1 //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the RAGreedy function pass for register allocation in
11 // optimized builds.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "AllocationOrder.h"
16 #include "InterferenceCache.h"
17 #include "LiveDebugVariables.h"
18 #include "RegAllocBase.h"
19 #include "SpillPlacement.h"
20 #include "Spiller.h"
21 #include "SplitKit.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/BitVector.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/IndexedMap.h"
26 #include "llvm/ADT/SetVector.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/SmallSet.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/ADT/StringRef.h"
32 #include "llvm/Analysis/AliasAnalysis.h"
33 #include "llvm/Analysis/OptimizationDiagnosticInfo.h"
34 #include "llvm/CodeGen/CalcSpillWeights.h"
35 #include "llvm/CodeGen/EdgeBundles.h"
36 #include "llvm/CodeGen/LiveInterval.h"
37 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
38 #include "llvm/CodeGen/LiveIntervalUnion.h"
39 #include "llvm/CodeGen/LiveRangeEdit.h"
40 #include "llvm/CodeGen/LiveRegMatrix.h"
41 #include "llvm/CodeGen/LiveStackAnalysis.h"
42 #include "llvm/CodeGen/MachineBasicBlock.h"
43 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
44 #include "llvm/CodeGen/MachineDominators.h"
45 #include "llvm/CodeGen/MachineFrameInfo.h"
46 #include "llvm/CodeGen/MachineFunction.h"
47 #include "llvm/CodeGen/MachineFunctionPass.h"
48 #include "llvm/CodeGen/MachineInstr.h"
49 #include "llvm/CodeGen/MachineLoopInfo.h"
50 #include "llvm/CodeGen/MachineOperand.h"
51 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
52 #include "llvm/CodeGen/MachineRegisterInfo.h"
53 #include "llvm/CodeGen/RegAllocRegistry.h"
54 #include "llvm/CodeGen/RegisterClassInfo.h"
55 #include "llvm/CodeGen/SlotIndexes.h"
56 #include "llvm/CodeGen/VirtRegMap.h"
57 #include "llvm/IR/Function.h"
58 #include "llvm/IR/LLVMContext.h"
59 #include "llvm/MC/MCRegisterInfo.h"
60 #include "llvm/Pass.h"
61 #include "llvm/Support/BlockFrequency.h"
62 #include "llvm/Support/BranchProbability.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Debug.h"
65 #include "llvm/Support/MathExtras.h"
66 #include "llvm/Support/Timer.h"
67 #include "llvm/Support/raw_ostream.h"
68 #include "llvm/Target/TargetInstrInfo.h"
69 #include "llvm/Target/TargetMachine.h"
70 #include "llvm/Target/TargetRegisterInfo.h"
71 #include "llvm/Target/TargetSubtargetInfo.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstdint>
75 #include <memory>
76 #include <queue>
77 #include <tuple>
78 #include <utility>
79 
80 using namespace llvm;
81 
82 #define DEBUG_TYPE "regalloc"
83 
84 STATISTIC(NumGlobalSplits, "Number of split global live ranges");
85 STATISTIC(NumLocalSplits,  "Number of split local live ranges");
86 STATISTIC(NumEvicted,      "Number of interferences evicted");
87 
88 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode(
89     "split-spill-mode", cl::Hidden,
90     cl::desc("Spill mode for splitting live ranges"),
91     cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"),
92                clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"),
93                clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")),
94     cl::init(SplitEditor::SM_Speed));
95 
96 static cl::opt<unsigned>
97 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden,
98                              cl::desc("Last chance recoloring max depth"),
99                              cl::init(5));
100 
101 static cl::opt<unsigned> LastChanceRecoloringMaxInterference(
102     "lcr-max-interf", cl::Hidden,
103     cl::desc("Last chance recoloring maximum number of considered"
104              " interference at a time"),
105     cl::init(8));
106 
107 static cl::opt<bool>
108 ExhaustiveSearch("exhaustive-register-search", cl::NotHidden,
109                  cl::desc("Exhaustive Search for registers bypassing the depth "
110                           "and interference cutoffs of last chance recoloring"));
111 
112 static cl::opt<bool> EnableLocalReassignment(
113     "enable-local-reassign", cl::Hidden,
114     cl::desc("Local reassignment can yield better allocation decisions, but "
115              "may be compile time intensive"),
116     cl::init(false));
117 
118 static cl::opt<bool> EnableDeferredSpilling(
119     "enable-deferred-spilling", cl::Hidden,
120     cl::desc("Instead of spilling a variable right away, defer the actual "
121              "code insertion to the end of the allocation. That way the "
122              "allocator might still find a suitable coloring for this "
123              "variable because of other evicted variables."),
124     cl::init(false));
125 
126 // FIXME: Find a good default for this flag and remove the flag.
127 static cl::opt<unsigned>
128 CSRFirstTimeCost("regalloc-csr-first-time-cost",
129               cl::desc("Cost for first time use of callee-saved register."),
130               cl::init(0), cl::Hidden);
131 
132 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
133                                        createGreedyRegisterAllocator);
134 
135 namespace {
136 
137 class RAGreedy : public MachineFunctionPass,
138                  public RegAllocBase,
139                  private LiveRangeEdit::Delegate {
140   // Convenient shortcuts.
141   using PQueue = std::priority_queue<std::pair<unsigned, unsigned>>;
142   using SmallLISet = SmallPtrSet<LiveInterval *, 4>;
143   using SmallVirtRegSet = SmallSet<unsigned, 16>;
144 
145   // context
146   MachineFunction *MF;
147 
148   // Shortcuts to some useful interface.
149   const TargetInstrInfo *TII;
150   const TargetRegisterInfo *TRI;
151   RegisterClassInfo RCI;
152 
153   // analyses
154   SlotIndexes *Indexes;
155   MachineBlockFrequencyInfo *MBFI;
156   MachineDominatorTree *DomTree;
157   MachineLoopInfo *Loops;
158   MachineOptimizationRemarkEmitter *ORE;
159   EdgeBundles *Bundles;
160   SpillPlacement *SpillPlacer;
161   LiveDebugVariables *DebugVars;
162   AliasAnalysis *AA;
163 
164   // state
165   std::unique_ptr<Spiller> SpillerInstance;
166   PQueue Queue;
167   unsigned NextCascade;
168 
169   // Live ranges pass through a number of stages as we try to allocate them.
170   // Some of the stages may also create new live ranges:
171   //
172   // - Region splitting.
173   // - Per-block splitting.
174   // - Local splitting.
175   // - Spilling.
176   //
177   // Ranges produced by one of the stages skip the previous stages when they are
178   // dequeued. This improves performance because we can skip interference checks
179   // that are unlikely to give any results. It also guarantees that the live
180   // range splitting algorithm terminates, something that is otherwise hard to
181   // ensure.
182   enum LiveRangeStage {
183     /// Newly created live range that has never been queued.
184     RS_New,
185 
186     /// Only attempt assignment and eviction. Then requeue as RS_Split.
187     RS_Assign,
188 
189     /// Attempt live range splitting if assignment is impossible.
190     RS_Split,
191 
192     /// Attempt more aggressive live range splitting that is guaranteed to make
193     /// progress.  This is used for split products that may not be making
194     /// progress.
195     RS_Split2,
196 
197     /// Live range will be spilled.  No more splitting will be attempted.
198     RS_Spill,
199 
200 
201     /// Live range is in memory. Because of other evictions, it might get moved
202     /// in a register in the end.
203     RS_Memory,
204 
205     /// There is nothing more we can do to this live range.  Abort compilation
206     /// if it can't be assigned.
207     RS_Done
208   };
209 
210   // Enum CutOffStage to keep a track whether the register allocation failed
211   // because of the cutoffs encountered in last chance recoloring.
212   // Note: This is used as bitmask. New value should be next power of 2.
213   enum CutOffStage {
214     // No cutoffs encountered
215     CO_None = 0,
216 
217     // lcr-max-depth cutoff encountered
218     CO_Depth = 1,
219 
220     // lcr-max-interf cutoff encountered
221     CO_Interf = 2
222   };
223 
224   uint8_t CutOffInfo;
225 
226 #ifndef NDEBUG
227   static const char *const StageName[];
228 #endif
229 
230   // RegInfo - Keep additional information about each live range.
231   struct RegInfo {
232     LiveRangeStage Stage = RS_New;
233 
234     // Cascade - Eviction loop prevention. See canEvictInterference().
235     unsigned Cascade = 0;
236 
237     RegInfo() = default;
238   };
239 
240   IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo;
241 
242   LiveRangeStage getStage(const LiveInterval &VirtReg) const {
243     return ExtraRegInfo[VirtReg.reg].Stage;
244   }
245 
246   void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) {
247     ExtraRegInfo.resize(MRI->getNumVirtRegs());
248     ExtraRegInfo[VirtReg.reg].Stage = Stage;
249   }
250 
251   template<typename Iterator>
252   void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) {
253     ExtraRegInfo.resize(MRI->getNumVirtRegs());
254     for (;Begin != End; ++Begin) {
255       unsigned Reg = *Begin;
256       if (ExtraRegInfo[Reg].Stage == RS_New)
257         ExtraRegInfo[Reg].Stage = NewStage;
258     }
259   }
260 
261   /// Cost of evicting interference.
262   struct EvictionCost {
263     unsigned BrokenHints = 0; ///< Total number of broken hints.
264     float MaxWeight = 0;      ///< Maximum spill weight evicted.
265 
266     EvictionCost() = default;
267 
268     bool isMax() const { return BrokenHints == ~0u; }
269 
270     void setMax() { BrokenHints = ~0u; }
271 
272     void setBrokenHints(unsigned NHints) { BrokenHints = NHints; }
273 
274     bool operator<(const EvictionCost &O) const {
275       return std::tie(BrokenHints, MaxWeight) <
276              std::tie(O.BrokenHints, O.MaxWeight);
277     }
278   };
279 
280   // splitting state.
281   std::unique_ptr<SplitAnalysis> SA;
282   std::unique_ptr<SplitEditor> SE;
283 
284   /// Cached per-block interference maps
285   InterferenceCache IntfCache;
286 
287   /// All basic blocks where the current register has uses.
288   SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints;
289 
290   /// Global live range splitting candidate info.
291   struct GlobalSplitCandidate {
292     // Register intended for assignment, or 0.
293     unsigned PhysReg;
294 
295     // SplitKit interval index for this candidate.
296     unsigned IntvIdx;
297 
298     // Interference for PhysReg.
299     InterferenceCache::Cursor Intf;
300 
301     // Bundles where this candidate should be live.
302     BitVector LiveBundles;
303     SmallVector<unsigned, 8> ActiveBlocks;
304 
305     void reset(InterferenceCache &Cache, unsigned Reg) {
306       PhysReg = Reg;
307       IntvIdx = 0;
308       Intf.setPhysReg(Cache, Reg);
309       LiveBundles.clear();
310       ActiveBlocks.clear();
311     }
312 
313     // Set B[i] = C for every live bundle where B[i] was NoCand.
314     unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) {
315       unsigned Count = 0;
316       for (unsigned i : LiveBundles.set_bits())
317         if (B[i] == NoCand) {
318           B[i] = C;
319           Count++;
320         }
321       return Count;
322     }
323   };
324 
325   /// Candidate info for each PhysReg in AllocationOrder.
326   /// This vector never shrinks, but grows to the size of the largest register
327   /// class.
328   SmallVector<GlobalSplitCandidate, 32> GlobalCand;
329 
330   enum : unsigned { NoCand = ~0u };
331 
332   /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to
333   /// NoCand which indicates the stack interval.
334   SmallVector<unsigned, 32> BundleCand;
335 
336   /// Callee-save register cost, calculated once per machine function.
337   BlockFrequency CSRCost;
338 
339   /// Run or not the local reassignment heuristic. This information is
340   /// obtained from the TargetSubtargetInfo.
341   bool EnableLocalReassign;
342 
343   /// Set of broken hints that may be reconciled later because of eviction.
344   SmallSetVector<LiveInterval *, 8> SetOfBrokenHints;
345 
346 public:
347   RAGreedy();
348 
349   /// Return the pass name.
350   StringRef getPassName() const override { return "Greedy Register Allocator"; }
351 
352   /// RAGreedy analysis usage.
353   void getAnalysisUsage(AnalysisUsage &AU) const override;
354   void releaseMemory() override;
355   Spiller &spiller() override { return *SpillerInstance; }
356   void enqueue(LiveInterval *LI) override;
357   LiveInterval *dequeue() override;
358   unsigned selectOrSplit(LiveInterval&, SmallVectorImpl<unsigned>&) override;
359   void aboutToRemoveInterval(LiveInterval &) override;
360 
361   /// Perform register allocation.
