1 //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the RAGreedy function pass for register allocation in
10 // optimized builds.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RegAllocGreedy.h"
15 #include "AllocationOrder.h"
16 #include "InterferenceCache.h"
17 #include "LiveDebugVariables.h"
18 #include "RegAllocBase.h"
19 #include "RegAllocEvictionAdvisor.h"
20 #include "SpillPlacement.h"
21 #include "SplitKit.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/BitVector.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/IndexedMap.h"
26 #include "llvm/ADT/MapVector.h"
27 #include "llvm/ADT/SetVector.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include "llvm/ADT/SmallSet.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/ADT/StringRef.h"
33 #include "llvm/Analysis/AliasAnalysis.h"
34 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
35 #include "llvm/CodeGen/CalcSpillWeights.h"
36 #include "llvm/CodeGen/EdgeBundles.h"
37 #include "llvm/CodeGen/LiveInterval.h"
38 #include "llvm/CodeGen/LiveIntervalUnion.h"
39 #include "llvm/CodeGen/LiveIntervals.h"
40 #include "llvm/CodeGen/LiveRangeEdit.h"
41 #include "llvm/CodeGen/LiveRegMatrix.h"
42 #include "llvm/CodeGen/LiveStacks.h"
43 #include "llvm/CodeGen/MachineBasicBlock.h"
44 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
45 #include "llvm/CodeGen/MachineDominators.h"
46 #include "llvm/CodeGen/MachineFrameInfo.h"
47 #include "llvm/CodeGen/MachineFunction.h"
48 #include "llvm/CodeGen/MachineFunctionPass.h"
49 #include "llvm/CodeGen/MachineInstr.h"
50 #include "llvm/CodeGen/MachineLoopInfo.h"
51 #include "llvm/CodeGen/MachineOperand.h"
52 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
53 #include "llvm/CodeGen/MachineRegisterInfo.h"
54 #include "llvm/CodeGen/RegAllocRegistry.h"
55 #include "llvm/CodeGen/RegisterClassInfo.h"
56 #include "llvm/CodeGen/SlotIndexes.h"
57 #include "llvm/CodeGen/Spiller.h"
58 #include "llvm/CodeGen/TargetInstrInfo.h"
59 #include "llvm/CodeGen/TargetRegisterInfo.h"
60 #include "llvm/CodeGen/TargetSubtargetInfo.h"
61 #include "llvm/CodeGen/VirtRegMap.h"
62 #include "llvm/IR/DebugInfoMetadata.h"
63 #include "llvm/IR/Function.h"
64 #include "llvm/IR/LLVMContext.h"
65 #include "llvm/MC/MCRegisterInfo.h"
66 #include "llvm/Pass.h"
67 #include "llvm/Support/BlockFrequency.h"
68 #include "llvm/Support/BranchProbability.h"
69 #include "llvm/Support/CommandLine.h"
70 #include "llvm/Support/Debug.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/Timer.h"
73 #include "llvm/Support/raw_ostream.h"
74 #include "llvm/Target/TargetMachine.h"
75 #include <algorithm>
76 #include <cassert>
77 #include <cstdint>
78 #include <memory>
79 #include <queue>
80 #include <tuple>
81 #include <utility>
82 
83 using namespace llvm;
84 
85 #define DEBUG_TYPE "regalloc"
86 
87 STATISTIC(NumGlobalSplits, "Number of split global live ranges");
88 STATISTIC(NumLocalSplits,  "Number of split local live ranges");
89 STATISTIC(NumEvicted,      "Number of interferences evicted");
90 
91 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode(
92     "split-spill-mode", cl::Hidden,
93     cl::desc("Spill mode for splitting live ranges"),
94     cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"),
95                clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"),
96                clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")),
97     cl::init(SplitEditor::SM_Speed));
98 
99 static cl::opt<unsigned>
100 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden,
101                              cl::desc("Last chance recoloring max depth"),
102                              cl::init(5));
103 
104 static cl::opt<unsigned> LastChanceRecoloringMaxInterference(
105     "lcr-max-interf", cl::Hidden,
106     cl::desc("Last chance recoloring maximum number of considered"
107              " interference at a time"),
108     cl::init(8));
109 
110 static cl::opt<bool> ExhaustiveSearch(
111     "exhaustive-register-search", cl::NotHidden,
112     cl::desc("Exhaustive Search for registers bypassing the depth "
113              "and interference cutoffs of last chance recoloring"),
114     cl::Hidden);
115 
116 static cl::opt<bool> EnableDeferredSpilling(
117     "enable-deferred-spilling", cl::Hidden,
118     cl::desc("Instead of spilling a variable right away, defer the actual "
119              "code insertion to the end of the allocation. That way the "
120              "allocator might still find a suitable coloring for this "
121              "variable because of other evicted variables."),
122     cl::init(false));
123 
124 // FIXME: Find a good default for this flag and remove the flag.
125 static cl::opt<unsigned>
126 CSRFirstTimeCost("regalloc-csr-first-time-cost",
127               cl::desc("Cost for first time use of callee-saved register."),
128               cl::init(0), cl::Hidden);
129 
130 static cl::opt<bool> ConsiderLocalIntervalCost(
131     "consider-local-interval-cost", cl::Hidden,
132     cl::desc("Consider the cost of local intervals created by a split "
133              "candidate when choosing the best split candidate."),
134     cl::init(false));
135 
136 static cl::opt<long> GrowRegionComplexityBudget(
137     "grow-region-complexity-budget",
138     cl::desc("growRegion() does not scale with the number of BB edges, so "
139              "limit its budget and bail out once we reach the limit."),
140     cl::init(10000), cl::Hidden);
141 
142 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
143                                        createGreedyRegisterAllocator);
144 
145 char RAGreedy::ID = 0;
146 char &llvm::RAGreedyID = RAGreedy::ID;
147 
148 INITIALIZE_PASS_BEGIN(RAGreedy, "greedy",
149                 "Greedy Register Allocator", false, false)
150 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
151 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
152 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
153 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer)
154 INITIALIZE_PASS_DEPENDENCY(MachineScheduler)
155 INITIALIZE_PASS_DEPENDENCY(LiveStacks)
156 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
157 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
158 INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
159 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix)
160 INITIALIZE_PASS_DEPENDENCY(EdgeBundles)
161 INITIALIZE_PASS_DEPENDENCY(SpillPlacement)
162 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass)
163 INITIALIZE_PASS_DEPENDENCY(RegAllocEvictionAdvisorAnalysis)
164 INITIALIZE_PASS_END(RAGreedy, "greedy",
165                 "Greedy Register Allocator", false, false)
166 
167 #ifndef NDEBUG
168 const char *const RAGreedy::StageName[] = {
169     "RS_New",
170     "RS_Assign",
171     "RS_Split",
172     "RS_Split2",
173     "RS_Spill",
174     "RS_Memory",
175     "RS_Done"
176 };
177 #endif
178 
179 // Hysteresis to use when comparing floats.
180 // This helps stabilize decisions based on float comparisons.
181 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875
182 
183 FunctionPass* llvm::createGreedyRegisterAllocator() {
184   return new RAGreedy();
185 }
186 
187 namespace llvm {
188 FunctionPass* createGreedyRegisterAllocator(
189   std::function<bool(const TargetRegisterInfo &TRI,
190                      const TargetRegisterClass &RC)> Ftor);
191 
192 }
193 
194 FunctionPass* llvm::createGreedyRegisterAllocator(
195   std::function<bool(const TargetRegisterInfo &TRI,
196                      const TargetRegisterClass &RC)> Ftor) {
197   return new RAGreedy(Ftor);
198 }
199 
200 RAGreedy::RAGreedy(RegClassFilterFunc F):
201   MachineFunctionPass(ID),
202   RegAllocBase(F) {
203 }
204 
205 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
206   AU.setPreservesCFG();
207   AU.addRequired<MachineBlockFrequencyInfo>();
208   AU.addPreserved<MachineBlockFrequencyInfo>();
209   AU.addRequired<AAResultsWrapperPass>();
210   AU.addPreserved<AAResultsWrapperPass>();
211   AU.addRequired<LiveIntervals>();
212   AU.addPreserved<LiveIntervals>();
213   AU.addRequired<SlotIndexes>();
214   AU.addPreserved<SlotIndexes>();
215   AU.addRequired<LiveDebugVariables>();
216   AU.addPreserved<LiveDebugVariables>();
217   AU.addRequired<LiveStacks>();
218   AU.addPreserved<LiveStacks>();
219   AU.addRequired<MachineDominatorTree>();
220   AU.addPreserved<MachineDominatorTree>();
221   AU.addRequired<MachineLoopInfo>();
222   AU.addPreserved<MachineLoopInfo>();
223   AU.addRequired<VirtRegMap>();
224   AU.addPreserved<VirtRegMap>();
225   AU.addRequired<LiveRegMatrix>();
226   AU.addPreserved<LiveRegMatrix>();
227   AU.addRequired<EdgeBundles>();
228   AU.addRequired<SpillPlacement>();
229   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
230   AU.addRequired<RegAllocEvictionAdvisorAnalysis>();
231   MachineFunctionPass::getAnalysisUsage(AU);
232 }
233 
234 //===----------------------------------------------------------------------===//
235 //                     LiveRangeEdit delegate methods
236 //===----------------------------------------------------------------------===//
237 
238 bool RAGreedy::LRE_CanEraseVirtReg(Register VirtReg) {
239   LiveInterval &LI = LIS->getInterval(VirtReg);
240   if (VRM->hasPhys(VirtReg)) {
241     Matrix->unassign(LI);
242     aboutToRemoveInterval(LI);
243     return true;
244   }
245   // Unassigned virtreg is probably in the priority queue.
246   // RegAllocBase will erase it after dequeueing.
247   // Nonetheless, clear the live-range so that the debug
248   // dump will show the right state for that VirtReg.
249   LI.clear();
250   return false;
251 }
252 
253 void RAGreedy::LRE_WillShrinkVirtReg(Register VirtReg) {
254   if (!VRM->hasPhys(VirtReg))
255     return;
256 
257   // Register is assigned, put it back on the queue for reassignment.
258   LiveInterval &LI = LIS->getInterval(VirtReg);
259   Matrix->unassign(LI);
260   RegAllocBase::enqueue(&LI);
261 }
262 
263 void RAGreedy::LRE_DidCloneVirtReg(Register New, Register Old) {
264   ExtraInfo->LRE_DidCloneVirtReg(New, Old);
265 }
266 
267 void RAGreedy::ExtraRegInfo::LRE_DidCloneVirtReg(Register New, Register Old) {
268   // Cloning a register we haven't even heard about yet?  Just ignore it.
269   if (!Info.inBounds(Old))
270     return;
271 
272   // LRE may clone a virtual register because dead code elimination causes it to
273   // be split into connected components. The new components are much smaller
274   // than the original, so they should get a new chance at being assigned.
275   // same stage as the parent.
276   Info[Old].Stage = RS_Assign;
277   Info.grow(New.id());
278   Info[New] = Info[Old];
279 }
280 
281 void RAGreedy::releaseMemory() {
282   SpillerInstance.reset();
283   GlobalCand.clear();
284 }
285 
286 void RAGreedy::enqueueImpl(const LiveInterval *LI) { enqueue(Queue, LI); }
287 
288 void RAGreedy::enqueue(PQueue &CurQueue, const LiveInterval *LI) {
289   // Prioritize live ranges by size, assigning larger ranges first.
290   // The queue holds (size, reg) pairs.
291   const unsigned Size = LI->getSize();
292   const Register Reg = LI->reg();
293   assert(Reg.isVirtual() && "Can only enqueue virtual registers");
294   unsigned Prio;
295 
296   auto Stage = ExtraInfo->getOrInitStage(Reg);
297   if (Stage == RS_New) {
298     Stage = RS_Assign;
299     ExtraInfo->setStage(Reg, Stage);
300   }
301   if (Stage == RS_Split) {
302     // Unsplit ranges that couldn't be allocated immediately are deferred until
303     // everything else has been allocated.
304     Prio = Size;
305   } else if (Stage == RS_Memory) {
306     // Memory operand should be considered last.
307     // Change the priority such that Memory operand are assigned in
308     // the reverse order that they came in.
309     // TODO: Make this a member variable and probably do something about hints.
310     static unsigned MemOp = 0;
311     Prio = MemOp++;
312   } else {
313     // Giant live ranges fall back to the global assignment heuristic, which
314     // prevents excessive spilling in pathological cases.
315     bool ReverseLocal = TRI->reverseLocalAssignment();
316     const TargetRegisterClass &RC = *MRI->getRegClass(Reg);
317     bool ForceGlobal = !ReverseLocal &&
318       (Size / SlotIndex::InstrDist) > (2 * RCI.getNumAllocatableRegs(&RC));
319 
320     if (Stage == RS_Assign && !ForceGlobal && !LI->empty() &&
321         LIS->intervalIsInOneMBB(*LI)) {
322       // Allocate original local ranges in linear instruction order. Since they
323       // are singly defined, this produces optimal coloring in the absence of
324       // global interference and other constraints.
325       if (!ReverseLocal)
326         Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex());
327       else {
328         // Allocating bottom up may allow many short LRGs to be assigned first
329         // to one of the cheap registers. This could be much faster for very
330         // large blocks on targets with many physical registers.
331         Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex());
332       }
333       Prio |= RC.AllocationPriority << 24;
334     } else {
335       // Allocate global and split ranges in long->short order. Long ranges that
336       // don't fit should be spilled (or split) ASAP so they don't create
337       // interference.  Mark a bit to prioritize global above local ranges.
338       Prio = (1u << 29) + Size;
339 
340       Prio |= RC.AllocationPriority << 24;
341     }
342     // Mark a higher bit to prioritize global and local above RS_Split.
343     Prio |= (1u << 31);
344 
345     // Boost ranges that have a physical register hint.
346     if (VRM->hasKnownPreference(Reg))
347       Prio |= (1u << 30);
348   }
349   // The virtual register number is a tie breaker for same-sized ranges.
350   // Give lower vreg numbers higher priority to assign them first.
351   CurQueue.push(std::make_pair(Prio, ~Reg));
352 }
353 
354 const LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); }
355 
356 const LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) {
357   if (CurQueue.empty())
358     return nullptr;
359   LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second);
360   CurQueue.pop();
361   return LI;
362 }
363 
364 //===----------------------------------------------------------------------===//
365 //                            Direct Assignment
366 //===----------------------------------------------------------------------===//
367 
368 /// tryAssign - Try to assign VirtReg to an available register.
