1 //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the RAGreedy function pass for register allocation in 10 // optimized builds. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "AllocationOrder.h" 15 #include "InterferenceCache.h" 16 #include "LiveDebugVariables.h" 17 #include "RegAllocBase.h" 18 #include "SpillPlacement.h" 19 #include "SplitKit.h" 20 #include "llvm/ADT/ArrayRef.h" 21 #include "llvm/ADT/BitVector.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/IndexedMap.h" 24 #include "llvm/ADT/MapVector.h" 25 #include "llvm/ADT/SetVector.h" 26 #include "llvm/ADT/SmallPtrSet.h" 27 #include "llvm/ADT/SmallSet.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/ADT/StringRef.h" 31 #include "llvm/Analysis/AliasAnalysis.h" 32 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 33 #include "llvm/CodeGen/CalcSpillWeights.h" 34 #include "llvm/CodeGen/EdgeBundles.h" 35 #include "llvm/CodeGen/LiveInterval.h" 36 #include "llvm/CodeGen/LiveIntervalUnion.h" 37 #include "llvm/CodeGen/LiveIntervals.h" 38 #include "llvm/CodeGen/LiveRangeEdit.h" 39 #include "llvm/CodeGen/LiveRegMatrix.h" 40 #include "llvm/CodeGen/LiveStacks.h" 41 #include "llvm/CodeGen/MachineBasicBlock.h" 42 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 43 #include "llvm/CodeGen/MachineDominators.h" 44 #include "llvm/CodeGen/MachineFrameInfo.h" 45 #include "llvm/CodeGen/MachineFunction.h" 46 #include "llvm/CodeGen/MachineFunctionPass.h" 47 #include "llvm/CodeGen/MachineInstr.h" 48 #include "llvm/CodeGen/MachineLoopInfo.h" 49 #include "llvm/CodeGen/MachineOperand.h" 50 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 51 #include "llvm/CodeGen/MachineRegisterInfo.h" 52 #include "llvm/CodeGen/RegAllocRegistry.h" 53 #include "llvm/CodeGen/RegisterClassInfo.h" 54 #include "llvm/CodeGen/SlotIndexes.h" 55 #include "llvm/CodeGen/Spiller.h" 56 #include "llvm/CodeGen/TargetInstrInfo.h" 57 #include "llvm/CodeGen/TargetRegisterInfo.h" 58 #include "llvm/CodeGen/TargetSubtargetInfo.h" 59 #include "llvm/CodeGen/VirtRegMap.h" 60 #include "llvm/IR/Function.h" 61 #include "llvm/IR/LLVMContext.h" 62 #include "llvm/MC/MCRegisterInfo.h" 63 #include "llvm/Pass.h" 64 #include "llvm/Support/BlockFrequency.h" 65 #include "llvm/Support/BranchProbability.h" 66 #include "llvm/Support/CommandLine.h" 67 #include "llvm/Support/Debug.h" 68 #include "llvm/Support/MathExtras.h" 69 #include "llvm/Support/Timer.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include "llvm/Target/TargetMachine.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstdint> 75 #include <memory> 76 #include <queue> 77 #include <tuple> 78 #include <utility> 79 80 using namespace llvm; 81 82 #define DEBUG_TYPE "regalloc" 83 84 STATISTIC(NumGlobalSplits, "Number of split global live ranges"); 85 STATISTIC(NumLocalSplits, "Number of split local live ranges"); 86 STATISTIC(NumEvicted, "Number of interferences evicted"); 87 88 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode( 89 "split-spill-mode", cl::Hidden, 90 cl::desc("Spill mode for splitting live ranges"), 91 cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"), 92 clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"), 93 clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")), 94 cl::init(SplitEditor::SM_Speed)); 95 96 static cl::opt<unsigned> 97 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden, 98 cl::desc("Last chance recoloring max depth"), 99 cl::init(5)); 100 101 static cl::opt<unsigned> LastChanceRecoloringMaxInterference( 102 "lcr-max-interf", cl::Hidden, 103 cl::desc("Last chance recoloring maximum number of considered" 104 " interference at a time"), 105 cl::init(8)); 106 107 static cl::opt<bool> ExhaustiveSearch( 108 "exhaustive-register-search", cl::NotHidden, 109 cl::desc("Exhaustive Search for registers bypassing the depth " 110 "and interference cutoffs of last chance recoloring"), 111 cl::Hidden); 112 113 static cl::opt<bool> EnableLocalReassignment( 114 "enable-local-reassign", cl::Hidden, 115 cl::desc("Local reassignment can yield better allocation decisions, but " 116 "may be compile time intensive"), 117 cl::init(false)); 118 119 static cl::opt<bool> EnableDeferredSpilling( 120 "enable-deferred-spilling", cl::Hidden, 121 cl::desc("Instead of spilling a variable right away, defer the actual " 122 "code insertion to the end of the allocation. That way the " 123 "allocator might still find a suitable coloring for this " 124 "variable because of other evicted variables."), 125 cl::init(false)); 126 127 // FIXME: Find a good default for this flag and remove the flag. 128 static cl::opt<unsigned> 129 CSRFirstTimeCost("regalloc-csr-first-time-cost", 130 cl::desc("Cost for first time use of callee-saved register."), 131 cl::init(0), cl::Hidden); 132 133 static cl::opt<bool> ConsiderLocalIntervalCost( 134 "consider-local-interval-cost", cl::Hidden, 135 cl::desc("Consider the cost of local intervals created by a split " 136 "candidate when choosing the best split candidate."), 137 cl::init(false)); 138 139 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator", 140 createGreedyRegisterAllocator); 141 142 namespace { 143 144 class RAGreedy : public MachineFunctionPass, 145 public RegAllocBase, 146 private LiveRangeEdit::Delegate { 147 // Convenient shortcuts. 148 using PQueue = std::priority_queue<std::pair<unsigned, unsigned>>; 149 using SmallLISet = SmallPtrSet<LiveInterval *, 4>; 150 using SmallVirtRegSet = SmallSet<unsigned, 16>; 151 152 // context 153 MachineFunction *MF; 154 155 // Shortcuts to some useful interface. 156 const TargetInstrInfo *TII; 157 const TargetRegisterInfo *TRI; 158 RegisterClassInfo RCI; 159 160 // analyses 161 SlotIndexes *Indexes; 162 MachineBlockFrequencyInfo *MBFI; 163 MachineDominatorTree *DomTree; 164 MachineLoopInfo *Loops; 165 MachineOptimizationRemarkEmitter *ORE; 166 EdgeBundles *Bundles; 167 SpillPlacement *SpillPlacer; 168 LiveDebugVariables *DebugVars; 169 AliasAnalysis *AA; 170 171 // state 172 std::unique_ptr<Spiller> SpillerInstance; 173 PQueue Queue; 174 unsigned NextCascade; 175 176 // Live ranges pass through a number of stages as we try to allocate them. 177 // Some of the stages may also create new live ranges: 178 // 179 // - Region splitting. 180 // - Per-block splitting. 181 // - Local splitting. 182 // - Spilling. 183 // 184 // Ranges produced by one of the stages skip the previous stages when they are 185 // dequeued. This improves performance because we can skip interference checks 186 // that are unlikely to give any results. It also guarantees that the live 187 // range splitting algorithm terminates, something that is otherwise hard to 188 // ensure. 189 enum LiveRangeStage { 190 /// Newly created live range that has never been queued. 191 RS_New, 192 193 /// Only attempt assignment and eviction. Then requeue as RS_Split. 194 RS_Assign, 195 196 /// Attempt live range splitting if assignment is impossible. 197 RS_Split, 198 199 /// Attempt more aggressive live range splitting that is guaranteed to make 200 /// progress. This is used for split products that may not be making 201 /// progress. 202 RS_Split2, 203 204 /// Live range will be spilled. No more splitting will be attempted. 205 RS_Spill, 206 207 208 /// Live range is in memory. Because of other evictions, it might get moved 209 /// in a register in the end. 210 RS_Memory, 211 212 /// There is nothing more we can do to this live range. Abort compilation 213 /// if it can't be assigned. 214 RS_Done 215 }; 216 217 // Enum CutOffStage to keep a track whether the register allocation failed 218 // because of the cutoffs encountered in last chance recoloring. 219 // Note: This is used as bitmask. New value should be next power of 2. 220 enum CutOffStage { 221 // No cutoffs encountered 222 CO_None = 0, 223 224 // lcr-max-depth cutoff encountered 225 CO_Depth = 1, 226 227 // lcr-max-interf cutoff encountered 228 CO_Interf = 2 229 }; 230 231 uint8_t CutOffInfo; 232 233 #ifndef NDEBUG 234 static const char *const StageName[]; 235 #endif 236 237 // RegInfo - Keep additional information about each live range. 238 struct RegInfo { 239 LiveRangeStage Stage = RS_New; 240 241 // Cascade - Eviction loop prevention. See canEvictInterference(). 242 unsigned Cascade = 0; 243 244 RegInfo() = default; 245 }; 246 247 IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo; 248 249 LiveRangeStage getStage(const LiveInterval &VirtReg) const { 250 return ExtraRegInfo[VirtReg.reg()].Stage; 251 } 252 253 void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) { 254 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 255 ExtraRegInfo[VirtReg.reg()].Stage = Stage; 256 } 257 258 template<typename Iterator> 259 void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) { 260 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 261 for (;Begin != End; ++Begin) { 262 unsigned Reg = *Begin; 263 if (ExtraRegInfo[Reg].Stage == RS_New) 264 ExtraRegInfo[Reg].Stage = NewStage; 265 } 266 } 267 268 /// Cost of evicting interference. 269 struct EvictionCost { 270 unsigned BrokenHints = 0; ///< Total number of broken hints. 271 float MaxWeight = 0; ///< Maximum spill weight evicted. 272 273 EvictionCost() = default; 274 275 bool isMax() const { return BrokenHints == ~0u; } 276 277 void setMax() { BrokenHints = ~0u; } 278 279 void setBrokenHints(unsigned NHints) { BrokenHints = NHints; } 280 281 bool operator<(const EvictionCost &O) const { 282 return std::tie(BrokenHints, MaxWeight) < 283 std::tie(O.BrokenHints, O.MaxWeight); 284 } 285 }; 286 287 /// EvictionTrack - Keeps track of past evictions in order to optimize region 288 /// split decision. 289 class EvictionTrack { 290 291 public: 292 using EvictorInfo = 293 std::pair<unsigned /* evictor */, unsigned /* physreg */>; 294 using EvicteeInfo = llvm::DenseMap<unsigned /* evictee */, EvictorInfo>; 295 296 private: 297 /// Each Vreg that has been evicted in the last stage of selectOrSplit will 298 /// be mapped to the evictor Vreg and the PhysReg it was evicted from. 299 EvicteeInfo Evictees; 300 301 public: 302 /// Clear all eviction information. 303 void clear() { Evictees.clear(); } 304 305 /// Clear eviction information for the given evictee Vreg. 306 /// E.g. when Vreg get's a new allocation, the old eviction info is no 307 /// longer relevant. 308 /// \param Evictee The evictee Vreg for whom we want to clear collected 309 /// eviction info. 310 void clearEvicteeInfo(unsigned Evictee) { Evictees.erase(Evictee); } 311 312 /// Track new eviction. 313 /// The Evictor vreg has evicted the Evictee vreg from Physreg. 314 /// \param PhysReg The physical register Evictee was evicted from. 315 /// \param Evictor The evictor Vreg that evicted Evictee. 316 /// \param Evictee The evictee Vreg. 317 void addEviction(unsigned PhysReg, unsigned Evictor, unsigned Evictee) { 318 Evictees[Evictee].first = Evictor; 319 Evictees[Evictee].second = PhysReg; 320 } 321 322 /// Return the Evictor Vreg which evicted Evictee Vreg from PhysReg. 323 /// \param Evictee The evictee vreg. 324 /// \return The Evictor vreg which evicted Evictee vreg from PhysReg. 0 if 325 /// nobody has evicted Evictee from PhysReg. 326 EvictorInfo getEvictor(unsigned Evictee) { 327 if (Evictees.count(Evictee)) { 328 return Evictees[Evictee]; 329 } 330 331 return EvictorInfo(0, 0); 332 } 333 }; 334 335 // Keeps track of past evictions in order to optimize region split decision. 336 EvictionTrack LastEvicted; 337 338 // splitting state. 339 std::unique_ptr<SplitAnalysis> SA; 340 std::unique_ptr<SplitEditor> SE; 341 342 /// Cached per-block interference maps 343 InterferenceCache IntfCache; 344 345 /// All basic blocks where the current register has uses. 346 SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints; 347 348 /// Global live range splitting candidate info. 349 struct GlobalSplitCandidate { 350 // Register intended for assignment, or 0. 351 unsigned PhysReg; 352 353 // SplitKit interval index for this candidate. 354 unsigned IntvIdx; 355 356 // Interference for PhysReg. 357 InterferenceCache::Cursor Intf; 358 359 // Bundles where this candidate should be live. 360 BitVector LiveBundles; 361 SmallVector<unsigned, 8> ActiveBlocks; 362 363 void reset(InterferenceCache &Cache, unsigned Reg) { 364 PhysReg = Reg; 365 IntvIdx = 0; 366 Intf.setPhysReg(Cache, Reg); 367 LiveBundles.clear(); 368 ActiveBlocks.clear(); 369 } 370 371 // Set B[i] = C for every live bundle where B[i] was NoCand. 372 unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) { 373 unsigned Count = 0; 374 for (unsigned i : LiveBundles.set_bits()) 375 if (B[i] == NoCand) { 376 B[i] = C; 377 Count++; 378 } 379 return Count; 380 } 381 }; 382 383 /// Candidate info for each PhysReg in AllocationOrder. 384 /// This vector never shrinks, but grows to the size of the largest register 385 /// class. 386 SmallVector<GlobalSplitCandidate, 32> GlobalCand; 387 388 enum : unsigned { NoCand = ~0u }; 389 390 /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to 391 /// NoCand which indicates the stack interval. 392 SmallVector<unsigned, 32> BundleCand; 393 394 /// Callee-save register cost, calculated once per machine function. 395 BlockFrequency CSRCost; 396 397 /// Run or not the local reassignment heuristic. This information is 398 /// obtained from the TargetSubtargetInfo. 399 bool EnableLocalReassign; 400 401 /// Enable or not the consideration of the cost of local intervals created 402 /// by a split candidate when choosing the best split candidate. 403 bool EnableAdvancedRASplitCost; 404 405 /// Set of broken hints that may be reconciled later because of eviction. 406 SmallSetVector<LiveInterval *, 8> SetOfBrokenHints; 407 408 public: 409 RAGreedy(); 410 411 /// Return the pass name. 412 StringRef getPassName() const override { return "Greedy Register Allocator"; } 413 414 /// RAGreedy analysis usage. 415 void getAnalysisUsage(AnalysisUsage &AU) const override; 416 void releaseMemory() override; 417 Spiller &spiller() override { return *SpillerInstance; } 418 void enqueue(LiveInterval *LI) override; 419 LiveInterval *dequeue() override; 420 Register selectOrSplit(LiveInterval&, SmallVectorImpl<Register>&) override; 421 void aboutToRemoveInterval(LiveInterval &) override; 422 423 /// Perform register allocation. 