362   bool runOnMachineFunction(MachineFunction &mf) override;
363 
364   MachineFunctionProperties getRequiredProperties() const override {
365     return MachineFunctionProperties().set(
366         MachineFunctionProperties::Property::NoPHIs);
367   }
368 
369   static char ID;
370 
371 private:
372   unsigned selectOrSplitImpl(LiveInterval &, SmallVectorImpl<unsigned> &,
373                              SmallVirtRegSet &, unsigned = 0);
374 
375   bool LRE_CanEraseVirtReg(unsigned) override;
376   void LRE_WillShrinkVirtReg(unsigned) override;
377   void LRE_DidCloneVirtReg(unsigned, unsigned) override;
378   void enqueue(PQueue &CurQueue, LiveInterval *LI);
379   LiveInterval *dequeue(PQueue &CurQueue);
380 
381   BlockFrequency calcSpillCost();
382   bool addSplitConstraints(InterferenceCache::Cursor, BlockFrequency&);
383   void addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>);
384   void growRegion(GlobalSplitCandidate &Cand);
385   BlockFrequency calcGlobalSplitCost(GlobalSplitCandidate&);
386   bool calcCompactRegion(GlobalSplitCandidate&);
387   void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>);
388   void calcGapWeights(unsigned, SmallVectorImpl<float>&);
389   unsigned canReassign(LiveInterval &VirtReg, unsigned PhysReg);
390   bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool);
391   bool canEvictInterference(LiveInterval&, unsigned, bool, EvictionCost&);
392   void evictInterference(LiveInterval&, unsigned,
393                          SmallVectorImpl<unsigned>&);
394   bool mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg,
395                                   SmallLISet &RecoloringCandidates,
396                                   const SmallVirtRegSet &FixedRegisters);
397 
398   unsigned tryAssign(LiveInterval&, AllocationOrder&,
399                      SmallVectorImpl<unsigned>&);
400   unsigned tryEvict(LiveInterval&, AllocationOrder&,
401                     SmallVectorImpl<unsigned>&, unsigned = ~0u);
402   unsigned tryRegionSplit(LiveInterval&, AllocationOrder&,
403                           SmallVectorImpl<unsigned>&);
404   /// Calculate cost of region splitting.
405   unsigned calculateRegionSplitCost(LiveInterval &VirtReg,
406                                     AllocationOrder &Order,
407                                     BlockFrequency &BestCost,
408                                     unsigned &NumCands, bool IgnoreCSR);
409   /// Perform region splitting.
410   unsigned doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
411                          bool HasCompact,
412                          SmallVectorImpl<unsigned> &NewVRegs);
413   /// Check other options before using a callee-saved register for the first
414   /// time.
415   unsigned tryAssignCSRFirstTime(LiveInterval &VirtReg, AllocationOrder &Order,
416                                  unsigned PhysReg, unsigned &CostPerUseLimit,
417                                  SmallVectorImpl<unsigned> &NewVRegs);
418   void initializeCSRCost();
419   unsigned tryBlockSplit(LiveInterval&, AllocationOrder&,
420                          SmallVectorImpl<unsigned>&);
421   unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&,
422                                SmallVectorImpl<unsigned>&);
423   unsigned tryLocalSplit(LiveInterval&, AllocationOrder&,
424     SmallVectorImpl<unsigned>&);
425   unsigned trySplit(LiveInterval&, AllocationOrder&,
426                     SmallVectorImpl<unsigned>&);
427   unsigned tryLastChanceRecoloring(LiveInterval &, AllocationOrder &,
428                                    SmallVectorImpl<unsigned> &,
429                                    SmallVirtRegSet &, unsigned);
430   bool tryRecoloringCandidates(PQueue &, SmallVectorImpl<unsigned> &,
431                                SmallVirtRegSet &, unsigned);
432   void tryHintRecoloring(LiveInterval &);
433   void tryHintsRecoloring();
434 
435   /// Model the information carried by one end of a copy.
436   struct HintInfo {
437     /// The frequency of the copy.
438     BlockFrequency Freq;
439     /// The virtual register or physical register.
440     unsigned Reg;
441     /// Its currently assigned register.
442     /// In case of a physical register Reg == PhysReg.
443     unsigned PhysReg;
444 
445     HintInfo(BlockFrequency Freq, unsigned Reg, unsigned PhysReg)
446         : Freq(Freq), Reg(Reg), PhysReg(PhysReg) {}
447   };
448   using HintsInfo = SmallVector<HintInfo, 4>;
449 
450   BlockFrequency getBrokenHintFreq(const HintsInfo &, unsigned);
451   void collectHintInfo(unsigned, HintsInfo &);
452 
453   bool isUnusedCalleeSavedReg(unsigned PhysReg) const;
454 
455   /// Compute and report the number of spills and reloads for a loop.
456   void reportNumberOfSplillsReloads(MachineLoop *L, unsigned &Reloads,
457                                     unsigned &FoldedReloads, unsigned &Spills,
458                                     unsigned &FoldedSpills);
459 
460   /// Report the number of spills and reloads for each loop.
461   void reportNumberOfSplillsReloads() {
462     for (MachineLoop *L : *Loops) {
463       unsigned Reloads, FoldedReloads, Spills, FoldedSpills;
464       reportNumberOfSplillsReloads(L, Reloads, FoldedReloads, Spills,
465                                    FoldedSpills);
466     }
467   }
468 };
469 
470 } // end anonymous namespace
471 
472 char RAGreedy::ID = 0;
473 char &llvm::RAGreedyID = RAGreedy::ID;
474 
475 INITIALIZE_PASS_BEGIN(RAGreedy, "greedy",
476                 "Greedy Register Allocator", false, false)
477 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
478 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
479 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
480 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer)
481 INITIALIZE_PASS_DEPENDENCY(MachineScheduler)
482 INITIALIZE_PASS_DEPENDENCY(LiveStacks)
483 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
484 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
485 INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
486 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix)
487 INITIALIZE_PASS_DEPENDENCY(EdgeBundles)
488 INITIALIZE_PASS_DEPENDENCY(SpillPlacement)
489 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass)
490 INITIALIZE_PASS_END(RAGreedy, "greedy",
491                 "Greedy Register Allocator", false, false)
492 
493 #ifndef NDEBUG
494 const char *const RAGreedy::StageName[] = {
495     "RS_New",
496     "RS_Assign",
497     "RS_Split",
498     "RS_Split2",
499     "RS_Spill",
500     "RS_Memory",
501     "RS_Done"
502 };
503 #endif
504 
505 // Hysteresis to use when comparing floats.
506 // This helps stabilize decisions based on float comparisons.
507 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875
508 
509 FunctionPass* llvm::createGreedyRegisterAllocator() {
510   return new RAGreedy();
511 }
512 
513 RAGreedy::RAGreedy(): MachineFunctionPass(ID) {
514 }
515 
516 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
517   AU.setPreservesCFG();
518   AU.addRequired<MachineBlockFrequencyInfo>();
519   AU.addPreserved<MachineBlockFrequencyInfo>();
520   AU.addRequired<AAResultsWrapperPass>();
521   AU.addPreserved<AAResultsWrapperPass>();
522   AU.addRequired<LiveIntervals>();
523   AU.addPreserved<LiveIntervals>();
524   AU.addRequired<SlotIndexes>();
525   AU.addPreserved<SlotIndexes>();
526   AU.addRequired<LiveDebugVariables>();
527   AU.addPreserved<LiveDebugVariables>();
528   AU.addRequired<LiveStacks>();
529   AU.addPreserved<LiveStacks>();
530   AU.addRequired<MachineDominatorTree>();
531   AU.addPreserved<MachineDominatorTree>();
532   AU.addRequired<MachineLoopInfo>();
533   AU.addPreserved<MachineLoopInfo>();
534   AU.addRequired<VirtRegMap>();
535   AU.addPreserved<VirtRegMap>();
536   AU.addRequired<LiveRegMatrix>();
537   AU.addPreserved<LiveRegMatrix>();
538   AU.addRequired<EdgeBundles>();
539   AU.addRequired<SpillPlacement>();
540   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
541   MachineFunctionPass::getAnalysisUsage(AU);
542 }
543 
544 //===----------------------------------------------------------------------===//
545 //                     LiveRangeEdit delegate methods
546 //===----------------------------------------------------------------------===//
547 
548 bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) {
549   LiveInterval &LI = LIS->getInterval(VirtReg);
550   if (VRM->hasPhys(VirtReg)) {
551     Matrix->unassign(LI);
552     aboutToRemoveInterval(LI);
553     return true;
554   }
555   // Unassigned virtreg is probably in the priority queue.
556   // RegAllocBase will erase it after dequeueing.
557   // Nonetheless, clear the live-range so that the debug
558   // dump will show the right state for that VirtReg.
559   LI.clear();
560   return false;
561 }
562 
563 void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) {
564   if (!VRM->hasPhys(VirtReg))
565     return;
566 
567   // Register is assigned, put it back on the queue for reassignment.
568   LiveInterval &LI = LIS->getInterval(VirtReg);
569   Matrix->unassign(LI);
570   enqueue(&LI);
571 }
572 
573 void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) {
574   // Cloning a register we haven't even heard about yet?  Just ignore it.
575   if (!ExtraRegInfo.inBounds(Old))
576     return;
577 
578   // LRE may clone a virtual register because dead code elimination causes it to
579   // be split into connected components. The new components are much smaller
580   // than the original, so they should get a new chance at being assigned.
581   // same stage as the parent.
582   ExtraRegInfo[Old].Stage = RS_Assign;
583   ExtraRegInfo.grow(New);
584   ExtraRegInfo[New] = ExtraRegInfo[Old];
585 }
586 
587 void RAGreedy::releaseMemory() {
588   SpillerInstance.reset();
589   ExtraRegInfo.clear();
590   GlobalCand.clear();
591 }
592 
593 void RAGreedy::enqueue(LiveInterval *LI) { enqueue(Queue, LI); }
594 
595 void RAGreedy::enqueue(PQueue &CurQueue, LiveInterval *LI) {
596   // Prioritize live ranges by size, assigning larger ranges first.
597   // The queue holds (size, reg) pairs.
598   const unsigned Size = LI->getSize();
599   const unsigned Reg = LI->reg;
600   assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
601          "Can only enqueue virtual registers");
602   unsigned Prio;
603 
604   ExtraRegInfo.grow(Reg);
605   if (ExtraRegInfo[Reg].Stage == RS_New)
606     ExtraRegInfo[Reg].Stage = RS_Assign;
607 
608   if (ExtraRegInfo[Reg].Stage == RS_Split) {
609     // Unsplit ranges that couldn't be allocated immediately are deferred until
610     // everything else has been allocated.
611     Prio = Size;
612   } else if (ExtraRegInfo[Reg].Stage == RS_Memory) {
613     // Memory operand should be considered last.
614     // Change the priority such that Memory operand are assigned in
615     // the reverse order that they came in.
616     // TODO: Make this a member variable and probably do something about hints.
617     static unsigned MemOp = 0;
618     Prio = MemOp++;
619   } else {
620     // Giant live ranges fall back to the global assignment heuristic, which
621     // prevents excessive spilling in pathological cases.
622     bool ReverseLocal = TRI->reverseLocalAssignment();
623     const TargetRegisterClass &RC = *MRI->getRegClass(Reg);
624     bool ForceGlobal = !ReverseLocal &&
625       (Size / SlotIndex::InstrDist) > (2 * RC.getNumRegs());
626 
627     if (ExtraRegInfo[Reg].Stage == RS_Assign && !ForceGlobal && !LI->empty() &&
628         LIS->intervalIsInOneMBB(*LI)) {
629       // Allocate original local ranges in linear instruction order. Since they
630       // are singly defined, this produces optimal coloring in the absence of
631       // global interference and other constraints.
632       if (!ReverseLocal)
633         Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex());
634       else {
635         // Allocating bottom up may allow many short LRGs to be assigned first
636         // to one of the cheap registers. This could be much faster for very
637         // large blocks on targets with many physical registers.
638         Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex());
639       }
640       Prio |= RC.AllocationPriority << 24;
641     } else {
642       // Allocate global and split ranges in long->short order. Long ranges that
643       // don't fit should be spilled (or split) ASAP so they don't create
644       // interference.  Mark a bit to prioritize global above local ranges.
645       Prio = (1u << 29) + Size;
646     }
647     // Mark a higher bit to prioritize global and local above RS_Split.
648     Prio |= (1u << 31);
649 
650     // Boost ranges that have a physical register hint.
651     if (VRM->hasKnownPreference(Reg))
652       Prio |= (1u << 30);
653   }
654   // The virtual register number is a tie breaker for same-sized ranges.
655   // Give lower vreg numbers higher priority to assign them first.
656   CurQueue.push(std::make_pair(Prio, ~Reg));
657 }
658 
659 LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); }
660 
661 LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) {
662   if (CurQueue.empty())
663     return nullptr;
664   LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second);
665   CurQueue.pop();
666   return LI;
667 }
668 
669 //===----------------------------------------------------------------------===//
670 //                            Direct Assignment
671 //===----------------------------------------------------------------------===//
672 
673 /// tryAssign - Try to assign VirtReg to an available register.
674 unsigned RAGreedy::tryAssign(LiveInterval &VirtReg,
675                              AllocationOrder &Order,
676                              SmallVectorImpl<unsigned> &NewVRegs) {
677   Order.rewind();
678   unsigned PhysReg;
679   while ((PhysReg = Order.next()))
680     if (!Matrix->checkInterference(VirtReg, PhysReg))
681       break;
682   if (!PhysReg || Order.isHint())
683     return PhysReg;
684 
685   // PhysReg is available, but there may be a better choice.
686 
687   // If we missed a simple hint, try to cheaply evict interference from the
688   // preferred register.
689   if (unsigned Hint = MRI->getSimpleHint(VirtReg.reg))
690     if (Order.isHint(Hint)) {
691       DEBUG(dbgs() << "missed hint " << PrintReg(Hint, TRI) << '\n');
692       EvictionCost MaxCost;
693       MaxCost.setBrokenHints(1);
694       if (canEvictInterference(VirtReg, Hint, true, MaxCost)) {
695         evictInterference(VirtReg, Hint, NewVRegs);
696         return Hint;
697       }
698       // Record the missed hint, we may be able to recover
699       // at the end if the surrounding allocation changed.
700       SetOfBrokenHints.insert(&VirtReg);
701     }
702 
703   // Try to evict interference from a cheaper alternative.
704   unsigned Cost = TRI->getCostPerUse(PhysReg);
705 
706   // Most registers have 0 additional cost.