369 MCRegister RAGreedy::tryAssign(const LiveInterval &VirtReg,
370                                AllocationOrder &Order,
371                                SmallVectorImpl<Register> &NewVRegs,
372                                const SmallVirtRegSet &FixedRegisters) {
373   MCRegister PhysReg;
374   for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) {
375     assert(*I);
376     if (!Matrix->checkInterference(VirtReg, *I)) {
377       if (I.isHint())
378         return *I;
379       else
380         PhysReg = *I;
381     }
382   }
383   if (!PhysReg.isValid())
384     return PhysReg;
385 
386   // PhysReg is available, but there may be a better choice.
387 
388   // If we missed a simple hint, try to cheaply evict interference from the
389   // preferred register.
390   if (Register Hint = MRI->getSimpleHint(VirtReg.reg()))
391     if (Order.isHint(Hint)) {
392       MCRegister PhysHint = Hint.asMCReg();
393       LLVM_DEBUG(dbgs() << "missed hint " << printReg(PhysHint, TRI) << '\n');
394 
395       if (EvictAdvisor->canEvictHintInterference(VirtReg, PhysHint,
396                                                  FixedRegisters)) {
397         evictInterference(VirtReg, PhysHint, NewVRegs);
398         return PhysHint;
399       }
400       // Record the missed hint, we may be able to recover
401       // at the end if the surrounding allocation changed.
402       SetOfBrokenHints.insert(&VirtReg);
403     }
404 
405   // Try to evict interference from a cheaper alternative.
406   uint8_t Cost = RegCosts[PhysReg];
407 
408   // Most registers have 0 additional cost.
409   if (!Cost)
410     return PhysReg;
411 
412   LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is available at cost "
413                     << (unsigned)Cost << '\n');
414   MCRegister CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost, FixedRegisters);
415   return CheapReg ? CheapReg : PhysReg;
416 }
417 
418 //===----------------------------------------------------------------------===//
419 //                         Interference eviction
420 //===----------------------------------------------------------------------===//
421 
422 Register RegAllocEvictionAdvisor::canReassign(const LiveInterval &VirtReg,
423                                               Register PrevReg) const {
424   auto Order =
425       AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix);
426   MCRegister PhysReg;
427   for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) {
428     if ((*I).id() == PrevReg.id())
429       continue;
430 
431     MCRegUnitIterator Units(*I, TRI);
432     for (; Units.isValid(); ++Units) {
433       // Instantiate a "subquery", not to be confused with the Queries array.
434       LiveIntervalUnion::Query subQ(VirtReg, Matrix->getLiveUnions()[*Units]);
435       if (subQ.checkInterference())
436         break;
437     }
438     // If no units have interference, break out with the current PhysReg.
439     if (!Units.isValid())
440       PhysReg = *I;
441   }
442   if (PhysReg)
443     LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg << " from "
444                       << printReg(PrevReg, TRI) << " to "
445                       << printReg(PhysReg, TRI) << '\n');
446   return PhysReg;
447 }
448 
449 /// Return true if all interferences between VirtReg and PhysReg between
450 /// Start and End can be evicted.
451 ///
452 /// \param VirtReg Live range that is about to be assigned.
453 /// \param PhysReg Desired register for assignment.
454 /// \param Start   Start of range to look for interferences.
455 /// \param End     End of range to look for interferences.
456 /// \param MaxCost Only look for cheaper candidates and update with new cost
457 ///                when returning true.
458 /// \return True when interference can be evicted cheaper than MaxCost.
459 bool RAGreedy::canEvictInterferenceInRange(const LiveInterval &VirtReg,
460                                            MCRegister PhysReg, SlotIndex Start,
461                                            SlotIndex End,
462                                            EvictionCost &MaxCost) const {
463   EvictionCost Cost;
464 
465   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
466     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
467 
468     // Check if any interfering live range is heavier than MaxWeight.
469     for (const LiveInterval *Intf : reverse(Q.interferingVRegs())) {
470       // Check if interference overlast the segment in interest.
471       if (!Intf->overlaps(Start, End))
472         continue;
473 
474       // Cannot evict non virtual reg interference.
475       if (!Register::isVirtualRegister(Intf->reg()))
476         return false;
477       // Never evict spill products. They cannot split or spill.
478       if (ExtraInfo->getStage(*Intf) == RS_Done)
479         return false;
480 
481       // Would this break a satisfied hint?
482       bool BreaksHint = VRM->hasPreferredPhys(Intf->reg());
483       // Update eviction cost.
484       Cost.BrokenHints += BreaksHint;
485       Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight());
486       // Abort if this would be too expensive.
487       if (!(Cost < MaxCost))
488         return false;
489     }
490   }
491 
492   if (Cost.MaxWeight == 0)
493     return false;
494 
495   MaxCost = Cost;
496   return true;
497 }
498 
499 /// Return the physical register that will be best
500 /// candidate for eviction by a local split interval that will be created
501 /// between Start and End.
502 ///
503 /// \param Order            The allocation order
504 /// \param VirtReg          Live range that is about to be assigned.
505 /// \param Start            Start of range to look for interferences
506 /// \param End              End of range to look for interferences
507 /// \param BestEvictweight  The eviction cost of that eviction
508 /// \return The PhysReg which is the best candidate for eviction and the
509 /// eviction cost in BestEvictweight
510 MCRegister RAGreedy::getCheapestEvicteeWeight(const AllocationOrder &Order,
511                                               const LiveInterval &VirtReg,
512                                               SlotIndex Start, SlotIndex End,
513                                               float *BestEvictweight) const {
514   EvictionCost BestEvictCost;
515   BestEvictCost.setMax();
516   BestEvictCost.MaxWeight = VirtReg.weight();
517   MCRegister BestEvicteePhys;
518 
519   // Go over all physical registers and find the best candidate for eviction
520   for (MCRegister PhysReg : Order.getOrder()) {
521 
522     if (!canEvictInterferenceInRange(VirtReg, PhysReg, Start, End,
523                                      BestEvictCost))
524       continue;
525 
526     // Best so far.
527     BestEvicteePhys = PhysReg;
528   }
529   *BestEvictweight = BestEvictCost.MaxWeight;
530   return BestEvicteePhys;
531 }
532 
533 /// evictInterference - Evict any interferring registers that prevent VirtReg
534 /// from being assigned to Physreg. This assumes that canEvictInterference
535 /// returned true.
536 void RAGreedy::evictInterference(const LiveInterval &VirtReg,
537                                  MCRegister PhysReg,
538                                  SmallVectorImpl<Register> &NewVRegs) {
539   // Make sure that VirtReg has a cascade number, and assign that cascade
540   // number to every evicted register. These live ranges than then only be
541   // evicted by a newer cascade, preventing infinite loops.
542   unsigned Cascade = ExtraInfo->getOrAssignNewCascade(VirtReg.reg());
543 
544   LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg, TRI)
545                     << " interference: Cascade " << Cascade << '\n');
546 
547   // Collect all interfering virtregs first.
548   SmallVector<const LiveInterval *, 8> Intfs;
549   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
550     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
551     // We usually have the interfering VRegs cached so collectInterferingVRegs()
552     // should be fast, we may need to recalculate if when different physregs
553     // overlap the same register unit so we had different SubRanges queried
554     // against it.
555     ArrayRef<const LiveInterval *> IVR = Q.interferingVRegs();
556     Intfs.append(IVR.begin(), IVR.end());
557   }
558 
559   // Evict them second. This will invalidate the queries.
560   for (const LiveInterval *Intf : Intfs) {
561     // The same VirtReg may be present in multiple RegUnits. Skip duplicates.
562     if (!VRM->hasPhys(Intf->reg()))
563       continue;
564 
565     LastEvicted.addEviction(PhysReg, VirtReg.reg(), Intf->reg());
566 
567     Matrix->unassign(*Intf);
568     assert((ExtraInfo->getCascade(Intf->reg()) < Cascade ||
569             VirtReg.isSpillable() < Intf->isSpillable()) &&
570            "Cannot decrease cascade number, illegal eviction");
571     ExtraInfo->setCascade(Intf->reg(), Cascade);
572     ++NumEvicted;
573     NewVRegs.push_back(Intf->reg());
574   }
575 }
576 
577 /// Returns true if the given \p PhysReg is a callee saved register and has not
578 /// been used for allocation yet.
579 bool RegAllocEvictionAdvisor::isUnusedCalleeSavedReg(MCRegister PhysReg) const {
580   MCRegister CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg);
581   if (!CSR)
582     return false;
583 
584   return !Matrix->isPhysRegUsed(PhysReg);
585 }
586 
587 Optional<unsigned>
588 RegAllocEvictionAdvisor::getOrderLimit(const LiveInterval &VirtReg,
589                                        const AllocationOrder &Order,
590                                        unsigned CostPerUseLimit) const {
591   unsigned OrderLimit = Order.getOrder().size();
592 
593   if (CostPerUseLimit < uint8_t(~0u)) {
594     // Check of any registers in RC are below CostPerUseLimit.
595     const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg());
596     uint8_t MinCost = RegClassInfo.getMinCost(RC);
597     if (MinCost >= CostPerUseLimit) {
598       LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = "
599                         << MinCost << ", no cheaper registers to be found.\n");
600       return None;
601     }
602 
603     // It is normal for register classes to have a long tail of registers with
604     // the same cost. We don't need to look at them if they're too expensive.
605     if (RegCosts[Order.getOrder().back()] >= CostPerUseLimit) {
606       OrderLimit = RegClassInfo.getLastCostChange(RC);
607       LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit
608                         << " regs.\n");
609     }
610   }
611   return OrderLimit;
612 }
613 
614 bool RegAllocEvictionAdvisor::canAllocatePhysReg(unsigned CostPerUseLimit,
615                                                  MCRegister PhysReg) const {
616   if (RegCosts[PhysReg] >= CostPerUseLimit)
617     return false;
618   // The first use of a callee-saved register in a function has cost 1.
619   // Don't start using a CSR when the CostPerUseLimit is low.
620   if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) {
621     LLVM_DEBUG(
622         dbgs() << printReg(PhysReg, TRI) << " would clobber CSR "
623                << printReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI)
624                << '\n');
625     return false;
626   }
627   return true;
628 }
629 
630 /// tryEvict - Try to evict all interferences for a physreg.
631 /// @param  VirtReg Currently unassigned virtual register.
632 /// @param  Order   Physregs to try.
633 /// @return         Physreg to assign VirtReg, or 0.
634 MCRegister RAGreedy::tryEvict(const LiveInterval &VirtReg,
635                               AllocationOrder &Order,
636                               SmallVectorImpl<Register> &NewVRegs,
637                               uint8_t CostPerUseLimit,
638                               const SmallVirtRegSet &FixedRegisters) {
639   NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription,
640                      TimePassesIsEnabled);
641 
642   MCRegister BestPhys = EvictAdvisor->tryFindEvictionCandidate(
643       VirtReg, Order, CostPerUseLimit, FixedRegisters);
644   if (BestPhys.isValid())
645     evictInterference(VirtReg, BestPhys, NewVRegs);
646   return BestPhys;
647 }
648 
649 //===----------------------------------------------------------------------===//
650 //                              Region Splitting
651 //===----------------------------------------------------------------------===//
652 
653 /// addSplitConstraints - Fill out the SplitConstraints vector based on the
654 /// interference pattern in Physreg and its aliases. Add the constraints to
655 /// SpillPlacement and return the static cost of this split in Cost, assuming
656 /// that all preferences in SplitConstraints are met.
657 /// Return false if there are no bundles with positive bias.
658 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
659                                    BlockFrequency &Cost) {
660   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
661 
662   // Reset interference dependent info.
663   SplitConstraints.resize(UseBlocks.size());
664   BlockFrequency StaticCost = 0;
665   for (unsigned I = 0; I != UseBlocks.size(); ++I) {
666     const SplitAnalysis::BlockInfo &BI = UseBlocks[I];
667     SpillPlacement::BlockConstraint &BC = SplitConstraints[I];
668 
669     BC.Number = BI.MBB->getNumber();
670     Intf.moveToBlock(BC.Number);
671     BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
672     BC.Exit = (BI.LiveOut &&
673                !LIS->getInstructionFromIndex(BI.LastInstr)->isImplicitDef())
674                   ? SpillPlacement::PrefReg
675                   : SpillPlacement::DontCare;
676     BC.ChangesValue = BI.FirstDef.isValid();
677 
678     if (!Intf.hasInterference())
679       continue;
680 
681     // Number of spill code instructions to insert.
682     unsigned Ins = 0;
683 
684     // Interference for the live-in value.
685     if (BI.LiveIn) {
686       if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) {
687         BC.Entry = SpillPlacement::MustSpill;
688         ++Ins;
689       } else if (Intf.first() < BI.FirstInstr) {
690         BC.Entry = SpillPlacement::PrefSpill;
691         ++Ins;
692       } else if (Intf.first() < BI.LastInstr) {
693         ++Ins;
694       }
695 
696       // Abort if the spill cannot be inserted at the MBB' start
697       if (((BC.Entry == SpillPlacement::MustSpill) ||
698            (BC.Entry == SpillPlacement::PrefSpill)) &&
699           SlotIndex::isEarlierInstr(BI.FirstInstr,
700                                     SA->getFirstSplitPoint(BC.Number)))
701         return false;
702     }
703 
704     // Interference for the live-out value.
705     if (BI.LiveOut) {
706       if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) {
707         BC.Exit = SpillPlacement::MustSpill;
708         ++Ins;
709       } else if (Intf.last() > BI.LastInstr) {
710         BC.Exit = SpillPlacement::PrefSpill;
711         ++Ins;
712       } else if (Intf.last() > BI.FirstInstr) {
713         ++Ins;
714       }
715     }
716 
717     // Accumulate the total frequency of inserted spill code.
718     while (Ins--)
719       StaticCost += SpillPlacer->getBlockFrequency(BC.Number);
720   }
721   Cost = StaticCost;
722 
723   // Add constraints for use-blocks. Note that these are the only constraints
724   // that may add a positive bias, it is downhill from here.
725   SpillPlacer->addConstraints(SplitConstraints);
726   return SpillPlacer->scanActiveBundles();
727 }
728 
729 /// addThroughConstraints - Add constraints and links to SpillPlacer from the
730 /// live-through blocks in Blocks.
