1 //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the RAGreedy function pass for register allocation in
10 // optimized builds.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "AllocationOrder.h"
15 #include "InterferenceCache.h"
16 #include "LiveDebugVariables.h"
17 #include "RegAllocBase.h"
18 #include "SpillPlacement.h"
19 #include "SplitKit.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/BitVector.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/IndexedMap.h"
24 #include "llvm/ADT/MapVector.h"
25 #include "llvm/ADT/SetVector.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallSet.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/Analysis/AliasAnalysis.h"
32 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
33 #include "llvm/CodeGen/CalcSpillWeights.h"
34 #include "llvm/CodeGen/EdgeBundles.h"
35 #include "llvm/CodeGen/LiveInterval.h"
36 #include "llvm/CodeGen/LiveIntervalUnion.h"
37 #include "llvm/CodeGen/LiveIntervals.h"
38 #include "llvm/CodeGen/LiveRangeEdit.h"
39 #include "llvm/CodeGen/LiveRegMatrix.h"
40 #include "llvm/CodeGen/LiveStacks.h"
41 #include "llvm/CodeGen/MachineBasicBlock.h"
42 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
43 #include "llvm/CodeGen/MachineDominators.h"
44 #include "llvm/CodeGen/MachineFrameInfo.h"
45 #include "llvm/CodeGen/MachineFunction.h"
46 #include "llvm/CodeGen/MachineFunctionPass.h"
47 #include "llvm/CodeGen/MachineInstr.h"
48 #include "llvm/CodeGen/MachineLoopInfo.h"
49 #include "llvm/CodeGen/MachineOperand.h"
50 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
51 #include "llvm/CodeGen/MachineRegisterInfo.h"
52 #include "llvm/CodeGen/RegAllocRegistry.h"
53 #include "llvm/CodeGen/RegisterClassInfo.h"
54 #include "llvm/CodeGen/SlotIndexes.h"
55 #include "llvm/CodeGen/Spiller.h"
56 #include "llvm/CodeGen/TargetInstrInfo.h"
57 #include "llvm/CodeGen/TargetRegisterInfo.h"
58 #include "llvm/CodeGen/TargetSubtargetInfo.h"
59 #include "llvm/CodeGen/VirtRegMap.h"
60 #include "llvm/IR/Function.h"
61 #include "llvm/IR/LLVMContext.h"
62 #include "llvm/MC/MCRegisterInfo.h"
63 #include "llvm/Pass.h"
64 #include "llvm/Support/BlockFrequency.h"
65 #include "llvm/Support/BranchProbability.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/Debug.h"
68 #include "llvm/Support/MathExtras.h"
69 #include "llvm/Support/Timer.h"
70 #include "llvm/Support/raw_ostream.h"
71 #include "llvm/Target/TargetMachine.h"
72 #include "llvm/IR/DebugInfoMetadata.h"
73 #include <algorithm>
74 #include <cassert>
75 #include <cstdint>
76 #include <memory>
77 #include <queue>
78 #include <tuple>
79 #include <utility>
80 
81 using namespace llvm;
82 
83 #define DEBUG_TYPE "regalloc"
84 
85 STATISTIC(NumGlobalSplits, "Number of split global live ranges");
86 STATISTIC(NumLocalSplits,  "Number of split local live ranges");
87 STATISTIC(NumEvicted,      "Number of interferences evicted");
88 
89 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode(
90     "split-spill-mode", cl::Hidden,
91     cl::desc("Spill mode for splitting live ranges"),
92     cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"),
93                clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"),
94                clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")),
95     cl::init(SplitEditor::SM_Speed));
96 
97 static cl::opt<unsigned>
98 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden,
99                              cl::desc("Last chance recoloring max depth"),
100                              cl::init(5));
101 
102 static cl::opt<unsigned> LastChanceRecoloringMaxInterference(
103     "lcr-max-interf", cl::Hidden,
104     cl::desc("Last chance recoloring maximum number of considered"
105              " interference at a time"),
106     cl::init(8));
107 
108 static cl::opt<bool> ExhaustiveSearch(
109     "exhaustive-register-search", cl::NotHidden,
110     cl::desc("Exhaustive Search for registers bypassing the depth "
111              "and interference cutoffs of last chance recoloring"),
112     cl::Hidden);
113 
114 static cl::opt<bool> EnableLocalReassignment(
115     "enable-local-reassign", cl::Hidden,
116     cl::desc("Local reassignment can yield better allocation decisions, but "
117              "may be compile time intensive"),
118     cl::init(false));
119 
120 static cl::opt<bool> EnableDeferredSpilling(
121     "enable-deferred-spilling", cl::Hidden,
122     cl::desc("Instead of spilling a variable right away, defer the actual "
123              "code insertion to the end of the allocation. That way the "
124              "allocator might still find a suitable coloring for this "
125              "variable because of other evicted variables."),
126     cl::init(false));
127 
128 // FIXME: Find a good default for this flag and remove the flag.
129 static cl::opt<unsigned>
130 CSRFirstTimeCost("regalloc-csr-first-time-cost",
131               cl::desc("Cost for first time use of callee-saved register."),
132               cl::init(0), cl::Hidden);
133 
134 static cl::opt<bool> ConsiderLocalIntervalCost(
135     "consider-local-interval-cost", cl::Hidden,
136     cl::desc("Consider the cost of local intervals created by a split "
137              "candidate when choosing the best split candidate."),
138     cl::init(false));
139 
140 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
141                                        createGreedyRegisterAllocator);
142 
143 namespace {
144 
145 class RAGreedy : public MachineFunctionPass,
146                  public RegAllocBase,
147                  private LiveRangeEdit::Delegate {
148   // Convenient shortcuts.
149   using PQueue = std::priority_queue<std::pair<unsigned, unsigned>>;
150   using SmallLISet = SmallPtrSet<LiveInterval *, 4>;
151   using SmallVirtRegSet = SmallSet<Register, 16>;
152 
153   // context
154   MachineFunction *MF;
155 
156   // Shortcuts to some useful interface.
157   const TargetInstrInfo *TII;
158   const TargetRegisterInfo *TRI;
159   RegisterClassInfo RCI;
160 
161   // analyses
162   SlotIndexes *Indexes;
163   MachineBlockFrequencyInfo *MBFI;
164   MachineDominatorTree *DomTree;
165   MachineLoopInfo *Loops;
166   MachineOptimizationRemarkEmitter *ORE;
167   EdgeBundles *Bundles;
168   SpillPlacement *SpillPlacer;
169   LiveDebugVariables *DebugVars;
170   AliasAnalysis *AA;
171 
172   // state
173   std::unique_ptr<Spiller> SpillerInstance;
174   PQueue Queue;
175   unsigned NextCascade;
176   std::unique_ptr<VirtRegAuxInfo> VRAI;
177 
178   // Live ranges pass through a number of stages as we try to allocate them.
179   // Some of the stages may also create new live ranges:
180   //
181   // - Region splitting.
182   // - Per-block splitting.
183   // - Local splitting.
184   // - Spilling.
185   //
186   // Ranges produced by one of the stages skip the previous stages when they are
187   // dequeued. This improves performance because we can skip interference checks
188   // that are unlikely to give any results. It also guarantees that the live
189   // range splitting algorithm terminates, something that is otherwise hard to
190   // ensure.
191   enum LiveRangeStage {
192     /// Newly created live range that has never been queued.
193     RS_New,
194 
195     /// Only attempt assignment and eviction. Then requeue as RS_Split.
196     RS_Assign,
197 
198     /// Attempt live range splitting if assignment is impossible.
199     RS_Split,
200 
201     /// Attempt more aggressive live range splitting that is guaranteed to make
202     /// progress.  This is used for split products that may not be making
203     /// progress.
204     RS_Split2,
205 
206     /// Live range will be spilled.  No more splitting will be attempted.
207     RS_Spill,
208 
209 
210     /// Live range is in memory. Because of other evictions, it might get moved
211     /// in a register in the end.
212     RS_Memory,
213 
214     /// There is nothing more we can do to this live range.  Abort compilation
215     /// if it can't be assigned.
216     RS_Done
217   };
218 
219   // Enum CutOffStage to keep a track whether the register allocation failed
220   // because of the cutoffs encountered in last chance recoloring.
221   // Note: This is used as bitmask. New value should be next power of 2.
222   enum CutOffStage {
223     // No cutoffs encountered
224     CO_None = 0,
225 
226     // lcr-max-depth cutoff encountered
227     CO_Depth = 1,
228 
229     // lcr-max-interf cutoff encountered
230     CO_Interf = 2
231   };
232 
233   uint8_t CutOffInfo;
234 
235 #ifndef NDEBUG
236   static const char *const StageName[];
237 #endif
238 
239   // RegInfo - Keep additional information about each live range.
240   struct RegInfo {
241     LiveRangeStage Stage = RS_New;
242 
243     // Cascade - Eviction loop prevention. See canEvictInterference().
244     unsigned Cascade = 0;
245 
246     RegInfo() = default;
247   };
248 
249   IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo;
250 
251   LiveRangeStage getStage(const LiveInterval &VirtReg) const {
252     return ExtraRegInfo[VirtReg.reg()].Stage;
253   }
254 
255   void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) {
256     ExtraRegInfo.resize(MRI->getNumVirtRegs());
257     ExtraRegInfo[VirtReg.reg()].Stage = Stage;
258   }
259 
260   template<typename Iterator>
261   void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) {
262     ExtraRegInfo.resize(MRI->getNumVirtRegs());
263     for (;Begin != End; ++Begin) {
264       Register Reg = *Begin;
265       if (ExtraRegInfo[Reg].Stage == RS_New)
266         ExtraRegInfo[Reg].Stage = NewStage;
267     }
268   }
269 
270   /// Cost of evicting interference.
271   struct EvictionCost {
272     unsigned BrokenHints = 0; ///< Total number of broken hints.
273     float MaxWeight = 0;      ///< Maximum spill weight evicted.
274 
275     EvictionCost() = default;
276 
277     bool isMax() const { return BrokenHints == ~0u; }
278 
279     void setMax() { BrokenHints = ~0u; }
280 
281     void setBrokenHints(unsigned NHints) { BrokenHints = NHints; }
282 
283     bool operator<(const EvictionCost &O) const {
284       return std::tie(BrokenHints, MaxWeight) <
285              std::tie(O.BrokenHints, O.MaxWeight);
286     }
287   };
288 
289   /// EvictionTrack - Keeps track of past evictions in order to optimize region
290   /// split decision.
291   class EvictionTrack {
292 
293   public:
294     using EvictorInfo =
295         std::pair<Register /* evictor */, MCRegister /* physreg */>;
296     using EvicteeInfo = llvm::DenseMap<Register /* evictee */, EvictorInfo>;
297 
298   private:
299     /// Each Vreg that has been evicted in the last stage of selectOrSplit will
300     /// be mapped to the evictor Vreg and the PhysReg it was evicted from.
301     EvicteeInfo Evictees;
302 
303   public:
304     /// Clear all eviction information.
305     void clear() { Evictees.clear(); }
306 
307     ///  Clear eviction information for the given evictee Vreg.
308     /// E.g. when Vreg get's a new allocation, the old eviction info is no
309     /// longer relevant.
310     /// \param Evictee The evictee Vreg for whom we want to clear collected
311     /// eviction info.
312     void clearEvicteeInfo(Register Evictee) { Evictees.erase(Evictee); }
313 
314     /// Track new eviction.
315     /// The Evictor vreg has evicted the Evictee vreg from Physreg.
316     /// \param PhysReg The physical register Evictee was evicted from.
317     /// \param Evictor The evictor Vreg that evicted Evictee.
318     /// \param Evictee The evictee Vreg.
319     void addEviction(MCRegister PhysReg, Register Evictor, Register Evictee) {
320       Evictees[Evictee].first = Evictor;
321       Evictees[Evictee].second = PhysReg;
322     }
323 
324     /// Return the Evictor Vreg which evicted Evictee Vreg from PhysReg.
325     /// \param Evictee The evictee vreg.
326     /// \return The Evictor vreg which evicted Evictee vreg from PhysReg. 0 if
327     /// nobody has evicted Evictee from PhysReg.
328     EvictorInfo getEvictor(Register Evictee) {
329       if (Evictees.count(Evictee)) {
330         return Evictees[Evictee];
331       }
332 
333       return EvictorInfo(0, 0);
334     }
335   };
336 
337   // Keeps track of past evictions in order to optimize region split decision.
338   EvictionTrack LastEvicted;
339 
340   // splitting state.
341   std::unique_ptr<SplitAnalysis> SA;
342   std::unique_ptr<SplitEditor> SE;
343 
344   /// Cached per-block interference maps
345   InterferenceCache IntfCache;
346 
347   /// All basic blocks where the current register has uses.
348   SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints;
349 
350   /// Global live range splitting candidate info.
351   struct GlobalSplitCandidate {
352     // Register intended for assignment, or 0.
353     MCRegister PhysReg;
354 
355     // SplitKit interval index for this candidate.
356     unsigned IntvIdx;
357 
358     // Interference for PhysReg.
359     InterferenceCache::Cursor Intf;
360 
361     // Bundles where this candidate should be live.
362     BitVector LiveBundles;
363     SmallVector<unsigned, 8> ActiveBlocks;
364 
365     void reset(InterferenceCache &Cache, MCRegister Reg) {
366       PhysReg = Reg;
367       IntvIdx = 0;
368       Intf.setPhysReg(Cache, Reg);
369       LiveBundles.clear();
370       ActiveBlocks.clear();
371     }
372 
373     // Set B[I] = C for every live bundle where B[I] was NoCand.
374     unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) {
375       unsigned Count = 0;
376       for (unsigned I : LiveBundles.set_bits())
377         if (B[I] == NoCand) {
378           B[I] = C;
379           Count++;
380         }
381       return Count;
382     }
383   };
384 
385   /// Candidate info for each PhysReg in AllocationOrder.
386   /// This vector never shrinks, but grows to the size of the largest register
387   /// class.
388   SmallVector<GlobalSplitCandidate, 32> GlobalCand;
389 
390   enum : unsigned { NoCand = ~0u };
391 
392   /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to
393   /// NoCand which indicates the stack interval.
394   SmallVector<unsigned, 32> BundleCand;
395 
396   /// Callee-save register cost, calculated once per machine function.
397   BlockFrequency CSRCost;
398 
399   /// Run or not the local reassignment heuristic. This information is
400   /// obtained from the TargetSubtargetInfo.
401   bool EnableLocalReassign;
402 
403   /// Enable or not the consideration of the cost of local intervals created
404   /// by a split candidate when choosing the best split candidate.
405   bool EnableAdvancedRASplitCost;
406 
407   /// Set of broken hints that may be reconciled later because of eviction.
408   SmallSetVector<LiveInterval *, 8> SetOfBrokenHints;
409 
410   /// The register cost values. This list will be recreated for each Machine
411   /// Function
412   ArrayRef<uint8_t> RegCosts;
413 
414 public:
415   RAGreedy(const RegClassFilterFunc F = allocateAllRegClasses);
416 
417   /// Return the pass name.
418   StringRef getPassName() const override { return "Greedy Register Allocator"; }
419 
420   /// RAGreedy analysis usage.
421   void getAnalysisUsage(AnalysisUsage &AU) const override;
422   void releaseMemory() override;
423   Spiller &spiller() override { return *SpillerInstance; }
424   void enqueueImpl(LiveInterval *LI) override;
425   LiveInterval *dequeue() override;
426   MCRegister selectOrSplit(LiveInterval &,
427                            SmallVectorImpl<Register> &) override;
428   void aboutToRemoveInterval(LiveInterval &) override;
429 
430   /// Perform register allocation.
