1 //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the RAGreedy function pass for register allocation in 10 // optimized builds. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "AllocationOrder.h" 15 #include "InterferenceCache.h" 16 #include "LiveDebugVariables.h" 17 #include "RegAllocBase.h" 18 #include "SpillPlacement.h" 19 #include "SplitKit.h" 20 #include "llvm/ADT/ArrayRef.h" 21 #include "llvm/ADT/BitVector.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/IndexedMap.h" 24 #include "llvm/ADT/MapVector.h" 25 #include "llvm/ADT/SetVector.h" 26 #include "llvm/ADT/SmallPtrSet.h" 27 #include "llvm/ADT/SmallSet.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/ADT/StringRef.h" 31 #include "llvm/Analysis/AliasAnalysis.h" 32 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 33 #include "llvm/CodeGen/CalcSpillWeights.h" 34 #include "llvm/CodeGen/EdgeBundles.h" 35 #include "llvm/CodeGen/LiveInterval.h" 36 #include "llvm/CodeGen/LiveIntervalUnion.h" 37 #include "llvm/CodeGen/LiveIntervals.h" 38 #include "llvm/CodeGen/LiveRangeEdit.h" 39 #include "llvm/CodeGen/LiveRegMatrix.h" 40 #include "llvm/CodeGen/LiveStacks.h" 41 #include "llvm/CodeGen/MachineBasicBlock.h" 42 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 43 #include "llvm/CodeGen/MachineDominators.h" 44 #include "llvm/CodeGen/MachineFrameInfo.h" 45 #include "llvm/CodeGen/MachineFunction.h" 46 #include "llvm/CodeGen/MachineFunctionPass.h" 47 #include "llvm/CodeGen/MachineInstr.h" 48 #include "llvm/CodeGen/MachineLoopInfo.h" 49 #include "llvm/CodeGen/MachineOperand.h" 50 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 51 #include "llvm/CodeGen/MachineRegisterInfo.h" 52 #include "llvm/CodeGen/RegAllocRegistry.h" 53 #include "llvm/CodeGen/RegisterClassInfo.h" 54 #include "llvm/CodeGen/SlotIndexes.h" 55 #include "llvm/CodeGen/Spiller.h" 56 #include "llvm/CodeGen/TargetInstrInfo.h" 57 #include "llvm/CodeGen/TargetRegisterInfo.h" 58 #include "llvm/CodeGen/TargetSubtargetInfo.h" 59 #include "llvm/CodeGen/VirtRegMap.h" 60 #include "llvm/IR/Function.h" 61 #include "llvm/IR/LLVMContext.h" 62 #include "llvm/MC/MCRegisterInfo.h" 63 #include "llvm/Pass.h" 64 #include "llvm/Support/BlockFrequency.h" 65 #include "llvm/Support/BranchProbability.h" 66 #include "llvm/Support/CommandLine.h" 67 #include "llvm/Support/Debug.h" 68 #include "llvm/Support/MathExtras.h" 69 #include "llvm/Support/Timer.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include "llvm/Target/TargetMachine.h" 72 #include "llvm/IR/DebugInfoMetadata.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cstdint> 76 #include <memory> 77 #include <queue> 78 #include <tuple> 79 #include <utility> 80 81 using namespace llvm; 82 83 #define DEBUG_TYPE "regalloc" 84 85 STATISTIC(NumGlobalSplits, "Number of split global live ranges"); 86 STATISTIC(NumLocalSplits, "Number of split local live ranges"); 87 STATISTIC(NumEvicted, "Number of interferences evicted"); 88 89 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode( 90 "split-spill-mode", cl::Hidden, 91 cl::desc("Spill mode for splitting live ranges"), 92 cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"), 93 clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"), 94 clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")), 95 cl::init(SplitEditor::SM_Speed)); 96 97 static cl::opt<unsigned> 98 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden, 99 cl::desc("Last chance recoloring max depth"), 100 cl::init(5)); 101 102 static cl::opt<unsigned> LastChanceRecoloringMaxInterference( 103 "lcr-max-interf", cl::Hidden, 104 cl::desc("Last chance recoloring maximum number of considered" 105 " interference at a time"), 106 cl::init(8)); 107 108 static cl::opt<bool> ExhaustiveSearch( 109 "exhaustive-register-search", cl::NotHidden, 110 cl::desc("Exhaustive Search for registers bypassing the depth " 111 "and interference cutoffs of last chance recoloring"), 112 cl::Hidden); 113 114 static cl::opt<bool> EnableLocalReassignment( 115 "enable-local-reassign", cl::Hidden, 116 cl::desc("Local reassignment can yield better allocation decisions, but " 117 "may be compile time intensive"), 118 cl::init(false)); 119 120 static cl::opt<bool> EnableDeferredSpilling( 121 "enable-deferred-spilling", cl::Hidden, 122 cl::desc("Instead of spilling a variable right away, defer the actual " 123 "code insertion to the end of the allocation. That way the " 124 "allocator might still find a suitable coloring for this " 125 "variable because of other evicted variables."), 126 cl::init(false)); 127 128 // FIXME: Find a good default for this flag and remove the flag. 129 static cl::opt<unsigned> 130 CSRFirstTimeCost("regalloc-csr-first-time-cost", 131 cl::desc("Cost for first time use of callee-saved register."), 132 cl::init(0), cl::Hidden); 133 134 static cl::opt<bool> ConsiderLocalIntervalCost( 135 "consider-local-interval-cost", cl::Hidden, 136 cl::desc("Consider the cost of local intervals created by a split " 137 "candidate when choosing the best split candidate."), 138 cl::init(false)); 139 140 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator", 141 createGreedyRegisterAllocator); 142 143 namespace { 144 145 class RAGreedy : public MachineFunctionPass, 146 public RegAllocBase, 147 private LiveRangeEdit::Delegate { 148 // Convenient shortcuts. 149 using PQueue = std::priority_queue<std::pair<unsigned, unsigned>>; 150 using SmallLISet = SmallPtrSet<LiveInterval *, 4>; 151 using SmallVirtRegSet = SmallSet<Register, 16>; 152 153 // context 154 MachineFunction *MF; 155 156 // Shortcuts to some useful interface. 157 const TargetInstrInfo *TII; 158 const TargetRegisterInfo *TRI; 159 RegisterClassInfo RCI; 160 161 // analyses 162 SlotIndexes *Indexes; 163 MachineBlockFrequencyInfo *MBFI; 164 MachineDominatorTree *DomTree; 165 MachineLoopInfo *Loops; 166 MachineOptimizationRemarkEmitter *ORE; 167 EdgeBundles *Bundles; 168 SpillPlacement *SpillPlacer; 169 LiveDebugVariables *DebugVars; 170 AliasAnalysis *AA; 171 172 // state 173 std::unique_ptr<Spiller> SpillerInstance; 174 PQueue Queue; 175 unsigned NextCascade; 176 std::unique_ptr<VirtRegAuxInfo> VRAI; 177 178 // Live ranges pass through a number of stages as we try to allocate them. 179 // Some of the stages may also create new live ranges: 180 // 181 // - Region splitting. 182 // - Per-block splitting. 183 // - Local splitting. 184 // - Spilling. 185 // 186 // Ranges produced by one of the stages skip the previous stages when they are 187 // dequeued. This improves performance because we can skip interference checks 188 // that are unlikely to give any results. It also guarantees that the live 189 // range splitting algorithm terminates, something that is otherwise hard to 190 // ensure. 191 enum LiveRangeStage { 192 /// Newly created live range that has never been queued. 193 RS_New, 194 195 /// Only attempt assignment and eviction. Then requeue as RS_Split. 196 RS_Assign, 197 198 /// Attempt live range splitting if assignment is impossible. 199 RS_Split, 200 201 /// Attempt more aggressive live range splitting that is guaranteed to make 202 /// progress. This is used for split products that may not be making 203 /// progress. 204 RS_Split2, 205 206 /// Live range will be spilled. No more splitting will be attempted. 207 RS_Spill, 208 209 210 /// Live range is in memory. Because of other evictions, it might get moved 211 /// in a register in the end. 212 RS_Memory, 213 214 /// There is nothing more we can do to this live range. Abort compilation 215 /// if it can't be assigned. 216 RS_Done 217 }; 218 219 // Enum CutOffStage to keep a track whether the register allocation failed 220 // because of the cutoffs encountered in last chance recoloring. 221 // Note: This is used as bitmask. New value should be next power of 2. 222 enum CutOffStage { 223 // No cutoffs encountered 224 CO_None = 0, 225 226 // lcr-max-depth cutoff encountered 227 CO_Depth = 1, 228 229 // lcr-max-interf cutoff encountered 230 CO_Interf = 2 231 }; 232 233 uint8_t CutOffInfo; 234 235 #ifndef NDEBUG 236 static const char *const StageName[]; 237 #endif 238 239 // RegInfo - Keep additional information about each live range. 240 struct RegInfo { 241 LiveRangeStage Stage = RS_New; 242 243 // Cascade - Eviction loop prevention. See canEvictInterference(). 244 unsigned Cascade = 0; 245 246 RegInfo() = default; 247 }; 248 249 IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo; 250 251 LiveRangeStage getStage(const LiveInterval &VirtReg) const { 252 return ExtraRegInfo[VirtReg.reg()].Stage; 253 } 254 255 void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) { 256 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 257 ExtraRegInfo[VirtReg.reg()].Stage = Stage; 258 } 259 260 template<typename Iterator> 261 void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) { 262 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 263 for (;Begin != End; ++Begin) { 264 Register Reg = *Begin; 265 if (ExtraRegInfo[Reg].Stage == RS_New) 266 ExtraRegInfo[Reg].Stage = NewStage; 267 } 268 } 269 270 /// Cost of evicting interference. 271 struct EvictionCost { 272 unsigned BrokenHints = 0; ///< Total number of broken hints. 273 float MaxWeight = 0; ///< Maximum spill weight evicted. 274 275 EvictionCost() = default; 276 277 bool isMax() const { return BrokenHints == ~0u; } 278 279 void setMax() { BrokenHints = ~0u; } 280 281 void setBrokenHints(unsigned NHints) { BrokenHints = NHints; } 282 283 bool operator<(const EvictionCost &O) const { 284 return std::tie(BrokenHints, MaxWeight) < 285 std::tie(O.BrokenHints, O.MaxWeight); 286 } 287 }; 288 289 /// EvictionTrack - Keeps track of past evictions in order to optimize region 290 /// split decision. 291 class EvictionTrack { 292 293 public: 294 using EvictorInfo = 295 std::pair<Register /* evictor */, MCRegister /* physreg */>; 296 using EvicteeInfo = llvm::DenseMap<Register /* evictee */, EvictorInfo>; 297 298 private: 299 /// Each Vreg that has been evicted in the last stage of selectOrSplit will 300 /// be mapped to the evictor Vreg and the PhysReg it was evicted from. 301 EvicteeInfo Evictees; 302 303 public: 304 /// Clear all eviction information. 305 void clear() { Evictees.clear(); } 306 307 /// Clear eviction information for the given evictee Vreg. 308 /// E.g. when Vreg get's a new allocation, the old eviction info is no 309 /// longer relevant. 310 /// \param Evictee The evictee Vreg for whom we want to clear collected 311 /// eviction info. 312 void clearEvicteeInfo(Register Evictee) { Evictees.erase(Evictee); } 313 314 /// Track new eviction. 315 /// The Evictor vreg has evicted the Evictee vreg from Physreg. 316 /// \param PhysReg The physical register Evictee was evicted from. 317 /// \param Evictor The evictor Vreg that evicted Evictee. 318 /// \param Evictee The evictee Vreg. 319 void addEviction(MCRegister PhysReg, Register Evictor, Register Evictee) { 320 Evictees[Evictee].first = Evictor; 321 Evictees[Evictee].second = PhysReg; 322 } 323 324 /// Return the Evictor Vreg which evicted Evictee Vreg from PhysReg. 325 /// \param Evictee The evictee vreg. 326 /// \return The Evictor vreg which evicted Evictee vreg from PhysReg. 0 if 327 /// nobody has evicted Evictee from PhysReg. 328 EvictorInfo getEvictor(Register Evictee) { 329 if (Evictees.count(Evictee)) { 330 return Evictees[Evictee]; 331 } 332 333 return EvictorInfo(0, 0); 334 } 335 }; 336 337 // Keeps track of past evictions in order to optimize region split decision. 338 EvictionTrack LastEvicted; 339 340 // splitting state. 341 std::unique_ptr<SplitAnalysis> SA; 342 std::unique_ptr<SplitEditor> SE; 343 344 /// Cached per-block interference maps 345 InterferenceCache IntfCache; 346 347 /// All basic blocks where the current register has uses. 348 SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints; 349 350 /// Global live range splitting candidate info. 351 struct GlobalSplitCandidate { 352 // Register intended for assignment, or 0. 353 MCRegister PhysReg; 354 355 // SplitKit interval index for this candidate. 356 unsigned IntvIdx; 357 358 // Interference for PhysReg. 359 InterferenceCache::Cursor Intf; 360 361 // Bundles where this candidate should be live. 362 BitVector LiveBundles; 363 SmallVector<unsigned, 8> ActiveBlocks; 364 365 void reset(InterferenceCache &Cache, MCRegister Reg) { 366 PhysReg = Reg; 367 IntvIdx = 0; 368 Intf.setPhysReg(Cache, Reg); 369 LiveBundles.clear(); 370 ActiveBlocks.clear(); 371 } 372 373 // Set B[I] = C for every live bundle where B[I] was NoCand. 374 unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) { 375 unsigned Count = 0; 376 for (unsigned I : LiveBundles.set_bits()) 377 if (B[I] == NoCand) { 378 B[I] = C; 379 Count++; 380 } 381 return Count; 382 } 383 }; 384 385 /// Candidate info for each PhysReg in AllocationOrder. 386 /// This vector never shrinks, but grows to the size of the largest register 387 /// class. 388 SmallVector<GlobalSplitCandidate, 32> GlobalCand; 389 390 enum : unsigned { NoCand = ~0u }; 391 392 /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to 393 /// NoCand which indicates the stack interval. 394 SmallVector<unsigned, 32> BundleCand; 395 396 /// Callee-save register cost, calculated once per machine function. 397 BlockFrequency CSRCost; 398 399 /// Run or not the local reassignment heuristic. This information is 400 /// obtained from the TargetSubtargetInfo. 401 bool EnableLocalReassign; 402 403 /// Enable or not the consideration of the cost of local intervals created 404 /// by a split candidate when choosing the best split candidate. 405 bool EnableAdvancedRASplitCost; 406 407 /// Set of broken hints that may be reconciled later because of eviction. 408 SmallSetVector<LiveInterval *, 8> SetOfBrokenHints; 409 410 /// The register cost values. This list will be recreated for each Machine 411 /// Function 412 ArrayRef<uint8_t> RegCosts; 413 414 public: 415 RAGreedy(); 416 417 /// Return the pass name. 418 StringRef getPassName() const override { return "Greedy Register Allocator"; } 419 420 /// RAGreedy analysis usage. 421 void getAnalysisUsage(AnalysisUsage &AU) const override; 422 void releaseMemory() override; 423 Spiller &spiller() override { return *SpillerInstance; } 424 void enqueue(LiveInterval *LI) override; 425 LiveInterval *dequeue() override; 426 MCRegister selectOrSplit(LiveInterval &, 427 SmallVectorImpl<Register> &) override; 428 void aboutToRemoveInterval(LiveInterval &) override; 429 430 /// Perform register allocation. 