424 bool runOnMachineFunction(MachineFunction &mf) override; 425 426 MachineFunctionProperties getRequiredProperties() const override { 427 return MachineFunctionProperties().set( 428 MachineFunctionProperties::Property::NoPHIs); 429 } 430 431 static char ID; 432 433 private: 434 Register selectOrSplitImpl(LiveInterval &, SmallVectorImpl<Register> &, 435 SmallVirtRegSet &, unsigned = 0); 436 437 bool LRE_CanEraseVirtReg(unsigned) override; 438 void LRE_WillShrinkVirtReg(unsigned) override; 439 void LRE_DidCloneVirtReg(unsigned, unsigned) override; 440 void enqueue(PQueue &CurQueue, LiveInterval *LI); 441 LiveInterval *dequeue(PQueue &CurQueue); 442 443 BlockFrequency calcSpillCost(); 444 bool addSplitConstraints(InterferenceCache::Cursor, BlockFrequency&); 445 bool addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>); 446 bool growRegion(GlobalSplitCandidate &Cand); 447 bool splitCanCauseEvictionChain(unsigned Evictee, GlobalSplitCandidate &Cand, 448 unsigned BBNumber, 449 const AllocationOrder &Order); 450 bool splitCanCauseLocalSpill(unsigned VirtRegToSplit, 451 GlobalSplitCandidate &Cand, unsigned BBNumber, 452 const AllocationOrder &Order); 453 BlockFrequency calcGlobalSplitCost(GlobalSplitCandidate &, 454 const AllocationOrder &Order, 455 bool *CanCauseEvictionChain); 456 bool calcCompactRegion(GlobalSplitCandidate&); 457 void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>); 458 void calcGapWeights(unsigned, SmallVectorImpl<float>&); 459 Register canReassign(LiveInterval &VirtReg, Register PrevReg); 460 bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool); 461 bool canEvictInterference(LiveInterval&, Register, bool, EvictionCost&, 462 const SmallVirtRegSet&); 463 bool canEvictInterferenceInRange(LiveInterval &VirtReg, Register oPhysReg, 464 SlotIndex Start, SlotIndex End, 465 EvictionCost &MaxCost); 466 unsigned getCheapestEvicteeWeight(const AllocationOrder &Order, 467 LiveInterval &VirtReg, SlotIndex Start, 468 SlotIndex End, float *BestEvictWeight); 469 void evictInterference(LiveInterval&, Register, 470 SmallVectorImpl<Register>&); 471 bool mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg, 472 SmallLISet &RecoloringCandidates, 473 const SmallVirtRegSet &FixedRegisters); 474 475 Register tryAssign(LiveInterval&, AllocationOrder&, 476 SmallVectorImpl<Register>&, 477 const SmallVirtRegSet&); 478 unsigned tryEvict(LiveInterval&, AllocationOrder&, 479 SmallVectorImpl<Register>&, unsigned, 480 const SmallVirtRegSet&); 481 unsigned tryRegionSplit(LiveInterval&, AllocationOrder&, 482 SmallVectorImpl<Register>&); 483 /// Calculate cost of region splitting. 484 unsigned calculateRegionSplitCost(LiveInterval &VirtReg, 485 AllocationOrder &Order, 486 BlockFrequency &BestCost, 487 unsigned &NumCands, bool IgnoreCSR, 488 bool *CanCauseEvictionChain = nullptr); 489 /// Perform region splitting. 490 unsigned doRegionSplit(LiveInterval &VirtReg, unsigned BestCand, 491 bool HasCompact, 492 SmallVectorImpl<Register> &NewVRegs); 493 /// Check other options before using a callee-saved register for the first 494 /// time. 495 unsigned tryAssignCSRFirstTime(LiveInterval &VirtReg, AllocationOrder &Order, 496 Register PhysReg, unsigned &CostPerUseLimit, 497 SmallVectorImpl<Register> &NewVRegs); 498 void initializeCSRCost(); 499 unsigned tryBlockSplit(LiveInterval&, AllocationOrder&, 500 SmallVectorImpl<Register>&); 501 unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&, 502 SmallVectorImpl<Register>&); 503 unsigned tryLocalSplit(LiveInterval&, AllocationOrder&, 504 SmallVectorImpl<Register>&); 505 unsigned trySplit(LiveInterval&, AllocationOrder&, 506 SmallVectorImpl<Register>&, 507 const SmallVirtRegSet&); 508 unsigned tryLastChanceRecoloring(LiveInterval &, AllocationOrder &, 509 SmallVectorImpl<Register> &, 510 SmallVirtRegSet &, unsigned); 511 bool tryRecoloringCandidates(PQueue &, SmallVectorImpl<Register> &, 512 SmallVirtRegSet &, unsigned); 513 void tryHintRecoloring(LiveInterval &); 514 void tryHintsRecoloring(); 515 516 /// Model the information carried by one end of a copy. 517 struct HintInfo { 518 /// The frequency of the copy. 519 BlockFrequency Freq; 520 /// The virtual register or physical register. 521 Register Reg; 522 /// Its currently assigned register. 523 /// In case of a physical register Reg == PhysReg. 524 MCRegister PhysReg; 525 526 HintInfo(BlockFrequency Freq, Register Reg, MCRegister PhysReg) 527 : Freq(Freq), Reg(Reg), PhysReg(PhysReg) {} 528 }; 529 using HintsInfo = SmallVector<HintInfo, 4>; 530 531 BlockFrequency getBrokenHintFreq(const HintsInfo &, unsigned); 532 void collectHintInfo(unsigned, HintsInfo &); 533 534 bool isUnusedCalleeSavedReg(MCRegister PhysReg) const; 535 536 /// Compute and report the number of spills and reloads for a loop. 537 void reportNumberOfSplillsReloads(MachineLoop *L, unsigned &Reloads, 538 unsigned &FoldedReloads, unsigned &Spills, 539 unsigned &FoldedSpills); 540 541 /// Report the number of spills and reloads for each loop. 542 void reportNumberOfSplillsReloads() { 543 for (MachineLoop *L : *Loops) { 544 unsigned Reloads, FoldedReloads, Spills, FoldedSpills; 545 reportNumberOfSplillsReloads(L, Reloads, FoldedReloads, Spills, 546 FoldedSpills); 547 } 548 } 549 }; 550 551 } // end anonymous namespace 552 553 char RAGreedy::ID = 0; 554 char &llvm::RAGreedyID = RAGreedy::ID; 555 556 INITIALIZE_PASS_BEGIN(RAGreedy, "greedy", 557 "Greedy Register Allocator", false, false) 558 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables) 559 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 560 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 561 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer) 562 INITIALIZE_PASS_DEPENDENCY(MachineScheduler) 563 INITIALIZE_PASS_DEPENDENCY(LiveStacks) 564 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 565 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 566 INITIALIZE_PASS_DEPENDENCY(VirtRegMap) 567 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix) 568 INITIALIZE_PASS_DEPENDENCY(EdgeBundles) 569 INITIALIZE_PASS_DEPENDENCY(SpillPlacement) 570 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass) 571 INITIALIZE_PASS_END(RAGreedy, "greedy", 572 "Greedy Register Allocator", false, false) 573 574 #ifndef NDEBUG 575 const char *const RAGreedy::StageName[] = { 576 "RS_New", 577 "RS_Assign", 578 "RS_Split", 579 "RS_Split2", 580 "RS_Spill", 581 "RS_Memory", 582 "RS_Done" 583 }; 584 #endif 585 586 // Hysteresis to use when comparing floats. 587 // This helps stabilize decisions based on float comparisons. 588 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875 589 590 FunctionPass* llvm::createGreedyRegisterAllocator() { 591 return new RAGreedy(); 592 } 593 594 RAGreedy::RAGreedy(): MachineFunctionPass(ID) { 595 } 596 597 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const { 598 AU.setPreservesCFG(); 599 AU.addRequired<MachineBlockFrequencyInfo>(); 600 AU.addPreserved<MachineBlockFrequencyInfo>(); 601 AU.addRequired<AAResultsWrapperPass>(); 602 AU.addPreserved<AAResultsWrapperPass>(); 603 AU.addRequired<LiveIntervals>(); 604 AU.addPreserved<LiveIntervals>(); 605 AU.addRequired<SlotIndexes>(); 606 AU.addPreserved<SlotIndexes>(); 607 AU.addRequired<LiveDebugVariables>(); 608 AU.addPreserved<LiveDebugVariables>(); 609 AU.addRequired<LiveStacks>(); 610 AU.addPreserved<LiveStacks>(); 611 AU.addRequired<MachineDominatorTree>(); 612 AU.addPreserved<MachineDominatorTree>(); 613 AU.addRequired<MachineLoopInfo>(); 614 AU.addPreserved<MachineLoopInfo>(); 615 AU.addRequired<VirtRegMap>(); 616 AU.addPreserved<VirtRegMap>(); 617 AU.addRequired<LiveRegMatrix>(); 618 AU.addPreserved<LiveRegMatrix>(); 619 AU.addRequired<EdgeBundles>(); 620 AU.addRequired<SpillPlacement>(); 621 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 622 MachineFunctionPass::getAnalysisUsage(AU); 623 } 624 625 //===----------------------------------------------------------------------===// 626 // LiveRangeEdit delegate methods 627 //===----------------------------------------------------------------------===// 628 629 bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) { 630 LiveInterval &LI = LIS->getInterval(VirtReg); 631 if (VRM->hasPhys(VirtReg)) { 632 Matrix->unassign(LI); 633 aboutToRemoveInterval(LI); 634 return true; 635 } 636 // Unassigned virtreg is probably in the priority queue. 637 // RegAllocBase will erase it after dequeueing. 638 // Nonetheless, clear the live-range so that the debug 639 // dump will show the right state for that VirtReg. 640 LI.clear(); 641 return false; 642 } 643 644 void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) { 645 if (!VRM->hasPhys(VirtReg)) 646 return; 647 648 // Register is assigned, put it back on the queue for reassignment. 649 LiveInterval &LI = LIS->getInterval(VirtReg); 650 Matrix->unassign(LI); 651 enqueue(&LI); 652 } 653 654 void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) { 655 // Cloning a register we haven't even heard about yet? Just ignore it. 656 if (!ExtraRegInfo.inBounds(Old)) 657 return; 658 659 // LRE may clone a virtual register because dead code elimination causes it to 660 // be split into connected components. The new components are much smaller 661 // than the original, so they should get a new chance at being assigned. 662 // same stage as the parent. 663 ExtraRegInfo[Old].Stage = RS_Assign; 664 ExtraRegInfo.grow(New); 665 ExtraRegInfo[New] = ExtraRegInfo[Old]; 666 } 667 668 void RAGreedy::releaseMemory() { 669 SpillerInstance.reset(); 670 ExtraRegInfo.clear(); 671 GlobalCand.clear(); 672 } 673 674 void RAGreedy::enqueue(LiveInterval *LI) { enqueue(Queue, LI); } 675 676 void RAGreedy::enqueue(PQueue &CurQueue, LiveInterval *LI) { 677 // Prioritize live ranges by size, assigning larger ranges first. 678 // The queue holds (size, reg) pairs. 679 const unsigned Size = LI->getSize(); 680 const unsigned Reg = LI->reg(); 681 assert(Register::isVirtualRegister(Reg) && 682 "Can only enqueue virtual registers"); 683 unsigned Prio; 684 685 ExtraRegInfo.grow(Reg); 686 if (ExtraRegInfo[Reg].Stage == RS_New) 687 ExtraRegInfo[Reg].Stage = RS_Assign; 688 689 if (ExtraRegInfo[Reg].Stage == RS_Split) { 690 // Unsplit ranges that couldn't be allocated immediately are deferred until 691 // everything else has been allocated. 692 Prio = Size; 693 } else if (ExtraRegInfo[Reg].Stage == RS_Memory) { 694 // Memory operand should be considered last. 695 // Change the priority such that Memory operand are assigned in 696 // the reverse order that they came in. 697 // TODO: Make this a member variable and probably do something about hints. 698 static unsigned MemOp = 0; 699 Prio = MemOp++; 700 } else { 701 // Giant live ranges fall back to the global assignment heuristic, which 702 // prevents excessive spilling in pathological cases. 703 bool ReverseLocal = TRI->reverseLocalAssignment(); 704 const TargetRegisterClass &RC = *MRI->getRegClass(Reg); 705 bool ForceGlobal = !ReverseLocal && 706 (Size / SlotIndex::InstrDist) > (2 * RC.getNumRegs()); 707 708 if (ExtraRegInfo[Reg].Stage == RS_Assign && !ForceGlobal && !LI->empty() && 709 LIS->intervalIsInOneMBB(*LI)) { 710 // Allocate original local ranges in linear instruction order. Since they 711 // are singly defined, this produces optimal coloring in the absence of 712 // global interference and other constraints. 713 if (!ReverseLocal) 714 Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex()); 715 else { 716 // Allocating bottom up may allow many short LRGs to be assigned first 717 // to one of the cheap registers. This could be much faster for very 718 // large blocks on targets with many physical registers. 719 Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex()); 720 } 721 Prio |= RC.AllocationPriority << 24; 722 } else { 723 // Allocate global and split ranges in long->short order. Long ranges that 724 // don't fit should be spilled (or split) ASAP so they don't create 725 // interference. Mark a bit to prioritize global above local ranges. 726 Prio = (1u << 29) + Size; 727 } 728 // Mark a higher bit to prioritize global and local above RS_Split. 729 Prio |= (1u << 31); 730 731 // Boost ranges that have a physical register hint. 732 if (VRM->hasKnownPreference(Reg)) 733 Prio |= (1u << 30); 734 } 735 // The virtual register number is a tie breaker for same-sized ranges. 736 // Give lower vreg numbers higher priority to assign them first. 737 CurQueue.push(std::make_pair(Prio, ~Reg)); 738 } 739 740 LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); } 741 742 LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) { 743 if (CurQueue.empty()) 744 return nullptr; 745 LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second); 746 CurQueue.pop(); 747 return LI; 748 } 749 750 //===----------------------------------------------------------------------===// 751 // Direct Assignment 752 //===----------------------------------------------------------------------===// 753 754 /// tryAssign - Try to assign VirtReg to an available register. 755 Register RAGreedy::tryAssign(LiveInterval &VirtReg, 756 AllocationOrder &Order, 757 SmallVectorImpl<Register> &NewVRegs, 758 const SmallVirtRegSet &FixedRegisters) { 759 Order.rewind(); 760 Register PhysReg; 761 while ((PhysReg = Order.next())) 762 if (!Matrix->checkInterference(VirtReg, PhysReg)) 763 break; 764 if (!PhysReg || Order.isHint()) 765 return PhysReg; 766 767 // PhysReg is available, but there may be a better choice. 768 769 // If we missed a simple hint, try to cheaply evict interference from the 770 // preferred register. 771 if (Register Hint = MRI->getSimpleHint(VirtReg.reg())) 772 if (Order.isHint(Hint)) { 773 LLVM_DEBUG(dbgs() << "missed hint " << printReg(Hint, TRI) << '\n'); 774 EvictionCost MaxCost; 775 MaxCost.setBrokenHints(1); 776 if (canEvictInterference(VirtReg, Hint, true, MaxCost, FixedRegisters)) { 777 evictInterference(VirtReg, Hint, NewVRegs); 778 return Hint; 779 } 780 // Record the missed hint, we may be able to recover 781 // at the end if the surrounding allocation changed. 782 SetOfBrokenHints.insert(&VirtReg); 783 } 784 785 // Try to evict interference from a cheaper alternative. 786 unsigned Cost = TRI->getCostPerUse(PhysReg); 787 788 // Most registers have 0 additional cost. 789 if (!Cost) 790 return PhysReg; 791 792 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is available at cost " 793 << Cost << '\n'); 794 Register CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost, FixedRegisters); 795 return CheapReg ? CheapReg : PhysReg; 796 } 797 798 //===----------------------------------------------------------------------===// 799 // Interference eviction 800 //===----------------------------------------------------------------------===// 801 802 Register RAGreedy::canReassign(LiveInterval &VirtReg, Register PrevReg) { 803 AllocationOrder Order(VirtReg.reg(), *VRM, RegClassInfo, Matrix); 804 Register PhysReg; 805 while ((PhysReg = Order.next())) { 806 if (PhysReg == PrevReg) 807 continue; 808 809 MCRegUnitIterator Units(PhysReg, TRI); 810 for (; Units.isValid(); ++Units) { 811 // Instantiate a "subquery", not to be confused with the Queries array. 812 LiveIntervalUnion::Query subQ(VirtReg, Matrix->getLiveUnions()[*Units]); 813 if (subQ.checkInterference()) 814 break; 815 } 816 // If no units have interference, break out with the current PhysReg. 817 if (!Units.isValid()) 818 break; 819 } 820 if (PhysReg) 821 LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg << " from " 822 << printReg(PrevReg, TRI) << " to " 823 << printReg(PhysReg, TRI) << '\n'); 824 return PhysReg; 825 } 826 827 /// shouldEvict - determine if A should evict the assigned live range B. The 828 /// eviction policy defined by this function together with the allocation order 829 /// defined by enqueue() decides which registers ultimately end up being split 830 /// and spilled. 831 /// 832 /// Cascade numbers are used to prevent infinite loops if this function is a 833 /// cyclic relation. 834 /// 835 /// @param A The live range to be assigned. 836 /// @param IsHint True when A is about to be assigned to its preferred 837 /// register. 838 /// @param B The live range to be evicted. 839 /// @param BreaksHint True when B is already assigned to its preferred register. 840 bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint, 841 LiveInterval &B, bool BreaksHint) { 842 bool CanSplit = getStage(B) < RS_Spill; 843 844 // Be fairly aggressive about following hints as long as the evictee can be 845 // split. 846 if (CanSplit && IsHint && !BreaksHint) 847 return true; 848 849 if (A.weight() > B.weight()) { 850 LLVM_DEBUG(dbgs() << "should evict: " << B << " w= " << B.weight() << '\n'); 851 return true; 852 } 853 return false; 854 } 855 856 /// canEvictInterference - Return true if all interferences between VirtReg and 857 /// PhysReg can be evicted. 