1 //===-- RegAllocGreedy.cpp - greedy register allocator --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the RAGreedy function pass for register allocation in 11 // optimized builds. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AllocationOrder.h" 16 #include "InterferenceCache.h" 17 #include "LiveDebugVariables.h" 18 #include "RegAllocBase.h" 19 #include "SpillPlacement.h" 20 #include "Spiller.h" 21 #include "SplitKit.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/CodeGen/CalcSpillWeights.h" 25 #include "llvm/CodeGen/EdgeBundles.h" 26 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 27 #include "llvm/CodeGen/LiveRangeEdit.h" 28 #include "llvm/CodeGen/LiveRegMatrix.h" 29 #include "llvm/CodeGen/LiveStackAnalysis.h" 30 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 31 #include "llvm/CodeGen/MachineDominators.h" 32 #include "llvm/CodeGen/MachineFunctionPass.h" 33 #include "llvm/CodeGen/MachineLoopInfo.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/Passes.h" 36 #include "llvm/CodeGen/RegAllocRegistry.h" 37 #include "llvm/CodeGen/RegisterClassInfo.h" 38 #include "llvm/CodeGen/VirtRegMap.h" 39 #include "llvm/IR/LLVMContext.h" 40 #include "llvm/PassAnalysisSupport.h" 41 #include "llvm/Support/BranchProbability.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/Timer.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include "llvm/Target/TargetInstrInfo.h" 48 #include "llvm/Target/TargetSubtargetInfo.h" 49 #include <queue> 50 51 using namespace llvm; 52 53 #define DEBUG_TYPE "regalloc" 54 55 STATISTIC(NumGlobalSplits, "Number of split global live ranges"); 56 STATISTIC(NumLocalSplits, "Number of split local live ranges"); 57 STATISTIC(NumEvicted, "Number of interferences evicted"); 58 59 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode( 60 "split-spill-mode", cl::Hidden, 61 cl::desc("Spill mode for splitting live ranges"), 62 cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"), 63 clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"), 64 clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")), 65 cl::init(SplitEditor::SM_Speed)); 66 67 static cl::opt<unsigned> 68 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden, 69 cl::desc("Last chance recoloring max depth"), 70 cl::init(5)); 71 72 static cl::opt<unsigned> LastChanceRecoloringMaxInterference( 73 "lcr-max-interf", cl::Hidden, 74 cl::desc("Last chance recoloring maximum number of considered" 75 " interference at a time"), 76 cl::init(8)); 77 78 static cl::opt<bool> 79 ExhaustiveSearch("exhaustive-register-search", cl::NotHidden, 80 cl::desc("Exhaustive Search for registers bypassing the depth " 81 "and interference cutoffs of last chance recoloring")); 82 83 static cl::opt<bool> EnableLocalReassignment( 84 "enable-local-reassign", cl::Hidden, 85 cl::desc("Local reassignment can yield better allocation decisions, but " 86 "may be compile time intensive"), 87 cl::init(false)); 88 89 static cl::opt<bool> EnableDeferredSpilling( 90 "enable-deferred-spilling", cl::Hidden, 91 cl::desc("Instead of spilling a variable right away, defer the actual " 92 "code insertion to the end of the allocation. That way the " 93 "allocator might still find a suitable coloring for this " 94 "variable because of other evicted variables."), 95 cl::init(false)); 96 97 // FIXME: Find a good default for this flag and remove the flag. 98 static cl::opt<unsigned> 99 CSRFirstTimeCost("regalloc-csr-first-time-cost", 100 cl::desc("Cost for first time use of callee-saved register."), 101 cl::init(0), cl::Hidden); 102 103 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator", 104 createGreedyRegisterAllocator); 105 106 namespace { 107 class RAGreedy : public MachineFunctionPass, 108 public RegAllocBase, 109 private LiveRangeEdit::Delegate { 110 // Convenient shortcuts. 111 typedef std::priority_queue<std::pair<unsigned, unsigned> > PQueue; 112 typedef SmallPtrSet<LiveInterval *, 4> SmallLISet; 113 typedef SmallSet<unsigned, 16> SmallVirtRegSet; 114 115 // context 116 MachineFunction *MF; 117 118 // Shortcuts to some useful interface. 119 const TargetInstrInfo *TII; 120 const TargetRegisterInfo *TRI; 121 RegisterClassInfo RCI; 122 123 // analyses 124 SlotIndexes *Indexes; 125 MachineBlockFrequencyInfo *MBFI; 126 MachineDominatorTree *DomTree; 127 MachineLoopInfo *Loops; 128 EdgeBundles *Bundles; 129 SpillPlacement *SpillPlacer; 130 LiveDebugVariables *DebugVars; 131 AliasAnalysis *AA; 132 133 // state 134 std::unique_ptr<Spiller> SpillerInstance; 135 PQueue Queue; 136 unsigned NextCascade; 137 138 // Live ranges pass through a number of stages as we try to allocate them. 139 // Some of the stages may also create new live ranges: 140 // 141 // - Region splitting. 142 // - Per-block splitting. 143 // - Local splitting. 144 // - Spilling. 145 // 146 // Ranges produced by one of the stages skip the previous stages when they are 147 // dequeued. This improves performance because we can skip interference checks 148 // that are unlikely to give any results. It also guarantees that the live 149 // range splitting algorithm terminates, something that is otherwise hard to 150 // ensure. 151 enum LiveRangeStage { 152 /// Newly created live range that has never been queued. 153 RS_New, 154 155 /// Only attempt assignment and eviction. Then requeue as RS_Split. 156 RS_Assign, 157 158 /// Attempt live range splitting if assignment is impossible. 159 RS_Split, 160 161 /// Attempt more aggressive live range splitting that is guaranteed to make 162 /// progress. This is used for split products that may not be making 163 /// progress. 164 RS_Split2, 165 166 /// Live range will be spilled. No more splitting will be attempted. 167 RS_Spill, 168 169 170 /// Live range is in memory. Because of other evictions, it might get moved 171 /// in a register in the end. 172 RS_Memory, 173 174 /// There is nothing more we can do to this live range. Abort compilation 175 /// if it can't be assigned. 176 RS_Done 177 }; 178 179 // Enum CutOffStage to keep a track whether the register allocation failed 180 // because of the cutoffs encountered in last chance recoloring. 181 // Note: This is used as bitmask. New value should be next power of 2. 182 enum CutOffStage { 183 // No cutoffs encountered 184 CO_None = 0, 185 186 // lcr-max-depth cutoff encountered 187 CO_Depth = 1, 188 189 // lcr-max-interf cutoff encountered 190 CO_Interf = 2 191 }; 192 193 uint8_t CutOffInfo; 194 195 #ifndef NDEBUG 196 static const char *const StageName[]; 197 #endif 198 199 // RegInfo - Keep additional information about each live range. 200 struct RegInfo { 201 LiveRangeStage Stage; 202 203 // Cascade - Eviction loop prevention. See canEvictInterference(). 204 unsigned Cascade; 205 206 RegInfo() : Stage(RS_New), Cascade(0) {} 207 }; 208 209 IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo; 210 211 LiveRangeStage getStage(const LiveInterval &VirtReg) const { 212 return ExtraRegInfo[VirtReg.reg].Stage; 213 } 214 215 void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) { 216 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 217 ExtraRegInfo[VirtReg.reg].Stage = Stage; 218 } 219 220 template<typename Iterator> 221 void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) { 222 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 223 for (;Begin != End; ++Begin) { 224 unsigned Reg = *Begin; 225 if (ExtraRegInfo[Reg].Stage == RS_New) 226 ExtraRegInfo[Reg].Stage = NewStage; 227 } 228 } 229 230 /// Cost of evicting interference. 231 struct EvictionCost { 232 unsigned BrokenHints; ///< Total number of broken hints. 233 float MaxWeight; ///< Maximum spill weight evicted. 234 235 EvictionCost(): BrokenHints(0), MaxWeight(0) {} 236 237 bool isMax() const { return BrokenHints == ~0u; } 238 239 void setMax() { BrokenHints = ~0u; } 240 241 void setBrokenHints(unsigned NHints) { BrokenHints = NHints; } 242 243 bool operator<(const EvictionCost &O) const { 244 return std::tie(BrokenHints, MaxWeight) < 245 std::tie(O.BrokenHints, O.MaxWeight); 246 } 247 }; 248 249 // splitting state. 250 std::unique_ptr<SplitAnalysis> SA; 251 std::unique_ptr<SplitEditor> SE; 252 253 /// Cached per-block interference maps 254 InterferenceCache IntfCache; 255 256 /// All basic blocks where the current register has uses. 257 SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints; 258 259 /// Global live range splitting candidate info. 260 struct GlobalSplitCandidate { 261 // Register intended for assignment, or 0. 262 unsigned PhysReg; 263 264 // SplitKit interval index for this candidate. 265 unsigned IntvIdx; 266 267 // Interference for PhysReg. 268 InterferenceCache::Cursor Intf; 269 270 // Bundles where this candidate should be live. 271 BitVector LiveBundles; 272 SmallVector<unsigned, 8> ActiveBlocks; 273 274 void reset(InterferenceCache &Cache, unsigned Reg) { 275 PhysReg = Reg; 276 IntvIdx = 0; 277 Intf.setPhysReg(Cache, Reg); 278 LiveBundles.clear(); 279 ActiveBlocks.clear(); 280 } 281 282 // Set B[i] = C for every live bundle where B[i] was NoCand. 283 unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) { 284 unsigned Count = 0; 285 for (int i = LiveBundles.find_first(); i >= 0; 286 i = LiveBundles.find_next(i)) 287 if (B[i] == NoCand) { 288 B[i] = C; 289 Count++; 290 } 291 return Count; 292 } 293 }; 294 295 /// Candidate info for each PhysReg in AllocationOrder. 296 /// This vector never shrinks, but grows to the size of the largest register 297 /// class. 298 SmallVector<GlobalSplitCandidate, 32> GlobalCand; 299 300 enum : unsigned { NoCand = ~0u }; 301 302 /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to 303 /// NoCand which indicates the stack interval. 304 SmallVector<unsigned, 32> BundleCand; 305 306 /// Callee-save register cost, calculated once per machine function. 307 BlockFrequency CSRCost; 308 309 /// Run or not the local reassignment heuristic. This information is 310 /// obtained from the TargetSubtargetInfo. 311 bool EnableLocalReassign; 312 313 /// Set of broken hints that may be reconciled later because of eviction. 314 SmallSetVector<LiveInterval *, 8> SetOfBrokenHints; 315 316 public: 317 RAGreedy(); 318 319 /// Return the pass name. 320 StringRef getPassName() const override { return "Greedy Register Allocator"; } 321 322 /// RAGreedy analysis usage. 323 void getAnalysisUsage(AnalysisUsage &AU) const override; 324 void releaseMemory() override; 325 Spiller &spiller() override { return *SpillerInstance; } 326 void enqueue(LiveInterval *LI) override; 327 LiveInterval *dequeue() override; 328 unsigned selectOrSplit(LiveInterval&, SmallVectorImpl<unsigned>&) override; 329 void aboutToRemoveInterval(LiveInterval &) override; 330 331 /// Perform register allocation. 332 bool runOnMachineFunction(MachineFunction &mf) override; 333 334 MachineFunctionProperties getRequiredProperties() const override { 335 return MachineFunctionProperties().set( 336 MachineFunctionProperties::Property::NoPHIs); 337 } 338 339 static char ID; 340 341 private: 342 unsigned selectOrSplitImpl(LiveInterval &, SmallVectorImpl<unsigned> &, 343 SmallVirtRegSet &, unsigned = 0); 344 345 bool LRE_CanEraseVirtReg(unsigned) override; 346 void LRE_WillShrinkVirtReg(unsigned) override; 347 void LRE_DidCloneVirtReg(unsigned, unsigned) override; 348 void enqueue(PQueue &CurQueue, LiveInterval *LI); 349 LiveInterval *dequeue(PQueue &CurQueue); 350 351 BlockFrequency calcSpillCost(); 352 bool addSplitConstraints(InterferenceCache::Cursor, BlockFrequency&); 353 void addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>); 354 void growRegion(GlobalSplitCandidate &Cand); 355 BlockFrequency calcGlobalSplitCost(GlobalSplitCandidate&); 356 bool calcCompactRegion(GlobalSplitCandidate&); 357 void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>); 358 void calcGapWeights(unsigned, SmallVectorImpl<float>&); 359 unsigned canReassign(LiveInterval &VirtReg, unsigned PhysReg); 360 bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool); 361 bool canEvictInterference(LiveInterval&, unsigned, bool, EvictionCost&); 362 void evictInterference(LiveInterval&, unsigned, 363 SmallVectorImpl<unsigned>&); 364 bool mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg, 365 SmallLISet &RecoloringCandidates, 366 const SmallVirtRegSet &FixedRegisters); 367 368 unsigned tryAssign(LiveInterval&, AllocationOrder&, 369 SmallVectorImpl<unsigned>&); 370 unsigned tryEvict(LiveInterval&, AllocationOrder&, 371 SmallVectorImpl<unsigned>&, unsigned = ~0u); 372 unsigned tryRegionSplit(LiveInterval&, AllocationOrder&, 373 SmallVectorImpl<unsigned>&); 374 /// Calculate cost of region splitting. 