707   if (!Cost)
708     return PhysReg;
709 
710   DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is available at cost " << Cost
711                << '\n');
712   unsigned CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost);
713   return CheapReg ? CheapReg : PhysReg;
714 }
715 
716 //===----------------------------------------------------------------------===//
717 //                         Interference eviction
718 //===----------------------------------------------------------------------===//
719 
720 unsigned RAGreedy::canReassign(LiveInterval &VirtReg, unsigned PrevReg) {
721   AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo, Matrix);
722   unsigned PhysReg;
723   while ((PhysReg = Order.next())) {
724     if (PhysReg == PrevReg)
725       continue;
726 
727     MCRegUnitIterator Units(PhysReg, TRI);
728     for (; Units.isValid(); ++Units) {
729       // Instantiate a "subquery", not to be confused with the Queries array.
730       LiveIntervalUnion::Query subQ(VirtReg, Matrix->getLiveUnions()[*Units]);
731       if (subQ.checkInterference())
732         break;
733     }
734     // If no units have interference, break out with the current PhysReg.
735     if (!Units.isValid())
736       break;
737   }
738   if (PhysReg)
739     DEBUG(dbgs() << "can reassign: " << VirtReg << " from "
740           << PrintReg(PrevReg, TRI) << " to " << PrintReg(PhysReg, TRI)
741           << '\n');
742   return PhysReg;
743 }
744 
745 /// shouldEvict - determine if A should evict the assigned live range B. The
746 /// eviction policy defined by this function together with the allocation order
747 /// defined by enqueue() decides which registers ultimately end up being split
748 /// and spilled.
749 ///
750 /// Cascade numbers are used to prevent infinite loops if this function is a
751 /// cyclic relation.
752 ///
753 /// @param A          The live range to be assigned.
754 /// @param IsHint     True when A is about to be assigned to its preferred
755 ///                   register.
756 /// @param B          The live range to be evicted.
757 /// @param BreaksHint True when B is already assigned to its preferred register.
758 bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint,
759                            LiveInterval &B, bool BreaksHint) {
760   bool CanSplit = getStage(B) < RS_Spill;
761 
762   // Be fairly aggressive about following hints as long as the evictee can be
763   // split.
764   if (CanSplit && IsHint && !BreaksHint)
765     return true;
766 
767   if (A.weight > B.weight) {
768     DEBUG(dbgs() << "should evict: " << B << " w= " << B.weight << '\n');
769     return true;
770   }
771   return false;
772 }
773 
774 /// canEvictInterference - Return true if all interferences between VirtReg and
775 /// PhysReg can be evicted.
776 ///
777 /// @param VirtReg Live range that is about to be assigned.
778 /// @param PhysReg Desired register for assignment.
779 /// @param IsHint  True when PhysReg is VirtReg's preferred register.
780 /// @param MaxCost Only look for cheaper candidates and update with new cost
781 ///                when returning true.
782 /// @returns True when interference can be evicted cheaper than MaxCost.
783 bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg,
784                                     bool IsHint, EvictionCost &MaxCost) {
785   // It is only possible to evict virtual register interference.
786   if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg)
787     return false;
788 
789   bool IsLocal = LIS->intervalIsInOneMBB(VirtReg);
790 
791   // Find VirtReg's cascade number. This will be unassigned if VirtReg was never
792   // involved in an eviction before. If a cascade number was assigned, deny
793   // evicting anything with the same or a newer cascade number. This prevents
794   // infinite eviction loops.
795   //
796   // This works out so a register without a cascade number is allowed to evict
797   // anything, and it can be evicted by anything.
798   unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
799   if (!Cascade)
800     Cascade = NextCascade;
801 
802   EvictionCost Cost;
803   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
804     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
805     // If there is 10 or more interferences, chances are one is heavier.
806     if (Q.collectInterferingVRegs(10) >= 10)
807       return false;
808 
809     // Check if any interfering live range is heavier than MaxWeight.
810     for (unsigned i = Q.interferingVRegs().size(); i; --i) {
811       LiveInterval *Intf = Q.interferingVRegs()[i - 1];
812       assert(TargetRegisterInfo::isVirtualRegister(Intf->reg) &&
813              "Only expecting virtual register interference from query");
814       // Never evict spill products. They cannot split or spill.
815       if (getStage(*Intf) == RS_Done)
816         return false;
817       // Once a live range becomes small enough, it is urgent that we find a
818       // register for it. This is indicated by an infinite spill weight. These
819       // urgent live ranges get to evict almost anything.
820       //
821       // Also allow urgent evictions of unspillable ranges from a strictly
822       // larger allocation order.
823       bool Urgent = !VirtReg.isSpillable() &&
824         (Intf->isSpillable() ||
825          RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg)) <
826          RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(Intf->reg)));
827       // Only evict older cascades or live ranges without a cascade.
828       unsigned IntfCascade = ExtraRegInfo[Intf->reg].Cascade;
829       if (Cascade <= IntfCascade) {
830         if (!Urgent)
831           return false;
832         // We permit breaking cascades for urgent evictions. It should be the
833         // last resort, though, so make it really expensive.
834         Cost.BrokenHints += 10;
835       }
836       // Would this break a satisfied hint?
837       bool BreaksHint = VRM->hasPreferredPhys(Intf->reg);
838       // Update eviction cost.
839       Cost.BrokenHints += BreaksHint;
840       Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight);
841       // Abort if this would be too expensive.
842       if (!(Cost < MaxCost))
843         return false;
844       if (Urgent)
845         continue;
846       // Apply the eviction policy for non-urgent evictions.
847       if (!shouldEvict(VirtReg, IsHint, *Intf, BreaksHint))
848         return false;
849       // If !MaxCost.isMax(), then we're just looking for a cheap register.
850       // Evicting another local live range in this case could lead to suboptimal
851       // coloring.
852       if (!MaxCost.isMax() && IsLocal && LIS->intervalIsInOneMBB(*Intf) &&
853           (!EnableLocalReassign || !canReassign(*Intf, PhysReg))) {
854         return false;
855       }
856     }
857   }
858   MaxCost = Cost;
859   return true;
860 }
861 
862 /// evictInterference - Evict any interferring registers that prevent VirtReg
863 /// from being assigned to Physreg. This assumes that canEvictInterference
864 /// returned true.
865 void RAGreedy::evictInterference(LiveInterval &VirtReg, unsigned PhysReg,
866                                  SmallVectorImpl<unsigned> &NewVRegs) {
867   // Make sure that VirtReg has a cascade number, and assign that cascade
868   // number to every evicted register. These live ranges than then only be
869   // evicted by a newer cascade, preventing infinite loops.
870   unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
871   if (!Cascade)
872     Cascade = ExtraRegInfo[VirtReg.reg].Cascade = NextCascade++;
873 
874   DEBUG(dbgs() << "evicting " << PrintReg(PhysReg, TRI)
875                << " interference: Cascade " << Cascade << '\n');
876 
877   // Collect all interfering virtregs first.
878   SmallVector<LiveInterval*, 8> Intfs;
879   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
880     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
881     // We usually have the interfering VRegs cached so collectInterferingVRegs()
882     // should be fast, we may need to recalculate if when different physregs
883     // overlap the same register unit so we had different SubRanges queried
884     // against it.
885     Q.collectInterferingVRegs();
886     ArrayRef<LiveInterval*> IVR = Q.interferingVRegs();
887     Intfs.append(IVR.begin(), IVR.end());
888   }
889 
890   // Evict them second. This will invalidate the queries.
891   for (unsigned i = 0, e = Intfs.size(); i != e; ++i) {
892     LiveInterval *Intf = Intfs[i];
893     // The same VirtReg may be present in multiple RegUnits. Skip duplicates.
894     if (!VRM->hasPhys(Intf->reg))
895       continue;
896     Matrix->unassign(*Intf);
897     assert((ExtraRegInfo[Intf->reg].Cascade < Cascade ||
898             VirtReg.isSpillable() < Intf->isSpillable()) &&
899            "Cannot decrease cascade number, illegal eviction");
900     ExtraRegInfo[Intf->reg].Cascade = Cascade;
901     ++NumEvicted;
902     NewVRegs.push_back(Intf->reg);
903   }
904 }
905 
906 /// Returns true if the given \p PhysReg is a callee saved register and has not
907 /// been used for allocation yet.
908 bool RAGreedy::isUnusedCalleeSavedReg(unsigned PhysReg) const {
909   unsigned CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg);
910   if (CSR == 0)
911     return false;
912 
913   return !Matrix->isPhysRegUsed(PhysReg);
914 }
915 
916 /// tryEvict - Try to evict all interferences for a physreg.
917 /// @param  VirtReg Currently unassigned virtual register.
918 /// @param  Order   Physregs to try.
919 /// @return         Physreg to assign VirtReg, or 0.
920 unsigned RAGreedy::tryEvict(LiveInterval &VirtReg,
921                             AllocationOrder &Order,
922                             SmallVectorImpl<unsigned> &NewVRegs,
923                             unsigned CostPerUseLimit) {
924   NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription,
925                      TimePassesIsEnabled);
926 
927   // Keep track of the cheapest interference seen so far.
928   EvictionCost BestCost;
929   BestCost.setMax();
930   unsigned BestPhys = 0;
931   unsigned OrderLimit = Order.getOrder().size();
932 
933   // When we are just looking for a reduced cost per use, don't break any
934   // hints, and only evict smaller spill weights.
935   if (CostPerUseLimit < ~0u) {
936     BestCost.BrokenHints = 0;
937     BestCost.MaxWeight = VirtReg.weight;
938 
939     // Check of any registers in RC are below CostPerUseLimit.
940     const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg);
941     unsigned MinCost = RegClassInfo.getMinCost(RC);
942     if (MinCost >= CostPerUseLimit) {
943       DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = " << MinCost
944                    << ", no cheaper registers to be found.\n");
945       return 0;
946     }
947 
948     // It is normal for register classes to have a long tail of registers with
949     // the same cost. We don't need to look at them if they're too expensive.
950     if (TRI->getCostPerUse(Order.getOrder().back()) >= CostPerUseLimit) {
951       OrderLimit = RegClassInfo.getLastCostChange(RC);
952       DEBUG(dbgs() << "Only trying the first " << OrderLimit << " regs.\n");
953     }
954   }
955 
956   Order.rewind();
957   while (unsigned PhysReg = Order.next(OrderLimit)) {
958     if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit)
959       continue;
960     // The first use of a callee-saved register in a function has cost 1.
961     // Don't start using a CSR when the CostPerUseLimit is low.
962     if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) {
963       DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " would clobber CSR "
964             << PrintReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI)
965             << '\n');
966       continue;
967     }
968 
969     if (!canEvictInterference(VirtReg, PhysReg, false, BestCost))
970       continue;
971 
972     // Best so far.
973     BestPhys = PhysReg;
974 
975     // Stop if the hint can be used.
976     if (Order.isHint())
977       break;
978   }
979 
980   if (!BestPhys)
981     return 0;
982 
983   evictInterference(VirtReg, BestPhys, NewVRegs);
984   return BestPhys;
985 }
986 
987 //===----------------------------------------------------------------------===//
988 //                              Region Splitting
989 //===----------------------------------------------------------------------===//
990 
991 /// addSplitConstraints - Fill out the SplitConstraints vector based on the
992 /// interference pattern in Physreg and its aliases. Add the constraints to
993 /// SpillPlacement and return the static cost of this split in Cost, assuming
994 /// that all preferences in SplitConstraints are met.
995 /// Return false if there are no bundles with positive bias.
996 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
997                                    BlockFrequency &Cost) {
998   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
999 
1000   // Reset interference dependent info.
1001   SplitConstraints.resize(UseBlocks.size());
1002   BlockFrequency StaticCost = 0;
1003   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1004     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1005     SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
1006 
1007     BC.Number = BI.MBB->getNumber();
1008     Intf.moveToBlock(BC.Number);
1009     BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
1010     BC.Exit = BI.LiveOut ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
1011     BC.ChangesValue = BI.FirstDef.isValid();
1012 
1013     if (!Intf.hasInterference())
1014       continue;
1015 
1016     // Number of spill code instructions to insert.
1017     unsigned Ins = 0;
1018 
1019     // Interference for the live-in value.
1020     if (BI.LiveIn) {
1021       if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) {
1022         BC.Entry = SpillPlacement::MustSpill;
1023         ++Ins;
1024       } else if (Intf.first() < BI.FirstInstr) {
1025         BC.Entry = SpillPlacement::PrefSpill;
1026         ++Ins;
1027       } else if (Intf.first() < BI.LastInstr) {
1028         ++Ins;
1029       }
1030     }
1031 
1032     // Interference for the live-out value.
1033     if (BI.LiveOut) {
1034       if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) {
1035         BC.Exit = SpillPlacement::MustSpill;
1036         ++Ins;
1037       } else if (Intf.last() > BI.LastInstr) {
1038         BC.Exit = SpillPlacement::PrefSpill;
1039         ++Ins;
1040       } else if (Intf.last() > BI.FirstInstr) {
1041         ++Ins;
1042       }
1043     }
1044 
1045     // Accumulate the total frequency of inserted spill code.
1046     while (Ins--)
1047       StaticCost += SpillPlacer->getBlockFrequency(BC.Number);
1048   }
1049   Cost = StaticCost;
1050 
1051   // Add constraints for use-blocks. Note that these are the only constraints
1052   // that may add a positive bias, it is downhill from here.
1053   SpillPlacer->addConstraints(SplitConstraints);
1054   return SpillPlacer->scanActiveBundles();
1055 }
1056 
1057 /// addThroughConstraints - Add constraints and links to SpillPlacer from the
1058 /// live-through blocks in Blocks.
