1 //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the RAGreedy function pass for register allocation in 10 // optimized builds. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RegAllocGreedy.h" 15 #include "AllocationOrder.h" 16 #include "InterferenceCache.h" 17 #include "LiveDebugVariables.h" 18 #include "RegAllocBase.h" 19 #include "RegAllocEvictionAdvisor.h" 20 #include "SpillPlacement.h" 21 #include "SplitKit.h" 22 #include "llvm/ADT/ArrayRef.h" 23 #include "llvm/ADT/BitVector.h" 24 #include "llvm/ADT/IndexedMap.h" 25 #include "llvm/ADT/SetVector.h" 26 #include "llvm/ADT/SmallPtrSet.h" 27 #include "llvm/ADT/SmallSet.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/ADT/StringRef.h" 31 #include "llvm/Analysis/AliasAnalysis.h" 32 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 33 #include "llvm/CodeGen/CalcSpillWeights.h" 34 #include "llvm/CodeGen/EdgeBundles.h" 35 #include "llvm/CodeGen/LiveInterval.h" 36 #include "llvm/CodeGen/LiveIntervalUnion.h" 37 #include "llvm/CodeGen/LiveIntervals.h" 38 #include "llvm/CodeGen/LiveRangeEdit.h" 39 #include "llvm/CodeGen/LiveRegMatrix.h" 40 #include "llvm/CodeGen/LiveStacks.h" 41 #include "llvm/CodeGen/MachineBasicBlock.h" 42 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 43 #include "llvm/CodeGen/MachineDominators.h" 44 #include "llvm/CodeGen/MachineFrameInfo.h" 45 #include "llvm/CodeGen/MachineFunction.h" 46 #include "llvm/CodeGen/MachineFunctionPass.h" 47 #include "llvm/CodeGen/MachineInstr.h" 48 #include "llvm/CodeGen/MachineLoopInfo.h" 49 #include "llvm/CodeGen/MachineOperand.h" 50 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 51 #include "llvm/CodeGen/MachineRegisterInfo.h" 52 #include "llvm/CodeGen/RegAllocRegistry.h" 53 #include "llvm/CodeGen/RegisterClassInfo.h" 54 #include "llvm/CodeGen/SlotIndexes.h" 55 #include "llvm/CodeGen/Spiller.h" 56 #include "llvm/CodeGen/TargetInstrInfo.h" 57 #include "llvm/CodeGen/TargetRegisterInfo.h" 58 #include "llvm/CodeGen/TargetSubtargetInfo.h" 59 #include "llvm/CodeGen/VirtRegMap.h" 60 #include "llvm/IR/DebugInfoMetadata.h" 61 #include "llvm/IR/Function.h" 62 #include "llvm/IR/LLVMContext.h" 63 #include "llvm/InitializePasses.h" 64 #include "llvm/MC/MCRegisterInfo.h" 65 #include "llvm/Pass.h" 66 #include "llvm/Support/BlockFrequency.h" 67 #include "llvm/Support/BranchProbability.h" 68 #include "llvm/Support/CommandLine.h" 69 #include "llvm/Support/Debug.h" 70 #include "llvm/Support/MathExtras.h" 71 #include "llvm/Support/Timer.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cstdint> 76 #include <utility> 77 78 using namespace llvm; 79 80 #define DEBUG_TYPE "regalloc" 81 82 STATISTIC(NumGlobalSplits, "Number of split global live ranges"); 83 STATISTIC(NumLocalSplits, "Number of split local live ranges"); 84 STATISTIC(NumEvicted, "Number of interferences evicted"); 85 86 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode( 87 "split-spill-mode", cl::Hidden, 88 cl::desc("Spill mode for splitting live ranges"), 89 cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"), 90 clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"), 91 clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")), 92 cl::init(SplitEditor::SM_Speed)); 93 94 static cl::opt<unsigned> 95 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden, 96 cl::desc("Last chance recoloring max depth"), 97 cl::init(5)); 98 99 static cl::opt<unsigned> LastChanceRecoloringMaxInterference( 100 "lcr-max-interf", cl::Hidden, 101 cl::desc("Last chance recoloring maximum number of considered" 102 " interference at a time"), 103 cl::init(8)); 104 105 static cl::opt<bool> ExhaustiveSearch( 106 "exhaustive-register-search", cl::NotHidden, 107 cl::desc("Exhaustive Search for registers bypassing the depth " 108 "and interference cutoffs of last chance recoloring"), 109 cl::Hidden); 110 111 static cl::opt<bool> EnableDeferredSpilling( 112 "enable-deferred-spilling", cl::Hidden, 113 cl::desc("Instead of spilling a variable right away, defer the actual " 114 "code insertion to the end of the allocation. That way the " 115 "allocator might still find a suitable coloring for this " 116 "variable because of other evicted variables."), 117 cl::init(false)); 118 119 // FIXME: Find a good default for this flag and remove the flag. 120 static cl::opt<unsigned> 121 CSRFirstTimeCost("regalloc-csr-first-time-cost", 122 cl::desc("Cost for first time use of callee-saved register."), 123 cl::init(0), cl::Hidden); 124 125 static cl::opt<unsigned long> GrowRegionComplexityBudget( 126 "grow-region-complexity-budget", 127 cl::desc("growRegion() does not scale with the number of BB edges, so " 128 "limit its budget and bail out once we reach the limit."), 129 cl::init(10000), cl::Hidden); 130 131 static cl::opt<bool> GreedyRegClassPriorityTrumpsGlobalness( 132 "greedy-regclass-priority-trumps-globalness", 133 cl::desc("Change the greedy register allocator's live range priority " 134 "calculation to make the AllocationPriority of the register class " 135 "more important then whether the range is global"), 136 cl::Hidden); 137 138 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator", 139 createGreedyRegisterAllocator); 140 141 char RAGreedy::ID = 0; 142 char &llvm::RAGreedyID = RAGreedy::ID; 143 144 INITIALIZE_PASS_BEGIN(RAGreedy, "greedy", 145 "Greedy Register Allocator", false, false) 146 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables) 147 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 148 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 149 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer) 150 INITIALIZE_PASS_DEPENDENCY(MachineScheduler) 151 INITIALIZE_PASS_DEPENDENCY(LiveStacks) 152 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 153 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 154 INITIALIZE_PASS_DEPENDENCY(VirtRegMap) 155 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix) 156 INITIALIZE_PASS_DEPENDENCY(EdgeBundles) 157 INITIALIZE_PASS_DEPENDENCY(SpillPlacement) 158 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass) 159 INITIALIZE_PASS_DEPENDENCY(RegAllocEvictionAdvisorAnalysis) 160 INITIALIZE_PASS_END(RAGreedy, "greedy", 161 "Greedy Register Allocator", false, false) 162 163 #ifndef NDEBUG 164 const char *const RAGreedy::StageName[] = { 165 "RS_New", 166 "RS_Assign", 167 "RS_Split", 168 "RS_Split2", 169 "RS_Spill", 170 "RS_Memory", 171 "RS_Done" 172 }; 173 #endif 174 175 // Hysteresis to use when comparing floats. 176 // This helps stabilize decisions based on float comparisons. 177 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875 178 179 FunctionPass* llvm::createGreedyRegisterAllocator() { 180 return new RAGreedy(); 181 } 182 183 FunctionPass *llvm::createGreedyRegisterAllocator(RegClassFilterFunc Ftor) { 184 return new RAGreedy(Ftor); 185 } 186 187 RAGreedy::RAGreedy(RegClassFilterFunc F): 188 MachineFunctionPass(ID), 189 RegAllocBase(F) { 190 } 191 192 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const { 193 AU.setPreservesCFG(); 194 AU.addRequired<MachineBlockFrequencyInfo>(); 195 AU.addPreserved<MachineBlockFrequencyInfo>(); 196 AU.addRequired<AAResultsWrapperPass>(); 197 AU.addPreserved<AAResultsWrapperPass>(); 198 AU.addRequired<LiveIntervals>(); 199 AU.addPreserved<LiveIntervals>(); 200 AU.addRequired<SlotIndexes>(); 201 AU.addPreserved<SlotIndexes>(); 202 AU.addRequired<LiveDebugVariables>(); 203 AU.addPreserved<LiveDebugVariables>(); 204 AU.addRequired<LiveStacks>(); 205 AU.addPreserved<LiveStacks>(); 206 AU.addRequired<MachineDominatorTree>(); 207 AU.addPreserved<MachineDominatorTree>(); 208 AU.addRequired<MachineLoopInfo>(); 209 AU.addPreserved<MachineLoopInfo>(); 210 AU.addRequired<VirtRegMap>(); 211 AU.addPreserved<VirtRegMap>(); 212 AU.addRequired<LiveRegMatrix>(); 213 AU.addPreserved<LiveRegMatrix>(); 214 AU.addRequired<EdgeBundles>(); 215 AU.addRequired<SpillPlacement>(); 216 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 217 AU.addRequired<RegAllocEvictionAdvisorAnalysis>(); 218 MachineFunctionPass::getAnalysisUsage(AU); 219 } 220 221 //===----------------------------------------------------------------------===// 222 // LiveRangeEdit delegate methods 223 //===----------------------------------------------------------------------===// 224 225 bool RAGreedy::LRE_CanEraseVirtReg(Register VirtReg) { 226 LiveInterval &LI = LIS->getInterval(VirtReg); 227 if (VRM->hasPhys(VirtReg)) { 228 Matrix->unassign(LI); 229 aboutToRemoveInterval(LI); 230 return true; 231 } 232 // Unassigned virtreg is probably in the priority queue. 233 // RegAllocBase will erase it after dequeueing. 234 // Nonetheless, clear the live-range so that the debug 235 // dump will show the right state for that VirtReg. 236 LI.clear(); 237 return false; 238 } 239 240 void RAGreedy::LRE_WillShrinkVirtReg(Register VirtReg) { 241 if (!VRM->hasPhys(VirtReg)) 242 return; 243 244 // Register is assigned, put it back on the queue for reassignment. 245 LiveInterval &LI = LIS->getInterval(VirtReg); 246 Matrix->unassign(LI); 247 RegAllocBase::enqueue(&LI); 248 } 249 250 void RAGreedy::LRE_DidCloneVirtReg(Register New, Register Old) { 251 ExtraInfo->LRE_DidCloneVirtReg(New, Old); 252 } 253 254 void RAGreedy::ExtraRegInfo::LRE_DidCloneVirtReg(Register New, Register Old) { 255 // Cloning a register we haven't even heard about yet? Just ignore it. 256 if (!Info.inBounds(Old)) 257 return; 258 259 // LRE may clone a virtual register because dead code elimination causes it to 260 // be split into connected components. The new components are much smaller 261 // than the original, so they should get a new chance at being assigned. 262 // same stage as the parent. 263 Info[Old].Stage = RS_Assign; 264 Info.grow(New.id()); 265 Info[New] = Info[Old]; 266 } 267 268 void RAGreedy::releaseMemory() { 269 SpillerInstance.reset(); 270 GlobalCand.clear(); 271 } 272 273 void RAGreedy::enqueueImpl(const LiveInterval *LI) { enqueue(Queue, LI); } 274 275 void RAGreedy::enqueue(PQueue &CurQueue, const LiveInterval *LI) { 276 // Prioritize live ranges by size, assigning larger ranges first. 277 // The queue holds (size, reg) pairs. 278 const unsigned Size = LI->getSize(); 279 const Register Reg = LI->reg(); 280 assert(Reg.isVirtual() && "Can only enqueue virtual registers"); 281 unsigned Prio; 282 283 auto Stage = ExtraInfo->getOrInitStage(Reg); 284 if (Stage == RS_New) { 285 Stage = RS_Assign; 286 ExtraInfo->setStage(Reg, Stage); 287 } 288 if (Stage == RS_Split) { 289 // Unsplit ranges that couldn't be allocated immediately are deferred until 290 // everything else has been allocated. 291 Prio = Size; 292 } else if (Stage == RS_Memory) { 293 // Memory operand should be considered last. 294 // Change the priority such that Memory operand are assigned in 295 // the reverse order that they came in. 296 // TODO: Make this a member variable and probably do something about hints. 297 static unsigned MemOp = 0; 298 Prio = MemOp++; 299 } else { 300 // Giant live ranges fall back to the global assignment heuristic, which 301 // prevents excessive spilling in pathological cases. 302 bool ReverseLocal = TRI->reverseLocalAssignment(); 303 const TargetRegisterClass &RC = *MRI->getRegClass(Reg); 304 bool ForceGlobal = 305 !ReverseLocal && (Size / SlotIndex::InstrDist) > 306 (2 * RegClassInfo.getNumAllocatableRegs(&RC)); 307 unsigned GlobalBit = 0; 308 309 if (Stage == RS_Assign && !ForceGlobal && !LI->empty() && 310 LIS->intervalIsInOneMBB(*LI)) { 311 // Allocate original local ranges in linear instruction order. Since they 312 // are singly defined, this produces optimal coloring in the absence of 313 // global interference and other constraints. 314 if (!ReverseLocal) 315 Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex()); 316 else { 317 // Allocating bottom up may allow many short LRGs to be assigned first 318 // to one of the cheap registers. This could be much faster for very 319 // large blocks on targets with many physical registers. 