431   bool runOnMachineFunction(MachineFunction &mf) override;
432 
433   MachineFunctionProperties getRequiredProperties() const override {
434     return MachineFunctionProperties().set(
435         MachineFunctionProperties::Property::NoPHIs);
436   }
437 
438   MachineFunctionProperties getClearedProperties() const override {
439     return MachineFunctionProperties().set(
440       MachineFunctionProperties::Property::IsSSA);
441   }
442 
443   static char ID;
444 
445 private:
446   MCRegister selectOrSplitImpl(LiveInterval &, SmallVectorImpl<Register> &,
447                                SmallVirtRegSet &, unsigned = 0);
448 
449   bool LRE_CanEraseVirtReg(Register) override;
450   void LRE_WillShrinkVirtReg(Register) override;
451   void LRE_DidCloneVirtReg(Register, Register) override;
452   void enqueue(PQueue &CurQueue, LiveInterval *LI);
453   LiveInterval *dequeue(PQueue &CurQueue);
454 
455   BlockFrequency calcSpillCost();
456   bool addSplitConstraints(InterferenceCache::Cursor, BlockFrequency&);
457   bool addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>);
458   bool growRegion(GlobalSplitCandidate &Cand);
459   bool splitCanCauseEvictionChain(Register Evictee, GlobalSplitCandidate &Cand,
460                                   unsigned BBNumber,
461                                   const AllocationOrder &Order);
462   bool splitCanCauseLocalSpill(unsigned VirtRegToSplit,
463                                GlobalSplitCandidate &Cand, unsigned BBNumber,
464                                const AllocationOrder &Order);
465   BlockFrequency calcGlobalSplitCost(GlobalSplitCandidate &,
466                                      const AllocationOrder &Order,
467                                      bool *CanCauseEvictionChain);
468   bool calcCompactRegion(GlobalSplitCandidate&);
469   void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>);
470   void calcGapWeights(MCRegister, SmallVectorImpl<float> &);
471   Register canReassign(LiveInterval &VirtReg, Register PrevReg) const;
472   bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool) const;
473   bool canEvictInterference(LiveInterval &, MCRegister, bool, EvictionCost &,
474                             const SmallVirtRegSet &) const;
475   bool canEvictInterferenceInRange(const LiveInterval &VirtReg,
476                                    MCRegister PhysReg, SlotIndex Start,
477                                    SlotIndex End, EvictionCost &MaxCost) const;
478   MCRegister getCheapestEvicteeWeight(const AllocationOrder &Order,
479                                       const LiveInterval &VirtReg,
480                                       SlotIndex Start, SlotIndex End,
481                                       float *BestEvictWeight) const;
482   void evictInterference(LiveInterval &, MCRegister,
483                          SmallVectorImpl<Register> &);
484   bool mayRecolorAllInterferences(MCRegister PhysReg, LiveInterval &VirtReg,
485                                   SmallLISet &RecoloringCandidates,
486                                   const SmallVirtRegSet &FixedRegisters);
487 
488   MCRegister tryAssign(LiveInterval&, AllocationOrder&,
489                      SmallVectorImpl<Register>&,
490                      const SmallVirtRegSet&);
491   MCRegister tryEvict(LiveInterval &, AllocationOrder &,
492                     SmallVectorImpl<Register> &, uint8_t,
493                     const SmallVirtRegSet &);
494   MCRegister tryRegionSplit(LiveInterval &, AllocationOrder &,
495                             SmallVectorImpl<Register> &);
496   /// Calculate cost of region splitting.
497   unsigned calculateRegionSplitCost(LiveInterval &VirtReg,
498                                     AllocationOrder &Order,
499                                     BlockFrequency &BestCost,
500                                     unsigned &NumCands, bool IgnoreCSR,
501                                     bool *CanCauseEvictionChain = nullptr);
502   /// Perform region splitting.
503   unsigned doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
504                          bool HasCompact,
505                          SmallVectorImpl<Register> &NewVRegs);
506   /// Check other options before using a callee-saved register for the first
507   /// time.
508   MCRegister tryAssignCSRFirstTime(LiveInterval &VirtReg,
509                                    AllocationOrder &Order, MCRegister PhysReg,
510                                    uint8_t &CostPerUseLimit,
511                                    SmallVectorImpl<Register> &NewVRegs);
512   void initializeCSRCost();
513   unsigned tryBlockSplit(LiveInterval&, AllocationOrder&,
514                          SmallVectorImpl<Register>&);
515   unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&,
516                                SmallVectorImpl<Register>&);
517   unsigned tryLocalSplit(LiveInterval&, AllocationOrder&,
518     SmallVectorImpl<Register>&);
519   unsigned trySplit(LiveInterval&, AllocationOrder&,
520                     SmallVectorImpl<Register>&,
521                     const SmallVirtRegSet&);
522   unsigned tryLastChanceRecoloring(LiveInterval &, AllocationOrder &,
523                                    SmallVectorImpl<Register> &,
524                                    SmallVirtRegSet &, unsigned);
525   bool tryRecoloringCandidates(PQueue &, SmallVectorImpl<Register> &,
526                                SmallVirtRegSet &, unsigned);
527   void tryHintRecoloring(LiveInterval &);
528   void tryHintsRecoloring();
529 
530   /// Model the information carried by one end of a copy.
531   struct HintInfo {
532     /// The frequency of the copy.
533     BlockFrequency Freq;
534     /// The virtual register or physical register.
535     Register Reg;
536     /// Its currently assigned register.
537     /// In case of a physical register Reg == PhysReg.
538     MCRegister PhysReg;
539 
540     HintInfo(BlockFrequency Freq, Register Reg, MCRegister PhysReg)
541         : Freq(Freq), Reg(Reg), PhysReg(PhysReg) {}
542   };
543   using HintsInfo = SmallVector<HintInfo, 4>;
544 
545   BlockFrequency getBrokenHintFreq(const HintsInfo &, MCRegister);
546   void collectHintInfo(Register, HintsInfo &);
547 
548   bool isUnusedCalleeSavedReg(MCRegister PhysReg) const;
549 
550   /// Greedy RA statistic to remark.
551   struct RAGreedyStats {
552     unsigned Reloads = 0;
553     unsigned FoldedReloads = 0;
554     unsigned ZeroCostFoldedReloads = 0;
555     unsigned Spills = 0;
556     unsigned FoldedSpills = 0;
557     unsigned Copies = 0;
558     float ReloadsCost = 0.0f;
559     float FoldedReloadsCost = 0.0f;
560     float SpillsCost = 0.0f;
561     float FoldedSpillsCost = 0.0f;
562     float CopiesCost = 0.0f;
563 
564     bool isEmpty() {
565       return !(Reloads || FoldedReloads || Spills || FoldedSpills ||
566                ZeroCostFoldedReloads || Copies);
567     }
568 
569     void add(RAGreedyStats other) {
570       Reloads += other.Reloads;
571       FoldedReloads += other.FoldedReloads;
572       ZeroCostFoldedReloads += other.ZeroCostFoldedReloads;
573       Spills += other.Spills;
574       FoldedSpills += other.FoldedSpills;
575       Copies += other.Copies;
576       ReloadsCost += other.ReloadsCost;
577       FoldedReloadsCost += other.FoldedReloadsCost;
578       SpillsCost += other.SpillsCost;
579       FoldedSpillsCost += other.FoldedSpillsCost;
580       CopiesCost += other.CopiesCost;
581     }
582 
583     void report(MachineOptimizationRemarkMissed &R);
584   };
585 
586   /// Compute statistic for a basic block.
587   RAGreedyStats computeStats(MachineBasicBlock &MBB);
588 
589   /// Compute and report statistic through a remark.
590   RAGreedyStats reportStats(MachineLoop *L);
591 
592   /// Report the statistic for each loop.
593   void reportStats();
594 };
595 
596 } // end anonymous namespace
597 
598 char RAGreedy::ID = 0;
599 char &llvm::RAGreedyID = RAGreedy::ID;
600 
601 INITIALIZE_PASS_BEGIN(RAGreedy, "greedy",
602                 "Greedy Register Allocator", false, false)
603 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
604 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
605 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
606 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer)
607 INITIALIZE_PASS_DEPENDENCY(MachineScheduler)
608 INITIALIZE_PASS_DEPENDENCY(LiveStacks)
609 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
610 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
611 INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
612 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix)
613 INITIALIZE_PASS_DEPENDENCY(EdgeBundles)
614 INITIALIZE_PASS_DEPENDENCY(SpillPlacement)
615 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass)
616 INITIALIZE_PASS_END(RAGreedy, "greedy",
617                 "Greedy Register Allocator", false, false)
618 
619 #ifndef NDEBUG
620 const char *const RAGreedy::StageName[] = {
621     "RS_New",
622     "RS_Assign",
623     "RS_Split",
624     "RS_Split2",
625     "RS_Spill",
626     "RS_Memory",
627     "RS_Done"
628 };
629 #endif
630 
631 // Hysteresis to use when comparing floats.
632 // This helps stabilize decisions based on float comparisons.
633 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875
634 
635 FunctionPass* llvm::createGreedyRegisterAllocator() {
636   return new RAGreedy();
637 }
638 
639 namespace llvm {
640 FunctionPass* createGreedyRegisterAllocator(
641   std::function<bool(const TargetRegisterInfo &TRI,
642                      const TargetRegisterClass &RC)> Ftor);
643 
644 }
645 
646 FunctionPass* llvm::createGreedyRegisterAllocator(
647   std::function<bool(const TargetRegisterInfo &TRI,
648                      const TargetRegisterClass &RC)> Ftor) {
649   return new RAGreedy(Ftor);
650 }
651 
652 RAGreedy::RAGreedy(RegClassFilterFunc F):
653   MachineFunctionPass(ID),
654   RegAllocBase(F) {
655 }
656 
657 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
658   AU.setPreservesCFG();
659   AU.addRequired<MachineBlockFrequencyInfo>();
660   AU.addPreserved<MachineBlockFrequencyInfo>();
661   AU.addRequired<AAResultsWrapperPass>();
662   AU.addPreserved<AAResultsWrapperPass>();
663   AU.addRequired<LiveIntervals>();
664   AU.addPreserved<LiveIntervals>();
665   AU.addRequired<SlotIndexes>();
666   AU.addPreserved<SlotIndexes>();
667   AU.addRequired<LiveDebugVariables>();
668   AU.addPreserved<LiveDebugVariables>();
669   AU.addRequired<LiveStacks>();
670   AU.addPreserved<LiveStacks>();
671   AU.addRequired<MachineDominatorTree>();
672   AU.addPreserved<MachineDominatorTree>();
673   AU.addRequired<MachineLoopInfo>();
674   AU.addPreserved<MachineLoopInfo>();
675   AU.addRequired<VirtRegMap>();
676   AU.addPreserved<VirtRegMap>();
677   AU.addRequired<LiveRegMatrix>();
678   AU.addPreserved<LiveRegMatrix>();
679   AU.addRequired<EdgeBundles>();
680   AU.addRequired<SpillPlacement>();
681   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
682   MachineFunctionPass::getAnalysisUsage(AU);
683 }
684 
685 //===----------------------------------------------------------------------===//
686 //                     LiveRangeEdit delegate methods
687 //===----------------------------------------------------------------------===//
688 
689 bool RAGreedy::LRE_CanEraseVirtReg(Register VirtReg) {
690   LiveInterval &LI = LIS->getInterval(VirtReg);
691   if (VRM->hasPhys(VirtReg)) {
692     Matrix->unassign(LI);
693     aboutToRemoveInterval(LI);
694     return true;
695   }
696   // Unassigned virtreg is probably in the priority queue.
697   // RegAllocBase will erase it after dequeueing.
698   // Nonetheless, clear the live-range so that the debug
699   // dump will show the right state for that VirtReg.
700   LI.clear();
701   return false;
702 }
703 
704 void RAGreedy::LRE_WillShrinkVirtReg(Register VirtReg) {
705   if (!VRM->hasPhys(VirtReg))
706     return;
707 
708   // Register is assigned, put it back on the queue for reassignment.
709   LiveInterval &LI = LIS->getInterval(VirtReg);
710   Matrix->unassign(LI);
711   RegAllocBase::enqueue(&LI);
712 }
713 
714 void RAGreedy::LRE_DidCloneVirtReg(Register New, Register Old) {
715   // Cloning a register we haven't even heard about yet?  Just ignore it.
716   if (!ExtraRegInfo.inBounds(Old))
717     return;
718 
719   // LRE may clone a virtual register because dead code elimination causes it to
720   // be split into connected components. The new components are much smaller
721   // than the original, so they should get a new chance at being assigned.
722   // same stage as the parent.
723   ExtraRegInfo[Old].Stage = RS_Assign;
724   ExtraRegInfo.grow(New);
725   ExtraRegInfo[New] = ExtraRegInfo[Old];
726 }
727 
728 void RAGreedy::releaseMemory() {
729   SpillerInstance.reset();
730   ExtraRegInfo.clear();
731   GlobalCand.clear();
732 }
733 
734 void RAGreedy::enqueueImpl(LiveInterval *LI) { enqueue(Queue, LI); }
735 
736 void RAGreedy::enqueue(PQueue &CurQueue, LiveInterval *LI) {
737   // Prioritize live ranges by size, assigning larger ranges first.
738   // The queue holds (size, reg) pairs.
739   const unsigned Size = LI->getSize();
740   const Register Reg = LI->reg();
741   assert(Reg.isVirtual() && "Can only enqueue virtual registers");
742   unsigned Prio;
743 
744   ExtraRegInfo.grow(Reg);
745   if (ExtraRegInfo[Reg].Stage == RS_New)
746     ExtraRegInfo[Reg].Stage = RS_Assign;
747 
748   if (ExtraRegInfo[Reg].Stage == RS_Split) {
749     // Unsplit ranges that couldn't be allocated immediately are deferred until
750     // everything else has been allocated.
751     Prio = Size;
752   } else if (ExtraRegInfo[Reg].Stage == RS_Memory) {
753     // Memory operand should be considered last.
754     // Change the priority such that Memory operand are assigned in
755     // the reverse order that they came in.
756     // TODO: Make this a member variable and probably do something about hints.
757     static unsigned MemOp = 0;
758     Prio = MemOp++;
759   } else {
760     // Giant live ranges fall back to the global assignment heuristic, which
761     // prevents excessive spilling in pathological cases.
762     bool ReverseLocal = TRI->reverseLocalAssignment();
763     const TargetRegisterClass &RC = *MRI->getRegClass(Reg);
764     bool ForceGlobal = !ReverseLocal &&
765       (Size / SlotIndex::InstrDist) > (2 * RCI.getNumAllocatableRegs(&RC));
766 
767     if (ExtraRegInfo[Reg].Stage == RS_Assign && !ForceGlobal && !LI->empty() &&
768         LIS->intervalIsInOneMBB(*LI)) {
769       // Allocate original local ranges in linear instruction order. Since they
770       // are singly defined, this produces optimal coloring in the absence of
771       // global interference and other constraints.
772       if (!ReverseLocal)
773         Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex());
774       else {
775         // Allocating bottom up may allow many short LRGs to be assigned first
776         // to one of the cheap registers. This could be much faster for very
777         // large blocks on targets with many physical registers.
778         Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex());
779       }
780       Prio |= RC.AllocationPriority << 24;
781     } else {
782       // Allocate global and split ranges in long->short order. Long ranges that
783       // don't fit should be spilled (or split) ASAP so they don't create
784       // interference.  Mark a bit to prioritize global above local ranges.
785       Prio = (1u << 29) + Size;
786 
787       Prio |= RC.AllocationPriority << 24;
788     }
789     // Mark a higher bit to prioritize global and local above RS_Split.
790     Prio |= (1u << 31);
791 
792     // Boost ranges that have a physical register hint.
793     if (VRM->hasKnownPreference(Reg))
794       Prio |= (1u << 30);
795   }
796   // The virtual register number is a tie breaker for same-sized ranges.
797   // Give lower vreg numbers higher priority to assign them first.
798   CurQueue.push(std::make_pair(Prio, ~Reg));
799 }
800 
801 LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); }
802 
803 LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) {
804   if (CurQueue.empty())
805     return nullptr;
806   LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second);
807   CurQueue.pop();
808   return LI;
809 }
810 
811 //===----------------------------------------------------------------------===//
812 //                            Direct Assignment
813 //===----------------------------------------------------------------------===//
814 
815 /// tryAssign - Try to assign VirtReg to an available register.
816 MCRegister RAGreedy::tryAssign(LiveInterval &VirtReg,
817                              AllocationOrder &Order,
818                              SmallVectorImpl<Register> &NewVRegs,
819                              const SmallVirtRegSet &FixedRegisters) {
820   MCRegister PhysReg;
821   for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) {
822     assert(*I);
823     if (!Matrix->checkInterference(VirtReg, *I)) {
824       if (I.isHint())
825         return *I;
826       else
827         PhysReg = *I;
828     }
829   }
830   if (!PhysReg.isValid())
831     return PhysReg;
832 
833   // PhysReg is available, but there may be a better choice.
834 
835   // If we missed a simple hint, try to cheaply evict interference from the
836   // preferred register.
837   if (Register Hint = MRI->getSimpleHint(VirtReg.reg()))
838     if (Order.isHint(Hint)) {
839       MCRegister PhysHint = Hint.asMCReg();
840       LLVM_DEBUG(dbgs() << "missed hint " << printReg(PhysHint, TRI) << '\n');
841       EvictionCost MaxCost;
842       MaxCost.setBrokenHints(1);
843       if (canEvictInterference(VirtReg, PhysHint, true, MaxCost,
844                                FixedRegisters)) {
845         evictInterference(VirtReg, PhysHint, NewVRegs);
846         return PhysHint;
847       }
848       // Record the missed hint, we may be able to recover
849       // at the end if the surrounding allocation changed.
850       SetOfBrokenHints.insert(&VirtReg);
851     }
852 
853   // Try to evict interference from a cheaper alternative.
854   uint8_t Cost = RegCosts[PhysReg];
855 
856   // Most registers have 0 additional cost.
857   if (!Cost)
858     return PhysReg;
859 
860   LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is available at cost "
861                     << (unsigned)Cost << '\n');
862   MCRegister CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost, FixedRegisters);
863   return CheapReg ? CheapReg : PhysReg;
864 }
865 
866 //===----------------------------------------------------------------------===//
867 //                         Interference eviction
868 //===----------------------------------------------------------------------===//
869 
870 Register RAGreedy::canReassign(LiveInterval &VirtReg, Register PrevReg) const {
871   auto Order =
872       AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix);
873   MCRegister PhysReg;
874   for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) {
875     if ((*I).id() == PrevReg.id())
876       continue;
877 
878     MCRegUnitIterator Units(*I, TRI);
879     for (; Units.isValid(); ++Units) {
880       // Instantiate a "subquery", not to be confused with the Queries array.