1059 void RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
1060                                      ArrayRef<unsigned> Blocks) {
1061   const unsigned GroupSize = 8;
1062   SpillPlacement::BlockConstraint BCS[GroupSize];
1063   unsigned TBS[GroupSize];
1064   unsigned B = 0, T = 0;
1065 
1066   for (unsigned i = 0; i != Blocks.size(); ++i) {
1067     unsigned Number = Blocks[i];
1068     Intf.moveToBlock(Number);
1069 
1070     if (!Intf.hasInterference()) {
1071       assert(T < GroupSize && "Array overflow");
1072       TBS[T] = Number;
1073       if (++T == GroupSize) {
1074         SpillPlacer->addLinks(makeArrayRef(TBS, T));
1075         T = 0;
1076       }
1077       continue;
1078     }
1079 
1080     assert(B < GroupSize && "Array overflow");
1081     BCS[B].Number = Number;
1082 
1083     // Interference for the live-in value.
1084     if (Intf.first() <= Indexes->getMBBStartIdx(Number))
1085       BCS[B].Entry = SpillPlacement::MustSpill;
1086     else
1087       BCS[B].Entry = SpillPlacement::PrefSpill;
1088 
1089     // Interference for the live-out value.
1090     if (Intf.last() >= SA->getLastSplitPoint(Number))
1091       BCS[B].Exit = SpillPlacement::MustSpill;
1092     else
1093       BCS[B].Exit = SpillPlacement::PrefSpill;
1094 
1095     if (++B == GroupSize) {
1096       SpillPlacer->addConstraints(makeArrayRef(BCS, B));
1097       B = 0;
1098     }
1099   }
1100 
1101   SpillPlacer->addConstraints(makeArrayRef(BCS, B));
1102   SpillPlacer->addLinks(makeArrayRef(TBS, T));
1103 }
1104 
1105 void RAGreedy::growRegion(GlobalSplitCandidate &Cand) {
1106   // Keep track of through blocks that have not been added to SpillPlacer.
1107   BitVector Todo = SA->getThroughBlocks();
1108   SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
1109   unsigned AddedTo = 0;
1110 #ifndef NDEBUG
1111   unsigned Visited = 0;
1112 #endif
1113 
1114   while (true) {
1115     ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
1116     // Find new through blocks in the periphery of PrefRegBundles.
1117     for (int i = 0, e = NewBundles.size(); i != e; ++i) {
1118       unsigned Bundle = NewBundles[i];
1119       // Look at all blocks connected to Bundle in the full graph.
1120       ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
1121       for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
1122            I != E; ++I) {
1123         unsigned Block = *I;
1124         if (!Todo.test(Block))
1125           continue;
1126         Todo.reset(Block);
1127         // This is a new through block. Add it to SpillPlacer later.
1128         ActiveBlocks.push_back(Block);
1129 #ifndef NDEBUG
1130         ++Visited;
1131 #endif
1132       }
1133     }
1134     // Any new blocks to add?
1135     if (ActiveBlocks.size() == AddedTo)
1136       break;
1137 
1138     // Compute through constraints from the interference, or assume that all
1139     // through blocks prefer spilling when forming compact regions.
1140     auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo);
1141     if (Cand.PhysReg)
1142       addThroughConstraints(Cand.Intf, NewBlocks);
1143     else
1144       // Provide a strong negative bias on through blocks to prevent unwanted
1145       // liveness on loop backedges.
1146       SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true);
1147     AddedTo = ActiveBlocks.size();
1148 
1149     // Perhaps iterating can enable more bundles?
1150     SpillPlacer->iterate();
1151   }
1152   DEBUG(dbgs() << ", v=" << Visited);
1153 }
1154 
1155 /// calcCompactRegion - Compute the set of edge bundles that should be live
1156 /// when splitting the current live range into compact regions.  Compact
1157 /// regions can be computed without looking at interference.  They are the
1158 /// regions formed by removing all the live-through blocks from the live range.
1159 ///
1160 /// Returns false if the current live range is already compact, or if the
1161 /// compact regions would form single block regions anyway.
1162 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) {
1163   // Without any through blocks, the live range is already compact.
1164   if (!SA->getNumThroughBlocks())
1165     return false;
1166 
1167   // Compact regions don't correspond to any physreg.
1168   Cand.reset(IntfCache, 0);
1169 
1170   DEBUG(dbgs() << "Compact region bundles");
1171 
1172   // Use the spill placer to determine the live bundles. GrowRegion pretends
1173   // that all the through blocks have interference when PhysReg is unset.
1174   SpillPlacer->prepare(Cand.LiveBundles);
1175 
1176   // The static split cost will be zero since Cand.Intf reports no interference.
1177   BlockFrequency Cost;
1178   if (!addSplitConstraints(Cand.Intf, Cost)) {
1179     DEBUG(dbgs() << ", none.\n");
1180     return false;
1181   }
1182 
1183   growRegion(Cand);
1184   SpillPlacer->finish();
1185 
1186   if (!Cand.LiveBundles.any()) {
1187     DEBUG(dbgs() << ", none.\n");
1188     return false;
1189   }
1190 
1191   DEBUG({
1192     for (int i : Cand.LiveBundles.set_bits())
1193       dbgs() << " EB#" << i;
1194     dbgs() << ".\n";
1195   });
1196   return true;
1197 }
1198 
1199 /// calcSpillCost - Compute how expensive it would be to split the live range in
1200 /// SA around all use blocks instead of forming bundle regions.
1201 BlockFrequency RAGreedy::calcSpillCost() {
1202   BlockFrequency Cost = 0;
1203   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1204   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1205     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1206     unsigned Number = BI.MBB->getNumber();
1207     // We normally only need one spill instruction - a load or a store.
1208     Cost += SpillPlacer->getBlockFrequency(Number);
1209 
1210     // Unless the value is redefined in the block.
1211     if (BI.LiveIn && BI.LiveOut && BI.FirstDef)
1212       Cost += SpillPlacer->getBlockFrequency(Number);
1213   }
1214   return Cost;
1215 }
1216 
1217 /// calcGlobalSplitCost - Return the global split cost of following the split
1218 /// pattern in LiveBundles. This cost should be added to the local cost of the
1219 /// interference pattern in SplitConstraints.
1220 ///
1221 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand) {
1222   BlockFrequency GlobalCost = 0;
1223   const BitVector &LiveBundles = Cand.LiveBundles;
1224   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1225   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1226     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1227     SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
1228     bool RegIn  = LiveBundles[Bundles->getBundle(BC.Number, false)];
1229     bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)];
1230     unsigned Ins = 0;
1231 
1232     if (BI.LiveIn)
1233       Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
1234     if (BI.LiveOut)
1235       Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
1236     while (Ins--)
1237       GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1238   }
1239 
1240   for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) {
1241     unsigned Number = Cand.ActiveBlocks[i];
1242     bool RegIn  = LiveBundles[Bundles->getBundle(Number, false)];
1243     bool RegOut = LiveBundles[Bundles->getBundle(Number, true)];
1244     if (!RegIn && !RegOut)
1245       continue;
1246     if (RegIn && RegOut) {
1247       // We need double spill code if this block has interference.
1248       Cand.Intf.moveToBlock(Number);
1249       if (Cand.Intf.hasInterference()) {
1250         GlobalCost += SpillPlacer->getBlockFrequency(Number);
1251         GlobalCost += SpillPlacer->getBlockFrequency(Number);
1252       }
1253       continue;
1254     }
1255     // live-in / stack-out or stack-in live-out.
1256     GlobalCost += SpillPlacer->getBlockFrequency(Number);
1257   }
1258   return GlobalCost;
1259 }
1260 
1261 /// splitAroundRegion - Split the current live range around the regions
1262 /// determined by BundleCand and GlobalCand.
1263 ///
1264 /// Before calling this function, GlobalCand and BundleCand must be initialized
1265 /// so each bundle is assigned to a valid candidate, or NoCand for the
1266 /// stack-bound bundles.  The shared SA/SE SplitAnalysis and SplitEditor
1267 /// objects must be initialized for the current live range, and intervals
1268 /// created for the used candidates.
1269 ///
1270 /// @param LREdit    The LiveRangeEdit object handling the current split.
1271 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value
1272 ///                  must appear in this list.
1273 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit,
1274                                  ArrayRef<unsigned> UsedCands) {
1275   // These are the intervals created for new global ranges. We may create more
1276   // intervals for local ranges.
1277   const unsigned NumGlobalIntvs = LREdit.size();
1278   DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs << " globals.\n");
1279   assert(NumGlobalIntvs && "No global intervals configured");
1280 
1281   // Isolate even single instructions when dealing with a proper sub-class.
1282   // That guarantees register class inflation for the stack interval because it
1283   // is all copies.
1284   unsigned Reg = SA->getParent().reg;
1285   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1286 
1287   // First handle all the blocks with uses.
1288   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1289   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1290     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1291     unsigned Number = BI.MBB->getNumber();
1292     unsigned IntvIn = 0, IntvOut = 0;
1293     SlotIndex IntfIn, IntfOut;
1294     if (BI.LiveIn) {
1295       unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
1296       if (CandIn != NoCand) {
1297         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1298         IntvIn = Cand.IntvIdx;
1299         Cand.Intf.moveToBlock(Number);
1300         IntfIn = Cand.Intf.first();
1301       }
1302     }
1303     if (BI.LiveOut) {
1304       unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
1305       if (CandOut != NoCand) {
1306         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1307         IntvOut = Cand.IntvIdx;
1308         Cand.Intf.moveToBlock(Number);
1309         IntfOut = Cand.Intf.last();
1310       }
1311     }
1312 
1313     // Create separate intervals for isolated blocks with multiple uses.
1314     if (!IntvIn && !IntvOut) {
1315       DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " isolated.\n");
1316       if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1317         SE->splitSingleBlock(BI);
1318       continue;
1319     }
1320 
1321     if (IntvIn && IntvOut)
1322       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1323     else if (IntvIn)
1324       SE->splitRegInBlock(BI, IntvIn, IntfIn);
1325     else
1326       SE->splitRegOutBlock(BI, IntvOut, IntfOut);
1327   }
1328 
1329   // Handle live-through blocks. The relevant live-through blocks are stored in
1330   // the ActiveBlocks list with each candidate. We need to filter out
1331   // duplicates.
1332   BitVector Todo = SA->getThroughBlocks();
1333   for (unsigned c = 0; c != UsedCands.size(); ++c) {
1334     ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks;
1335     for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
1336       unsigned Number = Blocks[i];
1337       if (!Todo.test(Number))
1338         continue;
1339       Todo.reset(Number);
1340 
1341       unsigned IntvIn = 0, IntvOut = 0;
1342       SlotIndex IntfIn, IntfOut;
1343 
1344       unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
1345       if (CandIn != NoCand) {
1346         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1347         IntvIn = Cand.IntvIdx;
1348         Cand.Intf.moveToBlock(Number);
1349         IntfIn = Cand.Intf.first();
1350       }
1351 
1352       unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
1353       if (CandOut != NoCand) {
1354         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1355         IntvOut = Cand.IntvIdx;
1356         Cand.Intf.moveToBlock(Number);
1357         IntfOut = Cand.Intf.last();
1358       }
1359       if (!IntvIn && !IntvOut)
1360         continue;
1361       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1362     }
1363   }
1364 
1365   ++NumGlobalSplits;
1366 
1367   SmallVector<unsigned, 8> IntvMap;
1368   SE->finish(&IntvMap);
1369   DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
1370 
1371   ExtraRegInfo.resize(MRI->getNumVirtRegs());
1372   unsigned OrigBlocks = SA->getNumLiveBlocks();
1373 
1374   // Sort out the new intervals created by splitting. We get four kinds:
1375   // - Remainder intervals should not be split again.
1376   // - Candidate intervals can be assigned to Cand.PhysReg.
1377   // - Block-local splits are candidates for local splitting.
1378   // - DCE leftovers should go back on the queue.
1379   for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
1380     LiveInterval &Reg = LIS->getInterval(LREdit.get(i));
1381 
1382     // Ignore old intervals from DCE.
1383     if (getStage(Reg) != RS_New)
1384       continue;
1385 
1386     // Remainder interval. Don't try splitting again, spill if it doesn't
1387     // allocate.
1388     if (IntvMap[i] == 0) {
1389       setStage(Reg, RS_Spill);
1390       continue;
1391     }
1392 
1393     // Global intervals. Allow repeated splitting as long as the number of live
1394     // blocks is strictly decreasing.
1395     if (IntvMap[i] < NumGlobalIntvs) {
1396       if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
1397         DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
1398                      << " blocks as original.\n");
1399         // Don't allow repeated splitting as a safe guard against looping.
1400         setStage(Reg, RS_Split2);
1401       }
1402       continue;
1403     }
1404 
1405     // Other intervals are treated as new. This includes local intervals created
1406     // for blocks with multiple uses, and anything created by DCE.
1407   }
1408 
1409   if (VerifyEnabled)
1410     MF->verify(this, "After splitting live range around region");
1411 }
1412 
1413 unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1414                                   SmallVectorImpl<unsigned> &NewVRegs) {
1415   unsigned NumCands = 0;
1416   BlockFrequency BestCost;
1417 
1418   // Check if we can split this live range around a compact region.
1419   bool HasCompact = calcCompactRegion(GlobalCand.front());
1420   if (HasCompact) {
1421     // Yes, keep GlobalCand[0] as the compact region candidate.
1422     NumCands = 1;
1423     BestCost = BlockFrequency::getMaxFrequency();
1424   } else {
1425     // No benefit from the compact region, our fallback will be per-block
1426     // splitting. Make sure we find a solution that is cheaper than spilling.
1427     BestCost = calcSpillCost();
1428     DEBUG(dbgs() << "Cost of isolating all blocks = ";
1429                  MBFI->printBlockFreq(dbgs(), BestCost) << '\n');
1430   }
1431 
1432   unsigned BestCand =
1433       calculateRegionSplitCost(VirtReg, Order, BestCost, NumCands,
1434                                false/*IgnoreCSR*/);
1435 
1436   // No solutions found, fall back to single block splitting.