320 Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex()); 321 } 322 } else { 323 // Allocate global and split ranges in long->short order. Long ranges that 324 // don't fit should be spilled (or split) ASAP so they don't create 325 // interference. Mark a bit to prioritize global above local ranges. 326 Prio = Size; 327 GlobalBit = 1; 328 } 329 if (RegClassPriorityTrumpsGlobalness) 330 Prio |= RC.AllocationPriority << 25 | GlobalBit << 24; 331 else 332 Prio |= GlobalBit << 29 | RC.AllocationPriority << 24; 333 334 // Mark a higher bit to prioritize global and local above RS_Split. 335 Prio |= (1u << 31); 336 337 // Boost ranges that have a physical register hint. 338 if (VRM->hasKnownPreference(Reg)) 339 Prio |= (1u << 30); 340 } 341 // The virtual register number is a tie breaker for same-sized ranges. 342 // Give lower vreg numbers higher priority to assign them first. 343 CurQueue.push(std::make_pair(Prio, ~Reg)); 344 } 345 346 const LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); } 347 348 const LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) { 349 if (CurQueue.empty()) 350 return nullptr; 351 LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second); 352 CurQueue.pop(); 353 return LI; 354 } 355 356 //===----------------------------------------------------------------------===// 357 // Direct Assignment 358 //===----------------------------------------------------------------------===// 359 360 /// tryAssign - Try to assign VirtReg to an available register. 361 MCRegister RAGreedy::tryAssign(const LiveInterval &VirtReg, 362 AllocationOrder &Order, 363 SmallVectorImpl<Register> &NewVRegs, 364 const SmallVirtRegSet &FixedRegisters) { 365 MCRegister PhysReg; 366 for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) { 367 assert(*I); 368 if (!Matrix->checkInterference(VirtReg, *I)) { 369 if (I.isHint()) 370 return *I; 371 else 372 PhysReg = *I; 373 } 374 } 375 if (!PhysReg.isValid()) 376 return PhysReg; 377 378 // PhysReg is available, but there may be a better choice. 379 380 // If we missed a simple hint, try to cheaply evict interference from the 381 // preferred register. 382 if (Register Hint = MRI->getSimpleHint(VirtReg.reg())) 383 if (Order.isHint(Hint)) { 384 MCRegister PhysHint = Hint.asMCReg(); 385 LLVM_DEBUG(dbgs() << "missed hint " << printReg(PhysHint, TRI) << '\n'); 386 387 if (EvictAdvisor->canEvictHintInterference(VirtReg, PhysHint, 388 FixedRegisters)) { 389 evictInterference(VirtReg, PhysHint, NewVRegs); 390 return PhysHint; 391 } 392 // Record the missed hint, we may be able to recover 393 // at the end if the surrounding allocation changed. 394 SetOfBrokenHints.insert(&VirtReg); 395 } 396 397 // Try to evict interference from a cheaper alternative. 398 uint8_t Cost = RegCosts[PhysReg]; 399 400 // Most registers have 0 additional cost. 401 if (!Cost) 402 return PhysReg; 403 404 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is available at cost " 405 << (unsigned)Cost << '\n'); 406 MCRegister CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost, FixedRegisters); 407 return CheapReg ? CheapReg : PhysReg; 408 } 409 410 //===----------------------------------------------------------------------===// 411 // Interference eviction 412 //===----------------------------------------------------------------------===// 413 414 Register RegAllocEvictionAdvisor::canReassign(const LiveInterval &VirtReg, 415 Register PrevReg) const { 416 auto Order = 417 AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix); 418 MCRegister PhysReg; 419 for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) { 420 if ((*I).id() == PrevReg.id()) 421 continue; 422 423 MCRegUnitIterator Units(*I, TRI); 424 for (; Units.isValid(); ++Units) { 425 // Instantiate a "subquery", not to be confused with the Queries array. 426 LiveIntervalUnion::Query subQ(VirtReg, Matrix->getLiveUnions()[*Units]); 427 if (subQ.checkInterference()) 428 break; 429 } 430 // If no units have interference, break out with the current PhysReg. 431 if (!Units.isValid()) 432 PhysReg = *I; 433 } 434 if (PhysReg) 435 LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg << " from " 436 << printReg(PrevReg, TRI) << " to " 437 << printReg(PhysReg, TRI) << '\n'); 438 return PhysReg; 439 } 440 441 /// evictInterference - Evict any interferring registers that prevent VirtReg 442 /// from being assigned to Physreg. This assumes that canEvictInterference 443 /// returned true. 444 void RAGreedy::evictInterference(const LiveInterval &VirtReg, 445 MCRegister PhysReg, 446 SmallVectorImpl<Register> &NewVRegs) { 447 // Make sure that VirtReg has a cascade number, and assign that cascade 448 // number to every evicted register. These live ranges than then only be 449 // evicted by a newer cascade, preventing infinite loops. 450 unsigned Cascade = ExtraInfo->getOrAssignNewCascade(VirtReg.reg()); 451 452 LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg, TRI) 453 << " interference: Cascade " << Cascade << '\n'); 454 455 // Collect all interfering virtregs first. 456 SmallVector<const LiveInterval *, 8> Intfs; 457 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 458 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 459 // We usually have the interfering VRegs cached so collectInterferingVRegs() 460 // should be fast, we may need to recalculate if when different physregs 461 // overlap the same register unit so we had different SubRanges queried 462 // against it. 463 ArrayRef<const LiveInterval *> IVR = Q.interferingVRegs(); 464 Intfs.append(IVR.begin(), IVR.end()); 465 } 466 467 // Evict them second. This will invalidate the queries. 468 for (const LiveInterval *Intf : Intfs) { 469 // The same VirtReg may be present in multiple RegUnits. Skip duplicates. 470 if (!VRM->hasPhys(Intf->reg())) 471 continue; 472 473 Matrix->unassign(*Intf); 474 assert((ExtraInfo->getCascade(Intf->reg()) < Cascade || 475 VirtReg.isSpillable() < Intf->isSpillable()) && 476 "Cannot decrease cascade number, illegal eviction"); 477 ExtraInfo->setCascade(Intf->reg(), Cascade); 478 ++NumEvicted; 479 NewVRegs.push_back(Intf->reg()); 480 } 481 } 482 483 /// Returns true if the given \p PhysReg is a callee saved register and has not 484 /// been used for allocation yet. 485 bool RegAllocEvictionAdvisor::isUnusedCalleeSavedReg(MCRegister PhysReg) const { 486 MCRegister CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg); 487 if (!CSR) 488 return false; 489 490 return !Matrix->isPhysRegUsed(PhysReg); 491 } 492 493 Optional<unsigned> 494 RegAllocEvictionAdvisor::getOrderLimit(const LiveInterval &VirtReg, 495 const AllocationOrder &Order, 496 unsigned CostPerUseLimit) const { 497 unsigned OrderLimit = Order.getOrder().size(); 498 499 if (CostPerUseLimit < uint8_t(~0u)) { 500 // Check of any registers in RC are below CostPerUseLimit. 501 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg()); 502 uint8_t MinCost = RegClassInfo.getMinCost(RC); 503 if (MinCost >= CostPerUseLimit) { 504 LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = " 505 << MinCost << ", no cheaper registers to be found.\n"); 506 return None; 507 } 508 509 // It is normal for register classes to have a long tail of registers with 510 // the same cost. We don't need to look at them if they're too expensive. 511 if (RegCosts[Order.getOrder().back()] >= CostPerUseLimit) { 512 OrderLimit = RegClassInfo.getLastCostChange(RC); 513 LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit 514 << " regs.\n"); 515 } 516 } 517 return OrderLimit; 518 } 519 520 bool RegAllocEvictionAdvisor::canAllocatePhysReg(unsigned CostPerUseLimit, 521 MCRegister PhysReg) const { 522 if (RegCosts[PhysReg] >= CostPerUseLimit) 523 return false; 524 // The first use of a callee-saved register in a function has cost 1. 525 // Don't start using a CSR when the CostPerUseLimit is low. 526 if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) { 527 LLVM_DEBUG( 528 dbgs() << printReg(PhysReg, TRI) << " would clobber CSR " 529 << printReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI) 530 << '\n'); 531 return false; 532 } 533 return true; 534 } 535 536 /// tryEvict - Try to evict all interferences for a physreg. 537 /// @param VirtReg Currently unassigned virtual register. 538 /// @param Order Physregs to try. 539 /// @return Physreg to assign VirtReg, or 0. 540 MCRegister RAGreedy::tryEvict(const LiveInterval &VirtReg, 541 AllocationOrder &Order, 542 SmallVectorImpl<Register> &NewVRegs, 543 uint8_t CostPerUseLimit, 544 const SmallVirtRegSet &FixedRegisters) { 545 NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription, 546 TimePassesIsEnabled); 547 548 MCRegister BestPhys = EvictAdvisor->tryFindEvictionCandidate( 549 VirtReg, Order, CostPerUseLimit, FixedRegisters); 550 if (BestPhys.isValid()) 551 evictInterference(VirtReg, BestPhys, NewVRegs); 552 return BestPhys; 553 } 554 555 //===----------------------------------------------------------------------===// 556 // Region Splitting 557 //===----------------------------------------------------------------------===// 558 559 /// addSplitConstraints - Fill out the SplitConstraints vector based on the 560 /// interference pattern in Physreg and its aliases. Add the constraints to 561 /// SpillPlacement and return the static cost of this split in Cost, assuming 562 /// that all preferences in SplitConstraints are met. 563 /// Return false if there are no bundles with positive bias. 564 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf, 565 BlockFrequency &Cost) { 566 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 567 568 // Reset interference dependent info. 569 SplitConstraints.resize(UseBlocks.size()); 570 BlockFrequency StaticCost = 0; 571 for (unsigned I = 0; I != UseBlocks.size(); ++I) { 572 const SplitAnalysis::BlockInfo &BI = UseBlocks[I]; 573 SpillPlacement::BlockConstraint &BC = SplitConstraints[I]; 574 575 BC.Number = BI.MBB->getNumber(); 576 Intf.moveToBlock(BC.Number); 577 BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare; 578 BC.Exit = (BI.LiveOut && 579 !LIS->getInstructionFromIndex(BI.LastInstr)->isImplicitDef()) 580 ? SpillPlacement::PrefReg 581 : SpillPlacement::DontCare; 582 BC.ChangesValue = BI.FirstDef.isValid(); 583 584 if (!Intf.hasInterference()) 585 continue; 586 587 // Number of spill code instructions to insert. 588 unsigned Ins = 0; 589 590 // Interference for the live-in value. 591 if (BI.LiveIn) { 592 if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) { 593 BC.Entry = SpillPlacement::MustSpill; 594 ++Ins; 595 } else if (Intf.first() < BI.FirstInstr) { 596 BC.Entry = SpillPlacement::PrefSpill; 597 ++Ins; 598 } else if (Intf.first() < BI.LastInstr) { 599 ++Ins; 600 } 601 602 // Abort if the spill cannot be inserted at the MBB' start 603 if (((BC.Entry == SpillPlacement::MustSpill) || 604 (BC.Entry == SpillPlacement::PrefSpill)) && 605 SlotIndex::isEarlierInstr(BI.FirstInstr, 606 SA->getFirstSplitPoint(BC.Number))) 607 return false; 608 } 609 610 // Interference for the live-out value. 611 if (BI.LiveOut) { 612 if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) { 613 BC.Exit = SpillPlacement::MustSpill; 614 ++Ins; 615 } else if (Intf.last() > BI.LastInstr) { 616 BC.Exit = SpillPlacement::PrefSpill; 617 ++Ins; 618 } else if (Intf.last() > BI.FirstInstr) { 619 ++Ins; 620 } 621 } 622 623 // Accumulate the total frequency of inserted spill code. 624 while (Ins--) 625 StaticCost += SpillPlacer->getBlockFrequency(BC.Number); 626 } 627 Cost = StaticCost; 628 629 // Add constraints for use-blocks. Note that these are the only constraints 630 // that may add a positive bias, it is downhill from here. 631 SpillPlacer->addConstraints(SplitConstraints); 632 return SpillPlacer->scanActiveBundles(); 633 } 634 635 /// addThroughConstraints - Add constraints and links to SpillPlacer from the 636 /// live-through blocks in Blocks. 