
745       continue;
746     }
747 
748     assert(B < GroupSize && "Array overflow");
749     BCS[B].Number = Number;
750 
751     // Abort if the spill cannot be inserted at the MBB' start
752     MachineBasicBlock *MBB = MF->getBlockNumbered(Number);
753     auto FirstNonDebugInstr = MBB->getFirstNonDebugInstr();
754     if (FirstNonDebugInstr != MBB->end() &&
755         SlotIndex::isEarlierInstr(LIS->getInstructionIndex(*FirstNonDebugInstr),
756                                   SA->getFirstSplitPoint(Number)))
757       return false;
758     // Interference for the live-in value.
759     if (Intf.first() <= Indexes->getMBBStartIdx(Number))
760       BCS[B].Entry = SpillPlacement::MustSpill;
761     else
762       BCS[B].Entry = SpillPlacement::PrefSpill;
763 
764     // Interference for the live-out value.
765     if (Intf.last() >= SA->getLastSplitPoint(Number))
766       BCS[B].Exit = SpillPlacement::MustSpill;
767     else
768       BCS[B].Exit = SpillPlacement::PrefSpill;
769 
770     if (++B == GroupSize) {
771       SpillPlacer->addConstraints(makeArrayRef(BCS, B));
772       B = 0;
773     }
774   }
775 
776   SpillPlacer->addConstraints(makeArrayRef(BCS, B));
777   SpillPlacer->addLinks(makeArrayRef(TBS, T));
778   return true;
779 }
780 
781 bool RAGreedy::growRegion(GlobalSplitCandidate &Cand) {
782   // Keep track of through blocks that have not been added to SpillPlacer.
783   BitVector Todo = SA->getThroughBlocks();
784   SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
785   unsigned AddedTo = 0;
786 #ifndef NDEBUG
787   unsigned Visited = 0;
788 #endif
789 
790   long Budget = GrowRegionComplexityBudget;
791   while (true) {
792     ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
793     // Find new through blocks in the periphery of PrefRegBundles.
794     for (unsigned Bundle : NewBundles) {
795       // Look at all blocks connected to Bundle in the full graph.
796       ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
797       for (unsigned Block : Blocks) {
798         // Limit compilation time by bailing out after we use all our budget.
799         if (Budget-- == 0)
800           return false;
801         if (!Todo.test(Block))
802           continue;
803         Todo.reset(Block);
804         // This is a new through block. Add it to SpillPlacer later.
805         ActiveBlocks.push_back(Block);
806 #ifndef NDEBUG
807         ++Visited;
808 #endif
809       }
810     }
811     // Any new blocks to add?
812     if (ActiveBlocks.size() == AddedTo)
813       break;
814 
815     // Compute through constraints from the interference, or assume that all
816     // through blocks prefer spilling when forming compact regions.
817     auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo);
818     if (Cand.PhysReg) {
819       if (!addThroughConstraints(Cand.Intf, NewBlocks))
820         return false;
821     } else
822       // Provide a strong negative bias on through blocks to prevent unwanted
823       // liveness on loop backedges.
824       SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true);
825     AddedTo = ActiveBlocks.size();
826 
827     // Perhaps iterating can enable more bundles?
828     SpillPlacer->iterate();
829   }
830   LLVM_DEBUG(dbgs() << ", v=" << Visited);
831   return true;
832 }
833 
834 /// calcCompactRegion - Compute the set of edge bundles that should be live
835 /// when splitting the current live range into compact regions.  Compact
836 /// regions can be computed without looking at interference.  They are the
837 /// regions formed by removing all the live-through blocks from the live range.
838 ///
839 /// Returns false if the current live range is already compact, or if the
840 /// compact regions would form single block regions anyway.
841 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) {
842   // Without any through blocks, the live range is already compact.
843   if (!SA->getNumThroughBlocks())
844     return false;
845 
846   // Compact regions don't correspond to any physreg.
847   Cand.reset(IntfCache, MCRegister::NoRegister);
848 
849   LLVM_DEBUG(dbgs() << "Compact region bundles");
850 
851   // Use the spill placer to determine the live bundles. GrowRegion pretends
852   // that all the through blocks have interference when PhysReg is unset.
853   SpillPlacer->prepare(Cand.LiveBundles);
854 
855   // The static split cost will be zero since Cand.Intf reports no interference.
856   BlockFrequency Cost;
857   if (!addSplitConstraints(Cand.Intf, Cost)) {
858     LLVM_DEBUG(dbgs() << ", none.\n");
859     return false;
860   }
861 
862   if (!growRegion(Cand)) {
863     LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
864     return false;
865   }
866 
867   SpillPlacer->finish();
868 
869   if (!Cand.LiveBundles.any()) {
870     LLVM_DEBUG(dbgs() << ", none.\n");
871     return false;
872   }
873 
874   LLVM_DEBUG({
875     for (int I : Cand.LiveBundles.set_bits())
876       dbgs() << " EB#" << I;
877     dbgs() << ".\n";
878   });
879   return true;
880 }
881 
882 /// calcSpillCost - Compute how expensive it would be to split the live range in
883 /// SA around all use blocks instead of forming bundle regions.
884 BlockFrequency RAGreedy::calcSpillCost() {
885   BlockFrequency Cost = 0;
886   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
887   for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
888     unsigned Number = BI.MBB->getNumber();
889     // We normally only need one spill instruction - a load or a store.
890     Cost += SpillPlacer->getBlockFrequency(Number);
891 
892     // Unless the value is redefined in the block.
893     if (BI.LiveIn && BI.LiveOut && BI.FirstDef)
894       Cost += SpillPlacer->getBlockFrequency(Number);
895   }
896   return Cost;
897 }
898 
899 /// Check if splitting Evictee will create a local split interval in
900 /// basic block number BBNumber that may cause a bad eviction chain. This is
901 /// intended to prevent bad eviction sequences like:
902 /// movl	%ebp, 8(%esp)           # 4-byte Spill
903 /// movl	%ecx, %ebp
904 /// movl	%ebx, %ecx
905 /// movl	%edi, %ebx
906 /// movl	%edx, %edi
907 /// cltd
908 /// idivl	%esi
909 /// movl	%edi, %edx
910 /// movl	%ebx, %edi
911 /// movl	%ecx, %ebx
912 /// movl	%ebp, %ecx
913 /// movl	16(%esp), %ebp          # 4 - byte Reload
914 ///
915 /// Such sequences are created in 2 scenarios:
916 ///
917 /// Scenario #1:
918 /// %0 is evicted from physreg0 by %1.
919 /// Evictee %0 is intended for region splitting with split candidate
920 /// physreg0 (the reg %0 was evicted from).
921 /// Region splitting creates a local interval because of interference with the
922 /// evictor %1 (normally region splitting creates 2 interval, the "by reg"
923 /// and "by stack" intervals and local interval created when interference
924 /// occurs).
925 /// One of the split intervals ends up evicting %2 from physreg1.
926 /// Evictee %2 is intended for region splitting with split candidate
927 /// physreg1.
928 /// One of the split intervals ends up evicting %3 from physreg2, etc.
929 ///
930 /// Scenario #2
931 /// %0 is evicted from physreg0 by %1.
932 /// %2 is evicted from physreg2 by %3 etc.
933 /// Evictee %0 is intended for region splitting with split candidate
934 /// physreg1.
935 /// Region splitting creates a local interval because of interference with the
936 /// evictor %1.
937 /// One of the split intervals ends up evicting back original evictor %1
938 /// from physreg0 (the reg %0 was evicted from).
939 /// Another evictee %2 is intended for region splitting with split candidate
940 /// physreg1.
941 /// One of the split intervals ends up evicting %3 from physreg2, etc.
942 ///
943 /// \param Evictee  The register considered to be split.
944 /// \param Cand     The split candidate that determines the physical register
945 ///                 we are splitting for and the interferences.
946 /// \param BBNumber The number of a BB for which the region split process will
947 ///                 create a local split interval.
948 /// \param Order    The physical registers that may get evicted by a split
949 ///                 artifact of Evictee.
950 /// \return True if splitting Evictee may cause a bad eviction chain, false
951 /// otherwise.
952 bool RAGreedy::splitCanCauseEvictionChain(Register Evictee,
953                                           GlobalSplitCandidate &Cand,
954                                           unsigned BBNumber,
955                                           const AllocationOrder &Order) {
956   EvictionTrack::EvictorInfo VregEvictorInfo = LastEvicted.getEvictor(Evictee);
957   unsigned Evictor = VregEvictorInfo.first;
958   MCRegister PhysReg = VregEvictorInfo.second;
959 
960   // No actual evictor.
961   if (!Evictor || !PhysReg)
962     return false;
963 
964   float MaxWeight = 0;
965   MCRegister FutureEvictedPhysReg =
966       getCheapestEvicteeWeight(Order, LIS->getInterval(Evictee),
967                                Cand.Intf.first(), Cand.Intf.last(), &MaxWeight);
968 
969   // The bad eviction chain occurs when either the split candidate is the
970   // evicting reg or one of the split artifact will evict the evicting reg.
971   if ((PhysReg != Cand.PhysReg) && (PhysReg != FutureEvictedPhysReg))
972     return false;
973 
974   Cand.Intf.moveToBlock(BBNumber);
975 
976   // Check to see if the Evictor contains interference (with Evictee) in the
977   // given BB. If so, this interference caused the eviction of Evictee from
978   // PhysReg. This suggest that we will create a local interval during the
979   // region split to avoid this interference This local interval may cause a bad
980   // eviction chain.
981   if (!LIS->hasInterval(Evictor))
982     return false;
983   LiveInterval &EvictorLI = LIS->getInterval(Evictor);
984   if (EvictorLI.FindSegmentContaining(Cand.Intf.first()) == EvictorLI.end())
985     return false;
986 
987   // Now, check to see if the local interval we will create is going to be
988   // expensive enough to evict somebody If so, this may cause a bad eviction
989   // chain.
990   float splitArtifactWeight =
991       VRAI->futureWeight(LIS->getInterval(Evictee),
992                          Cand.Intf.first().getPrevIndex(), Cand.Intf.last());
993   if (splitArtifactWeight >= 0 && splitArtifactWeight < MaxWeight)
994     return false;
995 
996   return true;
997 }
998 
999 /// Check if splitting VirtRegToSplit will create a local split interval
1000 /// in basic block number BBNumber that may cause a spill.
1001 ///
1002 /// \param VirtRegToSplit The register considered to be split.
1003 /// \param Cand           The split candidate that determines the physical
1004 ///                       register we are splitting for and the interferences.
1005 /// \param BBNumber       The number of a BB for which the region split process
1006 ///                       will create a local split interval.
1007 /// \param Order          The physical registers that may get evicted by a
1008 ///                       split artifact of VirtRegToSplit.