1437   if (!HasCompact && BestCand == NoCand)
1438     return 0;
1439 
1440   return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs);
1441 }
1442 
1443 unsigned RAGreedy::calculateRegionSplitCost(LiveInterval &VirtReg,
1444                                             AllocationOrder &Order,
1445                                             BlockFrequency &BestCost,
1446                                             unsigned &NumCands,
1447                                             bool IgnoreCSR) {
1448   unsigned BestCand = NoCand;
1449   Order.rewind();
1450   while (unsigned PhysReg = Order.next()) {
1451     if (IgnoreCSR && isUnusedCalleeSavedReg(PhysReg))
1452       continue;
1453 
1454     // Discard bad candidates before we run out of interference cache cursors.
1455     // This will only affect register classes with a lot of registers (>32).
1456     if (NumCands == IntfCache.getMaxCursors()) {
1457       unsigned WorstCount = ~0u;
1458       unsigned Worst = 0;
1459       for (unsigned i = 0; i != NumCands; ++i) {
1460         if (i == BestCand || !GlobalCand[i].PhysReg)
1461           continue;
1462         unsigned Count = GlobalCand[i].LiveBundles.count();
1463         if (Count < WorstCount) {
1464           Worst = i;
1465           WorstCount = Count;
1466         }
1467       }
1468       --NumCands;
1469       GlobalCand[Worst] = GlobalCand[NumCands];
1470       if (BestCand == NumCands)
1471         BestCand = Worst;
1472     }
1473 
1474     if (GlobalCand.size() <= NumCands)
1475       GlobalCand.resize(NumCands+1);
1476     GlobalSplitCandidate &Cand = GlobalCand[NumCands];
1477     Cand.reset(IntfCache, PhysReg);
1478 
1479     SpillPlacer->prepare(Cand.LiveBundles);
1480     BlockFrequency Cost;
1481     if (!addSplitConstraints(Cand.Intf, Cost)) {
1482       DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tno positive bundles\n");
1483       continue;
1484     }
1485     DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tstatic = ";
1486                  MBFI->printBlockFreq(dbgs(), Cost));
1487     if (Cost >= BestCost) {
1488       DEBUG({
1489         if (BestCand == NoCand)
1490           dbgs() << " worse than no bundles\n";
1491         else
1492           dbgs() << " worse than "
1493                  << PrintReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
1494       });
1495       continue;
1496     }
1497     growRegion(Cand);
1498 
1499     SpillPlacer->finish();
1500 
1501     // No live bundles, defer to splitSingleBlocks().
1502     if (!Cand.LiveBundles.any()) {
1503       DEBUG(dbgs() << " no bundles.\n");
1504       continue;
1505     }
1506 
1507     Cost += calcGlobalSplitCost(Cand);
1508     DEBUG({
1509       dbgs() << ", total = "; MBFI->printBlockFreq(dbgs(), Cost)
1510                                 << " with bundles";
1511       for (int i : Cand.LiveBundles.set_bits())
1512         dbgs() << " EB#" << i;
1513       dbgs() << ".\n";
1514     });
1515     if (Cost < BestCost) {
1516       BestCand = NumCands;
1517       BestCost = Cost;
1518     }
1519     ++NumCands;
1520   }
1521   return BestCand;
1522 }
1523 
1524 unsigned RAGreedy::doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
1525                                  bool HasCompact,
1526                                  SmallVectorImpl<unsigned> &NewVRegs) {
1527   SmallVector<unsigned, 8> UsedCands;
1528   // Prepare split editor.
1529   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1530   SE->reset(LREdit, SplitSpillMode);
1531 
1532   // Assign all edge bundles to the preferred candidate, or NoCand.
1533   BundleCand.assign(Bundles->getNumBundles(), NoCand);
1534 
1535   // Assign bundles for the best candidate region.
1536   if (BestCand != NoCand) {
1537     GlobalSplitCandidate &Cand = GlobalCand[BestCand];
1538     if (unsigned B = Cand.getBundles(BundleCand, BestCand)) {
1539       UsedCands.push_back(BestCand);
1540       Cand.IntvIdx = SE->openIntv();
1541       DEBUG(dbgs() << "Split for " << PrintReg(Cand.PhysReg, TRI) << " in "
1542                    << B << " bundles, intv " << Cand.IntvIdx << ".\n");
1543       (void)B;
1544     }
1545   }
1546 
1547   // Assign bundles for the compact region.
1548   if (HasCompact) {
1549     GlobalSplitCandidate &Cand = GlobalCand.front();
1550     assert(!Cand.PhysReg && "Compact region has no physreg");
1551     if (unsigned B = Cand.getBundles(BundleCand, 0)) {
1552       UsedCands.push_back(0);
1553       Cand.IntvIdx = SE->openIntv();
1554       DEBUG(dbgs() << "Split for compact region in " << B << " bundles, intv "
1555                    << Cand.IntvIdx << ".\n");
1556       (void)B;
1557     }
1558   }
1559 
1560   splitAroundRegion(LREdit, UsedCands);
1561   return 0;
1562 }
1563 
1564 //===----------------------------------------------------------------------===//
1565 //                            Per-Block Splitting
1566 //===----------------------------------------------------------------------===//
1567 
1568 /// tryBlockSplit - Split a global live range around every block with uses. This
1569 /// creates a lot of local live ranges, that will be split by tryLocalSplit if
1570 /// they don't allocate.
1571 unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1572                                  SmallVectorImpl<unsigned> &NewVRegs) {
1573   assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed");
1574   unsigned Reg = VirtReg.reg;
1575   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1576   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1577   SE->reset(LREdit, SplitSpillMode);
1578   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1579   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1580     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1581     if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1582       SE->splitSingleBlock(BI);
1583   }
1584   // No blocks were split.
1585   if (LREdit.empty())
1586     return 0;
1587 
1588   // We did split for some blocks.
1589   SmallVector<unsigned, 8> IntvMap;
1590   SE->finish(&IntvMap);
1591 
1592   // Tell LiveDebugVariables about the new ranges.
1593   DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
1594 
1595   ExtraRegInfo.resize(MRI->getNumVirtRegs());
1596 
1597   // Sort out the new intervals created by splitting. The remainder interval
1598   // goes straight to spilling, the new local ranges get to stay RS_New.
1599   for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
1600     LiveInterval &LI = LIS->getInterval(LREdit.get(i));
1601     if (getStage(LI) == RS_New && IntvMap[i] == 0)
1602       setStage(LI, RS_Spill);
1603   }
1604 
1605   if (VerifyEnabled)
1606     MF->verify(this, "After splitting live range around basic blocks");
1607   return 0;
1608 }
1609 
1610 //===----------------------------------------------------------------------===//
1611 //                         Per-Instruction Splitting
1612 //===----------------------------------------------------------------------===//
1613 
1614 /// Get the number of allocatable registers that match the constraints of \p Reg
1615 /// on \p MI and that are also in \p SuperRC.
1616 static unsigned getNumAllocatableRegsForConstraints(
1617     const MachineInstr *MI, unsigned Reg, const TargetRegisterClass *SuperRC,
1618     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
1619     const RegisterClassInfo &RCI) {
1620   assert(SuperRC && "Invalid register class");
1621 
1622   const TargetRegisterClass *ConstrainedRC =
1623       MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI,
1624                                              /* ExploreBundle */ true);
1625   if (!ConstrainedRC)
1626     return 0;
1627   return RCI.getNumAllocatableRegs(ConstrainedRC);
1628 }
1629 
1630 /// tryInstructionSplit - Split a live range around individual instructions.
1631 /// This is normally not worthwhile since the spiller is doing essentially the
1632 /// same thing. However, when the live range is in a constrained register
1633 /// class, it may help to insert copies such that parts of the live range can
1634 /// be moved to a larger register class.
1635 ///
1636 /// This is similar to spilling to a larger register class.
1637 unsigned
1638 RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1639                               SmallVectorImpl<unsigned> &NewVRegs) {
1640   const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg);
1641   // There is no point to this if there are no larger sub-classes.
1642   if (!RegClassInfo.isProperSubClass(CurRC))
1643     return 0;
1644 
1645   // Always enable split spill mode, since we're effectively spilling to a
1646   // register.
1647   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1648   SE->reset(LREdit, SplitEditor::SM_Size);
1649 
1650   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1651   if (Uses.size() <= 1)
1652     return 0;
1653 
1654   DEBUG(dbgs() << "Split around " << Uses.size() << " individual instrs.\n");
1655 
1656   const TargetRegisterClass *SuperRC =
1657       TRI->getLargestLegalSuperClass(CurRC, *MF);
1658   unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC);
1659   // Split around every non-copy instruction if this split will relax
1660   // the constraints on the virtual register.
1661   // Otherwise, splitting just inserts uncoalescable copies that do not help
1662   // the allocation.
1663   for (unsigned i = 0; i != Uses.size(); ++i) {
1664     if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Uses[i]))
1665       if (MI->isFullCopy() ||
1666           SuperRCNumAllocatableRegs ==
1667               getNumAllocatableRegsForConstraints(MI, VirtReg.reg, SuperRC, TII,
1668                                                   TRI, RCI)) {
1669         DEBUG(dbgs() << "    skip:\t" << Uses[i] << '\t' << *MI);
1670         continue;
1671       }
1672     SE->openIntv();
1673     SlotIndex SegStart = SE->enterIntvBefore(Uses[i]);
1674     SlotIndex SegStop  = SE->leaveIntvAfter(Uses[i]);
1675     SE->useIntv(SegStart, SegStop);
1676   }
1677 
1678   if (LREdit.empty()) {
1679     DEBUG(dbgs() << "All uses were copies.\n");
1680     return 0;
1681   }
1682 
1683   SmallVector<unsigned, 8> IntvMap;
1684   SE->finish(&IntvMap);
1685   DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS);
1686   ExtraRegInfo.resize(MRI->getNumVirtRegs());
1687 
1688   // Assign all new registers to RS_Spill. This was the last chance.
1689   setStage(LREdit.begin(), LREdit.end(), RS_Spill);
1690   return 0;
1691 }
1692 
1693 //===----------------------------------------------------------------------===//
1694 //                             Local Splitting
1695 //===----------------------------------------------------------------------===//
1696 
1697 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted
1698 /// in order to use PhysReg between two entries in SA->UseSlots.
1699 ///
1700 /// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1].
1701 ///
1702 void RAGreedy::calcGapWeights(unsigned PhysReg,
1703                               SmallVectorImpl<float> &GapWeight) {
1704   assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
1705   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1706   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1707   const unsigned NumGaps = Uses.size()-1;
1708 
1709   // Start and end points for the interference check.
1710   SlotIndex StartIdx =
1711     BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr;
1712   SlotIndex StopIdx =
1713     BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr;
1714 
1715   GapWeight.assign(NumGaps, 0.0f);
1716 
1717   // Add interference from each overlapping register.
1718   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1719     if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units)
1720           .checkInterference())
1721       continue;
1722 
1723     // We know that VirtReg is a continuous interval from FirstInstr to
1724     // LastInstr, so we don't need InterferenceQuery.
1725     //
1726     // Interference that overlaps an instruction is counted in both gaps
1727     // surrounding the instruction. The exception is interference before
1728     // StartIdx and after StopIdx.
1729     //
1730     LiveIntervalUnion::SegmentIter IntI =
1731       Matrix->getLiveUnions()[*Units] .find(StartIdx);
1732     for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
1733       // Skip the gaps before IntI.
1734       while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
1735         if (++Gap == NumGaps)
1736           break;
1737       if (Gap == NumGaps)
1738         break;
1739 
1740       // Update the gaps covered by IntI.
1741       const float weight = IntI.value()->weight;
1742       for (; Gap != NumGaps; ++Gap) {
1743         GapWeight[Gap] = std::max(GapWeight[Gap], weight);
1744         if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
1745           break;
1746       }
1747       if (Gap == NumGaps)
1748         break;
1749     }
1750   }
1751 
1752   // Add fixed interference.
1753   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1754     const LiveRange &LR = LIS->getRegUnit(*Units);
1755     LiveRange::const_iterator I = LR.find(StartIdx);
1756     LiveRange::const_iterator E = LR.end();
1757 
1758     // Same loop as above. Mark any overlapped gaps as HUGE_VALF.
1759     for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) {
1760       while (Uses[Gap+1].getBoundaryIndex() < I->start)
1761         if (++Gap == NumGaps)
1762           break;
1763       if (Gap == NumGaps)
1764         break;
1765 
1766       for (; Gap != NumGaps; ++Gap) {
1767         GapWeight[Gap] = huge_valf;
1768         if (Uses[Gap+1].getBaseIndex() >= I->end)
1769           break;
1770       }
1771       if (Gap == NumGaps)
1772         break;
1773     }
1774   }
1775 }
1776 
1777 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
1778 /// basic block.
1779 ///
1780 unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1781                                  SmallVectorImpl<unsigned> &NewVRegs) {
1782   assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
1783   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1784 
1785   // Note that it is possible to have an interval that is live-in or live-out
1786   // while only covering a single block - A phi-def can use undef values from
1787   // predecessors, and the block could be a single-block loop.
1788   // We don't bother doing anything clever about such a case, we simply assume
1789   // that the interval is continuous from FirstInstr to LastInstr. We should
1790   // make sure that we don't do anything illegal to such an interval, though.
1791 
1792   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1793   if (Uses.size() <= 2)
1794     return 0;
1795   const unsigned NumGaps = Uses.size()-1;
1796 
1797   DEBUG({
1798     dbgs() << "tryLocalSplit: ";
1799     for (unsigned i = 0, e = Uses.size(); i != e; ++i)
1800       dbgs() << ' ' << Uses[i];
1801     dbgs() << '\n';
1802   });
1803 
1804   // If VirtReg is live across any register mask operands, compute a list of
1805   // gaps with register masks.