731 bool RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
732                                      ArrayRef<unsigned> Blocks) {
733   const unsigned GroupSize = 8;
734   SpillPlacement::BlockConstraint BCS[GroupSize];
735   unsigned TBS[GroupSize];
736   unsigned B = 0, T = 0;
737 
738   for (unsigned Number : Blocks) {
739     Intf.moveToBlock(Number);
740 
741     if (!Intf.hasInterference()) {
742       assert(T < GroupSize && "Array overflow");
743       TBS[T] = Number;
744       if (++T == GroupSize) {
745         SpillPlacer->addLinks(makeArrayRef(TBS, T));
746         T = 0;
747       }
748       continue;
749     }
750 
751     assert(B < GroupSize && "Array overflow");
752     BCS[B].Number = Number;
753 
754     // Abort if the spill cannot be inserted at the MBB' start
755     MachineBasicBlock *MBB = MF->getBlockNumbered(Number);
756     auto FirstNonDebugInstr = MBB->getFirstNonDebugInstr();
757     if (FirstNonDebugInstr != MBB->end() &&
758         SlotIndex::isEarlierInstr(LIS->getInstructionIndex(*FirstNonDebugInstr),
759                                   SA->getFirstSplitPoint(Number)))
760       return false;
761     // Interference for the live-in value.
762     if (Intf.first() <= Indexes->getMBBStartIdx(Number))
763       BCS[B].Entry = SpillPlacement::MustSpill;
764     else
765       BCS[B].Entry = SpillPlacement::PrefSpill;
766 
767     // Interference for the live-out value.
768     if (Intf.last() >= SA->getLastSplitPoint(Number))
769       BCS[B].Exit = SpillPlacement::MustSpill;
770     else
771       BCS[B].Exit = SpillPlacement::PrefSpill;
772 
773     if (++B == GroupSize) {
774       SpillPlacer->addConstraints(makeArrayRef(BCS, B));
775       B = 0;
776     }
777   }
778 
779   SpillPlacer->addConstraints(makeArrayRef(BCS, B));
780   SpillPlacer->addLinks(makeArrayRef(TBS, T));
781   return true;
782 }
783 
784 bool RAGreedy::growRegion(GlobalSplitCandidate &Cand) {
785   // Keep track of through blocks that have not been added to SpillPlacer.
786   BitVector Todo = SA->getThroughBlocks();
787   SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
788   unsigned AddedTo = 0;
789 #ifndef NDEBUG
790   unsigned Visited = 0;
791 #endif
792 
793   long Budget = GrowRegionComplexityBudget;
794   while (true) {
795     ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
796     // Find new through blocks in the periphery of PrefRegBundles.
797     for (unsigned Bundle : NewBundles) {
798       // Look at all blocks connected to Bundle in the full graph.
799       ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
800       for (unsigned Block : Blocks) {
801         // Limit compilation time by bailing out after we use all our budget.
802         if (Budget-- == 0)
803           return false;
804         if (!Todo.test(Block))
805           continue;
806         Todo.reset(Block);
807         // This is a new through block. Add it to SpillPlacer later.
808         ActiveBlocks.push_back(Block);
809 #ifndef NDEBUG
810         ++Visited;
811 #endif
812       }
813     }
814     // Any new blocks to add?
815     if (ActiveBlocks.size() == AddedTo)
816       break;
817 
818     // Compute through constraints from the interference, or assume that all
819     // through blocks prefer spilling when forming compact regions.
820     auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo);
821     if (Cand.PhysReg) {
822       if (!addThroughConstraints(Cand.Intf, NewBlocks))
823         return false;
824     } else
825       // Provide a strong negative bias on through blocks to prevent unwanted
826       // liveness on loop backedges.
827       SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true);
828     AddedTo = ActiveBlocks.size();
829 
830     // Perhaps iterating can enable more bundles?
831     SpillPlacer->iterate();
832   }
833   LLVM_DEBUG(dbgs() << ", v=" << Visited);
834   return true;
835 }
836 
837 /// calcCompactRegion - Compute the set of edge bundles that should be live
838 /// when splitting the current live range into compact regions.  Compact
839 /// regions can be computed without looking at interference.  They are the
840 /// regions formed by removing all the live-through blocks from the live range.
841 ///
842 /// Returns false if the current live range is already compact, or if the
843 /// compact regions would form single block regions anyway.
844 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) {
845   // Without any through blocks, the live range is already compact.
846   if (!SA->getNumThroughBlocks())
847     return false;
848 
849   // Compact regions don't correspond to any physreg.
850   Cand.reset(IntfCache, MCRegister::NoRegister);
851 
852   LLVM_DEBUG(dbgs() << "Compact region bundles");
853 
854   // Use the spill placer to determine the live bundles. GrowRegion pretends
855   // that all the through blocks have interference when PhysReg is unset.
856   SpillPlacer->prepare(Cand.LiveBundles);
857 
858   // The static split cost will be zero since Cand.Intf reports no interference.
859   BlockFrequency Cost;
860   if (!addSplitConstraints(Cand.Intf, Cost)) {
861     LLVM_DEBUG(dbgs() << ", none.\n");
862     return false;
863   }
864 
865   if (!growRegion(Cand)) {
866     LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
867     return false;
868   }
869 
870   SpillPlacer->finish();
871 
872   if (!Cand.LiveBundles.any()) {
873     LLVM_DEBUG(dbgs() << ", none.\n");
874     return false;
875   }
876 
877   LLVM_DEBUG({
878     for (int I : Cand.LiveBundles.set_bits())
879       dbgs() << " EB#" << I;
880     dbgs() << ".\n";
881   });
882   return true;
883 }
884 
885 /// calcSpillCost - Compute how expensive it would be to split the live range in
886 /// SA around all use blocks instead of forming bundle regions.
887 BlockFrequency RAGreedy::calcSpillCost() {
888   BlockFrequency Cost = 0;
889   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
890   for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
891     unsigned Number = BI.MBB->getNumber();
892     // We normally only need one spill instruction - a load or a store.
893     Cost += SpillPlacer->getBlockFrequency(Number);
894 
895     // Unless the value is redefined in the block.
896     if (BI.LiveIn && BI.LiveOut && BI.FirstDef)
897       Cost += SpillPlacer->getBlockFrequency(Number);
898   }
899   return Cost;
900 }
901 
902 /// Check if splitting Evictee will create a local split interval in
903 /// basic block number BBNumber that may cause a bad eviction chain. This is
904 /// intended to prevent bad eviction sequences like:
905 /// movl	%ebp, 8(%esp)           # 4-byte Spill
906 /// movl	%ecx, %ebp
907 /// movl	%ebx, %ecx
908 /// movl	%edi, %ebx
909 /// movl	%edx, %edi
910 /// cltd
911 /// idivl	%esi
912 /// movl	%edi, %edx
913 /// movl	%ebx, %edi
914 /// movl	%ecx, %ebx
915 /// movl	%ebp, %ecx
916 /// movl	16(%esp), %ebp          # 4 - byte Reload
917 ///
918 /// Such sequences are created in 2 scenarios:
919 ///
920 /// Scenario #1:
921 /// %0 is evicted from physreg0 by %1.
922 /// Evictee %0 is intended for region splitting with split candidate
923 /// physreg0 (the reg %0 was evicted from).
924 /// Region splitting creates a local interval because of interference with the
925 /// evictor %1 (normally region splitting creates 2 interval, the "by reg"
926 /// and "by stack" intervals and local interval created when interference
927 /// occurs).
928 /// One of the split intervals ends up evicting %2 from physreg1.
929 /// Evictee %2 is intended for region splitting with split candidate
930 /// physreg1.
931 /// One of the split intervals ends up evicting %3 from physreg2, etc.
932 ///
933 /// Scenario #2
934 /// %0 is evicted from physreg0 by %1.
935 /// %2 is evicted from physreg2 by %3 etc.
936 /// Evictee %0 is intended for region splitting with split candidate
937 /// physreg1.
938 /// Region splitting creates a local interval because of interference with the
939 /// evictor %1.
940 /// One of the split intervals ends up evicting back original evictor %1
941 /// from physreg0 (the reg %0 was evicted from).
942 /// Another evictee %2 is intended for region splitting with split candidate
943 /// physreg1.
944 /// One of the split intervals ends up evicting %3 from physreg2, etc.
945 ///
946 /// \param Evictee  The register considered to be split.
947 /// \param Cand     The split candidate that determines the physical register
948 ///                 we are splitting for and the interferences.
949 /// \param BBNumber The number of a BB for which the region split process will
950 ///                 create a local split interval.
951 /// \param Order    The physical registers that may get evicted by a split
952 ///                 artifact of Evictee.
953 /// \return True if splitting Evictee may cause a bad eviction chain, false
954 /// otherwise.
955 bool RAGreedy::splitCanCauseEvictionChain(Register Evictee,
956                                           GlobalSplitCandidate &Cand,
957                                           unsigned BBNumber,
958                                           const AllocationOrder &Order) {
959   EvictionTrack::EvictorInfo VregEvictorInfo = LastEvicted.getEvictor(Evictee);
960   unsigned Evictor = VregEvictorInfo.first;
961   MCRegister PhysReg = VregEvictorInfo.second;
962 
963   // No actual evictor.
964   if (!Evictor || !PhysReg)
965     return false;
966 
967   float MaxWeight = 0;
968   MCRegister FutureEvictedPhysReg =
969       getCheapestEvicteeWeight(Order, LIS->getInterval(Evictee),
970                                Cand.Intf.first(), Cand.Intf.last(), &MaxWeight);
971 
972   // The bad eviction chain occurs when either the split candidate is the
973   // evicting reg or one of the split artifact will evict the evicting reg.
974   if ((PhysReg != Cand.PhysReg) && (PhysReg != FutureEvictedPhysReg))
975     return false;
976 
977   Cand.Intf.moveToBlock(BBNumber);
978 
979   // Check to see if the Evictor contains interference (with Evictee) in the
980   // given BB. If so, this interference caused the eviction of Evictee from
981   // PhysReg. This suggest that we will create a local interval during the
982   // region split to avoid this interference This local interval may cause a bad
983   // eviction chain.
984   if (!LIS->hasInterval(Evictor))
985     return false;
986   LiveInterval &EvictorLI = LIS->getInterval(Evictor);
987   if (EvictorLI.FindSegmentContaining(Cand.Intf.first()) == EvictorLI.end())
988     return false;
989 
990   // Now, check to see if the local interval we will create is going to be
991   // expensive enough to evict somebody If so, this may cause a bad eviction
992   // chain.
993   float splitArtifactWeight =
994       VRAI->futureWeight(LIS->getInterval(Evictee),
995                          Cand.Intf.first().getPrevIndex(), Cand.Intf.last());
996   if (splitArtifactWeight >= 0 && splitArtifactWeight < MaxWeight)
997     return false;
998 
999   return true;
1000 }
1001 
1002 /// Check if splitting VirtRegToSplit will create a local split interval
1003 /// in basic block number BBNumber that may cause a spill.
1004 ///
1005 /// \param VirtRegToSplit The register considered to be split.
1006 /// \param Cand           The split candidate that determines the physical
1007 ///                       register we are splitting for and the interferences.
1008 /// \param BBNumber       The number of a BB for which the region split process
1009 ///                       will create a local split interval.
1010 /// \param Order          The physical registers that may get evicted by a
1011 ///                       split artifact of VirtRegToSplit.
1012 /// \return True if splitting VirtRegToSplit may cause a spill, false
1013 /// otherwise.
1014 bool RAGreedy::splitCanCauseLocalSpill(unsigned VirtRegToSplit,
1015                                        GlobalSplitCandidate &Cand,
1016                                        unsigned BBNumber,
1017                                        const AllocationOrder &Order) {
1018   Cand.Intf.moveToBlock(BBNumber);
1019 
1020   // Check if the local interval will find a non interfereing assignment.
1021   for (auto PhysReg : Order.getOrder()) {
1022     if (!Matrix->checkInterference(Cand.Intf.first().getPrevIndex(),
1023                                    Cand.Intf.last(), PhysReg))
1024       return false;
1025   }
1026 
1027   // The local interval is not able to find non interferencing assignment
1028   // and not able to evict a less worthy interval, therfore, it can cause a
1029   // spill.
1030   return true;
1031 }
1032 
1033 /// calcGlobalSplitCost - Return the global split cost of following the split
1034 /// pattern in LiveBundles. This cost should be added to the local cost of the
1035 /// interference pattern in SplitConstraints.
1036 ///
1037 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand,
1038                                              const AllocationOrder &Order,
1039                                              bool *CanCauseEvictionChain) {
1040   BlockFrequency GlobalCost = 0;
1041   const BitVector &LiveBundles = Cand.LiveBundles;
1042   Register VirtRegToSplit = SA->getParent().reg();
1043   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1044   for (unsigned I = 0; I != UseBlocks.size(); ++I) {
1045     const SplitAnalysis::BlockInfo &BI = UseBlocks[I];
1046     SpillPlacement::BlockConstraint &BC = SplitConstraints[I];
1047     bool RegIn  = LiveBundles[Bundles->getBundle(BC.Number, false)];
1048     bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)];
1049     unsigned Ins = 0;
1050 
1051     Cand.Intf.moveToBlock(BC.Number);
1052     // Check wheather a local interval is going to be created during the region
1053     // split. Calculate adavanced spilt cost (cost of local intervals) if option
1054     // is enabled.
1055     if (EnableAdvancedRASplitCost && Cand.Intf.hasInterference() && BI.LiveIn &&
1056         BI.LiveOut && RegIn && RegOut) {
1057 
1058       if (CanCauseEvictionChain &&
1059           splitCanCauseEvictionChain(VirtRegToSplit, Cand, BC.Number, Order)) {
1060         // This interference causes our eviction from this assignment, we might
1061         // evict somebody else and eventually someone will spill, add that cost.
1062         // See splitCanCauseEvictionChain for detailed description of scenarios.
1063         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1064         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1065 
1066         *CanCauseEvictionChain = true;
1067 
1068       } else if (splitCanCauseLocalSpill(VirtRegToSplit, Cand, BC.Number,
1069                                          Order)) {
1070         // This interference causes local interval to spill, add that cost.