375 unsigned calculateRegionSplitCost(LiveInterval &VirtReg, 376 AllocationOrder &Order, 377 BlockFrequency &BestCost, 378 unsigned &NumCands, bool IgnoreCSR); 379 /// Perform region splitting. 380 unsigned doRegionSplit(LiveInterval &VirtReg, unsigned BestCand, 381 bool HasCompact, 382 SmallVectorImpl<unsigned> &NewVRegs); 383 /// Check other options before using a callee-saved register for the first 384 /// time. 385 unsigned tryAssignCSRFirstTime(LiveInterval &VirtReg, AllocationOrder &Order, 386 unsigned PhysReg, unsigned &CostPerUseLimit, 387 SmallVectorImpl<unsigned> &NewVRegs); 388 void initializeCSRCost(); 389 unsigned tryBlockSplit(LiveInterval&, AllocationOrder&, 390 SmallVectorImpl<unsigned>&); 391 unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&, 392 SmallVectorImpl<unsigned>&); 393 unsigned tryLocalSplit(LiveInterval&, AllocationOrder&, 394 SmallVectorImpl<unsigned>&); 395 unsigned trySplit(LiveInterval&, AllocationOrder&, 396 SmallVectorImpl<unsigned>&); 397 unsigned tryLastChanceRecoloring(LiveInterval &, AllocationOrder &, 398 SmallVectorImpl<unsigned> &, 399 SmallVirtRegSet &, unsigned); 400 bool tryRecoloringCandidates(PQueue &, SmallVectorImpl<unsigned> &, 401 SmallVirtRegSet &, unsigned); 402 void tryHintRecoloring(LiveInterval &); 403 void tryHintsRecoloring(); 404 405 /// Model the information carried by one end of a copy. 406 struct HintInfo { 407 /// The frequency of the copy. 408 BlockFrequency Freq; 409 /// The virtual register or physical register. 410 unsigned Reg; 411 /// Its currently assigned register. 412 /// In case of a physical register Reg == PhysReg. 413 unsigned PhysReg; 414 HintInfo(BlockFrequency Freq, unsigned Reg, unsigned PhysReg) 415 : Freq(Freq), Reg(Reg), PhysReg(PhysReg) {} 416 }; 417 typedef SmallVector<HintInfo, 4> HintsInfo; 418 BlockFrequency getBrokenHintFreq(const HintsInfo &, unsigned); 419 void collectHintInfo(unsigned, HintsInfo &); 420 421 bool isUnusedCalleeSavedReg(unsigned PhysReg) const; 422 }; 423 } // end anonymous namespace 424 425 char RAGreedy::ID = 0; 426 char &llvm::RAGreedyID = RAGreedy::ID; 427 428 INITIALIZE_PASS_BEGIN(RAGreedy, "greedy", 429 "Greedy Register Allocator", false, false) 430 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables) 431 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 432 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 433 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer) 434 INITIALIZE_PASS_DEPENDENCY(MachineScheduler) 435 INITIALIZE_PASS_DEPENDENCY(LiveStacks) 436 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 437 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 438 INITIALIZE_PASS_DEPENDENCY(VirtRegMap) 439 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix) 440 INITIALIZE_PASS_DEPENDENCY(EdgeBundles) 441 INITIALIZE_PASS_DEPENDENCY(SpillPlacement) 442 INITIALIZE_PASS_END(RAGreedy, "greedy", 443 "Greedy Register Allocator", false, false) 444 445 #ifndef NDEBUG 446 const char *const RAGreedy::StageName[] = { 447 "RS_New", 448 "RS_Assign", 449 "RS_Split", 450 "RS_Split2", 451 "RS_Spill", 452 "RS_Memory", 453 "RS_Done" 454 }; 455 #endif 456 457 // Hysteresis to use when comparing floats. 458 // This helps stabilize decisions based on float comparisons. 459 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875 460 461 462 FunctionPass* llvm::createGreedyRegisterAllocator() { 463 return new RAGreedy(); 464 } 465 466 RAGreedy::RAGreedy(): MachineFunctionPass(ID) { 467 } 468 469 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const { 470 AU.setPreservesCFG(); 471 AU.addRequired<MachineBlockFrequencyInfo>(); 472 AU.addPreserved<MachineBlockFrequencyInfo>(); 473 AU.addRequired<AAResultsWrapperPass>(); 474 AU.addPreserved<AAResultsWrapperPass>(); 475 AU.addRequired<LiveIntervals>(); 476 AU.addPreserved<LiveIntervals>(); 477 AU.addRequired<SlotIndexes>(); 478 AU.addPreserved<SlotIndexes>(); 479 AU.addRequired<LiveDebugVariables>(); 480 AU.addPreserved<LiveDebugVariables>(); 481 AU.addRequired<LiveStacks>(); 482 AU.addPreserved<LiveStacks>(); 483 AU.addRequired<MachineDominatorTree>(); 484 AU.addPreserved<MachineDominatorTree>(); 485 AU.addRequired<MachineLoopInfo>(); 486 AU.addPreserved<MachineLoopInfo>(); 487 AU.addRequired<VirtRegMap>(); 488 AU.addPreserved<VirtRegMap>(); 489 AU.addRequired<LiveRegMatrix>(); 490 AU.addPreserved<LiveRegMatrix>(); 491 AU.addRequired<EdgeBundles>(); 492 AU.addRequired<SpillPlacement>(); 493 MachineFunctionPass::getAnalysisUsage(AU); 494 } 495 496 497 //===----------------------------------------------------------------------===// 498 // LiveRangeEdit delegate methods 499 //===----------------------------------------------------------------------===// 500 501 bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) { 502 if (VRM->hasPhys(VirtReg)) { 503 LiveInterval &LI = LIS->getInterval(VirtReg); 504 Matrix->unassign(LI); 505 aboutToRemoveInterval(LI); 506 return true; 507 } 508 // Unassigned virtreg is probably in the priority queue. 509 // RegAllocBase will erase it after dequeueing. 510 return false; 511 } 512 513 void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) { 514 if (!VRM->hasPhys(VirtReg)) 515 return; 516 517 // Register is assigned, put it back on the queue for reassignment. 518 LiveInterval &LI = LIS->getInterval(VirtReg); 519 Matrix->unassign(LI); 520 enqueue(&LI); 521 } 522 523 void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) { 524 // Cloning a register we haven't even heard about yet? Just ignore it. 525 if (!ExtraRegInfo.inBounds(Old)) 526 return; 527 528 // LRE may clone a virtual register because dead code elimination causes it to 529 // be split into connected components. The new components are much smaller 530 // than the original, so they should get a new chance at being assigned. 531 // same stage as the parent. 532 ExtraRegInfo[Old].Stage = RS_Assign; 533 ExtraRegInfo.grow(New); 534 ExtraRegInfo[New] = ExtraRegInfo[Old]; 535 } 536 537 void RAGreedy::releaseMemory() { 538 SpillerInstance.reset(); 539 ExtraRegInfo.clear(); 540 GlobalCand.clear(); 541 } 542 543 void RAGreedy::enqueue(LiveInterval *LI) { enqueue(Queue, LI); } 544 545 void RAGreedy::enqueue(PQueue &CurQueue, LiveInterval *LI) { 546 // Prioritize live ranges by size, assigning larger ranges first. 547 // The queue holds (size, reg) pairs. 548 const unsigned Size = LI->getSize(); 549 const unsigned Reg = LI->reg; 550 assert(TargetRegisterInfo::isVirtualRegister(Reg) && 551 "Can only enqueue virtual registers"); 552 unsigned Prio; 553 554 ExtraRegInfo.grow(Reg); 555 if (ExtraRegInfo[Reg].Stage == RS_New) 556 ExtraRegInfo[Reg].Stage = RS_Assign; 557 558 if (ExtraRegInfo[Reg].Stage == RS_Split) { 559 // Unsplit ranges that couldn't be allocated immediately are deferred until 560 // everything else has been allocated. 561 Prio = Size; 562 } else if (ExtraRegInfo[Reg].Stage == RS_Memory) { 563 // Memory operand should be considered last. 564 // Change the priority such that Memory operand are assigned in 565 // the reverse order that they came in. 566 // TODO: Make this a member variable and probably do something about hints. 567 static unsigned MemOp = 0; 568 Prio = MemOp++; 569 } else { 570 // Giant live ranges fall back to the global assignment heuristic, which 571 // prevents excessive spilling in pathological cases. 572 bool ReverseLocal = TRI->reverseLocalAssignment(); 573 const TargetRegisterClass &RC = *MRI->getRegClass(Reg); 574 bool ForceGlobal = !ReverseLocal && 575 (Size / SlotIndex::InstrDist) > (2 * RC.getNumRegs()); 576 577 if (ExtraRegInfo[Reg].Stage == RS_Assign && !ForceGlobal && !LI->empty() && 578 LIS->intervalIsInOneMBB(*LI)) { 579 // Allocate original local ranges in linear instruction order. Since they 580 // are singly defined, this produces optimal coloring in the absence of 581 // global interference and other constraints. 582 if (!ReverseLocal) 583 Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex()); 584 else { 585 // Allocating bottom up may allow many short LRGs to be assigned first 586 // to one of the cheap registers. This could be much faster for very 587 // large blocks on targets with many physical registers. 588 Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex()); 589 } 590 Prio |= RC.AllocationPriority << 24; 591 } else { 592 // Allocate global and split ranges in long->short order. Long ranges that 593 // don't fit should be spilled (or split) ASAP so they don't create 594 // interference. Mark a bit to prioritize global above local ranges. 595 Prio = (1u << 29) + Size; 596 } 597 // Mark a higher bit to prioritize global and local above RS_Split. 598 Prio |= (1u << 31); 599 600 // Boost ranges that have a physical register hint. 601 if (VRM->hasKnownPreference(Reg)) 602 Prio |= (1u << 30); 603 } 604 // The virtual register number is a tie breaker for same-sized ranges. 605 // Give lower vreg numbers higher priority to assign them first. 606 CurQueue.push(std::make_pair(Prio, ~Reg)); 607 } 608 609 LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); } 610 611 LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) { 612 if (CurQueue.empty()) 613 return nullptr; 614 LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second); 615 CurQueue.pop(); 616 return LI; 617 } 618 619 620 //===----------------------------------------------------------------------===// 621 // Direct Assignment 622 //===----------------------------------------------------------------------===// 623 624 /// tryAssign - Try to assign VirtReg to an available register. 625 unsigned RAGreedy::tryAssign(LiveInterval &VirtReg, 626 AllocationOrder &Order, 627 SmallVectorImpl<unsigned> &NewVRegs) { 628 Order.rewind(); 629 unsigned PhysReg; 630 while ((PhysReg = Order.next())) 631 if (!Matrix->checkInterference(VirtReg, PhysReg)) 632 break; 633 if (!PhysReg || Order.isHint()) 634 return PhysReg; 635 636 // PhysReg is available, but there may be a better choice. 637 638 // If we missed a simple hint, try to cheaply evict interference from the 639 // preferred register. 640 if (unsigned Hint = MRI->getSimpleHint(VirtReg.reg)) 641 if (Order.isHint(Hint)) { 642 DEBUG(dbgs() << "missed hint " << PrintReg(Hint, TRI) << '\n'); 643 EvictionCost MaxCost; 644 MaxCost.setBrokenHints(1); 645 if (canEvictInterference(VirtReg, Hint, true, MaxCost)) { 646 evictInterference(VirtReg, Hint, NewVRegs); 647 return Hint; 648 } 649 // Record the missed hint, we may be able to recover 650 // at the end if the surrounding allocation changed. 651 SetOfBrokenHints.insert(&VirtReg); 652 } 653 654 // Try to evict interference from a cheaper alternative. 655 unsigned Cost = TRI->getCostPerUse(PhysReg); 656 657 // Most registers have 0 additional cost. 658 if (!Cost) 659 return PhysReg; 660 661 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is available at cost " << Cost 662 << '\n'); 663 unsigned CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost); 664 return CheapReg ? CheapReg : PhysReg; 665 } 666 667 668 //===----------------------------------------------------------------------===// 669 // Interference eviction 670 //===----------------------------------------------------------------------===// 671 672 unsigned RAGreedy::canReassign(LiveInterval &VirtReg, unsigned PrevReg) { 673 AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo, Matrix); 674 unsigned PhysReg; 675 while ((PhysReg = Order.next())) { 676 if (PhysReg == PrevReg) 677 continue; 678 679 MCRegUnitIterator Units(PhysReg, TRI); 680 for (; Units.isValid(); ++Units) { 681 // Instantiate a "subquery", not to be confused with the Queries array. 682 LiveIntervalUnion::Query subQ(&VirtReg, &Matrix->getLiveUnions()[*Units]); 683 if (subQ.checkInterference()) 684 break; 685 } 686 // If no units have interference, break out with the current PhysReg. 687 if (!Units.isValid()) 688 break; 689 } 690 if (PhysReg) 691 DEBUG(dbgs() << "can reassign: " << VirtReg << " from " 692 << PrintReg(PrevReg, TRI) << " to " << PrintReg(PhysReg, TRI) 693 << '\n'); 694 return PhysReg; 695 } 696 697 /// shouldEvict - determine if A should evict the assigned live range B. The 698 /// eviction policy defined by this function together with the allocation order 699 /// defined by enqueue() decides which registers ultimately end up being split 700 /// and spilled. 701 /// 702 /// Cascade numbers are used to prevent infinite loops if this function is a 703 /// cyclic relation. 