1009 /// \return True if splitting VirtRegToSplit may cause a spill, false
1010 /// otherwise.
1011 bool RAGreedy::splitCanCauseLocalSpill(unsigned VirtRegToSplit,
1012                                        GlobalSplitCandidate &Cand,
1013                                        unsigned BBNumber,
1014                                        const AllocationOrder &Order) {
1015   Cand.Intf.moveToBlock(BBNumber);
1016 
1017   // Check if the local interval will find a non interfereing assignment.
1018   for (auto PhysReg : Order.getOrder()) {
1019     if (!Matrix->checkInterference(Cand.Intf.first().getPrevIndex(),
1020                                    Cand.Intf.last(), PhysReg))
1021       return false;
1022   }
1023 
1024   // The local interval is not able to find non interferencing assignment
1025   // and not able to evict a less worthy interval, therfore, it can cause a
1026   // spill.
1027   return true;
1028 }
1029 
1030 /// calcGlobalSplitCost - Return the global split cost of following the split
1031 /// pattern in LiveBundles. This cost should be added to the local cost of the
1032 /// interference pattern in SplitConstraints.
1033 ///
1034 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand,
1035                                              const AllocationOrder &Order,
1036                                              bool *CanCauseEvictionChain) {
1037   BlockFrequency GlobalCost = 0;
1038   const BitVector &LiveBundles = Cand.LiveBundles;
1039   Register VirtRegToSplit = SA->getParent().reg();
1040   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1041   for (unsigned I = 0; I != UseBlocks.size(); ++I) {
1042     const SplitAnalysis::BlockInfo &BI = UseBlocks[I];
1043     SpillPlacement::BlockConstraint &BC = SplitConstraints[I];
1044     bool RegIn  = LiveBundles[Bundles->getBundle(BC.Number, false)];
1045     bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)];
1046     unsigned Ins = 0;
1047 
1048     Cand.Intf.moveToBlock(BC.Number);
1049     // Check wheather a local interval is going to be created during the region
1050     // split. Calculate adavanced spilt cost (cost of local intervals) if option
1051     // is enabled.
1052     if (EnableAdvancedRASplitCost && Cand.Intf.hasInterference() && BI.LiveIn &&
1053         BI.LiveOut && RegIn && RegOut) {
1054 
1055       if (CanCauseEvictionChain &&
1056           splitCanCauseEvictionChain(VirtRegToSplit, Cand, BC.Number, Order)) {
1057         // This interference causes our eviction from this assignment, we might
1058         // evict somebody else and eventually someone will spill, add that cost.
1059         // See splitCanCauseEvictionChain for detailed description of scenarios.
1060         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1061         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1062 
1063         *CanCauseEvictionChain = true;
1064 
1065       } else if (splitCanCauseLocalSpill(VirtRegToSplit, Cand, BC.Number,
1066                                          Order)) {
1067         // This interference causes local interval to spill, add that cost.
1068         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1069         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1070       }
1071     }
1072 
1073     if (BI.LiveIn)
1074       Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
1075     if (BI.LiveOut)
1076       Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
1077     while (Ins--)
1078       GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1079   }
1080 
1081   for (unsigned Number : Cand.ActiveBlocks) {
1082     bool RegIn  = LiveBundles[Bundles->getBundle(Number, false)];
1083     bool RegOut = LiveBundles[Bundles->getBundle(Number, true)];
1084     if (!RegIn && !RegOut)
1085       continue;
1086     if (RegIn && RegOut) {
1087       // We need double spill code if this block has interference.
1088       Cand.Intf.moveToBlock(Number);
1089       if (Cand.Intf.hasInterference()) {
1090         GlobalCost += SpillPlacer->getBlockFrequency(Number);
1091         GlobalCost += SpillPlacer->getBlockFrequency(Number);
1092 
1093         // Check wheather a local interval is going to be created during the
1094         // region split.
1095         if (EnableAdvancedRASplitCost && CanCauseEvictionChain &&
1096             splitCanCauseEvictionChain(VirtRegToSplit, Cand, Number, Order)) {
1097           // This interference cause our eviction from this assignment, we might
1098           // evict somebody else, add that cost.
1099           // See splitCanCauseEvictionChain for detailed description of
1100           // scenarios.
1101           GlobalCost += SpillPlacer->getBlockFrequency(Number);
1102           GlobalCost += SpillPlacer->getBlockFrequency(Number);
1103 
1104           *CanCauseEvictionChain = true;
1105         }
1106       }
1107       continue;
1108     }
1109     // live-in / stack-out or stack-in live-out.
1110     GlobalCost += SpillPlacer->getBlockFrequency(Number);
1111   }
1112   return GlobalCost;
1113 }
1114 
1115 /// splitAroundRegion - Split the current live range around the regions
1116 /// determined by BundleCand and GlobalCand.
1117 ///
1118 /// Before calling this function, GlobalCand and BundleCand must be initialized
1119 /// so each bundle is assigned to a valid candidate, or NoCand for the
1120 /// stack-bound bundles.  The shared SA/SE SplitAnalysis and SplitEditor
1121 /// objects must be initialized for the current live range, and intervals
1122 /// created for the used candidates.
1123 ///
1124 /// @param LREdit    The LiveRangeEdit object handling the current split.
1125 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value
1126 ///                  must appear in this list.
1127 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit,
1128                                  ArrayRef<unsigned> UsedCands) {
1129   // These are the intervals created for new global ranges. We may create more
1130   // intervals for local ranges.
1131   const unsigned NumGlobalIntvs = LREdit.size();
1132   LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs
1133                     << " globals.\n");
1134   assert(NumGlobalIntvs && "No global intervals configured");
1135 
1136   // Isolate even single instructions when dealing with a proper sub-class.
1137   // That guarantees register class inflation for the stack interval because it
1138   // is all copies.
1139   Register Reg = SA->getParent().reg();
1140   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1141 
1142   // First handle all the blocks with uses.
1143   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1144   for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
1145     unsigned Number = BI.MBB->getNumber();
1146     unsigned IntvIn = 0, IntvOut = 0;
1147     SlotIndex IntfIn, IntfOut;
1148     if (BI.LiveIn) {
1149       unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
1150       if (CandIn != NoCand) {
1151         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1152         IntvIn = Cand.IntvIdx;
1153         Cand.Intf.moveToBlock(Number);
1154         IntfIn = Cand.Intf.first();
1155       }
1156     }
1157     if (BI.LiveOut) {
1158       unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
1159       if (CandOut != NoCand) {
1160         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1161         IntvOut = Cand.IntvIdx;
1162         Cand.Intf.moveToBlock(Number);
1163         IntfOut = Cand.Intf.last();
1164       }
1165     }
1166 
1167     // Create separate intervals for isolated blocks with multiple uses.
1168     if (!IntvIn && !IntvOut) {
1169       LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " isolated.\n");
1170       if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1171         SE->splitSingleBlock(BI);
1172       continue;
1173     }
1174 
1175     if (IntvIn && IntvOut)
1176       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1177     else if (IntvIn)
1178       SE->splitRegInBlock(BI, IntvIn, IntfIn);
1179     else
1180       SE->splitRegOutBlock(BI, IntvOut, IntfOut);
1181   }
1182 
1183   // Handle live-through blocks. The relevant live-through blocks are stored in
1184   // the ActiveBlocks list with each candidate. We need to filter out
1185   // duplicates.
1186   BitVector Todo = SA->getThroughBlocks();
1187   for (unsigned UsedCand : UsedCands) {
1188     ArrayRef<unsigned> Blocks = GlobalCand[UsedCand].ActiveBlocks;
1189     for (unsigned Number : Blocks) {
1190       if (!Todo.test(Number))
1191         continue;
1192       Todo.reset(Number);
1193 
1194       unsigned IntvIn = 0, IntvOut = 0;
1195       SlotIndex IntfIn, IntfOut;
1196 
1197       unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
1198       if (CandIn != NoCand) {
1199         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1200         IntvIn = Cand.IntvIdx;
1201         Cand.Intf.moveToBlock(Number);
1202         IntfIn = Cand.Intf.first();
1203       }
1204 
1205       unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
1206       if (CandOut != NoCand) {
1207         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1208         IntvOut = Cand.IntvIdx;
1209         Cand.Intf.moveToBlock(Number);
1210         IntfOut = Cand.Intf.last();
1211       }
1212       if (!IntvIn && !IntvOut)
1213         continue;
1214       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1215     }
1216   }
1217 
1218   ++NumGlobalSplits;
1219 
1220   SmallVector<unsigned, 8> IntvMap;
1221   SE->finish(&IntvMap);
1222   DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
1223 
1224   unsigned OrigBlocks = SA->getNumLiveBlocks();
1225 
1226   // Sort out the new intervals created by splitting. We get four kinds:
1227   // - Remainder intervals should not be split again.
1228   // - Candidate intervals can be assigned to Cand.PhysReg.
1229   // - Block-local splits are candidates for local splitting.
1230   // - DCE leftovers should go back on the queue.
1231   for (unsigned I = 0, E = LREdit.size(); I != E; ++I) {
1232     const LiveInterval &Reg = LIS->getInterval(LREdit.get(I));
1233 
1234     // Ignore old intervals from DCE.
1235     if (ExtraInfo->getOrInitStage(Reg.reg()) != RS_New)
1236       continue;
1237 
1238     // Remainder interval. Don't try splitting again, spill if it doesn't
1239     // allocate.
1240     if (IntvMap[I] == 0) {
1241       ExtraInfo->setStage(Reg, RS_Spill);
1242       continue;
1243     }
1244 
1245     // Global intervals. Allow repeated splitting as long as the number of live
1246     // blocks is strictly decreasing.
1247     if (IntvMap[I] < NumGlobalIntvs) {
1248       if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
1249         LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
1250                           << " blocks as original.\n");
1251         // Don't allow repeated splitting as a safe guard against looping.
1252         ExtraInfo->setStage(Reg, RS_Split2);
1253       }
1254       continue;
1255     }
1256 
1257     // Other intervals are treated as new. This includes local intervals created
1258     // for blocks with multiple uses, and anything created by DCE.
1259   }
1260 
1261   if (VerifyEnabled)
1262     MF->verify(this, "After splitting live range around region");
1263 }
1264 
1265 MCRegister RAGreedy::tryRegionSplit(const LiveInterval &VirtReg,
1266                                     AllocationOrder &Order,
1267                                     SmallVectorImpl<Register> &NewVRegs) {
1268   if (!TRI->shouldRegionSplitForVirtReg(*MF, VirtReg))
1269     return MCRegister::NoRegister;
1270   unsigned NumCands = 0;
1271   BlockFrequency SpillCost = calcSpillCost();
1272   BlockFrequency BestCost;
1273 
1274   // Check if we can split this live range around a compact region.