1071         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1072         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1073       }
1074     }
1075 
1076     if (BI.LiveIn)
1077       Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
1078     if (BI.LiveOut)
1079       Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
1080     while (Ins--)
1081       GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1082   }
1083 
1084   for (unsigned Number : Cand.ActiveBlocks) {
1085     bool RegIn  = LiveBundles[Bundles->getBundle(Number, false)];
1086     bool RegOut = LiveBundles[Bundles->getBundle(Number, true)];
1087     if (!RegIn && !RegOut)
1088       continue;
1089     if (RegIn && RegOut) {
1090       // We need double spill code if this block has interference.
1091       Cand.Intf.moveToBlock(Number);
1092       if (Cand.Intf.hasInterference()) {
1093         GlobalCost += SpillPlacer->getBlockFrequency(Number);
1094         GlobalCost += SpillPlacer->getBlockFrequency(Number);
1095 
1096         // Check wheather a local interval is going to be created during the
1097         // region split.
1098         if (EnableAdvancedRASplitCost && CanCauseEvictionChain &&
1099             splitCanCauseEvictionChain(VirtRegToSplit, Cand, Number, Order)) {
1100           // This interference cause our eviction from this assignment, we might
1101           // evict somebody else, add that cost.
1102           // See splitCanCauseEvictionChain for detailed description of
1103           // scenarios.
1104           GlobalCost += SpillPlacer->getBlockFrequency(Number);
1105           GlobalCost += SpillPlacer->getBlockFrequency(Number);
1106 
1107           *CanCauseEvictionChain = true;
1108         }
1109       }
1110       continue;
1111     }
1112     // live-in / stack-out or stack-in live-out.
1113     GlobalCost += SpillPlacer->getBlockFrequency(Number);
1114   }
1115   return GlobalCost;
1116 }
1117 
1118 /// splitAroundRegion - Split the current live range around the regions
1119 /// determined by BundleCand and GlobalCand.
1120 ///
1121 /// Before calling this function, GlobalCand and BundleCand must be initialized
1122 /// so each bundle is assigned to a valid candidate, or NoCand for the
1123 /// stack-bound bundles.  The shared SA/SE SplitAnalysis and SplitEditor
1124 /// objects must be initialized for the current live range, and intervals
1125 /// created for the used candidates.
1126 ///
1127 /// @param LREdit    The LiveRangeEdit object handling the current split.
1128 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value
1129 ///                  must appear in this list.
1130 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit,
1131                                  ArrayRef<unsigned> UsedCands) {
1132   // These are the intervals created for new global ranges. We may create more
1133   // intervals for local ranges.
1134   const unsigned NumGlobalIntvs = LREdit.size();
1135   LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs
1136                     << " globals.\n");
1137   assert(NumGlobalIntvs && "No global intervals configured");
1138 
1139   // Isolate even single instructions when dealing with a proper sub-class.
1140   // That guarantees register class inflation for the stack interval because it
1141   // is all copies.
1142   Register Reg = SA->getParent().reg();
1143   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1144 
1145   // First handle all the blocks with uses.
1146   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1147   for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
1148     unsigned Number = BI.MBB->getNumber();
1149     unsigned IntvIn = 0, IntvOut = 0;
1150     SlotIndex IntfIn, IntfOut;
1151     if (BI.LiveIn) {
1152       unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
1153       if (CandIn != NoCand) {
1154         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1155         IntvIn = Cand.IntvIdx;
1156         Cand.Intf.moveToBlock(Number);
1157         IntfIn = Cand.Intf.first();
1158       }
1159     }
1160     if (BI.LiveOut) {
1161       unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
1162       if (CandOut != NoCand) {
1163         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1164         IntvOut = Cand.IntvIdx;
1165         Cand.Intf.moveToBlock(Number);
1166         IntfOut = Cand.Intf.last();
1167       }
1168     }
1169 
1170     // Create separate intervals for isolated blocks with multiple uses.
1171     if (!IntvIn && !IntvOut) {
1172       LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " isolated.\n");
1173       if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1174         SE->splitSingleBlock(BI);
1175       continue;
1176     }
1177 
1178     if (IntvIn && IntvOut)
1179       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1180     else if (IntvIn)
1181       SE->splitRegInBlock(BI, IntvIn, IntfIn);
1182     else
1183       SE->splitRegOutBlock(BI, IntvOut, IntfOut);
1184   }
1185 
1186   // Handle live-through blocks. The relevant live-through blocks are stored in
1187   // the ActiveBlocks list with each candidate. We need to filter out
1188   // duplicates.
1189   BitVector Todo = SA->getThroughBlocks();
1190   for (unsigned UsedCand : UsedCands) {
1191     ArrayRef<unsigned> Blocks = GlobalCand[UsedCand].ActiveBlocks;
1192     for (unsigned Number : Blocks) {
1193       if (!Todo.test(Number))
1194         continue;
1195       Todo.reset(Number);
1196 
1197       unsigned IntvIn = 0, IntvOut = 0;
1198       SlotIndex IntfIn, IntfOut;
1199 
1200       unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
1201       if (CandIn != NoCand) {
1202         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1203         IntvIn = Cand.IntvIdx;
1204         Cand.Intf.moveToBlock(Number);
1205         IntfIn = Cand.Intf.first();
1206       }
1207 
1208       unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
1209       if (CandOut != NoCand) {
1210         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1211         IntvOut = Cand.IntvIdx;
1212         Cand.Intf.moveToBlock(Number);
1213         IntfOut = Cand.Intf.last();
1214       }
1215       if (!IntvIn && !IntvOut)
1216         continue;
1217       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1218     }
1219   }
1220 
1221   ++NumGlobalSplits;
1222 
1223   SmallVector<unsigned, 8> IntvMap;
1224   SE->finish(&IntvMap);
1225   DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
1226 
1227   unsigned OrigBlocks = SA->getNumLiveBlocks();
1228 
1229   // Sort out the new intervals created by splitting. We get four kinds:
1230   // - Remainder intervals should not be split again.
1231   // - Candidate intervals can be assigned to Cand.PhysReg.
1232   // - Block-local splits are candidates for local splitting.
1233   // - DCE leftovers should go back on the queue.
1234   for (unsigned I = 0, E = LREdit.size(); I != E; ++I) {
1235     const LiveInterval &Reg = LIS->getInterval(LREdit.get(I));
1236 
1237     // Ignore old intervals from DCE.
1238     if (ExtraInfo->getOrInitStage(Reg.reg()) != RS_New)
1239       continue;
1240 
1241     // Remainder interval. Don't try splitting again, spill if it doesn't
1242     // allocate.
1243     if (IntvMap[I] == 0) {
1244       ExtraInfo->setStage(Reg, RS_Spill);
1245       continue;
1246     }
1247 
1248     // Global intervals. Allow repeated splitting as long as the number of live
1249     // blocks is strictly decreasing.
1250     if (IntvMap[I] < NumGlobalIntvs) {
1251       if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
1252         LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
1253                           << " blocks as original.\n");
1254         // Don't allow repeated splitting as a safe guard against looping.
1255         ExtraInfo->setStage(Reg, RS_Split2);
1256       }
1257       continue;
1258     }
1259 
1260     // Other intervals are treated as new. This includes local intervals created
1261     // for blocks with multiple uses, and anything created by DCE.
1262   }
1263 
1264   if (VerifyEnabled)
1265     MF->verify(this, "After splitting live range around region");
1266 }
1267 
1268 MCRegister RAGreedy::tryRegionSplit(const LiveInterval &VirtReg,
1269                                     AllocationOrder &Order,
1270                                     SmallVectorImpl<Register> &NewVRegs) {
1271   if (!TRI->shouldRegionSplitForVirtReg(*MF, VirtReg))
1272     return MCRegister::NoRegister;
1273   unsigned NumCands = 0;
1274   BlockFrequency SpillCost = calcSpillCost();
1275   BlockFrequency BestCost;
1276 
1277   // Check if we can split this live range around a compact region.
1278   bool HasCompact = calcCompactRegion(GlobalCand.front());
1279   if (HasCompact) {
1280     // Yes, keep GlobalCand[0] as the compact region candidate.
1281     NumCands = 1;
1282     BestCost = BlockFrequency::getMaxFrequency();
1283   } else {
1284     // No benefit from the compact region, our fallback will be per-block
1285     // splitting. Make sure we find a solution that is cheaper than spilling.
1286     BestCost = SpillCost;
1287     LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = ";
1288                MBFI->printBlockFreq(dbgs(), BestCost) << '\n');
1289   }
1290 
1291   bool CanCauseEvictionChain = false;
1292   unsigned BestCand =
1293       calculateRegionSplitCost(VirtReg, Order, BestCost, NumCands,
1294                                false /*IgnoreCSR*/, &CanCauseEvictionChain);
1295 
1296   // Split candidates with compact regions can cause a bad eviction sequence.
1297   // See splitCanCauseEvictionChain for detailed description of scenarios.
1298   // To avoid it, we need to comapre the cost with the spill cost and not the
1299   // current max frequency.
1300   if (HasCompact && (BestCost > SpillCost) && (BestCand != NoCand) &&
1301     CanCauseEvictionChain) {
1302     return MCRegister::NoRegister;
1303   }
1304 
1305   // No solutions found, fall back to single block splitting.
1306   if (!HasCompact && BestCand == NoCand)
1307     return MCRegister::NoRegister;
1308 
1309   return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs);
1310 }
1311 
1312 unsigned RAGreedy::calculateRegionSplitCost(const LiveInterval &VirtReg,
1313                                             AllocationOrder &Order,
1314                                             BlockFrequency &BestCost,
1315                                             unsigned &NumCands, bool IgnoreCSR,
1316                                             bool *CanCauseEvictionChain) {
1317   unsigned BestCand = NoCand;
1318   for (MCPhysReg PhysReg : Order) {
1319     assert(PhysReg);
1320     if (IgnoreCSR && EvictAdvisor->isUnusedCalleeSavedReg(PhysReg))
1321       continue;
1322 
1323     // Discard bad candidates before we run out of interference cache cursors.
1324     // This will only affect register classes with a lot of registers (>32).
1325     if (NumCands == IntfCache.getMaxCursors()) {
1326       unsigned WorstCount = ~0u;
1327       unsigned Worst = 0;
1328       for (unsigned CandIndex = 0; CandIndex != NumCands; ++CandIndex) {
1329         if (CandIndex == BestCand || !GlobalCand[CandIndex].PhysReg)
1330           continue;
1331         unsigned Count = GlobalCand[CandIndex].LiveBundles.count();
1332         if (Count < WorstCount) {
1333           Worst = CandIndex;
1334           WorstCount = Count;
1335         }
1336       }
1337       --NumCands;
1338       GlobalCand[Worst] = GlobalCand[NumCands];
1339       if (BestCand == NumCands)
1340         BestCand = Worst;
1341     }
1342 
1343     if (GlobalCand.size() <= NumCands)
1344       GlobalCand.resize(NumCands+1);
1345     GlobalSplitCandidate &Cand = GlobalCand[NumCands];
1346     Cand.reset(IntfCache, PhysReg);
1347 
1348     SpillPlacer->prepare(Cand.LiveBundles);
1349     BlockFrequency Cost;
1350     if (!addSplitConstraints(Cand.Intf, Cost)) {
1351       LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tno positive bundles\n");
1352       continue;
1353     }
1354     LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tstatic = ";
1355                MBFI->printBlockFreq(dbgs(), Cost));
1356     if (Cost >= BestCost) {
1357       LLVM_DEBUG({
1358         if (BestCand == NoCand)
1359           dbgs() << " worse than no bundles\n";
1360         else
1361           dbgs() << " worse than "
1362                  << printReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
1363       });
1364       continue;
1365     }
1366     if (!growRegion(Cand)) {
1367       LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
1368       continue;
1369     }
1370 
1371     SpillPlacer->finish();
1372 
1373     // No live bundles, defer to splitSingleBlocks().
1374     if (!Cand.LiveBundles.any()) {
1375       LLVM_DEBUG(dbgs() << " no bundles.\n");
1376       continue;
1377     }
1378 
1379     bool HasEvictionChain = false;
1380     Cost += calcGlobalSplitCost(Cand, Order, &HasEvictionChain);
1381     LLVM_DEBUG({
1382       dbgs() << ", total = ";
1383       MBFI->printBlockFreq(dbgs(), Cost) << " with bundles";
1384       for (int I : Cand.LiveBundles.set_bits())
1385         dbgs() << " EB#" << I;
1386       dbgs() << ".\n";
1387     });
1388     if (Cost < BestCost) {
1389       BestCand = NumCands;
1390       BestCost = Cost;
1391       // See splitCanCauseEvictionChain for detailed description of bad
1392       // eviction chain scenarios.
1393       if (CanCauseEvictionChain)
1394         *CanCauseEvictionChain = HasEvictionChain;
1395     }
1396     ++NumCands;
1397   }
1398 
1399   if (CanCauseEvictionChain && BestCand != NoCand) {
1400     // See splitCanCauseEvictionChain for detailed description of bad
1401     // eviction chain scenarios.
1402     LLVM_DEBUG(dbgs() << "Best split candidate of vreg "
1403                       << printReg(VirtReg.reg(), TRI) << "  may ");
1404     if (!(*CanCauseEvictionChain))
1405       LLVM_DEBUG(dbgs() << "not ");
1406     LLVM_DEBUG(dbgs() << "cause bad eviction chain\n");
1407   }
1408 
1409   return BestCand;
1410 }
1411 
1412 unsigned RAGreedy::doRegionSplit(const LiveInterval &VirtReg, unsigned BestCand,
1413                                  bool HasCompact,
1414                                  SmallVectorImpl<Register> &NewVRegs) {
1415   SmallVector<unsigned, 8> UsedCands;
1416   // Prepare split editor.
1417   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1418   SE->reset(LREdit, SplitSpillMode);
1419 
1420   // Assign all edge bundles to the preferred candidate, or NoCand.
1421   BundleCand.assign(Bundles->getNumBundles(), NoCand);
1422 
1423   // Assign bundles for the best candidate region.
1424   if (BestCand != NoCand) {
1425     GlobalSplitCandidate &Cand = GlobalCand[BestCand];
1426     if (unsigned B = Cand.getBundles(BundleCand, BestCand)) {
1427       UsedCands.push_back(BestCand);
1428       Cand.IntvIdx = SE->openIntv();
1429       LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand.PhysReg, TRI) << " in "
1430                         << B << " bundles, intv " << Cand.IntvIdx << ".\n");
1431       (void)B;
1432     }
1433   }
1434 
1435   // Assign bundles for the compact region.