858 /// 859 /// @param VirtReg Live range that is about to be assigned. 860 /// @param PhysReg Desired register for assignment. 861 /// @param IsHint True when PhysReg is VirtReg's preferred register. 862 /// @param MaxCost Only look for cheaper candidates and update with new cost 863 /// when returning true. 864 /// @returns True when interference can be evicted cheaper than MaxCost. 865 bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, Register PhysReg, 866 bool IsHint, EvictionCost &MaxCost, 867 const SmallVirtRegSet &FixedRegisters) { 868 // It is only possible to evict virtual register interference. 869 if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg) 870 return false; 871 872 bool IsLocal = LIS->intervalIsInOneMBB(VirtReg); 873 874 // Find VirtReg's cascade number. This will be unassigned if VirtReg was never 875 // involved in an eviction before. If a cascade number was assigned, deny 876 // evicting anything with the same or a newer cascade number. This prevents 877 // infinite eviction loops. 878 // 879 // This works out so a register without a cascade number is allowed to evict 880 // anything, and it can be evicted by anything. 881 unsigned Cascade = ExtraRegInfo[VirtReg.reg()].Cascade; 882 if (!Cascade) 883 Cascade = NextCascade; 884 885 EvictionCost Cost; 886 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 887 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 888 // If there is 10 or more interferences, chances are one is heavier. 889 if (Q.collectInterferingVRegs(10) >= 10) 890 return false; 891 892 // Check if any interfering live range is heavier than MaxWeight. 893 for (LiveInterval *Intf : reverse(Q.interferingVRegs())) { 894 assert(Register::isVirtualRegister(Intf->reg()) && 895 "Only expecting virtual register interference from query"); 896 897 // Do not allow eviction of a virtual register if we are in the middle 898 // of last-chance recoloring and this virtual register is one that we 899 // have scavenged a physical register for. 900 if (FixedRegisters.count(Intf->reg())) 901 return false; 902 903 // Never evict spill products. They cannot split or spill. 904 if (getStage(*Intf) == RS_Done) 905 return false; 906 // Once a live range becomes small enough, it is urgent that we find a 907 // register for it. This is indicated by an infinite spill weight. These 908 // urgent live ranges get to evict almost anything. 909 // 910 // Also allow urgent evictions of unspillable ranges from a strictly 911 // larger allocation order. 912 bool Urgent = 913 !VirtReg.isSpillable() && 914 (Intf->isSpillable() || 915 RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg())) < 916 RegClassInfo.getNumAllocatableRegs( 917 MRI->getRegClass(Intf->reg()))); 918 // Only evict older cascades or live ranges without a cascade. 919 unsigned IntfCascade = ExtraRegInfo[Intf->reg()].Cascade; 920 if (Cascade <= IntfCascade) { 921 if (!Urgent) 922 return false; 923 // We permit breaking cascades for urgent evictions. It should be the 924 // last resort, though, so make it really expensive. 925 Cost.BrokenHints += 10; 926 } 927 // Would this break a satisfied hint? 928 bool BreaksHint = VRM->hasPreferredPhys(Intf->reg()); 929 // Update eviction cost. 930 Cost.BrokenHints += BreaksHint; 931 Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight()); 932 // Abort if this would be too expensive. 933 if (!(Cost < MaxCost)) 934 return false; 935 if (Urgent) 936 continue; 937 // Apply the eviction policy for non-urgent evictions. 938 if (!shouldEvict(VirtReg, IsHint, *Intf, BreaksHint)) 939 return false; 940 // If !MaxCost.isMax(), then we're just looking for a cheap register. 941 // Evicting another local live range in this case could lead to suboptimal 942 // coloring. 943 if (!MaxCost.isMax() && IsLocal && LIS->intervalIsInOneMBB(*Intf) && 944 (!EnableLocalReassign || !canReassign(*Intf, PhysReg))) { 945 return false; 946 } 947 } 948 } 949 MaxCost = Cost; 950 return true; 951 } 952 953 /// Return true if all interferences between VirtReg and PhysReg between 954 /// Start and End can be evicted. 955 /// 956 /// \param VirtReg Live range that is about to be assigned. 957 /// \param PhysReg Desired register for assignment. 958 /// \param Start Start of range to look for interferences. 959 /// \param End End of range to look for interferences. 960 /// \param MaxCost Only look for cheaper candidates and update with new cost 961 /// when returning true. 962 /// \return True when interference can be evicted cheaper than MaxCost. 963 bool RAGreedy::canEvictInterferenceInRange(LiveInterval &VirtReg, 964 Register PhysReg, SlotIndex Start, 965 SlotIndex End, 966 EvictionCost &MaxCost) { 967 EvictionCost Cost; 968 969 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 970 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 971 972 // Check if any interfering live range is heavier than MaxWeight. 973 for (const LiveInterval *Intf : reverse(Q.interferingVRegs())) { 974 // Check if interference overlast the segment in interest. 975 if (!Intf->overlaps(Start, End)) 976 continue; 977 978 // Cannot evict non virtual reg interference. 979 if (!Register::isVirtualRegister(Intf->reg())) 980 return false; 981 // Never evict spill products. They cannot split or spill. 982 if (getStage(*Intf) == RS_Done) 983 return false; 984 985 // Would this break a satisfied hint? 986 bool BreaksHint = VRM->hasPreferredPhys(Intf->reg()); 987 // Update eviction cost. 988 Cost.BrokenHints += BreaksHint; 989 Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight()); 990 // Abort if this would be too expensive. 991 if (!(Cost < MaxCost)) 992 return false; 993 } 994 } 995 996 if (Cost.MaxWeight == 0) 997 return false; 998 999 MaxCost = Cost; 1000 return true; 1001 } 1002 1003 /// Return the physical register that will be best 1004 /// candidate for eviction by a local split interval that will be created 1005 /// between Start and End. 1006 /// 1007 /// \param Order The allocation order 1008 /// \param VirtReg Live range that is about to be assigned. 1009 /// \param Start Start of range to look for interferences 1010 /// \param End End of range to look for interferences 1011 /// \param BestEvictweight The eviction cost of that eviction 1012 /// \return The PhysReg which is the best candidate for eviction and the 1013 /// eviction cost in BestEvictweight 1014 unsigned RAGreedy::getCheapestEvicteeWeight(const AllocationOrder &Order, 1015 LiveInterval &VirtReg, 1016 SlotIndex Start, SlotIndex End, 1017 float *BestEvictweight) { 1018 EvictionCost BestEvictCost; 1019 BestEvictCost.setMax(); 1020 BestEvictCost.MaxWeight = VirtReg.weight(); 1021 unsigned BestEvicteePhys = 0; 1022 1023 // Go over all physical registers and find the best candidate for eviction 1024 for (auto PhysReg : Order.getOrder()) { 1025 1026 if (!canEvictInterferenceInRange(VirtReg, PhysReg, Start, End, 1027 BestEvictCost)) 1028 continue; 1029 1030 // Best so far. 1031 BestEvicteePhys = PhysReg; 1032 } 1033 *BestEvictweight = BestEvictCost.MaxWeight; 1034 return BestEvicteePhys; 1035 } 1036 1037 /// evictInterference - Evict any interferring registers that prevent VirtReg 1038 /// from being assigned to Physreg. This assumes that canEvictInterference 1039 /// returned true. 1040 void RAGreedy::evictInterference(LiveInterval &VirtReg, Register PhysReg, 1041 SmallVectorImpl<Register> &NewVRegs) { 1042 // Make sure that VirtReg has a cascade number, and assign that cascade 1043 // number to every evicted register. These live ranges than then only be 1044 // evicted by a newer cascade, preventing infinite loops. 1045 unsigned Cascade = ExtraRegInfo[VirtReg.reg()].Cascade; 1046 if (!Cascade) 1047 Cascade = ExtraRegInfo[VirtReg.reg()].Cascade = NextCascade++; 1048 1049 LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg, TRI) 1050 << " interference: Cascade " << Cascade << '\n'); 1051 1052 // Collect all interfering virtregs first. 1053 SmallVector<LiveInterval*, 8> Intfs; 1054 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 1055 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 1056 // We usually have the interfering VRegs cached so collectInterferingVRegs() 1057 // should be fast, we may need to recalculate if when different physregs 1058 // overlap the same register unit so we had different SubRanges queried 1059 // against it. 1060 Q.collectInterferingVRegs(); 1061 ArrayRef<LiveInterval*> IVR = Q.interferingVRegs(); 1062 Intfs.append(IVR.begin(), IVR.end()); 1063 } 1064 1065 // Evict them second. This will invalidate the queries. 1066 for (LiveInterval *Intf : Intfs) { 1067 // The same VirtReg may be present in multiple RegUnits. Skip duplicates. 1068 if (!VRM->hasPhys(Intf->reg())) 1069 continue; 1070 1071 LastEvicted.addEviction(PhysReg, VirtReg.reg(), Intf->reg()); 1072 1073 Matrix->unassign(*Intf); 1074 assert((ExtraRegInfo[Intf->reg()].Cascade < Cascade || 1075 VirtReg.isSpillable() < Intf->isSpillable()) && 1076 "Cannot decrease cascade number, illegal eviction"); 1077 ExtraRegInfo[Intf->reg()].Cascade = Cascade; 1078 ++NumEvicted; 1079 NewVRegs.push_back(Intf->reg()); 1080 } 1081 } 1082 1083 /// Returns true if the given \p PhysReg is a callee saved register and has not 1084 /// been used for allocation yet. 1085 bool RAGreedy::isUnusedCalleeSavedReg(MCRegister PhysReg) const { 1086 MCRegister CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg); 1087 if (!CSR) 1088 return false; 1089 1090 return !Matrix->isPhysRegUsed(PhysReg); 1091 } 1092 1093 /// tryEvict - Try to evict all interferences for a physreg. 1094 /// @param VirtReg Currently unassigned virtual register. 1095 /// @param Order Physregs to try. 1096 /// @return Physreg to assign VirtReg, or 0. 1097 unsigned RAGreedy::tryEvict(LiveInterval &VirtReg, 1098 AllocationOrder &Order, 1099 SmallVectorImpl<Register> &NewVRegs, 1100 unsigned CostPerUseLimit, 1101 const SmallVirtRegSet &FixedRegisters) { 1102 NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription, 1103 TimePassesIsEnabled); 1104 1105 // Keep track of the cheapest interference seen so far. 1106 EvictionCost BestCost; 1107 BestCost.setMax(); 1108 unsigned BestPhys = 0; 1109 unsigned OrderLimit = Order.getOrder().size(); 1110 1111 // When we are just looking for a reduced cost per use, don't break any 1112 // hints, and only evict smaller spill weights. 1113 if (CostPerUseLimit < ~0u) { 1114 BestCost.BrokenHints = 0; 1115 BestCost.MaxWeight = VirtReg.weight(); 1116 1117 // Check of any registers in RC are below CostPerUseLimit. 1118 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg()); 1119 unsigned MinCost = RegClassInfo.getMinCost(RC); 1120 if (MinCost >= CostPerUseLimit) { 1121 LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = " 1122 << MinCost << ", no cheaper registers to be found.\n"); 1123 return 0; 1124 } 1125 1126 // It is normal for register classes to have a long tail of registers with 1127 // the same cost. We don't need to look at them if they're too expensive. 1128 if (TRI->getCostPerUse(Order.getOrder().back()) >= CostPerUseLimit) { 1129 OrderLimit = RegClassInfo.getLastCostChange(RC); 1130 LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit 1131 << " regs.\n"); 1132 } 1133 } 1134 1135 Order.rewind(); 1136 while (MCRegister PhysReg = Order.next(OrderLimit)) { 1137 if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit) 1138 continue; 1139 // The first use of a callee-saved register in a function has cost 1. 1140 // Don't start using a CSR when the CostPerUseLimit is low. 1141 if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) { 1142 LLVM_DEBUG( 1143 dbgs() << printReg(PhysReg, TRI) << " would clobber CSR " 1144 << printReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI) 1145 << '\n'); 1146 continue; 1147 } 1148 1149 if (!canEvictInterference(VirtReg, PhysReg, false, BestCost, 1150 FixedRegisters)) 1151 continue; 1152 1153 // Best so far. 1154 BestPhys = PhysReg; 1155 1156 // Stop if the hint can be used. 1157 if (Order.isHint()) 1158 break; 1159 } 1160 1161 if (!BestPhys) 1162 return 0; 1163 1164 evictInterference(VirtReg, BestPhys, NewVRegs); 1165 return BestPhys; 1166 } 1167 1168 //===----------------------------------------------------------------------===// 1169 // Region Splitting 1170 //===----------------------------------------------------------------------===// 1171 1172 /// addSplitConstraints - Fill out the SplitConstraints vector based on the 1173 /// interference pattern in Physreg and its aliases. Add the constraints to 1174 /// SpillPlacement and return the static cost of this split in Cost, assuming 1175 /// that all preferences in SplitConstraints are met. 1176 /// Return false if there are no bundles with positive bias. 1177 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf, 1178 BlockFrequency &Cost) { 1179 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1180 1181 // Reset interference dependent info. 1182 SplitConstraints.resize(UseBlocks.size()); 1183 BlockFrequency StaticCost = 0; 1184 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1185 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1186 SpillPlacement::BlockConstraint &BC = SplitConstraints[i]; 1187 1188 BC.Number = BI.MBB->getNumber(); 1189 Intf.moveToBlock(BC.Number); 1190 BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare; 1191 BC.Exit = (BI.LiveOut && 1192 !LIS->getInstructionFromIndex(BI.LastInstr)->isImplicitDef()) 1193 ? SpillPlacement::PrefReg 1194 : SpillPlacement::DontCare; 1195 BC.ChangesValue = BI.FirstDef.isValid(); 1196 1197 if (!Intf.hasInterference()) 1198 continue; 1199 1200 // Number of spill code instructions to insert. 1201 unsigned Ins = 0; 1202 1203 // Interference for the live-in value. 1204 if (BI.LiveIn) { 1205 if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) { 1206 BC.Entry = SpillPlacement::MustSpill; 1207 ++Ins; 1208 } else if (Intf.first() < BI.FirstInstr) { 1209 BC.Entry = SpillPlacement::PrefSpill; 1210 ++Ins; 1211 } else if (Intf.first() < BI.LastInstr) { 1212 ++Ins; 1213 } 1214 1215 // Abort if the spill cannot be inserted at the MBB' start 1216 if (((BC.Entry == SpillPlacement::MustSpill) || 1217 (BC.Entry == SpillPlacement::PrefSpill)) && 1218 SlotIndex::isEarlierInstr(BI.FirstInstr, 1219 SA->getFirstSplitPoint(BC.Number))) 1220 return false; 1221 } 1222 1223 // Interference for the live-out value. 1224 if (BI.LiveOut) { 1225 if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) { 1226 BC.Exit = SpillPlacement::MustSpill; 1227 ++Ins; 1228 } else if (Intf.last() > BI.LastInstr) { 1229 BC.Exit = SpillPlacement::PrefSpill; 1230 ++Ins; 1231 } else if (Intf.last() > BI.FirstInstr) { 1232 ++Ins; 1233 } 1234 } 1235 1236 // Accumulate the total frequency of inserted spill code. 1237 while (Ins--) 1238 StaticCost += SpillPlacer->getBlockFrequency(BC.Number); 1239 } 1240 Cost = StaticCost; 1241 1242 // Add constraints for use-blocks. Note that these are the only constraints 1243 // that may add a positive bias, it is downhill from here. 1244 SpillPlacer->addConstraints(SplitConstraints); 1245 return SpillPlacer->scanActiveBundles(); 1246 } 1247 1248 /// addThroughConstraints - Add constraints and links to SpillPlacer from the 1249 /// live-through blocks in Blocks. 