431 bool runOnMachineFunction(MachineFunction &mf) override; 432 433 MachineFunctionProperties getRequiredProperties() const override { 434 return MachineFunctionProperties().set( 435 MachineFunctionProperties::Property::NoPHIs); 436 } 437 438 MachineFunctionProperties getClearedProperties() const override { 439 return MachineFunctionProperties().set( 440 MachineFunctionProperties::Property::IsSSA); 441 } 442 443 static char ID; 444 445 private: 446 MCRegister selectOrSplitImpl(LiveInterval &, SmallVectorImpl<Register> &, 447 SmallVirtRegSet &, unsigned = 0); 448 449 bool LRE_CanEraseVirtReg(Register) override; 450 void LRE_WillShrinkVirtReg(Register) override; 451 void LRE_DidCloneVirtReg(Register, Register) override; 452 void enqueue(PQueue &CurQueue, LiveInterval *LI); 453 LiveInterval *dequeue(PQueue &CurQueue); 454 455 BlockFrequency calcSpillCost(); 456 bool addSplitConstraints(InterferenceCache::Cursor, BlockFrequency&); 457 bool addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>); 458 bool growRegion(GlobalSplitCandidate &Cand); 459 bool splitCanCauseEvictionChain(Register Evictee, GlobalSplitCandidate &Cand, 460 unsigned BBNumber, 461 const AllocationOrder &Order); 462 bool splitCanCauseLocalSpill(unsigned VirtRegToSplit, 463 GlobalSplitCandidate &Cand, unsigned BBNumber, 464 const AllocationOrder &Order); 465 BlockFrequency calcGlobalSplitCost(GlobalSplitCandidate &, 466 const AllocationOrder &Order, 467 bool *CanCauseEvictionChain); 468 bool calcCompactRegion(GlobalSplitCandidate&); 469 void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>); 470 void calcGapWeights(MCRegister, SmallVectorImpl<float> &); 471 Register canReassign(LiveInterval &VirtReg, Register PrevReg) const; 472 bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool) const; 473 bool canEvictInterference(LiveInterval &, MCRegister, bool, EvictionCost &, 474 const SmallVirtRegSet &) const; 475 bool canEvictInterferenceInRange(const LiveInterval &VirtReg, 476 MCRegister PhysReg, SlotIndex Start, 477 SlotIndex End, EvictionCost &MaxCost) const; 478 MCRegister getCheapestEvicteeWeight(const AllocationOrder &Order, 479 const LiveInterval &VirtReg, 480 SlotIndex Start, SlotIndex End, 481 float *BestEvictWeight) const; 482 void evictInterference(LiveInterval &, MCRegister, 483 SmallVectorImpl<Register> &); 484 bool mayRecolorAllInterferences(MCRegister PhysReg, LiveInterval &VirtReg, 485 SmallLISet &RecoloringCandidates, 486 const SmallVirtRegSet &FixedRegisters); 487 488 MCRegister tryAssign(LiveInterval&, AllocationOrder&, 489 SmallVectorImpl<Register>&, 490 const SmallVirtRegSet&); 491 MCRegister tryEvict(LiveInterval &, AllocationOrder &, 492 SmallVectorImpl<Register> &, uint8_t, 493 const SmallVirtRegSet &); 494 MCRegister tryRegionSplit(LiveInterval &, AllocationOrder &, 495 SmallVectorImpl<Register> &); 496 /// Calculate cost of region splitting. 497 unsigned calculateRegionSplitCost(LiveInterval &VirtReg, 498 AllocationOrder &Order, 499 BlockFrequency &BestCost, 500 unsigned &NumCands, bool IgnoreCSR, 501 bool *CanCauseEvictionChain = nullptr); 502 /// Perform region splitting. 503 unsigned doRegionSplit(LiveInterval &VirtReg, unsigned BestCand, 504 bool HasCompact, 505 SmallVectorImpl<Register> &NewVRegs); 506 /// Check other options before using a callee-saved register for the first 507 /// time. 508 MCRegister tryAssignCSRFirstTime(LiveInterval &VirtReg, 509 AllocationOrder &Order, MCRegister PhysReg, 510 uint8_t &CostPerUseLimit, 511 SmallVectorImpl<Register> &NewVRegs); 512 void initializeCSRCost(); 513 unsigned tryBlockSplit(LiveInterval&, AllocationOrder&, 514 SmallVectorImpl<Register>&); 515 unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&, 516 SmallVectorImpl<Register>&); 517 unsigned tryLocalSplit(LiveInterval&, AllocationOrder&, 518 SmallVectorImpl<Register>&); 519 unsigned trySplit(LiveInterval&, AllocationOrder&, 520 SmallVectorImpl<Register>&, 521 const SmallVirtRegSet&); 522 unsigned tryLastChanceRecoloring(LiveInterval &, AllocationOrder &, 523 SmallVectorImpl<Register> &, 524 SmallVirtRegSet &, unsigned); 525 bool tryRecoloringCandidates(PQueue &, SmallVectorImpl<Register> &, 526 SmallVirtRegSet &, unsigned); 527 void tryHintRecoloring(LiveInterval &); 528 void tryHintsRecoloring(); 529 530 /// Model the information carried by one end of a copy. 531 struct HintInfo { 532 /// The frequency of the copy. 533 BlockFrequency Freq; 534 /// The virtual register or physical register. 535 Register Reg; 536 /// Its currently assigned register. 537 /// In case of a physical register Reg == PhysReg. 538 MCRegister PhysReg; 539 540 HintInfo(BlockFrequency Freq, Register Reg, MCRegister PhysReg) 541 : Freq(Freq), Reg(Reg), PhysReg(PhysReg) {} 542 }; 543 using HintsInfo = SmallVector<HintInfo, 4>; 544 545 BlockFrequency getBrokenHintFreq(const HintsInfo &, MCRegister); 546 void collectHintInfo(Register, HintsInfo &); 547 548 bool isUnusedCalleeSavedReg(MCRegister PhysReg) const; 549 550 /// Greedy RA statistic to remark. 551 struct RAGreedyStats { 552 unsigned Reloads = 0; 553 unsigned FoldedReloads = 0; 554 unsigned ZeroCostFoldedReloads = 0; 555 unsigned Spills = 0; 556 unsigned FoldedSpills = 0; 557 558 bool isEmpty() { 559 return !(Reloads || FoldedReloads || Spills || FoldedSpills || 560 ZeroCostFoldedReloads); 561 } 562 563 void add(RAGreedyStats other) { 564 Reloads += other.Reloads; 565 FoldedReloads += other.FoldedReloads; 566 ZeroCostFoldedReloads += other.ZeroCostFoldedReloads; 567 Spills += other.Spills; 568 FoldedSpills += other.FoldedSpills; 569 } 570 571 void report(MachineOptimizationRemarkMissed &R); 572 }; 573 574 /// Compute the number of spills and reloads for a basic block. 575 RAGreedyStats computeNumberOfSplillsReloads(MachineBasicBlock &MBB); 576 577 /// Compute and report the number of spills through a remark. 578 RAGreedyStats reportNumberOfSplillsReloads(MachineLoop *L); 579 580 /// Report the number of spills and reloads for each loop. 581 void reportNumberOfSplillsReloads(); 582 }; 583 584 } // end anonymous namespace 585 586 char RAGreedy::ID = 0; 587 char &llvm::RAGreedyID = RAGreedy::ID; 588 589 INITIALIZE_PASS_BEGIN(RAGreedy, "greedy", 590 "Greedy Register Allocator", false, false) 591 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables) 592 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 593 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 594 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer) 595 INITIALIZE_PASS_DEPENDENCY(MachineScheduler) 596 INITIALIZE_PASS_DEPENDENCY(LiveStacks) 597 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 598 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 599 INITIALIZE_PASS_DEPENDENCY(VirtRegMap) 600 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix) 601 INITIALIZE_PASS_DEPENDENCY(EdgeBundles) 602 INITIALIZE_PASS_DEPENDENCY(SpillPlacement) 603 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass) 604 INITIALIZE_PASS_END(RAGreedy, "greedy", 605 "Greedy Register Allocator", false, false) 606 607 #ifndef NDEBUG 608 const char *const RAGreedy::StageName[] = { 609 "RS_New", 610 "RS_Assign", 611 "RS_Split", 612 "RS_Split2", 613 "RS_Spill", 614 "RS_Memory", 615 "RS_Done" 616 }; 617 #endif 618 619 // Hysteresis to use when comparing floats. 620 // This helps stabilize decisions based on float comparisons. 621 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875 622 623 FunctionPass* llvm::createGreedyRegisterAllocator() { 624 return new RAGreedy(); 625 } 626 627 RAGreedy::RAGreedy(): MachineFunctionPass(ID) { 628 } 629 630 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const { 631 AU.setPreservesCFG(); 632 AU.addRequired<MachineBlockFrequencyInfo>(); 633 AU.addPreserved<MachineBlockFrequencyInfo>(); 634 AU.addRequired<AAResultsWrapperPass>(); 635 AU.addPreserved<AAResultsWrapperPass>(); 636 AU.addRequired<LiveIntervals>(); 637 AU.addPreserved<LiveIntervals>(); 638 AU.addRequired<SlotIndexes>(); 639 AU.addPreserved<SlotIndexes>(); 640 AU.addRequired<LiveDebugVariables>(); 641 AU.addPreserved<LiveDebugVariables>(); 642 AU.addRequired<LiveStacks>(); 643 AU.addPreserved<LiveStacks>(); 644 AU.addRequired<MachineDominatorTree>(); 645 AU.addPreserved<MachineDominatorTree>(); 646 AU.addRequired<MachineLoopInfo>(); 647 AU.addPreserved<MachineLoopInfo>(); 648 AU.addRequired<VirtRegMap>(); 649 AU.addPreserved<VirtRegMap>(); 650 AU.addRequired<LiveRegMatrix>(); 651 AU.addPreserved<LiveRegMatrix>(); 652 AU.addRequired<EdgeBundles>(); 653 AU.addRequired<SpillPlacement>(); 654 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 655 MachineFunctionPass::getAnalysisUsage(AU); 656 } 657 658 //===----------------------------------------------------------------------===// 659 // LiveRangeEdit delegate methods 660 //===----------------------------------------------------------------------===// 661 662 bool RAGreedy::LRE_CanEraseVirtReg(Register VirtReg) { 663 LiveInterval &LI = LIS->getInterval(VirtReg); 664 if (VRM->hasPhys(VirtReg)) { 665 Matrix->unassign(LI); 666 aboutToRemoveInterval(LI); 667 return true; 668 } 669 // Unassigned virtreg is probably in the priority queue. 670 // RegAllocBase will erase it after dequeueing. 671 // Nonetheless, clear the live-range so that the debug 672 // dump will show the right state for that VirtReg. 673 LI.clear(); 674 return false; 675 } 676 677 void RAGreedy::LRE_WillShrinkVirtReg(Register VirtReg) { 678 if (!VRM->hasPhys(VirtReg)) 679 return; 680 681 // Register is assigned, put it back on the queue for reassignment. 682 LiveInterval &LI = LIS->getInterval(VirtReg); 683 Matrix->unassign(LI); 684 enqueue(&LI); 685 } 686 687 void RAGreedy::LRE_DidCloneVirtReg(Register New, Register Old) { 688 // Cloning a register we haven't even heard about yet? Just ignore it. 689 if (!ExtraRegInfo.inBounds(Old)) 690 return; 691 692 // LRE may clone a virtual register because dead code elimination causes it to 693 // be split into connected components. The new components are much smaller 694 // than the original, so they should get a new chance at being assigned. 695 // same stage as the parent. 696 ExtraRegInfo[Old].Stage = RS_Assign; 697 ExtraRegInfo.grow(New); 698 ExtraRegInfo[New] = ExtraRegInfo[Old]; 699 } 700 701 void RAGreedy::releaseMemory() { 702 SpillerInstance.reset(); 703 ExtraRegInfo.clear(); 704 GlobalCand.clear(); 705 } 706 707 void RAGreedy::enqueue(LiveInterval *LI) { enqueue(Queue, LI); } 708 709 void RAGreedy::enqueue(PQueue &CurQueue, LiveInterval *LI) { 710 // Prioritize live ranges by size, assigning larger ranges first. 711 // The queue holds (size, reg) pairs. 712 const unsigned Size = LI->getSize(); 713 const Register Reg = LI->reg(); 714 assert(Reg.isVirtual() && "Can only enqueue virtual registers"); 715 unsigned Prio; 716 717 ExtraRegInfo.grow(Reg); 718 if (ExtraRegInfo[Reg].Stage == RS_New) 719 ExtraRegInfo[Reg].Stage = RS_Assign; 720 721 if (ExtraRegInfo[Reg].Stage == RS_Split) { 722 // Unsplit ranges that couldn't be allocated immediately are deferred until 723 // everything else has been allocated. 724 Prio = Size; 725 } else if (ExtraRegInfo[Reg].Stage == RS_Memory) { 726 // Memory operand should be considered last. 727 // Change the priority such that Memory operand are assigned in 728 // the reverse order that they came in. 729 // TODO: Make this a member variable and probably do something about hints. 730 static unsigned MemOp = 0; 731 Prio = MemOp++; 732 } else { 733 // Giant live ranges fall back to the global assignment heuristic, which 734 // prevents excessive spilling in pathological cases. 735 bool ReverseLocal = TRI->reverseLocalAssignment(); 736 const TargetRegisterClass &RC = *MRI->getRegClass(Reg); 737 bool ForceGlobal = !ReverseLocal && 738 (Size / SlotIndex::InstrDist) > (2 * RC.getNumRegs()); 739 740 if (ExtraRegInfo[Reg].Stage == RS_Assign && !ForceGlobal && !LI->empty() && 741 LIS->intervalIsInOneMBB(*LI)) { 742 // Allocate original local ranges in linear instruction order. Since they 743 // are singly defined, this produces optimal coloring in the absence of 744 // global interference and other constraints. 745 if (!ReverseLocal) 746 Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex()); 747 else { 748 // Allocating bottom up may allow many short LRGs to be assigned first 749 // to one of the cheap registers. This could be much faster for very 750 // large blocks on targets with many physical registers. 751 Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex()); 752 } 753 Prio |= RC.AllocationPriority << 24; 754 } else { 755 // Allocate global and split ranges in long->short order. Long ranges that 756 // don't fit should be spilled (or split) ASAP so they don't create 757 // interference. Mark a bit to prioritize global above local ranges. 758 Prio = (1u << 29) + Size; 759 } 760 // Mark a higher bit to prioritize global and local above RS_Split. 761 Prio |= (1u << 31); 762 763 // Boost ranges that have a physical register hint. 764 if (VRM->hasKnownPreference(Reg)) 765 Prio |= (1u << 30); 766 } 767 // The virtual register number is a tie breaker for same-sized ranges. 768 // Give lower vreg numbers higher priority to assign them first. 769 CurQueue.push(std::make_pair(Prio, ~Reg)); 770 } 771 772 LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); } 773 774 LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) { 775 if (CurQueue.empty()) 776 return nullptr; 777 LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second); 778 CurQueue.pop(); 779 return LI; 780 } 781 782 //===----------------------------------------------------------------------===// 783 // Direct Assignment 784 //===----------------------------------------------------------------------===// 785 786 /// tryAssign - Try to assign VirtReg to an available register. 787 MCRegister RAGreedy::tryAssign(LiveInterval &VirtReg, 788 AllocationOrder &Order, 789 SmallVectorImpl<Register> &NewVRegs, 790 const SmallVirtRegSet &FixedRegisters) { 791 MCRegister PhysReg; 792 for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) { 793 assert(*I); 794 if (!Matrix->checkInterference(VirtReg, *I)) { 795 if (I.isHint()) 796 return *I; 797 else 798 PhysReg = *I; 799 } 800 } 801 if (!PhysReg.isValid()) 802 return PhysReg; 803 804 // PhysReg is available, but there may be a better choice. 805 806 // If we missed a simple hint, try to cheaply evict interference from the 807 // preferred register. 808 if (Register Hint = MRI->getSimpleHint(VirtReg.reg())) 809 if (Order.isHint(Hint)) { 810 MCRegister PhysHint = Hint.asMCReg(); 811 LLVM_DEBUG(dbgs() << "missed hint " << printReg(PhysHint, TRI) << '\n'); 812 EvictionCost MaxCost; 813 MaxCost.setBrokenHints(1); 814 if (canEvictInterference(VirtReg, PhysHint, true, MaxCost, 815 FixedRegisters)) { 816 evictInterference(VirtReg, PhysHint, NewVRegs); 817 return PhysHint; 818 } 819 // Record the missed hint, we may be able to recover 820 // at the end if the surrounding allocation changed. 821 SetOfBrokenHints.insert(&VirtReg); 822 } 823 824 // Try to evict interference from a cheaper alternative. 825 uint8_t Cost = RegCosts[PhysReg]; 826 827 // Most registers have 0 additional cost. 828 if (!Cost) 829 return PhysReg; 830 831 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is available at cost " 832 << Cost << '\n'); 833 MCRegister CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost, FixedRegisters); 834 return CheapReg ? CheapReg : PhysReg; 835 } 836 837 //===----------------------------------------------------------------------===// 838 // Interference eviction 839 //===----------------------------------------------------------------------===// 840 841 Register RAGreedy::canReassign(LiveInterval &VirtReg, Register PrevReg) const { 842 auto Order = 843 AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix); 844 MCRegister PhysReg; 845 for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) { 846 if ((*I).id() == PrevReg.id()) 847 continue; 848 849 MCRegUnitIterator Units(*I, TRI); 850 for (; Units.isValid(); ++Units) { 851 // Instantiate a "subquery", not to be confused with the Queries array. 852 LiveIntervalUnion::Query subQ(VirtReg, Matrix->getLiveUnions()[*Units]); 853 if (subQ.checkInterference()) 854 break; 855 } 856 // If no units have interference, break out with the current PhysReg. 857 if (!Units.isValid()) 858 PhysReg = *I; 859 } 860 if (PhysReg) 861 LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg << " from " 862 << printReg(PrevReg, TRI) << " to " 863 << printReg(PhysReg, TRI) << '\n'); 864 return PhysReg; 865 } 866 867 /// shouldEvict - determine if A should evict the assigned live range B. The 868 /// eviction policy defined by this function together with the allocation order 869 /// defined by enqueue() decides which registers ultimately end up being split 870 /// and spilled. 871 /// 872 /// Cascade numbers are used to prevent infinite loops if this function is a 873 /// cyclic relation. 874 /// 875 /// @param A The live range to be assigned. 876 /// @param IsHint True when A is about to be assigned to its preferred 877 /// register. 878 /// @param B The live range to be evicted. 