1436   if (HasCompact) {
1437     GlobalSplitCandidate &Cand = GlobalCand.front();
1438     assert(!Cand.PhysReg && "Compact region has no physreg");
1439     if (unsigned B = Cand.getBundles(BundleCand, 0)) {
1440       UsedCands.push_back(0);
1441       Cand.IntvIdx = SE->openIntv();
1442       LLVM_DEBUG(dbgs() << "Split for compact region in " << B
1443                         << " bundles, intv " << Cand.IntvIdx << ".\n");
1444       (void)B;
1445     }
1446   }
1447 
1448   splitAroundRegion(LREdit, UsedCands);
1449   return 0;
1450 }
1451 
1452 //===----------------------------------------------------------------------===//
1453 //                            Per-Block Splitting
1454 //===----------------------------------------------------------------------===//
1455 
1456 /// tryBlockSplit - Split a global live range around every block with uses. This
1457 /// creates a lot of local live ranges, that will be split by tryLocalSplit if
1458 /// they don't allocate.
1459 unsigned RAGreedy::tryBlockSplit(const LiveInterval &VirtReg,
1460                                  AllocationOrder &Order,
1461                                  SmallVectorImpl<Register> &NewVRegs) {
1462   assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed");
1463   Register Reg = VirtReg.reg();
1464   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1465   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1466   SE->reset(LREdit, SplitSpillMode);
1467   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1468   for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
1469     if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1470       SE->splitSingleBlock(BI);
1471   }
1472   // No blocks were split.
1473   if (LREdit.empty())
1474     return 0;
1475 
1476   // We did split for some blocks.
1477   SmallVector<unsigned, 8> IntvMap;
1478   SE->finish(&IntvMap);
1479 
1480   // Tell LiveDebugVariables about the new ranges.
1481   DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
1482 
1483   // Sort out the new intervals created by splitting. The remainder interval
1484   // goes straight to spilling, the new local ranges get to stay RS_New.
1485   for (unsigned I = 0, E = LREdit.size(); I != E; ++I) {
1486     const LiveInterval &LI = LIS->getInterval(LREdit.get(I));
1487     if (ExtraInfo->getOrInitStage(LI.reg()) == RS_New && IntvMap[I] == 0)
1488       ExtraInfo->setStage(LI, RS_Spill);
1489   }
1490 
1491   if (VerifyEnabled)
1492     MF->verify(this, "After splitting live range around basic blocks");
1493   return 0;
1494 }
1495 
1496 //===----------------------------------------------------------------------===//
1497 //                         Per-Instruction Splitting
1498 //===----------------------------------------------------------------------===//
1499 
1500 /// Get the number of allocatable registers that match the constraints of \p Reg
1501 /// on \p MI and that are also in \p SuperRC.
1502 static unsigned getNumAllocatableRegsForConstraints(
1503     const MachineInstr *MI, Register Reg, const TargetRegisterClass *SuperRC,
1504     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
1505     const RegisterClassInfo &RCI) {
1506   assert(SuperRC && "Invalid register class");
1507 
1508   const TargetRegisterClass *ConstrainedRC =
1509       MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI,
1510                                              /* ExploreBundle */ true);
1511   if (!ConstrainedRC)
1512     return 0;
1513   return RCI.getNumAllocatableRegs(ConstrainedRC);
1514 }
1515 
1516 /// tryInstructionSplit - Split a live range around individual instructions.
1517 /// This is normally not worthwhile since the spiller is doing essentially the
1518 /// same thing. However, when the live range is in a constrained register
1519 /// class, it may help to insert copies such that parts of the live range can
1520 /// be moved to a larger register class.
1521 ///
1522 /// This is similar to spilling to a larger register class.
1523 unsigned RAGreedy::tryInstructionSplit(const LiveInterval &VirtReg,
1524                                        AllocationOrder &Order,
1525                                        SmallVectorImpl<Register> &NewVRegs) {
1526   const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg());
1527   // There is no point to this if there are no larger sub-classes.
1528   if (!RegClassInfo.isProperSubClass(CurRC))
1529     return 0;
1530 
1531   // Always enable split spill mode, since we're effectively spilling to a
1532   // register.
1533   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1534   SE->reset(LREdit, SplitEditor::SM_Size);
1535 
1536   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1537   if (Uses.size() <= 1)
1538     return 0;
1539 
1540   LLVM_DEBUG(dbgs() << "Split around " << Uses.size()
1541                     << " individual instrs.\n");
1542 
1543   const TargetRegisterClass *SuperRC =
1544       TRI->getLargestLegalSuperClass(CurRC, *MF);
1545   unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC);
1546   // Split around every non-copy instruction if this split will relax
1547   // the constraints on the virtual register.
1548   // Otherwise, splitting just inserts uncoalescable copies that do not help
1549   // the allocation.
1550   for (const SlotIndex Use : Uses) {
1551     if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Use))
1552       if (MI->isFullCopy() ||
1553           SuperRCNumAllocatableRegs ==
1554               getNumAllocatableRegsForConstraints(MI, VirtReg.reg(), SuperRC,
1555                                                   TII, TRI, RCI)) {
1556         LLVM_DEBUG(dbgs() << "    skip:\t" << Use << '\t' << *MI);
1557         continue;
1558       }
1559     SE->openIntv();
1560     SlotIndex SegStart = SE->enterIntvBefore(Use);
1561     SlotIndex SegStop = SE->leaveIntvAfter(Use);
1562     SE->useIntv(SegStart, SegStop);
1563   }
1564 
1565   if (LREdit.empty()) {
1566     LLVM_DEBUG(dbgs() << "All uses were copies.\n");
1567     return 0;
1568   }
1569 
1570   SmallVector<unsigned, 8> IntvMap;
1571   SE->finish(&IntvMap);
1572   DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS);
1573   // Assign all new registers to RS_Spill. This was the last chance.
1574   ExtraInfo->setStage(LREdit.begin(), LREdit.end(), RS_Spill);
1575   return 0;
1576 }
1577 
1578 //===----------------------------------------------------------------------===//
1579 //                             Local Splitting
1580 //===----------------------------------------------------------------------===//
1581 
1582 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted
1583 /// in order to use PhysReg between two entries in SA->UseSlots.
1584 ///
1585 /// GapWeight[I] represents the gap between UseSlots[I] and UseSlots[I + 1].
1586 ///
1587 void RAGreedy::calcGapWeights(MCRegister PhysReg,
1588                               SmallVectorImpl<float> &GapWeight) {
1589   assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
1590   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1591   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1592   const unsigned NumGaps = Uses.size()-1;
1593 
1594   // Start and end points for the interference check.
1595   SlotIndex StartIdx =
1596     BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr;
1597   SlotIndex StopIdx =
1598     BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr;
1599 
1600   GapWeight.assign(NumGaps, 0.0f);
1601 
1602   // Add interference from each overlapping register.
1603   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1604     if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units)
1605           .checkInterference())
1606       continue;
1607 
1608     // We know that VirtReg is a continuous interval from FirstInstr to
1609     // LastInstr, so we don't need InterferenceQuery.
1610     //
1611     // Interference that overlaps an instruction is counted in both gaps
1612     // surrounding the instruction. The exception is interference before
1613     // StartIdx and after StopIdx.
1614     //
1615     LiveIntervalUnion::SegmentIter IntI =
1616       Matrix->getLiveUnions()[*Units] .find(StartIdx);
1617     for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
1618       // Skip the gaps before IntI.
1619       while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
1620         if (++Gap == NumGaps)
1621           break;
1622       if (Gap == NumGaps)
1623         break;
1624 
1625       // Update the gaps covered by IntI.
1626       const float weight = IntI.value()->weight();
1627       for (; Gap != NumGaps; ++Gap) {
1628         GapWeight[Gap] = std::max(GapWeight[Gap], weight);
1629         if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
1630           break;
1631       }
1632       if (Gap == NumGaps)
1633         break;
1634     }
1635   }
1636 
1637   // Add fixed interference.
1638   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1639     const LiveRange &LR = LIS->getRegUnit(*Units);
1640     LiveRange::const_iterator I = LR.find(StartIdx);
1641     LiveRange::const_iterator E = LR.end();
1642 
1643     // Same loop as above. Mark any overlapped gaps as HUGE_VALF.
1644     for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) {
1645       while (Uses[Gap+1].getBoundaryIndex() < I->start)
1646         if (++Gap == NumGaps)
1647           break;
1648       if (Gap == NumGaps)
1649         break;
1650 
1651       for (; Gap != NumGaps; ++Gap) {
1652         GapWeight[Gap] = huge_valf;
1653         if (Uses[Gap+1].getBaseIndex() >= I->end)
1654           break;
1655       }
1656       if (Gap == NumGaps)
1657         break;
1658     }
1659   }
1660 }
1661 
1662 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
1663 /// basic block.
1664 ///
1665 unsigned RAGreedy::tryLocalSplit(const LiveInterval &VirtReg,
1666                                  AllocationOrder &Order,
1667                                  SmallVectorImpl<Register> &NewVRegs) {
1668   // TODO: the function currently only handles a single UseBlock; it should be
1669   // possible to generalize.
1670   if (SA->getUseBlocks().size() != 1)
1671     return 0;
1672 
1673   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1674 
1675   // Note that it is possible to have an interval that is live-in or live-out
1676   // while only covering a single block - A phi-def can use undef values from
1677   // predecessors, and the block could be a single-block loop.
1678   // We don't bother doing anything clever about such a case, we simply assume
1679   // that the interval is continuous from FirstInstr to LastInstr. We should
1680   // make sure that we don't do anything illegal to such an interval, though.
1681 
1682   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1683   if (Uses.size() <= 2)
1684     return 0;
1685   const unsigned NumGaps = Uses.size()-1;
1686 
1687   LLVM_DEBUG({
1688     dbgs() << "tryLocalSplit: ";
1689     for (const auto &Use : Uses)
1690       dbgs() << ' ' << Use;
1691     dbgs() << '\n';
1692   });
1693 
1694   // If VirtReg is live across any register mask operands, compute a list of
1695   // gaps with register masks.
1696   SmallVector<unsigned, 8> RegMaskGaps;
1697   if (Matrix->checkRegMaskInterference(VirtReg)) {
1698     // Get regmask slots for the whole block.
1699     ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber());
1700     LLVM_DEBUG(dbgs() << RMS.size() << " regmasks in block:");
1701     // Constrain to VirtReg's live range.
1702     unsigned RI =
1703         llvm::lower_bound(RMS, Uses.front().getRegSlot()) - RMS.begin();
1704     unsigned RE = RMS.size();
1705     for (unsigned I = 0; I != NumGaps && RI != RE; ++I) {
1706       // Look for Uses[I] <= RMS <= Uses[I + 1].
1707       assert(!SlotIndex::isEarlierInstr(RMS[RI], Uses[I]));
1708       if (SlotIndex::isEarlierInstr(Uses[I + 1], RMS[RI]))
1709         continue;
1710       // Skip a regmask on the same instruction as the last use. It doesn't
1711       // overlap the live range.
1712       if (SlotIndex::isSameInstr(Uses[I + 1], RMS[RI]) && I + 1 == NumGaps)
1713         break;
1714       LLVM_DEBUG(dbgs() << ' ' << RMS[RI] << ':' << Uses[I] << '-'
1715                         << Uses[I + 1]);
1716       RegMaskGaps.push_back(I);
1717       // Advance ri to the next gap. A regmask on one of the uses counts in
1718       // both gaps.
1719       while (RI != RE && SlotIndex::isEarlierInstr(RMS[RI], Uses[I + 1]))
1720         ++RI;
1721     }
1722     LLVM_DEBUG(dbgs() << '\n');
1723   }
1724 
1725   // Since we allow local split results to be split again, there is a risk of
1726   // creating infinite loops. It is tempting to require that the new live
1727   // ranges have less instructions than the original. That would guarantee
1728   // convergence, but it is too strict. A live range with 3 instructions can be
1729   // split 2+3 (including the COPY), and we want to allow that.
1730   //
1731   // Instead we use these rules:
1732   //
1733   // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the
1734   //    noop split, of course).
1735   // 2. Require progress be made for ranges with getStage() == RS_Split2. All
1736   //    the new ranges must have fewer instructions than before the split.
1737   // 3. New ranges with the same number of instructions are marked RS_Split2,
1738   //    smaller ranges are marked RS_New.
1739   //
1740   // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
1741   // excessive splitting and infinite loops.
1742   //
1743   bool ProgressRequired = ExtraInfo->getStage(VirtReg) >= RS_Split2;
1744 
1745   // Best split candidate.
1746   unsigned BestBefore = NumGaps;
1747   unsigned BestAfter = 0;
1748   float BestDiff = 0;
1749 
1750   const float blockFreq =
1751     SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() *
1752     (1.0f / MBFI->getEntryFreq());
1753   SmallVector<float, 8> GapWeight;
1754 
1755   for (MCPhysReg PhysReg : Order) {
1756     assert(PhysReg);
1757     // Keep track of the largest spill weight that would need to be evicted in
1758     // order to make use of PhysReg between UseSlots[I] and UseSlots[I + 1].
1759     calcGapWeights(PhysReg, GapWeight);
1760 
1761     // Remove any gaps with regmask clobbers.
1762     if (Matrix->checkRegMaskInterference(VirtReg, PhysReg))
1763       for (unsigned I = 0, E = RegMaskGaps.size(); I != E; ++I)
1764         GapWeight[RegMaskGaps[I]] = huge_valf;
1765 
1766     // Try to find the best sequence of gaps to close.
1767     // The new spill weight must be larger than any gap interference.
1768 
1769     // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
1770     unsigned SplitBefore = 0, SplitAfter = 1;
1771 
1772     // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
1773     // It is the spill weight that needs to be evicted.
1774     float MaxGap = GapWeight[0];
1775 
1776     while (true) {
1777       // Live before/after split?
1778       const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
1779       const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
1780 
1781       LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << ' ' << Uses[SplitBefore]
1782                         << '-' << Uses[SplitAfter] << " I=" << MaxGap);
1783 
1784       // Stop before the interval gets so big we wouldn't be making progress.
1785       if (!LiveBefore && !LiveAfter) {
1786         LLVM_DEBUG(dbgs() << " all\n");
1787         break;
1788       }
1789       // Should the interval be extended or shrunk?