704 /// 705 /// @param A The live range to be assigned. 706 /// @param IsHint True when A is about to be assigned to its preferred 707 /// register. 708 /// @param B The live range to be evicted. 709 /// @param BreaksHint True when B is already assigned to its preferred register. 710 bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint, 711 LiveInterval &B, bool BreaksHint) { 712 bool CanSplit = getStage(B) < RS_Spill; 713 714 // Be fairly aggressive about following hints as long as the evictee can be 715 // split. 716 if (CanSplit && IsHint && !BreaksHint) 717 return true; 718 719 if (A.weight > B.weight) { 720 DEBUG(dbgs() << "should evict: " << B << " w= " << B.weight << '\n'); 721 return true; 722 } 723 return false; 724 } 725 726 /// canEvictInterference - Return true if all interferences between VirtReg and 727 /// PhysReg can be evicted. 728 /// 729 /// @param VirtReg Live range that is about to be assigned. 730 /// @param PhysReg Desired register for assignment. 731 /// @param IsHint True when PhysReg is VirtReg's preferred register. 732 /// @param MaxCost Only look for cheaper candidates and update with new cost 733 /// when returning true. 734 /// @returns True when interference can be evicted cheaper than MaxCost. 735 bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg, 736 bool IsHint, EvictionCost &MaxCost) { 737 // It is only possible to evict virtual register interference. 738 if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg) 739 return false; 740 741 bool IsLocal = LIS->intervalIsInOneMBB(VirtReg); 742 743 // Find VirtReg's cascade number. This will be unassigned if VirtReg was never 744 // involved in an eviction before. If a cascade number was assigned, deny 745 // evicting anything with the same or a newer cascade number. This prevents 746 // infinite eviction loops. 747 // 748 // This works out so a register without a cascade number is allowed to evict 749 // anything, and it can be evicted by anything. 750 unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade; 751 if (!Cascade) 752 Cascade = NextCascade; 753 754 EvictionCost Cost; 755 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 756 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 757 // If there is 10 or more interferences, chances are one is heavier. 758 if (Q.collectInterferingVRegs(10) >= 10) 759 return false; 760 761 // Check if any interfering live range is heavier than MaxWeight. 762 for (unsigned i = Q.interferingVRegs().size(); i; --i) { 763 LiveInterval *Intf = Q.interferingVRegs()[i - 1]; 764 assert(TargetRegisterInfo::isVirtualRegister(Intf->reg) && 765 "Only expecting virtual register interference from query"); 766 // Never evict spill products. They cannot split or spill. 767 if (getStage(*Intf) == RS_Done) 768 return false; 769 // Once a live range becomes small enough, it is urgent that we find a 770 // register for it. This is indicated by an infinite spill weight. These 771 // urgent live ranges get to evict almost anything. 772 // 773 // Also allow urgent evictions of unspillable ranges from a strictly 774 // larger allocation order. 775 bool Urgent = !VirtReg.isSpillable() && 776 (Intf->isSpillable() || 777 RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg)) < 778 RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(Intf->reg))); 779 // Only evict older cascades or live ranges without a cascade. 780 unsigned IntfCascade = ExtraRegInfo[Intf->reg].Cascade; 781 if (Cascade <= IntfCascade) { 782 if (!Urgent) 783 return false; 784 // We permit breaking cascades for urgent evictions. It should be the 785 // last resort, though, so make it really expensive. 786 Cost.BrokenHints += 10; 787 } 788 // Would this break a satisfied hint? 789 bool BreaksHint = VRM->hasPreferredPhys(Intf->reg); 790 // Update eviction cost. 791 Cost.BrokenHints += BreaksHint; 792 Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight); 793 // Abort if this would be too expensive. 794 if (!(Cost < MaxCost)) 795 return false; 796 if (Urgent) 797 continue; 798 // Apply the eviction policy for non-urgent evictions. 799 if (!shouldEvict(VirtReg, IsHint, *Intf, BreaksHint)) 800 return false; 801 // If !MaxCost.isMax(), then we're just looking for a cheap register. 802 // Evicting another local live range in this case could lead to suboptimal 803 // coloring. 804 if (!MaxCost.isMax() && IsLocal && LIS->intervalIsInOneMBB(*Intf) && 805 (!EnableLocalReassign || !canReassign(*Intf, PhysReg))) { 806 return false; 807 } 808 } 809 } 810 MaxCost = Cost; 811 return true; 812 } 813 814 /// evictInterference - Evict any interferring registers that prevent VirtReg 815 /// from being assigned to Physreg. This assumes that canEvictInterference 816 /// returned true. 817 void RAGreedy::evictInterference(LiveInterval &VirtReg, unsigned PhysReg, 818 SmallVectorImpl<unsigned> &NewVRegs) { 819 // Make sure that VirtReg has a cascade number, and assign that cascade 820 // number to every evicted register. These live ranges than then only be 821 // evicted by a newer cascade, preventing infinite loops. 822 unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade; 823 if (!Cascade) 824 Cascade = ExtraRegInfo[VirtReg.reg].Cascade = NextCascade++; 825 826 DEBUG(dbgs() << "evicting " << PrintReg(PhysReg, TRI) 827 << " interference: Cascade " << Cascade << '\n'); 828 829 // Collect all interfering virtregs first. 830 SmallVector<LiveInterval*, 8> Intfs; 831 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 832 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 833 assert(Q.seenAllInterferences() && "Didn't check all interfererences."); 834 ArrayRef<LiveInterval*> IVR = Q.interferingVRegs(); 835 Intfs.append(IVR.begin(), IVR.end()); 836 } 837 838 // Evict them second. This will invalidate the queries. 839 for (unsigned i = 0, e = Intfs.size(); i != e; ++i) { 840 LiveInterval *Intf = Intfs[i]; 841 // The same VirtReg may be present in multiple RegUnits. Skip duplicates. 842 if (!VRM->hasPhys(Intf->reg)) 843 continue; 844 Matrix->unassign(*Intf); 845 assert((ExtraRegInfo[Intf->reg].Cascade < Cascade || 846 VirtReg.isSpillable() < Intf->isSpillable()) && 847 "Cannot decrease cascade number, illegal eviction"); 848 ExtraRegInfo[Intf->reg].Cascade = Cascade; 849 ++NumEvicted; 850 NewVRegs.push_back(Intf->reg); 851 } 852 } 853 854 /// Returns true if the given \p PhysReg is a callee saved register and has not 855 /// been used for allocation yet. 856 bool RAGreedy::isUnusedCalleeSavedReg(unsigned PhysReg) const { 857 unsigned CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg); 858 if (CSR == 0) 859 return false; 860 861 return !Matrix->isPhysRegUsed(PhysReg); 862 } 863 864 /// tryEvict - Try to evict all interferences for a physreg. 865 /// @param VirtReg Currently unassigned virtual register. 866 /// @param Order Physregs to try. 867 /// @return Physreg to assign VirtReg, or 0. 868 unsigned RAGreedy::tryEvict(LiveInterval &VirtReg, 869 AllocationOrder &Order, 870 SmallVectorImpl<unsigned> &NewVRegs, 871 unsigned CostPerUseLimit) { 872 NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription, 873 TimePassesIsEnabled); 874 875 // Keep track of the cheapest interference seen so far. 876 EvictionCost BestCost; 877 BestCost.setMax(); 878 unsigned BestPhys = 0; 879 unsigned OrderLimit = Order.getOrder().size(); 880 881 // When we are just looking for a reduced cost per use, don't break any 882 // hints, and only evict smaller spill weights. 883 if (CostPerUseLimit < ~0u) { 884 BestCost.BrokenHints = 0; 885 BestCost.MaxWeight = VirtReg.weight; 886 887 // Check of any registers in RC are below CostPerUseLimit. 888 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg); 889 unsigned MinCost = RegClassInfo.getMinCost(RC); 890 if (MinCost >= CostPerUseLimit) { 891 DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = " << MinCost 892 << ", no cheaper registers to be found.\n"); 893 return 0; 894 } 895 896 // It is normal for register classes to have a long tail of registers with 897 // the same cost. We don't need to look at them if they're too expensive. 898 if (TRI->getCostPerUse(Order.getOrder().back()) >= CostPerUseLimit) { 899 OrderLimit = RegClassInfo.getLastCostChange(RC); 900 DEBUG(dbgs() << "Only trying the first " << OrderLimit << " regs.\n"); 901 } 902 } 903 904 Order.rewind(); 905 while (unsigned PhysReg = Order.next(OrderLimit)) { 906 if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit) 907 continue; 908 // The first use of a callee-saved register in a function has cost 1. 909 // Don't start using a CSR when the CostPerUseLimit is low. 910 if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) { 911 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " would clobber CSR " 912 << PrintReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI) 913 << '\n'); 914 continue; 915 } 916 917 if (!canEvictInterference(VirtReg, PhysReg, false, BestCost)) 918 continue; 919 920 // Best so far. 921 BestPhys = PhysReg; 922 923 // Stop if the hint can be used. 924 if (Order.isHint()) 925 break; 926 } 927 928 if (!BestPhys) 929 return 0; 930 931 evictInterference(VirtReg, BestPhys, NewVRegs); 932 return BestPhys; 933 } 934 935 936 //===----------------------------------------------------------------------===// 937 // Region Splitting 938 //===----------------------------------------------------------------------===// 939 940 /// addSplitConstraints - Fill out the SplitConstraints vector based on the 941 /// interference pattern in Physreg and its aliases. Add the constraints to 942 /// SpillPlacement and return the static cost of this split in Cost, assuming 943 /// that all preferences in SplitConstraints are met. 944 /// Return false if there are no bundles with positive bias. 945 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf, 946 BlockFrequency &Cost) { 947 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 948 949 // Reset interference dependent info. 950 SplitConstraints.resize(UseBlocks.size()); 951 BlockFrequency StaticCost = 0; 952 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 953 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 954 SpillPlacement::BlockConstraint &BC = SplitConstraints[i]; 955 956 BC.Number = BI.MBB->getNumber(); 957 Intf.moveToBlock(BC.Number); 958 BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare; 959 BC.Exit = BI.LiveOut ? SpillPlacement::PrefReg : SpillPlacement::DontCare; 960 BC.ChangesValue = BI.FirstDef.isValid(); 961 962 if (!Intf.hasInterference()) 963 continue; 964 965 // Number of spill code instructions to insert. 966 unsigned Ins = 0; 967 968 // Interference for the live-in value. 969 if (BI.LiveIn) { 970 if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) { 971 BC.Entry = SpillPlacement::MustSpill; 972 ++Ins; 973 } else if (Intf.first() < BI.FirstInstr) { 974 BC.Entry = SpillPlacement::PrefSpill; 975 ++Ins; 976 } else if (Intf.first() < BI.LastInstr) { 977 ++Ins; 978 } 979 } 980 981 // Interference for the live-out value. 982 if (BI.LiveOut) { 983 if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) { 984 BC.Exit = SpillPlacement::MustSpill; 985 ++Ins; 986 } else if (Intf.last() > BI.LastInstr) { 987 BC.Exit = SpillPlacement::PrefSpill; 988 ++Ins; 989 } else if (Intf.last() > BI.FirstInstr) { 990 ++Ins; 991 } 992 } 993 994 // Accumulate the total frequency of inserted spill code. 995 while (Ins--) 996 StaticCost += SpillPlacer->getBlockFrequency(BC.Number); 997 } 998 Cost = StaticCost; 999 1000 // Add constraints for use-blocks. Note that these are the only constraints 1001 // that may add a positive bias, it is downhill from here. 1002 SpillPlacer->addConstraints(SplitConstraints); 1003 return SpillPlacer->scanActiveBundles(); 1004 } 1005 1006 1007 /// addThroughConstraints - Add constraints and links to SpillPlacer from the 1008 /// live-through blocks in Blocks. 1009 void RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf, 1010 ArrayRef<unsigned> Blocks) { 1011 const unsigned GroupSize = 8; 1012 SpillPlacement::BlockConstraint BCS[GroupSize]; 1013 unsigned TBS[GroupSize]; 1014 unsigned B = 0, T = 0; 1015 1016 for (unsigned i = 0; i != Blocks.size(); ++i) { 1017 unsigned Number = Blocks[i]; 1018 Intf.moveToBlock(Number); 1019 1020 if (!Intf.hasInterference()) { 1021 assert(T < GroupSize && "Array overflow"); 1022 TBS[T] = Number; 1023 if (++T == GroupSize) { 1024 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 1025 T = 0; 1026 } 1027 continue; 1028 } 1029 1030 assert(B < GroupSize && "Array overflow"); 1031 BCS[B].Number = Number; 1032 1033 // Interference for the live-in value. 