879 /// @param BreaksHint True when B is already assigned to its preferred register. 880 bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint, 881 LiveInterval &B, bool BreaksHint) const { 882 bool CanSplit = getStage(B) < RS_Spill; 883 884 // Be fairly aggressive about following hints as long as the evictee can be 885 // split. 886 if (CanSplit && IsHint && !BreaksHint) 887 return true; 888 889 if (A.weight() > B.weight()) { 890 LLVM_DEBUG(dbgs() << "should evict: " << B << " w= " << B.weight() << '\n'); 891 return true; 892 } 893 return false; 894 } 895 896 /// canEvictInterference - Return true if all interferences between VirtReg and 897 /// PhysReg can be evicted. 898 /// 899 /// @param VirtReg Live range that is about to be assigned. 900 /// @param PhysReg Desired register for assignment. 901 /// @param IsHint True when PhysReg is VirtReg's preferred register. 902 /// @param MaxCost Only look for cheaper candidates and update with new cost 903 /// when returning true. 904 /// @returns True when interference can be evicted cheaper than MaxCost. 905 bool RAGreedy::canEvictInterference( 906 LiveInterval &VirtReg, MCRegister PhysReg, bool IsHint, 907 EvictionCost &MaxCost, const SmallVirtRegSet &FixedRegisters) const { 908 // It is only possible to evict virtual register interference. 909 if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg) 910 return false; 911 912 bool IsLocal = LIS->intervalIsInOneMBB(VirtReg); 913 914 // Find VirtReg's cascade number. This will be unassigned if VirtReg was never 915 // involved in an eviction before. If a cascade number was assigned, deny 916 // evicting anything with the same or a newer cascade number. This prevents 917 // infinite eviction loops. 918 // 919 // This works out so a register without a cascade number is allowed to evict 920 // anything, and it can be evicted by anything. 921 unsigned Cascade = ExtraRegInfo[VirtReg.reg()].Cascade; 922 if (!Cascade) 923 Cascade = NextCascade; 924 925 EvictionCost Cost; 926 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 927 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 928 // If there is 10 or more interferences, chances are one is heavier. 929 if (Q.collectInterferingVRegs(10) >= 10) 930 return false; 931 932 // Check if any interfering live range is heavier than MaxWeight. 933 for (LiveInterval *Intf : reverse(Q.interferingVRegs())) { 934 assert(Register::isVirtualRegister(Intf->reg()) && 935 "Only expecting virtual register interference from query"); 936 937 // Do not allow eviction of a virtual register if we are in the middle 938 // of last-chance recoloring and this virtual register is one that we 939 // have scavenged a physical register for. 940 if (FixedRegisters.count(Intf->reg())) 941 return false; 942 943 // Never evict spill products. They cannot split or spill. 944 if (getStage(*Intf) == RS_Done) 945 return false; 946 // Once a live range becomes small enough, it is urgent that we find a 947 // register for it. This is indicated by an infinite spill weight. These 948 // urgent live ranges get to evict almost anything. 949 // 950 // Also allow urgent evictions of unspillable ranges from a strictly 951 // larger allocation order. 952 bool Urgent = 953 !VirtReg.isSpillable() && 954 (Intf->isSpillable() || 955 RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg())) < 956 RegClassInfo.getNumAllocatableRegs( 957 MRI->getRegClass(Intf->reg()))); 958 // Only evict older cascades or live ranges without a cascade. 959 unsigned IntfCascade = ExtraRegInfo[Intf->reg()].Cascade; 960 if (Cascade <= IntfCascade) { 961 if (!Urgent) 962 return false; 963 // We permit breaking cascades for urgent evictions. It should be the 964 // last resort, though, so make it really expensive. 965 Cost.BrokenHints += 10; 966 } 967 // Would this break a satisfied hint? 968 bool BreaksHint = VRM->hasPreferredPhys(Intf->reg()); 969 // Update eviction cost. 970 Cost.BrokenHints += BreaksHint; 971 Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight()); 972 // Abort if this would be too expensive. 973 if (!(Cost < MaxCost)) 974 return false; 975 if (Urgent) 976 continue; 977 // Apply the eviction policy for non-urgent evictions. 978 if (!shouldEvict(VirtReg, IsHint, *Intf, BreaksHint)) 979 return false; 980 // If !MaxCost.isMax(), then we're just looking for a cheap register. 981 // Evicting another local live range in this case could lead to suboptimal 982 // coloring. 983 if (!MaxCost.isMax() && IsLocal && LIS->intervalIsInOneMBB(*Intf) && 984 (!EnableLocalReassign || !canReassign(*Intf, PhysReg))) { 985 return false; 986 } 987 } 988 } 989 MaxCost = Cost; 990 return true; 991 } 992 993 /// Return true if all interferences between VirtReg and PhysReg between 994 /// Start and End can be evicted. 995 /// 996 /// \param VirtReg Live range that is about to be assigned. 997 /// \param PhysReg Desired register for assignment. 998 /// \param Start Start of range to look for interferences. 999 /// \param End End of range to look for interferences. 1000 /// \param MaxCost Only look for cheaper candidates and update with new cost 1001 /// when returning true. 1002 /// \return True when interference can be evicted cheaper than MaxCost. 1003 bool RAGreedy::canEvictInterferenceInRange(const LiveInterval &VirtReg, 1004 MCRegister PhysReg, SlotIndex Start, 1005 SlotIndex End, 1006 EvictionCost &MaxCost) const { 1007 EvictionCost Cost; 1008 1009 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 1010 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 1011 Q.collectInterferingVRegs(); 1012 1013 // Check if any interfering live range is heavier than MaxWeight. 1014 for (const LiveInterval *Intf : reverse(Q.interferingVRegs())) { 1015 // Check if interference overlast the segment in interest. 1016 if (!Intf->overlaps(Start, End)) 1017 continue; 1018 1019 // Cannot evict non virtual reg interference. 1020 if (!Register::isVirtualRegister(Intf->reg())) 1021 return false; 1022 // Never evict spill products. They cannot split or spill. 1023 if (getStage(*Intf) == RS_Done) 1024 return false; 1025 1026 // Would this break a satisfied hint? 1027 bool BreaksHint = VRM->hasPreferredPhys(Intf->reg()); 1028 // Update eviction cost. 1029 Cost.BrokenHints += BreaksHint; 1030 Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight()); 1031 // Abort if this would be too expensive. 1032 if (!(Cost < MaxCost)) 1033 return false; 1034 } 1035 } 1036 1037 if (Cost.MaxWeight == 0) 1038 return false; 1039 1040 MaxCost = Cost; 1041 return true; 1042 } 1043 1044 /// Return the physical register that will be best 1045 /// candidate for eviction by a local split interval that will be created 1046 /// between Start and End. 1047 /// 1048 /// \param Order The allocation order 1049 /// \param VirtReg Live range that is about to be assigned. 1050 /// \param Start Start of range to look for interferences 1051 /// \param End End of range to look for interferences 1052 /// \param BestEvictweight The eviction cost of that eviction 1053 /// \return The PhysReg which is the best candidate for eviction and the 1054 /// eviction cost in BestEvictweight 1055 MCRegister RAGreedy::getCheapestEvicteeWeight(const AllocationOrder &Order, 1056 const LiveInterval &VirtReg, 1057 SlotIndex Start, SlotIndex End, 1058 float *BestEvictweight) const { 1059 EvictionCost BestEvictCost; 1060 BestEvictCost.setMax(); 1061 BestEvictCost.MaxWeight = VirtReg.weight(); 1062 MCRegister BestEvicteePhys; 1063 1064 // Go over all physical registers and find the best candidate for eviction 1065 for (MCRegister PhysReg : Order.getOrder()) { 1066 1067 if (!canEvictInterferenceInRange(VirtReg, PhysReg, Start, End, 1068 BestEvictCost)) 1069 continue; 1070 1071 // Best so far. 1072 BestEvicteePhys = PhysReg; 1073 } 1074 *BestEvictweight = BestEvictCost.MaxWeight; 1075 return BestEvicteePhys; 1076 } 1077 1078 /// evictInterference - Evict any interferring registers that prevent VirtReg 1079 /// from being assigned to Physreg. This assumes that canEvictInterference 1080 /// returned true. 1081 void RAGreedy::evictInterference(LiveInterval &VirtReg, MCRegister PhysReg, 1082 SmallVectorImpl<Register> &NewVRegs) { 1083 // Make sure that VirtReg has a cascade number, and assign that cascade 1084 // number to every evicted register. These live ranges than then only be 1085 // evicted by a newer cascade, preventing infinite loops. 1086 unsigned Cascade = ExtraRegInfo[VirtReg.reg()].Cascade; 1087 if (!Cascade) 1088 Cascade = ExtraRegInfo[VirtReg.reg()].Cascade = NextCascade++; 1089 1090 LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg, TRI) 1091 << " interference: Cascade " << Cascade << '\n'); 1092 1093 // Collect all interfering virtregs first. 1094 SmallVector<LiveInterval*, 8> Intfs; 1095 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 1096 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 1097 // We usually have the interfering VRegs cached so collectInterferingVRegs() 1098 // should be fast, we may need to recalculate if when different physregs 1099 // overlap the same register unit so we had different SubRanges queried 1100 // against it. 1101 Q.collectInterferingVRegs(); 1102 ArrayRef<LiveInterval*> IVR = Q.interferingVRegs(); 1103 Intfs.append(IVR.begin(), IVR.end()); 1104 } 1105 1106 // Evict them second. This will invalidate the queries. 1107 for (LiveInterval *Intf : Intfs) { 1108 // The same VirtReg may be present in multiple RegUnits. Skip duplicates. 1109 if (!VRM->hasPhys(Intf->reg())) 1110 continue; 1111 1112 LastEvicted.addEviction(PhysReg, VirtReg.reg(), Intf->reg()); 1113 1114 Matrix->unassign(*Intf); 1115 assert((ExtraRegInfo[Intf->reg()].Cascade < Cascade || 1116 VirtReg.isSpillable() < Intf->isSpillable()) && 1117 "Cannot decrease cascade number, illegal eviction"); 1118 ExtraRegInfo[Intf->reg()].Cascade = Cascade; 1119 ++NumEvicted; 1120 NewVRegs.push_back(Intf->reg()); 1121 } 1122 } 1123 1124 /// Returns true if the given \p PhysReg is a callee saved register and has not 1125 /// been used for allocation yet. 1126 bool RAGreedy::isUnusedCalleeSavedReg(MCRegister PhysReg) const { 1127 MCRegister CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg); 1128 if (!CSR) 1129 return false; 1130 1131 return !Matrix->isPhysRegUsed(PhysReg); 1132 } 1133 1134 /// tryEvict - Try to evict all interferences for a physreg. 1135 /// @param VirtReg Currently unassigned virtual register. 1136 /// @param Order Physregs to try. 1137 /// @return Physreg to assign VirtReg, or 0. 1138 MCRegister RAGreedy::tryEvict(LiveInterval &VirtReg, AllocationOrder &Order, 1139 SmallVectorImpl<Register> &NewVRegs, 1140 uint8_t CostPerUseLimit, 1141 const SmallVirtRegSet &FixedRegisters) { 1142 NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription, 1143 TimePassesIsEnabled); 1144 1145 // Keep track of the cheapest interference seen so far. 1146 EvictionCost BestCost; 1147 BestCost.setMax(); 1148 MCRegister BestPhys; 1149 unsigned OrderLimit = Order.getOrder().size(); 1150 1151 // When we are just looking for a reduced cost per use, don't break any 1152 // hints, and only evict smaller spill weights. 1153 if (CostPerUseLimit < uint8_t(~0u)) { 1154 BestCost.BrokenHints = 0; 1155 BestCost.MaxWeight = VirtReg.weight(); 1156 1157 // Check of any registers in RC are below CostPerUseLimit. 1158 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg()); 1159 uint8_t MinCost = RegClassInfo.getMinCost(RC); 1160 if (MinCost >= CostPerUseLimit) { 1161 LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = " 1162 << MinCost << ", no cheaper registers to be found.\n"); 1163 return 0; 1164 } 1165 1166 // It is normal for register classes to have a long tail of registers with 1167 // the same cost. We don't need to look at them if they're too expensive. 1168 if (RegCosts[Order.getOrder().back()] >= CostPerUseLimit) { 1169 OrderLimit = RegClassInfo.getLastCostChange(RC); 1170 LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit 1171 << " regs.\n"); 1172 } 1173 } 1174 1175 for (auto I = Order.begin(), E = Order.getOrderLimitEnd(OrderLimit); I != E; 1176 ++I) { 1177 MCRegister PhysReg = *I; 1178 assert(PhysReg); 1179 if (RegCosts[PhysReg] >= CostPerUseLimit) 1180 continue; 1181 // The first use of a callee-saved register in a function has cost 1. 1182 // Don't start using a CSR when the CostPerUseLimit is low. 1183 if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) { 1184 LLVM_DEBUG( 1185 dbgs() << printReg(PhysReg, TRI) << " would clobber CSR " 1186 << printReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI) 1187 << '\n'); 1188 continue; 1189 } 1190 1191 if (!canEvictInterference(VirtReg, PhysReg, false, BestCost, 1192 FixedRegisters)) 1193 continue; 1194 1195 // Best so far. 1196 BestPhys = PhysReg; 1197 1198 // Stop if the hint can be used. 1199 if (I.isHint()) 1200 break; 1201 } 1202 1203 if (BestPhys.isValid()) 1204 evictInterference(VirtReg, BestPhys, NewVRegs); 1205 return BestPhys; 1206 } 1207 1208 //===----------------------------------------------------------------------===// 1209 // Region Splitting 1210 //===----------------------------------------------------------------------===// 1211 1212 /// addSplitConstraints - Fill out the SplitConstraints vector based on the 1213 /// interference pattern in Physreg and its aliases. Add the constraints to 1214 /// SpillPlacement and return the static cost of this split in Cost, assuming 1215 /// that all preferences in SplitConstraints are met. 1216 /// Return false if there are no bundles with positive bias. 1217 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf, 1218 BlockFrequency &Cost) { 1219 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1220 1221 // Reset interference dependent info. 1222 SplitConstraints.resize(UseBlocks.size()); 1223 BlockFrequency StaticCost = 0; 1224 for (unsigned I = 0; I != UseBlocks.size(); ++I) { 1225 const SplitAnalysis::BlockInfo &BI = UseBlocks[I]; 1226 SpillPlacement::BlockConstraint &BC = SplitConstraints[I]; 1227 1228 BC.Number = BI.MBB->getNumber(); 1229 Intf.moveToBlock(BC.Number); 1230 BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare; 1231 BC.Exit = (BI.LiveOut && 1232 !LIS->getInstructionFromIndex(BI.LastInstr)->isImplicitDef()) 1233 ? SpillPlacement::PrefReg 1234 : SpillPlacement::DontCare; 1235 BC.ChangesValue = BI.FirstDef.isValid(); 1236 1237 if (!Intf.hasInterference()) 1238 continue; 1239 1240 // Number of spill code instructions to insert. 1241 unsigned Ins = 0; 1242 1243 // Interference for the live-in value. 1244 if (BI.LiveIn) { 1245 if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) { 1246 BC.Entry = SpillPlacement::MustSpill; 1247 ++Ins; 1248 } else if (Intf.first() < BI.FirstInstr) { 1249 BC.Entry = SpillPlacement::PrefSpill; 1250 ++Ins; 1251 } else if (Intf.first() < BI.LastInstr) { 1252 ++Ins; 1253 } 1254 1255 // Abort if the spill cannot be inserted at the MBB' start 1256 if (((BC.Entry == SpillPlacement::MustSpill) || 1257 (BC.Entry == SpillPlacement::PrefSpill)) && 1258 SlotIndex::isEarlierInstr(BI.FirstInstr, 1259 SA->getFirstSplitPoint(BC.Number))) 1260 return false; 1261 } 1262 1263 // Interference for the live-out value. 1264 if (BI.LiveOut) { 1265 if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) { 1266 BC.Exit = SpillPlacement::MustSpill; 1267 ++Ins; 1268 } else if (Intf.last() > BI.LastInstr) { 1269 BC.Exit = SpillPlacement::PrefSpill; 1270 ++Ins; 1271 } else if (Intf.last() > BI.FirstInstr) { 1272 ++Ins; 1273 } 1274 } 1275 1276 // Accumulate the total frequency of inserted spill code. 1277 while (Ins--) 1278 StaticCost += SpillPlacer->getBlockFrequency(BC.Number); 1279 } 1280 Cost = StaticCost; 1281 1282 // Add constraints for use-blocks. Note that these are the only constraints 1283 // that may add a positive bias, it is downhill from here. 1284 SpillPlacer->addConstraints(SplitConstraints); 1285 return SpillPlacer->scanActiveBundles(); 1286 } 1287 1288 /// addThroughConstraints - Add constraints and links to SpillPlacer from the 1289 /// live-through blocks in Blocks. 