1806   SmallVector<unsigned, 8> RegMaskGaps;
1807   if (Matrix->checkRegMaskInterference(VirtReg)) {
1808     // Get regmask slots for the whole block.
1809     ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber());
1810     DEBUG(dbgs() << RMS.size() << " regmasks in block:");
1811     // Constrain to VirtReg's live range.
1812     unsigned ri = std::lower_bound(RMS.begin(), RMS.end(),
1813                                    Uses.front().getRegSlot()) - RMS.begin();
1814     unsigned re = RMS.size();
1815     for (unsigned i = 0; i != NumGaps && ri != re; ++i) {
1816       // Look for Uses[i] <= RMS <= Uses[i+1].
1817       assert(!SlotIndex::isEarlierInstr(RMS[ri], Uses[i]));
1818       if (SlotIndex::isEarlierInstr(Uses[i+1], RMS[ri]))
1819         continue;
1820       // Skip a regmask on the same instruction as the last use. It doesn't
1821       // overlap the live range.
1822       if (SlotIndex::isSameInstr(Uses[i+1], RMS[ri]) && i+1 == NumGaps)
1823         break;
1824       DEBUG(dbgs() << ' ' << RMS[ri] << ':' << Uses[i] << '-' << Uses[i+1]);
1825       RegMaskGaps.push_back(i);
1826       // Advance ri to the next gap. A regmask on one of the uses counts in
1827       // both gaps.
1828       while (ri != re && SlotIndex::isEarlierInstr(RMS[ri], Uses[i+1]))
1829         ++ri;
1830     }
1831     DEBUG(dbgs() << '\n');
1832   }
1833 
1834   // Since we allow local split results to be split again, there is a risk of
1835   // creating infinite loops. It is tempting to require that the new live
1836   // ranges have less instructions than the original. That would guarantee
1837   // convergence, but it is too strict. A live range with 3 instructions can be
1838   // split 2+3 (including the COPY), and we want to allow that.
1839   //
1840   // Instead we use these rules:
1841   //
1842   // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the
1843   //    noop split, of course).
1844   // 2. Require progress be made for ranges with getStage() == RS_Split2. All
1845   //    the new ranges must have fewer instructions than before the split.
1846   // 3. New ranges with the same number of instructions are marked RS_Split2,
1847   //    smaller ranges are marked RS_New.
1848   //
1849   // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
1850   // excessive splitting and infinite loops.
1851   //
1852   bool ProgressRequired = getStage(VirtReg) >= RS_Split2;
1853 
1854   // Best split candidate.
1855   unsigned BestBefore = NumGaps;
1856   unsigned BestAfter = 0;
1857   float BestDiff = 0;
1858 
1859   const float blockFreq =
1860     SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() *
1861     (1.0f / MBFI->getEntryFreq());
1862   SmallVector<float, 8> GapWeight;
1863 
1864   Order.rewind();
1865   while (unsigned PhysReg = Order.next()) {
1866     // Keep track of the largest spill weight that would need to be evicted in
1867     // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1].
1868     calcGapWeights(PhysReg, GapWeight);
1869 
1870     // Remove any gaps with regmask clobbers.
1871     if (Matrix->checkRegMaskInterference(VirtReg, PhysReg))
1872       for (unsigned i = 0, e = RegMaskGaps.size(); i != e; ++i)
1873         GapWeight[RegMaskGaps[i]] = huge_valf;
1874 
1875     // Try to find the best sequence of gaps to close.
1876     // The new spill weight must be larger than any gap interference.
1877 
1878     // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
1879     unsigned SplitBefore = 0, SplitAfter = 1;
1880 
1881     // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
1882     // It is the spill weight that needs to be evicted.
1883     float MaxGap = GapWeight[0];
1884 
1885     while (true) {
1886       // Live before/after split?
1887       const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
1888       const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
1889 
1890       DEBUG(dbgs() << PrintReg(PhysReg, TRI) << ' '
1891                    << Uses[SplitBefore] << '-' << Uses[SplitAfter]
1892                    << " i=" << MaxGap);
1893 
1894       // Stop before the interval gets so big we wouldn't be making progress.
1895       if (!LiveBefore && !LiveAfter) {
1896         DEBUG(dbgs() << " all\n");
1897         break;
1898       }
1899       // Should the interval be extended or shrunk?
1900       bool Shrink = true;
1901 
1902       // How many gaps would the new range have?
1903       unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
1904 
1905       // Legally, without causing looping?
1906       bool Legal = !ProgressRequired || NewGaps < NumGaps;
1907 
1908       if (Legal && MaxGap < huge_valf) {
1909         // Estimate the new spill weight. Each instruction reads or writes the
1910         // register. Conservatively assume there are no read-modify-write
1911         // instructions.
1912         //
1913         // Try to guess the size of the new interval.
1914         const float EstWeight = normalizeSpillWeight(
1915             blockFreq * (NewGaps + 1),
1916             Uses[SplitBefore].distance(Uses[SplitAfter]) +
1917                 (LiveBefore + LiveAfter) * SlotIndex::InstrDist,
1918             1);
1919         // Would this split be possible to allocate?
1920         // Never allocate all gaps, we wouldn't be making progress.
1921         DEBUG(dbgs() << " w=" << EstWeight);
1922         if (EstWeight * Hysteresis >= MaxGap) {
1923           Shrink = false;
1924           float Diff = EstWeight - MaxGap;
1925           if (Diff > BestDiff) {
1926             DEBUG(dbgs() << " (best)");
1927             BestDiff = Hysteresis * Diff;
1928             BestBefore = SplitBefore;
1929             BestAfter = SplitAfter;
1930           }
1931         }
1932       }
1933 
1934       // Try to shrink.
1935       if (Shrink) {
1936         if (++SplitBefore < SplitAfter) {
1937           DEBUG(dbgs() << " shrink\n");
1938           // Recompute the max when necessary.
1939           if (GapWeight[SplitBefore - 1] >= MaxGap) {
1940             MaxGap = GapWeight[SplitBefore];
1941             for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i)
1942               MaxGap = std::max(MaxGap, GapWeight[i]);
1943           }
1944           continue;
1945         }
1946         MaxGap = 0;
1947       }
1948 
1949       // Try to extend the interval.
1950       if (SplitAfter >= NumGaps) {
1951         DEBUG(dbgs() << " end\n");
1952         break;
1953       }
1954 
1955       DEBUG(dbgs() << " extend\n");
1956       MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
1957     }
1958   }
1959 
1960   // Didn't find any candidates?
1961   if (BestBefore == NumGaps)
1962     return 0;
1963 
1964   DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore]
1965                << '-' << Uses[BestAfter] << ", " << BestDiff
1966                << ", " << (BestAfter - BestBefore + 1) << " instrs\n");
1967 
1968   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1969   SE->reset(LREdit);
1970 
1971   SE->openIntv();
1972   SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
1973   SlotIndex SegStop  = SE->leaveIntvAfter(Uses[BestAfter]);
1974   SE->useIntv(SegStart, SegStop);
1975   SmallVector<unsigned, 8> IntvMap;
1976   SE->finish(&IntvMap);
1977   DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS);
1978 
1979   // If the new range has the same number of instructions as before, mark it as
1980   // RS_Split2 so the next split will be forced to make progress. Otherwise,
1981   // leave the new intervals as RS_New so they can compete.
1982   bool LiveBefore = BestBefore != 0 || BI.LiveIn;
1983   bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
1984   unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
1985   if (NewGaps >= NumGaps) {
1986     DEBUG(dbgs() << "Tagging non-progress ranges: ");
1987     assert(!ProgressRequired && "Didn't make progress when it was required.");
1988     for (unsigned i = 0, e = IntvMap.size(); i != e; ++i)
1989       if (IntvMap[i] == 1) {
1990         setStage(LIS->getInterval(LREdit.get(i)), RS_Split2);
1991         DEBUG(dbgs() << PrintReg(LREdit.get(i)));
1992       }
1993     DEBUG(dbgs() << '\n');
1994   }
1995   ++NumLocalSplits;
1996 
1997   return 0;
1998 }
1999 
2000 //===----------------------------------------------------------------------===//
2001 //                          Live Range Splitting
2002 //===----------------------------------------------------------------------===//
2003 
2004 /// trySplit - Try to split VirtReg or one of its interferences, making it
2005 /// assignable.
2006 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
2007 unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
2008                             SmallVectorImpl<unsigned>&NewVRegs) {
2009   // Ranges must be Split2 or less.
2010   if (getStage(VirtReg) >= RS_Spill)
2011     return 0;
2012 
2013   // Local intervals are handled separately.
2014   if (LIS->intervalIsInOneMBB(VirtReg)) {
2015     NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName,
2016                        TimerGroupDescription, TimePassesIsEnabled);
2017     SA->analyze(&VirtReg);
2018     unsigned PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs);
2019     if (PhysReg || !NewVRegs.empty())
2020       return PhysReg;
2021     return tryInstructionSplit(VirtReg, Order, NewVRegs);
2022   }
2023 
2024   NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName,
2025                      TimerGroupDescription, TimePassesIsEnabled);
2026 
2027   SA->analyze(&VirtReg);
2028 
2029   // FIXME: SplitAnalysis may repair broken live ranges coming from the
2030   // coalescer. That may cause the range to become allocatable which means that
2031   // tryRegionSplit won't be making progress. This check should be replaced with
2032   // an assertion when the coalescer is fixed.
2033   if (SA->didRepairRange()) {
2034     // VirtReg has changed, so all cached queries are invalid.
2035     Matrix->invalidateVirtRegs();
2036     if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs))
2037       return PhysReg;
2038   }
2039 
2040   // First try to split around a region spanning multiple blocks. RS_Split2
2041   // ranges already made dubious progress with region splitting, so they go
2042   // straight to single block splitting.
2043   if (getStage(VirtReg) < RS_Split2) {
2044     unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
2045     if (PhysReg || !NewVRegs.empty())
2046       return PhysReg;
2047   }
2048 
2049   // Then isolate blocks.
2050   return tryBlockSplit(VirtReg, Order, NewVRegs);
2051 }
2052 
2053 //===----------------------------------------------------------------------===//
2054 //                          Last Chance Recoloring
2055 //===----------------------------------------------------------------------===//
2056 
2057 /// Return true if \p reg has any tied def operand.
2058 static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg) {
2059   for (const MachineOperand &MO : MRI->def_operands(reg))
2060     if (MO.isTied())
2061       return true;
2062 
2063   return false;
2064 }
2065 
2066 /// mayRecolorAllInterferences - Check if the virtual registers that
2067 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be
2068 /// recolored to free \p PhysReg.
2069 /// When true is returned, \p RecoloringCandidates has been augmented with all
2070 /// the live intervals that need to be recolored in order to free \p PhysReg
2071 /// for \p VirtReg.
2072 /// \p FixedRegisters contains all the virtual registers that cannot be
2073 /// recolored.
2074 bool
2075 RAGreedy::mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg,
2076                                      SmallLISet &RecoloringCandidates,
2077                                      const SmallVirtRegSet &FixedRegisters) {
2078   const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg);
2079 
2080   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2081     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
2082     // If there is LastChanceRecoloringMaxInterference or more interferences,
2083     // chances are one would not be recolorable.
2084     if (Q.collectInterferingVRegs(LastChanceRecoloringMaxInterference) >=
2085         LastChanceRecoloringMaxInterference && !ExhaustiveSearch) {
2086       DEBUG(dbgs() << "Early abort: too many interferences.\n");
2087       CutOffInfo |= CO_Interf;
2088       return false;
2089     }
2090     for (unsigned i = Q.interferingVRegs().size(); i; --i) {
2091       LiveInterval *Intf = Q.interferingVRegs()[i - 1];
2092       // If Intf is done and sit on the same register class as VirtReg,
2093       // it would not be recolorable as it is in the same state as VirtReg.
2094       // However, if VirtReg has tied defs and Intf doesn't, then
2095       // there is still a point in examining if it can be recolorable.
2096       if (((getStage(*Intf) == RS_Done &&
2097             MRI->getRegClass(Intf->reg) == CurRC) &&
2098            !(hasTiedDef(MRI, VirtReg.reg) && !hasTiedDef(MRI, Intf->reg))) ||
2099           FixedRegisters.count(Intf->reg)) {
2100         DEBUG(dbgs() << "Early abort: the interference is not recolorable.\n");
2101         return false;
2102       }
2103       RecoloringCandidates.insert(Intf);
2104     }
2105   }
2106   return true;
2107 }
2108 
2109 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring
2110 /// its interferences.
2111 /// Last chance recoloring chooses a color for \p VirtReg and recolors every
2112 /// virtual register that was using it. The recoloring process may recursively
2113 /// use the last chance recoloring. Therefore, when a virtual register has been
2114 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot
2115 /// be last-chance-recolored again during this recoloring "session".
2116 /// E.g.,
2117 /// Let
2118 /// vA can use {R1, R2    }
2119 /// vB can use {    R2, R3}
2120 /// vC can use {R1        }
2121 /// Where vA, vB, and vC cannot be split anymore (they are reloads for
2122 /// instance) and they all interfere.
2123 ///
2124 /// vA is assigned R1
2125 /// vB is assigned R2
2126 /// vC tries to evict vA but vA is already done.
2127 /// Regular register allocation fails.
2128 ///
2129 /// Last chance recoloring kicks in:
2130 /// vC does as if vA was evicted => vC uses R1.
2131 /// vC is marked as fixed.
2132 /// vA needs to find a color.
2133 /// None are available.
2134 /// vA cannot evict vC: vC is a fixed virtual register now.