1275   bool HasCompact = calcCompactRegion(GlobalCand.front());
1276   if (HasCompact) {
1277     // Yes, keep GlobalCand[0] as the compact region candidate.
1278     NumCands = 1;
1279     BestCost = BlockFrequency::getMaxFrequency();
1280   } else {
1281     // No benefit from the compact region, our fallback will be per-block
1282     // splitting. Make sure we find a solution that is cheaper than spilling.
1283     BestCost = SpillCost;
1284     LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = ";
1285                MBFI->printBlockFreq(dbgs(), BestCost) << '\n');
1286   }
1287 
1288   bool CanCauseEvictionChain = false;
1289   unsigned BestCand =
1290       calculateRegionSplitCost(VirtReg, Order, BestCost, NumCands,
1291                                false /*IgnoreCSR*/, &CanCauseEvictionChain);
1292 
1293   // Split candidates with compact regions can cause a bad eviction sequence.
1294   // See splitCanCauseEvictionChain for detailed description of scenarios.
1295   // To avoid it, we need to comapre the cost with the spill cost and not the
1296   // current max frequency.
1297   if (HasCompact && (BestCost > SpillCost) && (BestCand != NoCand) &&
1298     CanCauseEvictionChain) {
1299     return MCRegister::NoRegister;
1300   }
1301 
1302   // No solutions found, fall back to single block splitting.
1303   if (!HasCompact && BestCand == NoCand)
1304     return MCRegister::NoRegister;
1305 
1306   return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs);
1307 }
1308 
1309 unsigned RAGreedy::calculateRegionSplitCost(const LiveInterval &VirtReg,
1310                                             AllocationOrder &Order,
1311                                             BlockFrequency &BestCost,
1312                                             unsigned &NumCands, bool IgnoreCSR,
1313                                             bool *CanCauseEvictionChain) {
1314   unsigned BestCand = NoCand;
1315   for (MCPhysReg PhysReg : Order) {
1316     assert(PhysReg);
1317     if (IgnoreCSR && EvictAdvisor->isUnusedCalleeSavedReg(PhysReg))
1318       continue;
1319 
1320     // Discard bad candidates before we run out of interference cache cursors.
1321     // This will only affect register classes with a lot of registers (>32).
1322     if (NumCands == IntfCache.getMaxCursors()) {
1323       unsigned WorstCount = ~0u;
1324       unsigned Worst = 0;
1325       for (unsigned CandIndex = 0; CandIndex != NumCands; ++CandIndex) {
1326         if (CandIndex == BestCand || !GlobalCand[CandIndex].PhysReg)
1327           continue;
1328         unsigned Count = GlobalCand[CandIndex].LiveBundles.count();
1329         if (Count < WorstCount) {
1330           Worst = CandIndex;
1331           WorstCount = Count;
1332         }
1333       }
1334       --NumCands;
1335       GlobalCand[Worst] = GlobalCand[NumCands];
1336       if (BestCand == NumCands)
1337         BestCand = Worst;
1338     }
1339 
1340     if (GlobalCand.size() <= NumCands)
1341       GlobalCand.resize(NumCands+1);
1342     GlobalSplitCandidate &Cand = GlobalCand[NumCands];
1343     Cand.reset(IntfCache, PhysReg);
1344 
1345     SpillPlacer->prepare(Cand.LiveBundles);
1346     BlockFrequency Cost;
1347     if (!addSplitConstraints(Cand.Intf, Cost)) {
1348       LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tno positive bundles\n");
1349       continue;
1350     }
1351     LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tstatic = ";
1352                MBFI->printBlockFreq(dbgs(), Cost));
1353     if (Cost >= BestCost) {
1354       LLVM_DEBUG({
1355         if (BestCand == NoCand)
1356           dbgs() << " worse than no bundles\n";
1357         else
1358           dbgs() << " worse than "
1359                  << printReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
1360       });
1361       continue;
1362     }
1363     if (!growRegion(Cand)) {
1364       LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
1365       continue;
1366     }
1367 
1368     SpillPlacer->finish();
1369 
1370     // No live bundles, defer to splitSingleBlocks().
1371     if (!Cand.LiveBundles.any()) {
1372       LLVM_DEBUG(dbgs() << " no bundles.\n");
1373       continue;
1374     }
1375 
1376     bool HasEvictionChain = false;
1377     Cost += calcGlobalSplitCost(Cand, Order, &HasEvictionChain);
1378     LLVM_DEBUG({
1379       dbgs() << ", total = ";
1380       MBFI->printBlockFreq(dbgs(), Cost) << " with bundles";
1381       for (int I : Cand.LiveBundles.set_bits())
1382         dbgs() << " EB#" << I;
1383       dbgs() << ".\n";
1384     });
1385     if (Cost < BestCost) {
1386       BestCand = NumCands;
1387       BestCost = Cost;
1388       // See splitCanCauseEvictionChain for detailed description of bad
1389       // eviction chain scenarios.
1390       if (CanCauseEvictionChain)
1391         *CanCauseEvictionChain = HasEvictionChain;
1392     }
1393     ++NumCands;
1394   }
1395 
1396   if (CanCauseEvictionChain && BestCand != NoCand) {
1397     // See splitCanCauseEvictionChain for detailed description of bad
1398     // eviction chain scenarios.
1399     LLVM_DEBUG(dbgs() << "Best split candidate of vreg "
1400                       << printReg(VirtReg.reg(), TRI) << "  may ");
1401     if (!(*CanCauseEvictionChain))
1402       LLVM_DEBUG(dbgs() << "not ");
1403     LLVM_DEBUG(dbgs() << "cause bad eviction chain\n");
1404   }
1405 
1406   return BestCand;
1407 }
1408 
1409 unsigned RAGreedy::doRegionSplit(const LiveInterval &VirtReg, unsigned BestCand,
1410                                  bool HasCompact,
1411                                  SmallVectorImpl<Register> &NewVRegs) {
1412   SmallVector<unsigned, 8> UsedCands;
1413   // Prepare split editor.
1414   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1415   SE->reset(LREdit, SplitSpillMode);
1416 
1417   // Assign all edge bundles to the preferred candidate, or NoCand.
1418   BundleCand.assign(Bundles->getNumBundles(), NoCand);
1419 
1420   // Assign bundles for the best candidate region.
1421   if (BestCand != NoCand) {
1422     GlobalSplitCandidate &Cand = GlobalCand[BestCand];
1423     if (unsigned B = Cand.getBundles(BundleCand, BestCand)) {
1424       UsedCands.push_back(BestCand);
1425       Cand.IntvIdx = SE->openIntv();
1426       LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand.PhysReg, TRI) << " in "
1427                         << B << " bundles, intv " << Cand.IntvIdx << ".\n");
1428       (void)B;
1429     }
1430   }
1431 
1432   // Assign bundles for the compact region.
1433   if (HasCompact) {
1434     GlobalSplitCandidate &Cand = GlobalCand.front();
1435     assert(!Cand.PhysReg && "Compact region has no physreg");
1436     if (unsigned B = Cand.getBundles(BundleCand, 0)) {
1437       UsedCands.push_back(0);
1438       Cand.IntvIdx = SE->openIntv();
1439       LLVM_DEBUG(dbgs() << "Split for compact region in " << B
1440                         << " bundles, intv " << Cand.IntvIdx << ".\n");
1441       (void)B;
1442     }
1443   }
1444 
1445   splitAroundRegion(LREdit, UsedCands);
1446   return 0;
1447 }
1448 
1449 //===----------------------------------------------------------------------===//
1450 //                            Per-Block Splitting
1451 //===----------------------------------------------------------------------===//
1452 
1453 /// tryBlockSplit - Split a global live range around every block with uses. This
1454 /// creates a lot of local live ranges, that will be split by tryLocalSplit if
1455 /// they don't allocate.
1456 unsigned RAGreedy::tryBlockSplit(const LiveInterval &VirtReg,
1457                                  AllocationOrder &Order,
1458                                  SmallVectorImpl<Register> &NewVRegs) {
1459   assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed");
1460   Register Reg = VirtReg.reg();
1461   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1462   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1463   SE->reset(LREdit, SplitSpillMode);
1464   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1465   for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
1466     if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1467       SE->splitSingleBlock(BI);
1468   }
1469   // No blocks were split.
1470   if (LREdit.empty())
1471     return 0;
1472 
1473   // We did split for some blocks.
1474   SmallVector<unsigned, 8> IntvMap;
1475   SE->finish(&IntvMap);
1476 
1477   // Tell LiveDebugVariables about the new ranges.
1478   DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
1479 
1480   // Sort out the new intervals created by splitting. The remainder interval
1481   // goes straight to spilling, the new local ranges get to stay RS_New.
1482   for (unsigned I = 0, E = LREdit.size(); I != E; ++I) {
1483     const LiveInterval &LI = LIS->getInterval(LREdit.get(I));
1484     if (ExtraInfo->getOrInitStage(LI.reg()) == RS_New && IntvMap[I] == 0)
1485       ExtraInfo->setStage(LI, RS_Spill);
1486   }
1487 
1488   if (VerifyEnabled)
1489     MF->verify(this, "After splitting live range around basic blocks");
1490   return 0;
1491 }
1492 
1493 //===----------------------------------------------------------------------===//
1494 //                         Per-Instruction Splitting
1495 //===----------------------------------------------------------------------===//
1496 
1497 /// Get the number of allocatable registers that match the constraints of \p Reg
1498 /// on \p MI and that are also in \p SuperRC.
1499 static unsigned getNumAllocatableRegsForConstraints(
1500     const MachineInstr *MI, Register Reg, const TargetRegisterClass *SuperRC,
1501     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
1502     const RegisterClassInfo &RCI) {
1503   assert(SuperRC && "Invalid register class");
1504 
1505   const TargetRegisterClass *ConstrainedRC =
1506       MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI,
1507                                              /* ExploreBundle */ true);
1508   if (!ConstrainedRC)
1509     return 0;
1510   return RCI.getNumAllocatableRegs(ConstrainedRC);
1511 }
1512 
1513 /// tryInstructionSplit - Split a live range around individual instructions.
1514 /// This is normally not worthwhile since the spiller is doing essentially the
1515 /// same thing. However, when the live range is in a constrained register
1516 /// class, it may help to insert copies such that parts of the live range can
1517 /// be moved to a larger register class.
1518 ///
1519 /// This is similar to spilling to a larger register class.
1520 unsigned RAGreedy::tryInstructionSplit(const LiveInterval &VirtReg,
1521                                        AllocationOrder &Order,
1522                                        SmallVectorImpl<Register> &NewVRegs) {
1523   const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg());
1524   // There is no point to this if there are no larger sub-classes.