1790       bool Shrink = true;
1791 
1792       // How many gaps would the new range have?
1793       unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
1794 
1795       // Legally, without causing looping?
1796       bool Legal = !ProgressRequired || NewGaps < NumGaps;
1797 
1798       if (Legal && MaxGap < huge_valf) {
1799         // Estimate the new spill weight. Each instruction reads or writes the
1800         // register. Conservatively assume there are no read-modify-write
1801         // instructions.
1802         //
1803         // Try to guess the size of the new interval.
1804         const float EstWeight = normalizeSpillWeight(
1805             blockFreq * (NewGaps + 1),
1806             Uses[SplitBefore].distance(Uses[SplitAfter]) +
1807                 (LiveBefore + LiveAfter) * SlotIndex::InstrDist,
1808             1);
1809         // Would this split be possible to allocate?
1810         // Never allocate all gaps, we wouldn't be making progress.
1811         LLVM_DEBUG(dbgs() << " w=" << EstWeight);
1812         if (EstWeight * Hysteresis >= MaxGap) {
1813           Shrink = false;
1814           float Diff = EstWeight - MaxGap;
1815           if (Diff > BestDiff) {
1816             LLVM_DEBUG(dbgs() << " (best)");
1817             BestDiff = Hysteresis * Diff;
1818             BestBefore = SplitBefore;
1819             BestAfter = SplitAfter;
1820           }
1821         }
1822       }
1823 
1824       // Try to shrink.
1825       if (Shrink) {
1826         if (++SplitBefore < SplitAfter) {
1827           LLVM_DEBUG(dbgs() << " shrink\n");
1828           // Recompute the max when necessary.
1829           if (GapWeight[SplitBefore - 1] >= MaxGap) {
1830             MaxGap = GapWeight[SplitBefore];
1831             for (unsigned I = SplitBefore + 1; I != SplitAfter; ++I)
1832               MaxGap = std::max(MaxGap, GapWeight[I]);
1833           }
1834           continue;
1835         }
1836         MaxGap = 0;
1837       }
1838 
1839       // Try to extend the interval.
1840       if (SplitAfter >= NumGaps) {
1841         LLVM_DEBUG(dbgs() << " end\n");
1842         break;
1843       }
1844 
1845       LLVM_DEBUG(dbgs() << " extend\n");
1846       MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
1847     }
1848   }
1849 
1850   // Didn't find any candidates?
1851   if (BestBefore == NumGaps)
1852     return 0;
1853 
1854   LLVM_DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] << '-'
1855                     << Uses[BestAfter] << ", " << BestDiff << ", "
1856                     << (BestAfter - BestBefore + 1) << " instrs\n");
1857 
1858   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1859   SE->reset(LREdit);
1860 
1861   SE->openIntv();
1862   SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
1863   SlotIndex SegStop  = SE->leaveIntvAfter(Uses[BestAfter]);
1864   SE->useIntv(SegStart, SegStop);
1865   SmallVector<unsigned, 8> IntvMap;
1866   SE->finish(&IntvMap);
1867   DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS);
1868   // If the new range has the same number of instructions as before, mark it as
1869   // RS_Split2 so the next split will be forced to make progress. Otherwise,
1870   // leave the new intervals as RS_New so they can compete.
1871   bool LiveBefore = BestBefore != 0 || BI.LiveIn;
1872   bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
1873   unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
1874   if (NewGaps >= NumGaps) {
1875     LLVM_DEBUG(dbgs() << "Tagging non-progress ranges:");
1876     assert(!ProgressRequired && "Didn't make progress when it was required.");
1877     for (unsigned I = 0, E = IntvMap.size(); I != E; ++I)
1878       if (IntvMap[I] == 1) {
1879         ExtraInfo->setStage(LIS->getInterval(LREdit.get(I)), RS_Split2);
1880         LLVM_DEBUG(dbgs() << ' ' << printReg(LREdit.get(I)));
1881       }
1882     LLVM_DEBUG(dbgs() << '\n');
1883   }
1884   ++NumLocalSplits;
1885 
1886   return 0;
1887 }
1888 
1889 //===----------------------------------------------------------------------===//
1890 //                          Live Range Splitting
1891 //===----------------------------------------------------------------------===//
1892 
1893 /// trySplit - Try to split VirtReg or one of its interferences, making it
1894 /// assignable.
1895 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
1896 unsigned RAGreedy::trySplit(const LiveInterval &VirtReg, AllocationOrder &Order,
1897                             SmallVectorImpl<Register> &NewVRegs,
1898                             const SmallVirtRegSet &FixedRegisters) {
1899   // Ranges must be Split2 or less.
1900   if (ExtraInfo->getStage(VirtReg) >= RS_Spill)
1901     return 0;
1902 
1903   // Local intervals are handled separately.
1904   if (LIS->intervalIsInOneMBB(VirtReg)) {
1905     NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName,
1906                        TimerGroupDescription, TimePassesIsEnabled);
1907     SA->analyze(&VirtReg);
1908     Register PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs);
1909     if (PhysReg || !NewVRegs.empty())
1910       return PhysReg;
1911     return tryInstructionSplit(VirtReg, Order, NewVRegs);
1912   }
1913 
1914   NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName,
1915                      TimerGroupDescription, TimePassesIsEnabled);
1916 
1917   SA->analyze(&VirtReg);
1918 
1919   // First try to split around a region spanning multiple blocks. RS_Split2
1920   // ranges already made dubious progress with region splitting, so they go
1921   // straight to single block splitting.
1922   if (ExtraInfo->getStage(VirtReg) < RS_Split2) {
1923     MCRegister PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
1924     if (PhysReg || !NewVRegs.empty())
1925       return PhysReg;
1926   }
1927 
1928   // Then isolate blocks.
1929   return tryBlockSplit(VirtReg, Order, NewVRegs);
1930 }
1931 
1932 //===----------------------------------------------------------------------===//
1933 //                          Last Chance Recoloring
1934 //===----------------------------------------------------------------------===//
1935 
1936 /// Return true if \p reg has any tied def operand.
1937 static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg) {
1938   for (const MachineOperand &MO : MRI->def_operands(reg))
1939     if (MO.isTied())
1940       return true;
1941 
1942   return false;
1943 }
1944 
1945 /// mayRecolorAllInterferences - Check if the virtual registers that
1946 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be
1947 /// recolored to free \p PhysReg.
1948 /// When true is returned, \p RecoloringCandidates has been augmented with all
1949 /// the live intervals that need to be recolored in order to free \p PhysReg
1950 /// for \p VirtReg.
1951 /// \p FixedRegisters contains all the virtual registers that cannot be
1952 /// recolored.
1953 bool RAGreedy::mayRecolorAllInterferences(
1954     MCRegister PhysReg, const LiveInterval &VirtReg,
1955     SmallLISet &RecoloringCandidates, const SmallVirtRegSet &FixedRegisters) {
1956   const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg());
1957 
1958   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1959     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
1960     // If there is LastChanceRecoloringMaxInterference or more interferences,
1961     // chances are one would not be recolorable.
1962     if (Q.interferingVRegs(LastChanceRecoloringMaxInterference).size() >=
1963             LastChanceRecoloringMaxInterference &&
1964         !ExhaustiveSearch) {
1965       LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n");
1966       CutOffInfo |= CO_Interf;
1967       return false;
1968     }
1969     for (const LiveInterval *Intf : reverse(Q.interferingVRegs())) {
1970       // If Intf is done and sit on the same register class as VirtReg,
1971       // it would not be recolorable as it is in the same state as VirtReg.
1972       // However, if VirtReg has tied defs and Intf doesn't, then
1973       // there is still a point in examining if it can be recolorable.
1974       //
1975       // Also, don't try to evict a register which is assigned to an overlapping
1976       // super register.
1977       //
1978       // TODO: Can we evict an interfering subset of the subregisters?
1979       if (((ExtraInfo->getStage(*Intf) == RS_Done &&
1980             (MRI->getRegClass(Intf->reg()) == CurRC ||
1981              TRI->regsOverlap(VRM->getPhys(Intf->reg()), PhysReg))) &&
1982            !(hasTiedDef(MRI, VirtReg.reg()) &&
1983              !hasTiedDef(MRI, Intf->reg()))) ||
1984           FixedRegisters.count(Intf->reg())) {
1985         LLVM_DEBUG(
1986             dbgs() << "Early abort: the interference is not recolorable.\n");
1987         return false;
1988       }
1989       RecoloringCandidates.insert(Intf);
1990     }
1991   }
1992   return true;
1993 }
1994 
1995 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring
1996 /// its interferences.
1997 /// Last chance recoloring chooses a color for \p VirtReg and recolors every
1998 /// virtual register that was using it. The recoloring process may recursively
1999 /// use the last chance recoloring. Therefore, when a virtual register has been
2000 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot
2001 /// be last-chance-recolored again during this recoloring "session".
2002 /// E.g.,
2003 /// Let
2004 /// vA can use {R1, R2    }
2005 /// vB can use {    R2, R3}
2006 /// vC can use {R1        }
2007 /// Where vA, vB, and vC cannot be split anymore (they are reloads for
2008 /// instance) and they all interfere.
2009 ///
2010 /// vA is assigned R1
2011 /// vB is assigned R2
2012 /// vC tries to evict vA but vA is already done.
2013 /// Regular register allocation fails.
2014 ///
2015 /// Last chance recoloring kicks in:
2016 /// vC does as if vA was evicted => vC uses R1.
2017 /// vC is marked as fixed.
2018 /// vA needs to find a color.
2019 /// None are available.
2020 /// vA cannot evict vC: vC is a fixed virtual register now.
2021 /// vA does as if vB was evicted => vA uses R2.
2022 /// vB needs to find a color.
2023 /// R3 is available.
2024 /// Recoloring => vC = R1, vA = R2, vB = R3
2025 ///
2026 /// \p Order defines the preferred allocation order for \p VirtReg.
2027 /// \p NewRegs will contain any new virtual register that have been created
2028 /// (split, spill) during the process and that must be assigned.
2029 /// \p FixedRegisters contains all the virtual registers that cannot be
2030 /// recolored.
2031 /// \p Depth gives the current depth of the last chance recoloring.
2032 /// \return a physical register that can be used for VirtReg or ~0u if none
2033 /// exists.
2034 unsigned RAGreedy::tryLastChanceRecoloring(const LiveInterval &VirtReg,
2035                                            AllocationOrder &Order,
2036                                            SmallVectorImpl<Register> &NewVRegs,
2037                                            SmallVirtRegSet &FixedRegisters,
2038                                            unsigned Depth) {
2039   if (!TRI->shouldUseLastChanceRecoloringForVirtReg(*MF, VirtReg))
2040     return ~0u;
2041 
2042   LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n');
2043   // Ranges must be Done.
2044   assert((ExtraInfo->getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) &&
2045          "Last chance recoloring should really be last chance");
2046   // Set the max depth to LastChanceRecoloringMaxDepth.
2047   // We may want to reconsider that if we end up with a too large search space
2048   // for target with hundreds of registers.
2049   // Indeed, in that case we may want to cut the search space earlier.
2050   if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) {
2051     LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n");
2052     CutOffInfo |= CO_Depth;
2053     return ~0u;
2054   }
2055 
2056   // Set of Live intervals that will need to be recolored.
2057   SmallLISet RecoloringCandidates;
2058   // Record the original mapping virtual register to physical register in case
2059   // the recoloring fails.
2060   DenseMap<Register, MCRegister> VirtRegToPhysReg;
2061   // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in
2062   // this recoloring "session".
2063   assert(!FixedRegisters.count(VirtReg.reg()));
2064   FixedRegisters.insert(VirtReg.reg());
2065   SmallVector<Register, 4> CurrentNewVRegs;
2066 
2067   for (MCRegister PhysReg : Order) {
2068     assert(PhysReg.isValid());
2069     LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg << " to "
2070                       << printReg(PhysReg, TRI) << '\n');
2071     RecoloringCandidates.clear();
2072     VirtRegToPhysReg.clear();
2073     CurrentNewVRegs.clear();
2074 
2075     // It is only possible to recolor virtual register interference.
2076     if (Matrix->checkInterference(VirtReg, PhysReg) >
2077         LiveRegMatrix::IK_VirtReg) {
2078       LLVM_DEBUG(
2079           dbgs() << "Some interferences are not with virtual registers.\n");
2080 
2081       continue;
2082     }
2083 
2084     // Early give up on this PhysReg if it is obvious we cannot recolor all
2085     // the interferences.
2086     if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates,
2087                                     FixedRegisters)) {
2088       LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n");
2089       continue;
2090     }
2091 
2092     // RecoloringCandidates contains all the virtual registers that interfer
2093     // with VirtReg on PhysReg (or one of its aliases).
2094     // Enqueue them for recoloring and perform the actual recoloring.
2095     PQueue RecoloringQueue;
2096     for (const LiveInterval *RC : RecoloringCandidates) {
2097       Register ItVirtReg = RC->reg();
2098       enqueue(RecoloringQueue, RC);
2099       assert(VRM->hasPhys(ItVirtReg) &&
2100              "Interferences are supposed to be with allocated variables");
2101 
2102       // Record the current allocation.
2103       VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg);
2104       // unset the related struct.
2105       Matrix->unassign(*RC);
2106     }
2107 
2108     // Do as if VirtReg was assigned to PhysReg so that the underlying
2109     // recoloring has the right information about the interferes and
2110     // available colors.
2111     Matrix->assign(VirtReg, PhysReg);
2112 
2113     // Save the current recoloring state.
2114     // If we cannot recolor all the interferences, we will have to start again
2115     // at this point for the next physical register.
2116     SmallVirtRegSet SaveFixedRegisters(FixedRegisters);
2117     if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs,
2118                                 FixedRegisters, Depth)) {
2119       // Push the queued vregs into the main queue.
2120       for (Register NewVReg : CurrentNewVRegs)
2121         NewVRegs.push_back(NewVReg);
2122       // Do not mess up with the global assignment process.
2123       // I.e., VirtReg must be unassigned.
2124       Matrix->unassign(VirtReg);
2125       return PhysReg;
2126     }
2127 
2128     LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to "
2129                       << printReg(PhysReg, TRI) << '\n');
2130 
2131     // The recoloring attempt failed, undo the changes.
