1 //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the RAGreedy function pass for register allocation in 10 // optimized builds. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "AllocationOrder.h" 15 #include "InterferenceCache.h" 16 #include "LiveDebugVariables.h" 17 #include "RegAllocBase.h" 18 #include "SpillPlacement.h" 19 #include "SplitKit.h" 20 #include "llvm/ADT/ArrayRef.h" 21 #include "llvm/ADT/BitVector.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/IndexedMap.h" 24 #include "llvm/ADT/MapVector.h" 25 #include "llvm/ADT/SetVector.h" 26 #include "llvm/ADT/SmallPtrSet.h" 27 #include "llvm/ADT/SmallSet.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/ADT/StringRef.h" 31 #include "llvm/Analysis/AliasAnalysis.h" 32 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 33 #include "llvm/CodeGen/CalcSpillWeights.h" 34 #include "llvm/CodeGen/EdgeBundles.h" 35 #include "llvm/CodeGen/LiveInterval.h" 36 #include "llvm/CodeGen/LiveIntervalUnion.h" 37 #include "llvm/CodeGen/LiveIntervals.h" 38 #include "llvm/CodeGen/LiveRangeEdit.h" 39 #include "llvm/CodeGen/LiveRegMatrix.h" 40 #include "llvm/CodeGen/LiveStacks.h" 41 #include "llvm/CodeGen/MachineBasicBlock.h" 42 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 43 #include "llvm/CodeGen/MachineDominators.h" 44 #include "llvm/CodeGen/MachineFrameInfo.h" 45 #include "llvm/CodeGen/MachineFunction.h" 46 #include "llvm/CodeGen/MachineFunctionPass.h" 47 #include "llvm/CodeGen/MachineInstr.h" 48 #include "llvm/CodeGen/MachineLoopInfo.h" 49 #include "llvm/CodeGen/MachineOperand.h" 50 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 51 #include "llvm/CodeGen/MachineRegisterInfo.h" 52 #include "llvm/CodeGen/RegAllocRegistry.h" 53 #include "llvm/CodeGen/RegisterClassInfo.h" 54 #include "llvm/CodeGen/SlotIndexes.h" 55 #include "llvm/CodeGen/Spiller.h" 56 #include "llvm/CodeGen/TargetInstrInfo.h" 57 #include "llvm/CodeGen/TargetRegisterInfo.h" 58 #include "llvm/CodeGen/TargetSubtargetInfo.h" 59 #include "llvm/CodeGen/VirtRegMap.h" 60 #include "llvm/IR/Function.h" 61 #include "llvm/IR/LLVMContext.h" 62 #include "llvm/MC/MCRegisterInfo.h" 63 #include "llvm/Pass.h" 64 #include "llvm/Support/BlockFrequency.h" 65 #include "llvm/Support/BranchProbability.h" 66 #include "llvm/Support/CommandLine.h" 67 #include "llvm/Support/Debug.h" 68 #include "llvm/Support/MathExtras.h" 69 #include "llvm/Support/Timer.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include "llvm/Target/TargetMachine.h" 72 #include "llvm/IR/DebugInfoMetadata.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cstdint> 76 #include <memory> 77 #include <queue> 78 #include <tuple> 79 #include <utility> 80 81 using namespace llvm; 82 83 #define DEBUG_TYPE "regalloc" 84 85 STATISTIC(NumGlobalSplits, "Number of split global live ranges"); 86 STATISTIC(NumLocalSplits, "Number of split local live ranges"); 87 STATISTIC(NumEvicted, "Number of interferences evicted"); 88 89 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode( 90 "split-spill-mode", cl::Hidden, 91 cl::desc("Spill mode for splitting live ranges"), 92 cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"), 93 clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"), 94 clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")), 95 cl::init(SplitEditor::SM_Speed)); 96 97 static cl::opt<unsigned> 98 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden, 99 cl::desc("Last chance recoloring max depth"), 100 cl::init(5)); 101 102 static cl::opt<unsigned> LastChanceRecoloringMaxInterference( 103 "lcr-max-interf", cl::Hidden, 104 cl::desc("Last chance recoloring maximum number of considered" 105 " interference at a time"), 106 cl::init(8)); 107 108 static cl::opt<bool> ExhaustiveSearch( 109 "exhaustive-register-search", cl::NotHidden, 110 cl::desc("Exhaustive Search for registers bypassing the depth " 111 "and interference cutoffs of last chance recoloring"), 112 cl::Hidden); 113 114 static cl::opt<bool> EnableLocalReassignment( 115 "enable-local-reassign", cl::Hidden, 116 cl::desc("Local reassignment can yield