1525   if (!RegClassInfo.isProperSubClass(CurRC))
1526     return 0;
1527 
1528   // Always enable split spill mode, since we're effectively spilling to a
1529   // register.
1530   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1531   SE->reset(LREdit, SplitEditor::SM_Size);
1532 
1533   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1534   if (Uses.size() <= 1)
1535     return 0;
1536 
1537   LLVM_DEBUG(dbgs() << "Split around " << Uses.size()
1538                     << " individual instrs.\n");
1539 
1540   const TargetRegisterClass *SuperRC =
1541       TRI->getLargestLegalSuperClass(CurRC, *MF);
1542   unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC);
1543   // Split around every non-copy instruction if this split will relax
1544   // the constraints on the virtual register.
1545   // Otherwise, splitting just inserts uncoalescable copies that do not help
1546   // the allocation.
1547   for (const SlotIndex Use : Uses) {
1548     if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Use))
1549       if (MI->isFullCopy() ||
1550           SuperRCNumAllocatableRegs ==
1551               getNumAllocatableRegsForConstraints(MI, VirtReg.reg(), SuperRC,
1552                                                   TII, TRI, RCI)) {
1553         LLVM_DEBUG(dbgs() << "    skip:\t" << Use << '\t' << *MI);
1554         continue;
1555       }
1556     SE->openIntv();
1557     SlotIndex SegStart = SE->enterIntvBefore(Use);
1558     SlotIndex SegStop = SE->leaveIntvAfter(Use);
1559     SE->useIntv(SegStart, SegStop);
1560   }
1561 
1562   if (LREdit.empty()) {
1563     LLVM_DEBUG(dbgs() << "All uses were copies.\n");
1564     return 0;
1565   }
1566 
1567   SmallVector<unsigned, 8> IntvMap;
1568   SE->finish(&IntvMap);
1569   DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS);
1570   // Assign all new registers to RS_Spill. This was the last chance.
1571   ExtraInfo->setStage(LREdit.begin(), LREdit.end(), RS_Spill);
1572   return 0;
1573 }
1574 
1575 //===----------------------------------------------------------------------===//
1576 //                             Local Splitting
1577 //===----------------------------------------------------------------------===//
1578 
1579 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted
1580 /// in order to use PhysReg between two entries in SA->UseSlots.
1581 ///
1582 /// GapWeight[I] represents the gap between UseSlots[I] and UseSlots[I + 1].
1583 ///
1584 void RAGreedy::calcGapWeights(MCRegister PhysReg,
1585                               SmallVectorImpl<float> &GapWeight) {
1586   assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
1587   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1588   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1589   const unsigned NumGaps = Uses.size()-1;
1590 
1591   // Start and end points for the interference check.
1592   SlotIndex StartIdx =
1593     BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr;
1594   SlotIndex StopIdx =
1595     BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr;
1596 
1597   GapWeight.assign(NumGaps, 0.0f);
1598 
1599   // Add interference from each overlapping register.
1600   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1601     if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units)
1602           .checkInterference())
1603       continue;
1604 
1605     // We know that VirtReg is a continuous interval from FirstInstr to
1606     // LastInstr, so we don't need InterferenceQuery.
1607     //
1608     // Interference that overlaps an instruction is counted in both gaps
1609     // surrounding the instruction. The exception is interference before
1610     // StartIdx and after StopIdx.
1611     //
1612     LiveIntervalUnion::SegmentIter IntI =
1613       Matrix->getLiveUnions()[*Units] .find(StartIdx);
1614     for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
1615       // Skip the gaps before IntI.
1616       while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
1617         if (++Gap == NumGaps)
1618           break;
1619       if (Gap == NumGaps)
1620         break;
1621 
1622       // Update the gaps covered by IntI.
1623       const float weight = IntI.value()->weight();
1624       for (; Gap != NumGaps; ++Gap) {
1625         GapWeight[Gap] = std::max(GapWeight[Gap], weight);
1626         if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
1627           break;
1628       }
1629       if (Gap == NumGaps)
1630         break;
1631     }
1632   }
1633 
1634   // Add fixed interference.
1635   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1636     const LiveRange &LR = LIS->getRegUnit(*Units);
1637     LiveRange::const_iterator I = LR.find(StartIdx);
1638     LiveRange::const_iterator E = LR.end();
1639 
1640     // Same loop as above. Mark any overlapped gaps as HUGE_VALF.
1641     for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) {
1642       while (Uses[Gap+1].getBoundaryIndex() < I->start)
1643         if (++Gap == NumGaps)
1644           break;
1645       if (Gap == NumGaps)
1646         break;
1647 
1648       for (; Gap != NumGaps; ++Gap) {
1649         GapWeight[Gap] = huge_valf;
1650         if (Uses[Gap+1].getBaseIndex() >= I->end)
1651           break;
1652       }
1653       if (Gap == NumGaps)
1654         break;
1655     }
1656   }
1657 }
1658 
1659 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
1660 /// basic block.
1661 ///
1662 unsigned RAGreedy::tryLocalSplit(const LiveInterval &VirtReg,
1663                                  AllocationOrder &Order,
1664                                  SmallVectorImpl<Register> &NewVRegs) {
1665   // TODO: the function currently only handles a single UseBlock; it should be
1666   // possible to generalize.
1667   if (SA->getUseBlocks().size() != 1)
1668     return 0;
1669 
1670   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1671 
1672   // Note that it is possible to have an interval that is live-in or live-out
1673   // while only covering a single block - A phi-def can use undef values from
1674   // predecessors, and the block could be a single-block loop.
1675   // We don't bother doing anything clever about such a case, we simply assume
1676   // that the interval is continuous from FirstInstr to LastInstr. We should
1677   // make sure that we don't do anything illegal to such an interval, though.
1678 
1679   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1680   if (Uses.size() <= 2)
1681     return 0;
1682   const unsigned NumGaps = Uses.size()-1;
1683 
1684   LLVM_DEBUG({
1685     dbgs() << "tryLocalSplit: ";
1686     for (const auto &Use : Uses)
1687       dbgs() << ' ' << Use;
1688     dbgs() << '\n';
1689   });
1690 
1691   // If VirtReg is live across any register mask operands, compute a list of
1692   // gaps with register masks.
1693   SmallVector<unsigned, 8> RegMaskGaps;
1694   if (Matrix->checkRegMaskInterference(VirtReg)) {
1695     // Get regmask slots for the whole block.
1696     ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber());
1697     LLVM_DEBUG(dbgs() << RMS.size() << " regmasks in block:");
1698     // Constrain to VirtReg's live range.
1699     unsigned RI =
1700         llvm::lower_bound(RMS, Uses.front().getRegSlot()) - RMS.begin();
1701     unsigned RE = RMS.size();
1702     for (unsigned I = 0; I != NumGaps && RI != RE; ++I) {
1703       // Look for Uses[I] <= RMS <= Uses[I + 1].
1704       assert(!SlotIndex::isEarlierInstr(RMS[RI], Uses[I]));
1705       if (SlotIndex::isEarlierInstr(Uses[I + 1], RMS[RI]))
1706         continue;
1707       // Skip a regmask on the same instruction as the last use. It doesn't
1708       // overlap the live range.
1709       if (SlotIndex::isSameInstr(Uses[I + 1], RMS[RI]) && I + 1 == NumGaps)
1710         break;
1711       LLVM_DEBUG(dbgs() << ' ' << RMS[RI] << ':' << Uses[I] << '-'
1712                         << Uses[I + 1]);
1713       RegMaskGaps.push_back(I);
1714       // Advance ri to the next gap. A regmask on one of the uses counts in
1715       // both gaps.
1716       while (RI != RE && SlotIndex::isEarlierInstr(RMS[RI], Uses[I + 1]))
1717         ++RI;
1718     }
1719     LLVM_DEBUG(dbgs() << '\n');
1720   }
1721 
1722   // Since we allow local split results to be split again, there is a risk of
1723   // creating infinite loops. It is tempting to require that the new live
1724   // ranges have less instructions than the original. That would guarantee
1725   // convergence, but it is too strict. A live range with 3 instructions can be
1726   // split 2+3 (including the COPY), and we want to allow that.
1727   //
1728   // Instead we use these rules:
1729   //
1730   // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the
1731   //    noop split, of course).
1732   // 2. Require progress be made for ranges with getStage() == RS_Split2. All
1733   //    the new ranges must have fewer instructions than before the split.
1734   // 3. New ranges with the same number of instructions are marked RS_Split2,
1735   //    smaller ranges are marked RS_New.
1736   //
1737   // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
1738   // excessive splitting and infinite loops.
1739   //
1740   bool ProgressRequired = ExtraInfo->getStage(VirtReg) >= RS_Split2;
1741 
1742   // Best split candidate.
1743   unsigned BestBefore = NumGaps;
1744   unsigned BestAfter = 0;
1745   float BestDiff = 0;
1746 
1747   const float blockFreq =
1748     SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() *
1749     (1.0f / MBFI->getEntryFreq());
1750   SmallVector<float, 8> GapWeight;
1751 
1752   for (MCPhysReg PhysReg : Order) {
1753     assert(PhysReg);
1754     // Keep track of the largest spill weight that would need to be evicted in
1755     // order to make use of PhysReg between UseSlots[I] and UseSlots[I + 1].
1756     calcGapWeights(PhysReg, GapWeight);
1757 
1758     // Remove any gaps with regmask clobbers.
1759     if (Matrix->checkRegMaskInterference(VirtReg, PhysReg))
1760       for (unsigned I = 0, E = RegMaskGaps.size(); I != E; ++I)
1761         GapWeight[RegMaskGaps[I]] = huge_valf;
1762 
1763     // Try to find the best sequence of gaps to close.
1764     // The new spill weight must be larger than any gap interference.
1765 
1766     // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
1767     unsigned SplitBefore = 0, SplitAfter = 1;
1768 
1769     // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
1770     // It is the spill weight that needs to be evicted.
1771     float MaxGap = GapWeight[0];
1772 
1773     while (true) {
1774       // Live before/after split?
1775       const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
1776       const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
1777 
1778       LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << ' ' << Uses[SplitBefore]
1779                         << '-' << Uses[SplitAfter] << " I=" << MaxGap);
1780 
1781       // Stop before the interval gets so big we wouldn't be making progress.
1782       if (!LiveBefore && !LiveAfter) {
1783         LLVM_DEBUG(dbgs() << " all\n");
1784         break;
1785       }
1786       // Should the interval be extended or shrunk?
1787       bool Shrink = true;
1788 
1789       // How many gaps would the new range have?
1790       unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
1791 
1792       // Legally, without causing looping?
1793       bool Legal = !ProgressRequired || NewGaps < NumGaps;
1794 
1795       if (Legal && MaxGap < huge_valf) {
1796         // Estimate the new spill weight. Each instruction reads or writes the
1797         // register. Conservatively assume there are no read-modify-write
1798         // instructions.