637 bool RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf, 638 ArrayRef<unsigned> Blocks) { 639 const unsigned GroupSize = 8; 640 SpillPlacement::BlockConstraint BCS[GroupSize]; 641 unsigned TBS[GroupSize]; 642 unsigned B = 0, T = 0; 643 644 for (unsigned Number : Blocks) { 645 Intf.moveToBlock(Number); 646 647 if (!Intf.hasInterference()) { 648 assert(T < GroupSize && "Array overflow"); 649 TBS[T] = Number; 650 if (++T == GroupSize) { 651 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 652 T = 0; 653 } 654 continue; 655 } 656 657 assert(B < GroupSize && "Array overflow"); 658 BCS[B].Number = Number; 659 660 // Abort if the spill cannot be inserted at the MBB' start 661 MachineBasicBlock *MBB = MF->getBlockNumbered(Number); 662 auto FirstNonDebugInstr = MBB->getFirstNonDebugInstr(); 663 if (FirstNonDebugInstr != MBB->end() && 664 SlotIndex::isEarlierInstr(LIS->getInstructionIndex(*FirstNonDebugInstr), 665 SA->getFirstSplitPoint(Number))) 666 return false; 667 // Interference for the live-in value. 668 if (Intf.first() <= Indexes->getMBBStartIdx(Number)) 669 BCS[B].Entry = SpillPlacement::MustSpill; 670 else 671 BCS[B].Entry = SpillPlacement::PrefSpill; 672 673 // Interference for the live-out value. 674 if (Intf.last() >= SA->getLastSplitPoint(Number)) 675 BCS[B].Exit = SpillPlacement::MustSpill; 676 else 677 BCS[B].Exit = SpillPlacement::PrefSpill; 678 679 if (++B == GroupSize) { 680 SpillPlacer->addConstraints(makeArrayRef(BCS, B)); 681 B = 0; 682 } 683 } 684 685 SpillPlacer->addConstraints(makeArrayRef(BCS, B)); 686 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 687 return true; 688 } 689 690 bool RAGreedy::growRegion(GlobalSplitCandidate &Cand) { 691 // Keep track of through blocks that have not been added to SpillPlacer. 692 BitVector Todo = SA->getThroughBlocks(); 693 SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks; 694 unsigned AddedTo = 0; 695 #ifndef NDEBUG 696 unsigned Visited = 0; 697 #endif 698 699 unsigned long Budget = GrowRegionComplexityBudget; 700 while (true) { 701 ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive(); 702 // Find new through blocks in the periphery of PrefRegBundles. 703 for (unsigned Bundle : NewBundles) { 704 // Look at all blocks connected to Bundle in the full graph. 705 ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle); 706 // Limit compilation time by bailing out after we use all our budget. 707 if (Blocks.size() >= Budget) 708 return false; 709 Budget -= Blocks.size(); 710 for (unsigned Block : Blocks) { 711 if (!Todo.test(Block)) 712 continue; 713 Todo.reset(Block); 714 // This is a new through block. Add it to SpillPlacer later. 715 ActiveBlocks.push_back(Block); 716 #ifndef NDEBUG 717 ++Visited; 718 #endif 719 } 720 } 721 // Any new blocks to add? 722 if (ActiveBlocks.size() == AddedTo) 723 break; 724 725 // Compute through constraints from the interference, or assume that all 726 // through blocks prefer spilling when forming compact regions. 727 auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo); 728 if (Cand.PhysReg) { 729 if (!addThroughConstraints(Cand.Intf, NewBlocks)) 730 return false; 731 } else 732 // Provide a strong negative bias on through blocks to prevent unwanted 733 // liveness on loop backedges. 734 SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true); 735 AddedTo = ActiveBlocks.size(); 736 737 // Perhaps iterating can enable more bundles? 738 SpillPlacer->iterate(); 739 } 740 LLVM_DEBUG(dbgs() << ", v=" << Visited); 741 return true; 742 } 743 744 /// calcCompactRegion - Compute the set of edge bundles that should be live 745 /// when splitting the current live range into compact regions. Compact 746 /// regions can be computed without looking at interference. They are the 747 /// regions formed by removing all the live-through blocks from the live range. 748 /// 749 /// Returns false if the current live range is already compact, or if the 750 /// compact regions would form single block regions anyway. 751 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) { 752 // Without any through blocks, the live range is already compact. 753 if (!SA->getNumThroughBlocks()) 754 return false; 755 756 // Compact regions don't correspond to any physreg. 757 Cand.reset(IntfCache, MCRegister::NoRegister); 758 759 LLVM_DEBUG(dbgs() << "Compact region bundles"); 760 761 // Use the spill placer to determine the live bundles. GrowRegion pretends 762 // that all the through blocks have interference when PhysReg is unset. 763 SpillPlacer->prepare(Cand.LiveBundles); 764 765 // The static split cost will be zero since Cand.Intf reports no interference. 766 BlockFrequency Cost; 767 if (!addSplitConstraints(Cand.Intf, Cost)) { 768 LLVM_DEBUG(dbgs() << ", none.\n"); 769 return false; 770 } 771 772 if (!growRegion(Cand)) { 773 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n"); 774 return false; 775 } 776 777 SpillPlacer->finish(); 778 779 if (!Cand.LiveBundles.any()) { 780 LLVM_DEBUG(dbgs() << ", none.\n"); 781 return false; 782 } 783 784 LLVM_DEBUG({ 785 for (int I : Cand.LiveBundles.set_bits()) 786 dbgs() << " EB#" << I; 787 dbgs() << ".\n"; 788 }); 789 return true; 790 } 791 792 /// calcSpillCost - Compute how expensive it would be to split the live range in 793 /// SA around all use blocks instead of forming bundle regions. 794 BlockFrequency RAGreedy::calcSpillCost() { 795 BlockFrequency Cost = 0; 796 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 797 for (const SplitAnalysis::BlockInfo &BI : UseBlocks) { 798 unsigned Number = BI.MBB->getNumber(); 799 // We normally only need one spill instruction - a load or a store. 800 Cost += SpillPlacer->getBlockFrequency(Number); 801 802 // Unless the value is redefined in the block. 803 if (BI.LiveIn && BI.LiveOut && BI.FirstDef) 804 Cost += SpillPlacer->getBlockFrequency(Number); 805 } 806 return Cost; 807 } 808 809 /// calcGlobalSplitCost - Return the global split cost of following the split 810 /// pattern in LiveBundles. This cost should be added to the local cost of the 811 /// interference pattern in SplitConstraints. 812 /// 813 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand, 814 const AllocationOrder &Order) { 815 BlockFrequency GlobalCost = 0; 816 const BitVector &LiveBundles = Cand.LiveBundles; 817 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 818 for (unsigned I = 0; I != UseBlocks.size(); ++I) { 819 const SplitAnalysis::BlockInfo &BI = UseBlocks[I]; 820 SpillPlacement::BlockConstraint &BC = SplitConstraints[I]; 821 bool RegIn = LiveBundles[Bundles->getBundle(BC.Number, false)]; 822 bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)]; 823 unsigned Ins = 0; 824 825 Cand.Intf.moveToBlock(BC.Number); 826 827 if (BI.LiveIn) 828 Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg); 829 if (BI.LiveOut) 830 Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg); 831 while (Ins--) 832 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 833 } 834 835 for (unsigned Number : Cand.ActiveBlocks) { 836 bool RegIn = LiveBundles[Bundles->getBundle(Number, false)]; 837 bool RegOut = LiveBundles[Bundles->getBundle(Number, true)]; 838 if (!RegIn && !RegOut) 839 continue; 840 if (RegIn && RegOut) { 841 // We need double spill code if this block has interference. 842 Cand.Intf.moveToBlock(Number); 843 if (Cand.Intf.hasInterference()) { 844 GlobalCost += SpillPlacer->getBlockFrequency(Number); 845 GlobalCost += SpillPlacer->getBlockFrequency(Number); 846 } 847 continue; 848 } 849 // live-in / stack-out or stack-in live-out. 850 GlobalCost += SpillPlacer->getBlockFrequency(Number); 851 } 852 return GlobalCost; 853 } 854 855 /// splitAroundRegion - Split the current live range around the regions 856 /// determined by BundleCand and GlobalCand. 857 /// 858 /// Before calling this function, GlobalCand and BundleCand must be initialized 859 /// so each bundle is assigned to a valid candidate, or NoCand for the 860 /// stack-bound bundles. The shared SA/SE SplitAnalysis and SplitEditor 861 /// objects must be initialized for the current live range, and intervals 862 /// created for the used candidates. 863 /// 864 /// @param LREdit The LiveRangeEdit object handling the current split. 865 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value 866 /// must appear in this list. 867 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit, 868 ArrayRef<unsigned> UsedCands) { 869 // These are the intervals created for new global ranges. We may create more 870 // intervals for local ranges. 871 const unsigned NumGlobalIntvs = LREdit.size(); 872 LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs 873 << " globals.\n"); 874 assert(NumGlobalIntvs && "No global intervals configured"); 875 876 // Isolate even single instructions when dealing with a proper sub-class. 877 // That guarantees register class inflation for the stack interval because it 878 // is all copies. 879 Register Reg = SA->getParent().reg(); 880 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 881 882 // First handle all the blocks with uses. 883 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 884 for (const SplitAnalysis::BlockInfo &BI : UseBlocks) { 885 unsigned Number = BI.MBB->getNumber(); 886 unsigned IntvIn = 0, IntvOut = 0; 887 SlotIndex IntfIn, IntfOut; 888 if (BI.LiveIn) { 889 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)]; 890 if (CandIn != NoCand) { 891 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 892 IntvIn = Cand.IntvIdx; 893 Cand.Intf.moveToBlock(Number); 894 IntfIn = Cand.Intf.first(); 895 } 896 } 897 if (BI.LiveOut) { 898 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)]; 899 if (CandOut != NoCand) { 900 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 901 IntvOut = Cand.IntvIdx; 902 Cand.Intf.moveToBlock(Number); 903 IntfOut = Cand.Intf.last(); 904 } 905 } 906 907 // Create separate intervals for isolated blocks with multiple uses. 908 if (!IntvIn && !IntvOut) { 909 LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " isolated.\n"); 910 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 911 SE->splitSingleBlock(BI); 912 continue; 913 } 914 915 if (IntvIn && IntvOut) 916 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 917 else if (IntvIn) 918 SE->splitRegInBlock(BI, IntvIn, IntfIn); 919 else 920 SE->splitRegOutBlock(BI, IntvOut, IntfOut); 921 } 922 923 // Handle live-through blocks. The relevant live-through blocks are stored in 924 // the ActiveBlocks list with each candidate. We need to filter out 925 // duplicates. 926 BitVector Todo = SA->getThroughBlocks(); 927 for (unsigned UsedCand : UsedCands) { 928 ArrayRef<unsigned> Blocks = GlobalCand[UsedCand].ActiveBlocks; 929 for (unsigned Number : Blocks) { 930 if (!Todo.test(Number)) 931 continue; 932 Todo.reset(Number); 933 934 unsigned IntvIn = 0, IntvOut = 0; 935 SlotIndex IntfIn, IntfOut; 936 937 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)]; 938 if (CandIn != NoCand) { 939 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 940 IntvIn = Cand.IntvIdx; 941 Cand.Intf.moveToBlock(Number); 942 IntfIn = Cand.Intf.first(); 943 } 944 945 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)]; 946 if (CandOut != NoCand) { 947 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 948 IntvOut = Cand.IntvIdx; 949 Cand.Intf.moveToBlock(Number); 950 IntfOut = Cand.Intf.last(); 951 } 952 if (!IntvIn && !IntvOut) 953 continue; 954 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 955 } 956 } 957 958 ++NumGlobalSplits; 959 960 SmallVector<unsigned, 8> IntvMap; 961 SE->finish(&IntvMap); 962 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 963 964 unsigned OrigBlocks = SA->getNumLiveBlocks(); 965 966 // Sort out the new intervals created by splitting. We get four kinds: 967 // - Remainder intervals should not be split again. 968 // - Candidate intervals can be assigned to Cand.PhysReg. 969 // - Block-local splits are candidates for local splitting. 970 // - DCE leftovers should go back on the queue. 971 for (unsigned I = 0, E = LREdit.size(); I != E; ++I) { 972 const LiveInterval &Reg = LIS->getInterval(LREdit.get(I)); 973 974 // Ignore old intervals from DCE. 975 if (ExtraInfo->getOrInitStage(Reg.reg()) != RS_New) 976 continue; 977 978 // Remainder interval. Don't try splitting again, spill if it doesn't 979 // allocate. 980 if (IntvMap[I] == 0) { 981 ExtraInfo->setStage(Reg, RS_Spill); 982 continue; 983 } 984 985 // Global intervals. Allow repeated splitting as long as the number of live 986 // blocks is strictly decreasing. 