2135 /// vA does as if vB was evicted => vA uses R2.
2136 /// vB needs to find a color.
2137 /// R3 is available.
2138 /// Recoloring => vC = R1, vA = R2, vB = R3
2139 ///
2140 /// \p Order defines the preferred allocation order for \p VirtReg.
2141 /// \p NewRegs will contain any new virtual register that have been created
2142 /// (split, spill) during the process and that must be assigned.
2143 /// \p FixedRegisters contains all the virtual registers that cannot be
2144 /// recolored.
2145 /// \p Depth gives the current depth of the last chance recoloring.
2146 /// \return a physical register that can be used for VirtReg or ~0u if none
2147 /// exists.
2148 unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg,
2149                                            AllocationOrder &Order,
2150                                            SmallVectorImpl<unsigned> &NewVRegs,
2151                                            SmallVirtRegSet &FixedRegisters,
2152                                            unsigned Depth) {
2153   DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n');
2154   // Ranges must be Done.
2155   assert((getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) &&
2156          "Last chance recoloring should really be last chance");
2157   // Set the max depth to LastChanceRecoloringMaxDepth.
2158   // We may want to reconsider that if we end up with a too large search space
2159   // for target with hundreds of registers.
2160   // Indeed, in that case we may want to cut the search space earlier.
2161   if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) {
2162     DEBUG(dbgs() << "Abort because max depth has been reached.\n");
2163     CutOffInfo |= CO_Depth;
2164     return ~0u;
2165   }
2166 
2167   // Set of Live intervals that will need to be recolored.
2168   SmallLISet RecoloringCandidates;
2169   // Record the original mapping virtual register to physical register in case
2170   // the recoloring fails.
2171   DenseMap<unsigned, unsigned> VirtRegToPhysReg;
2172   // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in
2173   // this recoloring "session".
2174   FixedRegisters.insert(VirtReg.reg);
2175   SmallVector<unsigned, 4> CurrentNewVRegs;
2176 
2177   Order.rewind();
2178   while (unsigned PhysReg = Order.next()) {
2179     DEBUG(dbgs() << "Try to assign: " << VirtReg << " to "
2180                  << PrintReg(PhysReg, TRI) << '\n');
2181     RecoloringCandidates.clear();
2182     VirtRegToPhysReg.clear();
2183     CurrentNewVRegs.clear();
2184 
2185     // It is only possible to recolor virtual register interference.
2186     if (Matrix->checkInterference(VirtReg, PhysReg) >
2187         LiveRegMatrix::IK_VirtReg) {
2188       DEBUG(dbgs() << "Some interferences are not with virtual registers.\n");
2189 
2190       continue;
2191     }
2192 
2193     // Early give up on this PhysReg if it is obvious we cannot recolor all
2194     // the interferences.
2195     if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates,
2196                                     FixedRegisters)) {
2197       DEBUG(dbgs() << "Some interferences cannot be recolored.\n");
2198       continue;
2199     }
2200 
2201     // RecoloringCandidates contains all the virtual registers that interfer
2202     // with VirtReg on PhysReg (or one of its aliases).
2203     // Enqueue them for recoloring and perform the actual recoloring.
2204     PQueue RecoloringQueue;
2205     for (SmallLISet::iterator It = RecoloringCandidates.begin(),
2206                               EndIt = RecoloringCandidates.end();
2207          It != EndIt; ++It) {
2208       unsigned ItVirtReg = (*It)->reg;
2209       enqueue(RecoloringQueue, *It);
2210       assert(VRM->hasPhys(ItVirtReg) &&
2211              "Interferences are supposed to be with allocated vairables");
2212 
2213       // Record the current allocation.
2214       VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg);
2215       // unset the related struct.
2216       Matrix->unassign(**It);
2217     }
2218 
2219     // Do as if VirtReg was assigned to PhysReg so that the underlying
2220     // recoloring has the right information about the interferes and
2221     // available colors.
2222     Matrix->assign(VirtReg, PhysReg);
2223 
2224     // Save the current recoloring state.
2225     // If we cannot recolor all the interferences, we will have to start again
2226     // at this point for the next physical register.
2227     SmallVirtRegSet SaveFixedRegisters(FixedRegisters);
2228     if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs,
2229                                 FixedRegisters, Depth)) {
2230       // Push the queued vregs into the main queue.
2231       for (unsigned NewVReg : CurrentNewVRegs)
2232         NewVRegs.push_back(NewVReg);
2233       // Do not mess up with the global assignment process.
2234       // I.e., VirtReg must be unassigned.
2235       Matrix->unassign(VirtReg);
2236       return PhysReg;
2237     }
2238 
2239     DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to "
2240                  << PrintReg(PhysReg, TRI) << '\n');
2241 
2242     // The recoloring attempt failed, undo the changes.
2243     FixedRegisters = SaveFixedRegisters;
2244     Matrix->unassign(VirtReg);
2245 
2246     // For a newly created vreg which is also in RecoloringCandidates,
2247     // don't add it to NewVRegs because its physical register will be restored
2248     // below. Other vregs in CurrentNewVRegs are created by calling
2249     // selectOrSplit and should be added into NewVRegs.
2250     for (SmallVectorImpl<unsigned>::iterator Next = CurrentNewVRegs.begin(),
2251                                              End = CurrentNewVRegs.end();
2252          Next != End; ++Next) {
2253       if (RecoloringCandidates.count(&LIS->getInterval(*Next)))
2254         continue;
2255       NewVRegs.push_back(*Next);
2256     }
2257 
2258     for (SmallLISet::iterator It = RecoloringCandidates.begin(),
2259                               EndIt = RecoloringCandidates.end();
2260          It != EndIt; ++It) {
2261       unsigned ItVirtReg = (*It)->reg;
2262       if (VRM->hasPhys(ItVirtReg))
2263         Matrix->unassign(**It);
2264       unsigned ItPhysReg = VirtRegToPhysReg[ItVirtReg];
2265       Matrix->assign(**It, ItPhysReg);
2266     }
2267   }
2268 
2269   // Last chance recoloring did not worked either, give up.
2270   return ~0u;
2271 }
2272 
2273 /// tryRecoloringCandidates - Try to assign a new color to every register
2274 /// in \RecoloringQueue.
2275 /// \p NewRegs will contain any new virtual register created during the
2276 /// recoloring process.
2277 /// \p FixedRegisters[in/out] contains all the registers that have been
2278 /// recolored.
2279 /// \return true if all virtual registers in RecoloringQueue were successfully
2280 /// recolored, false otherwise.
2281 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue,
2282                                        SmallVectorImpl<unsigned> &NewVRegs,
2283                                        SmallVirtRegSet &FixedRegisters,
2284                                        unsigned Depth) {
2285   while (!RecoloringQueue.empty()) {
2286     LiveInterval *LI = dequeue(RecoloringQueue);
2287     DEBUG(dbgs() << "Try to recolor: " << *LI << '\n');
2288     unsigned PhysReg;
2289     PhysReg = selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, Depth + 1);
2290     // When splitting happens, the live-range may actually be empty.
2291     // In that case, this is okay to continue the recoloring even
2292     // if we did not find an alternative color for it. Indeed,
2293     // there will not be anything to color for LI in the end.
2294     if (PhysReg == ~0u || (!PhysReg && !LI->empty()))
2295       return false;
2296 
2297     if (!PhysReg) {
2298       assert(LI->empty() && "Only empty live-range do not require a register");
2299       DEBUG(dbgs() << "Recoloring of " << *LI << " succeeded. Empty LI.\n");
2300       continue;
2301     }
2302     DEBUG(dbgs() << "Recoloring of " << *LI
2303                  << " succeeded with: " << PrintReg(PhysReg, TRI) << '\n');
2304 
2305     Matrix->assign(*LI, PhysReg);
2306     FixedRegisters.insert(LI->reg);
2307   }
2308   return true;
2309 }
2310 
2311 //===----------------------------------------------------------------------===//
2312 //                            Main Entry Point
2313 //===----------------------------------------------------------------------===//
2314 
2315 unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg,
2316                                  SmallVectorImpl<unsigned> &NewVRegs) {
2317   CutOffInfo = CO_None;
2318   LLVMContext &Ctx = MF->getFunction()->getContext();
2319   SmallVirtRegSet FixedRegisters;
2320   unsigned Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters);
2321   if (Reg == ~0U && (CutOffInfo != CO_None)) {
2322     uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf);
2323     if (CutOffEncountered == CO_Depth)
2324       Ctx.emitError("register allocation failed: maximum depth for recoloring "
2325                     "reached. Use -fexhaustive-register-search to skip "
2326                     "cutoffs");
2327     else if (CutOffEncountered == CO_Interf)
2328       Ctx.emitError("register allocation failed: maximum interference for "
2329                     "recoloring reached. Use -fexhaustive-register-search "
2330                     "to skip cutoffs");
2331     else if (CutOffEncountered == (CO_Depth | CO_Interf))
2332       Ctx.emitError("register allocation failed: maximum interference and "
2333                     "depth for recoloring reached. Use "
2334                     "-fexhaustive-register-search to skip cutoffs");
2335   }
2336   return Reg;
2337 }
2338 
2339 /// Using a CSR for the first time has a cost because it causes push|pop
2340 /// to be added to prologue|epilogue. Splitting a cold section of the live
2341 /// range can have lower cost than using the CSR for the first time;
2342 /// Spilling a live range in the cold path can have lower cost than using
2343 /// the CSR for the first time. Returns the physical register if we decide
2344 /// to use the CSR; otherwise return 0.
2345 unsigned RAGreedy::tryAssignCSRFirstTime(LiveInterval &VirtReg,
2346                                          AllocationOrder &Order,
2347                                          unsigned PhysReg,
2348                                          unsigned &CostPerUseLimit,
2349                                          SmallVectorImpl<unsigned> &NewVRegs) {
2350   if (getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) {
2351     // We choose spill over using the CSR for the first time if the spill cost
2352     // is lower than CSRCost.
2353     SA->analyze(&VirtReg);
2354     if (calcSpillCost() >= CSRCost)
2355       return PhysReg;
2356 
2357     // We are going to spill, set CostPerUseLimit to 1 to make sure that
2358     // we will not use a callee-saved register in tryEvict.
2359     CostPerUseLimit = 1;
2360     return 0;
2361   }
2362   if (getStage(VirtReg) < RS_Split) {
2363     // We choose pre-splitting over using the CSR for the first time if
2364     // the cost of splitting is lower than CSRCost.
2365     SA->analyze(&VirtReg);
2366     unsigned NumCands = 0;
2367     BlockFrequency BestCost = CSRCost; // Don't modify CSRCost.
2368     unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost,
2369                                                  NumCands, true /*IgnoreCSR*/);
2370     if (BestCand == NoCand)
2371       // Use the CSR if we can't find a region split below CSRCost.
2372       return PhysReg;
2373 
2374     // Perform the actual pre-splitting.
2375     doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs);
2376     return 0;
2377   }
2378   return PhysReg;
2379 }
2380 
2381 void RAGreedy::aboutToRemoveInterval(LiveInterval &LI) {
2382   // Do not keep invalid information around.
2383   SetOfBrokenHints.remove(&LI);
2384 }
2385 
2386 void RAGreedy::initializeCSRCost() {
2387   // We use the larger one out of the command-line option and the value report
2388   // by TRI.
2389   CSRCost = BlockFrequency(
2390       std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost()));
2391   if (!CSRCost.getFrequency())
2392     return;
2393 
2394   // Raw cost is relative to Entry == 2^14; scale it appropriately.
2395   uint64_t ActualEntry = MBFI->getEntryFreq();
2396   if (!ActualEntry) {
2397     CSRCost = 0;
2398     return;
2399   }
2400   uint64_t FixedEntry = 1 << 14;
2401   if (ActualEntry < FixedEntry)
2402     CSRCost *= BranchProbability(ActualEntry, FixedEntry);
2403   else if (ActualEntry <= UINT32_MAX)
2404     // Invert the fraction and divide.
2405     CSRCost /= BranchProbability(FixedEntry, ActualEntry);
2406   else
2407     // Can't use BranchProbability in general, since it takes 32-bit numbers.
2408     CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry);
2409 }
2410 
2411 /// \brief Collect the hint info for \p Reg.
2412 /// The results are stored into \p Out.
2413 /// \p Out is not cleared before being populated.
2414 void RAGreedy::collectHintInfo(unsigned Reg, HintsInfo &Out) {
2415   for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) {
2416     if (!Instr.isFullCopy())
2417       continue;
2418     // Look for the other end of the copy.
2419     unsigned OtherReg = Instr.getOperand(0).getReg();
2420     if (OtherReg == Reg) {
2421       OtherReg = Instr.getOperand(1).getReg();
2422       if (OtherReg == Reg)
2423         continue;
2424     }
2425     // Get the current assignment.
2426     unsigned OtherPhysReg = TargetRegisterInfo::isPhysicalRegister(OtherReg)
2427                                 ? OtherReg
2428                                 : VRM->getPhys(OtherReg);
2429     // Push the collected information.
2430     Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg,
2431                            OtherPhysReg));
2432   }
2433 }
2434 
2435 /// \brief Using the given \p List, compute the cost of the broken hints if
2436 /// \p PhysReg was used.
2437 /// \return The cost of \p List for \p PhysReg.
2438 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List,
2439                                            unsigned PhysReg) {
2440   BlockFrequency Cost = 0;
2441   for (const HintInfo &Info : List) {
2442     if (Info.PhysReg != PhysReg)
2443       Cost += Info.Freq;
2444   }
2445   return Cost;
2446 }
2447 
2448 /// \brief Using the register assigned to \p VirtReg, try to recolor
2449 /// all the live ranges that are copy-related with \p VirtReg.