1290 bool RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf, 1291 ArrayRef<unsigned> Blocks) { 1292 const unsigned GroupSize = 8; 1293 SpillPlacement::BlockConstraint BCS[GroupSize]; 1294 unsigned TBS[GroupSize]; 1295 unsigned B = 0, T = 0; 1296 1297 for (unsigned Number : Blocks) { 1298 Intf.moveToBlock(Number); 1299 1300 if (!Intf.hasInterference()) { 1301 assert(T < GroupSize && "Array overflow"); 1302 TBS[T] = Number; 1303 if (++T == GroupSize) { 1304 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 1305 T = 0; 1306 } 1307 continue; 1308 } 1309 1310 assert(B < GroupSize && "Array overflow"); 1311 BCS[B].Number = Number; 1312 1313 // Abort if the spill cannot be inserted at the MBB' start 1314 MachineBasicBlock *MBB = MF->getBlockNumbered(Number); 1315 if (!MBB->empty() && 1316 SlotIndex::isEarlierInstr(LIS->getInstructionIndex(MBB->instr_front()), 1317 SA->getFirstSplitPoint(Number))) 1318 return false; 1319 // Interference for the live-in value. 1320 if (Intf.first() <= Indexes->getMBBStartIdx(Number)) 1321 BCS[B].Entry = SpillPlacement::MustSpill; 1322 else 1323 BCS[B].Entry = SpillPlacement::PrefSpill; 1324 1325 // Interference for the live-out value. 1326 if (Intf.last() >= SA->getLastSplitPoint(Number)) 1327 BCS[B].Exit = SpillPlacement::MustSpill; 1328 else 1329 BCS[B].Exit = SpillPlacement::PrefSpill; 1330 1331 if (++B == GroupSize) { 1332 SpillPlacer->addConstraints(makeArrayRef(BCS, B)); 1333 B = 0; 1334 } 1335 } 1336 1337 SpillPlacer->addConstraints(makeArrayRef(BCS, B)); 1338 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 1339 return true; 1340 } 1341 1342 bool RAGreedy::growRegion(GlobalSplitCandidate &Cand) { 1343 // Keep track of through blocks that have not been added to SpillPlacer. 1344 BitVector Todo = SA->getThroughBlocks(); 1345 SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks; 1346 unsigned AddedTo = 0; 1347 #ifndef NDEBUG 1348 unsigned Visited = 0; 1349 #endif 1350 1351 while (true) { 1352 ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive(); 1353 // Find new through blocks in the periphery of PrefRegBundles. 1354 for (unsigned Bundle : NewBundles) { 1355 // Look at all blocks connected to Bundle in the full graph. 1356 ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle); 1357 for (unsigned Block : Blocks) { 1358 if (!Todo.test(Block)) 1359 continue; 1360 Todo.reset(Block); 1361 // This is a new through block. Add it to SpillPlacer later. 1362 ActiveBlocks.push_back(Block); 1363 #ifndef NDEBUG 1364 ++Visited; 1365 #endif 1366 } 1367 } 1368 // Any new blocks to add? 1369 if (ActiveBlocks.size() == AddedTo) 1370 break; 1371 1372 // Compute through constraints from the interference, or assume that all 1373 // through blocks prefer spilling when forming compact regions. 1374 auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo); 1375 if (Cand.PhysReg) { 1376 if (!addThroughConstraints(Cand.Intf, NewBlocks)) 1377 return false; 1378 } else 1379 // Provide a strong negative bias on through blocks to prevent unwanted 1380 // liveness on loop backedges. 1381 SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true); 1382 AddedTo = ActiveBlocks.size(); 1383 1384 // Perhaps iterating can enable more bundles? 1385 SpillPlacer->iterate(); 1386 } 1387 LLVM_DEBUG(dbgs() << ", v=" << Visited); 1388 return true; 1389 } 1390 1391 /// calcCompactRegion - Compute the set of edge bundles that should be live 1392 /// when splitting the current live range into compact regions. Compact 1393 /// regions can be computed without looking at interference. They are the 1394 /// regions formed by removing all the live-through blocks from the live range. 1395 /// 1396 /// Returns false if the current live range is already compact, or if the 1397 /// compact regions would form single block regions anyway. 1398 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) { 1399 // Without any through blocks, the live range is already compact. 1400 if (!SA->getNumThroughBlocks()) 1401 return false; 1402 1403 // Compact regions don't correspond to any physreg. 1404 Cand.reset(IntfCache, MCRegister::NoRegister); 1405 1406 LLVM_DEBUG(dbgs() << "Compact region bundles"); 1407 1408 // Use the spill placer to determine the live bundles. GrowRegion pretends 1409 // that all the through blocks have interference when PhysReg is unset. 1410 SpillPlacer->prepare(Cand.LiveBundles); 1411 1412 // The static split cost will be zero since Cand.Intf reports no interference. 1413 BlockFrequency Cost; 1414 if (!addSplitConstraints(Cand.Intf, Cost)) { 1415 LLVM_DEBUG(dbgs() << ", none.\n"); 1416 return false; 1417 } 1418 1419 if (!growRegion(Cand)) { 1420 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n"); 1421 return false; 1422 } 1423 1424 SpillPlacer->finish(); 1425 1426 if (!Cand.LiveBundles.any()) { 1427 LLVM_DEBUG(dbgs() << ", none.\n"); 1428 return false; 1429 } 1430 1431 LLVM_DEBUG({ 1432 for (int I : Cand.LiveBundles.set_bits()) 1433 dbgs() << " EB#" << I; 1434 dbgs() << ".\n"; 1435 }); 1436 return true; 1437 } 1438 1439 /// calcSpillCost - Compute how expensive it would be to split the live range in 1440 /// SA around all use blocks instead of forming bundle regions. 1441 BlockFrequency RAGreedy::calcSpillCost() { 1442 BlockFrequency Cost = 0; 1443 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1444 for (const SplitAnalysis::BlockInfo &BI : UseBlocks) { 1445 unsigned Number = BI.MBB->getNumber(); 1446 // We normally only need one spill instruction - a load or a store. 1447 Cost += SpillPlacer->getBlockFrequency(Number); 1448 1449 // Unless the value is redefined in the block. 1450 if (BI.LiveIn && BI.LiveOut && BI.FirstDef) 1451 Cost += SpillPlacer->getBlockFrequency(Number); 1452 } 1453 return Cost; 1454 } 1455 1456 /// Check if splitting Evictee will create a local split interval in 1457 /// basic block number BBNumber that may cause a bad eviction chain. This is 1458 /// intended to prevent bad eviction sequences like: 1459 /// movl %ebp, 8(%esp) # 4-byte Spill 1460 /// movl %ecx, %ebp 1461 /// movl %ebx, %ecx 1462 /// movl %edi, %ebx 1463 /// movl %edx, %edi 1464 /// cltd 1465 /// idivl %esi 1466 /// movl %edi, %edx 1467 /// movl %ebx, %edi 1468 /// movl %ecx, %ebx 1469 /// movl %ebp, %ecx 1470 /// movl 16(%esp), %ebp # 4 - byte Reload 1471 /// 1472 /// Such sequences are created in 2 scenarios: 1473 /// 1474 /// Scenario #1: 1475 /// %0 is evicted from physreg0 by %1. 1476 /// Evictee %0 is intended for region splitting with split candidate 1477 /// physreg0 (the reg %0 was evicted from). 1478 /// Region splitting creates a local interval because of interference with the 1479 /// evictor %1 (normally region splitting creates 2 interval, the "by reg" 1480 /// and "by stack" intervals and local interval created when interference 1481 /// occurs). 1482 /// One of the split intervals ends up evicting %2 from physreg1. 1483 /// Evictee %2 is intended for region splitting with split candidate 1484 /// physreg1. 1485 /// One of the split intervals ends up evicting %3 from physreg2, etc. 1486 /// 1487 /// Scenario #2 1488 /// %0 is evicted from physreg0 by %1. 1489 /// %2 is evicted from physreg2 by %3 etc. 1490 /// Evictee %0 is intended for region splitting with split candidate 1491 /// physreg1. 1492 /// Region splitting creates a local interval because of interference with the 1493 /// evictor %1. 1494 /// One of the split intervals ends up evicting back original evictor %1 1495 /// from physreg0 (the reg %0 was evicted from). 1496 /// Another evictee %2 is intended for region splitting with split candidate 1497 /// physreg1. 1498 /// One of the split intervals ends up evicting %3 from physreg2, etc. 1499 /// 1500 /// \param Evictee The register considered to be split. 1501 /// \param Cand The split candidate that determines the physical register 1502 /// we are splitting for and the interferences. 1503 /// \param BBNumber The number of a BB for which the region split process will 1504 /// create a local split interval. 1505 /// \param Order The physical registers that may get evicted by a split 1506 /// artifact of Evictee. 1507 /// \return True if splitting Evictee may cause a bad eviction chain, false 1508 /// otherwise. 1509 bool RAGreedy::splitCanCauseEvictionChain(Register Evictee, 1510 GlobalSplitCandidate &Cand, 1511 unsigned BBNumber, 1512 const AllocationOrder &Order) { 1513 EvictionTrack::EvictorInfo VregEvictorInfo = LastEvicted.getEvictor(Evictee); 1514 unsigned Evictor = VregEvictorInfo.first; 1515 MCRegister PhysReg = VregEvictorInfo.second; 1516 1517 // No actual evictor. 1518 if (!Evictor || !PhysReg) 1519 return false; 1520 1521 float MaxWeight = 0; 1522 MCRegister FutureEvictedPhysReg = 1523 getCheapestEvicteeWeight(Order, LIS->getInterval(Evictee), 1524 Cand.Intf.first(), Cand.Intf.last(), &MaxWeight); 1525 1526 // The bad eviction chain occurs when either the split candidate is the 1527 // evicting reg or one of the split artifact will evict the evicting reg. 1528 if ((PhysReg != Cand.PhysReg) && (PhysReg != FutureEvictedPhysReg)) 1529 return false; 1530 1531 Cand.Intf.moveToBlock(BBNumber); 1532 1533 // Check to see if the Evictor contains interference (with Evictee) in the 1534 // given BB. If so, this interference caused the eviction of Evictee from 1535 // PhysReg. This suggest that we will create a local interval during the 1536 // region split to avoid this interference This local interval may cause a bad 1537 // eviction chain. 1538 if (!LIS->hasInterval(Evictor)) 1539 return false; 1540 LiveInterval &EvictorLI = LIS->getInterval(Evictor); 1541 if (EvictorLI.FindSegmentContaining(Cand.Intf.first()) == EvictorLI.end()) 1542 return false; 1543 1544 // Now, check to see if the local interval we will create is going to be 1545 // expensive enough to evict somebody If so, this may cause a bad eviction 1546 // chain. 1547 float splitArtifactWeight = 1548 VRAI->futureWeight(LIS->getInterval(Evictee), 1549 Cand.Intf.first().getPrevIndex(), Cand.Intf.last()); 1550 if (splitArtifactWeight >= 0 && splitArtifactWeight < MaxWeight) 1551 return false; 1552 1553 return true; 1554 } 1555 1556 /// Check if splitting VirtRegToSplit will create a local split interval 1557 /// in basic block number BBNumber that may cause a spill. 1558 /// 1559 /// \param VirtRegToSplit The register considered to be split. 1560 /// \param Cand The split candidate that determines the physical 1561 /// register we are splitting for and the interferences. 1562 /// \param BBNumber The number of a BB for which the region split process 1563 /// will create a local split interval. 1564 /// \param Order The physical registers that may get evicted by a 1565 /// split artifact of VirtRegToSplit. 1566 /// \return True if splitting VirtRegToSplit may cause a spill, false 1567 /// otherwise. 1568 bool RAGreedy::splitCanCauseLocalSpill(unsigned VirtRegToSplit, 1569 GlobalSplitCandidate &Cand, 1570 unsigned BBNumber, 1571 const AllocationOrder &Order) { 1572 Cand.Intf.moveToBlock(BBNumber); 1573 1574 // Check if the local interval will find a non interfereing assignment. 1575 for (auto PhysReg : Order.getOrder()) { 1576 if (!Matrix->checkInterference(Cand.Intf.first().getPrevIndex(), 1577 Cand.Intf.last(), PhysReg)) 1578 return false; 1579 } 1580 1581 // The local interval is not able to find non interferencing assignment 1582 // and not able to evict a less worthy interval, therfore, it can cause a 1583 // spill. 1584 return true; 1585 } 1586 1587 /// calcGlobalSplitCost - Return the global split cost of following the split 1588 /// pattern in LiveBundles. This cost should be added to the local cost of the 1589 /// interference pattern in SplitConstraints. 1590 /// 1591 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand, 1592 const AllocationOrder &Order, 1593 bool *CanCauseEvictionChain) { 1594 BlockFrequency GlobalCost = 0; 1595 const BitVector &LiveBundles = Cand.LiveBundles; 1596 Register VirtRegToSplit = SA->getParent().reg(); 1597 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1598 for (unsigned I = 0; I != UseBlocks.size(); ++I) { 1599 const SplitAnalysis::BlockInfo &BI = UseBlocks[I]; 1600 SpillPlacement::BlockConstraint &BC = SplitConstraints[I]; 1601 bool RegIn = LiveBundles[Bundles->getBundle(BC.Number, false)]; 1602 bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)]; 1603 unsigned Ins = 0; 1604 1605 Cand.Intf.moveToBlock(BC.Number); 1606 // Check wheather a local interval is going to be created during the region 1607 // split. Calculate adavanced spilt cost (cost of local intervals) if option 1608 // is enabled. 1609 if (EnableAdvancedRASplitCost && Cand.Intf.hasInterference() && BI.LiveIn && 1610 BI.LiveOut && RegIn && RegOut) { 1611 1612 if (CanCauseEvictionChain && 1613 splitCanCauseEvictionChain(VirtRegToSplit, Cand, BC.Number, Order)) { 1614 // This interference causes our eviction from this assignment, we might 1615 // evict somebody else and eventually someone will spill, add that cost. 1616 // See splitCanCauseEvictionChain for detailed description of scenarios. 1617 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1618 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1619 1620 *CanCauseEvictionChain = true; 1621 1622 } else if (splitCanCauseLocalSpill(VirtRegToSplit, Cand, BC.Number, 1623 Order)) { 1624 // This interference causes local interval to spill, add that cost. 1625 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1626 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1627 } 1628 } 1629 1630 if (BI.LiveIn) 1631 Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg); 1632 if (BI.LiveOut) 1633 Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg); 1634 while (Ins--) 1635 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1636 } 1637 1638 for (unsigned Number : Cand.ActiveBlocks) { 1639 bool RegIn = LiveBundles[Bundles->getBundle(Number, false)]; 1640 bool RegOut = LiveBundles[Bundles->getBundle(Number, true)]; 1641 if (!RegIn && !RegOut) 1642 continue; 1643 if (RegIn && RegOut) { 1644 // We need double spill code if this block has interference. 1645 Cand.Intf.moveToBlock(Number); 1646 if (Cand.Intf.hasInterference()) { 1647 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1648 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1649 1650 // Check wheather a local interval is going to be created during the 1651 // region split. 1652 if (EnableAdvancedRASplitCost && CanCauseEvictionChain && 1653 splitCanCauseEvictionChain(VirtRegToSplit, Cand, Number, Order)) { 1654 // This interference cause our eviction from this assignment, we might 1655 // evict somebody else, add that cost. 1656 // See splitCanCauseEvictionChain for detailed description of 1657 // scenarios. 1658 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1659 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1660 1661 *CanCauseEvictionChain = true; 1662 } 1663 } 1664 continue; 1665 } 1666 // live-in / stack-out or stack-in live-out. 1667 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1668 } 1669 return GlobalCost; 1670 } 1671 1672 /// splitAroundRegion - Split the current live range around the regions 1673 /// determined by BundleCand and GlobalCand. 1674 /// 1675 /// Before calling this function, GlobalCand and BundleCand must be initialized 1676 /// so each bundle is assigned to a valid candidate, or NoCand for the 1677 /// stack-bound bundles. The shared SA/SE SplitAnalysis and SplitEditor 1678 /// objects must be initialized for the current live range, and intervals 1679 /// created for the used candidates. 