987 if (IntvMap[I] < NumGlobalIntvs) { 988 if (SA->countLiveBlocks(&Reg) >= OrigBlocks) { 989 LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks 990 << " blocks as original.\n"); 991 // Don't allow repeated splitting as a safe guard against looping. 992 ExtraInfo->setStage(Reg, RS_Split2); 993 } 994 continue; 995 } 996 997 // Other intervals are treated as new. This includes local intervals created 998 // for blocks with multiple uses, and anything created by DCE. 999 } 1000 1001 if (VerifyEnabled) 1002 MF->verify(this, "After splitting live range around region"); 1003 } 1004 1005 MCRegister RAGreedy::tryRegionSplit(const LiveInterval &VirtReg, 1006 AllocationOrder &Order, 1007 SmallVectorImpl<Register> &NewVRegs) { 1008 if (!TRI->shouldRegionSplitForVirtReg(*MF, VirtReg)) 1009 return MCRegister::NoRegister; 1010 unsigned NumCands = 0; 1011 BlockFrequency SpillCost = calcSpillCost(); 1012 BlockFrequency BestCost; 1013 1014 // Check if we can split this live range around a compact region. 1015 bool HasCompact = calcCompactRegion(GlobalCand.front()); 1016 if (HasCompact) { 1017 // Yes, keep GlobalCand[0] as the compact region candidate. 1018 NumCands = 1; 1019 BestCost = BlockFrequency::getMaxFrequency(); 1020 } else { 1021 // No benefit from the compact region, our fallback will be per-block 1022 // splitting. Make sure we find a solution that is cheaper than spilling. 1023 BestCost = SpillCost; 1024 LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = "; 1025 MBFI->printBlockFreq(dbgs(), BestCost) << '\n'); 1026 } 1027 1028 unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost, 1029 NumCands, false /*IgnoreCSR*/); 1030 1031 // No solutions found, fall back to single block splitting. 1032 if (!HasCompact && BestCand == NoCand) 1033 return MCRegister::NoRegister; 1034 1035 return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs); 1036 } 1037 1038 unsigned RAGreedy::calculateRegionSplitCost(const LiveInterval &VirtReg, 1039 AllocationOrder &Order, 1040 BlockFrequency &BestCost, 1041 unsigned &NumCands, 1042 bool IgnoreCSR) { 1043 unsigned BestCand = NoCand; 1044 for (MCPhysReg PhysReg : Order) { 1045 assert(PhysReg); 1046 if (IgnoreCSR && EvictAdvisor->isUnusedCalleeSavedReg(PhysReg)) 1047 continue; 1048 1049 // Discard bad candidates before we run out of interference cache cursors. 1050 // This will only affect register classes with a lot of registers (>32). 1051 if (NumCands == IntfCache.getMaxCursors()) { 1052 unsigned WorstCount = ~0u; 1053 unsigned Worst = 0; 1054 for (unsigned CandIndex = 0; CandIndex != NumCands; ++CandIndex) { 1055 if (CandIndex == BestCand || !GlobalCand[CandIndex].PhysReg) 1056 continue; 1057 unsigned Count = GlobalCand[CandIndex].LiveBundles.count(); 1058 if (Count < WorstCount) { 1059 Worst = CandIndex; 1060 WorstCount = Count; 1061 } 1062 } 1063 --NumCands; 1064 GlobalCand[Worst] = GlobalCand[NumCands]; 1065 if (BestCand == NumCands) 1066 BestCand = Worst; 1067 } 1068 1069 if (GlobalCand.size() <= NumCands) 1070 GlobalCand.resize(NumCands+1); 1071 GlobalSplitCandidate &Cand = GlobalCand[NumCands]; 1072 Cand.reset(IntfCache, PhysReg); 1073 1074 SpillPlacer->prepare(Cand.LiveBundles); 1075 BlockFrequency Cost; 1076 if (!addSplitConstraints(Cand.Intf, Cost)) { 1077 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tno positive bundles\n"); 1078 continue; 1079 } 1080 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tstatic = "; 1081 MBFI->printBlockFreq(dbgs(), Cost)); 1082 if (Cost >= BestCost) { 1083 LLVM_DEBUG({ 1084 if (BestCand == NoCand) 1085 dbgs() << " worse than no bundles\n"; 1086 else 1087 dbgs() << " worse than " 1088 << printReg(GlobalCand[BestCand].PhysReg, TRI) << '\n'; 1089 }); 1090 continue; 1091 } 1092 if (!growRegion(Cand)) { 1093 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n"); 1094 continue; 1095 } 1096 1097 SpillPlacer->finish(); 1098 1099 // No live bundles, defer to splitSingleBlocks(). 1100 if (!Cand.LiveBundles.any()) { 1101 LLVM_DEBUG(dbgs() << " no bundles.\n"); 1102 continue; 1103 } 1104 1105 Cost += calcGlobalSplitCost(Cand, Order); 1106 LLVM_DEBUG({ 1107 dbgs() << ", total = "; 1108 MBFI->printBlockFreq(dbgs(), Cost) << " with bundles"; 1109 for (int I : Cand.LiveBundles.set_bits()) 1110 dbgs() << " EB#" << I; 1111 dbgs() << ".\n"; 1112 }); 1113 if (Cost < BestCost) { 1114 BestCand = NumCands; 1115 BestCost = Cost; 1116 } 1117 ++NumCands; 1118 } 1119 1120 return BestCand; 1121 } 1122 1123 unsigned RAGreedy::doRegionSplit(const LiveInterval &VirtReg, unsigned BestCand, 1124 bool HasCompact, 1125 SmallVectorImpl<Register> &NewVRegs) { 1126 SmallVector<unsigned, 8> UsedCands; 1127 // Prepare split editor. 1128 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1129 SE->reset(LREdit, SplitSpillMode); 1130 1131 // Assign all edge bundles to the preferred candidate, or NoCand. 1132 BundleCand.assign(Bundles->getNumBundles(), NoCand); 1133 1134 // Assign bundles for the best candidate region. 1135 if (BestCand != NoCand) { 1136 GlobalSplitCandidate &Cand = GlobalCand[BestCand]; 1137 if (unsigned B = Cand.getBundles(BundleCand, BestCand)) { 1138 UsedCands.push_back(BestCand); 1139 Cand.IntvIdx = SE->openIntv(); 1140 LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand.PhysReg, TRI) << " in " 1141 << B << " bundles, intv " << Cand.IntvIdx << ".\n"); 1142 (void)B; 1143 } 1144 } 1145 1146 // Assign bundles for the compact region. 1147 if (HasCompact) { 1148 GlobalSplitCandidate &Cand = GlobalCand.front(); 1149 assert(!Cand.PhysReg && "Compact region has no physreg"); 1150 if (unsigned B = Cand.getBundles(BundleCand, 0)) { 1151 UsedCands.push_back(0); 1152 Cand.IntvIdx = SE->openIntv(); 1153 LLVM_DEBUG(dbgs() << "Split for compact region in " << B 1154 << " bundles, intv " << Cand.IntvIdx << ".\n"); 1155 (void)B; 1156 } 1157 } 1158 1159 splitAroundRegion(LREdit, UsedCands); 1160 return 0; 1161 } 1162 1163 //===----------------------------------------------------------------------===// 1164 // Per-Block Splitting 1165 //===----------------------------------------------------------------------===// 1166 1167 /// tryBlockSplit - Split a global live range around every block with uses. This 1168 /// creates a lot of local live ranges, that will be split by tryLocalSplit if 1169 /// they don't allocate. 1170 unsigned RAGreedy::tryBlockSplit(const LiveInterval &VirtReg, 1171 AllocationOrder &Order, 1172 SmallVectorImpl<Register> &NewVRegs) { 1173 assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed"); 1174 Register Reg = VirtReg.reg(); 1175 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 1176 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1177 SE->reset(LREdit, SplitSpillMode); 1178 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1179 for (const SplitAnalysis::BlockInfo &BI : UseBlocks) { 1180 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 1181 SE->splitSingleBlock(BI); 1182 } 1183 // No blocks were split. 1184 if (LREdit.empty()) 1185 return 0; 1186 1187 // We did split for some blocks. 1188 SmallVector<unsigned, 8> IntvMap; 1189 SE->finish(&IntvMap); 1190 1191 // Tell LiveDebugVariables about the new ranges. 1192 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 1193 1194 // Sort out the new intervals created by splitting. The remainder interval 1195 // goes straight to spilling, the new local ranges get to stay RS_New. 1196 for (unsigned I = 0, E = LREdit.size(); I != E; ++I) { 1197 const LiveInterval &LI = LIS->getInterval(LREdit.get(I)); 1198 if (ExtraInfo->getOrInitStage(LI.reg()) == RS_New && IntvMap[I] == 0) 1199 ExtraInfo->setStage(LI, RS_Spill); 1200 } 1201 1202 if (VerifyEnabled) 1203 MF->verify(this, "After splitting live range around basic blocks"); 1204 return 0; 1205 } 1206 1207 //===----------------------------------------------------------------------===// 1208 // Per-Instruction Splitting 1209 //===----------------------------------------------------------------------===// 1210 1211 /// Get the number of allocatable registers that match the constraints of \p Reg 1212 /// on \p MI and that are also in \p SuperRC. 1213 static unsigned getNumAllocatableRegsForConstraints( 1214 const MachineInstr *MI, Register Reg, const TargetRegisterClass *SuperRC, 1215 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI, 1216 const RegisterClassInfo &RCI) { 1217 assert(SuperRC && "Invalid register class"); 1218 1219 const TargetRegisterClass *ConstrainedRC = 1220 MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI, 1221 /* ExploreBundle */ true); 1222 if (!ConstrainedRC) 1223 return 0; 1224 return RCI.getNumAllocatableRegs(ConstrainedRC); 1225 } 1226 1227 /// tryInstructionSplit - Split a live range around individual instructions. 1228 /// This is normally not worthwhile since the spiller is doing essentially the 1229 /// same thing. However, when the live range is in a constrained register 1230 /// class, it may help to insert copies such that parts of the live range can 1231 /// be moved to a larger register class. 1232 /// 1233 /// This is similar to spilling to a larger register class. 1234 unsigned RAGreedy::tryInstructionSplit(const LiveInterval &VirtReg, 1235 AllocationOrder &Order, 1236 SmallVectorImpl<Register> &NewVRegs) { 1237 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg()); 1238 // There is no point to this if there are no larger sub-classes. 1239 if (!RegClassInfo.isProperSubClass(CurRC)) 1240 return 0; 1241 1242 // Always enable split spill mode, since we're effectively spilling to a 1243 // register. 1244 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1245 SE->reset(LREdit, SplitEditor::SM_Size); 1246 1247 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 1248 if (Uses.size() <= 1) 1249 return 0; 1250 1251 LLVM_DEBUG(dbgs() << "Split around " << Uses.size() 1252 << " individual instrs.\n"); 1253 1254 const TargetRegisterClass *SuperRC = 1255 TRI->getLargestLegalSuperClass(CurRC, *MF); 1256 unsigned SuperRCNumAllocatableRegs = 1257 RegClassInfo.getNumAllocatableRegs(SuperRC); 1258 // Split around every non-copy instruction if this split will relax 1259 // the constraints on the virtual register. 1260 // Otherwise, splitting just inserts uncoalescable copies that do not help 1261 // the allocation. 1262 for (const SlotIndex Use : Uses) { 1263 if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Use)) 1264 if (MI->isFullCopy() || 1265 SuperRCNumAllocatableRegs == 1266 getNumAllocatableRegsForConstraints(MI, VirtReg.reg(), SuperRC, 1267 TII, TRI, RegClassInfo)) { 1268 LLVM_DEBUG(dbgs() << " skip:\t" << Use << '\t' << *MI); 1269 continue; 1270 } 1271 SE->openIntv(); 1272 SlotIndex SegStart = SE->enterIntvBefore(Use); 1273 SlotIndex SegStop = SE->leaveIntvAfter(Use); 1274 SE->useIntv(SegStart, SegStop); 1275 } 1276 1277 if (LREdit.empty()) { 1278 LLVM_DEBUG(dbgs() << "All uses were copies.\n"); 1279 return 0; 1280 } 1281 1282 SmallVector<unsigned, 8> IntvMap; 1283 SE->finish(&IntvMap); 1284 DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS); 1285 // Assign all new registers to RS_Spill. This was the last chance. 1286 ExtraInfo->setStage(LREdit.begin(), LREdit.end(), RS_Spill); 1287 return 0; 1288 } 1289 1290 //===----------------------------------------------------------------------===// 1291 // Local Splitting 1292 //===----------------------------------------------------------------------===// 1293 1294 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted 1295 /// in order to use PhysReg between two entries in SA->UseSlots. 1296 /// 1297 /// GapWeight[I] represents the gap between UseSlots[I] and UseSlots[I + 1]. 1298 /// 1299 void RAGreedy::calcGapWeights(MCRegister PhysReg, 1300 SmallVectorImpl<float> &GapWeight) { 1301 assert(SA->getUseBlocks().size() == 1 && "Not a local interval"); 1302 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 1303 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 1304 const unsigned NumGaps = Uses.size()-1; 1305 1306 // Start and end points for the interference check. 