881       LiveIntervalUnion::Query subQ(VirtReg, Matrix->getLiveUnions()[*Units]);
882       if (subQ.checkInterference())
883         break;
884     }
885     // If no units have interference, break out with the current PhysReg.
886     if (!Units.isValid())
887       PhysReg = *I;
888   }
889   if (PhysReg)
890     LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg << " from "
891                       << printReg(PrevReg, TRI) << " to "
892                       << printReg(PhysReg, TRI) << '\n');
893   return PhysReg;
894 }
895 
896 /// shouldEvict - determine if A should evict the assigned live range B. The
897 /// eviction policy defined by this function together with the allocation order
898 /// defined by enqueue() decides which registers ultimately end up being split
899 /// and spilled.
900 ///
901 /// Cascade numbers are used to prevent infinite loops if this function is a
902 /// cyclic relation.
903 ///
904 /// @param A          The live range to be assigned.
905 /// @param IsHint     True when A is about to be assigned to its preferred
906 ///                   register.
907 /// @param B          The live range to be evicted.
908 /// @param BreaksHint True when B is already assigned to its preferred register.
909 bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint,
910                            LiveInterval &B, bool BreaksHint) const {
911   bool CanSplit = getStage(B) < RS_Spill;
912 
913   // Be fairly aggressive about following hints as long as the evictee can be
914   // split.
915   if (CanSplit && IsHint && !BreaksHint)
916     return true;
917 
918   if (A.weight() > B.weight()) {
919     LLVM_DEBUG(dbgs() << "should evict: " << B << " w= " << B.weight() << '\n');
920     return true;
921   }
922   return false;
923 }
924 
925 /// canEvictInterference - Return true if all interferences between VirtReg and
926 /// PhysReg can be evicted.
927 ///
928 /// @param VirtReg Live range that is about to be assigned.
929 /// @param PhysReg Desired register for assignment.
930 /// @param IsHint  True when PhysReg is VirtReg's preferred register.
931 /// @param MaxCost Only look for cheaper candidates and update with new cost
932 ///                when returning true.
933 /// @returns True when interference can be evicted cheaper than MaxCost.
934 bool RAGreedy::canEvictInterference(
935     LiveInterval &VirtReg, MCRegister PhysReg, bool IsHint,
936     EvictionCost &MaxCost, const SmallVirtRegSet &FixedRegisters) const {
937   // It is only possible to evict virtual register interference.
938   if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg)
939     return false;
940 
941   bool IsLocal = LIS->intervalIsInOneMBB(VirtReg);
942 
943   // Find VirtReg's cascade number. This will be unassigned if VirtReg was never
944   // involved in an eviction before. If a cascade number was assigned, deny
945   // evicting anything with the same or a newer cascade number. This prevents
946   // infinite eviction loops.
947   //
948   // This works out so a register without a cascade number is allowed to evict
949   // anything, and it can be evicted by anything.
950   unsigned Cascade = ExtraRegInfo[VirtReg.reg()].Cascade;
951   if (!Cascade)
952     Cascade = NextCascade;
953 
954   EvictionCost Cost;
955   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
956     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
957     // If there is 10 or more interferences, chances are one is heavier.
958     const auto &Interferences = Q.interferingVRegs(10);
959     if (Interferences.size() >= 10)
960       return false;
961 
962     // Check if any interfering live range is heavier than MaxWeight.
963     for (LiveInterval *Intf : reverse(Interferences)) {
964       assert(Register::isVirtualRegister(Intf->reg()) &&
965              "Only expecting virtual register interference from query");
966 
967       // Do not allow eviction of a virtual register if we are in the middle
968       // of last-chance recoloring and this virtual register is one that we
969       // have scavenged a physical register for.
970       if (FixedRegisters.count(Intf->reg()))
971         return false;
972 
973       // Never evict spill products. They cannot split or spill.
974       if (getStage(*Intf) == RS_Done)
975         return false;
976       // Once a live range becomes small enough, it is urgent that we find a
977       // register for it. This is indicated by an infinite spill weight. These
978       // urgent live ranges get to evict almost anything.
979       //
980       // Also allow urgent evictions of unspillable ranges from a strictly
981       // larger allocation order.
982       bool Urgent =
983           !VirtReg.isSpillable() &&
984           (Intf->isSpillable() ||
985            RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg())) <
986                RegClassInfo.getNumAllocatableRegs(
987                    MRI->getRegClass(Intf->reg())));
988       // Only evict older cascades or live ranges without a cascade.
989       unsigned IntfCascade = ExtraRegInfo[Intf->reg()].Cascade;
990       if (Cascade <= IntfCascade) {
991         if (!Urgent)
992           return false;
993         // We permit breaking cascades for urgent evictions. It should be the
994         // last resort, though, so make it really expensive.
995         Cost.BrokenHints += 10;
996       }
997       // Would this break a satisfied hint?
998       bool BreaksHint = VRM->hasPreferredPhys(Intf->reg());
999       // Update eviction cost.
1000       Cost.BrokenHints += BreaksHint;
1001       Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight());
1002       // Abort if this would be too expensive.
1003       if (!(Cost < MaxCost))
1004         return false;
1005       if (Urgent)
1006         continue;
1007       // Apply the eviction policy for non-urgent evictions.
1008       if (!shouldEvict(VirtReg, IsHint, *Intf, BreaksHint))
1009         return false;
1010       // If !MaxCost.isMax(), then we're just looking for a cheap register.
1011       // Evicting another local live range in this case could lead to suboptimal
1012       // coloring.
1013       if (!MaxCost.isMax() && IsLocal && LIS->intervalIsInOneMBB(*Intf) &&
1014           (!EnableLocalReassign || !canReassign(*Intf, PhysReg))) {
1015         return false;
1016       }
1017     }
1018   }
1019   MaxCost = Cost;
1020   return true;
1021 }
1022 
1023 /// Return true if all interferences between VirtReg and PhysReg between
1024 /// Start and End can be evicted.
1025 ///
1026 /// \param VirtReg Live range that is about to be assigned.
1027 /// \param PhysReg Desired register for assignment.
1028 /// \param Start   Start of range to look for interferences.
1029 /// \param End     End of range to look for interferences.
1030 /// \param MaxCost Only look for cheaper candidates and update with new cost
1031 ///                when returning true.
1032 /// \return True when interference can be evicted cheaper than MaxCost.
1033 bool RAGreedy::canEvictInterferenceInRange(const LiveInterval &VirtReg,
1034                                            MCRegister PhysReg, SlotIndex Start,
1035                                            SlotIndex End,
1036                                            EvictionCost &MaxCost) const {
1037   EvictionCost Cost;
1038 
1039   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1040     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
1041 
1042     // Check if any interfering live range is heavier than MaxWeight.
1043     for (const LiveInterval *Intf : reverse(Q.interferingVRegs())) {
1044       // Check if interference overlast the segment in interest.
1045       if (!Intf->overlaps(Start, End))
1046         continue;
1047 
1048       // Cannot evict non virtual reg interference.
1049       if (!Register::isVirtualRegister(Intf->reg()))
1050         return false;
1051       // Never evict spill products. They cannot split or spill.
1052       if (getStage(*Intf) == RS_Done)
1053         return false;
1054 
1055       // Would this break a satisfied hint?
1056       bool BreaksHint = VRM->hasPreferredPhys(Intf->reg());
1057       // Update eviction cost.
1058       Cost.BrokenHints += BreaksHint;
1059       Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight());
1060       // Abort if this would be too expensive.
1061       if (!(Cost < MaxCost))
1062         return false;
1063     }
1064   }
1065 
1066   if (Cost.MaxWeight == 0)
1067     return false;
1068 
1069   MaxCost = Cost;
1070   return true;
1071 }
1072 
1073 /// Return the physical register that will be best
1074 /// candidate for eviction by a local split interval that will be created
1075 /// between Start and End.
1076 ///
1077 /// \param Order            The allocation order
1078 /// \param VirtReg          Live range that is about to be assigned.
1079 /// \param Start            Start of range to look for interferences
1080 /// \param End              End of range to look for interferences
1081 /// \param BestEvictweight  The eviction cost of that eviction
1082 /// \return The PhysReg which is the best candidate for eviction and the
1083 /// eviction cost in BestEvictweight
1084 MCRegister RAGreedy::getCheapestEvicteeWeight(const AllocationOrder &Order,
1085                                               const LiveInterval &VirtReg,
1086                                               SlotIndex Start, SlotIndex End,
1087                                               float *BestEvictweight) const {
1088   EvictionCost BestEvictCost;
1089   BestEvictCost.setMax();
1090   BestEvictCost.MaxWeight = VirtReg.weight();
1091   MCRegister BestEvicteePhys;
1092 
1093   // Go over all physical registers and find the best candidate for eviction
1094   for (MCRegister PhysReg : Order.getOrder()) {
1095 
1096     if (!canEvictInterferenceInRange(VirtReg, PhysReg, Start, End,
1097                                      BestEvictCost))
1098       continue;
1099 
1100     // Best so far.
1101     BestEvicteePhys = PhysReg;
1102   }
1103   *BestEvictweight = BestEvictCost.MaxWeight;
1104   return BestEvicteePhys;
1105 }
1106 
1107 /// evictInterference - Evict any interferring registers that prevent VirtReg
1108 /// from being assigned to Physreg. This assumes that canEvictInterference
1109 /// returned true.
1110 void RAGreedy::evictInterference(LiveInterval &VirtReg, MCRegister PhysReg,
1111                                  SmallVectorImpl<Register> &NewVRegs) {
1112   // Make sure that VirtReg has a cascade number, and assign that cascade
1113   // number to every evicted register. These live ranges than then only be
1114   // evicted by a newer cascade, preventing infinite loops.
1115   unsigned Cascade = ExtraRegInfo[VirtReg.reg()].Cascade;
1116   if (!Cascade)
1117     Cascade = ExtraRegInfo[VirtReg.reg()].Cascade = NextCascade++;
1118 
1119   LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg, TRI)
1120                     << " interference: Cascade " << Cascade << '\n');
1121 
1122   // Collect all interfering virtregs first.
1123   SmallVector<LiveInterval*, 8> Intfs;
1124   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1125     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
1126     // We usually have the interfering VRegs cached so collectInterferingVRegs()
1127     // should be fast, we may need to recalculate if when different physregs
1128     // overlap the same register unit so we had different SubRanges queried
1129     // against it.
1130     ArrayRef<LiveInterval*> IVR = Q.interferingVRegs();
1131     Intfs.append(IVR.begin(), IVR.end());
1132   }
1133 
1134   // Evict them second. This will invalidate the queries.
1135   for (LiveInterval *Intf : Intfs) {
1136     // The same VirtReg may be present in multiple RegUnits. Skip duplicates.
1137     if (!VRM->hasPhys(Intf->reg()))
1138       continue;
1139 
1140     LastEvicted.addEviction(PhysReg, VirtReg.reg(), Intf->reg());
1141 
1142     Matrix->unassign(*Intf);
1143     assert((ExtraRegInfo[Intf->reg()].Cascade < Cascade ||
1144             VirtReg.isSpillable() < Intf->isSpillable()) &&
1145            "Cannot decrease cascade number, illegal eviction");
1146     ExtraRegInfo[Intf->reg()].Cascade = Cascade;
1147     ++NumEvicted;
1148     NewVRegs.push_back(Intf->reg());
1149   }
1150 }
1151 
1152 /// Returns true if the given \p PhysReg is a callee saved register and has not
1153 /// been used for allocation yet.
1154 bool RAGreedy::isUnusedCalleeSavedReg(MCRegister PhysReg) const {
1155   MCRegister CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg);
1156   if (!CSR)
1157     return false;
1158 
1159   return !Matrix->isPhysRegUsed(PhysReg);
1160 }
1161 
1162 /// tryEvict - Try to evict all interferences for a physreg.
1163 /// @param  VirtReg Currently unassigned virtual register.
1164 /// @param  Order   Physregs to try.
1165 /// @return         Physreg to assign VirtReg, or 0.
1166 MCRegister RAGreedy::tryEvict(LiveInterval &VirtReg, AllocationOrder &Order,
1167                             SmallVectorImpl<Register> &NewVRegs,
1168                             uint8_t CostPerUseLimit,
1169                             const SmallVirtRegSet &FixedRegisters) {
1170   NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription,
1171                      TimePassesIsEnabled);
1172 
1173   // Keep track of the cheapest interference seen so far.
1174   EvictionCost BestCost;
1175   BestCost.setMax();
1176   MCRegister BestPhys;
1177   unsigned OrderLimit = Order.getOrder().size();
1178 
1179   // When we are just looking for a reduced cost per use, don't break any
1180   // hints, and only evict smaller spill weights.
1181   if (CostPerUseLimit < uint8_t(~0u)) {
1182     BestCost.BrokenHints = 0;
1183     BestCost.MaxWeight = VirtReg.weight();
1184 
1185     // Check of any registers in RC are below CostPerUseLimit.
1186     const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg());
1187     uint8_t MinCost = RegClassInfo.getMinCost(RC);
1188     if (MinCost >= CostPerUseLimit) {
1189       LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = "
1190                         << MinCost << ", no cheaper registers to be found.\n");
1191       return 0;
1192     }
1193 
1194     // It is normal for register classes to have a long tail of registers with
1195     // the same cost. We don't need to look at them if they're too expensive.
1196     if (RegCosts[Order.getOrder().back()] >= CostPerUseLimit) {
1197       OrderLimit = RegClassInfo.getLastCostChange(RC);
1198       LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit
1199                         << " regs.\n");
1200     }
1201   }
1202 
1203   for (auto I = Order.begin(), E = Order.getOrderLimitEnd(OrderLimit); I != E;
1204        ++I) {
1205     MCRegister PhysReg = *I;
1206     assert(PhysReg);
1207     if (RegCosts[PhysReg] >= CostPerUseLimit)
1208       continue;
1209     // The first use of a callee-saved register in a function has cost 1.
1210     // Don't start using a CSR when the CostPerUseLimit is low.
1211     if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) {
1212       LLVM_DEBUG(
1213           dbgs() << printReg(PhysReg, TRI) << " would clobber CSR "
1214                  << printReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI)
1215                  << '\n');
1216       continue;
1217     }
1218 
1219     if (!canEvictInterference(VirtReg, PhysReg, false, BestCost,
1220                               FixedRegisters))
1221       continue;
1222 
1223     // Best so far.
1224     BestPhys = PhysReg;
1225 
1226     // Stop if the hint can be used.
1227     if (I.isHint())
1228       break;
1229   }
1230 
1231   if (BestPhys.isValid())
1232     evictInterference(VirtReg, BestPhys, NewVRegs);
1233   return BestPhys;
1234 }
1235 
1236 //===----------------------------------------------------------------------===//
1237 //                              Region Splitting
1238 //===----------------------------------------------------------------------===//
1239 
1240 /// addSplitConstraints - Fill out the SplitConstraints vector based on the
1241 /// interference pattern in Physreg and its aliases. Add the constraints to
1242 /// SpillPlacement and return the static cost of this split in Cost, assuming
1243 /// that all preferences in SplitConstraints are met.
1244 /// Return false if there are no bundles with positive bias.
1245 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
1246                                    BlockFrequency &Cost) {
1247   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1248 
1249   // Reset interference dependent info.
1250   SplitConstraints.resize(UseBlocks.size());
1251   BlockFrequency StaticCost = 0;
1252   for (unsigned I = 0; I != UseBlocks.size(); ++I) {
1253     const SplitAnalysis::BlockInfo &BI = UseBlocks[I];
1254     SpillPlacement::BlockConstraint &BC = SplitConstraints[I];
1255 
1256     BC.Number = BI.MBB->getNumber();
1257     Intf.moveToBlock(BC.Number);
1258     BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
1259     BC.Exit = (BI.LiveOut &&
1260                !LIS->getInstructionFromIndex(BI.LastInstr)->isImplicitDef())
1261                   ? SpillPlacement::PrefReg
1262                   : SpillPlacement::DontCare;
1263     BC.ChangesValue = BI.FirstDef.isValid();
1264 
1265     if (!Intf.hasInterference())
1266       continue;
1267 
1268     // Number of spill code instructions to insert.
1269     unsigned Ins = 0;
1270 
1271     // Interference for the live-in value.
1272     if (BI.LiveIn) {
1273       if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) {
1274         BC.Entry = SpillPlacement::MustSpill;
1275         ++Ins;
1276       } else if (Intf.first() < BI.FirstInstr) {
1277         BC.Entry = SpillPlacement::PrefSpill;
1278         ++Ins;
1279       } else if (Intf.first() < BI.LastInstr) {
1280         ++Ins;
1281       }
1282 
1283       // Abort if the spill cannot be inserted at the MBB' start
1284       if (((BC.Entry == SpillPlacement::MustSpill) ||
1285            (BC.Entry == SpillPlacement::PrefSpill)) &&
1286           SlotIndex::isEarlierInstr(BI.FirstInstr,
1287                                     SA->getFirstSplitPoint(BC.Number)))
1288         return false;
1289     }
1290 
1291     // Interference for the live-out value.