1680 /// 1681 /// @param LREdit The LiveRangeEdit object handling the current split. 1682 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value 1683 /// must appear in this list. 1684 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit, 1685 ArrayRef<unsigned> UsedCands) { 1686 // These are the intervals created for new global ranges. We may create more 1687 // intervals for local ranges. 1688 const unsigned NumGlobalIntvs = LREdit.size(); 1689 LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs 1690 << " globals.\n"); 1691 assert(NumGlobalIntvs && "No global intervals configured"); 1692 1693 // Isolate even single instructions when dealing with a proper sub-class. 1694 // That guarantees register class inflation for the stack interval because it 1695 // is all copies. 1696 Register Reg = SA->getParent().reg(); 1697 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 1698 1699 // First handle all the blocks with uses. 1700 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1701 for (const SplitAnalysis::BlockInfo &BI : UseBlocks) { 1702 unsigned Number = BI.MBB->getNumber(); 1703 unsigned IntvIn = 0, IntvOut = 0; 1704 SlotIndex IntfIn, IntfOut; 1705 if (BI.LiveIn) { 1706 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)]; 1707 if (CandIn != NoCand) { 1708 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 1709 IntvIn = Cand.IntvIdx; 1710 Cand.Intf.moveToBlock(Number); 1711 IntfIn = Cand.Intf.first(); 1712 } 1713 } 1714 if (BI.LiveOut) { 1715 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)]; 1716 if (CandOut != NoCand) { 1717 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 1718 IntvOut = Cand.IntvIdx; 1719 Cand.Intf.moveToBlock(Number); 1720 IntfOut = Cand.Intf.last(); 1721 } 1722 } 1723 1724 // Create separate intervals for isolated blocks with multiple uses. 1725 if (!IntvIn && !IntvOut) { 1726 LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " isolated.\n"); 1727 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 1728 SE->splitSingleBlock(BI); 1729 continue; 1730 } 1731 1732 if (IntvIn && IntvOut) 1733 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1734 else if (IntvIn) 1735 SE->splitRegInBlock(BI, IntvIn, IntfIn); 1736 else 1737 SE->splitRegOutBlock(BI, IntvOut, IntfOut); 1738 } 1739 1740 // Handle live-through blocks. The relevant live-through blocks are stored in 1741 // the ActiveBlocks list with each candidate. We need to filter out 1742 // duplicates. 1743 BitVector Todo = SA->getThroughBlocks(); 1744 for (unsigned c = 0; c != UsedCands.size(); ++c) { 1745 ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks; 1746 for (unsigned Number : Blocks) { 1747 if (!Todo.test(Number)) 1748 continue; 1749 Todo.reset(Number); 1750 1751 unsigned IntvIn = 0, IntvOut = 0; 1752 SlotIndex IntfIn, IntfOut; 1753 1754 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)]; 1755 if (CandIn != NoCand) { 1756 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 1757 IntvIn = Cand.IntvIdx; 1758 Cand.Intf.moveToBlock(Number); 1759 IntfIn = Cand.Intf.first(); 1760 } 1761 1762 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)]; 1763 if (CandOut != NoCand) { 1764 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 1765 IntvOut = Cand.IntvIdx; 1766 Cand.Intf.moveToBlock(Number); 1767 IntfOut = Cand.Intf.last(); 1768 } 1769 if (!IntvIn && !IntvOut) 1770 continue; 1771 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1772 } 1773 } 1774 1775 ++NumGlobalSplits; 1776 1777 SmallVector<unsigned, 8> IntvMap; 1778 SE->finish(&IntvMap); 1779 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 1780 1781 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 1782 unsigned OrigBlocks = SA->getNumLiveBlocks(); 1783 1784 // Sort out the new intervals created by splitting. We get four kinds: 1785 // - Remainder intervals should not be split again. 1786 // - Candidate intervals can be assigned to Cand.PhysReg. 1787 // - Block-local splits are candidates for local splitting. 1788 // - DCE leftovers should go back on the queue. 1789 for (unsigned I = 0, E = LREdit.size(); I != E; ++I) { 1790 LiveInterval &Reg = LIS->getInterval(LREdit.get(I)); 1791 1792 // Ignore old intervals from DCE. 1793 if (getStage(Reg) != RS_New) 1794 continue; 1795 1796 // Remainder interval. Don't try splitting again, spill if it doesn't 1797 // allocate. 1798 if (IntvMap[I] == 0) { 1799 setStage(Reg, RS_Spill); 1800 continue; 1801 } 1802 1803 // Global intervals. Allow repeated splitting as long as the number of live 1804 // blocks is strictly decreasing. 1805 if (IntvMap[I] < NumGlobalIntvs) { 1806 if (SA->countLiveBlocks(&Reg) >= OrigBlocks) { 1807 LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks 1808 << " blocks as original.\n"); 1809 // Don't allow repeated splitting as a safe guard against looping. 1810 setStage(Reg, RS_Split2); 1811 } 1812 continue; 1813 } 1814 1815 // Other intervals are treated as new. This includes local intervals created 1816 // for blocks with multiple uses, and anything created by DCE. 1817 } 1818 1819 if (VerifyEnabled) 1820 MF->verify(this, "After splitting live range around region"); 1821 } 1822 1823 MCRegister RAGreedy::tryRegionSplit(LiveInterval &VirtReg, 1824 AllocationOrder &Order, 1825 SmallVectorImpl<Register> &NewVRegs) { 1826 if (!TRI->shouldRegionSplitForVirtReg(*MF, VirtReg)) 1827 return MCRegister::NoRegister; 1828 unsigned NumCands = 0; 1829 BlockFrequency SpillCost = calcSpillCost(); 1830 BlockFrequency BestCost; 1831 1832 // Check if we can split this live range around a compact region. 1833 bool HasCompact = calcCompactRegion(GlobalCand.front()); 1834 if (HasCompact) { 1835 // Yes, keep GlobalCand[0] as the compact region candidate. 1836 NumCands = 1; 1837 BestCost = BlockFrequency::getMaxFrequency(); 1838 } else { 1839 // No benefit from the compact region, our fallback will be per-block 1840 // splitting. Make sure we find a solution that is cheaper than spilling. 1841 BestCost = SpillCost; 1842 LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = "; 1843 MBFI->printBlockFreq(dbgs(), BestCost) << '\n'); 1844 } 1845 1846 bool CanCauseEvictionChain = false; 1847 unsigned BestCand = 1848 calculateRegionSplitCost(VirtReg, Order, BestCost, NumCands, 1849 false /*IgnoreCSR*/, &CanCauseEvictionChain); 1850 1851 // Split candidates with compact regions can cause a bad eviction sequence. 1852 // See splitCanCauseEvictionChain for detailed description of scenarios. 1853 // To avoid it, we need to comapre the cost with the spill cost and not the 1854 // current max frequency. 1855 if (HasCompact && (BestCost > SpillCost) && (BestCand != NoCand) && 1856 CanCauseEvictionChain) { 1857 return MCRegister::NoRegister; 1858 } 1859 1860 // No solutions found, fall back to single block splitting. 1861 if (!HasCompact && BestCand == NoCand) 1862 return MCRegister::NoRegister; 1863 1864 return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs); 1865 } 1866 1867 unsigned RAGreedy::calculateRegionSplitCost(LiveInterval &VirtReg, 1868 AllocationOrder &Order, 1869 BlockFrequency &BestCost, 1870 unsigned &NumCands, bool IgnoreCSR, 1871 bool *CanCauseEvictionChain) { 1872 unsigned BestCand = NoCand; 1873 for (MCPhysReg PhysReg : Order) { 1874 assert(PhysReg); 1875 if (IgnoreCSR && isUnusedCalleeSavedReg(PhysReg)) 1876 continue; 1877 1878 // Discard bad candidates before we run out of interference cache cursors. 1879 // This will only affect register classes with a lot of registers (>32). 1880 if (NumCands == IntfCache.getMaxCursors()) { 1881 unsigned WorstCount = ~0u; 1882 unsigned Worst = 0; 1883 for (unsigned CandIndex = 0; CandIndex != NumCands; ++CandIndex) { 1884 if (CandIndex == BestCand || !GlobalCand[CandIndex].PhysReg) 1885 continue; 1886 unsigned Count = GlobalCand[CandIndex].LiveBundles.count(); 1887 if (Count < WorstCount) { 1888 Worst = CandIndex; 1889 WorstCount = Count; 1890 } 1891 } 1892 --NumCands; 1893 GlobalCand[Worst] = GlobalCand[NumCands]; 1894 if (BestCand == NumCands) 1895 BestCand = Worst; 1896 } 1897 1898 if (GlobalCand.size() <= NumCands) 1899 GlobalCand.resize(NumCands+1); 1900 GlobalSplitCandidate &Cand = GlobalCand[NumCands]; 1901 Cand.reset(IntfCache, PhysReg); 1902 1903 SpillPlacer->prepare(Cand.LiveBundles); 1904 BlockFrequency Cost; 1905 if (!addSplitConstraints(Cand.Intf, Cost)) { 1906 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tno positive bundles\n"); 1907 continue; 1908 } 1909 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tstatic = "; 1910 MBFI->printBlockFreq(dbgs(), Cost)); 1911 if (Cost >= BestCost) { 1912 LLVM_DEBUG({ 1913 if (BestCand == NoCand) 1914 dbgs() << " worse than no bundles\n"; 1915 else 1916 dbgs() << " worse than " 1917 << printReg(GlobalCand[BestCand].PhysReg, TRI) << '\n'; 1918 }); 1919 continue; 1920 } 1921 if (!growRegion(Cand)) { 1922 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n"); 1923 continue; 1924 } 1925 1926 SpillPlacer->finish(); 1927 1928 // No live bundles, defer to splitSingleBlocks(). 1929 if (!Cand.LiveBundles.any()) { 1930 LLVM_DEBUG(dbgs() << " no bundles.\n"); 1931 continue; 1932 } 1933 1934 bool HasEvictionChain = false; 1935 Cost += calcGlobalSplitCost(Cand, Order, &HasEvictionChain); 1936 LLVM_DEBUG({ 1937 dbgs() << ", total = "; 1938 MBFI->printBlockFreq(dbgs(), Cost) << " with bundles"; 1939 for (int I : Cand.LiveBundles.set_bits()) 1940 dbgs() << " EB#" << I; 1941 dbgs() << ".\n"; 1942 }); 1943 if (Cost < BestCost) { 1944 BestCand = NumCands; 1945 BestCost = Cost; 1946 // See splitCanCauseEvictionChain for detailed description of bad 1947 // eviction chain scenarios. 1948 if (CanCauseEvictionChain) 1949 *CanCauseEvictionChain = HasEvictionChain; 1950 } 1951 ++NumCands; 1952 } 1953 1954 if (CanCauseEvictionChain && BestCand != NoCand) { 1955 // See splitCanCauseEvictionChain for detailed description of bad 1956 // eviction chain scenarios. 1957 LLVM_DEBUG(dbgs() << "Best split candidate of vreg " 1958 << printReg(VirtReg.reg(), TRI) << " may "); 1959 if (!(*CanCauseEvictionChain)) 1960 LLVM_DEBUG(dbgs() << "not "); 1961 LLVM_DEBUG(dbgs() << "cause bad eviction chain\n"); 1962 } 1963 1964 return BestCand; 1965 } 1966 1967 unsigned RAGreedy::doRegionSplit(LiveInterval &VirtReg, unsigned BestCand, 1968 bool HasCompact, 1969 SmallVectorImpl<Register> &NewVRegs) { 1970 SmallVector<unsigned, 8> UsedCands; 1971 // Prepare split editor. 1972 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1973 SE->reset(LREdit, SplitSpillMode); 1974 1975 // Assign all edge bundles to the preferred candidate, or NoCand. 1976 BundleCand.assign(Bundles->getNumBundles(), NoCand); 1977 1978 // Assign bundles for the best candidate region. 1979 if (BestCand != NoCand) { 1980 GlobalSplitCandidate &Cand = GlobalCand[BestCand]; 1981 if (unsigned B = Cand.getBundles(BundleCand, BestCand)) { 1982 UsedCands.push_back(BestCand); 1983 Cand.IntvIdx = SE->openIntv(); 1984 LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand.PhysReg, TRI) << " in " 1985 << B << " bundles, intv " << Cand.IntvIdx << ".\n"); 1986 (void)B; 1987 } 1988 } 1989 1990 // Assign bundles for the compact region. 1991 if (HasCompact) { 1992 GlobalSplitCandidate &Cand = GlobalCand.front(); 1993 assert(!Cand.PhysReg && "Compact region has no physreg"); 1994 if (unsigned B = Cand.getBundles(BundleCand, 0)) { 1995 UsedCands.push_back(0); 1996 Cand.IntvIdx = SE->openIntv(); 1997 LLVM_DEBUG(dbgs() << "Split for compact region in " << B 1998 << " bundles, intv " << Cand.IntvIdx << ".\n"); 1999 (void)B; 2000 } 2001 } 2002 2003 splitAroundRegion(LREdit, UsedCands); 2004 return 0; 2005 } 2006 2007 //===----------------------------------------------------------------------===// 2008 // Per-Block Splitting 2009 //===----------------------------------------------------------------------===// 2010 2011 /// tryBlockSplit - Split a global live range around every block with uses. This 2012 /// creates a lot of local live ranges, that will be split by tryLocalSplit if 2013 /// they don't allocate. 2014 unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order, 2015 SmallVectorImpl<Register> &NewVRegs) { 2016 assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed"); 2017 Register Reg = VirtReg.reg(); 2018 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 2019 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2020 SE->reset(LREdit, SplitSpillMode); 2021 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 2022 for (const SplitAnalysis::BlockInfo &BI : UseBlocks) { 2023 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 2024 SE->splitSingleBlock(BI); 2025 } 2026 // No blocks were split. 2027 if (LREdit.empty()) 2028 return 0; 2029 2030 // We did split for some blocks. 2031 SmallVector<unsigned, 8> IntvMap; 2032 SE->finish(&IntvMap); 2033 2034 // Tell LiveDebugVariables about the new ranges. 2035 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 2036 2037 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 2038 2039 // Sort out the new intervals created by splitting. The remainder interval 2040 // goes straight to spilling, the new local ranges get to stay RS_New. 2041 for (unsigned I = 0, E = LREdit.size(); I != E; ++I) { 2042 LiveInterval &LI = LIS->getInterval(LREdit.get(I)); 2043 if (getStage(LI) == RS_New && IntvMap[I] == 0) 2044 setStage(LI, RS_Spill); 2045 } 2046 2047 if (VerifyEnabled) 2048 MF->verify(this, "After splitting live range around basic blocks"); 2049 return 0; 2050 } 2051 2052 //===----------------------------------------------------------------------===// 2053 // Per-Instruction Splitting 2054 //===----------------------------------------------------------------------===// 2055 2056 /// Get the number of allocatable registers that match the constraints of \p Reg 2057 /// on \p MI and that are also in \p SuperRC. 2058 static unsigned getNumAllocatableRegsForConstraints( 2059 const MachineInstr *MI, Register Reg, const TargetRegisterClass *SuperRC, 2060 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI, 2061 const RegisterClassInfo &RCI) { 2062 assert(SuperRC && "Invalid register class"); 2063 2064 const TargetRegisterClass *ConstrainedRC = 2065 MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI, 2066 /* ExploreBundle */ true); 2067 if (!ConstrainedRC) 2068 return 0; 2069 return RCI.getNumAllocatableRegs(ConstrainedRC); 2070 } 2071 2072 /// tryInstructionSplit - Split a live range around individual instructions. 2073 /// This is normally not worthwhile since the spiller is doing essentially the 2074 /// same thing. However, when the live range is in a constrained register 2075 /// class, it may help to insert copies such that parts of the live range can 2076 /// be moved to a larger register class. 2077 /// 2078 /// This is similar to spilling to a larger register class. 2079 unsigned 2080 RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order, 2081 SmallVectorImpl<Register> &NewVRegs) { 2082 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg()); 2083 // There is no point to this if there are no larger sub-classes. 2084 if (!RegClassInfo.isProperSubClass(CurRC)) 2085 return 0; 2086 2087 // Always enable split spill mode, since we're effectively spilling to a 2088 // register. 2089 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2090 SE->reset(LREdit, SplitEditor::SM_Size); 2091 2092 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 2093 if (Uses.size() <= 1) 2094 return 0; 2095 2096 LLVM_DEBUG(dbgs() << "Split around " << Uses.size() 2097 << " individual instrs.\n"); 2098 2099 const TargetRegisterClass *SuperRC = 2100 TRI->getLargestLegalSuperClass(CurRC, *MF); 2101 unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC); 2102 // Split around every non-copy instruction if this split will relax 2103 // the constraints on the virtual register. 