1307 SlotIndex StartIdx = 1308 BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr; 1309 SlotIndex StopIdx = 1310 BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr; 1311 1312 GapWeight.assign(NumGaps, 0.0f); 1313 1314 // Add interference from each overlapping register. 1315 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 1316 if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units) 1317 .checkInterference()) 1318 continue; 1319 1320 // We know that VirtReg is a continuous interval from FirstInstr to 1321 // LastInstr, so we don't need InterferenceQuery. 1322 // 1323 // Interference that overlaps an instruction is counted in both gaps 1324 // surrounding the instruction. The exception is interference before 1325 // StartIdx and after StopIdx. 1326 // 1327 LiveIntervalUnion::SegmentIter IntI = 1328 Matrix->getLiveUnions()[*Units] .find(StartIdx); 1329 for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) { 1330 // Skip the gaps before IntI. 1331 while (Uses[Gap+1].getBoundaryIndex() < IntI.start()) 1332 if (++Gap == NumGaps) 1333 break; 1334 if (Gap == NumGaps) 1335 break; 1336 1337 // Update the gaps covered by IntI. 1338 const float weight = IntI.value()->weight(); 1339 for (; Gap != NumGaps; ++Gap) { 1340 GapWeight[Gap] = std::max(GapWeight[Gap], weight); 1341 if (Uses[Gap+1].getBaseIndex() >= IntI.stop()) 1342 break; 1343 } 1344 if (Gap == NumGaps) 1345 break; 1346 } 1347 } 1348 1349 // Add fixed interference. 1350 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 1351 const LiveRange &LR = LIS->getRegUnit(*Units); 1352 LiveRange::const_iterator I = LR.find(StartIdx); 1353 LiveRange::const_iterator E = LR.end(); 1354 1355 // Same loop as above. Mark any overlapped gaps as HUGE_VALF. 1356 for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) { 1357 while (Uses[Gap+1].getBoundaryIndex() < I->start) 1358 if (++Gap == NumGaps) 1359 break; 1360 if (Gap == NumGaps) 1361 break; 1362 1363 for (; Gap != NumGaps; ++Gap) { 1364 GapWeight[Gap] = huge_valf; 1365 if (Uses[Gap+1].getBaseIndex() >= I->end) 1366 break; 1367 } 1368 if (Gap == NumGaps) 1369 break; 1370 } 1371 } 1372 } 1373 1374 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only 1375 /// basic block. 1376 /// 1377 unsigned RAGreedy::tryLocalSplit(const LiveInterval &VirtReg, 1378 AllocationOrder &Order, 1379 SmallVectorImpl<Register> &NewVRegs) { 1380 // TODO: the function currently only handles a single UseBlock; it should be 1381 // possible to generalize. 1382 if (SA->getUseBlocks().size() != 1) 1383 return 0; 1384 1385 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 1386 1387 // Note that it is possible to have an interval that is live-in or live-out 1388 // while only covering a single block - A phi-def can use undef values from 1389 // predecessors, and the block could be a single-block loop. 1390 // We don't bother doing anything clever about such a case, we simply assume 1391 // that the interval is continuous from FirstInstr to LastInstr. We should 1392 // make sure that we don't do anything illegal to such an interval, though. 1393 1394 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 1395 if (Uses.size() <= 2) 1396 return 0; 1397 const unsigned NumGaps = Uses.size()-1; 1398 1399 LLVM_DEBUG({ 1400 dbgs() << "tryLocalSplit: "; 1401 for (const auto &Use : Uses) 1402 dbgs() << ' ' << Use; 1403 dbgs() << '\n'; 1404 }); 1405 1406 // If VirtReg is live across any register mask operands, compute a list of 1407 // gaps with register masks. 1408 SmallVector<unsigned, 8> RegMaskGaps; 1409 if (Matrix->checkRegMaskInterference(VirtReg)) { 1410 // Get regmask slots for the whole block. 1411 ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber()); 1412 LLVM_DEBUG(dbgs() << RMS.size() << " regmasks in block:"); 1413 // Constrain to VirtReg's live range. 1414 unsigned RI = 1415 llvm::lower_bound(RMS, Uses.front().getRegSlot()) - RMS.begin(); 1416 unsigned RE = RMS.size(); 1417 for (unsigned I = 0; I != NumGaps && RI != RE; ++I) { 1418 // Look for Uses[I] <= RMS <= Uses[I + 1]. 1419 assert(!SlotIndex::isEarlierInstr(RMS[RI], Uses[I])); 1420 if (SlotIndex::isEarlierInstr(Uses[I + 1], RMS[RI])) 1421 continue; 1422 // Skip a regmask on the same instruction as the last use. It doesn't 1423 // overlap the live range. 1424 if (SlotIndex::isSameInstr(Uses[I + 1], RMS[RI]) && I + 1 == NumGaps) 1425 break; 1426 LLVM_DEBUG(dbgs() << ' ' << RMS[RI] << ':' << Uses[I] << '-' 1427 << Uses[I + 1]); 1428 RegMaskGaps.push_back(I); 1429 // Advance ri to the next gap. A regmask on one of the uses counts in 1430 // both gaps. 1431 while (RI != RE && SlotIndex::isEarlierInstr(RMS[RI], Uses[I + 1])) 1432 ++RI; 1433 } 1434 LLVM_DEBUG(dbgs() << '\n'); 1435 } 1436 1437 // Since we allow local split results to be split again, there is a risk of 1438 // creating infinite loops. It is tempting to require that the new live 1439 // ranges have less instructions than the original. That would guarantee 1440 // convergence, but it is too strict. A live range with 3 instructions can be 1441 // split 2+3 (including the COPY), and we want to allow that. 1442 // 1443 // Instead we use these rules: 1444 // 1445 // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the 1446 // noop split, of course). 1447 // 2. Require progress be made for ranges with getStage() == RS_Split2. All 1448 // the new ranges must have fewer instructions than before the split. 1449 // 3. New ranges with the same number of instructions are marked RS_Split2, 1450 // smaller ranges are marked RS_New. 1451 // 1452 // These rules allow a 3 -> 2+3 split once, which we need. They also prevent 1453 // excessive splitting and infinite loops. 1454 // 1455 bool ProgressRequired = ExtraInfo->getStage(VirtReg) >= RS_Split2; 1456 1457 // Best split candidate. 1458 unsigned BestBefore = NumGaps; 1459 unsigned BestAfter = 0; 1460 float BestDiff = 0; 1461 1462 const float blockFreq = 1463 SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() * 1464 (1.0f / MBFI->getEntryFreq()); 1465 SmallVector<float, 8> GapWeight; 1466 1467 for (MCPhysReg PhysReg : Order) { 1468 assert(PhysReg); 1469 // Keep track of the largest spill weight that would need to be evicted in 1470 // order to make use of PhysReg between UseSlots[I] and UseSlots[I + 1]. 1471 calcGapWeights(PhysReg, GapWeight); 1472 1473 // Remove any gaps with regmask clobbers. 1474 if (Matrix->checkRegMaskInterference(VirtReg, PhysReg)) 1475 for (unsigned I = 0, E = RegMaskGaps.size(); I != E; ++I) 1476 GapWeight[RegMaskGaps[I]] = huge_valf; 1477 1478 // Try to find the best sequence of gaps to close. 1479 // The new spill weight must be larger than any gap interference. 1480 1481 // We will split before Uses[SplitBefore] and after Uses[SplitAfter]. 1482 unsigned SplitBefore = 0, SplitAfter = 1; 1483 1484 // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]). 1485 // It is the spill weight that needs to be evicted. 1486 float MaxGap = GapWeight[0]; 1487 1488 while (true) { 1489 // Live before/after split? 1490 const bool LiveBefore = SplitBefore != 0 || BI.LiveIn; 1491 const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut; 1492 1493 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << ' ' << Uses[SplitBefore] 1494 << '-' << Uses[SplitAfter] << " I=" << MaxGap); 1495 1496 // Stop before the interval gets so big we wouldn't be making progress. 1497 if (!LiveBefore && !LiveAfter) { 1498 LLVM_DEBUG(dbgs() << " all\n"); 1499 break; 1500 } 1501 // Should the interval be extended or shrunk? 1502 bool Shrink = true; 1503 1504 // How many gaps would the new range have? 1505 unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter; 1506 1507 // Legally, without causing looping? 1508 bool Legal = !ProgressRequired || NewGaps < NumGaps; 1509 1510 if (Legal && MaxGap < huge_valf) { 1511 // Estimate the new spill weight. Each instruction reads or writes the 1512 // register. Conservatively assume there are no read-modify-write 1513 // instructions. 1514 // 1515 // Try to guess the size of the new interval. 1516 const float EstWeight = normalizeSpillWeight( 1517 blockFreq * (NewGaps + 1), 1518 Uses[SplitBefore].distance(Uses[SplitAfter]) + 1519 (LiveBefore + LiveAfter) * SlotIndex::InstrDist, 1520 1); 1521 // Would this split be possible to allocate? 1522 // Never allocate all gaps, we wouldn't be making progress. 1523 LLVM_DEBUG(dbgs() << " w=" << EstWeight); 1524 if (EstWeight * Hysteresis >= MaxGap) { 1525 Shrink = false; 1526 float Diff = EstWeight - MaxGap; 1527 if (Diff > BestDiff) { 1528 LLVM_DEBUG(dbgs() << " (best)"); 1529 BestDiff = Hysteresis * Diff; 1530 BestBefore = SplitBefore; 1531 BestAfter = SplitAfter; 1532 } 1533 } 1534 } 1535 1536 // Try to shrink. 1537 if (Shrink) { 1538 if (++SplitBefore < SplitAfter) { 1539 LLVM_DEBUG(dbgs() << " shrink\n"); 1540 // Recompute the max when necessary. 1541 if (GapWeight[SplitBefore - 1] >= MaxGap) { 1542 MaxGap = GapWeight[SplitBefore]; 1543 for (unsigned I = SplitBefore + 1; I != SplitAfter; ++I) 1544 MaxGap = std::max(MaxGap, GapWeight[I]); 1545 } 1546 continue; 1547 } 1548 MaxGap = 0; 1549 } 1550 1551 // Try to extend the interval. 1552 if (SplitAfter >= NumGaps) { 1553 LLVM_DEBUG(dbgs() << " end\n"); 1554 break; 1555 } 1556 1557 LLVM_DEBUG(dbgs() << " extend\n"); 1558 MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]); 1559 } 1560 } 1561 1562 // Didn't find any candidates? 1563 if (BestBefore == NumGaps) 1564 return 0; 1565 1566 LLVM_DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] << '-' 1567 << Uses[BestAfter] << ", " << BestDiff << ", " 1568 << (BestAfter - BestBefore + 1) << " instrs\n"); 1569 1570 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1571 SE->reset(LREdit); 1572 1573 SE->openIntv(); 1574 SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]); 1575 SlotIndex SegStop = SE->leaveIntvAfter(Uses[BestAfter]); 1576 SE->useIntv(SegStart, SegStop); 1577 SmallVector<unsigned, 8> IntvMap; 1578 SE->finish(&IntvMap); 1579 DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS); 1580 // If the new range has the same number of instructions as before, mark it as 1581 // RS_Split2 so the next split will be forced to make progress. Otherwise, 1582 // leave the new intervals as RS_New so they can compete. 1583 bool LiveBefore = BestBefore != 0 || BI.LiveIn; 1584 bool LiveAfter = BestAfter != NumGaps || BI.LiveOut; 1585 unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter; 1586 if (NewGaps >= NumGaps) { 1587 LLVM_DEBUG(dbgs() << "Tagging non-progress ranges:"); 1588 assert(!ProgressRequired && "Didn't make progress when it was required."); 1589 for (unsigned I = 0, E = IntvMap.size(); I != E; ++I) 1590 if (IntvMap[I] == 1) { 1591 ExtraInfo->setStage(LIS->getInterval(LREdit.get(I)), RS_Split2); 1592 LLVM_DEBUG(dbgs() << ' ' << printReg(LREdit.get(I))); 1593 } 1594 LLVM_DEBUG(dbgs() << '\n'); 1595 } 1596 ++NumLocalSplits; 1597 1598 return 0; 1599 } 1600 1601 //===----------------------------------------------------------------------===// 1602 // Live Range Splitting 1603 //===----------------------------------------------------------------------===// 1604 1605 /// trySplit - Try to split VirtReg or one of its interferences, making it 1606 /// assignable. 1607 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs. 1608 unsigned RAGreedy::trySplit(const LiveInterval &VirtReg, AllocationOrder &Order, 1609 SmallVectorImpl<Register> &NewVRegs, 1610 const SmallVirtRegSet &FixedRegisters) { 1611 // Ranges must be Split2 or less. 1612 if (ExtraInfo->getStage(VirtReg) >= RS_Spill) 1613 return 0; 1614 1615 // Local intervals are handled separately. 1616 if (LIS->intervalIsInOneMBB(VirtReg)) { 1617 NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName, 1618 TimerGroupDescription, TimePassesIsEnabled); 1619 SA->analyze(&VirtReg); 1620 Register PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs); 1621 if (PhysReg || !NewVRegs.empty()) 1622 return PhysReg; 1623 return tryInstructionSplit(VirtReg, Order, NewVRegs); 1624 } 1625 1626 NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName, 1627 TimerGroupDescription, TimePassesIsEnabled); 1628 1629 SA->analyze(&VirtReg); 1630 1631 // First try to split around a region spanning multiple blocks. RS_Split2 1632 // ranges already made dubious progress with region splitting, so they go 1633 // straight to single block splitting. 