2450 /// The recoloring is then propagated to all the live-ranges that have
2451 /// been recolored and so on, until no more copies can be coalesced or
2452 /// it is not profitable.
2453 /// For a given live range, profitability is determined by the sum of the
2454 /// frequencies of the non-identity copies it would introduce with the old
2455 /// and new register.
2456 void RAGreedy::tryHintRecoloring(LiveInterval &VirtReg) {
2457   // We have a broken hint, check if it is possible to fix it by
2458   // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted
2459   // some register and PhysReg may be available for the other live-ranges.
2460   SmallSet<unsigned, 4> Visited;
2461   SmallVector<unsigned, 2> RecoloringCandidates;
2462   HintsInfo Info;
2463   unsigned Reg = VirtReg.reg;
2464   unsigned PhysReg = VRM->getPhys(Reg);
2465   // Start the recoloring algorithm from the input live-interval, then
2466   // it will propagate to the ones that are copy-related with it.
2467   Visited.insert(Reg);
2468   RecoloringCandidates.push_back(Reg);
2469 
2470   DEBUG(dbgs() << "Trying to reconcile hints for: " << PrintReg(Reg, TRI) << '('
2471                << PrintReg(PhysReg, TRI) << ")\n");
2472 
2473   do {
2474     Reg = RecoloringCandidates.pop_back_val();
2475 
2476     // We cannot recolor physical register.
2477     if (TargetRegisterInfo::isPhysicalRegister(Reg))
2478       continue;
2479 
2480     assert(VRM->hasPhys(Reg) && "We have unallocated variable!!");
2481 
2482     // Get the live interval mapped with this virtual register to be able
2483     // to check for the interference with the new color.
2484     LiveInterval &LI = LIS->getInterval(Reg);
2485     unsigned CurrPhys = VRM->getPhys(Reg);
2486     // Check that the new color matches the register class constraints and
2487     // that it is free for this live range.
2488     if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) ||
2489                                 Matrix->checkInterference(LI, PhysReg)))
2490       continue;
2491 
2492     DEBUG(dbgs() << PrintReg(Reg, TRI) << '(' << PrintReg(CurrPhys, TRI)
2493                  << ") is recolorable.\n");
2494 
2495     // Gather the hint info.
2496     Info.clear();
2497     collectHintInfo(Reg, Info);
2498     // Check if recoloring the live-range will increase the cost of the
2499     // non-identity copies.
2500     if (CurrPhys != PhysReg) {
2501       DEBUG(dbgs() << "Checking profitability:\n");
2502       BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys);
2503       BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg);
2504       DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency()
2505                    << "\nNew Cost: " << NewCopiesCost.getFrequency() << '\n');
2506       if (OldCopiesCost < NewCopiesCost) {
2507         DEBUG(dbgs() << "=> Not profitable.\n");
2508         continue;
2509       }
2510       // At this point, the cost is either cheaper or equal. If it is
2511       // equal, we consider this is profitable because it may expose
2512       // more recoloring opportunities.
2513       DEBUG(dbgs() << "=> Profitable.\n");
2514       // Recolor the live-range.
2515       Matrix->unassign(LI);
2516       Matrix->assign(LI, PhysReg);
2517     }
2518     // Push all copy-related live-ranges to keep reconciling the broken
2519     // hints.
2520     for (const HintInfo &HI : Info) {
2521       if (Visited.insert(HI.Reg).second)
2522         RecoloringCandidates.push_back(HI.Reg);
2523     }
2524   } while (!RecoloringCandidates.empty());
2525 }
2526 
2527 /// \brief Try to recolor broken hints.
2528 /// Broken hints may be repaired by recoloring when an evicted variable
2529 /// freed up a register for a larger live-range.
2530 /// Consider the following example:
2531 /// BB1:
2532 ///   a =
2533 ///   b =
2534 /// BB2:
2535 ///   ...
2536 ///   = b
2537 ///   = a
2538 /// Let us assume b gets split:
2539 /// BB1:
2540 ///   a =
2541 ///   b =
2542 /// BB2:
2543 ///   c = b
2544 ///   ...
2545 ///   d = c
2546 ///   = d
2547 ///   = a
2548 /// Because of how the allocation work, b, c, and d may be assigned different
2549 /// colors. Now, if a gets evicted later:
2550 /// BB1:
2551 ///   a =
2552 ///   st a, SpillSlot
2553 ///   b =
2554 /// BB2:
2555 ///   c = b
2556 ///   ...
2557 ///   d = c
2558 ///   = d
2559 ///   e = ld SpillSlot
2560 ///   = e
2561 /// This is likely that we can assign the same register for b, c, and d,
2562 /// getting rid of 2 copies.
2563 void RAGreedy::tryHintsRecoloring() {
2564   for (LiveInterval *LI : SetOfBrokenHints) {
2565     assert(TargetRegisterInfo::isVirtualRegister(LI->reg) &&
2566            "Recoloring is possible only for virtual registers");
2567     // Some dead defs may be around (e.g., because of debug uses).
2568     // Ignore those.
2569     if (!VRM->hasPhys(LI->reg))
2570       continue;
2571     tryHintRecoloring(*LI);
2572   }
2573 }
2574 
2575 unsigned RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg,
2576                                      SmallVectorImpl<unsigned> &NewVRegs,
2577                                      SmallVirtRegSet &FixedRegisters,
2578                                      unsigned Depth) {
2579   unsigned CostPerUseLimit = ~0u;
2580   // First try assigning a free register.
2581   AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo, Matrix);
2582   if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs)) {
2583     // When NewVRegs is not empty, we may have made decisions such as evicting
2584     // a virtual register, go with the earlier decisions and use the physical
2585     // register.
2586     if (CSRCost.getFrequency() && isUnusedCalleeSavedReg(PhysReg) &&
2587         NewVRegs.empty()) {
2588       unsigned CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg,
2589                                               CostPerUseLimit, NewVRegs);
2590       if (CSRReg || !NewVRegs.empty())
2591         // Return now if we decide to use a CSR or create new vregs due to
2592         // pre-splitting.
2593         return CSRReg;
2594     } else
2595       return PhysReg;
2596   }
2597 
2598   LiveRangeStage Stage = getStage(VirtReg);
2599   DEBUG(dbgs() << StageName[Stage]
2600                << " Cascade " << ExtraRegInfo[VirtReg.reg].Cascade << '\n');
2601 
2602   // Try to evict a less worthy live range, but only for ranges from the primary
2603   // queue. The RS_Split ranges already failed to do this, and they should not
2604   // get a second chance until they have been split.
2605   if (Stage != RS_Split)
2606     if (unsigned PhysReg =
2607             tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit)) {
2608       unsigned Hint = MRI->getSimpleHint(VirtReg.reg);
2609       // If VirtReg has a hint and that hint is broken record this
2610       // virtual register as a recoloring candidate for broken hint.
2611       // Indeed, since we evicted a variable in its neighborhood it is
2612       // likely we can at least partially recolor some of the
2613       // copy-related live-ranges.
2614       if (Hint && Hint != PhysReg)
2615         SetOfBrokenHints.insert(&VirtReg);
2616       return PhysReg;
2617     }
2618 
2619   assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs");
2620 
2621   // The first time we see a live range, don't try to split or spill.
2622   // Wait until the second time, when all smaller ranges have been allocated.
2623   // This gives a better picture of the interference to split around.
2624   if (Stage < RS_Split) {
2625     setStage(VirtReg, RS_Split);
2626     DEBUG(dbgs() << "wait for second round\n");
2627     NewVRegs.push_back(VirtReg.reg);
2628     return 0;
2629   }
2630 
2631   if (Stage < RS_Spill) {
2632     // Try splitting VirtReg or interferences.
2633     unsigned NewVRegSizeBefore = NewVRegs.size();
2634     unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs);
2635     if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore))
2636       return PhysReg;
2637   }
2638 
2639   // If we couldn't allocate a register from spilling, there is probably some
2640   // invalid inline assembly. The base class will report it.
2641   if (Stage >= RS_Done || !VirtReg.isSpillable())
2642     return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters,
2643                                    Depth);
2644 
2645   // Finally spill VirtReg itself.
2646   if (EnableDeferredSpilling && getStage(VirtReg) < RS_Memory) {
2647     // TODO: This is experimental and in particular, we do not model
2648     // the live range splitting done by spilling correctly.
2649     // We would need a deep integration with the spiller to do the
2650     // right thing here. Anyway, that is still good for early testing.
2651     setStage(VirtReg, RS_Memory);
2652     DEBUG(dbgs() << "Do as if this register is in memory\n");
2653     NewVRegs.push_back(VirtReg.reg);
2654   } else {
2655     NamedRegionTimer T("spill", "Spiller", TimerGroupName,
2656                        TimerGroupDescription, TimePassesIsEnabled);
2657     LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2658     spiller().spill(LRE);
2659     setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done);
2660 
2661     if (VerifyEnabled)
2662       MF->verify(this, "After spilling");
2663   }
2664 
2665   // The live virtual register requesting allocation was spilled, so tell
2666   // the caller not to allocate anything during this round.
2667   return 0;
2668 }
2669 
2670 void RAGreedy::reportNumberOfSplillsReloads(MachineLoop *L, unsigned &Reloads,
2671                                             unsigned &FoldedReloads,
2672                                             unsigned &Spills,
2673                                             unsigned &FoldedSpills) {
2674   Reloads = 0;
2675   FoldedReloads = 0;
2676   Spills = 0;
2677   FoldedSpills = 0;
2678 
2679   // Sum up the spill and reloads in subloops.
2680   for (MachineLoop *SubLoop : *L) {
2681     unsigned SubReloads;
2682     unsigned SubFoldedReloads;
2683     unsigned SubSpills;
2684     unsigned SubFoldedSpills;
2685 
2686     reportNumberOfSplillsReloads(SubLoop, SubReloads, SubFoldedReloads,
2687                                  SubSpills, SubFoldedSpills);
2688     Reloads += SubReloads;
2689     FoldedReloads += SubFoldedReloads;
2690     Spills += SubSpills;
2691     FoldedSpills += SubFoldedSpills;
2692   }
2693 
2694   const MachineFrameInfo &MFI = MF->getFrameInfo();
2695   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
2696   int FI;
2697 
2698   for (MachineBasicBlock *MBB : L->getBlocks())
2699     // Handle blocks that were not included in subloops.
2700     if (Loops->getLoopFor(MBB) == L)
2701       for (MachineInstr &MI : *MBB) {
2702         const MachineMemOperand *MMO;
2703 
2704         if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI))
2705           ++Reloads;
2706         else if (TII->hasLoadFromStackSlot(MI, MMO, FI) &&
2707                  MFI.isSpillSlotObjectIndex(FI))
2708           ++FoldedReloads;
2709         else if (TII->isStoreToStackSlot(MI, FI) &&
2710                  MFI.isSpillSlotObjectIndex(FI))
2711           ++Spills;
2712         else if (TII->hasStoreToStackSlot(MI, MMO, FI) &&
2713                  MFI.isSpillSlotObjectIndex(FI))
2714           ++FoldedSpills;
2715       }
2716 
2717   if (Reloads || FoldedReloads || Spills || FoldedSpills) {
2718     using namespace ore;
2719 
2720     MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReload",
2721                                       L->getStartLoc(), L->getHeader());
2722     if (Spills)
2723       R << NV("NumSpills", Spills) << " spills ";
2724     if (FoldedSpills)
2725       R << NV("NumFoldedSpills", FoldedSpills) << " folded spills ";
2726     if (Reloads)
2727       R << NV("NumReloads", Reloads) << " reloads ";
2728     if (FoldedReloads)
2729       R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads ";
2730     ORE->emit(R << "generated in loop");
2731   }
2732 }
2733 
2734 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
2735   DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
2736                << "********** Function: " << mf.getName() << '\n');
2737 
2738   MF = &mf;
2739   TRI = MF->getSubtarget().getRegisterInfo();
2740   TII = MF->getSubtarget().getInstrInfo();
2741   RCI.runOnMachineFunction(mf);
2742 
2743   EnableLocalReassign = EnableLocalReassignment ||
2744                         MF->getSubtarget().enableRALocalReassignment(
2745                             MF->getTarget().getOptLevel());
2746 
2747   if (VerifyEnabled)
2748     MF->verify(this, "Before greedy register allocator");
2749 
2750   RegAllocBase::init(getAnalysis<VirtRegMap>(),
2751                      getAnalysis<LiveIntervals>(),
2752                      getAnalysis<LiveRegMatrix>());
2753   Indexes = &getAnalysis<SlotIndexes>();
2754   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
2755   DomTree = &getAnalysis<MachineDominatorTree>();
2756   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
2757   SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
2758   Loops = &getAnalysis<MachineLoopInfo>();
2759   Bundles = &getAnalysis<EdgeBundles>();
2760   SpillPlacer = &getAnalysis<SpillPlacement>();
2761   DebugVars = &getAnalysis<LiveDebugVariables>();
2762   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2763 
2764   initializeCSRCost();
2765 
2766   calculateSpillWeightsAndHints(*LIS, mf, VRM, *Loops, *MBFI);
2767 
2768   DEBUG(LIS->dump());
2769 
2770   SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
2771   SE.reset(new SplitEditor(*SA, *AA, *LIS, *VRM, *DomTree, *MBFI));
2772   ExtraRegInfo.clear();
2773   ExtraRegInfo.resize(MRI->getNumVirtRegs());
2774   NextCascade = 1;
2775   IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI);
2776   GlobalCand.resize(32);  // This will grow as needed.
2777   SetOfBrokenHints.clear();
2778 
2779   allocatePhysRegs();
2780   tryHintsRecoloring();
2781   postOptimization();
2782   reportNumberOfSplillsReloads();
2783 
2784   releaseMemory();
2785   return true;
2786 }
2787