1292     if (BI.LiveOut) {
1293       if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) {
1294         BC.Exit = SpillPlacement::MustSpill;
1295         ++Ins;
1296       } else if (Intf.last() > BI.LastInstr) {
1297         BC.Exit = SpillPlacement::PrefSpill;
1298         ++Ins;
1299       } else if (Intf.last() > BI.FirstInstr) {
1300         ++Ins;
1301       }
1302     }
1303 
1304     // Accumulate the total frequency of inserted spill code.
1305     while (Ins--)
1306       StaticCost += SpillPlacer->getBlockFrequency(BC.Number);
1307   }
1308   Cost = StaticCost;
1309 
1310   // Add constraints for use-blocks. Note that these are the only constraints
1311   // that may add a positive bias, it is downhill from here.
1312   SpillPlacer->addConstraints(SplitConstraints);
1313   return SpillPlacer->scanActiveBundles();
1314 }
1315 
1316 /// addThroughConstraints - Add constraints and links to SpillPlacer from the
1317 /// live-through blocks in Blocks.
1318 bool RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
1319                                      ArrayRef<unsigned> Blocks) {
1320   const unsigned GroupSize = 8;
1321   SpillPlacement::BlockConstraint BCS[GroupSize];
1322   unsigned TBS[GroupSize];
1323   unsigned B = 0, T = 0;
1324 
1325   for (unsigned Number : Blocks) {
1326     Intf.moveToBlock(Number);
1327 
1328     if (!Intf.hasInterference()) {
1329       assert(T < GroupSize && "Array overflow");
1330       TBS[T] = Number;
1331       if (++T == GroupSize) {
1332         SpillPlacer->addLinks(makeArrayRef(TBS, T));
1333         T = 0;
1334       }
1335       continue;
1336     }
1337 
1338     assert(B < GroupSize && "Array overflow");
1339     BCS[B].Number = Number;
1340 
1341     // Abort if the spill cannot be inserted at the MBB' start
1342     MachineBasicBlock *MBB = MF->getBlockNumbered(Number);
1343     auto FirstNonDebugInstr = MBB->getFirstNonDebugInstr();
1344     if (FirstNonDebugInstr != MBB->end() &&
1345         SlotIndex::isEarlierInstr(LIS->getInstructionIndex(*FirstNonDebugInstr),
1346                                   SA->getFirstSplitPoint(Number)))
1347       return false;
1348     // Interference for the live-in value.
1349     if (Intf.first() <= Indexes->getMBBStartIdx(Number))
1350       BCS[B].Entry = SpillPlacement::MustSpill;
1351     else
1352       BCS[B].Entry = SpillPlacement::PrefSpill;
1353 
1354     // Interference for the live-out value.
1355     if (Intf.last() >= SA->getLastSplitPoint(Number))
1356       BCS[B].Exit = SpillPlacement::MustSpill;
1357     else
1358       BCS[B].Exit = SpillPlacement::PrefSpill;
1359 
1360     if (++B == GroupSize) {
1361       SpillPlacer->addConstraints(makeArrayRef(BCS, B));
1362       B = 0;
1363     }
1364   }
1365 
1366   SpillPlacer->addConstraints(makeArrayRef(BCS, B));
1367   SpillPlacer->addLinks(makeArrayRef(TBS, T));
1368   return true;
1369 }
1370 
1371 bool RAGreedy::growRegion(GlobalSplitCandidate &Cand) {
1372   // Keep track of through blocks that have not been added to SpillPlacer.
1373   BitVector Todo = SA->getThroughBlocks();
1374   SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
1375   unsigned AddedTo = 0;
1376 #ifndef NDEBUG
1377   unsigned Visited = 0;
1378 #endif
1379 
1380   while (true) {
1381     ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
1382     // Find new through blocks in the periphery of PrefRegBundles.
1383     for (unsigned Bundle : NewBundles) {
1384       // Look at all blocks connected to Bundle in the full graph.
1385       ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
1386       for (unsigned Block : Blocks) {
1387         if (!Todo.test(Block))
1388           continue;
1389         Todo.reset(Block);
1390         // This is a new through block. Add it to SpillPlacer later.
1391         ActiveBlocks.push_back(Block);
1392 #ifndef NDEBUG
1393         ++Visited;
1394 #endif
1395       }
1396     }
1397     // Any new blocks to add?
1398     if (ActiveBlocks.size() == AddedTo)
1399       break;
1400 
1401     // Compute through constraints from the interference, or assume that all
1402     // through blocks prefer spilling when forming compact regions.
1403     auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo);
1404     if (Cand.PhysReg) {
1405       if (!addThroughConstraints(Cand.Intf, NewBlocks))
1406         return false;
1407     } else
1408       // Provide a strong negative bias on through blocks to prevent unwanted
1409       // liveness on loop backedges.
1410       SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true);
1411     AddedTo = ActiveBlocks.size();
1412 
1413     // Perhaps iterating can enable more bundles?
1414     SpillPlacer->iterate();
1415   }
1416   LLVM_DEBUG(dbgs() << ", v=" << Visited);
1417   return true;
1418 }
1419 
1420 /// calcCompactRegion - Compute the set of edge bundles that should be live
1421 /// when splitting the current live range into compact regions.  Compact
1422 /// regions can be computed without looking at interference.  They are the
1423 /// regions formed by removing all the live-through blocks from the live range.
1424 ///
1425 /// Returns false if the current live range is already compact, or if the
1426 /// compact regions would form single block regions anyway.
1427 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) {
1428   // Without any through blocks, the live range is already compact.
1429   if (!SA->getNumThroughBlocks())
1430     return false;
1431 
1432   // Compact regions don't correspond to any physreg.
1433   Cand.reset(IntfCache, MCRegister::NoRegister);
1434 
1435   LLVM_DEBUG(dbgs() << "Compact region bundles");
1436 
1437   // Use the spill placer to determine the live bundles. GrowRegion pretends
1438   // that all the through blocks have interference when PhysReg is unset.
1439   SpillPlacer->prepare(Cand.LiveBundles);
1440 
1441   // The static split cost will be zero since Cand.Intf reports no interference.
1442   BlockFrequency Cost;
1443   if (!addSplitConstraints(Cand.Intf, Cost)) {
1444     LLVM_DEBUG(dbgs() << ", none.\n");
1445     return false;
1446   }
1447 
1448   if (!growRegion(Cand)) {
1449     LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
1450     return false;
1451   }
1452 
1453   SpillPlacer->finish();
1454 
1455   if (!Cand.LiveBundles.any()) {
1456     LLVM_DEBUG(dbgs() << ", none.\n");
1457     return false;
1458   }
1459 
1460   LLVM_DEBUG({
1461     for (int I : Cand.LiveBundles.set_bits())
1462       dbgs() << " EB#" << I;
1463     dbgs() << ".\n";
1464   });
1465   return true;
1466 }
1467 
1468 /// calcSpillCost - Compute how expensive it would be to split the live range in
1469 /// SA around all use blocks instead of forming bundle regions.
1470 BlockFrequency RAGreedy::calcSpillCost() {
1471   BlockFrequency Cost = 0;
1472   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1473   for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
1474     unsigned Number = BI.MBB->getNumber();
1475     // We normally only need one spill instruction - a load or a store.
1476     Cost += SpillPlacer->getBlockFrequency(Number);
1477 
1478     // Unless the value is redefined in the block.
1479     if (BI.LiveIn && BI.LiveOut && BI.FirstDef)
1480       Cost += SpillPlacer->getBlockFrequency(Number);
1481   }
1482   return Cost;
1483 }
1484 
1485 /// Check if splitting Evictee will create a local split interval in
1486 /// basic block number BBNumber that may cause a bad eviction chain. This is
1487 /// intended to prevent bad eviction sequences like:
1488 /// movl	%ebp, 8(%esp)           # 4-byte Spill
1489 /// movl	%ecx, %ebp
1490 /// movl	%ebx, %ecx
1491 /// movl	%edi, %ebx
1492 /// movl	%edx, %edi
1493 /// cltd
1494 /// idivl	%esi
1495 /// movl	%edi, %edx
1496 /// movl	%ebx, %edi
1497 /// movl	%ecx, %ebx
1498 /// movl	%ebp, %ecx
1499 /// movl	16(%esp), %ebp          # 4 - byte Reload
1500 ///
1501 /// Such sequences are created in 2 scenarios:
1502 ///
1503 /// Scenario #1:
1504 /// %0 is evicted from physreg0 by %1.
1505 /// Evictee %0 is intended for region splitting with split candidate
1506 /// physreg0 (the reg %0 was evicted from).
1507 /// Region splitting creates a local interval because of interference with the
1508 /// evictor %1 (normally region splitting creates 2 interval, the "by reg"
1509 /// and "by stack" intervals and local interval created when interference
1510 /// occurs).
1511 /// One of the split intervals ends up evicting %2 from physreg1.
1512 /// Evictee %2 is intended for region splitting with split candidate
1513 /// physreg1.
1514 /// One of the split intervals ends up evicting %3 from physreg2, etc.
1515 ///
1516 /// Scenario #2
1517 /// %0 is evicted from physreg0 by %1.
1518 /// %2 is evicted from physreg2 by %3 etc.
1519 /// Evictee %0 is intended for region splitting with split candidate
1520 /// physreg1.
1521 /// Region splitting creates a local interval because of interference with the
1522 /// evictor %1.
1523 /// One of the split intervals ends up evicting back original evictor %1
1524 /// from physreg0 (the reg %0 was evicted from).
1525 /// Another evictee %2 is intended for region splitting with split candidate
1526 /// physreg1.
1527 /// One of the split intervals ends up evicting %3 from physreg2, etc.
1528 ///
1529 /// \param Evictee  The register considered to be split.
1530 /// \param Cand     The split candidate that determines the physical register
1531 ///                 we are splitting for and the interferences.
1532 /// \param BBNumber The number of a BB for which the region split process will
1533 ///                 create a local split interval.
1534 /// \param Order    The physical registers that may get evicted by a split
1535 ///                 artifact of Evictee.
1536 /// \return True if splitting Evictee may cause a bad eviction chain, false
1537 /// otherwise.
1538 bool RAGreedy::splitCanCauseEvictionChain(Register Evictee,
1539                                           GlobalSplitCandidate &Cand,
1540                                           unsigned BBNumber,
1541                                           const AllocationOrder &Order) {
1542   EvictionTrack::EvictorInfo VregEvictorInfo = LastEvicted.getEvictor(Evictee);
1543   unsigned Evictor = VregEvictorInfo.first;
1544   MCRegister PhysReg = VregEvictorInfo.second;
1545 
1546   // No actual evictor.
1547   if (!Evictor || !PhysReg)
1548     return false;
1549 
1550   float MaxWeight = 0;
1551   MCRegister FutureEvictedPhysReg =
1552       getCheapestEvicteeWeight(Order, LIS->getInterval(Evictee),
1553                                Cand.Intf.first(), Cand.Intf.last(), &MaxWeight);
1554 
1555   // The bad eviction chain occurs when either the split candidate is the
1556   // evicting reg or one of the split artifact will evict the evicting reg.
1557   if ((PhysReg != Cand.PhysReg) && (PhysReg != FutureEvictedPhysReg))
1558     return false;
1559 
1560   Cand.Intf.moveToBlock(BBNumber);
1561 
1562   // Check to see if the Evictor contains interference (with Evictee) in the
1563   // given BB. If so, this interference caused the eviction of Evictee from
1564   // PhysReg. This suggest that we will create a local interval during the
1565   // region split to avoid this interference This local interval may cause a bad
1566   // eviction chain.
1567   if (!LIS->hasInterval(Evictor))
1568     return false;
1569   LiveInterval &EvictorLI = LIS->getInterval(Evictor);
1570   if (EvictorLI.FindSegmentContaining(Cand.Intf.first()) == EvictorLI.end())
1571     return false;
1572 
1573   // Now, check to see if the local interval we will create is going to be
1574   // expensive enough to evict somebody If so, this may cause a bad eviction
1575   // chain.
1576   float splitArtifactWeight =
1577       VRAI->futureWeight(LIS->getInterval(Evictee),
1578                          Cand.Intf.first().getPrevIndex(), Cand.Intf.last());
1579   if (splitArtifactWeight >= 0 && splitArtifactWeight < MaxWeight)
1580     return false;
1581 
1582   return true;
1583 }
1584 
1585 /// Check if splitting VirtRegToSplit will create a local split interval
1586 /// in basic block number BBNumber that may cause a spill.
1587 ///
1588 /// \param VirtRegToSplit The register considered to be split.
1589 /// \param Cand           The split candidate that determines the physical
1590 ///                       register we are splitting for and the interferences.
1591 /// \param BBNumber       The number of a BB for which the region split process
1592 ///                       will create a local split interval.
1593 /// \param Order          The physical registers that may get evicted by a
1594 ///                       split artifact of VirtRegToSplit.
1595 /// \return True if splitting VirtRegToSplit may cause a spill, false
1596 /// otherwise.
1597 bool RAGreedy::splitCanCauseLocalSpill(unsigned VirtRegToSplit,
1598                                        GlobalSplitCandidate &Cand,
1599                                        unsigned BBNumber,
1600                                        const AllocationOrder &Order) {
1601   Cand.Intf.moveToBlock(BBNumber);
1602 
1603   // Check if the local interval will find a non interfereing assignment.
1604   for (auto PhysReg : Order.getOrder()) {
1605     if (!Matrix->checkInterference(Cand.Intf.first().getPrevIndex(),
1606                                    Cand.Intf.last(), PhysReg))
1607       return false;
1608   }
1609 
1610   // The local interval is not able to find non interferencing assignment
1611   // and not able to evict a less worthy interval, therfore, it can cause a
1612   // spill.
1613   return true;
1614 }
1615 
1616 /// calcGlobalSplitCost - Return the global split cost of following the split
1617 /// pattern in LiveBundles. This cost should be added to the local cost of the
1618 /// interference pattern in SplitConstraints.
1619 ///
1620 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand,
1621                                              const AllocationOrder &Order,
1622                                              bool *CanCauseEvictionChain) {
1623   BlockFrequency GlobalCost = 0;
1624   const BitVector &LiveBundles = Cand.LiveBundles;
1625   Register VirtRegToSplit = SA->getParent().reg();
1626   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1627   for (unsigned I = 0; I != UseBlocks.size(); ++I) {
1628     const SplitAnalysis::BlockInfo &BI = UseBlocks[I];
1629     SpillPlacement::BlockConstraint &BC = SplitConstraints[I];
1630     bool RegIn  = LiveBundles[Bundles->getBundle(BC.Number, false)];
1631     bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)];
1632     unsigned Ins = 0;
1633 
1634     Cand.Intf.moveToBlock(BC.Number);
1635     // Check wheather a local interval is going to be created during the region
1636     // split. Calculate adavanced spilt cost (cost of local intervals) if option
1637     // is enabled.
1638     if (EnableAdvancedRASplitCost && Cand.Intf.hasInterference() && BI.LiveIn &&
1639         BI.LiveOut && RegIn && RegOut) {
1640 
1641       if (CanCauseEvictionChain &&
1642           splitCanCauseEvictionChain(VirtRegToSplit, Cand, BC.Number, Order)) {
1643         // This interference causes our eviction from this assignment, we might
1644         // evict somebody else and eventually someone will spill, add that cost.
1645         // See splitCanCauseEvictionChain for detailed description of scenarios.
1646         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1647         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1648 
1649         *CanCauseEvictionChain = true;
1650 
1651       } else if (splitCanCauseLocalSpill(VirtRegToSplit, Cand, BC.Number,
1652                                          Order)) {
1653         // This interference causes local interval to spill, add that cost.
1654         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1655         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1656       }
1657     }
1658 
1659     if (BI.LiveIn)
1660       Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
1661     if (BI.LiveOut)
1662       Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
1663     while (Ins--)
1664       GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1665   }
1666 
1667   for (unsigned Number : Cand.ActiveBlocks) {
1668     bool RegIn  = LiveBundles[Bundles->getBundle(Number, false)];
1669     bool RegOut = LiveBundles[Bundles->getBundle(Number, true)];
1670     if (!RegIn && !RegOut)
1671       continue;
1672     if (RegIn && RegOut) {
1673       // We need double spill code if this block has interference.
1674       Cand.Intf.moveToBlock(Number);
1675       if (Cand.Intf.hasInterference()) {
1676         GlobalCost += SpillPlacer->getBlockFrequency(Number);
1677         GlobalCost += SpillPlacer->getBlockFrequency(Number);
1678 
1679         // Check wheather a local interval is going to be created during the
1680         // region split.
1681         if (EnableAdvancedRASplitCost && CanCauseEvictionChain &&
1682             splitCanCauseEvictionChain(VirtRegToSplit, Cand, Number, Order)) {
1683           // This interference cause our eviction from this assignment, we might
1684           // evict somebody else, add that cost.
1685           // See splitCanCauseEvictionChain for detailed description of
1686           // scenarios.
1687           GlobalCost += SpillPlacer->getBlockFrequency(Number);
1688           GlobalCost += SpillPlacer->getBlockFrequency(Number);
1689 
1690           *CanCauseEvictionChain = true;
1691         }
1692       }
1693       continue;
1694     }
1695     // live-in / stack-out or stack-in live-out.
1696     GlobalCost += SpillPlacer->getBlockFrequency(Number);
1697   }
1698   return GlobalCost;
1699 }
1700 
1701 /// splitAroundRegion - Split the current live range around the regions
1702 /// determined by BundleCand and GlobalCand.