1034 if (Intf.first() <= Indexes->getMBBStartIdx(Number)) 1035 BCS[B].Entry = SpillPlacement::MustSpill; 1036 else 1037 BCS[B].Entry = SpillPlacement::PrefSpill; 1038 1039 // Interference for the live-out value. 1040 if (Intf.last() >= SA->getLastSplitPoint(Number)) 1041 BCS[B].Exit = SpillPlacement::MustSpill; 1042 else 1043 BCS[B].Exit = SpillPlacement::PrefSpill; 1044 1045 if (++B == GroupSize) { 1046 SpillPlacer->addConstraints(makeArrayRef(BCS, B)); 1047 B = 0; 1048 } 1049 } 1050 1051 SpillPlacer->addConstraints(makeArrayRef(BCS, B)); 1052 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 1053 } 1054 1055 void RAGreedy::growRegion(GlobalSplitCandidate &Cand) { 1056 // Keep track of through blocks that have not been added to SpillPlacer. 1057 BitVector Todo = SA->getThroughBlocks(); 1058 SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks; 1059 unsigned AddedTo = 0; 1060 #ifndef NDEBUG 1061 unsigned Visited = 0; 1062 #endif 1063 1064 for (;;) { 1065 ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive(); 1066 // Find new through blocks in the periphery of PrefRegBundles. 1067 for (int i = 0, e = NewBundles.size(); i != e; ++i) { 1068 unsigned Bundle = NewBundles[i]; 1069 // Look at all blocks connected to Bundle in the full graph. 1070 ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle); 1071 for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end(); 1072 I != E; ++I) { 1073 unsigned Block = *I; 1074 if (!Todo.test(Block)) 1075 continue; 1076 Todo.reset(Block); 1077 // This is a new through block. Add it to SpillPlacer later. 1078 ActiveBlocks.push_back(Block); 1079 #ifndef NDEBUG 1080 ++Visited; 1081 #endif 1082 } 1083 } 1084 // Any new blocks to add? 1085 if (ActiveBlocks.size() == AddedTo) 1086 break; 1087 1088 // Compute through constraints from the interference, or assume that all 1089 // through blocks prefer spilling when forming compact regions. 1090 auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo); 1091 if (Cand.PhysReg) 1092 addThroughConstraints(Cand.Intf, NewBlocks); 1093 else 1094 // Provide a strong negative bias on through blocks to prevent unwanted 1095 // liveness on loop backedges. 1096 SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true); 1097 AddedTo = ActiveBlocks.size(); 1098 1099 // Perhaps iterating can enable more bundles? 1100 SpillPlacer->iterate(); 1101 } 1102 DEBUG(dbgs() << ", v=" << Visited); 1103 } 1104 1105 /// calcCompactRegion - Compute the set of edge bundles that should be live 1106 /// when splitting the current live range into compact regions. Compact 1107 /// regions can be computed without looking at interference. They are the 1108 /// regions formed by removing all the live-through blocks from the live range. 1109 /// 1110 /// Returns false if the current live range is already compact, or if the 1111 /// compact regions would form single block regions anyway. 1112 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) { 1113 // Without any through blocks, the live range is already compact. 1114 if (!SA->getNumThroughBlocks()) 1115 return false; 1116 1117 // Compact regions don't correspond to any physreg. 1118 Cand.reset(IntfCache, 0); 1119 1120 DEBUG(dbgs() << "Compact region bundles"); 1121 1122 // Use the spill placer to determine the live bundles. GrowRegion pretends 1123 // that all the through blocks have interference when PhysReg is unset. 1124 SpillPlacer->prepare(Cand.LiveBundles); 1125 1126 // The static split cost will be zero since Cand.Intf reports no interference. 1127 BlockFrequency Cost; 1128 if (!addSplitConstraints(Cand.Intf, Cost)) { 1129 DEBUG(dbgs() << ", none.\n"); 1130 return false; 1131 } 1132 1133 growRegion(Cand); 1134 SpillPlacer->finish(); 1135 1136 if (!Cand.LiveBundles.any()) { 1137 DEBUG(dbgs() << ", none.\n"); 1138 return false; 1139 } 1140 1141 DEBUG({ 1142 for (int i = Cand.LiveBundles.find_first(); i>=0; 1143 i = Cand.LiveBundles.find_next(i)) 1144 dbgs() << " EB#" << i; 1145 dbgs() << ".\n"; 1146 }); 1147 return true; 1148 } 1149 1150 /// calcSpillCost - Compute how expensive it would be to split the live range in 1151 /// SA around all use blocks instead of forming bundle regions. 1152 BlockFrequency RAGreedy::calcSpillCost() { 1153 BlockFrequency Cost = 0; 1154 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1155 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1156 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1157 unsigned Number = BI.MBB->getNumber(); 1158 // We normally only need one spill instruction - a load or a store. 1159 Cost += SpillPlacer->getBlockFrequency(Number); 1160 1161 // Unless the value is redefined in the block. 1162 if (BI.LiveIn && BI.LiveOut && BI.FirstDef) 1163 Cost += SpillPlacer->getBlockFrequency(Number); 1164 } 1165 return Cost; 1166 } 1167 1168 /// calcGlobalSplitCost - Return the global split cost of following the split 1169 /// pattern in LiveBundles. This cost should be added to the local cost of the 1170 /// interference pattern in SplitConstraints. 1171 /// 1172 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand) { 1173 BlockFrequency GlobalCost = 0; 1174 const BitVector &LiveBundles = Cand.LiveBundles; 1175 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1176 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1177 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1178 SpillPlacement::BlockConstraint &BC = SplitConstraints[i]; 1179 bool RegIn = LiveBundles[Bundles->getBundle(BC.Number, 0)]; 1180 bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, 1)]; 1181 unsigned Ins = 0; 1182 1183 if (BI.LiveIn) 1184 Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg); 1185 if (BI.LiveOut) 1186 Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg); 1187 while (Ins--) 1188 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1189 } 1190 1191 for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) { 1192 unsigned Number = Cand.ActiveBlocks[i]; 1193 bool RegIn = LiveBundles[Bundles->getBundle(Number, 0)]; 1194 bool RegOut = LiveBundles[Bundles->getBundle(Number, 1)]; 1195 if (!RegIn && !RegOut) 1196 continue; 1197 if (RegIn && RegOut) { 1198 // We need double spill code if this block has interference. 1199 Cand.Intf.moveToBlock(Number); 1200 if (Cand.Intf.hasInterference()) { 1201 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1202 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1203 } 1204 continue; 1205 } 1206 // live-in / stack-out or stack-in live-out. 1207 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1208 } 1209 return GlobalCost; 1210 } 1211 1212 /// splitAroundRegion - Split the current live range around the regions 1213 /// determined by BundleCand and GlobalCand. 1214 /// 1215 /// Before calling this function, GlobalCand and BundleCand must be initialized 1216 /// so each bundle is assigned to a valid candidate, or NoCand for the 1217 /// stack-bound bundles. The shared SA/SE SplitAnalysis and SplitEditor 1218 /// objects must be initialized for the current live range, and intervals 1219 /// created for the used candidates. 1220 /// 1221 /// @param LREdit The LiveRangeEdit object handling the current split. 1222 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value 1223 /// must appear in this list. 1224 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit, 1225 ArrayRef<unsigned> UsedCands) { 1226 // These are the intervals created for new global ranges. We may create more 1227 // intervals for local ranges. 1228 const unsigned NumGlobalIntvs = LREdit.size(); 1229 DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs << " globals.\n"); 1230 assert(NumGlobalIntvs && "No global intervals configured"); 1231 1232 // Isolate even single instructions when dealing with a proper sub-class. 1233 // That guarantees register class inflation for the stack interval because it 1234 // is all copies. 1235 unsigned Reg = SA->getParent().reg; 1236 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 1237 1238 // First handle all the blocks with uses. 1239 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1240 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1241 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1242 unsigned Number = BI.MBB->getNumber(); 1243 unsigned IntvIn = 0, IntvOut = 0; 1244 SlotIndex IntfIn, IntfOut; 1245 if (BI.LiveIn) { 1246 unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)]; 1247 if (CandIn != NoCand) { 1248 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 1249 IntvIn = Cand.IntvIdx; 1250 Cand.Intf.moveToBlock(Number); 1251 IntfIn = Cand.Intf.first(); 1252 } 1253 } 1254 if (BI.LiveOut) { 1255 unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)]; 1256 if (CandOut != NoCand) { 1257 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 1258 IntvOut = Cand.IntvIdx; 1259 Cand.Intf.moveToBlock(Number); 1260 IntfOut = Cand.Intf.last(); 1261 } 1262 } 1263 1264 // Create separate intervals for isolated blocks with multiple uses. 1265 if (!IntvIn && !IntvOut) { 1266 DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " isolated.\n"); 1267 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 1268 SE->splitSingleBlock(BI); 1269 continue; 1270 } 1271 1272 if (IntvIn && IntvOut) 1273 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1274 else if (IntvIn) 1275 SE->splitRegInBlock(BI, IntvIn, IntfIn); 1276 else 1277 SE->splitRegOutBlock(BI, IntvOut, IntfOut); 1278 } 1279 1280 // Handle live-through blocks. The relevant live-through blocks are stored in 1281 // the ActiveBlocks list with each candidate. We need to filter out 1282 // duplicates. 1283 BitVector Todo = SA->getThroughBlocks(); 1284 for (unsigned c = 0; c != UsedCands.size(); ++c) { 1285 ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks; 1286 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { 1287 unsigned Number = Blocks[i]; 1288 if (!Todo.test(Number)) 1289 continue; 1290 Todo.reset(Number); 1291 1292 unsigned IntvIn = 0, IntvOut = 0; 1293 SlotIndex IntfIn, IntfOut; 1294 1295 unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)]; 1296 if (CandIn != NoCand) { 1297 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 1298 IntvIn = Cand.IntvIdx; 1299 Cand.Intf.moveToBlock(Number); 1300 IntfIn = Cand.Intf.first(); 1301 } 1302 1303 unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)]; 1304 if (CandOut != NoCand) { 1305 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 1306 IntvOut = Cand.IntvIdx; 1307 Cand.Intf.moveToBlock(Number); 1308 IntfOut = Cand.Intf.last(); 1309 } 1310 if (!IntvIn && !IntvOut) 1311 continue; 1312 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1313 } 1314 } 1315 1316 ++NumGlobalSplits; 1317 1318 SmallVector<unsigned, 8> IntvMap; 1319 SE->finish(&IntvMap); 1320 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 1321 1322 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 1323 unsigned OrigBlocks = SA->getNumLiveBlocks(); 1324 1325 // Sort out the new intervals created by splitting. We get four kinds: 1326 // - Remainder intervals should not be split again. 1327 // - Candidate intervals can be assigned to Cand.PhysReg. 1328 // - Block-local splits are candidates for local splitting. 1329 // - DCE leftovers should go back on the queue. 1330 for (unsigned i = 0, e = LREdit.size(); i != e; ++i) { 1331 LiveInterval &Reg = LIS->getInterval(LREdit.get(i)); 1332 1333 // Ignore old intervals from DCE. 1334 if (getStage(Reg) != RS_New) 1335 continue; 1336 1337 // Remainder interval. Don't try splitting again, spill if it doesn't 1338 // allocate. 1339 if (IntvMap[i] == 0) { 1340 setStage(Reg, RS_Spill); 1341 continue; 1342 } 1343 1344 // Global intervals. Allow repeated splitting as long as the number of live 1345 // blocks is strictly decreasing. 1346 if (IntvMap[i] < NumGlobalIntvs) { 1347 if (SA->countLiveBlocks(&Reg) >= OrigBlocks) { 1348 DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks 1349 << " blocks as original.\n"); 1350 // Don't allow repeated splitting as a safe guard against looping. 1351 setStage(Reg, RS_Split2); 1352 } 1353 continue; 1354 } 1355 1356 // Other intervals are treated as new. This includes local intervals created 1357 // for blocks with multiple uses, and anything created by DCE. 1358 } 1359 1360 if (VerifyEnabled) 1361 MF->verify(this, "After splitting live range around region"); 1362 } 1363 1364 unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order, 1365 SmallVectorImpl<unsigned> &NewVRegs) { 1366 unsigned NumCands = 0; 1367 BlockFrequency BestCost; 1368 1369 // Check if we can split this live range around a compact region. 