1634 if (ExtraInfo->getStage(VirtReg) < RS_Split2) { 1635 MCRegister PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs); 1636 if (PhysReg || !NewVRegs.empty()) 1637 return PhysReg; 1638 } 1639 1640 // Then isolate blocks. 1641 return tryBlockSplit(VirtReg, Order, NewVRegs); 1642 } 1643 1644 //===----------------------------------------------------------------------===// 1645 // Last Chance Recoloring 1646 //===----------------------------------------------------------------------===// 1647 1648 /// Return true if \p reg has any tied def operand. 1649 static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg) { 1650 for (const MachineOperand &MO : MRI->def_operands(reg)) 1651 if (MO.isTied()) 1652 return true; 1653 1654 return false; 1655 } 1656 1657 /// Return true if the existing assignment of \p Intf overlaps, but is not the 1658 /// same, as \p PhysReg. 1659 static bool assignedRegPartiallyOverlaps(const TargetRegisterInfo &TRI, 1660 const VirtRegMap &VRM, 1661 MCRegister PhysReg, 1662 const LiveInterval &Intf) { 1663 MCRegister AssignedReg = VRM.getPhys(Intf.reg()); 1664 if (PhysReg == AssignedReg) 1665 return false; 1666 return TRI.regsOverlap(PhysReg, AssignedReg); 1667 } 1668 1669 /// mayRecolorAllInterferences - Check if the virtual registers that 1670 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be 1671 /// recolored to free \p PhysReg. 1672 /// When true is returned, \p RecoloringCandidates has been augmented with all 1673 /// the live intervals that need to be recolored in order to free \p PhysReg 1674 /// for \p VirtReg. 1675 /// \p FixedRegisters contains all the virtual registers that cannot be 1676 /// recolored. 1677 bool RAGreedy::mayRecolorAllInterferences( 1678 MCRegister PhysReg, const LiveInterval &VirtReg, 1679 SmallLISet &RecoloringCandidates, const SmallVirtRegSet &FixedRegisters) { 1680 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg()); 1681 1682 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 1683 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 1684 // If there is LastChanceRecoloringMaxInterference or more interferences, 1685 // chances are one would not be recolorable. 1686 if (Q.interferingVRegs(LastChanceRecoloringMaxInterference).size() >= 1687 LastChanceRecoloringMaxInterference && 1688 !ExhaustiveSearch) { 1689 LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n"); 1690 CutOffInfo |= CO_Interf; 1691 return false; 1692 } 1693 for (const LiveInterval *Intf : reverse(Q.interferingVRegs())) { 1694 // If Intf is done and sits on the same register class as VirtReg, it 1695 // would not be recolorable as it is in the same state as 1696 // VirtReg. However there are at least two exceptions. 1697 // 1698 // If VirtReg has tied defs and Intf doesn't, then 1699 // there is still a point in examining if it can be recolorable. 1700 // 1701 // Additionally, if the register class has overlapping tuple members, it 1702 // may still be recolorable using a different tuple. This is more likely 1703 // if the existing assignment aliases with the candidate. 1704 // 1705 if (((ExtraInfo->getStage(*Intf) == RS_Done && 1706 MRI->getRegClass(Intf->reg()) == CurRC && 1707 !assignedRegPartiallyOverlaps(*TRI, *VRM, PhysReg, *Intf)) && 1708 !(hasTiedDef(MRI, VirtReg.reg()) && 1709 !hasTiedDef(MRI, Intf->reg()))) || 1710 FixedRegisters.count(Intf->reg())) { 1711 LLVM_DEBUG( 1712 dbgs() << "Early abort: the interference is not recolorable.\n"); 1713 return false; 1714 } 1715 RecoloringCandidates.insert(Intf); 1716 } 1717 } 1718 return true; 1719 } 1720 1721 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring 1722 /// its interferences. 1723 /// Last chance recoloring chooses a color for \p VirtReg and recolors every 1724 /// virtual register that was using it. The recoloring process may recursively 1725 /// use the last chance recoloring. Therefore, when a virtual register has been 1726 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot 1727 /// be last-chance-recolored again during this recoloring "session". 1728 /// E.g., 1729 /// Let 1730 /// vA can use {R1, R2 } 1731 /// vB can use { R2, R3} 1732 /// vC can use {R1 } 1733 /// Where vA, vB, and vC cannot be split anymore (they are reloads for 1734 /// instance) and they all interfere. 1735 /// 1736 /// vA is assigned R1 1737 /// vB is assigned R2 1738 /// vC tries to evict vA but vA is already done. 1739 /// Regular register allocation fails. 1740 /// 1741 /// Last chance recoloring kicks in: 1742 /// vC does as if vA was evicted => vC uses R1. 1743 /// vC is marked as fixed. 1744 /// vA needs to find a color. 1745 /// None are available. 1746 /// vA cannot evict vC: vC is a fixed virtual register now. 1747 /// vA does as if vB was evicted => vA uses R2. 1748 /// vB needs to find a color. 1749 /// R3 is available. 1750 /// Recoloring => vC = R1, vA = R2, vB = R3 1751 /// 1752 /// \p Order defines the preferred allocation order for \p VirtReg. 1753 /// \p NewRegs will contain any new virtual register that have been created 1754 /// (split, spill) during the process and that must be assigned. 1755 /// \p FixedRegisters contains all the virtual registers that cannot be 1756 /// recolored. 1757 /// 1758 /// \p RecolorStack tracks the original assignments of successfully recolored 1759 /// registers. 1760 /// 1761 /// \p Depth gives the current depth of the last chance recoloring. 1762 /// \return a physical register that can be used for VirtReg or ~0u if none 1763 /// exists. 1764 unsigned RAGreedy::tryLastChanceRecoloring(const LiveInterval &VirtReg, 1765 AllocationOrder &Order, 1766 SmallVectorImpl<Register> &NewVRegs, 1767 SmallVirtRegSet &FixedRegisters, 1768 RecoloringStack &RecolorStack, 1769 unsigned Depth) { 1770 if (!TRI->shouldUseLastChanceRecoloringForVirtReg(*MF, VirtReg)) 1771 return ~0u; 1772 1773 LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n'); 1774 1775 const ssize_t EntryStackSize = RecolorStack.size(); 1776 1777 // Ranges must be Done. 1778 assert((ExtraInfo->getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) && 1779 "Last chance recoloring should really be last chance"); 1780 // Set the max depth to LastChanceRecoloringMaxDepth. 1781 // We may want to reconsider that if we end up with a too large search space 1782 // for target with hundreds of registers. 1783 // Indeed, in that case we may want to cut the search space earlier. 1784 if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) { 1785 LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n"); 1786 CutOffInfo |= CO_Depth; 1787 return ~0u; 1788 } 1789 1790 // Set of Live intervals that will need to be recolored. 1791 SmallLISet RecoloringCandidates; 1792 1793 // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in 1794 // this recoloring "session". 1795 assert(!FixedRegisters.count(VirtReg.reg())); 1796 FixedRegisters.insert(VirtReg.reg()); 1797 SmallVector<Register, 4> CurrentNewVRegs; 1798 1799 for (MCRegister PhysReg : Order) { 1800 assert(PhysReg.isValid()); 1801 LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg << " to " 1802 << printReg(PhysReg, TRI) << '\n'); 1803 RecoloringCandidates.clear(); 1804 CurrentNewVRegs.clear(); 1805 1806 // It is only possible to recolor virtual register interference. 1807 if (Matrix->checkInterference(VirtReg, PhysReg) > 1808 LiveRegMatrix::IK_VirtReg) { 1809 LLVM_DEBUG( 1810 dbgs() << "Some interferences are not with virtual registers.\n"); 1811 1812 continue; 1813 } 1814 1815 // Early give up on this PhysReg if it is obvious we cannot recolor all 1816 // the interferences. 1817 if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates, 1818 FixedRegisters)) { 1819 LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n"); 1820 continue; 1821 } 1822 1823 // RecoloringCandidates contains all the virtual registers that interfere 1824 // with VirtReg on PhysReg (or one of its aliases). Enqueue them for 1825 // recoloring and perform the actual recoloring. 1826 PQueue RecoloringQueue; 1827 for (const LiveInterval *RC : RecoloringCandidates) { 1828 Register ItVirtReg = RC->reg(); 1829 enqueue(RecoloringQueue, RC); 1830 assert(VRM->hasPhys(ItVirtReg) && 1831 "Interferences are supposed to be with allocated variables"); 1832 1833 // Record the current allocation. 1834 RecolorStack.push_back(std::make_pair(RC, VRM->getPhys(ItVirtReg))); 1835 1836 // unset the related struct. 1837 Matrix->unassign(*RC); 1838 } 1839 1840 // Do as if VirtReg was assigned to PhysReg so that the underlying 1841 // recoloring has the right information about the interferes and 1842 // available colors. 1843 Matrix->assign(VirtReg, PhysReg); 1844 1845 // Save the current recoloring state. 1846 // If we cannot recolor all the interferences, we will have to start again 1847 // at this point for the next physical register. 1848 SmallVirtRegSet SaveFixedRegisters(FixedRegisters); 1849 if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs, 1850 FixedRegisters, RecolorStack, Depth)) { 1851 // Push the queued vregs into the main queue. 1852 for (Register NewVReg : CurrentNewVRegs) 1853 NewVRegs.push_back(NewVReg); 1854 // Do not mess up with the global assignment process. 1855 // I.e., VirtReg must be unassigned. 1856 Matrix->unassign(VirtReg); 1857 return PhysReg; 1858 } 1859 1860 LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to " 1861 << printReg(PhysReg, TRI) << '\n'); 1862 1863 // The recoloring attempt failed, undo the changes. 1864 FixedRegisters = SaveFixedRegisters; 1865 Matrix->unassign(VirtReg); 1866 1867 // For a newly created vreg which is also in RecoloringCandidates, 1868 // don't add it to NewVRegs because its physical register will be restored 1869 // below. Other vregs in CurrentNewVRegs are created by calling 1870 // selectOrSplit and should be added into NewVRegs. 1871 for (Register &R : CurrentNewVRegs) { 1872 if (RecoloringCandidates.count(&LIS->getInterval(R))) 1873 continue; 1874 NewVRegs.push_back(R); 1875 } 1876 1877 // Roll back our unsuccessful recoloring. Also roll back any successful 1878 // recolorings in any recursive recoloring attempts, since it's possible 1879 // they would have introduced conflicts with assignments we will be 1880 // restoring further up the stack. Perform all unassignments prior to 1881 // reassigning, since sub-recolorings may have conflicted with the registers 1882 // we are going to restore to their original assignments. 1883 for (ssize_t I = RecolorStack.size() - 1; I >= EntryStackSize; --I) { 1884 const LiveInterval *LI; 1885 MCRegister PhysReg; 1886 std::tie(LI, PhysReg) = RecolorStack[I]; 1887 1888 if (VRM->hasPhys(LI->reg())) 1889 Matrix->unassign(*LI); 1890 } 1891 1892 for (size_t I = EntryStackSize; I != RecolorStack.size(); ++I) { 1893 const LiveInterval *LI; 1894 MCRegister PhysReg; 1895 std::tie(LI, PhysReg) = RecolorStack[I]; 1896 if (!LI->empty() && !MRI->reg_nodbg_empty(LI->reg())) 1897 Matrix->assign(*LI, PhysReg); 1898 } 1899 1900 // Pop the stack of recoloring attempts. 1901 RecolorStack.resize(EntryStackSize); 1902 } 1903 1904 // Last chance recoloring did not worked either, give up. 1905 return ~0u; 1906 } 1907 1908 /// tryRecoloringCandidates - Try to assign a new color to every register 1909 /// in \RecoloringQueue. 1910 /// \p NewRegs will contain any new virtual register created during the 1911 /// recoloring process. 1912 /// \p FixedRegisters[in/out] contains all the registers that have been 1913 /// recolored. 1914 /// \return true if all virtual registers in RecoloringQueue were successfully 1915 /// recolored, false otherwise. 1916 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue, 1917 SmallVectorImpl<Register> &NewVRegs, 1918 SmallVirtRegSet &FixedRegisters, 1919 RecoloringStack &RecolorStack, 1920 unsigned Depth) { 1921 while (!RecoloringQueue.empty()) { 1922 const LiveInterval *LI = dequeue(RecoloringQueue); 1923 LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI << '\n'); 1924 MCRegister PhysReg = selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, 1925 RecolorStack, Depth + 1); 1926 // When splitting happens, the live-range may actually be empty. 