2104 // Otherwise, splitting just inserts uncoalescable copies that do not help 2105 // the allocation. 2106 for (const auto &Use : Uses) { 2107 if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Use)) 2108 if (MI->isFullCopy() || 2109 SuperRCNumAllocatableRegs == 2110 getNumAllocatableRegsForConstraints(MI, VirtReg.reg(), SuperRC, 2111 TII, TRI, RCI)) { 2112 LLVM_DEBUG(dbgs() << " skip:\t" << Use << '\t' << *MI); 2113 continue; 2114 } 2115 SE->openIntv(); 2116 SlotIndex SegStart = SE->enterIntvBefore(Use); 2117 SlotIndex SegStop = SE->leaveIntvAfter(Use); 2118 SE->useIntv(SegStart, SegStop); 2119 } 2120 2121 if (LREdit.empty()) { 2122 LLVM_DEBUG(dbgs() << "All uses were copies.\n"); 2123 return 0; 2124 } 2125 2126 SmallVector<unsigned, 8> IntvMap; 2127 SE->finish(&IntvMap); 2128 DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS); 2129 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 2130 2131 // Assign all new registers to RS_Spill. This was the last chance. 2132 setStage(LREdit.begin(), LREdit.end(), RS_Spill); 2133 return 0; 2134 } 2135 2136 //===----------------------------------------------------------------------===// 2137 // Local Splitting 2138 //===----------------------------------------------------------------------===// 2139 2140 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted 2141 /// in order to use PhysReg between two entries in SA->UseSlots. 2142 /// 2143 /// GapWeight[I] represents the gap between UseSlots[I] and UseSlots[I + 1]. 2144 /// 2145 void RAGreedy::calcGapWeights(MCRegister PhysReg, 2146 SmallVectorImpl<float> &GapWeight) { 2147 assert(SA->getUseBlocks().size() == 1 && "Not a local interval"); 2148 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 2149 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 2150 const unsigned NumGaps = Uses.size()-1; 2151 2152 // Start and end points for the interference check. 2153 SlotIndex StartIdx = 2154 BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr; 2155 SlotIndex StopIdx = 2156 BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr; 2157 2158 GapWeight.assign(NumGaps, 0.0f); 2159 2160 // Add interference from each overlapping register. 2161 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 2162 if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units) 2163 .checkInterference()) 2164 continue; 2165 2166 // We know that VirtReg is a continuous interval from FirstInstr to 2167 // LastInstr, so we don't need InterferenceQuery. 2168 // 2169 // Interference that overlaps an instruction is counted in both gaps 2170 // surrounding the instruction. The exception is interference before 2171 // StartIdx and after StopIdx. 2172 // 2173 LiveIntervalUnion::SegmentIter IntI = 2174 Matrix->getLiveUnions()[*Units] .find(StartIdx); 2175 for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) { 2176 // Skip the gaps before IntI. 2177 while (Uses[Gap+1].getBoundaryIndex() < IntI.start()) 2178 if (++Gap == NumGaps) 2179 break; 2180 if (Gap == NumGaps) 2181 break; 2182 2183 // Update the gaps covered by IntI. 2184 const float weight = IntI.value()->weight(); 2185 for (; Gap != NumGaps; ++Gap) { 2186 GapWeight[Gap] = std::max(GapWeight[Gap], weight); 2187 if (Uses[Gap+1].getBaseIndex() >= IntI.stop()) 2188 break; 2189 } 2190 if (Gap == NumGaps) 2191 break; 2192 } 2193 } 2194 2195 // Add fixed interference. 2196 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 2197 const LiveRange &LR = LIS->getRegUnit(*Units); 2198 LiveRange::const_iterator I = LR.find(StartIdx); 2199 LiveRange::const_iterator E = LR.end(); 2200 2201 // Same loop as above. Mark any overlapped gaps as HUGE_VALF. 2202 for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) { 2203 while (Uses[Gap+1].getBoundaryIndex() < I->start) 2204 if (++Gap == NumGaps) 2205 break; 2206 if (Gap == NumGaps) 2207 break; 2208 2209 for (; Gap != NumGaps; ++Gap) { 2210 GapWeight[Gap] = huge_valf; 2211 if (Uses[Gap+1].getBaseIndex() >= I->end) 2212 break; 2213 } 2214 if (Gap == NumGaps) 2215 break; 2216 } 2217 } 2218 } 2219 2220 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only 2221 /// basic block. 2222 /// 2223 unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order, 2224 SmallVectorImpl<Register> &NewVRegs) { 2225 // TODO: the function currently only handles a single UseBlock; it should be 2226 // possible to generalize. 2227 if (SA->getUseBlocks().size() != 1) 2228 return 0; 2229 2230 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 2231 2232 // Note that it is possible to have an interval that is live-in or live-out 2233 // while only covering a single block - A phi-def can use undef values from 2234 // predecessors, and the block could be a single-block loop. 2235 // We don't bother doing anything clever about such a case, we simply assume 2236 // that the interval is continuous from FirstInstr to LastInstr. We should 2237 // make sure that we don't do anything illegal to such an interval, though. 2238 2239 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 2240 if (Uses.size() <= 2) 2241 return 0; 2242 const unsigned NumGaps = Uses.size()-1; 2243 2244 LLVM_DEBUG({ 2245 dbgs() << "tryLocalSplit: "; 2246 for (const auto &Use : Uses) 2247 dbgs() << ' ' << Use; 2248 dbgs() << '\n'; 2249 }); 2250 2251 // If VirtReg is live across any register mask operands, compute a list of 2252 // gaps with register masks. 2253 SmallVector<unsigned, 8> RegMaskGaps; 2254 if (Matrix->checkRegMaskInterference(VirtReg)) { 2255 // Get regmask slots for the whole block. 2256 ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber()); 2257 LLVM_DEBUG(dbgs() << RMS.size() << " regmasks in block:"); 2258 // Constrain to VirtReg's live range. 2259 unsigned RI = 2260 llvm::lower_bound(RMS, Uses.front().getRegSlot()) - RMS.begin(); 2261 unsigned RE = RMS.size(); 2262 for (unsigned I = 0; I != NumGaps && RI != RE; ++I) { 2263 // Look for Uses[I] <= RMS <= Uses[I + 1]. 2264 assert(!SlotIndex::isEarlierInstr(RMS[RI], Uses[I])); 2265 if (SlotIndex::isEarlierInstr(Uses[I + 1], RMS[RI])) 2266 continue; 2267 // Skip a regmask on the same instruction as the last use. It doesn't 2268 // overlap the live range. 2269 if (SlotIndex::isSameInstr(Uses[I + 1], RMS[RI]) && I + 1 == NumGaps) 2270 break; 2271 LLVM_DEBUG(dbgs() << ' ' << RMS[RI] << ':' << Uses[I] << '-' 2272 << Uses[I + 1]); 2273 RegMaskGaps.push_back(I); 2274 // Advance ri to the next gap. A regmask on one of the uses counts in 2275 // both gaps. 2276 while (RI != RE && SlotIndex::isEarlierInstr(RMS[RI], Uses[I + 1])) 2277 ++RI; 2278 } 2279 LLVM_DEBUG(dbgs() << '\n'); 2280 } 2281 2282 // Since we allow local split results to be split again, there is a risk of 2283 // creating infinite loops. It is tempting to require that the new live 2284 // ranges have less instructions than the original. That would guarantee 2285 // convergence, but it is too strict. A live range with 3 instructions can be 2286 // split 2+3 (including the COPY), and we want to allow that. 2287 // 2288 // Instead we use these rules: 2289 // 2290 // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the 2291 // noop split, of course). 2292 // 2. Require progress be made for ranges with getStage() == RS_Split2. All 2293 // the new ranges must have fewer instructions than before the split. 2294 // 3. New ranges with the same number of instructions are marked RS_Split2, 2295 // smaller ranges are marked RS_New. 2296 // 2297 // These rules allow a 3 -> 2+3 split once, which we need. They also prevent 2298 // excessive splitting and infinite loops. 2299 // 2300 bool ProgressRequired = getStage(VirtReg) >= RS_Split2; 2301 2302 // Best split candidate. 2303 unsigned BestBefore = NumGaps; 2304 unsigned BestAfter = 0; 2305 float BestDiff = 0; 2306 2307 const float blockFreq = 2308 SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() * 2309 (1.0f / MBFI->getEntryFreq()); 2310 SmallVector<float, 8> GapWeight; 2311 2312 for (MCPhysReg PhysReg : Order) { 2313 assert(PhysReg); 2314 // Keep track of the largest spill weight that would need to be evicted in 2315 // order to make use of PhysReg between UseSlots[I] and UseSlots[I + 1]. 2316 calcGapWeights(PhysReg, GapWeight); 2317 2318 // Remove any gaps with regmask clobbers. 2319 if (Matrix->checkRegMaskInterference(VirtReg, PhysReg)) 2320 for (unsigned I = 0, E = RegMaskGaps.size(); I != E; ++I) 2321 GapWeight[RegMaskGaps[I]] = huge_valf; 2322 2323 // Try to find the best sequence of gaps to close. 2324 // The new spill weight must be larger than any gap interference. 2325 2326 // We will split before Uses[SplitBefore] and after Uses[SplitAfter]. 2327 unsigned SplitBefore = 0, SplitAfter = 1; 2328 2329 // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]). 2330 // It is the spill weight that needs to be evicted. 2331 float MaxGap = GapWeight[0]; 2332 2333 while (true) { 2334 // Live before/after split? 2335 const bool LiveBefore = SplitBefore != 0 || BI.LiveIn; 2336 const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut; 2337 2338 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << ' ' << Uses[SplitBefore] 2339 << '-' << Uses[SplitAfter] << " I=" << MaxGap); 2340 2341 // Stop before the interval gets so big we wouldn't be making progress. 2342 if (!LiveBefore && !LiveAfter) { 2343 LLVM_DEBUG(dbgs() << " all\n"); 2344 break; 2345 } 2346 // Should the interval be extended or shrunk? 2347 bool Shrink = true; 2348 2349 // How many gaps would the new range have? 2350 unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter; 2351 2352 // Legally, without causing looping? 2353 bool Legal = !ProgressRequired || NewGaps < NumGaps; 2354 2355 if (Legal && MaxGap < huge_valf) { 2356 // Estimate the new spill weight. Each instruction reads or writes the 2357 // register. Conservatively assume there are no read-modify-write 2358 // instructions. 2359 // 2360 // Try to guess the size of the new interval. 2361 const float EstWeight = normalizeSpillWeight( 2362 blockFreq * (NewGaps + 1), 2363 Uses[SplitBefore].distance(Uses[SplitAfter]) + 2364 (LiveBefore + LiveAfter) * SlotIndex::InstrDist, 2365 1); 2366 // Would this split be possible to allocate? 2367 // Never allocate all gaps, we wouldn't be making progress. 2368 LLVM_DEBUG(dbgs() << " w=" << EstWeight); 2369 if (EstWeight * Hysteresis >= MaxGap) { 2370 Shrink = false; 2371 float Diff = EstWeight - MaxGap; 2372 if (Diff > BestDiff) { 2373 LLVM_DEBUG(dbgs() << " (best)"); 2374 BestDiff = Hysteresis * Diff; 2375 BestBefore = SplitBefore; 2376 BestAfter = SplitAfter; 2377 } 2378 } 2379 } 2380 2381 // Try to shrink. 2382 if (Shrink) { 2383 if (++SplitBefore < SplitAfter) { 2384 LLVM_DEBUG(dbgs() << " shrink\n"); 2385 // Recompute the max when necessary. 2386 if (GapWeight[SplitBefore - 1] >= MaxGap) { 2387 MaxGap = GapWeight[SplitBefore]; 2388 for (unsigned I = SplitBefore + 1; I != SplitAfter; ++I) 2389 MaxGap = std::max(MaxGap, GapWeight[I]); 2390 } 2391 continue; 2392 } 2393 MaxGap = 0; 2394 } 2395 2396 // Try to extend the interval. 2397 if (SplitAfter >= NumGaps) { 2398 LLVM_DEBUG(dbgs() << " end\n"); 2399 break; 2400 } 2401 2402 LLVM_DEBUG(dbgs() << " extend\n"); 2403 MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]); 2404 } 2405 } 2406 2407 // Didn't find any candidates? 2408 if (BestBefore == NumGaps) 2409 return 0; 2410 2411 LLVM_DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] << '-' 2412 << Uses[BestAfter] << ", " << BestDiff << ", " 2413 << (BestAfter - BestBefore + 1) << " instrs\n"); 2414 2415 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2416 SE->reset(LREdit); 2417 2418 SE->openIntv(); 2419 SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]); 2420 SlotIndex SegStop = SE->leaveIntvAfter(Uses[BestAfter]); 2421 SE->useIntv(SegStart, SegStop); 2422 SmallVector<unsigned, 8> IntvMap; 2423 SE->finish(&IntvMap); 2424 DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS); 2425 2426 // If the new range has the same number of instructions as before, mark it as 2427 // RS_Split2 so the next split will be forced to make progress. Otherwise, 2428 // leave the new intervals as RS_New so they can compete. 2429 bool LiveBefore = BestBefore != 0 || BI.LiveIn; 2430 bool LiveAfter = BestAfter != NumGaps || BI.LiveOut; 2431 unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter; 2432 if (NewGaps >= NumGaps) { 2433 LLVM_DEBUG(dbgs() << "Tagging non-progress ranges: "); 2434 assert(!ProgressRequired && "Didn't make progress when it was required."); 2435 for (unsigned I = 0, E = IntvMap.size(); I != E; ++I) 2436 if (IntvMap[I] == 1) { 2437 setStage(LIS->getInterval(LREdit.get(I)), RS_Split2); 2438 LLVM_DEBUG(dbgs() << printReg(LREdit.get(I))); 2439 } 2440 LLVM_DEBUG(dbgs() << '\n'); 2441 } 2442 ++NumLocalSplits; 2443 2444 return 0; 2445 } 2446 2447 //===----------------------------------------------------------------------===// 2448 // Live Range Splitting 2449 //===----------------------------------------------------------------------===// 2450 2451 /// trySplit - Try to split VirtReg or one of its interferences, making it 2452 /// assignable. 2453 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs. 2454 unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order, 2455 SmallVectorImpl<Register> &NewVRegs, 2456 const SmallVirtRegSet &FixedRegisters) { 2457 // Ranges must be Split2 or less. 2458 if (getStage(VirtReg) >= RS_Spill) 2459 return 0; 2460 2461 // Local intervals are handled separately. 2462 if (LIS->intervalIsInOneMBB(VirtReg)) { 2463 NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName, 2464 TimerGroupDescription, TimePassesIsEnabled); 2465 SA->analyze(&VirtReg); 2466 Register PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs); 2467 if (PhysReg || !NewVRegs.empty()) 2468 return PhysReg; 2469 return tryInstructionSplit(VirtReg, Order, NewVRegs); 2470 } 2471 2472 NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName, 2473 TimerGroupDescription, TimePassesIsEnabled); 2474 2475 SA->analyze(&VirtReg); 2476 2477 // FIXME: SplitAnalysis may repair broken live ranges coming from the 2478 // coalescer. That may cause the range to become allocatable which means that 2479 // tryRegionSplit won't be making progress. This check should be replaced with 2480 // an assertion when the coalescer is fixed. 2481 if (SA->didRepairRange()) { 2482 // VirtReg has changed, so all cached queries are invalid. 2483 Matrix->invalidateVirtRegs(); 2484 if (Register PhysReg = tryAssign(VirtReg, Order, NewVRegs, FixedRegisters)) 2485 return PhysReg; 2486 } 2487 2488 // First try to split around a region spanning multiple blocks. RS_Split2 2489 // ranges already made dubious progress with region splitting, so they go 2490 // straight to single block splitting. 2491 if (getStage(VirtReg) < RS_Split2) { 2492 MCRegister PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs); 2493 if (PhysReg || !NewVRegs.empty()) 2494 return PhysReg; 2495 } 2496 2497 // Then isolate blocks. 2498 return tryBlockSplit(VirtReg, Order, NewVRegs); 2499 } 2500 2501 //===----------------------------------------------------------------------===// 2502 // Last Chance Recoloring 2503 //===----------------------------------------------------------------------===// 2504 2505 /// Return true if \p reg has any tied def operand. 2506 static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg) { 2507 for (const MachineOperand &MO : MRI->def_operands(reg)) 2508 if (MO.isTied()) 2509 return true; 2510 2511 return false; 2512 } 2513 2514 /// mayRecolorAllInterferences - Check if the virtual registers that 2515 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be 2516 /// recolored to free \p PhysReg. 2517 /// When true is returned, \p RecoloringCandidates has been augmented with all 2518 /// the live intervals that need to be recolored in order to free \p PhysReg 2519 /// for \p VirtReg. 