1370 bool HasCompact = calcCompactRegion(GlobalCand.front()); 1371 if (HasCompact) { 1372 // Yes, keep GlobalCand[0] as the compact region candidate. 1373 NumCands = 1; 1374 BestCost = BlockFrequency::getMaxFrequency(); 1375 } else { 1376 // No benefit from the compact region, our fallback will be per-block 1377 // splitting. Make sure we find a solution that is cheaper than spilling. 1378 BestCost = calcSpillCost(); 1379 DEBUG(dbgs() << "Cost of isolating all blocks = "; 1380 MBFI->printBlockFreq(dbgs(), BestCost) << '\n'); 1381 } 1382 1383 unsigned BestCand = 1384 calculateRegionSplitCost(VirtReg, Order, BestCost, NumCands, 1385 false/*IgnoreCSR*/); 1386 1387 // No solutions found, fall back to single block splitting. 1388 if (!HasCompact && BestCand == NoCand) 1389 return 0; 1390 1391 return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs); 1392 } 1393 1394 unsigned RAGreedy::calculateRegionSplitCost(LiveInterval &VirtReg, 1395 AllocationOrder &Order, 1396 BlockFrequency &BestCost, 1397 unsigned &NumCands, 1398 bool IgnoreCSR) { 1399 unsigned BestCand = NoCand; 1400 Order.rewind(); 1401 while (unsigned PhysReg = Order.next()) { 1402 if (IgnoreCSR && isUnusedCalleeSavedReg(PhysReg)) 1403 continue; 1404 1405 // Discard bad candidates before we run out of interference cache cursors. 1406 // This will only affect register classes with a lot of registers (>32). 1407 if (NumCands == IntfCache.getMaxCursors()) { 1408 unsigned WorstCount = ~0u; 1409 unsigned Worst = 0; 1410 for (unsigned i = 0; i != NumCands; ++i) { 1411 if (i == BestCand || !GlobalCand[i].PhysReg) 1412 continue; 1413 unsigned Count = GlobalCand[i].LiveBundles.count(); 1414 if (Count < WorstCount) { 1415 Worst = i; 1416 WorstCount = Count; 1417 } 1418 } 1419 --NumCands; 1420 GlobalCand[Worst] = GlobalCand[NumCands]; 1421 if (BestCand == NumCands) 1422 BestCand = Worst; 1423 } 1424 1425 if (GlobalCand.size() <= NumCands) 1426 GlobalCand.resize(NumCands+1); 1427 GlobalSplitCandidate &Cand = GlobalCand[NumCands]; 1428 Cand.reset(IntfCache, PhysReg); 1429 1430 SpillPlacer->prepare(Cand.LiveBundles); 1431 BlockFrequency Cost; 1432 if (!addSplitConstraints(Cand.Intf, Cost)) { 1433 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tno positive bundles\n"); 1434 continue; 1435 } 1436 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tstatic = "; 1437 MBFI->printBlockFreq(dbgs(), Cost)); 1438 if (Cost >= BestCost) { 1439 DEBUG({ 1440 if (BestCand == NoCand) 1441 dbgs() << " worse than no bundles\n"; 1442 else 1443 dbgs() << " worse than " 1444 << PrintReg(GlobalCand[BestCand].PhysReg, TRI) << '\n'; 1445 }); 1446 continue; 1447 } 1448 growRegion(Cand); 1449 1450 SpillPlacer->finish(); 1451 1452 // No live bundles, defer to splitSingleBlocks(). 1453 if (!Cand.LiveBundles.any()) { 1454 DEBUG(dbgs() << " no bundles.\n"); 1455 continue; 1456 } 1457 1458 Cost += calcGlobalSplitCost(Cand); 1459 DEBUG({ 1460 dbgs() << ", total = "; MBFI->printBlockFreq(dbgs(), Cost) 1461 << " with bundles"; 1462 for (int i = Cand.LiveBundles.find_first(); i>=0; 1463 i = Cand.LiveBundles.find_next(i)) 1464 dbgs() << " EB#" << i; 1465 dbgs() << ".\n"; 1466 }); 1467 if (Cost < BestCost) { 1468 BestCand = NumCands; 1469 BestCost = Cost; 1470 } 1471 ++NumCands; 1472 } 1473 return BestCand; 1474 } 1475 1476 unsigned RAGreedy::doRegionSplit(LiveInterval &VirtReg, unsigned BestCand, 1477 bool HasCompact, 1478 SmallVectorImpl<unsigned> &NewVRegs) { 1479 SmallVector<unsigned, 8> UsedCands; 1480 // Prepare split editor. 1481 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1482 SE->reset(LREdit, SplitSpillMode); 1483 1484 // Assign all edge bundles to the preferred candidate, or NoCand. 1485 BundleCand.assign(Bundles->getNumBundles(), NoCand); 1486 1487 // Assign bundles for the best candidate region. 1488 if (BestCand != NoCand) { 1489 GlobalSplitCandidate &Cand = GlobalCand[BestCand]; 1490 if (unsigned B = Cand.getBundles(BundleCand, BestCand)) { 1491 UsedCands.push_back(BestCand); 1492 Cand.IntvIdx = SE->openIntv(); 1493 DEBUG(dbgs() << "Split for " << PrintReg(Cand.PhysReg, TRI) << " in " 1494 << B << " bundles, intv " << Cand.IntvIdx << ".\n"); 1495 (void)B; 1496 } 1497 } 1498 1499 // Assign bundles for the compact region. 1500 if (HasCompact) { 1501 GlobalSplitCandidate &Cand = GlobalCand.front(); 1502 assert(!Cand.PhysReg && "Compact region has no physreg"); 1503 if (unsigned B = Cand.getBundles(BundleCand, 0)) { 1504 UsedCands.push_back(0); 1505 Cand.IntvIdx = SE->openIntv(); 1506 DEBUG(dbgs() << "Split for compact region in " << B << " bundles, intv " 1507 << Cand.IntvIdx << ".\n"); 1508 (void)B; 1509 } 1510 } 1511 1512 splitAroundRegion(LREdit, UsedCands); 1513 return 0; 1514 } 1515 1516 1517 //===----------------------------------------------------------------------===// 1518 // Per-Block Splitting 1519 //===----------------------------------------------------------------------===// 1520 1521 /// tryBlockSplit - Split a global live range around every block with uses. This 1522 /// creates a lot of local live ranges, that will be split by tryLocalSplit if 1523 /// they don't allocate. 1524 unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order, 1525 SmallVectorImpl<unsigned> &NewVRegs) { 1526 assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed"); 1527 unsigned Reg = VirtReg.reg; 1528 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 1529 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1530 SE->reset(LREdit, SplitSpillMode); 1531 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1532 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1533 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1534 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 1535 SE->splitSingleBlock(BI); 1536 } 1537 // No blocks were split. 1538 if (LREdit.empty()) 1539 return 0; 1540 1541 // We did split for some blocks. 1542 SmallVector<unsigned, 8> IntvMap; 1543 SE->finish(&IntvMap); 1544 1545 // Tell LiveDebugVariables about the new ranges. 1546 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 1547 1548 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 1549 1550 // Sort out the new intervals created by splitting. The remainder interval 1551 // goes straight to spilling, the new local ranges get to stay RS_New. 1552 for (unsigned i = 0, e = LREdit.size(); i != e; ++i) { 1553 LiveInterval &LI = LIS->getInterval(LREdit.get(i)); 1554 if (getStage(LI) == RS_New && IntvMap[i] == 0) 1555 setStage(LI, RS_Spill); 1556 } 1557 1558 if (VerifyEnabled) 1559 MF->verify(this, "After splitting live range around basic blocks"); 1560 return 0; 1561 } 1562 1563 1564 //===----------------------------------------------------------------------===// 1565 // Per-Instruction Splitting 1566 //===----------------------------------------------------------------------===// 1567 1568 /// Get the number of allocatable registers that match the constraints of \p Reg 1569 /// on \p MI and that are also in \p SuperRC. 1570 static unsigned getNumAllocatableRegsForConstraints( 1571 const MachineInstr *MI, unsigned Reg, const TargetRegisterClass *SuperRC, 1572 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI, 1573 const RegisterClassInfo &RCI) { 1574 assert(SuperRC && "Invalid register class"); 1575 1576 const TargetRegisterClass *ConstrainedRC = 1577 MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI, 1578 /* ExploreBundle */ true); 1579 if (!ConstrainedRC) 1580 return 0; 1581 return RCI.getNumAllocatableRegs(ConstrainedRC); 1582 } 1583 1584 /// tryInstructionSplit - Split a live range around individual instructions. 1585 /// This is normally not worthwhile since the spiller is doing essentially the 1586 /// same thing. However, when the live range is in a constrained register 1587 /// class, it may help to insert copies such that parts of the live range can 1588 /// be moved to a larger register class. 1589 /// 1590 /// This is similar to spilling to a larger register class. 1591 unsigned 1592 RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order, 1593 SmallVectorImpl<unsigned> &NewVRegs) { 1594 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg); 1595 // There is no point to this if there are no larger sub-classes. 1596 if (!RegClassInfo.isProperSubClass(CurRC)) 1597 return 0; 1598 1599 // Always enable split spill mode, since we're effectively spilling to a 1600 // register. 1601 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1602 SE->reset(LREdit, SplitEditor::SM_Size); 1603 1604 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 1605 if (Uses.size() <= 1) 1606 return 0; 1607 1608 DEBUG(dbgs() << "Split around " << Uses.size() << " individual instrs.\n"); 1609 1610 const TargetRegisterClass *SuperRC = 1611 TRI->getLargestLegalSuperClass(CurRC, *MF); 1612 unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC); 1613 // Split around every non-copy instruction if this split will relax 1614 // the constraints on the virtual register. 1615 // Otherwise, splitting just inserts uncoalescable copies that do not help 1616 // the allocation. 1617 for (unsigned i = 0; i != Uses.size(); ++i) { 1618 if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Uses[i])) 1619 if (MI->isFullCopy() || 1620 SuperRCNumAllocatableRegs == 1621 getNumAllocatableRegsForConstraints(MI, VirtReg.reg, SuperRC, TII, 1622 TRI, RCI)) { 1623 DEBUG(dbgs() << " skip:\t" << Uses[i] << '\t' << *MI); 1624 continue; 1625 } 1626 SE->openIntv(); 1627 SlotIndex SegStart = SE->enterIntvBefore(Uses[i]); 1628 SlotIndex SegStop = SE->leaveIntvAfter(Uses[i]); 1629 SE->useIntv(SegStart, SegStop); 1630 } 1631 1632 if (LREdit.empty()) { 1633 DEBUG(dbgs() << "All uses were copies.\n"); 1634 return 0; 1635 } 1636 1637 SmallVector<unsigned, 8> IntvMap; 1638 SE->finish(&IntvMap); 1639 DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS); 1640 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 1641 1642 // Assign all new registers to RS_Spill. This was the last chance. 1643 setStage(LREdit.begin(), LREdit.end(), RS_Spill); 1644 return 0; 1645 } 1646 1647 1648 //===----------------------------------------------------------------------===// 1649 // Local Splitting 1650 //===----------------------------------------------------------------------===// 1651 1652 1653 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted 1654 /// in order to use PhysReg between two entries in SA->UseSlots. 1655 /// 1656 /// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1]. 1657 /// 1658 void RAGreedy::calcGapWeights(unsigned PhysReg, 1659 SmallVectorImpl<float> &GapWeight) { 1660 assert(SA->getUseBlocks().size() == 1 && "Not a local interval"); 1661 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 1662 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 1663 const unsigned NumGaps = Uses.size()-1; 1664 1665 // Start and end points for the interference check. 1666 SlotIndex StartIdx = 1667 BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr; 1668 SlotIndex StopIdx = 1669 BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr; 1670 1671 GapWeight.assign(NumGaps, 0.0f); 1672 1673 // Add interference from each overlapping register. 1674 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 1675 if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units) 1676 .checkInterference()) 1677 continue; 1678 1679 // We know that VirtReg is a continuous interval from FirstInstr to 1680 // LastInstr, so we don't need InterferenceQuery. 1681 // 1682 // Interference that overlaps an instruction is counted in both gaps 1683 // surrounding the instruction. The exception is interference before 1684 // StartIdx and after StopIdx. 1685 // 1686 LiveIntervalUnion::SegmentIter IntI = 1687 Matrix->getLiveUnions()[*Units] .find(StartIdx); 1688 for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) { 1689 // Skip the gaps before IntI. 1690 while (Uses[Gap+1].getBoundaryIndex() < IntI.start()) 1691 if (++Gap == NumGaps) 1692 break; 1693 if (Gap == NumGaps) 1694 break; 1695 1696 // Update the gaps covered by IntI. 1697 const float weight = IntI.value()->weight; 1698 for (; Gap != NumGaps; ++Gap) { 1699 GapWeight[Gap] = std::max(GapWeight[Gap], weight); 1700 if (Uses[Gap+1].getBaseIndex() >= IntI.stop()) 1701 break; 1702 } 1703 if (Gap == NumGaps) 1704 break; 1705 } 1706 } 1707 1708 // Add fixed interference. 