2132     FixedRegisters = SaveFixedRegisters;
2133     Matrix->unassign(VirtReg);
2134 
2135     // For a newly created vreg which is also in RecoloringCandidates,
2136     // don't add it to NewVRegs because its physical register will be restored
2137     // below. Other vregs in CurrentNewVRegs are created by calling
2138     // selectOrSplit and should be added into NewVRegs.
2139     for (Register &R : CurrentNewVRegs) {
2140       if (RecoloringCandidates.count(&LIS->getInterval(R)))
2141         continue;
2142       NewVRegs.push_back(R);
2143     }
2144 
2145     for (const LiveInterval *RC : RecoloringCandidates) {
2146       Register ItVirtReg = RC->reg();
2147       if (VRM->hasPhys(ItVirtReg))
2148         Matrix->unassign(*RC);
2149       MCRegister ItPhysReg = VirtRegToPhysReg[ItVirtReg];
2150       Matrix->assign(*RC, ItPhysReg);
2151     }
2152   }
2153 
2154   // Last chance recoloring did not worked either, give up.
2155   return ~0u;
2156 }
2157 
2158 /// tryRecoloringCandidates - Try to assign a new color to every register
2159 /// in \RecoloringQueue.
2160 /// \p NewRegs will contain any new virtual register created during the
2161 /// recoloring process.
2162 /// \p FixedRegisters[in/out] contains all the registers that have been
2163 /// recolored.
2164 /// \return true if all virtual registers in RecoloringQueue were successfully
2165 /// recolored, false otherwise.
2166 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue,
2167                                        SmallVectorImpl<Register> &NewVRegs,
2168                                        SmallVirtRegSet &FixedRegisters,
2169                                        unsigned Depth) {
2170   while (!RecoloringQueue.empty()) {
2171     const LiveInterval *LI = dequeue(RecoloringQueue);
2172     LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI << '\n');
2173     MCRegister PhysReg =
2174         selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, Depth + 1);
2175     // When splitting happens, the live-range may actually be empty.
2176     // In that case, this is okay to continue the recoloring even
2177     // if we did not find an alternative color for it. Indeed,
2178     // there will not be anything to color for LI in the end.
2179     if (PhysReg == ~0u || (!PhysReg && !LI->empty()))
2180       return false;
2181 
2182     if (!PhysReg) {
2183       assert(LI->empty() && "Only empty live-range do not require a register");
2184       LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2185                         << " succeeded. Empty LI.\n");
2186       continue;
2187     }
2188     LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2189                       << " succeeded with: " << printReg(PhysReg, TRI) << '\n');
2190 
2191     Matrix->assign(*LI, PhysReg);
2192     FixedRegisters.insert(LI->reg());
2193   }
2194   return true;
2195 }
2196 
2197 //===----------------------------------------------------------------------===//
2198 //                            Main Entry Point
2199 //===----------------------------------------------------------------------===//
2200 
2201 MCRegister RAGreedy::selectOrSplit(const LiveInterval &VirtReg,
2202                                    SmallVectorImpl<Register> &NewVRegs) {
2203   CutOffInfo = CO_None;
2204   LLVMContext &Ctx = MF->getFunction().getContext();
2205   SmallVirtRegSet FixedRegisters;
2206   MCRegister Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters);
2207   if (Reg == ~0U && (CutOffInfo != CO_None)) {
2208     uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf);
2209     if (CutOffEncountered == CO_Depth)
2210       Ctx.emitError("register allocation failed: maximum depth for recoloring "
2211                     "reached. Use -fexhaustive-register-search to skip "
2212                     "cutoffs");
2213     else if (CutOffEncountered == CO_Interf)
2214       Ctx.emitError("register allocation failed: maximum interference for "
2215                     "recoloring reached. Use -fexhaustive-register-search "
2216                     "to skip cutoffs");
2217     else if (CutOffEncountered == (CO_Depth | CO_Interf))
2218       Ctx.emitError("register allocation failed: maximum interference and "
2219                     "depth for recoloring reached. Use "
2220                     "-fexhaustive-register-search to skip cutoffs");
2221   }
2222   return Reg;
2223 }
2224 
2225 /// Using a CSR for the first time has a cost because it causes push|pop
2226 /// to be added to prologue|epilogue. Splitting a cold section of the live
2227 /// range can have lower cost than using the CSR for the first time;
2228 /// Spilling a live range in the cold path can have lower cost than using
2229 /// the CSR for the first time. Returns the physical register if we decide
2230 /// to use the CSR; otherwise return 0.
2231 MCRegister RAGreedy::tryAssignCSRFirstTime(
2232     const LiveInterval &VirtReg, AllocationOrder &Order, MCRegister PhysReg,
2233     uint8_t &CostPerUseLimit, SmallVectorImpl<Register> &NewVRegs) {
2234   if (ExtraInfo->getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) {
2235     // We choose spill over using the CSR for the first time if the spill cost
2236     // is lower than CSRCost.
2237     SA->analyze(&VirtReg);
2238     if (calcSpillCost() >= CSRCost)
2239       return PhysReg;
2240 
2241     // We are going to spill, set CostPerUseLimit to 1 to make sure that
2242     // we will not use a callee-saved register in tryEvict.
2243     CostPerUseLimit = 1;
2244     return 0;
2245   }
2246   if (ExtraInfo->getStage(VirtReg) < RS_Split) {
2247     // We choose pre-splitting over using the CSR for the first time if
2248     // the cost of splitting is lower than CSRCost.
2249     SA->analyze(&VirtReg);
2250     unsigned NumCands = 0;
2251     BlockFrequency BestCost = CSRCost; // Don't modify CSRCost.
2252     unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost,
2253                                                  NumCands, true /*IgnoreCSR*/);
2254     if (BestCand == NoCand)
2255       // Use the CSR if we can't find a region split below CSRCost.
2256       return PhysReg;
2257 
2258     // Perform the actual pre-splitting.
2259     doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs);
2260     return 0;
2261   }
2262   return PhysReg;
2263 }
2264 
2265 void RAGreedy::aboutToRemoveInterval(const LiveInterval &LI) {
2266   // Do not keep invalid information around.
2267   SetOfBrokenHints.remove(&LI);
2268 }
2269 
2270 void RAGreedy::initializeCSRCost() {
2271   // We use the larger one out of the command-line option and the value report
2272   // by TRI.
2273   CSRCost = BlockFrequency(
2274       std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost()));
2275   if (!CSRCost.getFrequency())
2276     return;
2277 
2278   // Raw cost is relative to Entry == 2^14; scale it appropriately.
2279   uint64_t ActualEntry = MBFI->getEntryFreq();
2280   if (!ActualEntry) {
2281     CSRCost = 0;
2282     return;
2283   }
2284   uint64_t FixedEntry = 1 << 14;
2285   if (ActualEntry < FixedEntry)
2286     CSRCost *= BranchProbability(ActualEntry, FixedEntry);
2287   else if (ActualEntry <= UINT32_MAX)
2288     // Invert the fraction and divide.
2289     CSRCost /= BranchProbability(FixedEntry, ActualEntry);
2290   else
2291     // Can't use BranchProbability in general, since it takes 32-bit numbers.
2292     CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry);
2293 }
2294 
2295 /// Collect the hint info for \p Reg.
2296 /// The results are stored into \p Out.
2297 /// \p Out is not cleared before being populated.
2298 void RAGreedy::collectHintInfo(Register Reg, HintsInfo &Out) {
2299   for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) {
2300     if (!Instr.isFullCopy())
2301       continue;
2302     // Look for the other end of the copy.
2303     Register OtherReg = Instr.getOperand(0).getReg();
2304     if (OtherReg == Reg) {
2305       OtherReg = Instr.getOperand(1).getReg();
2306       if (OtherReg == Reg)
2307         continue;
2308     }
2309     // Get the current assignment.
2310     MCRegister OtherPhysReg =
2311         OtherReg.isPhysical() ? OtherReg.asMCReg() : VRM->getPhys(OtherReg);
2312     // Push the collected information.
2313     Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg,
2314                            OtherPhysReg));
2315   }
2316 }
2317 
2318 /// Using the given \p List, compute the cost of the broken hints if
2319 /// \p PhysReg was used.
2320 /// \return The cost of \p List for \p PhysReg.
2321 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List,
2322                                            MCRegister PhysReg) {
2323   BlockFrequency Cost = 0;
2324   for (const HintInfo &Info : List) {
2325     if (Info.PhysReg != PhysReg)
2326       Cost += Info.Freq;
2327   }
2328   return Cost;
2329 }
2330 
2331 /// Using the register assigned to \p VirtReg, try to recolor
2332 /// all the live ranges that are copy-related with \p VirtReg.
2333 /// The recoloring is then propagated to all the live-ranges that have
2334 /// been recolored and so on, until no more copies can be coalesced or
2335 /// it is not profitable.
2336 /// For a given live range, profitability is determined by the sum of the
2337 /// frequencies of the non-identity copies it would introduce with the old
2338 /// and new register.
2339 void RAGreedy::tryHintRecoloring(const LiveInterval &VirtReg) {
2340   // We have a broken hint, check if it is possible to fix it by
2341   // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted
2342   // some register and PhysReg may be available for the other live-ranges.
2343   SmallSet<Register, 4> Visited;
2344   SmallVector<unsigned, 2> RecoloringCandidates;
2345   HintsInfo Info;
2346   Register Reg = VirtReg.reg();
2347   MCRegister PhysReg = VRM->getPhys(Reg);
2348   // Start the recoloring algorithm from the input live-interval, then
2349   // it will propagate to the ones that are copy-related with it.
2350   Visited.insert(Reg);
2351   RecoloringCandidates.push_back(Reg);
2352 
2353   LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg, TRI)
2354                     << '(' << printReg(PhysReg, TRI) << ")\n");
2355 
2356   do {
2357     Reg = RecoloringCandidates.pop_back_val();
2358 
2359     // We cannot recolor physical register.
2360     if (Register::isPhysicalRegister(Reg))
2361       continue;
2362 
2363     // This may be a skipped class
2364     if (!VRM->hasPhys(Reg)) {
2365       assert(!ShouldAllocateClass(*TRI, *MRI->getRegClass(Reg)) &&
2366              "We have an unallocated variable which should have been handled");
2367       continue;
2368     }
2369 
2370     // Get the live interval mapped with this virtual register to be able
2371     // to check for the interference with the new color.
2372     LiveInterval &LI = LIS->getInterval(Reg);
2373     MCRegister CurrPhys = VRM->getPhys(Reg);
2374     // Check that the new color matches the register class constraints and
2375     // that it is free for this live range.
2376     if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) ||
2377                                 Matrix->checkInterference(LI, PhysReg)))
2378       continue;
2379 
2380     LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << '(' << printReg(CurrPhys, TRI)
2381                       << ") is recolorable.\n");
2382 
2383     // Gather the hint info.
2384     Info.clear();
2385     collectHintInfo(Reg, Info);
2386     // Check if recoloring the live-range will increase the cost of the
2387     // non-identity copies.
2388     if (CurrPhys != PhysReg) {
2389       LLVM_DEBUG(dbgs() << "Checking profitability:\n");
2390       BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys);
2391       BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg);
2392       LLVM_DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency()
2393                         << "\nNew Cost: " << NewCopiesCost.getFrequency()
2394                         << '\n');
2395       if (OldCopiesCost < NewCopiesCost) {
2396         LLVM_DEBUG(dbgs() << "=> Not profitable.\n");
2397         continue;
2398       }
2399       // At this point, the cost is either cheaper or equal. If it is
2400       // equal, we consider this is profitable because it may expose
2401       // more recoloring opportunities.
2402       LLVM_DEBUG(dbgs() << "=> Profitable.\n");
2403       // Recolor the live-range.
2404       Matrix->unassign(LI);
2405       Matrix->assign(LI, PhysReg);
2406     }
2407     // Push all copy-related live-ranges to keep reconciling the broken
2408     // hints.
2409     for (const HintInfo &HI : Info) {
2410       if (Visited.insert(HI.Reg).second)
2411         RecoloringCandidates.push_back(HI.Reg);
2412     }
2413   } while (!RecoloringCandidates.empty());
2414 }
2415 
2416 /// Try to recolor broken hints.
2417 /// Broken hints may be repaired by recoloring when an evicted variable
2418 /// freed up a register for a larger live-range.
2419 /// Consider the following example:
2420 /// BB1:
2421 ///   a =
2422 ///   b =
2423 /// BB2:
2424 ///   ...
2425 ///   = b
2426 ///   = a
2427 /// Let us assume b gets split:
2428 /// BB1:
2429 ///   a =
2430 ///   b =
2431 /// BB2:
2432 ///   c = b
2433 ///   ...
2434 ///   d = c
2435 ///   = d
2436 ///   = a
2437 /// Because of how the allocation work, b, c, and d may be assigned different
2438 /// colors. Now, if a gets evicted later:
2439 /// BB1:
2440 ///   a =
2441 ///   st a, SpillSlot
2442 ///   b =
2443 /// BB2:
2444 ///   c = b
2445 ///   ...
2446 ///   d = c
2447 ///   = d
2448 ///   e = ld SpillSlot
2449 ///   = e
2450 /// This is likely that we can assign the same register for b, c, and d,
2451 /// getting rid of 2 copies.
2452 void RAGreedy::tryHintsRecoloring() {
2453   for (const LiveInterval *LI : SetOfBrokenHints) {
2454     assert(Register::isVirtualRegister(LI->reg()) &&
2455            "Recoloring is possible only for virtual registers");
2456     // Some dead defs may be around (e.g., because of debug uses).
2457     // Ignore those.
2458     if (!VRM->hasPhys(LI->reg()))
2459       continue;
2460     tryHintRecoloring(*LI);
2461   }
2462 }
2463 
2464 MCRegister RAGreedy::selectOrSplitImpl(const LiveInterval &VirtReg,
2465                                        SmallVectorImpl<Register> &NewVRegs,
2466                                        SmallVirtRegSet &FixedRegisters,
2467                                        unsigned Depth) {
2468   uint8_t CostPerUseLimit = uint8_t(~0u);
2469   // First try assigning a free register.
2470   auto Order =
2471       AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix);
2472   if (MCRegister PhysReg =
2473           tryAssign(VirtReg, Order, NewVRegs, FixedRegisters)) {
2474     // If VirtReg got an assignment, the eviction info is no longer relevant.