1927 // In that case, this is okay to continue the recoloring even 1928 // if we did not find an alternative color for it. Indeed, 1929 // there will not be anything to color for LI in the end. 1930 if (PhysReg == ~0u || (!PhysReg && !LI->empty())) 1931 return false; 1932 1933 if (!PhysReg) { 1934 assert(LI->empty() && "Only empty live-range do not require a register"); 1935 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI 1936 << " succeeded. Empty LI.\n"); 1937 continue; 1938 } 1939 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI 1940 << " succeeded with: " << printReg(PhysReg, TRI) << '\n'); 1941 1942 Matrix->assign(*LI, PhysReg); 1943 FixedRegisters.insert(LI->reg()); 1944 } 1945 return true; 1946 } 1947 1948 //===----------------------------------------------------------------------===// 1949 // Main Entry Point 1950 //===----------------------------------------------------------------------===// 1951 1952 MCRegister RAGreedy::selectOrSplit(const LiveInterval &VirtReg, 1953 SmallVectorImpl<Register> &NewVRegs) { 1954 CutOffInfo = CO_None; 1955 LLVMContext &Ctx = MF->getFunction().getContext(); 1956 SmallVirtRegSet FixedRegisters; 1957 RecoloringStack RecolorStack; 1958 MCRegister Reg = 1959 selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters, RecolorStack); 1960 if (Reg == ~0U && (CutOffInfo != CO_None)) { 1961 uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf); 1962 if (CutOffEncountered == CO_Depth) 1963 Ctx.emitError("register allocation failed: maximum depth for recoloring " 1964 "reached. Use -fexhaustive-register-search to skip " 1965 "cutoffs"); 1966 else if (CutOffEncountered == CO_Interf) 1967 Ctx.emitError("register allocation failed: maximum interference for " 1968 "recoloring reached. Use -fexhaustive-register-search " 1969 "to skip cutoffs"); 1970 else if (CutOffEncountered == (CO_Depth | CO_Interf)) 1971 Ctx.emitError("register allocation failed: maximum interference and " 1972 "depth for recoloring reached. Use " 1973 "-fexhaustive-register-search to skip cutoffs"); 1974 } 1975 return Reg; 1976 } 1977 1978 /// Using a CSR for the first time has a cost because it causes push|pop 1979 /// to be added to prologue|epilogue. Splitting a cold section of the live 1980 /// range can have lower cost than using the CSR for the first time; 1981 /// Spilling a live range in the cold path can have lower cost than using 1982 /// the CSR for the first time. Returns the physical register if we decide 1983 /// to use the CSR; otherwise return 0. 1984 MCRegister RAGreedy::tryAssignCSRFirstTime( 1985 const LiveInterval &VirtReg, AllocationOrder &Order, MCRegister PhysReg, 1986 uint8_t &CostPerUseLimit, SmallVectorImpl<Register> &NewVRegs) { 1987 if (ExtraInfo->getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) { 1988 // We choose spill over using the CSR for the first time if the spill cost 1989 // is lower than CSRCost. 1990 SA->analyze(&VirtReg); 1991 if (calcSpillCost() >= CSRCost) 1992 return PhysReg; 1993 1994 // We are going to spill, set CostPerUseLimit to 1 to make sure that 1995 // we will not use a callee-saved register in tryEvict. 1996 CostPerUseLimit = 1; 1997 return 0; 1998 } 1999 if (ExtraInfo->getStage(VirtReg) < RS_Split) { 2000 // We choose pre-splitting over using the CSR for the first time if 2001 // the cost of splitting is lower than CSRCost. 2002 SA->analyze(&VirtReg); 2003 unsigned NumCands = 0; 2004 BlockFrequency BestCost = CSRCost; // Don't modify CSRCost. 2005 unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost, 2006 NumCands, true /*IgnoreCSR*/); 2007 if (BestCand == NoCand) 2008 // Use the CSR if we can't find a region split below CSRCost. 2009 return PhysReg; 2010 2011 // Perform the actual pre-splitting. 2012 doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs); 2013 return 0; 2014 } 2015 return PhysReg; 2016 } 2017 2018 void RAGreedy::aboutToRemoveInterval(const LiveInterval &LI) { 2019 // Do not keep invalid information around. 2020 SetOfBrokenHints.remove(&LI); 2021 } 2022 2023 void RAGreedy::initializeCSRCost() { 2024 // We use the larger one out of the command-line option and the value report 2025 // by TRI. 2026 CSRCost = BlockFrequency( 2027 std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost())); 2028 if (!CSRCost.getFrequency()) 2029 return; 2030 2031 // Raw cost is relative to Entry == 2^14; scale it appropriately. 2032 uint64_t ActualEntry = MBFI->getEntryFreq(); 2033 if (!ActualEntry) { 2034 CSRCost = 0; 2035 return; 2036 } 2037 uint64_t FixedEntry = 1 << 14; 2038 if (ActualEntry < FixedEntry) 2039 CSRCost *= BranchProbability(ActualEntry, FixedEntry); 2040 else if (ActualEntry <= UINT32_MAX) 2041 // Invert the fraction and divide. 2042 CSRCost /= BranchProbability(FixedEntry, ActualEntry); 2043 else 2044 // Can't use BranchProbability in general, since it takes 32-bit numbers. 2045 CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry); 2046 } 2047 2048 /// Collect the hint info for \p Reg. 2049 /// The results are stored into \p Out. 2050 /// \p Out is not cleared before being populated. 2051 void RAGreedy::collectHintInfo(Register Reg, HintsInfo &Out) { 2052 for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) { 2053 if (!Instr.isFullCopy()) 2054 continue; 2055 // Look for the other end of the copy. 2056 Register OtherReg = Instr.getOperand(0).getReg(); 2057 if (OtherReg == Reg) { 2058 OtherReg = Instr.getOperand(1).getReg(); 2059 if (OtherReg == Reg) 2060 continue; 2061 } 2062 // Get the current assignment. 2063 MCRegister OtherPhysReg = 2064 OtherReg.isPhysical() ? OtherReg.asMCReg() : VRM->getPhys(OtherReg); 2065 // Push the collected information. 2066 Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg, 2067 OtherPhysReg)); 2068 } 2069 } 2070 2071 /// Using the given \p List, compute the cost of the broken hints if 2072 /// \p PhysReg was used. 2073 /// \return The cost of \p List for \p PhysReg. 2074 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List, 2075 MCRegister PhysReg) { 2076 BlockFrequency Cost = 0; 2077 for (const HintInfo &Info : List) { 2078 if (Info.PhysReg != PhysReg) 2079 Cost += Info.Freq; 2080 } 2081 return Cost; 2082 } 2083 2084 /// Using the register assigned to \p VirtReg, try to recolor 2085 /// all the live ranges that are copy-related with \p VirtReg. 2086 /// The recoloring is then propagated to all the live-ranges that have 2087 /// been recolored and so on, until no more copies can be coalesced or 2088 /// it is not profitable. 2089 /// For a given live range, profitability is determined by the sum of the 2090 /// frequencies of the non-identity copies it would introduce with the old 2091 /// and new register. 2092 void RAGreedy::tryHintRecoloring(const LiveInterval &VirtReg) { 2093 // We have a broken hint, check if it is possible to fix it by 2094 // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted 2095 // some register and PhysReg may be available for the other live-ranges. 2096 SmallSet<Register, 4> Visited; 2097 SmallVector<unsigned, 2> RecoloringCandidates; 2098 HintsInfo Info; 2099 Register Reg = VirtReg.reg(); 2100 MCRegister PhysReg = VRM->getPhys(Reg); 2101 // Start the recoloring algorithm from the input live-interval, then 2102 // it will propagate to the ones that are copy-related with it. 2103 Visited.insert(Reg); 2104 RecoloringCandidates.push_back(Reg); 2105 2106 LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg, TRI) 2107 << '(' << printReg(PhysReg, TRI) << ")\n"); 2108 2109 do { 2110 Reg = RecoloringCandidates.pop_back_val(); 2111 2112 // We cannot recolor physical register. 2113 if (Register::isPhysicalRegister(Reg)) 2114 continue; 2115 2116 // This may be a skipped class 2117 if (!VRM->hasPhys(Reg)) { 2118 assert(!ShouldAllocateClass(*TRI, *MRI->getRegClass(Reg)) && 2119 "We have an unallocated variable which should have been handled"); 2120 continue; 2121 } 2122 2123 // Get the live interval mapped with this virtual register to be able 2124 // to check for the interference with the new color. 2125 LiveInterval &LI = LIS->getInterval(Reg); 2126 MCRegister CurrPhys = VRM->getPhys(Reg); 2127 // Check that the new color matches the register class constraints and 2128 // that it is free for this live range. 2129 if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) || 2130 Matrix->checkInterference(LI, PhysReg))) 2131 continue; 2132 2133 LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << '(' << printReg(CurrPhys, TRI) 2134 << ") is recolorable.\n"); 2135 2136 // Gather the hint info. 2137 Info.clear(); 2138 collectHintInfo(Reg, Info); 2139 // Check if recoloring the live-range will increase the cost of the 2140 // non-identity copies. 2141 if (CurrPhys != PhysReg) { 2142 LLVM_DEBUG(dbgs() << "Checking profitability:\n"); 2143 BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys); 2144 BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg); 2145 LLVM_DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency() 2146 << "\nNew Cost: " << NewCopiesCost.getFrequency() 2147 << '\n'); 2148 if (OldCopiesCost < NewCopiesCost) { 2149 LLVM_DEBUG(dbgs() << "=> Not profitable.\n"); 2150 continue; 2151 } 2152 // At this point, the cost is either cheaper or equal. If it is 2153 // equal, we consider this is profitable because it may expose 2154 // more recoloring opportunities. 2155 LLVM_DEBUG(dbgs() << "=> Profitable.\n"); 2156 // Recolor the live-range. 2157 Matrix->unassign(LI); 2158 Matrix->assign(LI, PhysReg); 2159 } 2160 // Push all copy-related live-ranges to keep reconciling the broken 2161 // hints. 2162 for (const HintInfo &HI : Info) { 2163 if (Visited.insert(HI.Reg).second) 2164 RecoloringCandidates.push_back(HI.Reg); 2165 } 2166 } while (!RecoloringCandidates.empty()); 2167 } 2168 2169 /// Try to recolor broken hints. 2170 /// Broken hints may be repaired by recoloring when an evicted variable 2171 /// freed up a register for a larger live-range. 2172 /// Consider the following example: 2173 /// BB1: 2174 /// a = 2175 /// b = 2176 /// BB2: 2177 /// ... 2178 /// = b 2179 /// = a 2180 /// Let us assume b gets split: 2181 /// BB1: 2182 /// a = 2183 /// b = 2184 /// BB2: 2185 /// c = b 2186 /// ... 2187 /// d = c 2188 /// = d 2189 /// = a 2190 /// Because of how the allocation work, b, c, and d may be assigned different 2191 /// colors. Now, if a gets evicted later: 2192 /// BB1: 2193 /// a = 2194 /// st a, SpillSlot 2195 /// b = 2196 /// BB2: 2197 /// c = b 2198 /// ... 2199 /// d = c 2200 /// = d 2201 /// e = ld SpillSlot 2202 /// = e 2203 /// This is likely that we can assign the same register for b, c, and d, 2204 /// getting rid of 2 copies. 2205 void RAGreedy::tryHintsRecoloring() { 2206 for (const LiveInterval *LI : SetOfBrokenHints) { 2207 assert(Register::isVirtualRegister(LI->reg()) && 2208 "Recoloring is possible only for virtual registers"); 2209 // Some dead defs may be around (e.g., because of debug uses). 2210 // Ignore those. 2211 if (!VRM->hasPhys(LI->reg())) 2212 continue; 2213 tryHintRecoloring(*LI); 2214 } 2215 } 2216 2217 MCRegister RAGreedy::selectOrSplitImpl(const LiveInterval &VirtReg, 2218 SmallVectorImpl<Register> &NewVRegs, 2219 SmallVirtRegSet &FixedRegisters, 2220 RecoloringStack &RecolorStack, 2221 unsigned Depth) { 2222 uint8_t CostPerUseLimit = uint8_t(~0u); 2223 // First try assigning a free register. 2224 auto Order = 2225 AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix); 2226 if (MCRegister PhysReg = 2227 tryAssign(VirtReg, Order, NewVRegs, FixedRegisters)) { 2228 // When NewVRegs is not empty, we may have made decisions such as evicting 2229 // a virtual register, go with the earlier decisions and use the physical 2230 // register. 