1703 ///
1704 /// Before calling this function, GlobalCand and BundleCand must be initialized
1705 /// so each bundle is assigned to a valid candidate, or NoCand for the
1706 /// stack-bound bundles.  The shared SA/SE SplitAnalysis and SplitEditor
1707 /// objects must be initialized for the current live range, and intervals
1708 /// created for the used candidates.
1709 ///
1710 /// @param LREdit    The LiveRangeEdit object handling the current split.
1711 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value
1712 ///                  must appear in this list.
1713 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit,
1714                                  ArrayRef<unsigned> UsedCands) {
1715   // These are the intervals created for new global ranges. We may create more
1716   // intervals for local ranges.
1717   const unsigned NumGlobalIntvs = LREdit.size();
1718   LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs
1719                     << " globals.\n");
1720   assert(NumGlobalIntvs && "No global intervals configured");
1721 
1722   // Isolate even single instructions when dealing with a proper sub-class.
1723   // That guarantees register class inflation for the stack interval because it
1724   // is all copies.
1725   Register Reg = SA->getParent().reg();
1726   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1727 
1728   // First handle all the blocks with uses.
1729   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1730   for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
1731     unsigned Number = BI.MBB->getNumber();
1732     unsigned IntvIn = 0, IntvOut = 0;
1733     SlotIndex IntfIn, IntfOut;
1734     if (BI.LiveIn) {
1735       unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
1736       if (CandIn != NoCand) {
1737         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1738         IntvIn = Cand.IntvIdx;
1739         Cand.Intf.moveToBlock(Number);
1740         IntfIn = Cand.Intf.first();
1741       }
1742     }
1743     if (BI.LiveOut) {
1744       unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
1745       if (CandOut != NoCand) {
1746         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1747         IntvOut = Cand.IntvIdx;
1748         Cand.Intf.moveToBlock(Number);
1749         IntfOut = Cand.Intf.last();
1750       }
1751     }
1752 
1753     // Create separate intervals for isolated blocks with multiple uses.
1754     if (!IntvIn && !IntvOut) {
1755       LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " isolated.\n");
1756       if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1757         SE->splitSingleBlock(BI);
1758       continue;
1759     }
1760 
1761     if (IntvIn && IntvOut)
1762       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1763     else if (IntvIn)
1764       SE->splitRegInBlock(BI, IntvIn, IntfIn);
1765     else
1766       SE->splitRegOutBlock(BI, IntvOut, IntfOut);
1767   }
1768 
1769   // Handle live-through blocks. The relevant live-through blocks are stored in
1770   // the ActiveBlocks list with each candidate. We need to filter out
1771   // duplicates.
1772   BitVector Todo = SA->getThroughBlocks();
1773   for (unsigned c = 0; c != UsedCands.size(); ++c) {
1774     ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks;
1775     for (unsigned Number : Blocks) {
1776       if (!Todo.test(Number))
1777         continue;
1778       Todo.reset(Number);
1779 
1780       unsigned IntvIn = 0, IntvOut = 0;
1781       SlotIndex IntfIn, IntfOut;
1782 
1783       unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
1784       if (CandIn != NoCand) {
1785         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1786         IntvIn = Cand.IntvIdx;
1787         Cand.Intf.moveToBlock(Number);
1788         IntfIn = Cand.Intf.first();
1789       }
1790 
1791       unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
1792       if (CandOut != NoCand) {
1793         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1794         IntvOut = Cand.IntvIdx;
1795         Cand.Intf.moveToBlock(Number);
1796         IntfOut = Cand.Intf.last();
1797       }
1798       if (!IntvIn && !IntvOut)
1799         continue;
1800       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1801     }
1802   }
1803 
1804   ++NumGlobalSplits;
1805 
1806   SmallVector<unsigned, 8> IntvMap;
1807   SE->finish(&IntvMap);
1808   DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
1809 
1810   ExtraRegInfo.resize(MRI->getNumVirtRegs());
1811   unsigned OrigBlocks = SA->getNumLiveBlocks();
1812 
1813   // Sort out the new intervals created by splitting. We get four kinds:
1814   // - Remainder intervals should not be split again.
1815   // - Candidate intervals can be assigned to Cand.PhysReg.
1816   // - Block-local splits are candidates for local splitting.
1817   // - DCE leftovers should go back on the queue.
1818   for (unsigned I = 0, E = LREdit.size(); I != E; ++I) {
1819     LiveInterval &Reg = LIS->getInterval(LREdit.get(I));
1820 
1821     // Ignore old intervals from DCE.
1822     if (getStage(Reg) != RS_New)
1823       continue;
1824 
1825     // Remainder interval. Don't try splitting again, spill if it doesn't
1826     // allocate.
1827     if (IntvMap[I] == 0) {
1828       setStage(Reg, RS_Spill);
1829       continue;
1830     }
1831 
1832     // Global intervals. Allow repeated splitting as long as the number of live
1833     // blocks is strictly decreasing.
1834     if (IntvMap[I] < NumGlobalIntvs) {
1835       if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
1836         LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
1837                           << " blocks as original.\n");
1838         // Don't allow repeated splitting as a safe guard against looping.
1839         setStage(Reg, RS_Split2);
1840       }
1841       continue;
1842     }
1843 
1844     // Other intervals are treated as new. This includes local intervals created
1845     // for blocks with multiple uses, and anything created by DCE.
1846   }
1847 
1848   if (VerifyEnabled)
1849     MF->verify(this, "After splitting live range around region");
1850 }
1851 
1852 MCRegister RAGreedy::tryRegionSplit(LiveInterval &VirtReg,
1853                                     AllocationOrder &Order,
1854                                     SmallVectorImpl<Register> &NewVRegs) {
1855   if (!TRI->shouldRegionSplitForVirtReg(*MF, VirtReg))
1856     return MCRegister::NoRegister;
1857   unsigned NumCands = 0;
1858   BlockFrequency SpillCost = calcSpillCost();
1859   BlockFrequency BestCost;
1860 
1861   // Check if we can split this live range around a compact region.
1862   bool HasCompact = calcCompactRegion(GlobalCand.front());
1863   if (HasCompact) {
1864     // Yes, keep GlobalCand[0] as the compact region candidate.
1865     NumCands = 1;
1866     BestCost = BlockFrequency::getMaxFrequency();
1867   } else {
1868     // No benefit from the compact region, our fallback will be per-block
1869     // splitting. Make sure we find a solution that is cheaper than spilling.
1870     BestCost = SpillCost;
1871     LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = ";
1872                MBFI->printBlockFreq(dbgs(), BestCost) << '\n');
1873   }
1874 
1875   bool CanCauseEvictionChain = false;
1876   unsigned BestCand =
1877       calculateRegionSplitCost(VirtReg, Order, BestCost, NumCands,
1878                                false /*IgnoreCSR*/, &CanCauseEvictionChain);
1879 
1880   // Split candidates with compact regions can cause a bad eviction sequence.
1881   // See splitCanCauseEvictionChain for detailed description of scenarios.
1882   // To avoid it, we need to comapre the cost with the spill cost and not the
1883   // current max frequency.
1884   if (HasCompact && (BestCost > SpillCost) && (BestCand != NoCand) &&
1885     CanCauseEvictionChain) {
1886     return MCRegister::NoRegister;
1887   }
1888 
1889   // No solutions found, fall back to single block splitting.
1890   if (!HasCompact && BestCand == NoCand)
1891     return MCRegister::NoRegister;
1892 
1893   return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs);
1894 }
1895 
1896 unsigned RAGreedy::calculateRegionSplitCost(LiveInterval &VirtReg,
1897                                             AllocationOrder &Order,
1898                                             BlockFrequency &BestCost,
1899                                             unsigned &NumCands, bool IgnoreCSR,
1900                                             bool *CanCauseEvictionChain) {
1901   unsigned BestCand = NoCand;
1902   for (MCPhysReg PhysReg : Order) {
1903     assert(PhysReg);
1904     if (IgnoreCSR && isUnusedCalleeSavedReg(PhysReg))
1905       continue;
1906 
1907     // Discard bad candidates before we run out of interference cache cursors.
1908     // This will only affect register classes with a lot of registers (>32).
1909     if (NumCands == IntfCache.getMaxCursors()) {
1910       unsigned WorstCount = ~0u;
1911       unsigned Worst = 0;
1912       for (unsigned CandIndex = 0; CandIndex != NumCands; ++CandIndex) {
1913         if (CandIndex == BestCand || !GlobalCand[CandIndex].PhysReg)
1914           continue;
1915         unsigned Count = GlobalCand[CandIndex].LiveBundles.count();
1916         if (Count < WorstCount) {
1917           Worst = CandIndex;
1918           WorstCount = Count;
1919         }
1920       }
1921       --NumCands;
1922       GlobalCand[Worst] = GlobalCand[NumCands];
1923       if (BestCand == NumCands)
1924         BestCand = Worst;
1925     }
1926 
1927     if (GlobalCand.size() <= NumCands)
1928       GlobalCand.resize(NumCands+1);
1929     GlobalSplitCandidate &Cand = GlobalCand[NumCands];
1930     Cand.reset(IntfCache, PhysReg);
1931 
1932     SpillPlacer->prepare(Cand.LiveBundles);
1933     BlockFrequency Cost;
1934     if (!addSplitConstraints(Cand.Intf, Cost)) {
1935       LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tno positive bundles\n");
1936       continue;
1937     }
1938     LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tstatic = ";
1939                MBFI->printBlockFreq(dbgs(), Cost));
1940     if (Cost >= BestCost) {
1941       LLVM_DEBUG({
1942         if (BestCand == NoCand)
1943           dbgs() << " worse than no bundles\n";
1944         else
1945           dbgs() << " worse than "
1946                  << printReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
1947       });
1948       continue;
1949     }
1950     if (!growRegion(Cand)) {
1951       LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
1952       continue;
1953     }
1954 
1955     SpillPlacer->finish();
1956 
1957     // No live bundles, defer to splitSingleBlocks().
1958     if (!Cand.LiveBundles.any()) {
1959       LLVM_DEBUG(dbgs() << " no bundles.\n");
1960       continue;
1961     }
1962 
1963     bool HasEvictionChain = false;
1964     Cost += calcGlobalSplitCost(Cand, Order, &HasEvictionChain);
1965     LLVM_DEBUG({
1966       dbgs() << ", total = ";
1967       MBFI->printBlockFreq(dbgs(), Cost) << " with bundles";
1968       for (int I : Cand.LiveBundles.set_bits())
1969         dbgs() << " EB#" << I;
1970       dbgs() << ".\n";
1971     });
1972     if (Cost < BestCost) {
1973       BestCand = NumCands;
1974       BestCost = Cost;
1975       // See splitCanCauseEvictionChain for detailed description of bad
1976       // eviction chain scenarios.
1977       if (CanCauseEvictionChain)
1978         *CanCauseEvictionChain = HasEvictionChain;
1979     }
1980     ++NumCands;
1981   }
1982 
1983   if (CanCauseEvictionChain && BestCand != NoCand) {
1984     // See splitCanCauseEvictionChain for detailed description of bad
1985     // eviction chain scenarios.
1986     LLVM_DEBUG(dbgs() << "Best split candidate of vreg "
1987                       << printReg(VirtReg.reg(), TRI) << "  may ");
1988     if (!(*CanCauseEvictionChain))
1989       LLVM_DEBUG(dbgs() << "not ");
1990     LLVM_DEBUG(dbgs() << "cause bad eviction chain\n");
1991   }
1992 
1993   return BestCand;
1994 }
1995 
1996 unsigned RAGreedy::doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
1997                                  bool HasCompact,
1998                                  SmallVectorImpl<Register> &NewVRegs) {
1999   SmallVector<unsigned, 8> UsedCands;
2000   // Prepare split editor.
2001   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2002   SE->reset(LREdit, SplitSpillMode);
2003 
2004   // Assign all edge bundles to the preferred candidate, or NoCand.
2005   BundleCand.assign(Bundles->getNumBundles(), NoCand);
2006 
2007   // Assign bundles for the best candidate region.
2008   if (BestCand != NoCand) {
2009     GlobalSplitCandidate &Cand = GlobalCand[BestCand];
2010     if (unsigned B = Cand.getBundles(BundleCand, BestCand)) {
2011       UsedCands.push_back(BestCand);
2012       Cand.IntvIdx = SE->openIntv();
2013       LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand.PhysReg, TRI) << " in "
2014                         << B << " bundles, intv " << Cand.IntvIdx << ".\n");
2015       (void)B;
2016     }
2017   }
2018 
2019   // Assign bundles for the compact region.
2020   if (HasCompact) {
2021     GlobalSplitCandidate &Cand = GlobalCand.front();
2022     assert(!Cand.PhysReg && "Compact region has no physreg");
2023     if (unsigned B = Cand.getBundles(BundleCand, 0)) {
2024       UsedCands.push_back(0);
2025       Cand.IntvIdx = SE->openIntv();
2026       LLVM_DEBUG(dbgs() << "Split for compact region in " << B
2027                         << " bundles, intv " << Cand.IntvIdx << ".\n");
2028       (void)B;
2029     }
2030   }
2031 
2032   splitAroundRegion(LREdit, UsedCands);
2033   return 0;
2034 }
2035 
2036 //===----------------------------------------------------------------------===//
2037 //                            Per-Block Splitting
2038 //===----------------------------------------------------------------------===//
2039 
2040 /// tryBlockSplit - Split a global live range around every block with uses. This
2041 /// creates a lot of local live ranges, that will be split by tryLocalSplit if
2042 /// they don't allocate.
2043 unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order,
2044                                  SmallVectorImpl<Register> &NewVRegs) {
2045   assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed");
2046   Register Reg = VirtReg.reg();
2047   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
2048   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2049   SE->reset(LREdit, SplitSpillMode);
2050   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
2051   for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
2052     if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
2053       SE->splitSingleBlock(BI);
2054   }
2055   // No blocks were split.
2056   if (LREdit.empty())
2057     return 0;
2058 
2059   // We did split for some blocks.
2060   SmallVector<unsigned, 8> IntvMap;
2061   SE->finish(&IntvMap);
2062 
2063   // Tell LiveDebugVariables about the new ranges.
2064   DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
2065 
2066   ExtraRegInfo.resize(MRI->getNumVirtRegs());
2067 
2068   // Sort out the new intervals created by splitting. The remainder interval
2069   // goes straight to spilling, the new local ranges get to stay RS_New.
2070   for (unsigned I = 0, E = LREdit.size(); I != E; ++I) {
2071     LiveInterval &LI = LIS->getInterval(LREdit.get(I));
2072     if (getStage(LI) == RS_New && IntvMap[I] == 0)
2073       setStage(LI, RS_Spill);
2074   }
2075 
2076   if (VerifyEnabled)
2077     MF->verify(this, "After splitting live range around basic blocks");
2078   return 0;
2079 }
2080 
2081 //===----------------------------------------------------------------------===//
2082 //                         Per-Instruction Splitting
2083 //===----------------------------------------------------------------------===//
2084 
2085 /// Get the number of allocatable registers that match the constraints of \p Reg
2086 /// on \p MI and that are also in \p SuperRC.
2087 static unsigned getNumAllocatableRegsForConstraints(
2088     const MachineInstr *MI, Register Reg, const TargetRegisterClass *SuperRC,
2089     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
2090     const RegisterClassInfo &RCI) {
2091   assert(SuperRC && "Invalid register class");
2092 
2093   const TargetRegisterClass *ConstrainedRC =
2094       MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI,
2095                                              /* ExploreBundle */ true);
2096   if (!ConstrainedRC)
2097     return 0;
2098   return RCI.getNumAllocatableRegs(ConstrainedRC);
2099 }
2100 
2101 /// tryInstructionSplit - Split a live range around individual instructions.
2102 /// This is normally not worthwhile since the spiller is doing essentially the
2103 /// same thing. However, when the live range is in a constrained register
2104 /// class, it may help to insert copies such that parts of the live range can
2105 /// be moved to a larger register class.
2106 ///
2107 /// This is similar to spilling to a larger register class.
2108 unsigned
2109 RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
2110                               SmallVectorImpl<Register> &NewVRegs) {
2111   const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg());
2112   // There is no point to this if there are no larger sub-classes.
2113   if (!RegClassInfo.isProperSubClass(CurRC))
2114     return 0;
2115 
2116   // Always enable split spill mode, since we're effectively spilling to a
2117   // register.
2118   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2119   SE->reset(LREdit, SplitEditor::SM_Size);
2120 
2121   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
2122   if (Uses.size() <= 1)
2123     return 0;
2124 
2125   LLVM_DEBUG(dbgs() << "Split around " << Uses.size()
2126                     << " individual instrs.\n");
2127 
2128   const TargetRegisterClass *SuperRC =
2129       TRI->getLargestLegalSuperClass(CurRC, *MF);
2130   unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC);
2131   // Split around every non-copy instruction if this split will relax
2132   // the constraints on the virtual register.
2133   // Otherwise, splitting just inserts uncoalescable copies that do not help
2134   // the allocation.