2520 /// \p FixedRegisters contains all the virtual registers that cannot be 2521 /// recolored. 2522 bool RAGreedy::mayRecolorAllInterferences( 2523 MCRegister PhysReg, LiveInterval &VirtReg, SmallLISet &RecoloringCandidates, 2524 const SmallVirtRegSet &FixedRegisters) { 2525 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg()); 2526 2527 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 2528 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 2529 // If there is LastChanceRecoloringMaxInterference or more interferences, 2530 // chances are one would not be recolorable. 2531 if (Q.collectInterferingVRegs(LastChanceRecoloringMaxInterference) >= 2532 LastChanceRecoloringMaxInterference && !ExhaustiveSearch) { 2533 LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n"); 2534 CutOffInfo |= CO_Interf; 2535 return false; 2536 } 2537 for (LiveInterval *Intf : reverse(Q.interferingVRegs())) { 2538 // If Intf is done and sit on the same register class as VirtReg, 2539 // it would not be recolorable as it is in the same state as VirtReg. 2540 // However, if VirtReg has tied defs and Intf doesn't, then 2541 // there is still a point in examining if it can be recolorable. 2542 if (((getStage(*Intf) == RS_Done && 2543 MRI->getRegClass(Intf->reg()) == CurRC) && 2544 !(hasTiedDef(MRI, VirtReg.reg()) && 2545 !hasTiedDef(MRI, Intf->reg()))) || 2546 FixedRegisters.count(Intf->reg())) { 2547 LLVM_DEBUG( 2548 dbgs() << "Early abort: the interference is not recolorable.\n"); 2549 return false; 2550 } 2551 RecoloringCandidates.insert(Intf); 2552 } 2553 } 2554 return true; 2555 } 2556 2557 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring 2558 /// its interferences. 2559 /// Last chance recoloring chooses a color for \p VirtReg and recolors every 2560 /// virtual register that was using it. The recoloring process may recursively 2561 /// use the last chance recoloring. Therefore, when a virtual register has been 2562 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot 2563 /// be last-chance-recolored again during this recoloring "session". 2564 /// E.g., 2565 /// Let 2566 /// vA can use {R1, R2 } 2567 /// vB can use { R2, R3} 2568 /// vC can use {R1 } 2569 /// Where vA, vB, and vC cannot be split anymore (they are reloads for 2570 /// instance) and they all interfere. 2571 /// 2572 /// vA is assigned R1 2573 /// vB is assigned R2 2574 /// vC tries to evict vA but vA is already done. 2575 /// Regular register allocation fails. 2576 /// 2577 /// Last chance recoloring kicks in: 2578 /// vC does as if vA was evicted => vC uses R1. 2579 /// vC is marked as fixed. 2580 /// vA needs to find a color. 2581 /// None are available. 2582 /// vA cannot evict vC: vC is a fixed virtual register now. 2583 /// vA does as if vB was evicted => vA uses R2. 2584 /// vB needs to find a color. 2585 /// R3 is available. 2586 /// Recoloring => vC = R1, vA = R2, vB = R3 2587 /// 2588 /// \p Order defines the preferred allocation order for \p VirtReg. 2589 /// \p NewRegs will contain any new virtual register that have been created 2590 /// (split, spill) during the process and that must be assigned. 2591 /// \p FixedRegisters contains all the virtual registers that cannot be 2592 /// recolored. 2593 /// \p Depth gives the current depth of the last chance recoloring. 2594 /// \return a physical register that can be used for VirtReg or ~0u if none 2595 /// exists. 2596 unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg, 2597 AllocationOrder &Order, 2598 SmallVectorImpl<Register> &NewVRegs, 2599 SmallVirtRegSet &FixedRegisters, 2600 unsigned Depth) { 2601 if (!TRI->shouldUseLastChanceRecoloringForVirtReg(*MF, VirtReg)) 2602 return ~0u; 2603 2604 LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n'); 2605 // Ranges must be Done. 2606 assert((getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) && 2607 "Last chance recoloring should really be last chance"); 2608 // Set the max depth to LastChanceRecoloringMaxDepth. 2609 // We may want to reconsider that if we end up with a too large search space 2610 // for target with hundreds of registers. 2611 // Indeed, in that case we may want to cut the search space earlier. 2612 if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) { 2613 LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n"); 2614 CutOffInfo |= CO_Depth; 2615 return ~0u; 2616 } 2617 2618 // Set of Live intervals that will need to be recolored. 2619 SmallLISet RecoloringCandidates; 2620 // Record the original mapping virtual register to physical register in case 2621 // the recoloring fails. 2622 DenseMap<Register, MCRegister> VirtRegToPhysReg; 2623 // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in 2624 // this recoloring "session". 2625 assert(!FixedRegisters.count(VirtReg.reg())); 2626 FixedRegisters.insert(VirtReg.reg()); 2627 SmallVector<Register, 4> CurrentNewVRegs; 2628 2629 for (MCRegister PhysReg : Order) { 2630 assert(PhysReg.isValid()); 2631 LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg << " to " 2632 << printReg(PhysReg, TRI) << '\n'); 2633 RecoloringCandidates.clear(); 2634 VirtRegToPhysReg.clear(); 2635 CurrentNewVRegs.clear(); 2636 2637 // It is only possible to recolor virtual register interference. 2638 if (Matrix->checkInterference(VirtReg, PhysReg) > 2639 LiveRegMatrix::IK_VirtReg) { 2640 LLVM_DEBUG( 2641 dbgs() << "Some interferences are not with virtual registers.\n"); 2642 2643 continue; 2644 } 2645 2646 // Early give up on this PhysReg if it is obvious we cannot recolor all 2647 // the interferences. 2648 if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates, 2649 FixedRegisters)) { 2650 LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n"); 2651 continue; 2652 } 2653 2654 // RecoloringCandidates contains all the virtual registers that interfer 2655 // with VirtReg on PhysReg (or one of its aliases). 2656 // Enqueue them for recoloring and perform the actual recoloring. 2657 PQueue RecoloringQueue; 2658 for (LiveInterval *RC : RecoloringCandidates) { 2659 Register ItVirtReg = RC->reg(); 2660 enqueue(RecoloringQueue, RC); 2661 assert(VRM->hasPhys(ItVirtReg) && 2662 "Interferences are supposed to be with allocated variables"); 2663 2664 // Record the current allocation. 2665 VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg); 2666 // unset the related struct. 2667 Matrix->unassign(*RC); 2668 } 2669 2670 // Do as if VirtReg was assigned to PhysReg so that the underlying 2671 // recoloring has the right information about the interferes and 2672 // available colors. 2673 Matrix->assign(VirtReg, PhysReg); 2674 2675 // Save the current recoloring state. 2676 // If we cannot recolor all the interferences, we will have to start again 2677 // at this point for the next physical register. 2678 SmallVirtRegSet SaveFixedRegisters(FixedRegisters); 2679 if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs, 2680 FixedRegisters, Depth)) { 2681 // Push the queued vregs into the main queue. 2682 for (Register NewVReg : CurrentNewVRegs) 2683 NewVRegs.push_back(NewVReg); 2684 // Do not mess up with the global assignment process. 2685 // I.e., VirtReg must be unassigned. 2686 Matrix->unassign(VirtReg); 2687 return PhysReg; 2688 } 2689 2690 LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to " 2691 << printReg(PhysReg, TRI) << '\n'); 2692 2693 // The recoloring attempt failed, undo the changes. 2694 FixedRegisters = SaveFixedRegisters; 2695 Matrix->unassign(VirtReg); 2696 2697 // For a newly created vreg which is also in RecoloringCandidates, 2698 // don't add it to NewVRegs because its physical register will be restored 2699 // below. Other vregs in CurrentNewVRegs are created by calling 2700 // selectOrSplit and should be added into NewVRegs. 2701 for (Register &R : CurrentNewVRegs) { 2702 if (RecoloringCandidates.count(&LIS->getInterval(R))) 2703 continue; 2704 NewVRegs.push_back(R); 2705 } 2706 2707 for (LiveInterval *RC : RecoloringCandidates) { 2708 Register ItVirtReg = RC->reg(); 2709 if (VRM->hasPhys(ItVirtReg)) 2710 Matrix->unassign(*RC); 2711 MCRegister ItPhysReg = VirtRegToPhysReg[ItVirtReg]; 2712 Matrix->assign(*RC, ItPhysReg); 2713 } 2714 } 2715 2716 // Last chance recoloring did not worked either, give up. 2717 return ~0u; 2718 } 2719 2720 /// tryRecoloringCandidates - Try to assign a new color to every register 2721 /// in \RecoloringQueue. 2722 /// \p NewRegs will contain any new virtual register created during the 2723 /// recoloring process. 2724 /// \p FixedRegisters[in/out] contains all the registers that have been 2725 /// recolored. 2726 /// \return true if all virtual registers in RecoloringQueue were successfully 2727 /// recolored, false otherwise. 2728 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue, 2729 SmallVectorImpl<Register> &NewVRegs, 2730 SmallVirtRegSet &FixedRegisters, 2731 unsigned Depth) { 2732 while (!RecoloringQueue.empty()) { 2733 LiveInterval *LI = dequeue(RecoloringQueue); 2734 LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI << '\n'); 2735 MCRegister PhysReg = 2736 selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, Depth + 1); 2737 // When splitting happens, the live-range may actually be empty. 2738 // In that case, this is okay to continue the recoloring even 2739 // if we did not find an alternative color for it. Indeed, 2740 // there will not be anything to color for LI in the end. 2741 if (PhysReg == ~0u || (!PhysReg && !LI->empty())) 2742 return false; 2743 2744 if (!PhysReg) { 2745 assert(LI->empty() && "Only empty live-range do not require a register"); 2746 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI 2747 << " succeeded. Empty LI.\n"); 2748 continue; 2749 } 2750 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI 2751 << " succeeded with: " << printReg(PhysReg, TRI) << '\n'); 2752 2753 Matrix->assign(*LI, PhysReg); 2754 FixedRegisters.insert(LI->reg()); 2755 } 2756 return true; 2757 } 2758 2759 //===----------------------------------------------------------------------===// 2760 // Main Entry Point 2761 //===----------------------------------------------------------------------===// 2762 2763 MCRegister RAGreedy::selectOrSplit(LiveInterval &VirtReg, 2764 SmallVectorImpl<Register> &NewVRegs) { 2765 CutOffInfo = CO_None; 2766 LLVMContext &Ctx = MF->getFunction().getContext(); 2767 SmallVirtRegSet FixedRegisters; 2768 MCRegister Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters); 2769 if (Reg == ~0U && (CutOffInfo != CO_None)) { 2770 uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf); 2771 if (CutOffEncountered == CO_Depth) 2772 Ctx.emitError("register allocation failed: maximum depth for recoloring " 2773 "reached. Use -fexhaustive-register-search to skip " 2774 "cutoffs"); 2775 else if (CutOffEncountered == CO_Interf) 2776 Ctx.emitError("register allocation failed: maximum interference for " 2777 "recoloring reached. Use -fexhaustive-register-search " 2778 "to skip cutoffs"); 2779 else if (CutOffEncountered == (CO_Depth | CO_Interf)) 2780 Ctx.emitError("register allocation failed: maximum interference and " 2781 "depth for recoloring reached. Use " 2782 "-fexhaustive-register-search to skip cutoffs"); 2783 } 2784 return Reg; 2785 } 2786 2787 /// Using a CSR for the first time has a cost because it causes push|pop 2788 /// to be added to prologue|epilogue. Splitting a cold section of the live 2789 /// range can have lower cost than using the CSR for the first time; 2790 /// Spilling a live range in the cold path can have lower cost than using 2791 /// the CSR for the first time. Returns the physical register if we decide 2792 /// to use the CSR; otherwise return 0. 2793 MCRegister 2794 RAGreedy::tryAssignCSRFirstTime(LiveInterval &VirtReg, AllocationOrder &Order, 2795 MCRegister PhysReg, uint8_t &CostPerUseLimit, 2796 SmallVectorImpl<Register> &NewVRegs) { 2797 if (getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) { 2798 // We choose spill over using the CSR for the first time if the spill cost 2799 // is lower than CSRCost. 2800 SA->analyze(&VirtReg); 2801 if (calcSpillCost() >= CSRCost) 2802 return PhysReg; 2803 2804 // We are going to spill, set CostPerUseLimit to 1 to make sure that 2805 // we will not use a callee-saved register in tryEvict. 2806 CostPerUseLimit = 1; 2807 return 0; 2808 } 2809 if (getStage(VirtReg) < RS_Split) { 2810 // We choose pre-splitting over using the CSR for the first time if 2811 // the cost of splitting is lower than CSRCost. 2812 SA->analyze(&VirtReg); 2813 unsigned NumCands = 0; 2814 BlockFrequency BestCost = CSRCost; // Don't modify CSRCost. 2815 unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost, 2816 NumCands, true /*IgnoreCSR*/); 2817 if (BestCand == NoCand) 2818 // Use the CSR if we can't find a region split below CSRCost. 2819 return PhysReg; 2820 2821 // Perform the actual pre-splitting. 2822 doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs); 2823 return 0; 2824 } 2825 return PhysReg; 2826 } 2827 2828 void RAGreedy::aboutToRemoveInterval(LiveInterval &LI) { 2829 // Do not keep invalid information around. 2830 SetOfBrokenHints.remove(&LI); 2831 } 2832 2833 void RAGreedy::initializeCSRCost() { 2834 // We use the larger one out of the command-line option and the value report 2835 // by TRI. 2836 CSRCost = BlockFrequency( 2837 std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost())); 2838 if (!CSRCost.getFrequency()) 2839 return; 2840 2841 // Raw cost is relative to Entry == 2^14; scale it appropriately. 2842 uint64_t ActualEntry = MBFI->getEntryFreq(); 2843 if (!ActualEntry) { 2844 CSRCost = 0; 2845 return; 2846 } 2847 uint64_t FixedEntry = 1 << 14; 2848 if (ActualEntry < FixedEntry) 2849 CSRCost *= BranchProbability(ActualEntry, FixedEntry); 2850 else if (ActualEntry <= UINT32_MAX) 2851 // Invert the fraction and divide. 2852 CSRCost /= BranchProbability(FixedEntry, ActualEntry); 2853 else 2854 // Can't use BranchProbability in general, since it takes 32-bit numbers. 2855 CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry); 2856 } 2857 2858 /// Collect the hint info for \p Reg. 2859 /// The results are stored into \p Out. 2860 /// \p Out is not cleared before being populated. 2861 void RAGreedy::collectHintInfo(Register Reg, HintsInfo &Out) { 2862 for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) { 2863 if (!Instr.isFullCopy()) 2864 continue; 2865 // Look for the other end of the copy. 2866 Register OtherReg = Instr.getOperand(0).getReg(); 2867 if (OtherReg == Reg) { 2868 OtherReg = Instr.getOperand(1).getReg(); 2869 if (OtherReg == Reg) 2870 continue; 2871 } 2872 // Get the current assignment. 2873 MCRegister OtherPhysReg = 2874 OtherReg.isPhysical() ? OtherReg.asMCReg() : VRM->getPhys(OtherReg); 2875 // Push the collected information. 2876 Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg, 2877 OtherPhysReg)); 2878 } 2879 } 2880 2881 /// Using the given \p List, compute the cost of the broken hints if 2882 /// \p PhysReg was used. 2883 /// \return The cost of \p List for \p PhysReg. 2884 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List, 2885 MCRegister PhysReg) { 2886 BlockFrequency Cost = 0; 2887 for (const HintInfo &Info : List) { 2888 if (Info.PhysReg != PhysReg) 2889 Cost += Info.Freq; 2890 } 2891 return Cost; 2892 } 2893 2894 /// Using the register assigned to \p VirtReg, try to recolor 2895 /// all the live ranges that are copy-related with \p VirtReg. 2896 /// The recoloring is then propagated to all the live-ranges that have 2897 /// been recolored and so on, until no more copies can be coalesced or 2898 /// it is not profitable. 2899 /// For a given live range, profitability is determined by the sum of the 2900 /// frequencies of the non-identity copies it would introduce with the old 2901 /// and new register. 