1799         //
1800         // Try to guess the size of the new interval.
1801         const float EstWeight = normalizeSpillWeight(
1802             blockFreq * (NewGaps + 1),
1803             Uses[SplitBefore].distance(Uses[SplitAfter]) +
1804                 (LiveBefore + LiveAfter) * SlotIndex::InstrDist,
1805             1);
1806         // Would this split be possible to allocate?
1807         // Never allocate all gaps, we wouldn't be making progress.
1808         LLVM_DEBUG(dbgs() << " w=" << EstWeight);
1809         if (EstWeight * Hysteresis >= MaxGap) {
1810           Shrink = false;
1811           float Diff = EstWeight - MaxGap;
1812           if (Diff > BestDiff) {
1813             LLVM_DEBUG(dbgs() << " (best)");
1814             BestDiff = Hysteresis * Diff;
1815             BestBefore = SplitBefore;
1816             BestAfter = SplitAfter;
1817           }
1818         }
1819       }
1820 
1821       // Try to shrink.
1822       if (Shrink) {
1823         if (++SplitBefore < SplitAfter) {
1824           LLVM_DEBUG(dbgs() << " shrink\n");
1825           // Recompute the max when necessary.
1826           if (GapWeight[SplitBefore - 1] >= MaxGap) {
1827             MaxGap = GapWeight[SplitBefore];
1828             for (unsigned I = SplitBefore + 1; I != SplitAfter; ++I)
1829               MaxGap = std::max(MaxGap, GapWeight[I]);
1830           }
1831           continue;
1832         }
1833         MaxGap = 0;
1834       }
1835 
1836       // Try to extend the interval.
1837       if (SplitAfter >= NumGaps) {
1838         LLVM_DEBUG(dbgs() << " end\n");
1839         break;
1840       }
1841 
1842       LLVM_DEBUG(dbgs() << " extend\n");
1843       MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
1844     }
1845   }
1846 
1847   // Didn't find any candidates?
1848   if (BestBefore == NumGaps)
1849     return 0;
1850 
1851   LLVM_DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] << '-'
1852                     << Uses[BestAfter] << ", " << BestDiff << ", "
1853                     << (BestAfter - BestBefore + 1) << " instrs\n");
1854 
1855   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1856   SE->reset(LREdit);
1857 
1858   SE->openIntv();
1859   SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
1860   SlotIndex SegStop  = SE->leaveIntvAfter(Uses[BestAfter]);
1861   SE->useIntv(SegStart, SegStop);
1862   SmallVector<unsigned, 8> IntvMap;
1863   SE->finish(&IntvMap);
1864   DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS);
1865   // If the new range has the same number of instructions as before, mark it as
1866   // RS_Split2 so the next split will be forced to make progress. Otherwise,
1867   // leave the new intervals as RS_New so they can compete.
1868   bool LiveBefore = BestBefore != 0 || BI.LiveIn;
1869   bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
1870   unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
1871   if (NewGaps >= NumGaps) {
1872     LLVM_DEBUG(dbgs() << "Tagging non-progress ranges:");
1873     assert(!ProgressRequired && "Didn't make progress when it was required.");
1874     for (unsigned I = 0, E = IntvMap.size(); I != E; ++I)
1875       if (IntvMap[I] == 1) {
1876         ExtraInfo->setStage(LIS->getInterval(LREdit.get(I)), RS_Split2);
1877         LLVM_DEBUG(dbgs() << ' ' << printReg(LREdit.get(I)));
1878       }
1879     LLVM_DEBUG(dbgs() << '\n');
1880   }
1881   ++NumLocalSplits;
1882 
1883   return 0;
1884 }
1885 
1886 //===----------------------------------------------------------------------===//
1887 //                          Live Range Splitting
1888 //===----------------------------------------------------------------------===//
1889 
1890 /// trySplit - Try to split VirtReg or one of its interferences, making it
1891 /// assignable.
1892 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
1893 unsigned RAGreedy::trySplit(const LiveInterval &VirtReg, AllocationOrder &Order,
1894                             SmallVectorImpl<Register> &NewVRegs,
1895                             const SmallVirtRegSet &FixedRegisters) {
1896   // Ranges must be Split2 or less.
1897   if (ExtraInfo->getStage(VirtReg) >= RS_Spill)
1898     return 0;
1899 
1900   // Local intervals are handled separately.
1901   if (LIS->intervalIsInOneMBB(VirtReg)) {
1902     NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName,
1903                        TimerGroupDescription, TimePassesIsEnabled);
1904     SA->analyze(&VirtReg);
1905     Register PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs);
1906     if (PhysReg || !NewVRegs.empty())
1907       return PhysReg;
1908     return tryInstructionSplit(VirtReg, Order, NewVRegs);
1909   }
1910 
1911   NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName,
1912                      TimerGroupDescription, TimePassesIsEnabled);
1913 
1914   SA->analyze(&VirtReg);
1915 
1916   // First try to split around a region spanning multiple blocks. RS_Split2
1917   // ranges already made dubious progress with region splitting, so they go
1918   // straight to single block splitting.
1919   if (ExtraInfo->getStage(VirtReg) < RS_Split2) {
1920     MCRegister PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
1921     if (PhysReg || !NewVRegs.empty())
1922       return PhysReg;
1923   }
1924 
1925   // Then isolate blocks.
1926   return tryBlockSplit(VirtReg, Order, NewVRegs);
1927 }
1928 
1929 //===----------------------------------------------------------------------===//
1930 //                          Last Chance Recoloring
1931 //===----------------------------------------------------------------------===//
1932 
1933 /// Return true if \p reg has any tied def operand.
1934 static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg) {
1935   for (const MachineOperand &MO : MRI->def_operands(reg))
1936     if (MO.isTied())
1937       return true;
1938 
1939   return false;
1940 }
1941 
1942 /// mayRecolorAllInterferences - Check if the virtual registers that
1943 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be
1944 /// recolored to free \p PhysReg.
1945 /// When true is returned, \p RecoloringCandidates has been augmented with all
1946 /// the live intervals that need to be recolored in order to free \p PhysReg
1947 /// for \p VirtReg.
1948 /// \p FixedRegisters contains all the virtual registers that cannot be
1949 /// recolored.
1950 bool RAGreedy::mayRecolorAllInterferences(
1951     MCRegister PhysReg, const LiveInterval &VirtReg,
1952     SmallLISet &RecoloringCandidates, const SmallVirtRegSet &FixedRegisters) {
1953   const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg());
1954 
1955   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1956     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
1957     // If there is LastChanceRecoloringMaxInterference or more interferences,
1958     // chances are one would not be recolorable.
1959     if (Q.interferingVRegs(LastChanceRecoloringMaxInterference).size() >=
1960             LastChanceRecoloringMaxInterference &&
1961         !ExhaustiveSearch) {
1962       LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n");
1963       CutOffInfo |= CO_Interf;
1964       return false;
1965     }
1966     for (const LiveInterval *Intf : reverse(Q.interferingVRegs())) {
1967       // If Intf is done and sit on the same register class as VirtReg,
1968       // it would not be recolorable as it is in the same state as VirtReg.
1969       // However, if VirtReg has tied defs and Intf doesn't, then
1970       // there is still a point in examining if it can be recolorable.
1971       //
1972       // Also, don't try to evict a register which is assigned to an overlapping
1973       // super register.
1974       //
1975       // TODO: Can we evict an interfering subset of the subregisters?
1976       if (((ExtraInfo->getStage(*Intf) == RS_Done &&
1977             (MRI->getRegClass(Intf->reg()) == CurRC ||
1978              TRI->regsOverlap(VRM->getPhys(Intf->reg()), PhysReg))) &&
1979            !(hasTiedDef(MRI, VirtReg.reg()) &&
1980              !hasTiedDef(MRI, Intf->reg()))) ||
1981           FixedRegisters.count(Intf->reg())) {
1982         LLVM_DEBUG(
1983             dbgs() << "Early abort: the interference is not recolorable.\n");
1984         return false;
1985       }
1986       RecoloringCandidates.insert(Intf);
1987     }
1988   }
1989   return true;
1990 }
1991 
1992 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring
1993 /// its interferences.
1994 /// Last chance recoloring chooses a color for \p VirtReg and recolors every
1995 /// virtual register that was using it. The recoloring process may recursively
1996 /// use the last chance recoloring. Therefore, when a virtual register has been
1997 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot
1998 /// be last-chance-recolored again during this recoloring "session".
1999 /// E.g.,
2000 /// Let
2001 /// vA can use {R1, R2    }
2002 /// vB can use {    R2, R3}
2003 /// vC can use {R1        }
2004 /// Where vA, vB, and vC cannot be split anymore (they are reloads for
2005 /// instance) and they all interfere.
2006 ///
2007 /// vA is assigned R1
2008 /// vB is assigned R2
2009 /// vC tries to evict vA but vA is already done.
2010 /// Regular register allocation fails.
2011 ///
2012 /// Last chance recoloring kicks in:
2013 /// vC does as if vA was evicted => vC uses R1.
2014 /// vC is marked as fixed.
2015 /// vA needs to find a color.
2016 /// None are available.
2017 /// vA cannot evict vC: vC is a fixed virtual register now.
2018 /// vA does as if vB was evicted => vA uses R2.
2019 /// vB needs to find a color.
2020 /// R3 is available.
2021 /// Recoloring => vC = R1, vA = R2, vB = R3
2022 ///
2023 /// \p Order defines the preferred allocation order for \p VirtReg.
2024 /// \p NewRegs will contain any new virtual register that have been created
2025 /// (split, spill) during the process and that must be assigned.
2026 /// \p FixedRegisters contains all the virtual registers that cannot be
2027 /// recolored.
2028 /// \p Depth gives the current depth of the last chance recoloring.
2029 /// \return a physical register that can be used for VirtReg or ~0u if none
2030 /// exists.
2031 unsigned RAGreedy::tryLastChanceRecoloring(const LiveInterval &VirtReg,
2032                                            AllocationOrder &Order,
2033                                            SmallVectorImpl<Register> &NewVRegs,
2034                                            SmallVirtRegSet &FixedRegisters,
2035                                            unsigned Depth) {
2036   if (!TRI->shouldUseLastChanceRecoloringForVirtReg(*MF, VirtReg))
2037     return ~0u;
2038 
2039   LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n');
2040   // Ranges must be Done.
2041   assert((ExtraInfo->getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) &&
2042          "Last chance recoloring should really be last chance");
2043   // Set the max depth to LastChanceRecoloringMaxDepth.
2044   // We may want to reconsider that if we end up with a too large search space
2045   // for target with hundreds of registers.
2046   // Indeed, in that case we may want to cut the search space earlier.