2135   for (const SlotIndex Use : Uses) {
2136     if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Use))
2137       if (MI->isFullCopy() ||
2138           SuperRCNumAllocatableRegs ==
2139               getNumAllocatableRegsForConstraints(MI, VirtReg.reg(), SuperRC,
2140                                                   TII, TRI, RCI)) {
2141         LLVM_DEBUG(dbgs() << "    skip:\t" << Use << '\t' << *MI);
2142         continue;
2143       }
2144     SE->openIntv();
2145     SlotIndex SegStart = SE->enterIntvBefore(Use);
2146     SlotIndex SegStop = SE->leaveIntvAfter(Use);
2147     SE->useIntv(SegStart, SegStop);
2148   }
2149 
2150   if (LREdit.empty()) {
2151     LLVM_DEBUG(dbgs() << "All uses were copies.\n");
2152     return 0;
2153   }
2154 
2155   SmallVector<unsigned, 8> IntvMap;
2156   SE->finish(&IntvMap);
2157   DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS);
2158   ExtraRegInfo.resize(MRI->getNumVirtRegs());
2159 
2160   // Assign all new registers to RS_Spill. This was the last chance.
2161   setStage(LREdit.begin(), LREdit.end(), RS_Spill);
2162   return 0;
2163 }
2164 
2165 //===----------------------------------------------------------------------===//
2166 //                             Local Splitting
2167 //===----------------------------------------------------------------------===//
2168 
2169 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted
2170 /// in order to use PhysReg between two entries in SA->UseSlots.
2171 ///
2172 /// GapWeight[I] represents the gap between UseSlots[I] and UseSlots[I + 1].
2173 ///
2174 void RAGreedy::calcGapWeights(MCRegister PhysReg,
2175                               SmallVectorImpl<float> &GapWeight) {
2176   assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
2177   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
2178   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
2179   const unsigned NumGaps = Uses.size()-1;
2180 
2181   // Start and end points for the interference check.
2182   SlotIndex StartIdx =
2183     BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr;
2184   SlotIndex StopIdx =
2185     BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr;
2186 
2187   GapWeight.assign(NumGaps, 0.0f);
2188 
2189   // Add interference from each overlapping register.
2190   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2191     if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units)
2192           .checkInterference())
2193       continue;
2194 
2195     // We know that VirtReg is a continuous interval from FirstInstr to
2196     // LastInstr, so we don't need InterferenceQuery.
2197     //
2198     // Interference that overlaps an instruction is counted in both gaps
2199     // surrounding the instruction. The exception is interference before
2200     // StartIdx and after StopIdx.
2201     //
2202     LiveIntervalUnion::SegmentIter IntI =
2203       Matrix->getLiveUnions()[*Units] .find(StartIdx);
2204     for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
2205       // Skip the gaps before IntI.
2206       while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
2207         if (++Gap == NumGaps)
2208           break;
2209       if (Gap == NumGaps)
2210         break;
2211 
2212       // Update the gaps covered by IntI.
2213       const float weight = IntI.value()->weight();
2214       for (; Gap != NumGaps; ++Gap) {
2215         GapWeight[Gap] = std::max(GapWeight[Gap], weight);
2216         if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
2217           break;
2218       }
2219       if (Gap == NumGaps)
2220         break;
2221     }
2222   }
2223 
2224   // Add fixed interference.
2225   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2226     const LiveRange &LR = LIS->getRegUnit(*Units);
2227     LiveRange::const_iterator I = LR.find(StartIdx);
2228     LiveRange::const_iterator E = LR.end();
2229 
2230     // Same loop as above. Mark any overlapped gaps as HUGE_VALF.
2231     for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) {
2232       while (Uses[Gap+1].getBoundaryIndex() < I->start)
2233         if (++Gap == NumGaps)
2234           break;
2235       if (Gap == NumGaps)
2236         break;
2237 
2238       for (; Gap != NumGaps; ++Gap) {
2239         GapWeight[Gap] = huge_valf;
2240         if (Uses[Gap+1].getBaseIndex() >= I->end)
2241           break;
2242       }
2243       if (Gap == NumGaps)
2244         break;
2245     }
2246   }
2247 }
2248 
2249 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
2250 /// basic block.
2251 ///
2252 unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
2253                                  SmallVectorImpl<Register> &NewVRegs) {
2254   // TODO: the function currently only handles a single UseBlock; it should be
2255   // possible to generalize.
2256   if (SA->getUseBlocks().size() != 1)
2257     return 0;
2258 
2259   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
2260 
2261   // Note that it is possible to have an interval that is live-in or live-out
2262   // while only covering a single block - A phi-def can use undef values from
2263   // predecessors, and the block could be a single-block loop.
2264   // We don't bother doing anything clever about such a case, we simply assume
2265   // that the interval is continuous from FirstInstr to LastInstr. We should
2266   // make sure that we don't do anything illegal to such an interval, though.
2267 
2268   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
2269   if (Uses.size() <= 2)
2270     return 0;
2271   const unsigned NumGaps = Uses.size()-1;
2272 
2273   LLVM_DEBUG({
2274     dbgs() << "tryLocalSplit: ";
2275     for (const auto &Use : Uses)
2276       dbgs() << ' ' << Use;
2277     dbgs() << '\n';
2278   });
2279 
2280   // If VirtReg is live across any register mask operands, compute a list of
2281   // gaps with register masks.
2282   SmallVector<unsigned, 8> RegMaskGaps;
2283   if (Matrix->checkRegMaskInterference(VirtReg)) {
2284     // Get regmask slots for the whole block.
2285     ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber());
2286     LLVM_DEBUG(dbgs() << RMS.size() << " regmasks in block:");
2287     // Constrain to VirtReg's live range.
2288     unsigned RI =
2289         llvm::lower_bound(RMS, Uses.front().getRegSlot()) - RMS.begin();
2290     unsigned RE = RMS.size();
2291     for (unsigned I = 0; I != NumGaps && RI != RE; ++I) {
2292       // Look for Uses[I] <= RMS <= Uses[I + 1].
2293       assert(!SlotIndex::isEarlierInstr(RMS[RI], Uses[I]));
2294       if (SlotIndex::isEarlierInstr(Uses[I + 1], RMS[RI]))
2295         continue;
2296       // Skip a regmask on the same instruction as the last use. It doesn't
2297       // overlap the live range.
2298       if (SlotIndex::isSameInstr(Uses[I + 1], RMS[RI]) && I + 1 == NumGaps)
2299         break;
2300       LLVM_DEBUG(dbgs() << ' ' << RMS[RI] << ':' << Uses[I] << '-'
2301                         << Uses[I + 1]);
2302       RegMaskGaps.push_back(I);
2303       // Advance ri to the next gap. A regmask on one of the uses counts in
2304       // both gaps.
2305       while (RI != RE && SlotIndex::isEarlierInstr(RMS[RI], Uses[I + 1]))
2306         ++RI;
2307     }
2308     LLVM_DEBUG(dbgs() << '\n');
2309   }
2310 
2311   // Since we allow local split results to be split again, there is a risk of
2312   // creating infinite loops. It is tempting to require that the new live
2313   // ranges have less instructions than the original. That would guarantee
2314   // convergence, but it is too strict. A live range with 3 instructions can be
2315   // split 2+3 (including the COPY), and we want to allow that.
2316   //
2317   // Instead we use these rules:
2318   //
2319   // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the
2320   //    noop split, of course).
2321   // 2. Require progress be made for ranges with getStage() == RS_Split2. All
2322   //    the new ranges must have fewer instructions than before the split.
2323   // 3. New ranges with the same number of instructions are marked RS_Split2,
2324   //    smaller ranges are marked RS_New.
2325   //
2326   // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
2327   // excessive splitting and infinite loops.
2328   //
2329   bool ProgressRequired = getStage(VirtReg) >= RS_Split2;
2330 
2331   // Best split candidate.
2332   unsigned BestBefore = NumGaps;
2333   unsigned BestAfter = 0;
2334   float BestDiff = 0;
2335 
2336   const float blockFreq =
2337     SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() *
2338     (1.0f / MBFI->getEntryFreq());
2339   SmallVector<float, 8> GapWeight;
2340 
2341   for (MCPhysReg PhysReg : Order) {
2342     assert(PhysReg);
2343     // Keep track of the largest spill weight that would need to be evicted in
2344     // order to make use of PhysReg between UseSlots[I] and UseSlots[I + 1].
2345     calcGapWeights(PhysReg, GapWeight);
2346 
2347     // Remove any gaps with regmask clobbers.
2348     if (Matrix->checkRegMaskInterference(VirtReg, PhysReg))
2349       for (unsigned I = 0, E = RegMaskGaps.size(); I != E; ++I)
2350         GapWeight[RegMaskGaps[I]] = huge_valf;
2351 
2352     // Try to find the best sequence of gaps to close.
2353     // The new spill weight must be larger than any gap interference.
2354 
2355     // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
2356     unsigned SplitBefore = 0, SplitAfter = 1;
2357 
2358     // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
2359     // It is the spill weight that needs to be evicted.
2360     float MaxGap = GapWeight[0];
2361 
2362     while (true) {
2363       // Live before/after split?
2364       const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
2365       const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
2366 
2367       LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << ' ' << Uses[SplitBefore]
2368                         << '-' << Uses[SplitAfter] << " I=" << MaxGap);
2369 
2370       // Stop before the interval gets so big we wouldn't be making progress.
2371       if (!LiveBefore && !LiveAfter) {
2372         LLVM_DEBUG(dbgs() << " all\n");
2373         break;
2374       }
2375       // Should the interval be extended or shrunk?
2376       bool Shrink = true;
2377 
2378       // How many gaps would the new range have?
2379       unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
2380 
2381       // Legally, without causing looping?
2382       bool Legal = !ProgressRequired || NewGaps < NumGaps;
2383 
2384       if (Legal && MaxGap < huge_valf) {
2385         // Estimate the new spill weight. Each instruction reads or writes the
2386         // register. Conservatively assume there are no read-modify-write
2387         // instructions.
2388         //
2389         // Try to guess the size of the new interval.
2390         const float EstWeight = normalizeSpillWeight(
2391             blockFreq * (NewGaps + 1),
2392             Uses[SplitBefore].distance(Uses[SplitAfter]) +
2393                 (LiveBefore + LiveAfter) * SlotIndex::InstrDist,
2394             1);
2395         // Would this split be possible to allocate?
2396         // Never allocate all gaps, we wouldn't be making progress.
2397         LLVM_DEBUG(dbgs() << " w=" << EstWeight);
2398         if (EstWeight * Hysteresis >= MaxGap) {
2399           Shrink = false;
2400           float Diff = EstWeight - MaxGap;
2401           if (Diff > BestDiff) {
2402             LLVM_DEBUG(dbgs() << " (best)");
2403             BestDiff = Hysteresis * Diff;
2404             BestBefore = SplitBefore;
2405             BestAfter = SplitAfter;
2406           }
2407         }
2408       }
2409 
2410       // Try to shrink.
2411       if (Shrink) {
2412         if (++SplitBefore < SplitAfter) {
2413           LLVM_DEBUG(dbgs() << " shrink\n");
2414           // Recompute the max when necessary.
2415           if (GapWeight[SplitBefore - 1] >= MaxGap) {
2416             MaxGap = GapWeight[SplitBefore];
2417             for (unsigned I = SplitBefore + 1; I != SplitAfter; ++I)
2418               MaxGap = std::max(MaxGap, GapWeight[I]);
2419           }
2420           continue;
2421         }
2422         MaxGap = 0;
2423       }
2424 
2425       // Try to extend the interval.
2426       if (SplitAfter >= NumGaps) {
2427         LLVM_DEBUG(dbgs() << " end\n");
2428         break;
2429       }
2430 
2431       LLVM_DEBUG(dbgs() << " extend\n");
2432       MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
2433     }
2434   }
2435 
2436   // Didn't find any candidates?
2437   if (BestBefore == NumGaps)
2438     return 0;
2439 
2440   LLVM_DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] << '-'
2441                     << Uses[BestAfter] << ", " << BestDiff << ", "
2442                     << (BestAfter - BestBefore + 1) << " instrs\n");
2443 
2444   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2445   SE->reset(LREdit);
2446 
2447   SE->openIntv();
2448   SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
2449   SlotIndex SegStop  = SE->leaveIntvAfter(Uses[BestAfter]);
2450   SE->useIntv(SegStart, SegStop);
2451   SmallVector<unsigned, 8> IntvMap;
2452   SE->finish(&IntvMap);
2453   DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS);
2454 
2455   // If the new range has the same number of instructions as before, mark it as
2456   // RS_Split2 so the next split will be forced to make progress. Otherwise,
2457   // leave the new intervals as RS_New so they can compete.
2458   bool LiveBefore = BestBefore != 0 || BI.LiveIn;
2459   bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
2460   unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
2461   if (NewGaps >= NumGaps) {
2462     LLVM_DEBUG(dbgs() << "Tagging non-progress ranges:");
2463     assert(!ProgressRequired && "Didn't make progress when it was required.");
2464     for (unsigned I = 0, E = IntvMap.size(); I != E; ++I)
2465       if (IntvMap[I] == 1) {
2466         setStage(LIS->getInterval(LREdit.get(I)), RS_Split2);
2467         LLVM_DEBUG(dbgs() << ' ' << printReg(LREdit.get(I)));
2468       }
2469     LLVM_DEBUG(dbgs() << '\n');
2470   }
2471   ++NumLocalSplits;
2472 
2473   return 0;
2474 }
2475 
2476 //===----------------------------------------------------------------------===//
2477 //                          Live Range Splitting
2478 //===----------------------------------------------------------------------===//
2479 
2480 /// trySplit - Try to split VirtReg or one of its interferences, making it
2481 /// assignable.
2482 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
2483 unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
2484                             SmallVectorImpl<Register> &NewVRegs,
2485                             const SmallVirtRegSet &FixedRegisters) {
2486   // Ranges must be Split2 or less.
2487   if (getStage(VirtReg) >= RS_Spill)
2488     return 0;
2489 
2490   // Local intervals are handled separately.
2491   if (LIS->intervalIsInOneMBB(VirtReg)) {
2492     NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName,
2493                        TimerGroupDescription, TimePassesIsEnabled);
2494     SA->analyze(&VirtReg);
2495     Register PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs);
2496     if (PhysReg || !NewVRegs.empty())
2497       return PhysReg;
2498     return tryInstructionSplit(VirtReg, Order, NewVRegs);
2499   }
2500 
2501   NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName,
2502                      TimerGroupDescription, TimePassesIsEnabled);
2503 
2504   SA->analyze(&VirtReg);
2505 
2506   // First try to split around a region spanning multiple blocks. RS_Split2
2507   // ranges already made dubious progress with region splitting, so they go
2508   // straight to single block splitting.
2509   if (getStage(VirtReg) < RS_Split2) {
2510     MCRegister PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
2511     if (PhysReg || !NewVRegs.empty())
2512       return PhysReg;
2513   }
2514 
2515   // Then isolate blocks.
2516   return tryBlockSplit(VirtReg, Order, NewVRegs);
2517 }
2518 
2519 //===----------------------------------------------------------------------===//
2520 //                          Last Chance Recoloring
2521 //===----------------------------------------------------------------------===//
2522 
2523 /// Return true if \p reg has any tied def operand.
2524 static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg) {
2525   for (const MachineOperand &MO : MRI->def_operands(reg))
2526     if (MO.isTied())
2527       return true;
2528 
2529   return false;
2530 }
2531 
2532 /// mayRecolorAllInterferences - Check if the virtual registers that
2533 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be
2534 /// recolored to free \p PhysReg.
2535 /// When true is returned, \p RecoloringCandidates has been augmented with all
2536 /// the live intervals that need to be recolored in order to free \p PhysReg
2537 /// for \p VirtReg.
2538 /// \p FixedRegisters contains all the virtual registers that cannot be
2539 /// recolored.
2540 bool RAGreedy::mayRecolorAllInterferences(
2541     MCRegister PhysReg, LiveInterval &VirtReg, SmallLISet &RecoloringCandidates,
2542     const SmallVirtRegSet &FixedRegisters) {
2543   const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg());
2544 
2545   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2546     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
2547     // If there is LastChanceRecoloringMaxInterference or more interferences,
2548     // chances are one would not be recolorable.
2549     if (Q.interferingVRegs(LastChanceRecoloringMaxInterference).size() >=
2550             LastChanceRecoloringMaxInterference &&
2551         !ExhaustiveSearch) {
2552       LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n");
2553       CutOffInfo |= CO_Interf;
2554       return false;
2555     }
2556     for (LiveInterval *Intf : reverse(Q.interferingVRegs())) {
2557       // If Intf is done and sit on the same register class as VirtReg,
2558       // it would not be recolorable as it is in the same state as VirtReg.
2559       // However, if VirtReg has tied defs and Intf doesn't, then
2560       // there is still a point in examining if it can be recolorable.
2561       if (((getStage(*Intf) == RS_Done &&
2562             MRI->getRegClass(Intf->reg()) == CurRC) &&
2563            !(hasTiedDef(MRI, VirtReg.reg()) &&
2564              !hasTiedDef(MRI, Intf->reg()))) ||
2565           FixedRegisters.count(Intf->reg())) {
2566         LLVM_DEBUG(
2567             dbgs() << "Early abort: the interference is not recolorable.\n");
2568         return false;
2569       }
2570       RecoloringCandidates.insert(Intf);
2571     }
2572   }
2573   return true;
2574 }
2575 
2576 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring
2577 /// its interferences.