1709 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 1710 const LiveRange &LR = LIS->getRegUnit(*Units); 1711 LiveRange::const_iterator I = LR.find(StartIdx); 1712 LiveRange::const_iterator E = LR.end(); 1713 1714 // Same loop as above. Mark any overlapped gaps as HUGE_VALF. 1715 for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) { 1716 while (Uses[Gap+1].getBoundaryIndex() < I->start) 1717 if (++Gap == NumGaps) 1718 break; 1719 if (Gap == NumGaps) 1720 break; 1721 1722 for (; Gap != NumGaps; ++Gap) { 1723 GapWeight[Gap] = llvm::huge_valf; 1724 if (Uses[Gap+1].getBaseIndex() >= I->end) 1725 break; 1726 } 1727 if (Gap == NumGaps) 1728 break; 1729 } 1730 } 1731 } 1732 1733 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only 1734 /// basic block. 1735 /// 1736 unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order, 1737 SmallVectorImpl<unsigned> &NewVRegs) { 1738 assert(SA->getUseBlocks().size() == 1 && "Not a local interval"); 1739 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 1740 1741 // Note that it is possible to have an interval that is live-in or live-out 1742 // while only covering a single block - A phi-def can use undef values from 1743 // predecessors, and the block could be a single-block loop. 1744 // We don't bother doing anything clever about such a case, we simply assume 1745 // that the interval is continuous from FirstInstr to LastInstr. We should 1746 // make sure that we don't do anything illegal to such an interval, though. 1747 1748 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 1749 if (Uses.size() <= 2) 1750 return 0; 1751 const unsigned NumGaps = Uses.size()-1; 1752 1753 DEBUG({ 1754 dbgs() << "tryLocalSplit: "; 1755 for (unsigned i = 0, e = Uses.size(); i != e; ++i) 1756 dbgs() << ' ' << Uses[i]; 1757 dbgs() << '\n'; 1758 }); 1759 1760 // If VirtReg is live across any register mask operands, compute a list of 1761 // gaps with register masks. 1762 SmallVector<unsigned, 8> RegMaskGaps; 1763 if (Matrix->checkRegMaskInterference(VirtReg)) { 1764 // Get regmask slots for the whole block. 1765 ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber()); 1766 DEBUG(dbgs() << RMS.size() << " regmasks in block:"); 1767 // Constrain to VirtReg's live range. 1768 unsigned ri = std::lower_bound(RMS.begin(), RMS.end(), 1769 Uses.front().getRegSlot()) - RMS.begin(); 1770 unsigned re = RMS.size(); 1771 for (unsigned i = 0; i != NumGaps && ri != re; ++i) { 1772 // Look for Uses[i] <= RMS <= Uses[i+1]. 1773 assert(!SlotIndex::isEarlierInstr(RMS[ri], Uses[i])); 1774 if (SlotIndex::isEarlierInstr(Uses[i+1], RMS[ri])) 1775 continue; 1776 // Skip a regmask on the same instruction as the last use. It doesn't 1777 // overlap the live range. 1778 if (SlotIndex::isSameInstr(Uses[i+1], RMS[ri]) && i+1 == NumGaps) 1779 break; 1780 DEBUG(dbgs() << ' ' << RMS[ri] << ':' << Uses[i] << '-' << Uses[i+1]); 1781 RegMaskGaps.push_back(i); 1782 // Advance ri to the next gap. A regmask on one of the uses counts in 1783 // both gaps. 1784 while (ri != re && SlotIndex::isEarlierInstr(RMS[ri], Uses[i+1])) 1785 ++ri; 1786 } 1787 DEBUG(dbgs() << '\n'); 1788 } 1789 1790 // Since we allow local split results to be split again, there is a risk of 1791 // creating infinite loops. It is tempting to require that the new live 1792 // ranges have less instructions than the original. That would guarantee 1793 // convergence, but it is too strict. A live range with 3 instructions can be 1794 // split 2+3 (including the COPY), and we want to allow that. 1795 // 1796 // Instead we use these rules: 1797 // 1798 // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the 1799 // noop split, of course). 1800 // 2. Require progress be made for ranges with getStage() == RS_Split2. All 1801 // the new ranges must have fewer instructions than before the split. 1802 // 3. New ranges with the same number of instructions are marked RS_Split2, 1803 // smaller ranges are marked RS_New. 1804 // 1805 // These rules allow a 3 -> 2+3 split once, which we need. They also prevent 1806 // excessive splitting and infinite loops. 1807 // 1808 bool ProgressRequired = getStage(VirtReg) >= RS_Split2; 1809 1810 // Best split candidate. 1811 unsigned BestBefore = NumGaps; 1812 unsigned BestAfter = 0; 1813 float BestDiff = 0; 1814 1815 const float blockFreq = 1816 SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() * 1817 (1.0f / MBFI->getEntryFreq()); 1818 SmallVector<float, 8> GapWeight; 1819 1820 Order.rewind(); 1821 while (unsigned PhysReg = Order.next()) { 1822 // Keep track of the largest spill weight that would need to be evicted in 1823 // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1]. 1824 calcGapWeights(PhysReg, GapWeight); 1825 1826 // Remove any gaps with regmask clobbers. 1827 if (Matrix->checkRegMaskInterference(VirtReg, PhysReg)) 1828 for (unsigned i = 0, e = RegMaskGaps.size(); i != e; ++i) 1829 GapWeight[RegMaskGaps[i]] = llvm::huge_valf; 1830 1831 // Try to find the best sequence of gaps to close. 1832 // The new spill weight must be larger than any gap interference. 1833 1834 // We will split before Uses[SplitBefore] and after Uses[SplitAfter]. 1835 unsigned SplitBefore = 0, SplitAfter = 1; 1836 1837 // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]). 1838 // It is the spill weight that needs to be evicted. 1839 float MaxGap = GapWeight[0]; 1840 1841 for (;;) { 1842 // Live before/after split? 1843 const bool LiveBefore = SplitBefore != 0 || BI.LiveIn; 1844 const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut; 1845 1846 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << ' ' 1847 << Uses[SplitBefore] << '-' << Uses[SplitAfter] 1848 << " i=" << MaxGap); 1849 1850 // Stop before the interval gets so big we wouldn't be making progress. 1851 if (!LiveBefore && !LiveAfter) { 1852 DEBUG(dbgs() << " all\n"); 1853 break; 1854 } 1855 // Should the interval be extended or shrunk? 1856 bool Shrink = true; 1857 1858 // How many gaps would the new range have? 1859 unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter; 1860 1861 // Legally, without causing looping? 1862 bool Legal = !ProgressRequired || NewGaps < NumGaps; 1863 1864 if (Legal && MaxGap < llvm::huge_valf) { 1865 // Estimate the new spill weight. Each instruction reads or writes the 1866 // register. Conservatively assume there are no read-modify-write 1867 // instructions. 1868 // 1869 // Try to guess the size of the new interval. 1870 const float EstWeight = normalizeSpillWeight( 1871 blockFreq * (NewGaps + 1), 1872 Uses[SplitBefore].distance(Uses[SplitAfter]) + 1873 (LiveBefore + LiveAfter) * SlotIndex::InstrDist, 1874 1); 1875 // Would this split be possible to allocate? 1876 // Never allocate all gaps, we wouldn't be making progress. 1877 DEBUG(dbgs() << " w=" << EstWeight); 1878 if (EstWeight * Hysteresis >= MaxGap) { 1879 Shrink = false; 1880 float Diff = EstWeight - MaxGap; 1881 if (Diff > BestDiff) { 1882 DEBUG(dbgs() << " (best)"); 1883 BestDiff = Hysteresis * Diff; 1884 BestBefore = SplitBefore; 1885 BestAfter = SplitAfter; 1886 } 1887 } 1888 } 1889 1890 // Try to shrink. 1891 if (Shrink) { 1892 if (++SplitBefore < SplitAfter) { 1893 DEBUG(dbgs() << " shrink\n"); 1894 // Recompute the max when necessary. 1895 if (GapWeight[SplitBefore - 1] >= MaxGap) { 1896 MaxGap = GapWeight[SplitBefore]; 1897 for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i) 1898 MaxGap = std::max(MaxGap, GapWeight[i]); 1899 } 1900 continue; 1901 } 1902 MaxGap = 0; 1903 } 1904 1905 // Try to extend the interval. 1906 if (SplitAfter >= NumGaps) { 1907 DEBUG(dbgs() << " end\n"); 1908 break; 1909 } 1910 1911 DEBUG(dbgs() << " extend\n"); 1912 MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]); 1913 } 1914 } 1915 1916 // Didn't find any candidates? 1917 if (BestBefore == NumGaps) 1918 return 0; 1919 1920 DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] 1921 << '-' << Uses[BestAfter] << ", " << BestDiff 1922 << ", " << (BestAfter - BestBefore + 1) << " instrs\n"); 1923 1924 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1925 SE->reset(LREdit); 1926 1927 SE->openIntv(); 1928 SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]); 1929 SlotIndex SegStop = SE->leaveIntvAfter(Uses[BestAfter]); 1930 SE->useIntv(SegStart, SegStop); 1931 SmallVector<unsigned, 8> IntvMap; 1932 SE->finish(&IntvMap); 1933 DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS); 1934 1935 // If the new range has the same number of instructions as before, mark it as 1936 // RS_Split2 so the next split will be forced to make progress. Otherwise, 1937 // leave the new intervals as RS_New so they can compete. 1938 bool LiveBefore = BestBefore != 0 || BI.LiveIn; 1939 bool LiveAfter = BestAfter != NumGaps || BI.LiveOut; 1940 unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter; 1941 if (NewGaps >= NumGaps) { 1942 DEBUG(dbgs() << "Tagging non-progress ranges: "); 1943 assert(!ProgressRequired && "Didn't make progress when it was required."); 1944 for (unsigned i = 0, e = IntvMap.size(); i != e; ++i) 1945 if (IntvMap[i] == 1) { 1946 setStage(LIS->getInterval(LREdit.get(i)), RS_Split2); 1947 DEBUG(dbgs() << PrintReg(LREdit.get(i))); 1948 } 1949 DEBUG(dbgs() << '\n'); 1950 } 1951 ++NumLocalSplits; 1952 1953 return 0; 1954 } 1955 1956 //===----------------------------------------------------------------------===// 1957 // Live Range Splitting 1958 //===----------------------------------------------------------------------===// 1959 1960 /// trySplit - Try to split VirtReg or one of its interferences, making it 1961 /// assignable. 1962 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs. 1963 unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order, 1964 SmallVectorImpl<unsigned>&NewVRegs) { 1965 // Ranges must be Split2 or less. 1966 if (getStage(VirtReg) >= RS_Spill) 1967 return 0; 1968 1969 // Local intervals are handled separately. 1970 if (LIS->intervalIsInOneMBB(VirtReg)) { 1971 NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName, 1972 TimerGroupDescription, TimePassesIsEnabled); 1973 SA->analyze(&VirtReg); 1974 unsigned PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs); 1975 if (PhysReg || !NewVRegs.empty()) 1976 return PhysReg; 1977 return tryInstructionSplit(VirtReg, Order, NewVRegs); 1978 } 1979 1980 NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName, 1981 TimerGroupDescription, TimePassesIsEnabled); 1982 1983 SA->analyze(&VirtReg); 1984 1985 // FIXME: SplitAnalysis may repair broken live ranges coming from the 1986 // coalescer. That may cause the range to become allocatable which means that 1987 // tryRegionSplit won't be making progress. This check should be replaced with 1988 // an assertion when the coalescer is fixed. 1989 if (SA->didRepairRange()) { 1990 // VirtReg has changed, so all cached queries are invalid. 1991 Matrix->invalidateVirtRegs(); 1992 if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs)) 1993 return PhysReg; 1994 } 1995 1996 // First try to split around a region spanning multiple blocks. RS_Split2 1997 // ranges already made dubious progress with region splitting, so they go 1998 // straight to single block splitting. 1999 if (getStage(VirtReg) < RS_Split2) { 2000 unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs); 2001 if (PhysReg || !NewVRegs.empty()) 2002 return PhysReg; 2003 } 2004 2005 // Then isolate blocks. 2006 return tryBlockSplit(VirtReg, Order, NewVRegs); 2007 } 2008 2009 //===----------------------------------------------------------------------===// 2010 // Last Chance Recoloring 2011 //===----------------------------------------------------------------------===// 2012 2013 /// mayRecolorAllInterferences - Check if the virtual registers that 2014 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be 2015 /// recolored to free \p PhysReg. 2016 /// When true is returned, \p RecoloringCandidates has been augmented with all 2017 /// the live intervals that need to be recolored in order to free \p PhysReg 2018 /// for \p VirtReg. 2019 /// \p FixedRegisters contains all the virtual registers that cannot be 2020 /// recolored. 2021 bool 2022 RAGreedy::mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg, 2023 SmallLISet &RecoloringCandidates, 2024 const SmallVirtRegSet &FixedRegisters) { 2025 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg); 2026 2027 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 2028 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 2029 // If there is LastChanceRecoloringMaxInterference or more interferences, 2030 // chances are one would not be recolorable. 