2047   if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) {
2048     LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n");
2049     CutOffInfo |= CO_Depth;
2050     return ~0u;
2051   }
2052 
2053   // Set of Live intervals that will need to be recolored.
2054   SmallLISet RecoloringCandidates;
2055   // Record the original mapping virtual register to physical register in case
2056   // the recoloring fails.
2057   DenseMap<Register, MCRegister> VirtRegToPhysReg;
2058   // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in
2059   // this recoloring "session".
2060   assert(!FixedRegisters.count(VirtReg.reg()));
2061   FixedRegisters.insert(VirtReg.reg());
2062   SmallVector<Register, 4> CurrentNewVRegs;
2063 
2064   for (MCRegister PhysReg : Order) {
2065     assert(PhysReg.isValid());
2066     LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg << " to "
2067                       << printReg(PhysReg, TRI) << '\n');
2068     RecoloringCandidates.clear();
2069     VirtRegToPhysReg.clear();
2070     CurrentNewVRegs.clear();
2071 
2072     // It is only possible to recolor virtual register interference.
2073     if (Matrix->checkInterference(VirtReg, PhysReg) >
2074         LiveRegMatrix::IK_VirtReg) {
2075       LLVM_DEBUG(
2076           dbgs() << "Some interferences are not with virtual registers.\n");
2077 
2078       continue;
2079     }
2080 
2081     // Early give up on this PhysReg if it is obvious we cannot recolor all
2082     // the interferences.
2083     if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates,
2084                                     FixedRegisters)) {
2085       LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n");
2086       continue;
2087     }
2088 
2089     // RecoloringCandidates contains all the virtual registers that interfer
2090     // with VirtReg on PhysReg (or one of its aliases).
2091     // Enqueue them for recoloring and perform the actual recoloring.
2092     PQueue RecoloringQueue;
2093     for (const LiveInterval *RC : RecoloringCandidates) {
2094       Register ItVirtReg = RC->reg();
2095       enqueue(RecoloringQueue, RC);
2096       assert(VRM->hasPhys(ItVirtReg) &&
2097              "Interferences are supposed to be with allocated variables");
2098 
2099       // Record the current allocation.
2100       VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg);
2101       // unset the related struct.
2102       Matrix->unassign(*RC);
2103     }
2104 
2105     // Do as if VirtReg was assigned to PhysReg so that the underlying
2106     // recoloring has the right information about the interferes and
2107     // available colors.
2108     Matrix->assign(VirtReg, PhysReg);
2109 
2110     // Save the current recoloring state.
2111     // If we cannot recolor all the interferences, we will have to start again
2112     // at this point for the next physical register.
2113     SmallVirtRegSet SaveFixedRegisters(FixedRegisters);
2114     if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs,
2115                                 FixedRegisters, Depth)) {
2116       // Push the queued vregs into the main queue.
2117       for (Register NewVReg : CurrentNewVRegs)
2118         NewVRegs.push_back(NewVReg);
2119       // Do not mess up with the global assignment process.
2120       // I.e., VirtReg must be unassigned.
2121       Matrix->unassign(VirtReg);
2122       return PhysReg;
2123     }
2124 
2125     LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to "
2126                       << printReg(PhysReg, TRI) << '\n');
2127 
2128     // The recoloring attempt failed, undo the changes.
2129     FixedRegisters = SaveFixedRegisters;
2130     Matrix->unassign(VirtReg);
2131 
2132     // For a newly created vreg which is also in RecoloringCandidates,
2133     // don't add it to NewVRegs because its physical register will be restored
2134     // below. Other vregs in CurrentNewVRegs are created by calling
2135     // selectOrSplit and should be added into NewVRegs.
2136     for (Register &R : CurrentNewVRegs) {
2137       if (RecoloringCandidates.count(&LIS->getInterval(R)))
2138         continue;
2139       NewVRegs.push_back(R);
2140     }
2141 
2142     for (const LiveInterval *RC : RecoloringCandidates) {
2143       Register ItVirtReg = RC->reg();
2144       if (VRM->hasPhys(ItVirtReg))
2145         Matrix->unassign(*RC);
2146       MCRegister ItPhysReg = VirtRegToPhysReg[ItVirtReg];
2147       Matrix->assign(*RC, ItPhysReg);
2148     }
2149   }
2150 
2151   // Last chance recoloring did not worked either, give up.
2152   return ~0u;
2153 }
2154 
2155 /// tryRecoloringCandidates - Try to assign a new color to every register
2156 /// in \RecoloringQueue.
2157 /// \p NewRegs will contain any new virtual register created during the
2158 /// recoloring process.
2159 /// \p FixedRegisters[in/out] contains all the registers that have been
2160 /// recolored.
2161 /// \return true if all virtual registers in RecoloringQueue were successfully
2162 /// recolored, false otherwise.
2163 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue,
2164                                        SmallVectorImpl<Register> &NewVRegs,
2165                                        SmallVirtRegSet &FixedRegisters,
2166                                        unsigned Depth) {
2167   while (!RecoloringQueue.empty()) {
2168     const LiveInterval *LI = dequeue(RecoloringQueue);
2169     LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI << '\n');
2170     MCRegister PhysReg =
2171         selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, Depth + 1);
2172     // When splitting happens, the live-range may actually be empty.
2173     // In that case, this is okay to continue the recoloring even
2174     // if we did not find an alternative color for it. Indeed,
2175     // there will not be anything to color for LI in the end.
2176     if (PhysReg == ~0u || (!PhysReg && !LI->empty()))
2177       return false;
2178 
2179     if (!PhysReg) {
2180       assert(LI->empty() && "Only empty live-range do not require a register");
2181       LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2182                         << " succeeded. Empty LI.\n");
2183       continue;
2184     }
2185     LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2186                       << " succeeded with: " << printReg(PhysReg, TRI) << '\n');
2187 
2188     Matrix->assign(*LI, PhysReg);
2189     FixedRegisters.insert(LI->reg());
2190   }
2191   return true;
2192 }
2193 
2194 //===----------------------------------------------------------------------===//
2195 //                            Main Entry Point
2196 //===----------------------------------------------------------------------===//
2197 
2198 MCRegister RAGreedy::selectOrSplit(const LiveInterval &VirtReg,
2199                                    SmallVectorImpl<Register> &NewVRegs) {
2200   CutOffInfo = CO_None;
2201   LLVMContext &Ctx = MF->getFunction().getContext();
2202   SmallVirtRegSet FixedRegisters;
2203   MCRegister Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters);
2204   if (Reg == ~0U && (CutOffInfo != CO_None)) {
2205     uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf);
2206     if (CutOffEncountered == CO_Depth)
2207       Ctx.emitError("register allocation failed: maximum depth for recoloring "
2208                     "reached. Use -fexhaustive-register-search to skip "
2209                     "cutoffs");
2210     else if (CutOffEncountered == CO_Interf)
2211       Ctx.emitError("register allocation failed: maximum interference for "
2212                     "recoloring reached. Use -fexhaustive-register-search "
2213                     "to skip cutoffs");
2214     else if (CutOffEncountered == (CO_Depth | CO_Interf))
2215       Ctx.emitError("register allocation failed: maximum interference and "
2216                     "depth for recoloring reached. Use "
2217                     "-fexhaustive-register-search to skip cutoffs");
2218   }
2219   return Reg;
2220 }
2221 
2222 /// Using a CSR for the first time has a cost because it causes push|pop
2223 /// to be added to prologue|epilogue. Splitting a cold section of the live
2224 /// range can have lower cost than using the CSR for the first time;
2225 /// Spilling a live range in the cold path can have lower cost than using
2226 /// the CSR for the first time. Returns the physical register if we decide
2227 /// to use the CSR; otherwise return 0.
2228 MCRegister RAGreedy::tryAssignCSRFirstTime(
2229     const LiveInterval &VirtReg, AllocationOrder &Order, MCRegister PhysReg,
2230     uint8_t &CostPerUseLimit, SmallVectorImpl<Register> &NewVRegs) {
2231   if (ExtraInfo->getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) {
2232     // We choose spill over using the CSR for the first time if the spill cost
2233     // is lower than CSRCost.
2234     SA->analyze(&VirtReg);
2235     if (calcSpillCost() >= CSRCost)
2236       return PhysReg;
2237 
2238     // We are going to spill, set CostPerUseLimit to 1 to make sure that
2239     // we will not use a callee-saved register in tryEvict.
2240     CostPerUseLimit = 1;
2241     return 0;
2242   }
2243   if (ExtraInfo->getStage(VirtReg) < RS_Split) {
2244     // We choose pre-splitting over using the CSR for the first time if
2245     // the cost of splitting is lower than CSRCost.
2246     SA->analyze(&VirtReg);
2247     unsigned NumCands = 0;
2248     BlockFrequency BestCost = CSRCost; // Don't modify CSRCost.
2249     unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost,
2250                                                  NumCands, true /*IgnoreCSR*/);
2251     if (BestCand == NoCand)
2252       // Use the CSR if we can't find a region split below CSRCost.
2253       return PhysReg;
2254 
2255     // Perform the actual pre-splitting.
2256     doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs);
2257     return 0;
2258   }
2259   return PhysReg;
2260 }
2261 
2262 void RAGreedy::aboutToRemoveInterval(const LiveInterval &LI) {
2263   // Do not keep invalid information around.
2264   SetOfBrokenHints.remove(&LI);
2265 }
2266 
2267 void RAGreedy::initializeCSRCost() {
2268   // We use the larger one out of the command-line option and the value report
2269   // by TRI.
2270   CSRCost = BlockFrequency(
2271       std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost()));
2272   if (!CSRCost.getFrequency())
2273     return;
2274 
2275   // Raw cost is relative to Entry == 2^14; scale it appropriately.
2276   uint64_t ActualEntry = MBFI->getEntryFreq();
2277   if (!ActualEntry) {
2278     CSRCost = 0;
2279     return;
2280   }
2281   uint64_t FixedEntry = 1 << 14;
2282   if (ActualEntry < FixedEntry)
2283     CSRCost *= BranchProbability(ActualEntry, FixedEntry);
2284   else if (ActualEntry <= UINT32_MAX)
2285     // Invert the fraction and divide.
2286     CSRCost /= BranchProbability(FixedEntry, ActualEntry);
2287   else
2288     // Can't use BranchProbability in general, since it takes 32-bit numbers.
2289     CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry);
2290 }
2291 
2292 /// Collect the hint info for \p Reg.
2293 /// The results are stored into \p Out.
2294 /// \p Out is not cleared before being populated.
2295 void RAGreedy::collectHintInfo(Register Reg, HintsInfo &Out) {
2296   for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) {
2297     if (!Instr.isFullCopy())
2298       continue;
2299     // Look for the other end of the copy.