2578 /// Last chance recoloring chooses a color for \p VirtReg and recolors every
2579 /// virtual register that was using it. The recoloring process may recursively
2580 /// use the last chance recoloring. Therefore, when a virtual register has been
2581 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot
2582 /// be last-chance-recolored again during this recoloring "session".
2583 /// E.g.,
2584 /// Let
2585 /// vA can use {R1, R2    }
2586 /// vB can use {    R2, R3}
2587 /// vC can use {R1        }
2588 /// Where vA, vB, and vC cannot be split anymore (they are reloads for
2589 /// instance) and they all interfere.
2590 ///
2591 /// vA is assigned R1
2592 /// vB is assigned R2
2593 /// vC tries to evict vA but vA is already done.
2594 /// Regular register allocation fails.
2595 ///
2596 /// Last chance recoloring kicks in:
2597 /// vC does as if vA was evicted => vC uses R1.
2598 /// vC is marked as fixed.
2599 /// vA needs to find a color.
2600 /// None are available.
2601 /// vA cannot evict vC: vC is a fixed virtual register now.
2602 /// vA does as if vB was evicted => vA uses R2.
2603 /// vB needs to find a color.
2604 /// R3 is available.
2605 /// Recoloring => vC = R1, vA = R2, vB = R3
2606 ///
2607 /// \p Order defines the preferred allocation order for \p VirtReg.
2608 /// \p NewRegs will contain any new virtual register that have been created
2609 /// (split, spill) during the process and that must be assigned.
2610 /// \p FixedRegisters contains all the virtual registers that cannot be
2611 /// recolored.
2612 /// \p Depth gives the current depth of the last chance recoloring.
2613 /// \return a physical register that can be used for VirtReg or ~0u if none
2614 /// exists.
2615 unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg,
2616                                            AllocationOrder &Order,
2617                                            SmallVectorImpl<Register> &NewVRegs,
2618                                            SmallVirtRegSet &FixedRegisters,
2619                                            unsigned Depth) {
2620   if (!TRI->shouldUseLastChanceRecoloringForVirtReg(*MF, VirtReg))
2621     return ~0u;
2622 
2623   LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n');
2624   // Ranges must be Done.
2625   assert((getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) &&
2626          "Last chance recoloring should really be last chance");
2627   // Set the max depth to LastChanceRecoloringMaxDepth.
2628   // We may want to reconsider that if we end up with a too large search space
2629   // for target with hundreds of registers.
2630   // Indeed, in that case we may want to cut the search space earlier.
2631   if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) {
2632     LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n");
2633     CutOffInfo |= CO_Depth;
2634     return ~0u;
2635   }
2636 
2637   // Set of Live intervals that will need to be recolored.
2638   SmallLISet RecoloringCandidates;
2639   // Record the original mapping virtual register to physical register in case
2640   // the recoloring fails.
2641   DenseMap<Register, MCRegister> VirtRegToPhysReg;
2642   // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in
2643   // this recoloring "session".
2644   assert(!FixedRegisters.count(VirtReg.reg()));
2645   FixedRegisters.insert(VirtReg.reg());
2646   SmallVector<Register, 4> CurrentNewVRegs;
2647 
2648   for (MCRegister PhysReg : Order) {
2649     assert(PhysReg.isValid());
2650     LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg << " to "
2651                       << printReg(PhysReg, TRI) << '\n');
2652     RecoloringCandidates.clear();
2653     VirtRegToPhysReg.clear();
2654     CurrentNewVRegs.clear();
2655 
2656     // It is only possible to recolor virtual register interference.
2657     if (Matrix->checkInterference(VirtReg, PhysReg) >
2658         LiveRegMatrix::IK_VirtReg) {
2659       LLVM_DEBUG(
2660           dbgs() << "Some interferences are not with virtual registers.\n");
2661 
2662       continue;
2663     }
2664 
2665     // Early give up on this PhysReg if it is obvious we cannot recolor all
2666     // the interferences.
2667     if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates,
2668                                     FixedRegisters)) {
2669       LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n");
2670       continue;
2671     }
2672 
2673     // RecoloringCandidates contains all the virtual registers that interfer
2674     // with VirtReg on PhysReg (or one of its aliases).
2675     // Enqueue them for recoloring and perform the actual recoloring.
2676     PQueue RecoloringQueue;
2677     for (LiveInterval *RC : RecoloringCandidates) {
2678       Register ItVirtReg = RC->reg();
2679       enqueue(RecoloringQueue, RC);
2680       assert(VRM->hasPhys(ItVirtReg) &&
2681              "Interferences are supposed to be with allocated variables");
2682 
2683       // Record the current allocation.
2684       VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg);
2685       // unset the related struct.
2686       Matrix->unassign(*RC);
2687     }
2688 
2689     // Do as if VirtReg was assigned to PhysReg so that the underlying
2690     // recoloring has the right information about the interferes and
2691     // available colors.
2692     Matrix->assign(VirtReg, PhysReg);
2693 
2694     // Save the current recoloring state.
2695     // If we cannot recolor all the interferences, we will have to start again
2696     // at this point for the next physical register.
2697     SmallVirtRegSet SaveFixedRegisters(FixedRegisters);
2698     if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs,
2699                                 FixedRegisters, Depth)) {
2700       // Push the queued vregs into the main queue.
2701       for (Register NewVReg : CurrentNewVRegs)
2702         NewVRegs.push_back(NewVReg);
2703       // Do not mess up with the global assignment process.
2704       // I.e., VirtReg must be unassigned.
2705       Matrix->unassign(VirtReg);
2706       return PhysReg;
2707     }
2708 
2709     LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to "
2710                       << printReg(PhysReg, TRI) << '\n');
2711 
2712     // The recoloring attempt failed, undo the changes.
2713     FixedRegisters = SaveFixedRegisters;
2714     Matrix->unassign(VirtReg);
2715 
2716     // For a newly created vreg which is also in RecoloringCandidates,
2717     // don't add it to NewVRegs because its physical register will be restored
2718     // below. Other vregs in CurrentNewVRegs are created by calling
2719     // selectOrSplit and should be added into NewVRegs.
2720     for (Register &R : CurrentNewVRegs) {
2721       if (RecoloringCandidates.count(&LIS->getInterval(R)))
2722         continue;
2723       NewVRegs.push_back(R);
2724     }
2725 
2726     for (LiveInterval *RC : RecoloringCandidates) {
2727       Register ItVirtReg = RC->reg();
2728       if (VRM->hasPhys(ItVirtReg))
2729         Matrix->unassign(*RC);
2730       MCRegister ItPhysReg = VirtRegToPhysReg[ItVirtReg];
2731       Matrix->assign(*RC, ItPhysReg);
2732     }
2733   }
2734 
2735   // Last chance recoloring did not worked either, give up.
2736   return ~0u;
2737 }
2738 
2739 /// tryRecoloringCandidates - Try to assign a new color to every register
2740 /// in \RecoloringQueue.
2741 /// \p NewRegs will contain any new virtual register created during the
2742 /// recoloring process.
2743 /// \p FixedRegisters[in/out] contains all the registers that have been
2744 /// recolored.
2745 /// \return true if all virtual registers in RecoloringQueue were successfully
2746 /// recolored, false otherwise.
2747 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue,
2748                                        SmallVectorImpl<Register> &NewVRegs,
2749                                        SmallVirtRegSet &FixedRegisters,
2750                                        unsigned Depth) {
2751   while (!RecoloringQueue.empty()) {
2752     LiveInterval *LI = dequeue(RecoloringQueue);
2753     LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI << '\n');
2754     MCRegister PhysReg =
2755         selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, Depth + 1);
2756     // When splitting happens, the live-range may actually be empty.
2757     // In that case, this is okay to continue the recoloring even
2758     // if we did not find an alternative color for it. Indeed,
2759     // there will not be anything to color for LI in the end.
2760     if (PhysReg == ~0u || (!PhysReg && !LI->empty()))
2761       return false;
2762 
2763     if (!PhysReg) {
2764       assert(LI->empty() && "Only empty live-range do not require a register");
2765       LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2766                         << " succeeded. Empty LI.\n");
2767       continue;
2768     }
2769     LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2770                       << " succeeded with: " << printReg(PhysReg, TRI) << '\n');
2771 
2772     Matrix->assign(*LI, PhysReg);
2773     FixedRegisters.insert(LI->reg());
2774   }
2775   return true;
2776 }
2777 
2778 //===----------------------------------------------------------------------===//
2779 //                            Main Entry Point
2780 //===----------------------------------------------------------------------===//
2781 
2782 MCRegister RAGreedy::selectOrSplit(LiveInterval &VirtReg,
2783                                    SmallVectorImpl<Register> &NewVRegs) {
2784   CutOffInfo = CO_None;
2785   LLVMContext &Ctx = MF->getFunction().getContext();
2786   SmallVirtRegSet FixedRegisters;
2787   MCRegister Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters);
2788   if (Reg == ~0U && (CutOffInfo != CO_None)) {
2789     uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf);
2790     if (CutOffEncountered == CO_Depth)
2791       Ctx.emitError("register allocation failed: maximum depth for recoloring "
2792                     "reached. Use -fexhaustive-register-search to skip "
2793                     "cutoffs");
2794     else if (CutOffEncountered == CO_Interf)
2795       Ctx.emitError("register allocation failed: maximum interference for "
2796                     "recoloring reached. Use -fexhaustive-register-search "
2797                     "to skip cutoffs");
2798     else if (CutOffEncountered == (CO_Depth | CO_Interf))
2799       Ctx.emitError("register allocation failed: maximum interference and "
2800                     "depth for recoloring reached. Use "
2801                     "-fexhaustive-register-search to skip cutoffs");
2802   }
2803   return Reg;
2804 }
2805 
2806 /// Using a CSR for the first time has a cost because it causes push|pop
2807 /// to be added to prologue|epilogue. Splitting a cold section of the live
2808 /// range can have lower cost than using the CSR for the first time;
2809 /// Spilling a live range in the cold path can have lower cost than using
2810 /// the CSR for the first time. Returns the physical register if we decide
2811 /// to use the CSR; otherwise return 0.
2812 MCRegister
2813 RAGreedy::tryAssignCSRFirstTime(LiveInterval &VirtReg, AllocationOrder &Order,
2814                                 MCRegister PhysReg, uint8_t &CostPerUseLimit,
2815                                 SmallVectorImpl<Register> &NewVRegs) {
2816   if (getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) {
2817     // We choose spill over using the CSR for the first time if the spill cost
2818     // is lower than CSRCost.
2819     SA->analyze(&VirtReg);
2820     if (calcSpillCost() >= CSRCost)
2821       return PhysReg;
2822 
2823     // We are going to spill, set CostPerUseLimit to 1 to make sure that
2824     // we will not use a callee-saved register in tryEvict.
2825     CostPerUseLimit = 1;
2826     return 0;
2827   }
2828   if (getStage(VirtReg) < RS_Split) {
2829     // We choose pre-splitting over using the CSR for the first time if
2830     // the cost of splitting is lower than CSRCost.
2831     SA->analyze(&VirtReg);
2832     unsigned NumCands = 0;
2833     BlockFrequency BestCost = CSRCost; // Don't modify CSRCost.
2834     unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost,
2835                                                  NumCands, true /*IgnoreCSR*/);
2836     if (BestCand == NoCand)
2837       // Use the CSR if we can't find a region split below CSRCost.
2838       return PhysReg;
2839 
2840     // Perform the actual pre-splitting.
2841     doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs);
2842     return 0;
2843   }
2844   return PhysReg;
2845 }
2846 
2847 void RAGreedy::aboutToRemoveInterval(LiveInterval &LI) {
2848   // Do not keep invalid information around.
2849   SetOfBrokenHints.remove(&LI);
2850 }
2851 
2852 void RAGreedy::initializeCSRCost() {
2853   // We use the larger one out of the command-line option and the value report
2854   // by TRI.
2855   CSRCost = BlockFrequency(
2856       std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost()));
2857   if (!CSRCost.getFrequency())
2858     return;
2859 
2860   // Raw cost is relative to Entry == 2^14; scale it appropriately.
2861   uint64_t ActualEntry = MBFI->getEntryFreq();
2862   if (!ActualEntry) {
2863     CSRCost = 0;
2864     return;
2865   }
2866   uint64_t FixedEntry = 1 << 14;
2867   if (ActualEntry < FixedEntry)
2868     CSRCost *= BranchProbability(ActualEntry, FixedEntry);
2869   else if (ActualEntry <= UINT32_MAX)
2870     // Invert the fraction and divide.
2871     CSRCost /= BranchProbability(FixedEntry, ActualEntry);
2872   else
2873     // Can't use BranchProbability in general, since it takes 32-bit numbers.
2874     CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry);
2875 }
2876 
2877 /// Collect the hint info for \p Reg.
2878 /// The results are stored into \p Out.
2879 /// \p Out is not cleared before being populated.
2880 void RAGreedy::collectHintInfo(Register Reg, HintsInfo &Out) {
2881   for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) {
2882     if (!Instr.isFullCopy())
2883       continue;
2884     // Look for the other end of the copy.
2885     Register OtherReg = Instr.getOperand(0).getReg();
2886     if (OtherReg == Reg) {
2887       OtherReg = Instr.getOperand(1).getReg();
2888       if (OtherReg == Reg)
2889         continue;
2890     }
2891     // Get the current assignment.
2892     MCRegister OtherPhysReg =
2893         OtherReg.isPhysical() ? OtherReg.asMCReg() : VRM->getPhys(OtherReg);
2894     // Push the collected information.
2895     Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg,
2896                            OtherPhysReg));
2897   }
2898 }
2899 
2900 /// Using the given \p List, compute the cost of the broken hints if
2901 /// \p PhysReg was used.
2902 /// \return The cost of \p List for \p PhysReg.
2903 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List,
2904                                            MCRegister PhysReg) {
2905   BlockFrequency Cost = 0;
2906   for (const HintInfo &Info : List) {
2907     if (Info.PhysReg != PhysReg)
2908       Cost += Info.Freq;
2909   }
2910   return Cost;
2911 }
2912 
2913 /// Using the register assigned to \p VirtReg, try to recolor
2914 /// all the live ranges that are copy-related with \p VirtReg.
2915 /// The recoloring is then propagated to all the live-ranges that have
2916 /// been recolored and so on, until no more copies can be coalesced or
2917 /// it is not profitable.
2918 /// For a given live range, profitability is determined by the sum of the
2919 /// frequencies of the non-identity copies it would introduce with the old
2920 /// and new register.
2921 void RAGreedy::tryHintRecoloring(LiveInterval &VirtReg) {
2922   // We have a broken hint, check if it is possible to fix it by
2923   // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted
2924   // some register and PhysReg may be available for the other live-ranges.
2925   SmallSet<Register, 4> Visited;
2926   SmallVector<unsigned, 2> RecoloringCandidates;
2927   HintsInfo Info;
2928   Register Reg = VirtReg.reg();
2929   MCRegister PhysReg = VRM->getPhys(Reg);
2930   // Start the recoloring algorithm from the input live-interval, then
2931   // it will propagate to the ones that are copy-related with it.
2932   Visited.insert(Reg);
2933   RecoloringCandidates.push_back(Reg);
2934 
2935   LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg, TRI)
2936                     << '(' << printReg(PhysReg, TRI) << ")\n");
2937 
2938   do {
2939     Reg = RecoloringCandidates.pop_back_val();
2940 
2941     // We cannot recolor physical register.
2942     if (Register::isPhysicalRegister(Reg))
2943       continue;
2944 
2945     // This may be a skipped class
2946     if (!VRM->hasPhys(Reg)) {
2947       assert(!ShouldAllocateClass(*TRI, *MRI->getRegClass(Reg)) &&
2948              "We have an unallocated variable which should have been handled");
2949       continue;
2950     }
2951 
2952     // Get the live interval mapped with this virtual register to be able
2953     // to check for the interference with the new color.
2954     LiveInterval &LI = LIS->getInterval(Reg);
2955     MCRegister CurrPhys = VRM->getPhys(Reg);
2956     // Check that the new color matches the register class constraints and
2957     // that it is free for this live range.
2958     if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) ||
2959                                 Matrix->checkInterference(LI, PhysReg)))
2960       continue;
2961 
2962     LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << '(' << printReg(CurrPhys, TRI)
2963                       << ") is recolorable.\n");
2964 
2965     // Gather the hint info.
2966     Info.clear();
2967     collectHintInfo(Reg, Info);
2968     // Check if recoloring the live-range will increase the cost of the
2969     // non-identity copies.
2970     if (CurrPhys != PhysReg) {
2971       LLVM_DEBUG(dbgs() << "Checking profitability:\n");
2972       BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys);
2973       BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg);
2974       LLVM_DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency()
2975                         << "\nNew Cost: " << NewCopiesCost.getFrequency()
2976                         << '\n');
2977       if (OldCopiesCost < NewCopiesCost) {
2978         LLVM_DEBUG(dbgs() << "=> Not profitable.\n");
2979         continue;
2980       }
2981       // At this point, the cost is either cheaper or equal. If it is
2982       // equal, we consider this is profitable because it may expose
2983       // more recoloring opportunities.