1250 bool RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf, 1251 ArrayRef<unsigned> Blocks) { 1252 const unsigned GroupSize = 8; 1253 SpillPlacement::BlockConstraint BCS[GroupSize]; 1254 unsigned TBS[GroupSize]; 1255 unsigned B = 0, T = 0; 1256 1257 for (unsigned i = 0; i != Blocks.size(); ++i) { 1258 unsigned Number = Blocks[i]; 1259 Intf.moveToBlock(Number); 1260 1261 if (!Intf.hasInterference()) { 1262 assert(T < GroupSize && "Array overflow"); 1263 TBS[T] = Number; 1264 if (++T == GroupSize) { 1265 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 1266 T = 0; 1267 } 1268 continue; 1269 } 1270 1271 assert(B < GroupSize && "Array overflow"); 1272 BCS[B].Number = Number; 1273 1274 // Abort if the spill cannot be inserted at the MBB' start 1275 MachineBasicBlock *MBB = MF->getBlockNumbered(Number); 1276 if (!MBB->empty() && 1277 SlotIndex::isEarlierInstr(LIS->getInstructionIndex(MBB->instr_front()), 1278 SA->getFirstSplitPoint(Number))) 1279 return false; 1280 // Interference for the live-in value. 1281 if (Intf.first() <= Indexes->getMBBStartIdx(Number)) 1282 BCS[B].Entry = SpillPlacement::MustSpill; 1283 else 1284 BCS[B].Entry = SpillPlacement::PrefSpill; 1285 1286 // Interference for the live-out value. 1287 if (Intf.last() >= SA->getLastSplitPoint(Number)) 1288 BCS[B].Exit = SpillPlacement::MustSpill; 1289 else 1290 BCS[B].Exit = SpillPlacement::PrefSpill; 1291 1292 if (++B == GroupSize) { 1293 SpillPlacer->addConstraints(makeArrayRef(BCS, B)); 1294 B = 0; 1295 } 1296 } 1297 1298 SpillPlacer->addConstraints(makeArrayRef(BCS, B)); 1299 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 1300 return true; 1301 } 1302 1303 bool RAGreedy::growRegion(GlobalSplitCandidate &Cand) { 1304 // Keep track of through blocks that have not been added to SpillPlacer. 1305 BitVector Todo = SA->getThroughBlocks(); 1306 SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks; 1307 unsigned AddedTo = 0; 1308 #ifndef NDEBUG 1309 unsigned Visited = 0; 1310 #endif 1311 1312 while (true) { 1313 ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive(); 1314 // Find new through blocks in the periphery of PrefRegBundles. 1315 for (int i = 0, e = NewBundles.size(); i != e; ++i) { 1316 unsigned Bundle = NewBundles[i]; 1317 // Look at all blocks connected to Bundle in the full graph. 1318 ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle); 1319 for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end(); 1320 I != E; ++I) { 1321 unsigned Block = *I; 1322 if (!Todo.test(Block)) 1323 continue; 1324 Todo.reset(Block); 1325 // This is a new through block. Add it to SpillPlacer later. 1326 ActiveBlocks.push_back(Block); 1327 #ifndef NDEBUG 1328 ++Visited; 1329 #endif 1330 } 1331 } 1332 // Any new blocks to add? 1333 if (ActiveBlocks.size() == AddedTo) 1334 break; 1335 1336 // Compute through constraints from the interference, or assume that all 1337 // through blocks prefer spilling when forming compact regions. 1338 auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo); 1339 if (Cand.PhysReg) { 1340 if (!addThroughConstraints(Cand.Intf, NewBlocks)) 1341 return false; 1342 } else 1343 // Provide a strong negative bias on through blocks to prevent unwanted 1344 // liveness on loop backedges. 1345 SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true); 1346 AddedTo = ActiveBlocks.size(); 1347 1348 // Perhaps iterating can enable more bundles? 1349 SpillPlacer->iterate(); 1350 } 1351 LLVM_DEBUG(dbgs() << ", v=" << Visited); 1352 return true; 1353 } 1354 1355 /// calcCompactRegion - Compute the set of edge bundles that should be live 1356 /// when splitting the current live range into compact regions. Compact 1357 /// regions can be computed without looking at interference. They are the 1358 /// regions formed by removing all the live-through blocks from the live range. 1359 /// 1360 /// Returns false if the current live range is already compact, or if the 1361 /// compact regions would form single block regions anyway. 1362 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) { 1363 // Without any through blocks, the live range is already compact. 1364 if (!SA->getNumThroughBlocks()) 1365 return false; 1366 1367 // Compact regions don't correspond to any physreg. 1368 Cand.reset(IntfCache, 0); 1369 1370 LLVM_DEBUG(dbgs() << "Compact region bundles"); 1371 1372 // Use the spill placer to determine the live bundles. GrowRegion pretends 1373 // that all the through blocks have interference when PhysReg is unset. 1374 SpillPlacer->prepare(Cand.LiveBundles); 1375 1376 // The static split cost will be zero since Cand.Intf reports no interference. 1377 BlockFrequency Cost; 1378 if (!addSplitConstraints(Cand.Intf, Cost)) { 1379 LLVM_DEBUG(dbgs() << ", none.\n"); 1380 return false; 1381 } 1382 1383 if (!growRegion(Cand)) { 1384 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n"); 1385 return false; 1386 } 1387 1388 SpillPlacer->finish(); 1389 1390 if (!Cand.LiveBundles.any()) { 1391 LLVM_DEBUG(dbgs() << ", none.\n"); 1392 return false; 1393 } 1394 1395 LLVM_DEBUG({ 1396 for (int i : Cand.LiveBundles.set_bits()) 1397 dbgs() << " EB#" << i; 1398 dbgs() << ".\n"; 1399 }); 1400 return true; 1401 } 1402 1403 /// calcSpillCost - Compute how expensive it would be to split the live range in 1404 /// SA around all use blocks instead of forming bundle regions. 1405 BlockFrequency RAGreedy::calcSpillCost() { 1406 BlockFrequency Cost = 0; 1407 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1408 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1409 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1410 unsigned Number = BI.MBB->getNumber(); 1411 // We normally only need one spill instruction - a load or a store. 1412 Cost += SpillPlacer->getBlockFrequency(Number); 1413 1414 // Unless the value is redefined in the block. 1415 if (BI.LiveIn && BI.LiveOut && BI.FirstDef) 1416 Cost += SpillPlacer->getBlockFrequency(Number); 1417 } 1418 return Cost; 1419 } 1420 1421 /// Check if splitting Evictee will create a local split interval in 1422 /// basic block number BBNumber that may cause a bad eviction chain. This is 1423 /// intended to prevent bad eviction sequences like: 1424 /// movl %ebp, 8(%esp) # 4-byte Spill 1425 /// movl %ecx, %ebp 1426 /// movl %ebx, %ecx 1427 /// movl %edi, %ebx 1428 /// movl %edx, %edi 1429 /// cltd 1430 /// idivl %esi 1431 /// movl %edi, %edx 1432 /// movl %ebx, %edi 1433 /// movl %ecx, %ebx 1434 /// movl %ebp, %ecx 1435 /// movl 16(%esp), %ebp # 4 - byte Reload 1436 /// 1437 /// Such sequences are created in 2 scenarios: 1438 /// 1439 /// Scenario #1: 1440 /// %0 is evicted from physreg0 by %1. 1441 /// Evictee %0 is intended for region splitting with split candidate 1442 /// physreg0 (the reg %0 was evicted from). 1443 /// Region splitting creates a local interval because of interference with the 1444 /// evictor %1 (normally region splitting creates 2 interval, the "by reg" 1445 /// and "by stack" intervals and local interval created when interference 1446 /// occurs). 1447 /// One of the split intervals ends up evicting %2 from physreg1. 1448 /// Evictee %2 is intended for region splitting with split candidate 1449 /// physreg1. 1450 /// One of the split intervals ends up evicting %3 from physreg2, etc. 1451 /// 1452 /// Scenario #2 1453 /// %0 is evicted from physreg0 by %1. 1454 /// %2 is evicted from physreg2 by %3 etc. 1455 /// Evictee %0 is intended for region splitting with split candidate 1456 /// physreg1. 1457 /// Region splitting creates a local interval because of interference with the 1458 /// evictor %1. 1459 /// One of the split intervals ends up evicting back original evictor %1 1460 /// from physreg0 (the reg %0 was evicted from). 1461 /// Another evictee %2 is intended for region splitting with split candidate 1462 /// physreg1. 1463 /// One of the split intervals ends up evicting %3 from physreg2, etc. 1464 /// 1465 /// \param Evictee The register considered to be split. 1466 /// \param Cand The split candidate that determines the physical register 1467 /// we are splitting for and the interferences. 1468 /// \param BBNumber The number of a BB for which the region split process will 1469 /// create a local split interval. 1470 /// \param Order The physical registers that may get evicted by a split 1471 /// artifact of Evictee. 1472 /// \return True if splitting Evictee may cause a bad eviction chain, false 1473 /// otherwise. 1474 bool RAGreedy::splitCanCauseEvictionChain(unsigned Evictee, 1475 GlobalSplitCandidate &Cand, 1476 unsigned BBNumber, 1477 const AllocationOrder &Order) { 1478 EvictionTrack::EvictorInfo VregEvictorInfo = LastEvicted.getEvictor(Evictee); 1479 unsigned Evictor = VregEvictorInfo.first; 1480 unsigned PhysReg = VregEvictorInfo.second; 1481 1482 // No actual evictor. 1483 if (!Evictor || !PhysReg) 1484 return false; 1485 1486 float MaxWeight = 0; 1487 unsigned FutureEvictedPhysReg = 1488 getCheapestEvicteeWeight(Order, LIS->getInterval(Evictee), 1489 Cand.Intf.first(), Cand.Intf.last(), &MaxWeight); 1490 1491 // The bad eviction chain occurs when either the split candidate is the 1492 // evicting reg or one of the split artifact will evict the evicting reg. 1493 if ((PhysReg != Cand.PhysReg) && (PhysReg != FutureEvictedPhysReg)) 1494 return false; 1495 1496 Cand.Intf.moveToBlock(BBNumber); 1497 1498 // Check to see if the Evictor contains interference (with Evictee) in the 1499 // given BB. If so, this interference caused the eviction of Evictee from 1500 // PhysReg. This suggest that we will create a local interval during the 1501 // region split to avoid this interference This local interval may cause a bad 1502 // eviction chain. 1503 if (!LIS->hasInterval(Evictor)) 1504 return false; 1505 LiveInterval &EvictorLI = LIS->getInterval(Evictor); 1506 if (EvictorLI.FindSegmentContaining(Cand.Intf.first()) == EvictorLI.end()) 1507 return false; 1508 1509 // Now, check to see if the local interval we will create is going to be 1510 // expensive enough to evict somebody If so, this may cause a bad eviction 1511 // chain. 1512 VirtRegAuxInfo VRAI(*MF, *LIS, VRM, getAnalysis<MachineLoopInfo>(), *MBFI); 1513 float splitArtifactWeight = 1514 VRAI.futureWeight(LIS->getInterval(Evictee), 1515 Cand.Intf.first().getPrevIndex(), Cand.Intf.last()); 1516 if (splitArtifactWeight >= 0 && splitArtifactWeight < MaxWeight) 1517 return false; 1518 1519 return true; 1520 } 1521 1522 /// Check if splitting VirtRegToSplit will create a local split interval 1523 /// in basic block number BBNumber that may cause a spill. 1524 /// 1525 /// \param VirtRegToSplit The register considered to be split. 1526 /// \param Cand The split candidate that determines the physical 1527 /// register we are splitting for and the interferences. 1528 /// \param BBNumber The number of a BB for which the region split process 1529 /// will create a local split interval. 1530 /// \param Order The physical registers that may get evicted by a 1531 /// split artifact of VirtRegToSplit. 1532 /// \return True if splitting VirtRegToSplit may cause a spill, false 1533 /// otherwise. 1534 bool RAGreedy::splitCanCauseLocalSpill(unsigned VirtRegToSplit, 1535 GlobalSplitCandidate &Cand, 1536 unsigned BBNumber, 1537 const AllocationOrder &Order) { 1538 Cand.Intf.moveToBlock(BBNumber); 1539 1540 // Check if the local interval will find a non interfereing assignment. 1541 for (auto PhysReg : Order.getOrder()) { 1542 if (!Matrix->checkInterference(Cand.Intf.first().getPrevIndex(), 1543 Cand.Intf.last(), PhysReg)) 1544 return false; 1545 } 1546 1547 // Check if the local interval will evict a cheaper interval. 1548 float CheapestEvictWeight = 0; 1549 unsigned FutureEvictedPhysReg = getCheapestEvicteeWeight( 1550 Order, LIS->getInterval(VirtRegToSplit), Cand.Intf.first(), 1551 Cand.Intf.last(), &CheapestEvictWeight); 1552 1553 // Have we found an interval that can be evicted? 1554 if (FutureEvictedPhysReg) { 1555 VirtRegAuxInfo VRAI(*MF, *LIS, VRM, getAnalysis<MachineLoopInfo>(), *MBFI); 1556 float splitArtifactWeight = 1557 VRAI.futureWeight(LIS->getInterval(VirtRegToSplit), 1558 Cand.Intf.first().getPrevIndex(), Cand.Intf.last()); 1559 // Will the weight of the local interval be higher than the cheapest evictee 1560 // weight? If so it will evict it and will not cause a spill. 1561 if (splitArtifactWeight >= 0 && splitArtifactWeight > CheapestEvictWeight) 1562 return false; 1563 } 1564 1565 // The local interval is not able to find non interferencing assignment and 1566 // not able to evict a less worthy interval, therfore, it can cause a spill. 1567 return true; 1568 } 1569 1570 /// calcGlobalSplitCost - Return the global split cost of following the split 1571 /// pattern in LiveBundles. This cost should be added to the local cost of the 1572 /// interference pattern in SplitConstraints. 1573 /// 1574 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand, 1575 const AllocationOrder &Order, 1576 bool *CanCauseEvictionChain) { 1577 BlockFrequency GlobalCost = 0; 1578 const BitVector &LiveBundles = Cand.LiveBundles; 1579 unsigned VirtRegToSplit = SA->getParent().reg(); 1580 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1581 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1582 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1583 SpillPlacement::BlockConstraint &BC = SplitConstraints[i]; 1584 bool RegIn = LiveBundles[Bundles->getBundle(BC.Number, false)]; 1585 bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)]; 1586 unsigned Ins = 0; 1587 1588 Cand.Intf.moveToBlock(BC.Number); 1589 // Check wheather a local interval is going to be created during the region 1590 // split. Calculate adavanced spilt cost (cost of local intervals) if option 1591 // is enabled. 1592 if (EnableAdvancedRASplitCost && Cand.Intf.hasInterference() && BI.LiveIn && 1593 BI.LiveOut && RegIn && RegOut) { 1594 1595 if (CanCauseEvictionChain && 1596 splitCanCauseEvictionChain(VirtRegToSplit, Cand, BC.Number, Order)) { 1597 // This interference causes our eviction from this assignment, we might 1598 // evict somebody else and eventually someone will spill, add that cost. 1599 // See splitCanCauseEvictionChain for detailed description of scenarios. 1600 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1601 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1602 1603 *CanCauseEvictionChain = true; 1604 1605 } else if (splitCanCauseLocalSpill(VirtRegToSplit, Cand, BC.Number, 1606 Order)) { 1607 // This interference causes local interval to spill, add that cost. 1608 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1609 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1610 } 1611 } 1612 1613 if (BI.LiveIn) 1614 Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg); 1615 if (BI.LiveOut) 1616 Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg); 1617 while (Ins--) 1618 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1619 } 1620 1621 for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) { 1622 unsigned Number = Cand.ActiveBlocks[i]; 1623 bool RegIn = LiveBundles[Bundles->getBundle(Number, false)]; 1624 bool RegOut = LiveBundles[Bundles->getBundle(Number, true)]; 1625 if (!RegIn && !RegOut) 1626 continue; 1627 if (RegIn && RegOut) { 1628 // We need double spill code if this block has interference. 1629 Cand.Intf.moveToBlock(Number); 1630 if (Cand.Intf.hasInterference()) { 1631 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1632 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1633 1634 // Check wheather a local interval is going to be created during the 1635 // region split. 1636 if (EnableAdvancedRASplitCost && CanCauseEvictionChain && 1637 splitCanCauseEvictionChain(VirtRegToSplit, Cand, Number, Order)) { 1638 // This interference cause our eviction from this assignment, we might 1639 // evict somebody else, add that cost. 1640 // See splitCanCauseEvictionChain for detailed description of 1641 // scenarios. 