2300     Register OtherReg = Instr.getOperand(0).getReg();
2301     if (OtherReg == Reg) {
2302       OtherReg = Instr.getOperand(1).getReg();
2303       if (OtherReg == Reg)
2304         continue;
2305     }
2306     // Get the current assignment.
2307     MCRegister OtherPhysReg =
2308         OtherReg.isPhysical() ? OtherReg.asMCReg() : VRM->getPhys(OtherReg);
2309     // Push the collected information.
2310     Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg,
2311                            OtherPhysReg));
2312   }
2313 }
2314 
2315 /// Using the given \p List, compute the cost of the broken hints if
2316 /// \p PhysReg was used.
2317 /// \return The cost of \p List for \p PhysReg.
2318 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List,
2319                                            MCRegister PhysReg) {
2320   BlockFrequency Cost = 0;
2321   for (const HintInfo &Info : List) {
2322     if (Info.PhysReg != PhysReg)
2323       Cost += Info.Freq;
2324   }
2325   return Cost;
2326 }
2327 
2328 /// Using the register assigned to \p VirtReg, try to recolor
2329 /// all the live ranges that are copy-related with \p VirtReg.
2330 /// The recoloring is then propagated to all the live-ranges that have
2331 /// been recolored and so on, until no more copies can be coalesced or
2332 /// it is not profitable.
2333 /// For a given live range, profitability is determined by the sum of the
2334 /// frequencies of the non-identity copies it would introduce with the old
2335 /// and new register.
2336 void RAGreedy::tryHintRecoloring(const LiveInterval &VirtReg) {
2337   // We have a broken hint, check if it is possible to fix it by
2338   // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted
2339   // some register and PhysReg may be available for the other live-ranges.
2340   SmallSet<Register, 4> Visited;
2341   SmallVector<unsigned, 2> RecoloringCandidates;
2342   HintsInfo Info;
2343   Register Reg = VirtReg.reg();
2344   MCRegister PhysReg = VRM->getPhys(Reg);
2345   // Start the recoloring algorithm from the input live-interval, then
2346   // it will propagate to the ones that are copy-related with it.
2347   Visited.insert(Reg);
2348   RecoloringCandidates.push_back(Reg);
2349 
2350   LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg, TRI)
2351                     << '(' << printReg(PhysReg, TRI) << ")\n");
2352 
2353   do {
2354     Reg = RecoloringCandidates.pop_back_val();
2355 
2356     // We cannot recolor physical register.
2357     if (Register::isPhysicalRegister(Reg))
2358       continue;
2359 
2360     // This may be a skipped class
2361     if (!VRM->hasPhys(Reg)) {
2362       assert(!ShouldAllocateClass(*TRI, *MRI->getRegClass(Reg)) &&
2363              "We have an unallocated variable which should have been handled");
2364       continue;
2365     }
2366 
2367     // Get the live interval mapped with this virtual register to be able
2368     // to check for the interference with the new color.
2369     LiveInterval &LI = LIS->getInterval(Reg);
2370     MCRegister CurrPhys = VRM->getPhys(Reg);
2371     // Check that the new color matches the register class constraints and
2372     // that it is free for this live range.
2373     if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) ||
2374                                 Matrix->checkInterference(LI, PhysReg)))
2375       continue;
2376 
2377     LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << '(' << printReg(CurrPhys, TRI)
2378                       << ") is recolorable.\n");
2379 
2380     // Gather the hint info.
2381     Info.clear();
2382     collectHintInfo(Reg, Info);
2383     // Check if recoloring the live-range will increase the cost of the
2384     // non-identity copies.
2385     if (CurrPhys != PhysReg) {
2386       LLVM_DEBUG(dbgs() << "Checking profitability:\n");
2387       BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys);
2388       BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg);
2389       LLVM_DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency()
2390                         << "\nNew Cost: " << NewCopiesCost.getFrequency()
2391                         << '\n');
2392       if (OldCopiesCost < NewCopiesCost) {
2393         LLVM_DEBUG(dbgs() << "=> Not profitable.\n");
2394         continue;
2395       }
2396       // At this point, the cost is either cheaper or equal. If it is
2397       // equal, we consider this is profitable because it may expose
2398       // more recoloring opportunities.
2399       LLVM_DEBUG(dbgs() << "=> Profitable.\n");
2400       // Recolor the live-range.
2401       Matrix->unassign(LI);
2402       Matrix->assign(LI, PhysReg);
2403     }
2404     // Push all copy-related live-ranges to keep reconciling the broken
2405     // hints.
2406     for (const HintInfo &HI : Info) {
2407       if (Visited.insert(HI.Reg).second)
2408         RecoloringCandidates.push_back(HI.Reg);
2409     }
2410   } while (!RecoloringCandidates.empty());
2411 }
2412 
2413 /// Try to recolor broken hints.
2414 /// Broken hints may be repaired by recoloring when an evicted variable
2415 /// freed up a register for a larger live-range.
2416 /// Consider the following example:
2417 /// BB1:
2418 ///   a =
2419 ///   b =
2420 /// BB2:
2421 ///   ...
2422 ///   = b
2423 ///   = a
2424 /// Let us assume b gets split:
2425 /// BB1:
2426 ///   a =
2427 ///   b =
2428 /// BB2:
2429 ///   c = b
2430 ///   ...
2431 ///   d = c
2432 ///   = d
2433 ///   = a
2434 /// Because of how the allocation work, b, c, and d may be assigned different
2435 /// colors. Now, if a gets evicted later:
2436 /// BB1:
2437 ///   a =
2438 ///   st a, SpillSlot
2439 ///   b =
2440 /// BB2:
2441 ///   c = b
2442 ///   ...
2443 ///   d = c
2444 ///   = d
2445 ///   e = ld SpillSlot
2446 ///   = e
2447 /// This is likely that we can assign the same register for b, c, and d,
2448 /// getting rid of 2 copies.
2449 void RAGreedy::tryHintsRecoloring() {
2450   for (const LiveInterval *LI : SetOfBrokenHints) {
2451     assert(Register::isVirtualRegister(LI->reg()) &&
2452            "Recoloring is possible only for virtual registers");
2453     // Some dead defs may be around (e.g., because of debug uses).
2454     // Ignore those.
2455     if (!VRM->hasPhys(LI->reg()))
2456       continue;
2457     tryHintRecoloring(*LI);
2458   }
2459 }
2460 
2461 MCRegister RAGreedy::selectOrSplitImpl(const LiveInterval &VirtReg,
2462                                        SmallVectorImpl<Register> &NewVRegs,
2463                                        SmallVirtRegSet &FixedRegisters,
2464                                        unsigned Depth) {
2465   uint8_t CostPerUseLimit = uint8_t(~0u);
2466   // First try assigning a free register.
2467   auto Order =
2468       AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix);
2469   if (MCRegister PhysReg =
2470           tryAssign(VirtReg, Order, NewVRegs, FixedRegisters)) {
2471     // If VirtReg got an assignment, the eviction info is no longer relevant.
2472     LastEvicted.clearEvicteeInfo(VirtReg.reg());
2473     // When NewVRegs is not empty, we may have made decisions such as evicting
2474     // a virtual register, go with the earlier decisions and use the physical
2475     // register.
2476     if (CSRCost.getFrequency() &&
2477         EvictAdvisor->isUnusedCalleeSavedReg(PhysReg) && NewVRegs.empty()) {
2478       MCRegister CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg,
2479                                                 CostPerUseLimit, NewVRegs);
2480       if (CSRReg || !NewVRegs.empty())
2481         // Return now if we decide to use a CSR or create new vregs due to
2482         // pre-splitting.
2483         return CSRReg;
2484     } else
2485       return PhysReg;
2486   }
2487 
2488   LiveRangeStage Stage = ExtraInfo->getStage(VirtReg);
2489   LLVM_DEBUG(dbgs() << StageName[Stage] << " Cascade "
2490                     << ExtraInfo->getCascade(VirtReg.reg()) << '\n');
2491 
2492   // Try to evict a less worthy live range, but only for ranges from the primary
2493   // queue. The RS_Split ranges already failed to do this, and they should not
2494   // get a second chance until they have been split.
2495   if (Stage != RS_Split)
2496     if (Register PhysReg =
2497             tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit,
2498                      FixedRegisters)) {
2499       Register Hint = MRI->getSimpleHint(VirtReg.reg());
2500       // If VirtReg has a hint and that hint is broken record this
2501       // virtual register as a recoloring candidate for broken hint.
2502       // Indeed, since we evicted a variable in its neighborhood it is
2503       // likely we can at least partially recolor some of the
2504       // copy-related live-ranges.
2505       if (Hint && Hint != PhysReg)
2506         SetOfBrokenHints.insert(&VirtReg);
2507       // If VirtReg eviction someone, the eviction info for it as an evictee is
2508       // no longer relevant.
2509       LastEvicted.clearEvicteeInfo(VirtReg.reg());
2510       return PhysReg;
2511     }
2512 
2513   assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs");
2514 
2515   // The first time we see a live range, don't try to split or spill.
2516   // Wait until the second time, when all smaller ranges have been allocated.
2517   // This gives a better picture of the interference to split around.
2518   if (Stage < RS_Split) {
2519     ExtraInfo->setStage(VirtReg, RS_Split);
2520     LLVM_DEBUG(dbgs() << "wait for second round\n");
2521     NewVRegs.push_back(VirtReg.reg());
2522     return 0;
2523   }
2524 
2525   if (Stage < RS_Spill) {
2526     // Try splitting VirtReg or interferences.
2527     unsigned NewVRegSizeBefore = NewVRegs.size();
2528     Register PhysReg = trySplit(VirtReg, Order, NewVRegs, FixedRegisters);
2529     if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore)) {
2530       // If VirtReg got split, the eviction info is no longer relevant.
2531       LastEvicted.clearEvicteeInfo(VirtReg.reg());
2532       return PhysReg;
2533     }
2534   }
2535 
2536   // If we couldn't allocate a register from spilling, there is probably some
2537   // invalid inline assembly. The base class will report it.
2538   if (Stage >= RS_Done || !VirtReg.isSpillable())
2539     return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters,
2540                                    Depth);
2541 
2542   // Finally spill VirtReg itself.
2543   if ((EnableDeferredSpilling ||
2544        TRI->shouldUseDeferredSpillingForVirtReg(*MF, VirtReg)) &&
2545       ExtraInfo->getStage(VirtReg) < RS_Memory) {
2546     // TODO: This is experimental and in particular, we do not model
2547     // the live range splitting done by spilling correctly.
2548     // We would need a deep integration with the spiller to do the
2549     // right thing here. Anyway, that is still good for early testing.