2902 void RAGreedy::tryHintRecoloring(LiveInterval &VirtReg) { 2903 // We have a broken hint, check if it is possible to fix it by 2904 // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted 2905 // some register and PhysReg may be available for the other live-ranges. 2906 SmallSet<Register, 4> Visited; 2907 SmallVector<unsigned, 2> RecoloringCandidates; 2908 HintsInfo Info; 2909 Register Reg = VirtReg.reg(); 2910 MCRegister PhysReg = VRM->getPhys(Reg); 2911 // Start the recoloring algorithm from the input live-interval, then 2912 // it will propagate to the ones that are copy-related with it. 2913 Visited.insert(Reg); 2914 RecoloringCandidates.push_back(Reg); 2915 2916 LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg, TRI) 2917 << '(' << printReg(PhysReg, TRI) << ")\n"); 2918 2919 do { 2920 Reg = RecoloringCandidates.pop_back_val(); 2921 2922 // We cannot recolor physical register. 2923 if (Register::isPhysicalRegister(Reg)) 2924 continue; 2925 2926 assert(VRM->hasPhys(Reg) && "We have unallocated variable!!"); 2927 2928 // Get the live interval mapped with this virtual register to be able 2929 // to check for the interference with the new color. 2930 LiveInterval &LI = LIS->getInterval(Reg); 2931 MCRegister CurrPhys = VRM->getPhys(Reg); 2932 // Check that the new color matches the register class constraints and 2933 // that it is free for this live range. 2934 if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) || 2935 Matrix->checkInterference(LI, PhysReg))) 2936 continue; 2937 2938 LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << '(' << printReg(CurrPhys, TRI) 2939 << ") is recolorable.\n"); 2940 2941 // Gather the hint info. 2942 Info.clear(); 2943 collectHintInfo(Reg, Info); 2944 // Check if recoloring the live-range will increase the cost of the 2945 // non-identity copies. 2946 if (CurrPhys != PhysReg) { 2947 LLVM_DEBUG(dbgs() << "Checking profitability:\n"); 2948 BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys); 2949 BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg); 2950 LLVM_DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency() 2951 << "\nNew Cost: " << NewCopiesCost.getFrequency() 2952 << '\n'); 2953 if (OldCopiesCost < NewCopiesCost) { 2954 LLVM_DEBUG(dbgs() << "=> Not profitable.\n"); 2955 continue; 2956 } 2957 // At this point, the cost is either cheaper or equal. If it is 2958 // equal, we consider this is profitable because it may expose 2959 // more recoloring opportunities. 2960 LLVM_DEBUG(dbgs() << "=> Profitable.\n"); 2961 // Recolor the live-range. 2962 Matrix->unassign(LI); 2963 Matrix->assign(LI, PhysReg); 2964 } 2965 // Push all copy-related live-ranges to keep reconciling the broken 2966 // hints. 2967 for (const HintInfo &HI : Info) { 2968 if (Visited.insert(HI.Reg).second) 2969 RecoloringCandidates.push_back(HI.Reg); 2970 } 2971 } while (!RecoloringCandidates.empty()); 2972 } 2973 2974 /// Try to recolor broken hints. 2975 /// Broken hints may be repaired by recoloring when an evicted variable 2976 /// freed up a register for a larger live-range. 2977 /// Consider the following example: 2978 /// BB1: 2979 /// a = 2980 /// b = 2981 /// BB2: 2982 /// ... 2983 /// = b 2984 /// = a 2985 /// Let us assume b gets split: 2986 /// BB1: 2987 /// a = 2988 /// b = 2989 /// BB2: 2990 /// c = b 2991 /// ... 2992 /// d = c 2993 /// = d 2994 /// = a 2995 /// Because of how the allocation work, b, c, and d may be assigned different 2996 /// colors. Now, if a gets evicted later: 2997 /// BB1: 2998 /// a = 2999 /// st a, SpillSlot 3000 /// b = 3001 /// BB2: 3002 /// c = b 3003 /// ... 3004 /// d = c 3005 /// = d 3006 /// e = ld SpillSlot 3007 /// = e 3008 /// This is likely that we can assign the same register for b, c, and d, 3009 /// getting rid of 2 copies. 3010 void RAGreedy::tryHintsRecoloring() { 3011 for (LiveInterval *LI : SetOfBrokenHints) { 3012 assert(Register::isVirtualRegister(LI->reg()) && 3013 "Recoloring is possible only for virtual registers"); 3014 // Some dead defs may be around (e.g., because of debug uses). 3015 // Ignore those. 3016 if (!VRM->hasPhys(LI->reg())) 3017 continue; 3018 tryHintRecoloring(*LI); 3019 } 3020 } 3021 3022 MCRegister RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg, 3023 SmallVectorImpl<Register> &NewVRegs, 3024 SmallVirtRegSet &FixedRegisters, 3025 unsigned Depth) { 3026 uint8_t CostPerUseLimit = uint8_t(~0u); 3027 // First try assigning a free register. 3028 auto Order = 3029 AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix); 3030 if (MCRegister PhysReg = 3031 tryAssign(VirtReg, Order, NewVRegs, FixedRegisters)) { 3032 // If VirtReg got an assignment, the eviction info is no longer relevant. 3033 LastEvicted.clearEvicteeInfo(VirtReg.reg()); 3034 // When NewVRegs is not empty, we may have made decisions such as evicting 3035 // a virtual register, go with the earlier decisions and use the physical 3036 // register. 3037 if (CSRCost.getFrequency() && isUnusedCalleeSavedReg(PhysReg) && 3038 NewVRegs.empty()) { 3039 MCRegister CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg, 3040 CostPerUseLimit, NewVRegs); 3041 if (CSRReg || !NewVRegs.empty()) 3042 // Return now if we decide to use a CSR or create new vregs due to 3043 // pre-splitting. 3044 return CSRReg; 3045 } else 3046 return PhysReg; 3047 } 3048 3049 LiveRangeStage Stage = getStage(VirtReg); 3050 LLVM_DEBUG(dbgs() << StageName[Stage] << " Cascade " 3051 << ExtraRegInfo[VirtReg.reg()].Cascade << '\n'); 3052 3053 // Try to evict a less worthy live range, but only for ranges from the primary 3054 // queue. The RS_Split ranges already failed to do this, and they should not 3055 // get a second chance until they have been split. 3056 if (Stage != RS_Split) 3057 if (Register PhysReg = 3058 tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit, 3059 FixedRegisters)) { 3060 Register Hint = MRI->getSimpleHint(VirtReg.reg()); 3061 // If VirtReg has a hint and that hint is broken record this 3062 // virtual register as a recoloring candidate for broken hint. 3063 // Indeed, since we evicted a variable in its neighborhood it is 3064 // likely we can at least partially recolor some of the 3065 // copy-related live-ranges. 3066 if (Hint && Hint != PhysReg) 3067 SetOfBrokenHints.insert(&VirtReg); 3068 // If VirtReg eviction someone, the eviction info for it as an evictee is 3069 // no longer relevant. 3070 LastEvicted.clearEvicteeInfo(VirtReg.reg()); 3071 return PhysReg; 3072 } 3073 3074 assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs"); 3075 3076 // The first time we see a live range, don't try to split or spill. 3077 // Wait until the second time, when all smaller ranges have been allocated. 3078 // This gives a better picture of the interference to split around. 3079 if (Stage < RS_Split) { 3080 setStage(VirtReg, RS_Split); 3081 LLVM_DEBUG(dbgs() << "wait for second round\n"); 3082 NewVRegs.push_back(VirtReg.reg()); 3083 return 0; 3084 } 3085 3086 if (Stage < RS_Spill) { 3087 // Try splitting VirtReg or interferences. 3088 unsigned NewVRegSizeBefore = NewVRegs.size(); 3089 Register PhysReg = trySplit(VirtReg, Order, NewVRegs, FixedRegisters); 3090 if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore)) { 3091 // If VirtReg got split, the eviction info is no longer relevant. 3092 LastEvicted.clearEvicteeInfo(VirtReg.reg()); 3093 return PhysReg; 3094 } 3095 } 3096 3097 // If we couldn't allocate a register from spilling, there is probably some 3098 // invalid inline assembly. The base class will report it. 3099 if (Stage >= RS_Done || !VirtReg.isSpillable()) 3100 return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters, 3101 Depth); 3102 3103 // Finally spill VirtReg itself. 3104 if ((EnableDeferredSpilling || 3105 TRI->shouldUseDeferredSpillingForVirtReg(*MF, VirtReg)) && 3106 getStage(VirtReg) < RS_Memory) { 3107 // TODO: This is experimental and in particular, we do not model 3108 // the live range splitting done by spilling correctly. 3109 // We would need a deep integration with the spiller to do the 3110 // right thing here. Anyway, that is still good for early testing. 3111 setStage(VirtReg, RS_Memory); 3112 LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n"); 3113 NewVRegs.push_back(VirtReg.reg()); 3114 } else { 3115 NamedRegionTimer T("spill", "Spiller", TimerGroupName, 3116 TimerGroupDescription, TimePassesIsEnabled); 3117 LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 3118 spiller().spill(LRE); 3119 setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done); 3120 3121 // Tell LiveDebugVariables about the new ranges. Ranges not being covered by 3122 // the new regs are kept in LDV (still mapping to the old register), until 3123 // we rewrite spilled locations in LDV at a later stage. 3124 DebugVars->splitRegister(VirtReg.reg(), LRE.regs(), *LIS); 3125 3126 if (VerifyEnabled) 3127 MF->verify(this, "After spilling"); 3128 } 3129 3130 // The live virtual register requesting allocation was spilled, so tell 3131 // the caller not to allocate anything during this round. 3132 return 0; 3133 } 3134 3135 void RAGreedy::RAGreedyStats::report(MachineOptimizationRemarkMissed &R) { 3136 using namespace ore; 3137 if (Spills) 3138 R << NV("NumSpills", Spills) << " spills "; 3139 if (FoldedSpills) 3140 R << NV("NumFoldedSpills", FoldedSpills) << " folded spills "; 3141 if (Reloads) 3142 R << NV("NumReloads", Reloads) << " reloads "; 3143 if (FoldedReloads) 3144 R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads "; 3145 if (ZeroCostFoldedReloads) 3146 R << NV("NumZeroCostFoldedReloads", ZeroCostFoldedReloads) 3147 << " zero cost folded reloads "; 3148 } 3149 3150 RAGreedy::RAGreedyStats 3151 RAGreedy::computeNumberOfSplillsReloads(MachineBasicBlock &MBB) { 3152 RAGreedyStats Stats; 3153 const MachineFrameInfo &MFI = MF->getFrameInfo(); 3154 int FI; 3155 3156 auto isSpillSlotAccess = [&MFI](const MachineMemOperand *A) { 3157 return MFI.isSpillSlotObjectIndex(cast<FixedStackPseudoSourceValue>( 3158 A->getPseudoValue())->getFrameIndex()); 3159 }; 3160 auto isPatchpointInstr = [](const MachineInstr &MI) { 3161 return MI.getOpcode() == TargetOpcode::PATCHPOINT || 3162 MI.getOpcode() == TargetOpcode::STACKMAP || 3163 MI.getOpcode() == TargetOpcode::STATEPOINT; 3164 }; 3165 for (MachineInstr &MI : MBB) { 3166 SmallVector<const MachineMemOperand *, 2> Accesses; 3167 3168 if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) { 3169 ++Stats.Reloads; 3170 continue; 3171 } 3172 if (TII->isStoreToStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) { 3173 ++Stats.Spills; 3174 continue; 3175 } 3176 if (TII->hasLoadFromStackSlot(MI, Accesses) && 3177 llvm::any_of(Accesses, isSpillSlotAccess)) { 3178 if (!isPatchpointInstr(MI)) { 3179 Stats.FoldedReloads += Accesses.size(); 3180 continue; 3181 } 3182 // For statepoint there may be folded and zero cost folded stack reloads. 3183 std::pair<unsigned, unsigned> NonZeroCostRange = 3184 TII->getPatchpointUnfoldableRange(MI); 3185 SmallSet<unsigned, 16> FoldedReloads; 3186 SmallSet<unsigned, 16> ZeroCostFoldedReloads; 3187 for (unsigned Idx = 0, E = MI.getNumOperands(); Idx < E; ++Idx) { 3188 MachineOperand &MO = MI.getOperand(Idx); 3189 if (!MO.isFI() || !MFI.isSpillSlotObjectIndex(MO.getIndex())) 3190 continue; 3191 if (Idx >= NonZeroCostRange.first && Idx < NonZeroCostRange.second) 3192 FoldedReloads.insert(MO.getIndex()); 3193 else 3194 ZeroCostFoldedReloads.insert(MO.getIndex()); 3195 } 3196 // If stack slot is used in folded reload it is not zero cost then. 3197 for (unsigned Slot : FoldedReloads) 3198 ZeroCostFoldedReloads.erase(Slot); 3199 Stats.FoldedReloads += FoldedReloads.size(); 3200 Stats.ZeroCostFoldedReloads += ZeroCostFoldedReloads.size(); 3201 continue; 3202 } 3203 Accesses.clear(); 3204 if (TII->hasStoreToStackSlot(MI, Accesses) && 3205 llvm::any_of(Accesses, isSpillSlotAccess)) { 3206 Stats.FoldedSpills += Accesses.size(); 3207 } 3208 } 3209 return Stats; 3210 } 3211 3212 RAGreedy::RAGreedyStats RAGreedy::reportNumberOfSplillsReloads(MachineLoop *L) { 3213 RAGreedyStats Stats; 3214 3215 // Sum up the spill and reloads in subloops. 3216 for (MachineLoop *SubLoop : *L) 3217 Stats.add(reportNumberOfSplillsReloads(SubLoop)); 3218 3219 for (MachineBasicBlock *MBB : L->getBlocks()) 3220 // Handle blocks that were not included in subloops. 3221 if (Loops->getLoopFor(MBB) == L) 3222 Stats.add(computeNumberOfSplillsReloads(*MBB)); 3223 3224 if (!Stats.isEmpty()) { 3225 using namespace ore; 3226 3227 ORE->emit([&]() { 3228 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReload", 3229 L->getStartLoc(), L->getHeader()); 3230 Stats.report(R); 3231 R << "generated in loop"; 3232 return R; 3233 }); 3234 } 3235 return Stats; 3236 } 3237 3238 void RAGreedy::reportNumberOfSplillsReloads() { 3239 if (!ORE->allowExtraAnalysis(DEBUG_TYPE)) 3240 return; 3241 RAGreedyStats Stats; 3242 for (MachineLoop *L : *Loops) 3243 Stats.add(reportNumberOfSplillsReloads(L)); 3244 // Process non-loop blocks. 3245 for (MachineBasicBlock &MBB : *MF) 3246 if (!Loops->getLoopFor(&MBB)) 3247 Stats.add(computeNumberOfSplillsReloads(MBB)); 3248 if (!Stats.isEmpty()) { 3249 using namespace ore; 3250 3251 ORE->emit([&]() { 3252 DebugLoc Loc; 3253 if (auto *SP = MF->getFunction().getSubprogram()) 3254 Loc = DILocation::get(SP->getContext(), SP->getLine(), 1, SP); 3255 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "SpillReload", Loc, 3256 &MF->front()); 3257 Stats.report(R); 3258 R << "generated in function"; 3259 return R; 3260 }); 3261 } 3262 } 3263 3264 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) { 3265 LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n" 3266 << "********** Function: " << mf.getName() << '\n'); 3267 3268 MF = &mf; 3269 TRI = MF->getSubtarget().getRegisterInfo(); 3270 TII = MF->getSubtarget().getInstrInfo(); 3271 RCI.runOnMachineFunction(mf); 3272 3273 EnableLocalReassign = EnableLocalReassignment || 3274 MF->getSubtarget().enableRALocalReassignment( 3275 MF->getTarget().getOptLevel()); 3276 3277 EnableAdvancedRASplitCost = 3278 ConsiderLocalIntervalCost.getNumOccurrences() 3279 ? ConsiderLocalIntervalCost 3280 : MF->getSubtarget().enableAdvancedRASplitCost(); 3281 3282 if (VerifyEnabled) 3283 MF->verify(this, "Before greedy register allocator"); 3284 3285 RegAllocBase::init(getAnalysis<VirtRegMap>(), 3286 getAnalysis<LiveIntervals>(), 3287 getAnalysis<LiveRegMatrix>()); 3288 Indexes = &getAnalysis<SlotIndexes>(); 3289 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 3290 DomTree = &getAnalysis<MachineDominatorTree>(); 3291 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 3292 Loops = &getAnalysis<MachineLoopInfo>(); 3293 Bundles = &getAnalysis<EdgeBundles>(); 3294 SpillPlacer = &getAnalysis<SpillPlacement>(); 3295 DebugVars = &getAnalysis<LiveDebugVariables>(); 3296 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3297 3298 initializeCSRCost(); 3299 3300 RegCosts = TRI->getRegisterCosts(*MF); 3301 3302 VRAI = std::make_unique<VirtRegAuxInfo>(*MF, *LIS, *VRM, *Loops, *MBFI); 3303 SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM, *VRAI)); 3304 3305 VRAI->calculateSpillWeightsAndHints(); 3306 3307 LLVM_DEBUG(LIS->dump()); 3308 3309 SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops)); 3310 SE.reset(new SplitEditor(*SA, *AA, *LIS, *VRM, *DomTree, *MBFI, *VRAI)); 3311 ExtraRegInfo.clear(); 3312 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 3313 NextCascade = 1; 3314 IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI); 3315 GlobalCand.resize(32); // This will grow as needed. 3316 SetOfBrokenHints.clear(); 3317 LastEvicted.clear(); 3318 3319 allocatePhysRegs(); 3320 tryHintsRecoloring(); 3321 3322 if (VerifyEnabled) 3323 MF->verify(this, "Before post optimization"); 3324 postOptimization(); 3325 reportNumberOfSplillsReloads(); 3326 3327 releaseMemory(); 3328 return true; 3329 } 3330