2031 if (Q.collectInterferingVRegs(LastChanceRecoloringMaxInterference) >= 2032 LastChanceRecoloringMaxInterference && !ExhaustiveSearch) { 2033 DEBUG(dbgs() << "Early abort: too many interferences.\n"); 2034 CutOffInfo |= CO_Interf; 2035 return false; 2036 } 2037 for (unsigned i = Q.interferingVRegs().size(); i; --i) { 2038 LiveInterval *Intf = Q.interferingVRegs()[i - 1]; 2039 // If Intf is done and sit on the same register class as VirtReg, 2040 // it would not be recolorable as it is in the same state as VirtReg. 2041 if ((getStage(*Intf) == RS_Done && 2042 MRI->getRegClass(Intf->reg) == CurRC) || 2043 FixedRegisters.count(Intf->reg)) { 2044 DEBUG(dbgs() << "Early abort: the inteference is not recolorable.\n"); 2045 return false; 2046 } 2047 RecoloringCandidates.insert(Intf); 2048 } 2049 } 2050 return true; 2051 } 2052 2053 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring 2054 /// its interferences. 2055 /// Last chance recoloring chooses a color for \p VirtReg and recolors every 2056 /// virtual register that was using it. The recoloring process may recursively 2057 /// use the last chance recoloring. Therefore, when a virtual register has been 2058 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot 2059 /// be last-chance-recolored again during this recoloring "session". 2060 /// E.g., 2061 /// Let 2062 /// vA can use {R1, R2 } 2063 /// vB can use { R2, R3} 2064 /// vC can use {R1 } 2065 /// Where vA, vB, and vC cannot be split anymore (they are reloads for 2066 /// instance) and they all interfere. 2067 /// 2068 /// vA is assigned R1 2069 /// vB is assigned R2 2070 /// vC tries to evict vA but vA is already done. 2071 /// Regular register allocation fails. 2072 /// 2073 /// Last chance recoloring kicks in: 2074 /// vC does as if vA was evicted => vC uses R1. 2075 /// vC is marked as fixed. 2076 /// vA needs to find a color. 2077 /// None are available. 2078 /// vA cannot evict vC: vC is a fixed virtual register now. 2079 /// vA does as if vB was evicted => vA uses R2. 2080 /// vB needs to find a color. 2081 /// R3 is available. 2082 /// Recoloring => vC = R1, vA = R2, vB = R3 2083 /// 2084 /// \p Order defines the preferred allocation order for \p VirtReg. 2085 /// \p NewRegs will contain any new virtual register that have been created 2086 /// (split, spill) during the process and that must be assigned. 2087 /// \p FixedRegisters contains all the virtual registers that cannot be 2088 /// recolored. 2089 /// \p Depth gives the current depth of the last chance recoloring. 2090 /// \return a physical register that can be used for VirtReg or ~0u if none 2091 /// exists. 2092 unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg, 2093 AllocationOrder &Order, 2094 SmallVectorImpl<unsigned> &NewVRegs, 2095 SmallVirtRegSet &FixedRegisters, 2096 unsigned Depth) { 2097 DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n'); 2098 // Ranges must be Done. 2099 assert((getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) && 2100 "Last chance recoloring should really be last chance"); 2101 // Set the max depth to LastChanceRecoloringMaxDepth. 2102 // We may want to reconsider that if we end up with a too large search space 2103 // for target with hundreds of registers. 2104 // Indeed, in that case we may want to cut the search space earlier. 2105 if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) { 2106 DEBUG(dbgs() << "Abort because max depth has been reached.\n"); 2107 CutOffInfo |= CO_Depth; 2108 return ~0u; 2109 } 2110 2111 // Set of Live intervals that will need to be recolored. 2112 SmallLISet RecoloringCandidates; 2113 // Record the original mapping virtual register to physical register in case 2114 // the recoloring fails. 2115 DenseMap<unsigned, unsigned> VirtRegToPhysReg; 2116 // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in 2117 // this recoloring "session". 2118 FixedRegisters.insert(VirtReg.reg); 2119 SmallVector<unsigned, 4> CurrentNewVRegs; 2120 2121 Order.rewind(); 2122 while (unsigned PhysReg = Order.next()) { 2123 DEBUG(dbgs() << "Try to assign: " << VirtReg << " to " 2124 << PrintReg(PhysReg, TRI) << '\n'); 2125 RecoloringCandidates.clear(); 2126 VirtRegToPhysReg.clear(); 2127 CurrentNewVRegs.clear(); 2128 2129 // It is only possible to recolor virtual register interference. 2130 if (Matrix->checkInterference(VirtReg, PhysReg) > 2131 LiveRegMatrix::IK_VirtReg) { 2132 DEBUG(dbgs() << "Some inteferences are not with virtual registers.\n"); 2133 2134 continue; 2135 } 2136 2137 // Early give up on this PhysReg if it is obvious we cannot recolor all 2138 // the interferences. 2139 if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates, 2140 FixedRegisters)) { 2141 DEBUG(dbgs() << "Some inteferences cannot be recolored.\n"); 2142 continue; 2143 } 2144 2145 // RecoloringCandidates contains all the virtual registers that interfer 2146 // with VirtReg on PhysReg (or one of its aliases). 2147 // Enqueue them for recoloring and perform the actual recoloring. 2148 PQueue RecoloringQueue; 2149 for (SmallLISet::iterator It = RecoloringCandidates.begin(), 2150 EndIt = RecoloringCandidates.end(); 2151 It != EndIt; ++It) { 2152 unsigned ItVirtReg = (*It)->reg; 2153 enqueue(RecoloringQueue, *It); 2154 assert(VRM->hasPhys(ItVirtReg) && 2155 "Interferences are supposed to be with allocated vairables"); 2156 2157 // Record the current allocation. 2158 VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg); 2159 // unset the related struct. 2160 Matrix->unassign(**It); 2161 } 2162 2163 // Do as if VirtReg was assigned to PhysReg so that the underlying 2164 // recoloring has the right information about the interferes and 2165 // available colors. 2166 Matrix->assign(VirtReg, PhysReg); 2167 2168 // Save the current recoloring state. 2169 // If we cannot recolor all the interferences, we will have to start again 2170 // at this point for the next physical register. 2171 SmallVirtRegSet SaveFixedRegisters(FixedRegisters); 2172 if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs, 2173 FixedRegisters, Depth)) { 2174 // Push the queued vregs into the main queue. 2175 for (unsigned NewVReg : CurrentNewVRegs) 2176 NewVRegs.push_back(NewVReg); 2177 // Do not mess up with the global assignment process. 2178 // I.e., VirtReg must be unassigned. 2179 Matrix->unassign(VirtReg); 2180 return PhysReg; 2181 } 2182 2183 DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to " 2184 << PrintReg(PhysReg, TRI) << '\n'); 2185 2186 // The recoloring attempt failed, undo the changes. 2187 FixedRegisters = SaveFixedRegisters; 2188 Matrix->unassign(VirtReg); 2189 2190 // For a newly created vreg which is also in RecoloringCandidates, 2191 // don't add it to NewVRegs because its physical register will be restored 2192 // below. Other vregs in CurrentNewVRegs are created by calling 2193 // selectOrSplit and should be added into NewVRegs. 2194 for (SmallVectorImpl<unsigned>::iterator Next = CurrentNewVRegs.begin(), 2195 End = CurrentNewVRegs.end(); 2196 Next != End; ++Next) { 2197 if (RecoloringCandidates.count(&LIS->getInterval(*Next))) 2198 continue; 2199 NewVRegs.push_back(*Next); 2200 } 2201 2202 for (SmallLISet::iterator It = RecoloringCandidates.begin(), 2203 EndIt = RecoloringCandidates.end(); 2204 It != EndIt; ++It) { 2205 unsigned ItVirtReg = (*It)->reg; 2206 if (VRM->hasPhys(ItVirtReg)) 2207 Matrix->unassign(**It); 2208 unsigned ItPhysReg = VirtRegToPhysReg[ItVirtReg]; 2209 Matrix->assign(**It, ItPhysReg); 2210 } 2211 } 2212 2213 // Last chance recoloring did not worked either, give up. 2214 return ~0u; 2215 } 2216 2217 /// tryRecoloringCandidates - Try to assign a new color to every register 2218 /// in \RecoloringQueue. 2219 /// \p NewRegs will contain any new virtual register created during the 2220 /// recoloring process. 2221 /// \p FixedRegisters[in/out] contains all the registers that have been 2222 /// recolored. 2223 /// \return true if all virtual registers in RecoloringQueue were successfully 2224 /// recolored, false otherwise. 2225 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue, 2226 SmallVectorImpl<unsigned> &NewVRegs, 2227 SmallVirtRegSet &FixedRegisters, 2228 unsigned Depth) { 2229 while (!RecoloringQueue.empty()) { 2230 LiveInterval *LI = dequeue(RecoloringQueue); 2231 DEBUG(dbgs() << "Try to recolor: " << *LI << '\n'); 2232 unsigned PhysReg; 2233 PhysReg = selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, Depth + 1); 2234 // When splitting happens, the live-range may actually be empty. 2235 // In that case, this is okay to continue the recoloring even 2236 // if we did not find an alternative color for it. Indeed, 2237 // there will not be anything to color for LI in the end. 2238 if (PhysReg == ~0u || (!PhysReg && !LI->empty())) 2239 return false; 2240 2241 if (!PhysReg) { 2242 assert(LI->empty() && "Only empty live-range do not require a register"); 2243 DEBUG(dbgs() << "Recoloring of " << *LI << " succeeded. Empty LI.\n"); 2244 continue; 2245 } 2246 DEBUG(dbgs() << "Recoloring of " << *LI 2247 << " succeeded with: " << PrintReg(PhysReg, TRI) << '\n'); 2248 2249 Matrix->assign(*LI, PhysReg); 2250 FixedRegisters.insert(LI->reg); 2251 } 2252 return true; 2253 } 2254 2255 //===----------------------------------------------------------------------===// 2256 // Main Entry Point 2257 //===----------------------------------------------------------------------===// 2258 2259 unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg, 2260 SmallVectorImpl<unsigned> &NewVRegs) { 2261 CutOffInfo = CO_None; 2262 LLVMContext &Ctx = MF->getFunction()->getContext(); 2263 SmallVirtRegSet FixedRegisters; 2264 unsigned Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters); 2265 if (Reg == ~0U && (CutOffInfo != CO_None)) { 2266 uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf); 2267 if (CutOffEncountered == CO_Depth) 2268 Ctx.emitError("register allocation failed: maximum depth for recoloring " 2269 "reached. Use -fexhaustive-register-search to skip " 2270 "cutoffs"); 2271 else if (CutOffEncountered == CO_Interf) 2272 Ctx.emitError("register allocation failed: maximum interference for " 2273 "recoloring reached. Use -fexhaustive-register-search " 2274 "to skip cutoffs"); 2275 else if (CutOffEncountered == (CO_Depth | CO_Interf)) 2276 Ctx.emitError("register allocation failed: maximum interference and " 2277 "depth for recoloring reached. Use " 2278 "-fexhaustive-register-search to skip cutoffs"); 2279 } 2280 return Reg; 2281 } 2282 2283 /// Using a CSR for the first time has a cost because it causes push|pop 2284 /// to be added to prologue|epilogue. Splitting a cold section of the live 2285 /// range can have lower cost than using the CSR for the first time; 2286 /// Spilling a live range in the cold path can have lower cost than using 2287 /// the CSR for the first time. Returns the physical register if we decide 2288 /// to use the CSR; otherwise return 0. 2289 unsigned RAGreedy::tryAssignCSRFirstTime(LiveInterval &VirtReg, 2290 AllocationOrder &Order, 2291 unsigned PhysReg, 2292 unsigned &CostPerUseLimit, 2293 SmallVectorImpl<unsigned> &NewVRegs) { 2294 if (getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) { 2295 // We choose spill over using the CSR for the first time if the spill cost 2296 // is lower than CSRCost. 2297 SA->analyze(&VirtReg); 2298 if (calcSpillCost() >= CSRCost) 2299 return PhysReg; 2300 2301 // We are going to spill, set CostPerUseLimit to 1 to make sure that 2302 // we will not use a callee-saved register in tryEvict. 2303 CostPerUseLimit = 1; 2304 return 0; 2305 } 2306 if (getStage(VirtReg) < RS_Split) { 2307 // We choose pre-splitting over using the CSR for the first time if 2308 // the cost of splitting is lower than CSRCost. 2309 SA->analyze(&VirtReg); 2310 unsigned NumCands = 0; 2311 BlockFrequency BestCost = CSRCost; // Don't modify CSRCost. 2312 unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost, 2313 NumCands, true /*IgnoreCSR*/); 2314 if (BestCand == NoCand) 2315 // Use the CSR if we can't find a region split below CSRCost. 2316 return PhysReg; 2317 2318 // Perform the actual pre-splitting. 2319 doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs); 2320 return 0; 2321 } 2322 return PhysReg; 2323 } 2324 2325 void RAGreedy::aboutToRemoveInterval(LiveInterval &LI) { 2326 // Do not keep invalid information around. 2327 SetOfBrokenHints.remove(&LI); 2328 } 2329 2330 void RAGreedy::initializeCSRCost() { 2331 // We use the larger one out of the command-line option and the value report 2332 // by TRI. 2333 CSRCost = BlockFrequency( 2334 std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost())); 2335 if (!CSRCost.getFrequency()) 2336 return; 2337 2338 // Raw cost is relative to Entry == 2^14; scale it appropriately. 