2984       LLVM_DEBUG(dbgs() << "=> Profitable.\n");
2985       // Recolor the live-range.
2986       Matrix->unassign(LI);
2987       Matrix->assign(LI, PhysReg);
2988     }
2989     // Push all copy-related live-ranges to keep reconciling the broken
2990     // hints.
2991     for (const HintInfo &HI : Info) {
2992       if (Visited.insert(HI.Reg).second)
2993         RecoloringCandidates.push_back(HI.Reg);
2994     }
2995   } while (!RecoloringCandidates.empty());
2996 }
2997 
2998 /// Try to recolor broken hints.
2999 /// Broken hints may be repaired by recoloring when an evicted variable
3000 /// freed up a register for a larger live-range.
3001 /// Consider the following example:
3002 /// BB1:
3003 ///   a =
3004 ///   b =
3005 /// BB2:
3006 ///   ...
3007 ///   = b
3008 ///   = a
3009 /// Let us assume b gets split:
3010 /// BB1:
3011 ///   a =
3012 ///   b =
3013 /// BB2:
3014 ///   c = b
3015 ///   ...
3016 ///   d = c
3017 ///   = d
3018 ///   = a
3019 /// Because of how the allocation work, b, c, and d may be assigned different
3020 /// colors. Now, if a gets evicted later:
3021 /// BB1:
3022 ///   a =
3023 ///   st a, SpillSlot
3024 ///   b =
3025 /// BB2:
3026 ///   c = b
3027 ///   ...
3028 ///   d = c
3029 ///   = d
3030 ///   e = ld SpillSlot
3031 ///   = e
3032 /// This is likely that we can assign the same register for b, c, and d,
3033 /// getting rid of 2 copies.
3034 void RAGreedy::tryHintsRecoloring() {
3035   for (LiveInterval *LI : SetOfBrokenHints) {
3036     assert(Register::isVirtualRegister(LI->reg()) &&
3037            "Recoloring is possible only for virtual registers");
3038     // Some dead defs may be around (e.g., because of debug uses).
3039     // Ignore those.
3040     if (!VRM->hasPhys(LI->reg()))
3041       continue;
3042     tryHintRecoloring(*LI);
3043   }
3044 }
3045 
3046 MCRegister RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg,
3047                                        SmallVectorImpl<Register> &NewVRegs,
3048                                        SmallVirtRegSet &FixedRegisters,
3049                                        unsigned Depth) {
3050   uint8_t CostPerUseLimit = uint8_t(~0u);
3051   // First try assigning a free register.
3052   auto Order =
3053       AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix);
3054   if (MCRegister PhysReg =
3055           tryAssign(VirtReg, Order, NewVRegs, FixedRegisters)) {
3056     // If VirtReg got an assignment, the eviction info is no longer relevant.
3057     LastEvicted.clearEvicteeInfo(VirtReg.reg());
3058     // When NewVRegs is not empty, we may have made decisions such as evicting
3059     // a virtual register, go with the earlier decisions and use the physical
3060     // register.
3061     if (CSRCost.getFrequency() && isUnusedCalleeSavedReg(PhysReg) &&
3062         NewVRegs.empty()) {
3063       MCRegister CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg,
3064                                                 CostPerUseLimit, NewVRegs);
3065       if (CSRReg || !NewVRegs.empty())
3066         // Return now if we decide to use a CSR or create new vregs due to
3067         // pre-splitting.
3068         return CSRReg;
3069     } else
3070       return PhysReg;
3071   }
3072 
3073   LiveRangeStage Stage = getStage(VirtReg);
3074   LLVM_DEBUG(dbgs() << StageName[Stage] << " Cascade "
3075                     << ExtraRegInfo[VirtReg.reg()].Cascade << '\n');
3076 
3077   // Try to evict a less worthy live range, but only for ranges from the primary
3078   // queue. The RS_Split ranges already failed to do this, and they should not
3079   // get a second chance until they have been split.
3080   if (Stage != RS_Split)
3081     if (Register PhysReg =
3082             tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit,
3083                      FixedRegisters)) {
3084       Register Hint = MRI->getSimpleHint(VirtReg.reg());
3085       // If VirtReg has a hint and that hint is broken record this
3086       // virtual register as a recoloring candidate for broken hint.
3087       // Indeed, since we evicted a variable in its neighborhood it is
3088       // likely we can at least partially recolor some of the
3089       // copy-related live-ranges.
3090       if (Hint && Hint != PhysReg)
3091         SetOfBrokenHints.insert(&VirtReg);
3092       // If VirtReg eviction someone, the eviction info for it as an evictee is
3093       // no longer relevant.
3094       LastEvicted.clearEvicteeInfo(VirtReg.reg());
3095       return PhysReg;
3096     }
3097 
3098   assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs");
3099 
3100   // The first time we see a live range, don't try to split or spill.
3101   // Wait until the second time, when all smaller ranges have been allocated.
3102   // This gives a better picture of the interference to split around.
3103   if (Stage < RS_Split) {
3104     setStage(VirtReg, RS_Split);
3105     LLVM_DEBUG(dbgs() << "wait for second round\n");
3106     NewVRegs.push_back(VirtReg.reg());
3107     return 0;
3108   }
3109 
3110   if (Stage < RS_Spill) {
3111     // Try splitting VirtReg or interferences.
3112     unsigned NewVRegSizeBefore = NewVRegs.size();
3113     Register PhysReg = trySplit(VirtReg, Order, NewVRegs, FixedRegisters);
3114     if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore)) {
3115       // If VirtReg got split, the eviction info is no longer relevant.
3116       LastEvicted.clearEvicteeInfo(VirtReg.reg());
3117       return PhysReg;
3118     }
3119   }
3120 
3121   // If we couldn't allocate a register from spilling, there is probably some
3122   // invalid inline assembly. The base class will report it.
3123   if (Stage >= RS_Done || !VirtReg.isSpillable())
3124     return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters,
3125                                    Depth);
3126 
3127   // Finally spill VirtReg itself.
3128   if ((EnableDeferredSpilling ||
3129        TRI->shouldUseDeferredSpillingForVirtReg(*MF, VirtReg)) &&
3130       getStage(VirtReg) < RS_Memory) {
3131     // TODO: This is experimental and in particular, we do not model
3132     // the live range splitting done by spilling correctly.
3133     // We would need a deep integration with the spiller to do the
3134     // right thing here. Anyway, that is still good for early testing.
3135     setStage(VirtReg, RS_Memory);
3136     LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n");
3137     NewVRegs.push_back(VirtReg.reg());
3138   } else {
3139     NamedRegionTimer T("spill", "Spiller", TimerGroupName,
3140                        TimerGroupDescription, TimePassesIsEnabled);
3141     LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
3142     spiller().spill(LRE);
3143     setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done);
3144 
3145     // Tell LiveDebugVariables about the new ranges. Ranges not being covered by
3146     // the new regs are kept in LDV (still mapping to the old register), until
3147     // we rewrite spilled locations in LDV at a later stage.
3148     DebugVars->splitRegister(VirtReg.reg(), LRE.regs(), *LIS);
3149 
3150     if (VerifyEnabled)
3151       MF->verify(this, "After spilling");
3152   }
3153 
3154   // The live virtual register requesting allocation was spilled, so tell
3155   // the caller not to allocate anything during this round.
3156   return 0;
3157 }
3158 
3159 void RAGreedy::RAGreedyStats::report(MachineOptimizationRemarkMissed &R) {
3160   using namespace ore;
3161   if (Spills) {
3162     R << NV("NumSpills", Spills) << " spills ";
3163     R << NV("TotalSpillsCost", SpillsCost) << " total spills cost ";
3164   }
3165   if (FoldedSpills) {
3166     R << NV("NumFoldedSpills", FoldedSpills) << " folded spills ";
3167     R << NV("TotalFoldedSpillsCost", FoldedSpillsCost)
3168       << " total folded spills cost ";
3169   }
3170   if (Reloads) {
3171     R << NV("NumReloads", Reloads) << " reloads ";
3172     R << NV("TotalReloadsCost", ReloadsCost) << " total reloads cost ";
3173   }
3174   if (FoldedReloads) {
3175     R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads ";
3176     R << NV("TotalFoldedReloadsCost", FoldedReloadsCost)
3177       << " total folded reloads cost ";
3178   }
3179   if (ZeroCostFoldedReloads)
3180     R << NV("NumZeroCostFoldedReloads", ZeroCostFoldedReloads)
3181       << " zero cost folded reloads ";
3182   if (Copies) {
3183     R << NV("NumVRCopies", Copies) << " virtual registers copies ";
3184     R << NV("TotalCopiesCost", CopiesCost) << " total copies cost ";
3185   }
3186 }
3187 
3188 RAGreedy::RAGreedyStats RAGreedy::computeStats(MachineBasicBlock &MBB) {
3189   RAGreedyStats Stats;
3190   const MachineFrameInfo &MFI = MF->getFrameInfo();
3191   int FI;
3192 
3193   auto isSpillSlotAccess = [&MFI](const MachineMemOperand *A) {
3194     return MFI.isSpillSlotObjectIndex(cast<FixedStackPseudoSourceValue>(
3195         A->getPseudoValue())->getFrameIndex());
3196   };
3197   auto isPatchpointInstr = [](const MachineInstr &MI) {
3198     return MI.getOpcode() == TargetOpcode::PATCHPOINT ||
3199            MI.getOpcode() == TargetOpcode::STACKMAP ||
3200            MI.getOpcode() == TargetOpcode::STATEPOINT;
3201   };
3202   for (MachineInstr &MI : MBB) {
3203     if (MI.isCopy()) {
3204       MachineOperand &Dest = MI.getOperand(0);
3205       MachineOperand &Src = MI.getOperand(1);
3206       if (Dest.isReg() && Src.isReg() && Dest.getReg().isVirtual() &&
3207           Src.getReg().isVirtual())
3208         ++Stats.Copies;
3209       continue;
3210     }
3211 
3212     SmallVector<const MachineMemOperand *, 2> Accesses;
3213     if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) {
3214       ++Stats.Reloads;
3215       continue;
3216     }
3217     if (TII->isStoreToStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) {
3218       ++Stats.Spills;
3219       continue;
3220     }
3221     if (TII->hasLoadFromStackSlot(MI, Accesses) &&
3222         llvm::any_of(Accesses, isSpillSlotAccess)) {
3223       if (!isPatchpointInstr(MI)) {
3224         Stats.FoldedReloads += Accesses.size();
3225         continue;
3226       }
3227       // For statepoint there may be folded and zero cost folded stack reloads.
3228       std::pair<unsigned, unsigned> NonZeroCostRange =
3229           TII->getPatchpointUnfoldableRange(MI);
3230       SmallSet<unsigned, 16> FoldedReloads;
3231       SmallSet<unsigned, 16> ZeroCostFoldedReloads;
3232       for (unsigned Idx = 0, E = MI.getNumOperands(); Idx < E; ++Idx) {
3233         MachineOperand &MO = MI.getOperand(Idx);
3234         if (!MO.isFI() || !MFI.isSpillSlotObjectIndex(MO.getIndex()))
3235           continue;
3236         if (Idx >= NonZeroCostRange.first && Idx < NonZeroCostRange.second)
3237           FoldedReloads.insert(MO.getIndex());
3238         else
3239           ZeroCostFoldedReloads.insert(MO.getIndex());
3240       }
3241       // If stack slot is used in folded reload it is not zero cost then.
3242       for (unsigned Slot : FoldedReloads)
3243         ZeroCostFoldedReloads.erase(Slot);
3244       Stats.FoldedReloads += FoldedReloads.size();
3245       Stats.ZeroCostFoldedReloads += ZeroCostFoldedReloads.size();
3246       continue;
3247     }
3248     Accesses.clear();
3249     if (TII->hasStoreToStackSlot(MI, Accesses) &&
3250         llvm::any_of(Accesses, isSpillSlotAccess)) {
3251       Stats.FoldedSpills += Accesses.size();
3252     }
3253   }
3254   // Set cost of collected statistic by multiplication to relative frequency of
3255   // this basic block.
3256   float RelFreq = MBFI->getBlockFreqRelativeToEntryBlock(&MBB);
3257   Stats.ReloadsCost = RelFreq * Stats.Reloads;
3258   Stats.FoldedReloadsCost = RelFreq * Stats.FoldedReloads;
3259   Stats.SpillsCost = RelFreq * Stats.Spills;
3260   Stats.FoldedSpillsCost = RelFreq * Stats.FoldedSpills;
3261   Stats.CopiesCost = RelFreq * Stats.Copies;
3262   return Stats;
3263 }
3264 
3265 RAGreedy::RAGreedyStats RAGreedy::reportStats(MachineLoop *L) {
3266   RAGreedyStats Stats;
3267 
3268   // Sum up the spill and reloads in subloops.
3269   for (MachineLoop *SubLoop : *L)
3270     Stats.add(reportStats(SubLoop));
3271 
3272   for (MachineBasicBlock *MBB : L->getBlocks())
3273     // Handle blocks that were not included in subloops.
3274     if (Loops->getLoopFor(MBB) == L)
3275       Stats.add(computeStats(*MBB));
3276 
3277   if (!Stats.isEmpty()) {
3278     using namespace ore;
3279 
3280     ORE->emit([&]() {
3281       MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReloadCopies",
3282                                         L->getStartLoc(), L->getHeader());
3283       Stats.report(R);
3284       R << "generated in loop";
3285       return R;
3286     });
3287   }
3288   return Stats;
3289 }
3290 
3291 void RAGreedy::reportStats() {
3292   if (!ORE->allowExtraAnalysis(DEBUG_TYPE))
3293     return;
3294   RAGreedyStats Stats;
3295   for (MachineLoop *L : *Loops)
3296     Stats.add(reportStats(L));
3297   // Process non-loop blocks.
3298   for (MachineBasicBlock &MBB : *MF)
3299     if (!Loops->getLoopFor(&MBB))
3300       Stats.add(computeStats(MBB));
3301   if (!Stats.isEmpty()) {
3302     using namespace ore;
3303 
3304     ORE->emit([&]() {
3305       DebugLoc Loc;
3306       if (auto *SP = MF->getFunction().getSubprogram())
3307         Loc = DILocation::get(SP->getContext(), SP->getLine(), 1, SP);
3308       MachineOptimizationRemarkMissed R(DEBUG_TYPE, "SpillReloadCopies", Loc,
3309                                         &MF->front());
3310       Stats.report(R);
3311       R << "generated in function";
3312       return R;
3313     });
3314   }
3315 }
3316 
3317 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
3318   LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
3319                     << "********** Function: " << mf.getName() << '\n');
3320 
3321   MF = &mf;
3322   TRI = MF->getSubtarget().getRegisterInfo();
3323   TII = MF->getSubtarget().getInstrInfo();
3324   RCI.runOnMachineFunction(mf);
3325 
3326   EnableLocalReassign = EnableLocalReassignment ||
3327                         MF->getSubtarget().enableRALocalReassignment(
3328                             MF->getTarget().getOptLevel());
3329 
3330   EnableAdvancedRASplitCost =
3331       ConsiderLocalIntervalCost.getNumOccurrences()
3332           ? ConsiderLocalIntervalCost
3333           : MF->getSubtarget().enableAdvancedRASplitCost();
3334 
3335   if (VerifyEnabled)
3336     MF->verify(this, "Before greedy register allocator");
3337 
3338   RegAllocBase::init(getAnalysis<VirtRegMap>(),
3339                      getAnalysis<LiveIntervals>(),
3340                      getAnalysis<LiveRegMatrix>());
3341   Indexes = &getAnalysis<SlotIndexes>();
3342   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
3343   DomTree = &getAnalysis<MachineDominatorTree>();
3344   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
3345   Loops = &getAnalysis<MachineLoopInfo>();
3346   Bundles = &getAnalysis<EdgeBundles>();
3347   SpillPlacer = &getAnalysis<SpillPlacement>();
3348   DebugVars = &getAnalysis<LiveDebugVariables>();
3349   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
3350 
3351   initializeCSRCost();
3352 
3353   RegCosts = TRI->getRegisterCosts(*MF);
3354 
3355   VRAI = std::make_unique<VirtRegAuxInfo>(*MF, *LIS, *VRM, *Loops, *MBFI);
3356   SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM, *VRAI));
3357 
3358   VRAI->calculateSpillWeightsAndHints();
3359 
3360   LLVM_DEBUG(LIS->dump());
3361 
3362   SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
3363   SE.reset(new SplitEditor(*SA, *AA, *LIS, *VRM, *DomTree, *MBFI, *VRAI));
3364   ExtraRegInfo.clear();
3365   ExtraRegInfo.resize(MRI->getNumVirtRegs());
3366   NextCascade = 1;
3367   IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI);
3368   GlobalCand.resize(32);  // This will grow as needed.
3369   SetOfBrokenHints.clear();
3370   LastEvicted.clear();
3371 
3372   allocatePhysRegs();
3373   tryHintsRecoloring();
3374 
3375   if (VerifyEnabled)
3376     MF->verify(this, "Before post optimization");
3377   postOptimization();
3378   reportStats();
3379 
3380   releaseMemory();
3381   return true;
3382 }
3383