2550     ExtraInfo->setStage(VirtReg, RS_Memory);
2551     LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n");
2552     NewVRegs.push_back(VirtReg.reg());
2553   } else {
2554     NamedRegionTimer T("spill", "Spiller", TimerGroupName,
2555                        TimerGroupDescription, TimePassesIsEnabled);
2556     LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2557     spiller().spill(LRE);
2558     ExtraInfo->setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done);
2559 
2560     // Tell LiveDebugVariables about the new ranges. Ranges not being covered by
2561     // the new regs are kept in LDV (still mapping to the old register), until
2562     // we rewrite spilled locations in LDV at a later stage.
2563     DebugVars->splitRegister(VirtReg.reg(), LRE.regs(), *LIS);
2564 
2565     if (VerifyEnabled)
2566       MF->verify(this, "After spilling");
2567   }
2568 
2569   // The live virtual register requesting allocation was spilled, so tell
2570   // the caller not to allocate anything during this round.
2571   return 0;
2572 }
2573 
2574 void RAGreedy::RAGreedyStats::report(MachineOptimizationRemarkMissed &R) {
2575   using namespace ore;
2576   if (Spills) {
2577     R << NV("NumSpills", Spills) << " spills ";
2578     R << NV("TotalSpillsCost", SpillsCost) << " total spills cost ";
2579   }
2580   if (FoldedSpills) {
2581     R << NV("NumFoldedSpills", FoldedSpills) << " folded spills ";
2582     R << NV("TotalFoldedSpillsCost", FoldedSpillsCost)
2583       << " total folded spills cost ";
2584   }
2585   if (Reloads) {
2586     R << NV("NumReloads", Reloads) << " reloads ";
2587     R << NV("TotalReloadsCost", ReloadsCost) << " total reloads cost ";
2588   }
2589   if (FoldedReloads) {
2590     R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads ";
2591     R << NV("TotalFoldedReloadsCost", FoldedReloadsCost)
2592       << " total folded reloads cost ";
2593   }
2594   if (ZeroCostFoldedReloads)
2595     R << NV("NumZeroCostFoldedReloads", ZeroCostFoldedReloads)
2596       << " zero cost folded reloads ";
2597   if (Copies) {
2598     R << NV("NumVRCopies", Copies) << " virtual registers copies ";
2599     R << NV("TotalCopiesCost", CopiesCost) << " total copies cost ";
2600   }
2601 }
2602 
2603 RAGreedy::RAGreedyStats RAGreedy::computeStats(MachineBasicBlock &MBB) {
2604   RAGreedyStats Stats;
2605   const MachineFrameInfo &MFI = MF->getFrameInfo();
2606   int FI;
2607 
2608   auto isSpillSlotAccess = [&MFI](const MachineMemOperand *A) {
2609     return MFI.isSpillSlotObjectIndex(cast<FixedStackPseudoSourceValue>(
2610         A->getPseudoValue())->getFrameIndex());
2611   };
2612   auto isPatchpointInstr = [](const MachineInstr &MI) {
2613     return MI.getOpcode() == TargetOpcode::PATCHPOINT ||
2614            MI.getOpcode() == TargetOpcode::STACKMAP ||
2615            MI.getOpcode() == TargetOpcode::STATEPOINT;
2616   };
2617   for (MachineInstr &MI : MBB) {
2618     if (MI.isCopy()) {
2619       MachineOperand &Dest = MI.getOperand(0);
2620       MachineOperand &Src = MI.getOperand(1);
2621       if (Dest.isReg() && Src.isReg() && Dest.getReg().isVirtual() &&
2622           Src.getReg().isVirtual())
2623         ++Stats.Copies;
2624       continue;
2625     }
2626 
2627     SmallVector<const MachineMemOperand *, 2> Accesses;
2628     if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) {
2629       ++Stats.Reloads;
2630       continue;
2631     }
2632     if (TII->isStoreToStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) {
2633       ++Stats.Spills;
2634       continue;
2635     }
2636     if (TII->hasLoadFromStackSlot(MI, Accesses) &&
2637         llvm::any_of(Accesses, isSpillSlotAccess)) {
2638       if (!isPatchpointInstr(MI)) {
2639         Stats.FoldedReloads += Accesses.size();
2640         continue;
2641       }
2642       // For statepoint there may be folded and zero cost folded stack reloads.
2643       std::pair<unsigned, unsigned> NonZeroCostRange =
2644           TII->getPatchpointUnfoldableRange(MI);
2645       SmallSet<unsigned, 16> FoldedReloads;
2646       SmallSet<unsigned, 16> ZeroCostFoldedReloads;
2647       for (unsigned Idx = 0, E = MI.getNumOperands(); Idx < E; ++Idx) {
2648         MachineOperand &MO = MI.getOperand(Idx);
2649         if (!MO.isFI() || !MFI.isSpillSlotObjectIndex(MO.getIndex()))
2650           continue;
2651         if (Idx >= NonZeroCostRange.first && Idx < NonZeroCostRange.second)
2652           FoldedReloads.insert(MO.getIndex());
2653         else
2654           ZeroCostFoldedReloads.insert(MO.getIndex());
2655       }
2656       // If stack slot is used in folded reload it is not zero cost then.
2657       for (unsigned Slot : FoldedReloads)
2658         ZeroCostFoldedReloads.erase(Slot);
2659       Stats.FoldedReloads += FoldedReloads.size();
2660       Stats.ZeroCostFoldedReloads += ZeroCostFoldedReloads.size();
2661       continue;
2662     }
2663     Accesses.clear();
2664     if (TII->hasStoreToStackSlot(MI, Accesses) &&
2665         llvm::any_of(Accesses, isSpillSlotAccess)) {
2666       Stats.FoldedSpills += Accesses.size();
2667     }
2668   }
2669   // Set cost of collected statistic by multiplication to relative frequency of
2670   // this basic block.
2671   float RelFreq = MBFI->getBlockFreqRelativeToEntryBlock(&MBB);
2672   Stats.ReloadsCost = RelFreq * Stats.Reloads;
2673   Stats.FoldedReloadsCost = RelFreq * Stats.FoldedReloads;
2674   Stats.SpillsCost = RelFreq * Stats.Spills;
2675   Stats.FoldedSpillsCost = RelFreq * Stats.FoldedSpills;
2676   Stats.CopiesCost = RelFreq * Stats.Copies;
2677   return Stats;
2678 }
2679 
2680 RAGreedy::RAGreedyStats RAGreedy::reportStats(MachineLoop *L) {
2681   RAGreedyStats Stats;
2682 
2683   // Sum up the spill and reloads in subloops.
2684   for (MachineLoop *SubLoop : *L)
2685     Stats.add(reportStats(SubLoop));
2686 
2687   for (MachineBasicBlock *MBB : L->getBlocks())
2688     // Handle blocks that were not included in subloops.
2689     if (Loops->getLoopFor(MBB) == L)
2690       Stats.add(computeStats(*MBB));
2691 
2692   if (!Stats.isEmpty()) {
2693     using namespace ore;
2694 
2695     ORE->emit([&]() {
2696       MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReloadCopies",
2697                                         L->getStartLoc(), L->getHeader());
2698       Stats.report(R);
2699       R << "generated in loop";
2700       return R;
2701     });
2702   }
2703   return Stats;
2704 }
2705 
2706 void RAGreedy::reportStats() {
2707   if (!ORE->allowExtraAnalysis(DEBUG_TYPE))
2708     return;
2709   RAGreedyStats Stats;
2710   for (MachineLoop *L : *Loops)
2711     Stats.add(reportStats(L));
2712   // Process non-loop blocks.
2713   for (MachineBasicBlock &MBB : *MF)
2714     if (!Loops->getLoopFor(&MBB))
2715       Stats.add(computeStats(MBB));
2716   if (!Stats.isEmpty()) {
2717     using namespace ore;
2718 
2719     ORE->emit([&]() {
2720       DebugLoc Loc;
2721       if (auto *SP = MF->getFunction().getSubprogram())
2722         Loc = DILocation::get(SP->getContext(), SP->getLine(), 1, SP);
2723       MachineOptimizationRemarkMissed R(DEBUG_TYPE, "SpillReloadCopies", Loc,
2724                                         &MF->front());
2725       Stats.report(R);
2726       R << "generated in function";
2727       return R;
2728     });
2729   }
2730 }
2731 
2732 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
2733   LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
2734                     << "********** Function: " << mf.getName() << '\n');
2735 
2736   MF = &mf;
2737   TRI = MF->getSubtarget().getRegisterInfo();
2738   TII = MF->getSubtarget().getInstrInfo();
2739   RCI.runOnMachineFunction(mf);
2740 
2741   EnableAdvancedRASplitCost =
2742       ConsiderLocalIntervalCost.getNumOccurrences()
2743           ? ConsiderLocalIntervalCost
2744           : MF->getSubtarget().enableAdvancedRASplitCost();
2745 
2746   if (VerifyEnabled)
2747     MF->verify(this, "Before greedy register allocator");
2748 
2749   RegAllocBase::init(getAnalysis<VirtRegMap>(),
2750                      getAnalysis<LiveIntervals>(),
2751                      getAnalysis<LiveRegMatrix>());
2752   Indexes = &getAnalysis<SlotIndexes>();
2753   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
2754   DomTree = &getAnalysis<MachineDominatorTree>();
2755   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
2756   Loops = &getAnalysis<MachineLoopInfo>();
2757   Bundles = &getAnalysis<EdgeBundles>();
2758   SpillPlacer = &getAnalysis<SpillPlacement>();
2759   DebugVars = &getAnalysis<LiveDebugVariables>();
2760   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2761 
2762   initializeCSRCost();
2763 
2764   RegCosts = TRI->getRegisterCosts(*MF);
2765 
2766   ExtraInfo.emplace();
2767   EvictAdvisor =
2768       getAnalysis<RegAllocEvictionAdvisorAnalysis>().getAdvisor(*MF, *this);
2769 
2770   VRAI = std::make_unique<VirtRegAuxInfo>(*MF, *LIS, *VRM, *Loops, *MBFI);
2771   SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM, *VRAI));
2772 
2773   VRAI->calculateSpillWeightsAndHints();
2774 
2775   LLVM_DEBUG(LIS->dump());
2776 
2777   SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
2778   SE.reset(new SplitEditor(*SA, *AA, *LIS, *VRM, *DomTree, *MBFI, *VRAI));
2779 
2780   IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI);
2781   GlobalCand.resize(32);  // This will grow as needed.
2782   SetOfBrokenHints.clear();
2783   LastEvicted.clear();
2784 
2785   allocatePhysRegs();
2786   tryHintsRecoloring();
2787 
2788   if (VerifyEnabled)
2789     MF->verify(this, "Before post optimization");
2790   postOptimization();
2791   reportStats();
2792 
2793   releaseMemory();
2794   return true;
2795 }
2796