1642 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1643 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1644 1645 *CanCauseEvictionChain = true; 1646 } 1647 } 1648 continue; 1649 } 1650 // live-in / stack-out or stack-in live-out. 1651 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1652 } 1653 return GlobalCost; 1654 } 1655 1656 /// splitAroundRegion - Split the current live range around the regions 1657 /// determined by BundleCand and GlobalCand. 1658 /// 1659 /// Before calling this function, GlobalCand and BundleCand must be initialized 1660 /// so each bundle is assigned to a valid candidate, or NoCand for the 1661 /// stack-bound bundles. The shared SA/SE SplitAnalysis and SplitEditor 1662 /// objects must be initialized for the current live range, and intervals 1663 /// created for the used candidates. 1664 /// 1665 /// @param LREdit The LiveRangeEdit object handling the current split. 1666 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value 1667 /// must appear in this list. 1668 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit, 1669 ArrayRef<unsigned> UsedCands) { 1670 // These are the intervals created for new global ranges. We may create more 1671 // intervals for local ranges. 1672 const unsigned NumGlobalIntvs = LREdit.size(); 1673 LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs 1674 << " globals.\n"); 1675 assert(NumGlobalIntvs && "No global intervals configured"); 1676 1677 // Isolate even single instructions when dealing with a proper sub-class. 1678 // That guarantees register class inflation for the stack interval because it 1679 // is all copies. 1680 unsigned Reg = SA->getParent().reg(); 1681 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 1682 1683 // First handle all the blocks with uses. 1684 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1685 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1686 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1687 unsigned Number = BI.MBB->getNumber(); 1688 unsigned IntvIn = 0, IntvOut = 0; 1689 SlotIndex IntfIn, IntfOut; 1690 if (BI.LiveIn) { 1691 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)]; 1692 if (CandIn != NoCand) { 1693 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 1694 IntvIn = Cand.IntvIdx; 1695 Cand.Intf.moveToBlock(Number); 1696 IntfIn = Cand.Intf.first(); 1697 } 1698 } 1699 if (BI.LiveOut) { 1700 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)]; 1701 if (CandOut != NoCand) { 1702 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 1703 IntvOut = Cand.IntvIdx; 1704 Cand.Intf.moveToBlock(Number); 1705 IntfOut = Cand.Intf.last(); 1706 } 1707 } 1708 1709 // Create separate intervals for isolated blocks with multiple uses. 1710 if (!IntvIn && !IntvOut) { 1711 LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " isolated.\n"); 1712 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 1713 SE->splitSingleBlock(BI); 1714 continue; 1715 } 1716 1717 if (IntvIn && IntvOut) 1718 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1719 else if (IntvIn) 1720 SE->splitRegInBlock(BI, IntvIn, IntfIn); 1721 else 1722 SE->splitRegOutBlock(BI, IntvOut, IntfOut); 1723 } 1724 1725 // Handle live-through blocks. The relevant live-through blocks are stored in 1726 // the ActiveBlocks list with each candidate. We need to filter out 1727 // duplicates. 1728 BitVector Todo = SA->getThroughBlocks(); 1729 for (unsigned c = 0; c != UsedCands.size(); ++c) { 1730 ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks; 1731 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { 1732 unsigned Number = Blocks[i]; 1733 if (!Todo.test(Number)) 1734 continue; 1735 Todo.reset(Number); 1736 1737 unsigned IntvIn = 0, IntvOut = 0; 1738 SlotIndex IntfIn, IntfOut; 1739 1740 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)]; 1741 if (CandIn != NoCand) { 1742 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 1743 IntvIn = Cand.IntvIdx; 1744 Cand.Intf.moveToBlock(Number); 1745 IntfIn = Cand.Intf.first(); 1746 } 1747 1748 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)]; 1749 if (CandOut != NoCand) { 1750 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 1751 IntvOut = Cand.IntvIdx; 1752 Cand.Intf.moveToBlock(Number); 1753 IntfOut = Cand.Intf.last(); 1754 } 1755 if (!IntvIn && !IntvOut) 1756 continue; 1757 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1758 } 1759 } 1760 1761 ++NumGlobalSplits; 1762 1763 SmallVector<unsigned, 8> IntvMap; 1764 SE->finish(&IntvMap); 1765 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 1766 1767 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 1768 unsigned OrigBlocks = SA->getNumLiveBlocks(); 1769 1770 // Sort out the new intervals created by splitting. We get four kinds: 1771 // - Remainder intervals should not be split again. 1772 // - Candidate intervals can be assigned to Cand.PhysReg. 1773 // - Block-local splits are candidates for local splitting. 1774 // - DCE leftovers should go back on the queue. 1775 for (unsigned i = 0, e = LREdit.size(); i != e; ++i) { 1776 LiveInterval &Reg = LIS->getInterval(LREdit.get(i)); 1777 1778 // Ignore old intervals from DCE. 1779 if (getStage(Reg) != RS_New) 1780 continue; 1781 1782 // Remainder interval. Don't try splitting again, spill if it doesn't 1783 // allocate. 1784 if (IntvMap[i] == 0) { 1785 setStage(Reg, RS_Spill); 1786 continue; 1787 } 1788 1789 // Global intervals. Allow repeated splitting as long as the number of live 1790 // blocks is strictly decreasing. 1791 if (IntvMap[i] < NumGlobalIntvs) { 1792 if (SA->countLiveBlocks(&Reg) >= OrigBlocks) { 1793 LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks 1794 << " blocks as original.\n"); 1795 // Don't allow repeated splitting as a safe guard against looping. 1796 setStage(Reg, RS_Split2); 1797 } 1798 continue; 1799 } 1800 1801 // Other intervals are treated as new. This includes local intervals created 1802 // for blocks with multiple uses, and anything created by DCE. 1803 } 1804 1805 if (VerifyEnabled) 1806 MF->verify(this, "After splitting live range around region"); 1807 } 1808 1809 unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order, 1810 SmallVectorImpl<Register> &NewVRegs) { 1811 if (!TRI->shouldRegionSplitForVirtReg(*MF, VirtReg)) 1812 return 0; 1813 unsigned NumCands = 0; 1814 BlockFrequency SpillCost = calcSpillCost(); 1815 BlockFrequency BestCost; 1816 1817 // Check if we can split this live range around a compact region. 1818 bool HasCompact = calcCompactRegion(GlobalCand.front()); 1819 if (HasCompact) { 1820 // Yes, keep GlobalCand[0] as the compact region candidate. 1821 NumCands = 1; 1822 BestCost = BlockFrequency::getMaxFrequency(); 1823 } else { 1824 // No benefit from the compact region, our fallback will be per-block 1825 // splitting. Make sure we find a solution that is cheaper than spilling. 1826 BestCost = SpillCost; 1827 LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = "; 1828 MBFI->printBlockFreq(dbgs(), BestCost) << '\n'); 1829 } 1830 1831 bool CanCauseEvictionChain = false; 1832 unsigned BestCand = 1833 calculateRegionSplitCost(VirtReg, Order, BestCost, NumCands, 1834 false /*IgnoreCSR*/, &CanCauseEvictionChain); 1835 1836 // Split candidates with compact regions can cause a bad eviction sequence. 1837 // See splitCanCauseEvictionChain for detailed description of scenarios. 1838 // To avoid it, we need to comapre the cost with the spill cost and not the 1839 // current max frequency. 1840 if (HasCompact && (BestCost > SpillCost) && (BestCand != NoCand) && 1841 CanCauseEvictionChain) { 1842 return 0; 1843 } 1844 1845 // No solutions found, fall back to single block splitting. 1846 if (!HasCompact && BestCand == NoCand) 1847 return 0; 1848 1849 return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs); 1850 } 1851 1852 unsigned RAGreedy::calculateRegionSplitCost(LiveInterval &VirtReg, 1853 AllocationOrder &Order, 1854 BlockFrequency &BestCost, 1855 unsigned &NumCands, bool IgnoreCSR, 1856 bool *CanCauseEvictionChain) { 1857 unsigned BestCand = NoCand; 1858 Order.rewind(); 1859 while (unsigned PhysReg = Order.next()) { 1860 if (IgnoreCSR && isUnusedCalleeSavedReg(PhysReg)) 1861 continue; 1862 1863 // Discard bad candidates before we run out of interference cache cursors. 1864 // This will only affect register classes with a lot of registers (>32). 1865 if (NumCands == IntfCache.getMaxCursors()) { 1866 unsigned WorstCount = ~0u; 1867 unsigned Worst = 0; 1868 for (unsigned i = 0; i != NumCands; ++i) { 1869 if (i == BestCand || !GlobalCand[i].PhysReg) 1870 continue; 1871 unsigned Count = GlobalCand[i].LiveBundles.count(); 1872 if (Count < WorstCount) { 1873 Worst = i; 1874 WorstCount = Count; 1875 } 1876 } 1877 --NumCands; 1878 GlobalCand[Worst] = GlobalCand[NumCands]; 1879 if (BestCand == NumCands) 1880 BestCand = Worst; 1881 } 1882 1883 if (GlobalCand.size() <= NumCands) 1884 GlobalCand.resize(NumCands+1); 1885 GlobalSplitCandidate &Cand = GlobalCand[NumCands]; 1886 Cand.reset(IntfCache, PhysReg); 1887 1888 SpillPlacer->prepare(Cand.LiveBundles); 1889 BlockFrequency Cost; 1890 if (!addSplitConstraints(Cand.Intf, Cost)) { 1891 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tno positive bundles\n"); 1892 continue; 1893 } 1894 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tstatic = "; 1895 MBFI->printBlockFreq(dbgs(), Cost)); 1896 if (Cost >= BestCost) { 1897 LLVM_DEBUG({ 1898 if (BestCand == NoCand) 1899 dbgs() << " worse than no bundles\n"; 1900 else 1901 dbgs() << " worse than " 1902 << printReg(GlobalCand[BestCand].PhysReg, TRI) << '\n'; 1903 }); 1904 continue; 1905 } 1906 if (!growRegion(Cand)) { 1907 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n"); 1908 continue; 1909 } 1910 1911 SpillPlacer->finish(); 1912 1913 // No live bundles, defer to splitSingleBlocks(). 1914 if (!Cand.LiveBundles.any()) { 1915 LLVM_DEBUG(dbgs() << " no bundles.\n"); 1916 continue; 1917 } 1918 1919 bool HasEvictionChain = false; 1920 Cost += calcGlobalSplitCost(Cand, Order, &HasEvictionChain); 1921 LLVM_DEBUG({ 1922 dbgs() << ", total = "; 1923 MBFI->printBlockFreq(dbgs(), Cost) << " with bundles"; 1924 for (int i : Cand.LiveBundles.set_bits()) 1925 dbgs() << " EB#" << i; 1926 dbgs() << ".\n"; 1927 }); 1928 if (Cost < BestCost) { 1929 BestCand = NumCands; 1930 BestCost = Cost; 1931 // See splitCanCauseEvictionChain for detailed description of bad 1932 // eviction chain scenarios. 1933 if (CanCauseEvictionChain) 1934 *CanCauseEvictionChain = HasEvictionChain; 1935 } 1936 ++NumCands; 1937 } 1938 1939 if (CanCauseEvictionChain && BestCand != NoCand) { 1940 // See splitCanCauseEvictionChain for detailed description of bad 1941 // eviction chain scenarios. 1942 LLVM_DEBUG(dbgs() << "Best split candidate of vreg " 1943 << printReg(VirtReg.reg(), TRI) << " may "); 1944 if (!(*CanCauseEvictionChain)) 1945 LLVM_DEBUG(dbgs() << "not "); 1946 LLVM_DEBUG(dbgs() << "cause bad eviction chain\n"); 1947 } 1948 1949 return BestCand; 1950 } 1951 1952 unsigned RAGreedy::doRegionSplit(LiveInterval &VirtReg, unsigned BestCand, 1953 bool HasCompact, 1954 SmallVectorImpl<Register> &NewVRegs) { 1955 SmallVector<unsigned, 8> UsedCands; 1956 // Prepare split editor. 1957 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1958 SE->reset(LREdit, SplitSpillMode); 1959 1960 // Assign all edge bundles to the preferred candidate, or NoCand. 1961 BundleCand.assign(Bundles->getNumBundles(), NoCand); 1962 1963 // Assign bundles for the best candidate region. 1964 if (BestCand != NoCand) { 1965 GlobalSplitCandidate &Cand = GlobalCand[BestCand]; 1966 if (unsigned B = Cand.getBundles(BundleCand, BestCand)) { 1967 UsedCands.push_back(BestCand); 1968 Cand.IntvIdx = SE->openIntv(); 1969 LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand.PhysReg, TRI) << " in " 1970 << B << " bundles, intv " << Cand.IntvIdx << ".\n"); 1971 (void)B; 1972 } 1973 } 1974 1975 // Assign bundles for the compact region. 1976 if (HasCompact) { 1977 GlobalSplitCandidate &Cand = GlobalCand.front(); 1978 assert(!Cand.PhysReg && "Compact region has no physreg"); 1979 if (unsigned B = Cand.getBundles(BundleCand, 0)) { 1980 UsedCands.push_back(0); 1981 Cand.IntvIdx = SE->openIntv(); 1982 LLVM_DEBUG(dbgs() << "Split for compact region in " << B 1983 << " bundles, intv " << Cand.IntvIdx << ".\n"); 1984 (void)B; 1985 } 1986 } 1987 1988 splitAroundRegion(LREdit, UsedCands); 1989 return 0; 1990 } 1991 1992 //===----------------------------------------------------------------------===// 1993 // Per-Block Splitting 1994 //===----------------------------------------------------------------------===// 1995 1996 /// tryBlockSplit - Split a global live range around every block with uses. This 1997 /// creates a lot of local live ranges, that will be split by tryLocalSplit if 1998 /// they don't allocate. 1999 unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order, 2000 SmallVectorImpl<Register> &NewVRegs) { 2001 assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed"); 2002 Register Reg = VirtReg.reg(); 2003 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 2004 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2005 SE->reset(LREdit, SplitSpillMode); 2006 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 2007 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 2008 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 2009 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 2010 SE->splitSingleBlock(BI); 2011 } 2012 // No blocks were split. 2013 if (LREdit.empty()) 2014 return 0; 2015 2016 // We did split for some blocks. 2017 SmallVector<unsigned, 8> IntvMap; 2018 SE->finish(&IntvMap); 2019 2020 // Tell LiveDebugVariables about the new ranges. 2021 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 2022 2023 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 2024 2025 // Sort out the new intervals created by splitting. The remainder interval 2026 // goes straight to spilling, the new local ranges get to stay RS_New. 2027 for (unsigned i = 0, e = LREdit.size(); i != e; ++i) { 2028 LiveInterval &LI = LIS->getInterval(LREdit.get(i)); 2029 if (getStage(LI) == RS_New && IntvMap[i] == 0) 2030 setStage(LI, RS_Spill); 2031 } 2032 2033 if (VerifyEnabled) 2034 MF->verify(this, "After splitting live range around basic blocks"); 2035 return 0; 2036 } 2037 2038 //===----------------------------------------------------------------------===// 2039 // Per-Instruction Splitting 2040 //===----------------------------------------------------------------------===// 2041 2042 /// Get the number of allocatable registers that match the constraints of \p Reg 2043 /// on \p MI and that are also in \p SuperRC. 2044 static unsigned getNumAllocatableRegsForConstraints( 2045 const MachineInstr *MI, unsigned Reg, const TargetRegisterClass *SuperRC, 2046 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI, 2047 const RegisterClassInfo &RCI) { 2048 assert(SuperRC && "Invalid register class"); 2049 2050 const TargetRegisterClass *ConstrainedRC = 2051 MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI, 2052 /* ExploreBundle */ true); 2053 if (!ConstrainedRC) 2054 return 0; 2055 return RCI.getNumAllocatableRegs(ConstrainedRC); 2056 } 2057 2058 /// tryInstructionSplit - Split a live range around individual instructions. 