2339 uint64_t ActualEntry = MBFI->getEntryFreq(); 2340 if (!ActualEntry) { 2341 CSRCost = 0; 2342 return; 2343 } 2344 uint64_t FixedEntry = 1 << 14; 2345 if (ActualEntry < FixedEntry) 2346 CSRCost *= BranchProbability(ActualEntry, FixedEntry); 2347 else if (ActualEntry <= UINT32_MAX) 2348 // Invert the fraction and divide. 2349 CSRCost /= BranchProbability(FixedEntry, ActualEntry); 2350 else 2351 // Can't use BranchProbability in general, since it takes 32-bit numbers. 2352 CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry); 2353 } 2354 2355 /// \brief Collect the hint info for \p Reg. 2356 /// The results are stored into \p Out. 2357 /// \p Out is not cleared before being populated. 2358 void RAGreedy::collectHintInfo(unsigned Reg, HintsInfo &Out) { 2359 for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) { 2360 if (!Instr.isFullCopy()) 2361 continue; 2362 // Look for the other end of the copy. 2363 unsigned OtherReg = Instr.getOperand(0).getReg(); 2364 if (OtherReg == Reg) { 2365 OtherReg = Instr.getOperand(1).getReg(); 2366 if (OtherReg == Reg) 2367 continue; 2368 } 2369 // Get the current assignment. 2370 unsigned OtherPhysReg = TargetRegisterInfo::isPhysicalRegister(OtherReg) 2371 ? OtherReg 2372 : VRM->getPhys(OtherReg); 2373 // Push the collected information. 2374 Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg, 2375 OtherPhysReg)); 2376 } 2377 } 2378 2379 /// \brief Using the given \p List, compute the cost of the broken hints if 2380 /// \p PhysReg was used. 2381 /// \return The cost of \p List for \p PhysReg. 2382 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List, 2383 unsigned PhysReg) { 2384 BlockFrequency Cost = 0; 2385 for (const HintInfo &Info : List) { 2386 if (Info.PhysReg != PhysReg) 2387 Cost += Info.Freq; 2388 } 2389 return Cost; 2390 } 2391 2392 /// \brief Using the register assigned to \p VirtReg, try to recolor 2393 /// all the live ranges that are copy-related with \p VirtReg. 2394 /// The recoloring is then propagated to all the live-ranges that have 2395 /// been recolored and so on, until no more copies can be coalesced or 2396 /// it is not profitable. 2397 /// For a given live range, profitability is determined by the sum of the 2398 /// frequencies of the non-identity copies it would introduce with the old 2399 /// and new register. 2400 void RAGreedy::tryHintRecoloring(LiveInterval &VirtReg) { 2401 // We have a broken hint, check if it is possible to fix it by 2402 // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted 2403 // some register and PhysReg may be available for the other live-ranges. 2404 SmallSet<unsigned, 4> Visited; 2405 SmallVector<unsigned, 2> RecoloringCandidates; 2406 HintsInfo Info; 2407 unsigned Reg = VirtReg.reg; 2408 unsigned PhysReg = VRM->getPhys(Reg); 2409 // Start the recoloring algorithm from the input live-interval, then 2410 // it will propagate to the ones that are copy-related with it. 2411 Visited.insert(Reg); 2412 RecoloringCandidates.push_back(Reg); 2413 2414 DEBUG(dbgs() << "Trying to reconcile hints for: " << PrintReg(Reg, TRI) << '(' 2415 << PrintReg(PhysReg, TRI) << ")\n"); 2416 2417 do { 2418 Reg = RecoloringCandidates.pop_back_val(); 2419 2420 // We cannot recolor physcal register. 2421 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 2422 continue; 2423 2424 assert(VRM->hasPhys(Reg) && "We have unallocated variable!!"); 2425 2426 // Get the live interval mapped with this virtual register to be able 2427 // to check for the interference with the new color. 2428 LiveInterval &LI = LIS->getInterval(Reg); 2429 unsigned CurrPhys = VRM->getPhys(Reg); 2430 // Check that the new color matches the register class constraints and 2431 // that it is free for this live range. 2432 if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) || 2433 Matrix->checkInterference(LI, PhysReg))) 2434 continue; 2435 2436 DEBUG(dbgs() << PrintReg(Reg, TRI) << '(' << PrintReg(CurrPhys, TRI) 2437 << ") is recolorable.\n"); 2438 2439 // Gather the hint info. 2440 Info.clear(); 2441 collectHintInfo(Reg, Info); 2442 // Check if recoloring the live-range will increase the cost of the 2443 // non-identity copies. 2444 if (CurrPhys != PhysReg) { 2445 DEBUG(dbgs() << "Checking profitability:\n"); 2446 BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys); 2447 BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg); 2448 DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency() 2449 << "\nNew Cost: " << NewCopiesCost.getFrequency() << '\n'); 2450 if (OldCopiesCost < NewCopiesCost) { 2451 DEBUG(dbgs() << "=> Not profitable.\n"); 2452 continue; 2453 } 2454 // At this point, the cost is either cheaper or equal. If it is 2455 // equal, we consider this is profitable because it may expose 2456 // more recoloring opportunities. 2457 DEBUG(dbgs() << "=> Profitable.\n"); 2458 // Recolor the live-range. 2459 Matrix->unassign(LI); 2460 Matrix->assign(LI, PhysReg); 2461 } 2462 // Push all copy-related live-ranges to keep reconciling the broken 2463 // hints. 2464 for (const HintInfo &HI : Info) { 2465 if (Visited.insert(HI.Reg).second) 2466 RecoloringCandidates.push_back(HI.Reg); 2467 } 2468 } while (!RecoloringCandidates.empty()); 2469 } 2470 2471 /// \brief Try to recolor broken hints. 2472 /// Broken hints may be repaired by recoloring when an evicted variable 2473 /// freed up a register for a larger live-range. 2474 /// Consider the following example: 2475 /// BB1: 2476 /// a = 2477 /// b = 2478 /// BB2: 2479 /// ... 2480 /// = b 2481 /// = a 2482 /// Let us assume b gets split: 2483 /// BB1: 2484 /// a = 2485 /// b = 2486 /// BB2: 2487 /// c = b 2488 /// ... 2489 /// d = c 2490 /// = d 2491 /// = a 2492 /// Because of how the allocation work, b, c, and d may be assigned different 2493 /// colors. Now, if a gets evicted later: 2494 /// BB1: 2495 /// a = 2496 /// st a, SpillSlot 2497 /// b = 2498 /// BB2: 2499 /// c = b 2500 /// ... 2501 /// d = c 2502 /// = d 2503 /// e = ld SpillSlot 2504 /// = e 2505 /// This is likely that we can assign the same register for b, c, and d, 2506 /// getting rid of 2 copies. 2507 void RAGreedy::tryHintsRecoloring() { 2508 for (LiveInterval *LI : SetOfBrokenHints) { 2509 assert(TargetRegisterInfo::isVirtualRegister(LI->reg) && 2510 "Recoloring is possible only for virtual registers"); 2511 // Some dead defs may be around (e.g., because of debug uses). 2512 // Ignore those. 2513 if (!VRM->hasPhys(LI->reg)) 2514 continue; 2515 tryHintRecoloring(*LI); 2516 } 2517 } 2518 2519 unsigned RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg, 2520 SmallVectorImpl<unsigned> &NewVRegs, 2521 SmallVirtRegSet &FixedRegisters, 2522 unsigned Depth) { 2523 unsigned CostPerUseLimit = ~0u; 2524 // First try assigning a free register. 2525 AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo, Matrix); 2526 if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs)) { 2527 // When NewVRegs is not empty, we may have made decisions such as evicting 2528 // a virtual register, go with the earlier decisions and use the physical 2529 // register. 2530 if (CSRCost.getFrequency() && isUnusedCalleeSavedReg(PhysReg) && 2531 NewVRegs.empty()) { 2532 unsigned CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg, 2533 CostPerUseLimit, NewVRegs); 2534 if (CSRReg || !NewVRegs.empty()) 2535 // Return now if we decide to use a CSR or create new vregs due to 2536 // pre-splitting. 2537 return CSRReg; 2538 } else 2539 return PhysReg; 2540 } 2541 2542 LiveRangeStage Stage = getStage(VirtReg); 2543 DEBUG(dbgs() << StageName[Stage] 2544 << " Cascade " << ExtraRegInfo[VirtReg.reg].Cascade << '\n'); 2545 2546 // Try to evict a less worthy live range, but only for ranges from the primary 2547 // queue. The RS_Split ranges already failed to do this, and they should not 2548 // get a second chance until they have been split. 2549 if (Stage != RS_Split) 2550 if (unsigned PhysReg = 2551 tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit)) { 2552 unsigned Hint = MRI->getSimpleHint(VirtReg.reg); 2553 // If VirtReg has a hint and that hint is broken record this 2554 // virtual register as a recoloring candidate for broken hint. 2555 // Indeed, since we evicted a variable in its neighborhood it is 2556 // likely we can at least partially recolor some of the 2557 // copy-related live-ranges. 2558 if (Hint && Hint != PhysReg) 2559 SetOfBrokenHints.insert(&VirtReg); 2560 return PhysReg; 2561 } 2562 2563 assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs"); 2564 2565 // The first time we see a live range, don't try to split or spill. 2566 // Wait until the second time, when all smaller ranges have been allocated. 2567 // This gives a better picture of the interference to split around. 2568 if (Stage < RS_Split) { 2569 setStage(VirtReg, RS_Split); 2570 DEBUG(dbgs() << "wait for second round\n"); 2571 NewVRegs.push_back(VirtReg.reg); 2572 return 0; 2573 } 2574 2575 if (Stage < RS_Spill) { 2576 // Try splitting VirtReg or interferences. 2577 unsigned NewVRegSizeBefore = NewVRegs.size(); 2578 unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs); 2579 if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore)) 2580 return PhysReg; 2581 } 2582 2583 // If we couldn't allocate a register from spilling, there is probably some 2584 // invalid inline assembly. The base class wil report it. 2585 if (Stage >= RS_Done || !VirtReg.isSpillable()) 2586 return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters, 2587 Depth); 2588 2589 // Finally spill VirtReg itself. 2590 if (EnableDeferredSpilling && getStage(VirtReg) < RS_Memory) { 2591 // TODO: This is experimental and in particular, we do not model 2592 // the live range splitting done by spilling correctly. 2593 // We would need a deep integration with the spiller to do the 2594 // right thing here. Anyway, that is still good for early testing. 2595 setStage(VirtReg, RS_Memory); 2596 DEBUG(dbgs() << "Do as if this register is in memory\n"); 2597 NewVRegs.push_back(VirtReg.reg); 2598 } else { 2599 NamedRegionTimer T("spill", "Spiller", TimerGroupName, 2600 TimerGroupDescription, TimePassesIsEnabled); 2601 LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2602 spiller().spill(LRE); 2603 setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done); 2604 2605 if (VerifyEnabled) 2606 MF->verify(this, "After spilling"); 2607 } 2608 2609 // The live virtual register requesting allocation was spilled, so tell 2610 // the caller not to allocate anything during this round. 2611 return 0; 2612 } 2613 2614 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) { 2615 DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n" 2616 << "********** Function: " << mf.getName() << '\n'); 2617 2618 MF = &mf; 2619 TRI = MF->getSubtarget().getRegisterInfo(); 2620 TII = MF->getSubtarget().getInstrInfo(); 2621 RCI.runOnMachineFunction(mf); 2622 2623 EnableLocalReassign = EnableLocalReassignment || 2624 MF->getSubtarget().enableRALocalReassignment( 2625 MF->getTarget().getOptLevel()); 2626 2627 if (VerifyEnabled) 2628 MF->verify(this, "Before greedy register allocator"); 2629 2630 RegAllocBase::init(getAnalysis<VirtRegMap>(), 2631 getAnalysis<LiveIntervals>(), 2632 getAnalysis<LiveRegMatrix>()); 2633 Indexes = &getAnalysis<SlotIndexes>(); 2634 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 2635 DomTree = &getAnalysis<MachineDominatorTree>(); 2636 SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM)); 2637 Loops = &getAnalysis<MachineLoopInfo>(); 2638 Bundles = &getAnalysis<EdgeBundles>(); 2639 SpillPlacer = &getAnalysis<SpillPlacement>(); 2640 DebugVars = &getAnalysis<LiveDebugVariables>(); 2641 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2642 2643 initializeCSRCost(); 2644 2645 calculateSpillWeightsAndHints(*LIS, mf, VRM, *Loops, *MBFI); 2646 2647 DEBUG(LIS->dump()); 2648 2649 SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops)); 2650 SE.reset(new SplitEditor(*SA, *AA, *LIS, *VRM, *DomTree, *MBFI)); 2651 ExtraRegInfo.clear(); 2652 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 2653 NextCascade = 1; 2654 IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI); 2655 GlobalCand.resize(32); // This will grow as needed. 2656 SetOfBrokenHints.clear(); 2657 2658 allocatePhysRegs(); 2659 tryHintsRecoloring(); 2660 postOptimization(); 2661 2662 releaseMemory(); 2663 return true; 2664 } 2665