2231 if (CSRCost.getFrequency() && 2232 EvictAdvisor->isUnusedCalleeSavedReg(PhysReg) && NewVRegs.empty()) { 2233 MCRegister CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg, 2234 CostPerUseLimit, NewVRegs); 2235 if (CSRReg || !NewVRegs.empty()) 2236 // Return now if we decide to use a CSR or create new vregs due to 2237 // pre-splitting. 2238 return CSRReg; 2239 } else 2240 return PhysReg; 2241 } 2242 2243 LiveRangeStage Stage = ExtraInfo->getStage(VirtReg); 2244 LLVM_DEBUG(dbgs() << StageName[Stage] << " Cascade " 2245 << ExtraInfo->getCascade(VirtReg.reg()) << '\n'); 2246 2247 // Try to evict a less worthy live range, but only for ranges from the primary 2248 // queue. The RS_Split ranges already failed to do this, and they should not 2249 // get a second chance until they have been split. 2250 if (Stage != RS_Split) 2251 if (Register PhysReg = 2252 tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit, 2253 FixedRegisters)) { 2254 Register Hint = MRI->getSimpleHint(VirtReg.reg()); 2255 // If VirtReg has a hint and that hint is broken record this 2256 // virtual register as a recoloring candidate for broken hint. 2257 // Indeed, since we evicted a variable in its neighborhood it is 2258 // likely we can at least partially recolor some of the 2259 // copy-related live-ranges. 2260 if (Hint && Hint != PhysReg) 2261 SetOfBrokenHints.insert(&VirtReg); 2262 return PhysReg; 2263 } 2264 2265 assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs"); 2266 2267 // The first time we see a live range, don't try to split or spill. 2268 // Wait until the second time, when all smaller ranges have been allocated. 2269 // This gives a better picture of the interference to split around. 2270 if (Stage < RS_Split) { 2271 ExtraInfo->setStage(VirtReg, RS_Split); 2272 LLVM_DEBUG(dbgs() << "wait for second round\n"); 2273 NewVRegs.push_back(VirtReg.reg()); 2274 return 0; 2275 } 2276 2277 if (Stage < RS_Spill) { 2278 // Try splitting VirtReg or interferences. 2279 unsigned NewVRegSizeBefore = NewVRegs.size(); 2280 Register PhysReg = trySplit(VirtReg, Order, NewVRegs, FixedRegisters); 2281 if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore)) 2282 return PhysReg; 2283 } 2284 2285 // If we couldn't allocate a register from spilling, there is probably some 2286 // invalid inline assembly. The base class will report it. 2287 if (Stage >= RS_Done || !VirtReg.isSpillable()) { 2288 return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters, 2289 RecolorStack, Depth); 2290 } 2291 2292 // Finally spill VirtReg itself. 2293 if ((EnableDeferredSpilling || 2294 TRI->shouldUseDeferredSpillingForVirtReg(*MF, VirtReg)) && 2295 ExtraInfo->getStage(VirtReg) < RS_Memory) { 2296 // TODO: This is experimental and in particular, we do not model 2297 // the live range splitting done by spilling correctly. 2298 // We would need a deep integration with the spiller to do the 2299 // right thing here. Anyway, that is still good for early testing. 2300 ExtraInfo->setStage(VirtReg, RS_Memory); 2301 LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n"); 2302 NewVRegs.push_back(VirtReg.reg()); 2303 } else { 2304 NamedRegionTimer T("spill", "Spiller", TimerGroupName, 2305 TimerGroupDescription, TimePassesIsEnabled); 2306 LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2307 spiller().spill(LRE); 2308 ExtraInfo->setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done); 2309 2310 // Tell LiveDebugVariables about the new ranges. Ranges not being covered by 2311 // the new regs are kept in LDV (still mapping to the old register), until 2312 // we rewrite spilled locations in LDV at a later stage. 2313 DebugVars->splitRegister(VirtReg.reg(), LRE.regs(), *LIS); 2314 2315 if (VerifyEnabled) 2316 MF->verify(this, "After spilling"); 2317 } 2318 2319 // The live virtual register requesting allocation was spilled, so tell 2320 // the caller not to allocate anything during this round. 2321 return 0; 2322 } 2323 2324 void RAGreedy::RAGreedyStats::report(MachineOptimizationRemarkMissed &R) { 2325 using namespace ore; 2326 if (Spills) { 2327 R << NV("NumSpills", Spills) << " spills "; 2328 R << NV("TotalSpillsCost", SpillsCost) << " total spills cost "; 2329 } 2330 if (FoldedSpills) { 2331 R << NV("NumFoldedSpills", FoldedSpills) << " folded spills "; 2332 R << NV("TotalFoldedSpillsCost", FoldedSpillsCost) 2333 << " total folded spills cost "; 2334 } 2335 if (Reloads) { 2336 R << NV("NumReloads", Reloads) << " reloads "; 2337 R << NV("TotalReloadsCost", ReloadsCost) << " total reloads cost "; 2338 } 2339 if (FoldedReloads) { 2340 R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads "; 2341 R << NV("TotalFoldedReloadsCost", FoldedReloadsCost) 2342 << " total folded reloads cost "; 2343 } 2344 if (ZeroCostFoldedReloads) 2345 R << NV("NumZeroCostFoldedReloads", ZeroCostFoldedReloads) 2346 << " zero cost folded reloads "; 2347 if (Copies) { 2348 R << NV("NumVRCopies", Copies) << " virtual registers copies "; 2349 R << NV("TotalCopiesCost", CopiesCost) << " total copies cost "; 2350 } 2351 } 2352 2353 RAGreedy::RAGreedyStats RAGreedy::computeStats(MachineBasicBlock &MBB) { 2354 RAGreedyStats Stats; 2355 const MachineFrameInfo &MFI = MF->getFrameInfo(); 2356 int FI; 2357 2358 auto isSpillSlotAccess = [&MFI](const MachineMemOperand *A) { 2359 return MFI.isSpillSlotObjectIndex(cast<FixedStackPseudoSourceValue>( 2360 A->getPseudoValue())->getFrameIndex()); 2361 }; 2362 auto isPatchpointInstr = [](const MachineInstr &MI) { 2363 return MI.getOpcode() == TargetOpcode::PATCHPOINT || 2364 MI.getOpcode() == TargetOpcode::STACKMAP || 2365 MI.getOpcode() == TargetOpcode::STATEPOINT; 2366 }; 2367 for (MachineInstr &MI : MBB) { 2368 if (MI.isCopy()) { 2369 MachineOperand &Dest = MI.getOperand(0); 2370 MachineOperand &Src = MI.getOperand(1); 2371 if (Dest.isReg() && Src.isReg() && Dest.getReg().isVirtual() && 2372 Src.getReg().isVirtual()) 2373 ++Stats.Copies; 2374 continue; 2375 } 2376 2377 SmallVector<const MachineMemOperand *, 2> Accesses; 2378 if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) { 2379 ++Stats.Reloads; 2380 continue; 2381 } 2382 if (TII->isStoreToStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) { 2383 ++Stats.Spills; 2384 continue; 2385 } 2386 if (TII->hasLoadFromStackSlot(MI, Accesses) && 2387 llvm::any_of(Accesses, isSpillSlotAccess)) { 2388 if (!isPatchpointInstr(MI)) { 2389 Stats.FoldedReloads += Accesses.size(); 2390 continue; 2391 } 2392 // For statepoint there may be folded and zero cost folded stack reloads. 2393 std::pair<unsigned, unsigned> NonZeroCostRange = 2394 TII->getPatchpointUnfoldableRange(MI); 2395 SmallSet<unsigned, 16> FoldedReloads; 2396 SmallSet<unsigned, 16> ZeroCostFoldedReloads; 2397 for (unsigned Idx = 0, E = MI.getNumOperands(); Idx < E; ++Idx) { 2398 MachineOperand &MO = MI.getOperand(Idx); 2399 if (!MO.isFI() || !MFI.isSpillSlotObjectIndex(MO.getIndex())) 2400 continue; 2401 if (Idx >= NonZeroCostRange.first && Idx < NonZeroCostRange.second) 2402 FoldedReloads.insert(MO.getIndex()); 2403 else 2404 ZeroCostFoldedReloads.insert(MO.getIndex()); 2405 } 2406 // If stack slot is used in folded reload it is not zero cost then. 2407 for (unsigned Slot : FoldedReloads) 2408 ZeroCostFoldedReloads.erase(Slot); 2409 Stats.FoldedReloads += FoldedReloads.size(); 2410 Stats.ZeroCostFoldedReloads += ZeroCostFoldedReloads.size(); 2411 continue; 2412 } 2413 Accesses.clear(); 2414 if (TII->hasStoreToStackSlot(MI, Accesses) && 2415 llvm::any_of(Accesses, isSpillSlotAccess)) { 2416 Stats.FoldedSpills += Accesses.size(); 2417 } 2418 } 2419 // Set cost of collected statistic by multiplication to relative frequency of 2420 // this basic block. 2421 float RelFreq = MBFI->getBlockFreqRelativeToEntryBlock(&MBB); 2422 Stats.ReloadsCost = RelFreq * Stats.Reloads; 2423 Stats.FoldedReloadsCost = RelFreq * Stats.FoldedReloads; 2424 Stats.SpillsCost = RelFreq * Stats.Spills; 2425 Stats.FoldedSpillsCost = RelFreq * Stats.FoldedSpills; 2426 Stats.CopiesCost = RelFreq * Stats.Copies; 2427 return Stats; 2428 } 2429 2430 RAGreedy::RAGreedyStats RAGreedy::reportStats(MachineLoop *L) { 2431 RAGreedyStats Stats; 2432 2433 // Sum up the spill and reloads in subloops. 2434 for (MachineLoop *SubLoop : *L) 2435 Stats.add(reportStats(SubLoop)); 2436 2437 for (MachineBasicBlock *MBB : L->getBlocks()) 2438 // Handle blocks that were not included in subloops. 2439 if (Loops->getLoopFor(MBB) == L) 2440 Stats.add(computeStats(*MBB)); 2441 2442 if (!Stats.isEmpty()) { 2443 using namespace ore; 2444 2445 ORE->emit([&]() { 2446 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReloadCopies", 2447 L->getStartLoc(), L->getHeader()); 2448 Stats.report(R); 2449 R << "generated in loop"; 2450 return R; 2451 }); 2452 } 2453 return Stats; 2454 } 2455 2456 void RAGreedy::reportStats() { 2457 if (!ORE->allowExtraAnalysis(DEBUG_TYPE)) 2458 return; 2459 RAGreedyStats Stats; 2460 for (MachineLoop *L : *Loops) 2461 Stats.add(reportStats(L)); 2462 // Process non-loop blocks. 2463 for (MachineBasicBlock &MBB : *MF) 2464 if (!Loops->getLoopFor(&MBB)) 2465 Stats.add(computeStats(MBB)); 2466 if (!Stats.isEmpty()) { 2467 using namespace ore; 2468 2469 ORE->emit([&]() { 2470 DebugLoc Loc; 2471 if (auto *SP = MF->getFunction().getSubprogram()) 2472 Loc = DILocation::get(SP->getContext(), SP->getLine(), 1, SP); 2473 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "SpillReloadCopies", Loc, 2474 &MF->front()); 2475 Stats.report(R); 2476 R << "generated in function"; 2477 return R; 2478 }); 2479 } 2480 } 2481 2482 bool RAGreedy::hasVirtRegAlloc() { 2483 for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) { 2484 Register Reg = Register::index2VirtReg(I); 2485 if (MRI->reg_nodbg_empty(Reg)) 2486 continue; 2487 const TargetRegisterClass *RC = MRI->getRegClass(Reg); 2488 if (!RC) 2489 continue; 2490 if (ShouldAllocateClass(*TRI, *RC)) 2491 return true; 2492 } 2493 2494 return false; 2495 } 2496 2497 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) { 2498 LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n" 2499 << "********** Function: " << mf.getName() << '\n'); 2500 2501 MF = &mf; 2502 TII = MF->getSubtarget().getInstrInfo(); 2503 2504 if (VerifyEnabled) 2505 MF->verify(this, "Before greedy register allocator"); 2506 2507 RegAllocBase::init(getAnalysis<VirtRegMap>(), 2508 getAnalysis<LiveIntervals>(), 2509 getAnalysis<LiveRegMatrix>()); 2510 2511 // Early return if there is no virtual register to be allocated to a 2512 // physical register. 2513 if (!hasVirtRegAlloc()) 2514 return false; 2515 2516 Indexes = &getAnalysis<SlotIndexes>(); 2517 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 2518 DomTree = &getAnalysis<MachineDominatorTree>(); 2519 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 2520 Loops = &getAnalysis<MachineLoopInfo>(); 2521 Bundles = &getAnalysis<EdgeBundles>(); 2522 SpillPlacer = &getAnalysis<SpillPlacement>(); 2523 DebugVars = &getAnalysis<LiveDebugVariables>(); 2524 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2525 2526 initializeCSRCost(); 2527 2528 RegCosts = TRI->getRegisterCosts(*MF); 2529 RegClassPriorityTrumpsGlobalness = 2530 GreedyRegClassPriorityTrumpsGlobalness.getNumOccurrences() 2531 ? GreedyRegClassPriorityTrumpsGlobalness 2532 : TRI->regClassPriorityTrumpsGlobalness(*MF); 2533 2534 ExtraInfo.emplace(); 2535 EvictAdvisor = 2536 getAnalysis<RegAllocEvictionAdvisorAnalysis>().getAdvisor(*MF, *this); 2537 2538 VRAI = std::make_unique<VirtRegAuxInfo>(*MF, *LIS, *VRM, *Loops, *MBFI); 2539 SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM, *VRAI)); 2540 2541 VRAI->calculateSpillWeightsAndHints(); 2542 2543 LLVM_DEBUG(LIS->dump()); 2544 2545 SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops)); 2546 SE.reset(new SplitEditor(*SA, *AA, *LIS, *VRM, *DomTree, *MBFI, *VRAI)); 2547 2548 IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI); 2549 GlobalCand.resize(32); // This will grow as needed. 2550 SetOfBrokenHints.clear(); 2551 2552 allocatePhysRegs(); 2553 tryHintsRecoloring(); 2554 2555 if (VerifyEnabled) 2556 MF->verify(this, "Before post optimization"); 2557 postOptimization(); 2558 reportStats(); 2559 2560 releaseMemory(); 2561 return true; 2562 } 2563