2059 /// This is normally not worthwhile since the spiller is doing essentially the 2060 /// same thing. However, when the live range is in a constrained register 2061 /// class, it may help to insert copies such that parts of the live range can 2062 /// be moved to a larger register class. 2063 /// 2064 /// This is similar to spilling to a larger register class. 2065 unsigned 2066 RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order, 2067 SmallVectorImpl<Register> &NewVRegs) { 2068 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg()); 2069 // There is no point to this if there are no larger sub-classes. 2070 if (!RegClassInfo.isProperSubClass(CurRC)) 2071 return 0; 2072 2073 // Always enable split spill mode, since we're effectively spilling to a 2074 // register. 2075 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2076 SE->reset(LREdit, SplitEditor::SM_Size); 2077 2078 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 2079 if (Uses.size() <= 1) 2080 return 0; 2081 2082 LLVM_DEBUG(dbgs() << "Split around " << Uses.size() 2083 << " individual instrs.\n"); 2084 2085 const TargetRegisterClass *SuperRC = 2086 TRI->getLargestLegalSuperClass(CurRC, *MF); 2087 unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC); 2088 // Split around every non-copy instruction if this split will relax 2089 // the constraints on the virtual register. 2090 // Otherwise, splitting just inserts uncoalescable copies that do not help 2091 // the allocation. 2092 for (unsigned i = 0; i != Uses.size(); ++i) { 2093 if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Uses[i])) 2094 if (MI->isFullCopy() || 2095 SuperRCNumAllocatableRegs == 2096 getNumAllocatableRegsForConstraints(MI, VirtReg.reg(), SuperRC, 2097 TII, TRI, RCI)) { 2098 LLVM_DEBUG(dbgs() << " skip:\t" << Uses[i] << '\t' << *MI); 2099 continue; 2100 } 2101 SE->openIntv(); 2102 SlotIndex SegStart = SE->enterIntvBefore(Uses[i]); 2103 SlotIndex SegStop = SE->leaveIntvAfter(Uses[i]); 2104 SE->useIntv(SegStart, SegStop); 2105 } 2106 2107 if (LREdit.empty()) { 2108 LLVM_DEBUG(dbgs() << "All uses were copies.\n"); 2109 return 0; 2110 } 2111 2112 SmallVector<unsigned, 8> IntvMap; 2113 SE->finish(&IntvMap); 2114 DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS); 2115 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 2116 2117 // Assign all new registers to RS_Spill. This was the last chance. 2118 setStage(LREdit.begin(), LREdit.end(), RS_Spill); 2119 return 0; 2120 } 2121 2122 //===----------------------------------------------------------------------===// 2123 // Local Splitting 2124 //===----------------------------------------------------------------------===// 2125 2126 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted 2127 /// in order to use PhysReg between two entries in SA->UseSlots. 2128 /// 2129 /// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1]. 2130 /// 2131 void RAGreedy::calcGapWeights(unsigned PhysReg, 2132 SmallVectorImpl<float> &GapWeight) { 2133 assert(SA->getUseBlocks().size() == 1 && "Not a local interval"); 2134 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 2135 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 2136 const unsigned NumGaps = Uses.size()-1; 2137 2138 // Start and end points for the interference check. 2139 SlotIndex StartIdx = 2140 BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr; 2141 SlotIndex StopIdx = 2142 BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr; 2143 2144 GapWeight.assign(NumGaps, 0.0f); 2145 2146 // Add interference from each overlapping register. 2147 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 2148 if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units) 2149 .checkInterference()) 2150 continue; 2151 2152 // We know that VirtReg is a continuous interval from FirstInstr to 2153 // LastInstr, so we don't need InterferenceQuery. 2154 // 2155 // Interference that overlaps an instruction is counted in both gaps 2156 // surrounding the instruction. The exception is interference before 2157 // StartIdx and after StopIdx. 2158 // 2159 LiveIntervalUnion::SegmentIter IntI = 2160 Matrix->getLiveUnions()[*Units] .find(StartIdx); 2161 for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) { 2162 // Skip the gaps before IntI. 2163 while (Uses[Gap+1].getBoundaryIndex() < IntI.start()) 2164 if (++Gap == NumGaps) 2165 break; 2166 if (Gap == NumGaps) 2167 break; 2168 2169 // Update the gaps covered by IntI. 2170 const float weight = IntI.value()->weight(); 2171 for (; Gap != NumGaps; ++Gap) { 2172 GapWeight[Gap] = std::max(GapWeight[Gap], weight); 2173 if (Uses[Gap+1].getBaseIndex() >= IntI.stop()) 2174 break; 2175 } 2176 if (Gap == NumGaps) 2177 break; 2178 } 2179 } 2180 2181 // Add fixed interference. 2182 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 2183 const LiveRange &LR = LIS->getRegUnit(*Units); 2184 LiveRange::const_iterator I = LR.find(StartIdx); 2185 LiveRange::const_iterator E = LR.end(); 2186 2187 // Same loop as above. Mark any overlapped gaps as HUGE_VALF. 2188 for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) { 2189 while (Uses[Gap+1].getBoundaryIndex() < I->start) 2190 if (++Gap == NumGaps) 2191 break; 2192 if (Gap == NumGaps) 2193 break; 2194 2195 for (; Gap != NumGaps; ++Gap) { 2196 GapWeight[Gap] = huge_valf; 2197 if (Uses[Gap+1].getBaseIndex() >= I->end) 2198 break; 2199 } 2200 if (Gap == NumGaps) 2201 break; 2202 } 2203 } 2204 } 2205 2206 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only 2207 /// basic block. 2208 /// 2209 unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order, 2210 SmallVectorImpl<Register> &NewVRegs) { 2211 // TODO: the function currently only handles a single UseBlock; it should be 2212 // possible to generalize. 2213 if (SA->getUseBlocks().size() != 1) 2214 return 0; 2215 2216 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 2217 2218 // Note that it is possible to have an interval that is live-in or live-out 2219 // while only covering a single block - A phi-def can use undef values from 2220 // predecessors, and the block could be a single-block loop. 2221 // We don't bother doing anything clever about such a case, we simply assume 2222 // that the interval is continuous from FirstInstr to LastInstr. We should 2223 // make sure that we don't do anything illegal to such an interval, though. 2224 2225 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 2226 if (Uses.size() <= 2) 2227 return 0; 2228 const unsigned NumGaps = Uses.size()-1; 2229 2230 LLVM_DEBUG({ 2231 dbgs() << "tryLocalSplit: "; 2232 for (unsigned i = 0, e = Uses.size(); i != e; ++i) 2233 dbgs() << ' ' << Uses[i]; 2234 dbgs() << '\n'; 2235 }); 2236 2237 // If VirtReg is live across any register mask operands, compute a list of 2238 // gaps with register masks. 2239 SmallVector<unsigned, 8> RegMaskGaps; 2240 if (Matrix->checkRegMaskInterference(VirtReg)) { 2241 // Get regmask slots for the whole block. 2242 ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber()); 2243 LLVM_DEBUG(dbgs() << RMS.size() << " regmasks in block:"); 2244 // Constrain to VirtReg's live range. 2245 unsigned ri = 2246 llvm::lower_bound(RMS, Uses.front().getRegSlot()) - RMS.begin(); 2247 unsigned re = RMS.size(); 2248 for (unsigned i = 0; i != NumGaps && ri != re; ++i) { 2249 // Look for Uses[i] <= RMS <= Uses[i+1]. 2250 assert(!SlotIndex::isEarlierInstr(RMS[ri], Uses[i])); 2251 if (SlotIndex::isEarlierInstr(Uses[i+1], RMS[ri])) 2252 continue; 2253 // Skip a regmask on the same instruction as the last use. It doesn't 2254 // overlap the live range. 2255 if (SlotIndex::isSameInstr(Uses[i+1], RMS[ri]) && i+1 == NumGaps) 2256 break; 2257 LLVM_DEBUG(dbgs() << ' ' << RMS[ri] << ':' << Uses[i] << '-' 2258 << Uses[i + 1]); 2259 RegMaskGaps.push_back(i); 2260 // Advance ri to the next gap. A regmask on one of the uses counts in 2261 // both gaps. 2262 while (ri != re && SlotIndex::isEarlierInstr(RMS[ri], Uses[i+1])) 2263 ++ri; 2264 } 2265 LLVM_DEBUG(dbgs() << '\n'); 2266 } 2267 2268 // Since we allow local split results to be split again, there is a risk of 2269 // creating infinite loops. It is tempting to require that the new live 2270 // ranges have less instructions than the original. That would guarantee 2271 // convergence, but it is too strict. A live range with 3 instructions can be 2272 // split 2+3 (including the COPY), and we want to allow that. 2273 // 2274 // Instead we use these rules: 2275 // 2276 // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the 2277 // noop split, of course). 2278 // 2. Require progress be made for ranges with getStage() == RS_Split2. All 2279 // the new ranges must have fewer instructions than before the split. 2280 // 3. New ranges with the same number of instructions are marked RS_Split2, 2281 // smaller ranges are marked RS_New. 2282 // 2283 // These rules allow a 3 -> 2+3 split once, which we need. They also prevent 2284 // excessive splitting and infinite loops. 2285 // 2286 bool ProgressRequired = getStage(VirtReg) >= RS_Split2; 2287 2288 // Best split candidate. 2289 unsigned BestBefore = NumGaps; 2290 unsigned BestAfter = 0; 2291 float BestDiff = 0; 2292 2293 const float blockFreq = 2294 SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() * 2295 (1.0f / MBFI->getEntryFreq()); 2296 SmallVector<float, 8> GapWeight; 2297 2298 Order.rewind(); 2299 while (unsigned PhysReg = Order.next()) { 2300 // Keep track of the largest spill weight that would need to be evicted in 2301 // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1]. 2302 calcGapWeights(PhysReg, GapWeight); 2303 2304 // Remove any gaps with regmask clobbers. 2305 if (Matrix->checkRegMaskInterference(VirtReg, PhysReg)) 2306 for (unsigned i = 0, e = RegMaskGaps.size(); i != e; ++i) 2307 GapWeight[RegMaskGaps[i]] = huge_valf; 2308 2309 // Try to find the best sequence of gaps to close. 2310 // The new spill weight must be larger than any gap interference. 2311 2312 // We will split before Uses[SplitBefore] and after Uses[SplitAfter]. 2313 unsigned SplitBefore = 0, SplitAfter = 1; 2314 2315 // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]). 2316 // It is the spill weight that needs to be evicted. 2317 float MaxGap = GapWeight[0]; 2318 2319 while (true) { 2320 // Live before/after split? 2321 const bool LiveBefore = SplitBefore != 0 || BI.LiveIn; 2322 const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut; 2323 2324 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << ' ' << Uses[SplitBefore] 2325 << '-' << Uses[SplitAfter] << " i=" << MaxGap); 2326 2327 // Stop before the interval gets so big we wouldn't be making progress. 2328 if (!LiveBefore && !LiveAfter) { 2329 LLVM_DEBUG(dbgs() << " all\n"); 2330 break; 2331 } 2332 // Should the interval be extended or shrunk? 2333 bool Shrink = true; 2334 2335 // How many gaps would the new range have? 2336 unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter; 2337 2338 // Legally, without causing looping? 2339 bool Legal = !ProgressRequired || NewGaps < NumGaps; 2340 2341 if (Legal && MaxGap < huge_valf) { 2342 // Estimate the new spill weight. Each instruction reads or writes the 2343 // register. Conservatively assume there are no read-modify-write 2344 // instructions. 2345 // 2346 // Try to guess the size of the new interval. 2347 const float EstWeight = normalizeSpillWeight( 2348 blockFreq * (NewGaps + 1), 2349 Uses[SplitBefore].distance(Uses[SplitAfter]) + 2350 (LiveBefore + LiveAfter) * SlotIndex::InstrDist, 2351 1); 2352 // Would this split be possible to allocate? 2353 // Never allocate all gaps, we wouldn't be making progress. 2354 LLVM_DEBUG(dbgs() << " w=" << EstWeight); 2355 if (EstWeight * Hysteresis >= MaxGap) { 2356 Shrink = false; 2357 float Diff = EstWeight - MaxGap; 2358 if (Diff > BestDiff) { 2359 LLVM_DEBUG(dbgs() << " (best)"); 2360 BestDiff = Hysteresis * Diff; 2361 BestBefore = SplitBefore; 2362 BestAfter = SplitAfter; 2363 } 2364 } 2365 } 2366 2367 // Try to shrink. 2368 if (Shrink) { 2369 if (++SplitBefore < SplitAfter) { 2370 LLVM_DEBUG(dbgs() << " shrink\n"); 2371 // Recompute the max when necessary. 2372 if (GapWeight[SplitBefore - 1] >= MaxGap) { 2373 MaxGap = GapWeight[SplitBefore]; 2374 for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i) 2375 MaxGap = std::max(MaxGap, GapWeight[i]); 2376 } 2377 continue; 2378 } 2379 MaxGap = 0; 2380 } 2381 2382 // Try to extend the interval. 2383 if (SplitAfter >= NumGaps) { 2384 LLVM_DEBUG(dbgs() << " end\n"); 2385 break; 2386 } 2387 2388 LLVM_DEBUG(dbgs() << " extend\n"); 2389 MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]); 2390 } 2391 } 2392 2393 // Didn't find any candidates? 2394 if (BestBefore == NumGaps) 2395 return 0; 2396 2397 LLVM_DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] << '-' 2398 << Uses[BestAfter] << ", " << BestDiff << ", " 2399 << (BestAfter - BestBefore + 1) << " instrs\n"); 2400 2401 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2402 SE->reset(LREdit); 2403 2404 SE->openIntv(); 2405 SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]); 2406 SlotIndex SegStop = SE->leaveIntvAfter(Uses[BestAfter]); 2407 SE->useIntv(SegStart, SegStop); 2408 SmallVector<unsigned, 8> IntvMap; 2409 SE->finish(&IntvMap); 2410 DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS); 2411 2412 // If the new range has the same number of instructions as before, mark it as 2413 // RS_Split2 so the next split will be forced to make progress. Otherwise, 2414 // leave the new intervals as RS_New so they can compete. 2415 bool LiveBefore = BestBefore != 0 || BI.LiveIn; 2416 bool LiveAfter = BestAfter != NumGaps || BI.LiveOut; 2417 unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter; 2418 if (NewGaps >= NumGaps) { 2419 LLVM_DEBUG(dbgs() << "Tagging non-progress ranges: "); 2420 assert(!ProgressRequired && "Didn't make progress when it was required."); 2421 for (unsigned i = 0, e = IntvMap.size(); i != e; ++i) 2422 if (IntvMap[i] == 1) { 2423 setStage(LIS->getInterval(LREdit.get(i)), RS_Split2); 2424 LLVM_DEBUG(dbgs() << printReg(LREdit.get(i))); 2425 } 2426 LLVM_DEBUG(dbgs() << '\n'); 2427 } 2428 ++NumLocalSplits; 2429 2430 return 0; 2431 } 2432 2433 //===----------------------------------------------------------------------===// 2434 // Live Range Splitting 2435 //===----------------------------------------------------------------------===// 2436 2437 /// trySplit - Try to split VirtReg or one of its interferences, making it 2438 /// assignable. 2439 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs. 2440 unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order, 2441 SmallVectorImpl<Register> &NewVRegs, 2442 const SmallVirtRegSet &FixedRegisters) { 2443 // Ranges must be Split2 or less. 2444 if (getStage(VirtReg) >= RS_Spill) 2445 return 0; 2446 2447 // Local intervals are handled separately. 2448 if (LIS->intervalIsInOneMBB(VirtReg)) { 2449 NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName, 2450 TimerGroupDescription, TimePassesIsEnabled); 2451 SA->analyze(&VirtReg); 2452 Register PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs); 2453 if (PhysReg || !NewVRegs.empty()) 2454 return PhysReg; 2455 return tryInstructionSplit(VirtReg, Order, NewVRegs); 2456 } 2457 2458 NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName, 2459 TimerGroupDescription, TimePassesIsEnabled); 2460 2461 SA->analyze(&VirtReg); 2462 2463 // FIXME: SplitAnalysis may repair broken live ranges coming from the 2464 // coalescer. That may cause the range to become allocatable which means that 2465 // tryRegionSplit won't be making progress. This check should be replaced with 2466 // an assertion when the coalescer is fixed. 