2475     LastEvicted.clearEvicteeInfo(VirtReg.reg());
2476     // When NewVRegs is not empty, we may have made decisions such as evicting
2477     // a virtual register, go with the earlier decisions and use the physical
2478     // register.
2479     if (CSRCost.getFrequency() &&
2480         EvictAdvisor->isUnusedCalleeSavedReg(PhysReg) && NewVRegs.empty()) {
2481       MCRegister CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg,
2482                                                 CostPerUseLimit, NewVRegs);
2483       if (CSRReg || !NewVRegs.empty())
2484         // Return now if we decide to use a CSR or create new vregs due to
2485         // pre-splitting.
2486         return CSRReg;
2487     } else
2488       return PhysReg;
2489   }
2490 
2491   LiveRangeStage Stage = ExtraInfo->getStage(VirtReg);
2492   LLVM_DEBUG(dbgs() << StageName[Stage] << " Cascade "
2493                     << ExtraInfo->getCascade(VirtReg.reg()) << '\n');
2494 
2495   // Try to evict a less worthy live range, but only for ranges from the primary
2496   // queue. The RS_Split ranges already failed to do this, and they should not
2497   // get a second chance until they have been split.
2498   if (Stage != RS_Split)
2499     if (Register PhysReg =
2500             tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit,
2501                      FixedRegisters)) {
2502       Register Hint = MRI->getSimpleHint(VirtReg.reg());
2503       // If VirtReg has a hint and that hint is broken record this
2504       // virtual register as a recoloring candidate for broken hint.
2505       // Indeed, since we evicted a variable in its neighborhood it is
2506       // likely we can at least partially recolor some of the
2507       // copy-related live-ranges.
2508       if (Hint && Hint != PhysReg)
2509         SetOfBrokenHints.insert(&VirtReg);
2510       // If VirtReg eviction someone, the eviction info for it as an evictee is
2511       // no longer relevant.
2512       LastEvicted.clearEvicteeInfo(VirtReg.reg());
2513       return PhysReg;
2514     }
2515 
2516   assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs");
2517 
2518   // The first time we see a live range, don't try to split or spill.
2519   // Wait until the second time, when all smaller ranges have been allocated.
2520   // This gives a better picture of the interference to split around.
2521   if (Stage < RS_Split) {
2522     ExtraInfo->setStage(VirtReg, RS_Split);
2523     LLVM_DEBUG(dbgs() << "wait for second round\n");
2524     NewVRegs.push_back(VirtReg.reg());
2525     return 0;
2526   }
2527 
2528   if (Stage < RS_Spill) {
2529     // Try splitting VirtReg or interferences.
2530     unsigned NewVRegSizeBefore = NewVRegs.size();
2531     Register PhysReg = trySplit(VirtReg, Order, NewVRegs, FixedRegisters);
2532     if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore)) {
2533       // If VirtReg got split, the eviction info is no longer relevant.
2534       LastEvicted.clearEvicteeInfo(VirtReg.reg());
2535       return PhysReg;
2536     }
2537   }
2538 
2539   // If we couldn't allocate a register from spilling, there is probably some
2540   // invalid inline assembly. The base class will report it.
2541   if (Stage >= RS_Done || !VirtReg.isSpillable())
2542     return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters,
2543                                    Depth);
2544 
2545   // Finally spill VirtReg itself.
2546   if ((EnableDeferredSpilling ||
2547        TRI->shouldUseDeferredSpillingForVirtReg(*MF, VirtReg)) &&
2548       ExtraInfo->getStage(VirtReg) < RS_Memory) {
2549     // TODO: This is experimental and in particular, we do not model
2550     // the live range splitting done by spilling correctly.
2551     // We would need a deep integration with the spiller to do the
2552     // right thing here. Anyway, that is still good for early testing.
2553     ExtraInfo->setStage(VirtReg, RS_Memory);
2554     LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n");
2555     NewVRegs.push_back(VirtReg.reg());
2556   } else {
2557     NamedRegionTimer T("spill", "Spiller", TimerGroupName,
2558                        TimerGroupDescription, TimePassesIsEnabled);
2559     LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2560     spiller().spill(LRE);
2561     ExtraInfo->setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done);
2562 
2563     // Tell LiveDebugVariables about the new ranges. Ranges not being covered by
2564     // the new regs are kept in LDV (still mapping to the old register), until
2565     // we rewrite spilled locations in LDV at a later stage.
2566     DebugVars->splitRegister(VirtReg.reg(), LRE.regs(), *LIS);
2567 
2568     if (VerifyEnabled)
2569       MF->verify(this, "After spilling");
2570   }
2571 
2572   // The live virtual register requesting allocation was spilled, so tell
2573   // the caller not to allocate anything during this round.
2574   return 0;
2575 }
2576 
2577 void RAGreedy::RAGreedyStats::report(MachineOptimizationRemarkMissed &R) {
2578   using namespace ore;
2579   if (Spills) {
2580     R << NV("NumSpills", Spills) << " spills ";
2581     R << NV("TotalSpillsCost", SpillsCost) << " total spills cost ";
2582   }
2583   if (FoldedSpills) {
2584     R << NV("NumFoldedSpills", FoldedSpills) << " folded spills ";
2585     R << NV("TotalFoldedSpillsCost", FoldedSpillsCost)
2586       << " total folded spills cost ";
2587   }
2588   if (Reloads) {
2589     R << NV("NumReloads", Reloads) << " reloads ";
2590     R << NV("TotalReloadsCost", ReloadsCost) << " total reloads cost ";
2591   }
2592   if (FoldedReloads) {
2593     R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads ";
2594     R << NV("TotalFoldedReloadsCost", FoldedReloadsCost)
2595       << " total folded reloads cost ";
2596   }
2597   if (ZeroCostFoldedReloads)
2598     R << NV("NumZeroCostFoldedReloads", ZeroCostFoldedReloads)
2599       << " zero cost folded reloads ";
2600   if (Copies) {
2601     R << NV("NumVRCopies", Copies) << " virtual registers copies ";
2602     R << NV("TotalCopiesCost", CopiesCost) << " total copies cost ";
2603   }
2604 }
2605 
2606 RAGreedy::RAGreedyStats RAGreedy::computeStats(MachineBasicBlock &MBB) {
2607   RAGreedyStats Stats;
2608   const MachineFrameInfo &MFI = MF->getFrameInfo();
2609   int FI;
2610 
2611   auto isSpillSlotAccess = [&MFI](const MachineMemOperand *A) {
2612     return MFI.isSpillSlotObjectIndex(cast<FixedStackPseudoSourceValue>(
2613         A->getPseudoValue())->getFrameIndex());
2614   };
2615   auto isPatchpointInstr = [](const MachineInstr &MI) {
2616     return MI.getOpcode() == TargetOpcode::PATCHPOINT ||
2617            MI.getOpcode() == TargetOpcode::STACKMAP ||
2618            MI.getOpcode() == TargetOpcode::STATEPOINT;
2619   };
2620   for (MachineInstr &MI : MBB) {
2621     if (MI.isCopy()) {
2622       MachineOperand &Dest = MI.getOperand(0);
2623       MachineOperand &Src = MI.getOperand(1);
2624       if (Dest.isReg() && Src.isReg() && Dest.getReg().isVirtual() &&
2625           Src.getReg().isVirtual())
2626         ++Stats.Copies;
2627       continue;
2628     }
2629 
2630     SmallVector<const MachineMemOperand *, 2> Accesses;
2631     if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) {
2632       ++Stats.Reloads;
2633       continue;
2634     }
2635     if (TII->isStoreToStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) {
2636       ++Stats.Spills;
2637       continue;
2638     }
2639     if (TII->hasLoadFromStackSlot(MI, Accesses) &&
2640         llvm::any_of(Accesses, isSpillSlotAccess)) {
2641       if (!isPatchpointInstr(MI)) {
2642         Stats.FoldedReloads += Accesses.size();
2643         continue;
2644       }
2645       // For statepoint there may be folded and zero cost folded stack reloads.
2646       std::pair<unsigned, unsigned> NonZeroCostRange =
2647           TII->getPatchpointUnfoldableRange(MI);
2648       SmallSet<unsigned, 16> FoldedReloads;
2649       SmallSet<unsigned, 16> ZeroCostFoldedReloads;
2650       for (unsigned Idx = 0, E = MI.getNumOperands(); Idx < E; ++Idx) {
2651         MachineOperand &MO = MI.getOperand(Idx);
2652         if (!MO.isFI() || !MFI.isSpillSlotObjectIndex(MO.getIndex()))
2653           continue;
2654         if (Idx >= NonZeroCostRange.first && Idx < NonZeroCostRange.second)
2655           FoldedReloads.insert(MO.getIndex());
2656         else
2657           ZeroCostFoldedReloads.insert(MO.getIndex());
2658       }
2659       // If stack slot is used in folded reload it is not zero cost then.
2660       for (unsigned Slot : FoldedReloads)
2661         ZeroCostFoldedReloads.erase(Slot);
2662       Stats.FoldedReloads += FoldedReloads.size();
2663       Stats.ZeroCostFoldedReloads += ZeroCostFoldedReloads.size();
2664       continue;
2665     }
2666     Accesses.clear();
2667     if (TII->hasStoreToStackSlot(MI, Accesses) &&
2668         llvm::any_of(Accesses, isSpillSlotAccess)) {
2669       Stats.FoldedSpills += Accesses.size();
2670     }
2671   }
2672   // Set cost of collected statistic by multiplication to relative frequency of
2673   // this basic block.
2674   float RelFreq = MBFI->getBlockFreqRelativeToEntryBlock(&MBB);
2675   Stats.ReloadsCost = RelFreq * Stats.Reloads;
2676   Stats.FoldedReloadsCost = RelFreq * Stats.FoldedReloads;
2677   Stats.SpillsCost = RelFreq * Stats.Spills;
2678   Stats.FoldedSpillsCost = RelFreq * Stats.FoldedSpills;
2679   Stats.CopiesCost = RelFreq * Stats.Copies;
2680   return Stats;
2681 }
2682 
2683 RAGreedy::RAGreedyStats RAGreedy::reportStats(MachineLoop *L) {
2684   RAGreedyStats Stats;
2685 
2686   // Sum up the spill and reloads in subloops.
2687   for (MachineLoop *SubLoop : *L)
2688     Stats.add(reportStats(SubLoop));
2689 
2690   for (MachineBasicBlock *MBB : L->getBlocks())
2691     // Handle blocks that were not included in subloops.
2692     if (Loops->getLoopFor(MBB) == L)
2693       Stats.add(computeStats(*MBB));
2694 
2695   if (!Stats.isEmpty()) {
2696     using namespace ore;
2697 
2698     ORE->emit([&]() {
2699       MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReloadCopies",
2700                                         L->getStartLoc(), L->getHeader());
2701       Stats.report(R);
2702       R << "generated in loop";
2703       return R;
2704     });
2705   }
2706   return Stats;
2707 }
2708 
2709 void RAGreedy::reportStats() {
2710   if (!ORE->allowExtraAnalysis(DEBUG_TYPE))
2711     return;
2712   RAGreedyStats Stats;
2713   for (MachineLoop *L : *Loops)
2714     Stats.add(reportStats(L));
2715   // Process non-loop blocks.
2716   for (MachineBasicBlock &MBB : *MF)
2717     if (!Loops->getLoopFor(&MBB))
2718       Stats.add(computeStats(MBB));
2719   if (!Stats.isEmpty()) {
2720     using namespace ore;
2721 
2722     ORE->emit([&]() {
2723       DebugLoc Loc;
2724       if (auto *SP = MF->getFunction().getSubprogram())
2725         Loc = DILocation::get(SP->getContext(), SP->getLine(), 1, SP);
2726       MachineOptimizationRemarkMissed R(DEBUG_TYPE, "SpillReloadCopies", Loc,
2727                                         &MF->front());
2728       Stats.report(R);
2729       R << "generated in function";
2730       return R;
2731     });
2732   }
2733 }
2734 
2735 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
2736   LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
2737                     << "********** Function: " << mf.getName() << '\n');
2738 
2739   MF = &mf;
2740   TRI = MF->getSubtarget().getRegisterInfo();
2741   TII = MF->getSubtarget().getInstrInfo();
2742   RCI.runOnMachineFunction(mf);
2743 
2744   EnableAdvancedRASplitCost =
2745       ConsiderLocalIntervalCost.getNumOccurrences()
2746           ? ConsiderLocalIntervalCost
2747           : MF->getSubtarget().enableAdvancedRASplitCost();
2748 
2749   if (VerifyEnabled)
2750     MF->verify(this, "Before greedy register allocator");
2751 
2752   RegAllocBase::init(getAnalysis<VirtRegMap>(),
2753                      getAnalysis<LiveIntervals>(),
2754                      getAnalysis<LiveRegMatrix>());
2755   Indexes = &getAnalysis<SlotIndexes>();
2756   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
2757   DomTree = &getAnalysis<MachineDominatorTree>();
2758   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
2759   Loops = &getAnalysis<MachineLoopInfo>();
2760   Bundles = &getAnalysis<EdgeBundles>();
2761   SpillPlacer = &getAnalysis<SpillPlacement>();
2762   DebugVars = &getAnalysis<LiveDebugVariables>();
2763   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2764 
2765   initializeCSRCost();
2766 
2767   RegCosts = TRI->getRegisterCosts(*MF);
2768 
2769   ExtraInfo.emplace();
2770   EvictAdvisor =
2771       getAnalysis<RegAllocEvictionAdvisorAnalysis>().getAdvisor(*MF, *this);
2772 
2773   VRAI = std::make_unique<VirtRegAuxInfo>(*MF, *LIS, *VRM, *Loops, *MBFI);
2774   SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM, *VRAI));
2775 
2776   VRAI->calculateSpillWeightsAndHints();
2777 
2778   LLVM_DEBUG(LIS->dump());
2779 
2780   SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
2781   SE.reset(new SplitEditor(*SA, *AA, *LIS, *VRM, *DomTree, *MBFI, *VRAI));
2782 
2783   IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI);
2784   GlobalCand.resize(32);  // This will grow as needed.
2785   SetOfBrokenHints.clear();
2786   LastEvicted.clear();
2787 
2788   allocatePhysRegs();
2789   tryHintsRecoloring();
2790 
2791   if (VerifyEnabled)
2792     MF->verify(this, "Before post optimization");
2793   postOptimization();
2794   reportStats();
2795 
2796   releaseMemory();
2797   return true;
2798 }
2799