2467 if (SA->didRepairRange()) { 2468 // VirtReg has changed, so all cached queries are invalid. 2469 Matrix->invalidateVirtRegs(); 2470 if (Register PhysReg = tryAssign(VirtReg, Order, NewVRegs, FixedRegisters)) 2471 return PhysReg; 2472 } 2473 2474 // First try to split around a region spanning multiple blocks. RS_Split2 2475 // ranges already made dubious progress with region splitting, so they go 2476 // straight to single block splitting. 2477 if (getStage(VirtReg) < RS_Split2) { 2478 unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs); 2479 if (PhysReg || !NewVRegs.empty()) 2480 return PhysReg; 2481 } 2482 2483 // Then isolate blocks. 2484 return tryBlockSplit(VirtReg, Order, NewVRegs); 2485 } 2486 2487 //===----------------------------------------------------------------------===// 2488 // Last Chance Recoloring 2489 //===----------------------------------------------------------------------===// 2490 2491 /// Return true if \p reg has any tied def operand. 2492 static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg) { 2493 for (const MachineOperand &MO : MRI->def_operands(reg)) 2494 if (MO.isTied()) 2495 return true; 2496 2497 return false; 2498 } 2499 2500 /// mayRecolorAllInterferences - Check if the virtual registers that 2501 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be 2502 /// recolored to free \p PhysReg. 2503 /// When true is returned, \p RecoloringCandidates has been augmented with all 2504 /// the live intervals that need to be recolored in order to free \p PhysReg 2505 /// for \p VirtReg. 2506 /// \p FixedRegisters contains all the virtual registers that cannot be 2507 /// recolored. 2508 bool 2509 RAGreedy::mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg, 2510 SmallLISet &RecoloringCandidates, 2511 const SmallVirtRegSet &FixedRegisters) { 2512 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg()); 2513 2514 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 2515 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 2516 // If there is LastChanceRecoloringMaxInterference or more interferences, 2517 // chances are one would not be recolorable. 2518 if (Q.collectInterferingVRegs(LastChanceRecoloringMaxInterference) >= 2519 LastChanceRecoloringMaxInterference && !ExhaustiveSearch) { 2520 LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n"); 2521 CutOffInfo |= CO_Interf; 2522 return false; 2523 } 2524 for (LiveInterval *Intf : reverse(Q.interferingVRegs())) { 2525 // If Intf is done and sit on the same register class as VirtReg, 2526 // it would not be recolorable as it is in the same state as VirtReg. 2527 // However, if VirtReg has tied defs and Intf doesn't, then 2528 // there is still a point in examining if it can be recolorable. 2529 if (((getStage(*Intf) == RS_Done && 2530 MRI->getRegClass(Intf->reg()) == CurRC) && 2531 !(hasTiedDef(MRI, VirtReg.reg()) && 2532 !hasTiedDef(MRI, Intf->reg()))) || 2533 FixedRegisters.count(Intf->reg())) { 2534 LLVM_DEBUG( 2535 dbgs() << "Early abort: the interference is not recolorable.\n"); 2536 return false; 2537 } 2538 RecoloringCandidates.insert(Intf); 2539 } 2540 } 2541 return true; 2542 } 2543 2544 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring 2545 /// its interferences. 2546 /// Last chance recoloring chooses a color for \p VirtReg and recolors every 2547 /// virtual register that was using it. The recoloring process may recursively 2548 /// use the last chance recoloring. Therefore, when a virtual register has been 2549 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot 2550 /// be last-chance-recolored again during this recoloring "session". 2551 /// E.g., 2552 /// Let 2553 /// vA can use {R1, R2 } 2554 /// vB can use { R2, R3} 2555 /// vC can use {R1 } 2556 /// Where vA, vB, and vC cannot be split anymore (they are reloads for 2557 /// instance) and they all interfere. 2558 /// 2559 /// vA is assigned R1 2560 /// vB is assigned R2 2561 /// vC tries to evict vA but vA is already done. 2562 /// Regular register allocation fails. 2563 /// 2564 /// Last chance recoloring kicks in: 2565 /// vC does as if vA was evicted => vC uses R1. 2566 /// vC is marked as fixed. 2567 /// vA needs to find a color. 2568 /// None are available. 2569 /// vA cannot evict vC: vC is a fixed virtual register now. 2570 /// vA does as if vB was evicted => vA uses R2. 2571 /// vB needs to find a color. 2572 /// R3 is available. 2573 /// Recoloring => vC = R1, vA = R2, vB = R3 2574 /// 2575 /// \p Order defines the preferred allocation order for \p VirtReg. 2576 /// \p NewRegs will contain any new virtual register that have been created 2577 /// (split, spill) during the process and that must be assigned. 2578 /// \p FixedRegisters contains all the virtual registers that cannot be 2579 /// recolored. 2580 /// \p Depth gives the current depth of the last chance recoloring. 2581 /// \return a physical register that can be used for VirtReg or ~0u if none 2582 /// exists. 2583 unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg, 2584 AllocationOrder &Order, 2585 SmallVectorImpl<Register> &NewVRegs, 2586 SmallVirtRegSet &FixedRegisters, 2587 unsigned Depth) { 2588 if (!TRI->shouldUseLastChanceRecoloringForVirtReg(*MF, VirtReg)) 2589 return ~0u; 2590 2591 LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n'); 2592 // Ranges must be Done. 2593 assert((getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) && 2594 "Last chance recoloring should really be last chance"); 2595 // Set the max depth to LastChanceRecoloringMaxDepth. 2596 // We may want to reconsider that if we end up with a too large search space 2597 // for target with hundreds of registers. 2598 // Indeed, in that case we may want to cut the search space earlier. 2599 if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) { 2600 LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n"); 2601 CutOffInfo |= CO_Depth; 2602 return ~0u; 2603 } 2604 2605 // Set of Live intervals that will need to be recolored. 2606 SmallLISet RecoloringCandidates; 2607 // Record the original mapping virtual register to physical register in case 2608 // the recoloring fails. 2609 DenseMap<Register, Register> VirtRegToPhysReg; 2610 // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in 2611 // this recoloring "session". 2612 assert(!FixedRegisters.count(VirtReg.reg())); 2613 FixedRegisters.insert(VirtReg.reg()); 2614 SmallVector<Register, 4> CurrentNewVRegs; 2615 2616 Order.rewind(); 2617 while (Register PhysReg = Order.next()) { 2618 LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg << " to " 2619 << printReg(PhysReg, TRI) << '\n'); 2620 RecoloringCandidates.clear(); 2621 VirtRegToPhysReg.clear(); 2622 CurrentNewVRegs.clear(); 2623 2624 // It is only possible to recolor virtual register interference. 2625 if (Matrix->checkInterference(VirtReg, PhysReg) > 2626 LiveRegMatrix::IK_VirtReg) { 2627 LLVM_DEBUG( 2628 dbgs() << "Some interferences are not with virtual registers.\n"); 2629 2630 continue; 2631 } 2632 2633 // Early give up on this PhysReg if it is obvious we cannot recolor all 2634 // the interferences. 2635 if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates, 2636 FixedRegisters)) { 2637 LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n"); 2638 continue; 2639 } 2640 2641 // RecoloringCandidates contains all the virtual registers that interfer 2642 // with VirtReg on PhysReg (or one of its aliases). 2643 // Enqueue them for recoloring and perform the actual recoloring. 2644 PQueue RecoloringQueue; 2645 for (SmallLISet::iterator It = RecoloringCandidates.begin(), 2646 EndIt = RecoloringCandidates.end(); 2647 It != EndIt; ++It) { 2648 Register ItVirtReg = (*It)->reg(); 2649 enqueue(RecoloringQueue, *It); 2650 assert(VRM->hasPhys(ItVirtReg) && 2651 "Interferences are supposed to be with allocated variables"); 2652 2653 // Record the current allocation. 2654 VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg); 2655 // unset the related struct. 2656 Matrix->unassign(**It); 2657 } 2658 2659 // Do as if VirtReg was assigned to PhysReg so that the underlying 2660 // recoloring has the right information about the interferes and 2661 // available colors. 2662 Matrix->assign(VirtReg, PhysReg); 2663 2664 // Save the current recoloring state. 2665 // If we cannot recolor all the interferences, we will have to start again 2666 // at this point for the next physical register. 2667 SmallVirtRegSet SaveFixedRegisters(FixedRegisters); 2668 if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs, 2669 FixedRegisters, Depth)) { 2670 // Push the queued vregs into the main queue. 2671 for (Register NewVReg : CurrentNewVRegs) 2672 NewVRegs.push_back(NewVReg); 2673 // Do not mess up with the global assignment process. 2674 // I.e., VirtReg must be unassigned. 2675 Matrix->unassign(VirtReg); 2676 return PhysReg; 2677 } 2678 2679 LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to " 2680 << printReg(PhysReg, TRI) << '\n'); 2681 2682 // The recoloring attempt failed, undo the changes. 2683 FixedRegisters = SaveFixedRegisters; 2684 Matrix->unassign(VirtReg); 2685 2686 // For a newly created vreg which is also in RecoloringCandidates, 2687 // don't add it to NewVRegs because its physical register will be restored 2688 // below. Other vregs in CurrentNewVRegs are created by calling 2689 // selectOrSplit and should be added into NewVRegs. 2690 for (SmallVectorImpl<Register>::iterator Next = CurrentNewVRegs.begin(), 2691 End = CurrentNewVRegs.end(); 2692 Next != End; ++Next) { 2693 if (RecoloringCandidates.count(&LIS->getInterval(*Next))) 2694 continue; 2695 NewVRegs.push_back(*Next); 2696 } 2697 2698 for (SmallLISet::iterator It = RecoloringCandidates.begin(), 2699 EndIt = RecoloringCandidates.end(); 2700 It != EndIt; ++It) { 2701 Register ItVirtReg = (*It)->reg(); 2702 if (VRM->hasPhys(ItVirtReg)) 2703 Matrix->unassign(**It); 2704 Register ItPhysReg = VirtRegToPhysReg[ItVirtReg]; 2705 Matrix->assign(**It, ItPhysReg); 2706 } 2707 } 2708 2709 // Last chance recoloring did not worked either, give up. 2710 return ~0u; 2711 } 2712 2713 /// tryRecoloringCandidates - Try to assign a new color to every register 2714 /// in \RecoloringQueue. 2715 /// \p NewRegs will contain any new virtual register created during the 2716 /// recoloring process. 2717 /// \p FixedRegisters[in/out] contains all the registers that have been 2718 /// recolored. 2719 /// \return true if all virtual registers in RecoloringQueue were successfully 2720 /// recolored, false otherwise. 2721 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue, 2722 SmallVectorImpl<Register> &NewVRegs, 2723 SmallVirtRegSet &FixedRegisters, 2724 unsigned Depth) { 2725 while (!RecoloringQueue.empty()) { 2726 LiveInterval *LI = dequeue(RecoloringQueue); 2727 LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI << '\n'); 2728 Register PhysReg = selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, 2729 Depth + 1); 2730 // When splitting happens, the live-range may actually be empty. 2731 // In that case, this is okay to continue the recoloring even 2732 // if we did not find an alternative color for it. Indeed, 2733 // there will not be anything to color for LI in the end. 2734 if (PhysReg == ~0u || (!PhysReg && !LI->empty())) 2735 return false; 2736 2737 if (!PhysReg) { 2738 assert(LI->empty() && "Only empty live-range do not require a register"); 2739 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI 2740 << " succeeded. Empty LI.\n"); 2741 continue; 2742 } 2743 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI 2744 << " succeeded with: " << printReg(PhysReg, TRI) << '\n'); 2745 2746 Matrix->assign(*LI, PhysReg); 2747 FixedRegisters.insert(LI->reg()); 2748 } 2749 return true; 2750 } 2751 2752 //===----------------------------------------------------------------------===// 2753 // Main Entry Point 2754 //===----------------------------------------------------------------------===// 2755 2756 Register RAGreedy::selectOrSplit(LiveInterval &VirtReg, 2757 SmallVectorImpl<Register> &NewVRegs) { 2758 CutOffInfo = CO_None; 2759 LLVMContext &Ctx = MF->getFunction().getContext(); 2760 SmallVirtRegSet FixedRegisters; 2761 Register Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters); 2762 if (Reg == ~0U && (CutOffInfo != CO_None)) { 2763 uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf); 2764 if (CutOffEncountered == CO_Depth) 2765 Ctx.emitError("register allocation failed: maximum depth for recoloring " 2766 "reached. Use -fexhaustive-register-search to skip " 2767 "cutoffs"); 2768 else if (CutOffEncountered == CO_Interf) 2769 Ctx.emitError("register allocation failed: maximum interference for " 2770 "recoloring reached. Use -fexhaustive-register-search " 2771 "to skip cutoffs"); 2772 else if (CutOffEncountered == (CO_Depth | CO_Interf)) 2773 Ctx.emitError("register allocation failed: maximum interference and " 2774 "depth for recoloring reached. Use " 2775 "-fexhaustive-register-search to skip cutoffs"); 2776 } 2777 return Reg; 2778 } 2779 2780 /// Using a CSR for the first time has a cost because it causes push|pop 2781 /// to be added to prologue|epilogue. Splitting a cold section of the live 2782 /// range can have lower cost than using the CSR for the first time; 2783 /// Spilling a live range in the cold path can have lower cost than using 2784 /// the CSR for the first time. Returns the physical register if we decide 2785 /// to use the CSR; otherwise return 0. 2786 unsigned RAGreedy::tryAssignCSRFirstTime(LiveInterval &VirtReg, 2787 AllocationOrder &Order, 2788 Register PhysReg, 2789 unsigned &CostPerUseLimit, 2790 SmallVectorImpl<Register> &NewVRegs) { 2791 if (getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) { 2792 // We choose spill over using the CSR for the first time if the spill cost 2793 // is lower than CSRCost. 2794 SA->analyze(&VirtReg); 2795 if (calcSpillCost() >= CSRCost) 2796 return PhysReg; 2797 2798 // We are going to spill, set CostPerUseLimit to 1 to make sure that 2799 // we will not use a callee-saved register in tryEvict. 2800 CostPerUseLimit = 1; 2801 return 0; 2802 } 2803 if (getStage(VirtReg) < RS_Split) { 2804 // We choose pre-splitting over using the CSR for the first time if 2805 // the cost of splitting is lower than CSRCost. 2806 SA->analyze(&VirtReg); 2807 unsigned NumCands = 0; 2808 BlockFrequency BestCost = CSRCost; // Don't modify CSRCost. 2809 unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost, 2810 NumCands, true /*IgnoreCSR*/); 2811 if (BestCand == NoCand) 2812 // Use the CSR if we can't find a region split below CSRCost. 2813 return PhysReg; 2814 2815 // Perform the actual pre-splitting. 2816 doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs); 2817 return 0; 2818 } 2819 return PhysReg; 2820 } 2821 2822 void RAGreedy::aboutToRemoveInterval(LiveInterval &LI) { 2823 // Do not keep invalid information around. 2824 SetOfBrokenHints.remove(&LI); 2825 } 2826 2827 void RAGreedy::initializeCSRCost() { 2828 // We use the larger one out of the command-line option and the value report 2829 // by TRI. 2830 CSRCost = BlockFrequency( 2831 std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost())); 2832 if (!CSRCost.getFrequency()) 2833 return; 2834 2835 // Raw cost is relative to Entry == 2^14; scale it appropriately. 2836 uint64_t ActualEntry = MBFI->getEntryFreq(); 2837 if (!ActualEntry) { 2838 CSRCost = 0; 2839 return; 2840 } 2841 uint64_t FixedEntry = 1 << 14; 2842 if (ActualEntry < FixedEntry) 2843 CSRCost *= BranchProbability(ActualEntry, FixedEntry); 2844 else if (ActualEntry <= UINT32_MAX) 2845 // Invert the fraction and divide. 2846 CSRCost /= BranchProbability(FixedEntry, ActualEntry); 2847 else 2848 // Can't use BranchProbability in general, since it takes 32-bit numbers. 2849 CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry); 2850 } 2851 2852 /// Collect the hint info for \p Reg. 2853 /// The results are stored into \p Out. 2854 /// \p Out is not cleared before being populated. 2855 void RAGreedy::collectHintInfo(unsigned Reg, HintsInfo &Out) { 2856 for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) { 2857 if (!Instr.isFullCopy()) 2858 continue; 2859 // Look for the other end of the copy. 2860 Register OtherReg = Instr.getOperand(0).getReg(); 2861 if (OtherReg == Reg) { 2862 OtherReg = Instr.getOperand(1).getReg(); 2863 if (OtherReg == Reg) 2864 continue; 2865 } 2866 // Get the current assignment. 2867 Register OtherPhysReg = Register::isPhysicalRegister(OtherReg) 2868 ? OtherReg 2869 : VRM->getPhys(OtherReg); 2870 // Push the collected information. 2871 Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg, 2872 OtherPhysReg)); 2873 } 2874 } 2875 2876 /// Using the given \p List, compute the cost of the broken hints if 2877 /// \p PhysReg was used. 2878 /// \return The cost of \p List for \p PhysReg. 2879 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List, 2880 unsigned PhysReg) { 2881 BlockFrequency Cost = 0; 2882 for (const HintInfo &Info : List) { 2883 if (Info.PhysReg != PhysReg) 2884 Cost += Info.Freq; 2885 } 2886 return Cost; 2887 } 2888 2889 /// Using the register assigned to \p VirtReg, try to recolor 2890 /// all the live ranges that are copy-related with \p VirtReg. 2891 /// The recoloring is then propagated to all the live-ranges that have 2892 /// been recolored and so on, until no more copies can be coalesced or 2893 /// it is not profitable. 2894 /// For a given live range, profitability is determined by the sum of the 2895 /// frequencies of the non-identity copies it would introduce with the old 2896 /// and new register. 2897 void RAGreedy::tryHintRecoloring(LiveInterval &VirtReg) { 2898 // We have a broken hint, check if it is possible to fix it by 2899 // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted 2900 // some register and PhysReg may be available for the other live-ranges. 2901 SmallSet<unsigned, 4> Visited; 2902 SmallVector<unsigned, 2> RecoloringCandidates; 2903 HintsInfo Info; 2904 unsigned Reg = VirtReg.reg(); 2905 Register PhysReg = VRM->getPhys(Reg); 2906 // Start the recoloring algorithm from the input live-interval, then 2907 // it will propagate to the ones that are copy-related with it. 2908 Visited.insert(Reg); 2909 RecoloringCandidates.push_back(Reg); 2910 2911 LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg, TRI) 2912 << '(' << printReg(PhysReg, TRI) << ")\n"); 2913 2914 do { 2915 Reg = RecoloringCandidates.pop_back_val(); 2916 2917 // We cannot recolor physical register. 2918 if (Register::isPhysicalRegister(Reg)) 2919 continue; 2920 2921 assert(VRM->hasPhys(Reg) && "We have unallocated variable!!"); 2922 2923 // Get the live interval mapped with this virtual register to be able 2924 // to check for the interference with the new color. 2925 LiveInterval &LI = LIS->getInterval(Reg); 2926 Register CurrPhys = VRM->getPhys(Reg); 2927 // Check that the new color matches the register class constraints and 2928 // that it is free for this live range. 2929 if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) || 2930 Matrix->checkInterference(LI, PhysReg))) 2931 continue; 2932 2933 LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << '(' << printReg(CurrPhys, TRI) 2934 << ") is recolorable.\n"); 2935 2936 // Gather the hint info. 2937 Info.clear(); 2938 collectHintInfo(Reg, Info); 2939 // Check if recoloring the live-range will increase the cost of the 2940 // non-identity copies. 2941 if (CurrPhys != PhysReg) { 2942 LLVM_DEBUG(dbgs() << "Checking profitability:\n"); 2943 BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys); 2944 BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg); 2945 LLVM_DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency() 2946 << "\nNew Cost: " << NewCopiesCost.getFrequency() 2947 << '\n'); 2948 if (OldCopiesCost < NewCopiesCost) { 2949 LLVM_DEBUG(dbgs() << "=> Not profitable.\n"); 2950 continue; 2951 } 2952 // At this point, the cost is either cheaper or equal. If it is 2953 // equal, we consider this is profitable because it may expose 2954 // more recoloring opportunities. 2955 LLVM_DEBUG(dbgs() << "=> Profitable.\n"); 2956 // Recolor the live-range. 2957 Matrix->unassign(LI); 2958 Matrix->assign(LI, PhysReg); 2959 } 2960 // Push all copy-related live-ranges to keep reconciling the broken 2961 // hints. 2962 for (const HintInfo &HI : Info) { 2963 if (Visited.insert(HI.Reg).second) 2964 RecoloringCandidates.push_back(HI.Reg); 2965 } 2966 } while (!RecoloringCandidates.empty()); 2967 } 2968 2969 /// Try to recolor broken hints. 2970 /// Broken hints may be repaired by recoloring when an evicted variable 2971 /// freed up a register for a larger live-range. 2972 /// Consider the following example: 2973 /// BB1: 2974 /// a = 2975 /// b = 2976 /// BB2: 2977 /// ... 2978 /// = b 2979 /// = a 2980 /// Let us assume b gets split: 2981 /// BB1: 2982 /// a = 2983 /// b = 2984 /// BB2: 2985 /// c = b 2986 /// ... 2987 /// d = c 2988 /// = d 2989 /// = a 2990 /// Because of how the allocation work, b, c, and d may be assigned different 2991 /// colors. Now, if a gets evicted later: 2992 /// BB1: 2993 /// a = 2994 /// st a, SpillSlot 2995 /// b = 2996 /// BB2: 2997 /// c = b 2998 /// ... 2999 /// d = c 3000 /// = d 3001 /// e = ld SpillSlot 3002 /// = e 3003 /// This is likely that we can assign the same register for b, c, and d, 3004 /// getting rid of 2 copies. 3005 void RAGreedy::tryHintsRecoloring() { 3006 for (LiveInterval *LI : SetOfBrokenHints) { 3007 assert(Register::isVirtualRegister(LI->reg()) && 3008 "Recoloring is possible only for virtual registers"); 3009 // Some dead defs may be around (e.g., because of debug uses). 3010 // Ignore those. 3011 if (!VRM->hasPhys(LI->reg())) 3012 continue; 3013 tryHintRecoloring(*LI); 3014 } 3015 } 3016 3017 Register RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg, 3018 SmallVectorImpl<Register> &NewVRegs, 3019 SmallVirtRegSet &FixedRegisters, 3020 unsigned Depth) { 3021 unsigned CostPerUseLimit = ~0u; 3022 // First try assigning a free register. 3023 AllocationOrder Order(VirtReg.reg(), *VRM, RegClassInfo, Matrix); 3024 if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs, FixedRegisters)) { 3025 // If VirtReg got an assignment, the eviction info is no longre relevant. 3026 LastEvicted.clearEvicteeInfo(VirtReg.reg()); 3027 // When NewVRegs is not empty, we may have made decisions such as evicting 3028 // a virtual register, go with the earlier decisions and use the physical 3029 // register. 3030 if (CSRCost.getFrequency() && isUnusedCalleeSavedReg(PhysReg) && 3031 NewVRegs.empty()) { 3032 Register CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg, 3033 CostPerUseLimit, NewVRegs); 3034 if (CSRReg || !NewVRegs.empty()) 3035 // Return now if we decide to use a CSR or create new vregs due to 3036 // pre-splitting. 3037 return CSRReg; 3038 } else 3039 return PhysReg; 3040 } 3041 3042 LiveRangeStage Stage = getStage(VirtReg); 3043 LLVM_DEBUG(dbgs() << StageName[Stage] << " Cascade " 3044 << ExtraRegInfo[VirtReg.reg()].Cascade << '\n'); 3045 3046 // Try to evict a less worthy live range, but only for ranges from the primary 3047 // queue. The RS_Split ranges already failed to do this, and they should not 3048 // get a second chance until they have been split. 3049 if (Stage != RS_Split) 3050 if (Register PhysReg = 3051 tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit, 3052 FixedRegisters)) { 3053 Register Hint = MRI->getSimpleHint(VirtReg.reg()); 3054 // If VirtReg has a hint and that hint is broken record this 3055 // virtual register as a recoloring candidate for broken hint. 3056 // Indeed, since we evicted a variable in its neighborhood it is 3057 // likely we can at least partially recolor some of the 3058 // copy-related live-ranges. 3059 if (Hint && Hint != PhysReg) 3060 SetOfBrokenHints.insert(&VirtReg); 3061 // If VirtReg eviction someone, the eviction info for it as an evictee is 3062 // no longre relevant. 3063 LastEvicted.clearEvicteeInfo(VirtReg.reg()); 3064 return PhysReg; 3065 } 3066 3067 assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs"); 3068 3069 // The first time we see a live range, don't try to split or spill. 3070 // Wait until the second time, when all smaller ranges have been allocated. 3071 // This gives a better picture of the interference to split around. 3072 if (Stage < RS_Split) { 3073 setStage(VirtReg, RS_Split); 3074 LLVM_DEBUG(dbgs() << "wait for second round\n"); 3075 NewVRegs.push_back(VirtReg.reg()); 3076 return 0; 3077 } 3078 3079 if (Stage < RS_Spill) { 3080 // Try splitting VirtReg or interferences. 3081 unsigned NewVRegSizeBefore = NewVRegs.size(); 3082 Register PhysReg = trySplit(VirtReg, Order, NewVRegs, FixedRegisters); 3083 if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore)) { 3084 // If VirtReg got split, the eviction info is no longer relevant. 3085 LastEvicted.clearEvicteeInfo(VirtReg.reg()); 3086 return PhysReg; 3087 } 3088 } 3089 3090 // If we couldn't allocate a register from spilling, there is probably some 3091 // invalid inline assembly. The base class will report it. 3092 if (Stage >= RS_Done || !VirtReg.isSpillable()) 3093 return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters, 3094 Depth); 3095 3096 // Finally spill VirtReg itself. 3097 if ((EnableDeferredSpilling || 3098 TRI->shouldUseDeferredSpillingForVirtReg(*MF, VirtReg)) && 3099 getStage(VirtReg) < RS_Memory) { 3100 // TODO: This is experimental and in particular, we do not model 3101 // the live range splitting done by spilling correctly. 3102 // We would need a deep integration with the spiller to do the 3103 // right thing here. Anyway, that is still good for early testing. 3104 setStage(VirtReg, RS_Memory); 3105 LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n"); 3106 NewVRegs.push_back(VirtReg.reg()); 3107 } else { 3108 NamedRegionTimer T("spill", "Spiller", TimerGroupName, 3109 TimerGroupDescription, TimePassesIsEnabled); 3110 LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 3111 spiller().spill(LRE); 3112 setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done); 3113 3114 // Tell LiveDebugVariables about the new ranges. Ranges not being covered by 3115 // the new regs are kept in LDV (still mapping to the old register), until 3116 // we rewrite spilled locations in LDV at a later stage. 3117 DebugVars->splitRegister(VirtReg.reg(), LRE.regs(), *LIS); 3118 3119 if (VerifyEnabled) 3120 MF->verify(this, "After spilling"); 3121 } 3122 3123 // The live virtual register requesting allocation was spilled, so tell 3124 // the caller not to allocate anything during this round. 3125 return 0; 3126 } 3127 3128 void RAGreedy::reportNumberOfSplillsReloads(MachineLoop *L, unsigned &Reloads, 3129 unsigned &FoldedReloads, 3130 unsigned &Spills, 3131 unsigned &FoldedSpills) { 3132 Reloads = 0; 3133 FoldedReloads = 0; 3134 Spills = 0; 3135 FoldedSpills = 0; 3136 3137 // Sum up the spill and reloads in subloops. 3138 for (MachineLoop *SubLoop : *L) { 3139 unsigned SubReloads; 3140 unsigned SubFoldedReloads; 3141 unsigned SubSpills; 3142 unsigned SubFoldedSpills; 3143 3144 reportNumberOfSplillsReloads(SubLoop, SubReloads, SubFoldedReloads, 3145 SubSpills, SubFoldedSpills); 3146 Reloads += SubReloads; 3147 FoldedReloads += SubFoldedReloads; 3148 Spills += SubSpills; 3149 FoldedSpills += SubFoldedSpills; 3150 } 3151 3152 const MachineFrameInfo &MFI = MF->getFrameInfo(); 3153 int FI; 3154 3155 for (MachineBasicBlock *MBB : L->getBlocks()) 3156 // Handle blocks that were not included in subloops. 3157 if (Loops->getLoopFor(MBB) == L) 3158 for (MachineInstr &MI : *MBB) { 3159 SmallVector<const MachineMemOperand *, 2> Accesses; 3160 auto isSpillSlotAccess = [&MFI](const MachineMemOperand *A) { 3161 return MFI.isSpillSlotObjectIndex( 3162 cast<FixedStackPseudoSourceValue>(A->getPseudoValue()) 3163 ->getFrameIndex()); 3164 }; 3165 3166 if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) 3167 ++Reloads; 3168 else if (TII->hasLoadFromStackSlot(MI, Accesses) && 3169 llvm::any_of(Accesses, isSpillSlotAccess)) 3170 ++FoldedReloads; 3171 else if (TII->isStoreToStackSlot(MI, FI) && 3172 MFI.isSpillSlotObjectIndex(FI)) 3173 ++Spills; 3174 else if (TII->hasStoreToStackSlot(MI, Accesses) && 3175 llvm::any_of(Accesses, isSpillSlotAccess)) 3176 ++FoldedSpills; 3177 } 3178 3179 if (Reloads || FoldedReloads || Spills || FoldedSpills) { 3180 using namespace ore; 3181 3182 ORE->emit([&]() { 3183 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReload", 3184 L->getStartLoc(), L->getHeader()); 3185 if (Spills) 3186 R << NV("NumSpills", Spills) << " spills "; 3187 if (FoldedSpills) 3188 R << NV("NumFoldedSpills", FoldedSpills) << " folded spills "; 3189 if (Reloads) 3190 R << NV("NumReloads", Reloads) << " reloads "; 3191 if (FoldedReloads) 3192 R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads "; 3193 R << "generated in loop"; 3194 return R; 3195 }); 3196 } 3197 } 3198 3199 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) { 3200 LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n" 3201 << "********** Function: " << mf.getName() << '\n'); 3202 3203 MF = &mf; 3204 TRI = MF->getSubtarget().getRegisterInfo(); 3205 TII = MF->getSubtarget().getInstrInfo(); 3206 RCI.runOnMachineFunction(mf); 3207 3208 EnableLocalReassign = EnableLocalReassignment || 3209 MF->getSubtarget().enableRALocalReassignment( 3210 MF->getTarget().getOptLevel()); 3211 3212 EnableAdvancedRASplitCost = 3213 ConsiderLocalIntervalCost.getNumOccurrences() 3214 ? ConsiderLocalIntervalCost 3215 : MF->getSubtarget().enableAdvancedRASplitCost(); 3216 3217 if (VerifyEnabled) 3218 MF->verify(this, "Before greedy register allocator"); 3219 3220 RegAllocBase::init(getAnalysis<VirtRegMap>(), 3221 getAnalysis<LiveIntervals>(), 3222 getAnalysis<LiveRegMatrix>()); 3223 Indexes = &getAnalysis<SlotIndexes>(); 3224 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 3225 DomTree = &getAnalysis<MachineDominatorTree>(); 3226 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 3227 SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM)); 3228 Loops = &getAnalysis<MachineLoopInfo>(); 3229 Bundles = &getAnalysis<EdgeBundles>(); 3230 SpillPlacer = &getAnalysis<SpillPlacement>(); 3231 DebugVars = &getAnalysis<LiveDebugVariables>(); 3232 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3233 3234 initializeCSRCost(); 3235 3236 calculateSpillWeightsAndHints(*LIS, mf, VRM, *Loops, *MBFI); 3237 3238 LLVM_DEBUG(LIS->dump()); 3239 3240 SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops)); 3241 SE.reset(new SplitEditor(*SA, *AA, *LIS, *VRM, *DomTree, *MBFI)); 3242 ExtraRegInfo.clear(); 3243 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 3244 NextCascade = 1; 3245 IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI); 3246 GlobalCand.resize(32); // This will grow as needed. 3247 SetOfBrokenHints.clear(); 3248 LastEvicted.clear(); 3249 3250 allocatePhysRegs(); 3251 tryHintsRecoloring(); 3252 postOptimization(); 3253 reportNumberOfSplillsReloads(); 3254 3255 releaseMemory(); 3256 return true; 3257 } 3258