better allocation decisions, but " 117 "may be compile time intensive"), 118 cl::init(false)); 119 120 static cl::opt<bool> EnableDeferredSpilling( 121 "enable-deferred-spilling", cl::Hidden, 122 cl::desc("Instead of spilling a variable right away, defer the actual " 123 "code insertion to the end of the allocation. That way the " 124 "allocator might still find a suitable coloring for this " 125 "variable because of other evicted variables."), 126 cl::init(false)); 127 128 // FIXME: Find a good default for this flag and remove the flag. 129 static cl::opt<unsigned> 130 CSRFirstTimeCost("regalloc-csr-first-time-cost", 131 cl::desc("Cost for first time use of callee-saved register."), 132 cl::init(0), cl::Hidden); 133 134 static cl::opt<bool> ConsiderLocalIntervalCost( 135 "consider-local-interval-cost", cl::Hidden, 136 cl::desc("Consider the cost of local intervals created by a split " 137 "candidate when choosing the best split candidate."), 138 cl::init(false)); 139 140 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator", 141 createGreedyRegisterAllocator); 142 143 namespace { 144 145 class RAGreedy : public MachineFunctionPass, 146 public RegAllocBase, 147 private LiveRangeEdit::Delegate { 148 // Convenient shortcuts. 149 using PQueue = std::priority_queue<std::pair<unsigned, unsigned>>; 150 using SmallLISet = SmallPtrSet<LiveInterval *, 4>; 151 using SmallVirtRegSet = SmallSet<Register, 16>; 152 153 // context 154 MachineFunction *MF; 155 156 // Shortcuts to some useful interface. 157 const TargetInstrInfo *TII; 158 const TargetRegisterInfo *TRI; 159 RegisterClassInfo RCI; 160 161 // analyses 162 SlotIndexes *Indexes; 163 MachineBlockFrequencyInfo *MBFI; 164 MachineDominatorTree *DomTree; 165 MachineLoopInfo *Loops; 166 MachineOptimizationRemarkEmitter *ORE; 167 EdgeBundles *Bundles; 168 SpillPlacement *SpillPlacer; 169 LiveDebugVariables *DebugVars; 170 AliasAnalysis *AA; 171 172 // state 173 std::unique_ptr<Spiller> SpillerInstance; 174 PQueue Queue; 175 unsigned NextCascade; 176 std::unique_ptr<VirtRegAuxInfo> VRAI; 177 178 // Live ranges pass through a number of stages as we try to allocate them. 179 // Some of the stages may also create new live ranges: 180 // 181 // - Region splitting. 182 // - Per-block splitting. 183 // - Local splitting. 184 // - Spilling. 185 // 186 // Ranges produced by one of the stages skip the previous stages when they are 187 // dequeued. This improves performance because we can skip interference checks 188 // that are unlikely to give any results. It also guarantees that the live 189 // range splitting algorithm terminates, something that is otherwise hard to 190 // ensure. 191 enum LiveRangeStage { 192 /// Newly created live range that has never been queued. 193 RS_New, 194 195 /// Only attempt assignment and eviction. Then requeue as RS_Split. 196 RS_Assign, 197 198 /// Attempt live range splitting if assignment is impossible. 199 RS_Split, 200 201 /// Attempt more aggressive live range splitting that is guaranteed to make 202 /// progress. This is used for split products that may not be making 203 /// progress. 204 RS_Split2, 205 206 /// Live range will be spilled. No more splitting will be attempted. 207 RS_Spill, 208 209 210 /// Live range is in memory. Because of other evictions, it might get moved 211 /// in a register in the end. 212 RS_Memory, 213 214 /// There is nothing more we can do to this live range. Abort compilation 215 /// if it can't be assigned. 216 RS_Done 217 }; 218 219 // Enum CutOffStage to keep a track whether the register allocation failed 220 // because of the cutoffs encountered in last chance recoloring. 221 // Note: This is used as bitmask. New value should be next power of 2. 222 enum CutOffStage { 223 // No cutoffs encountered 224 CO_None = 0, 225 226 // lcr-max-depth cutoff encountered 227 CO_Depth = 1, 228 229 // lcr-max-interf cutoff encountered 230 CO_Interf = 2 231 }; 232 233 uint8_t CutOffInfo; 234 235 #ifndef NDEBUG 236 static const char *const StageName[]; 237 #endif 238 239 // RegInfo - Keep additional information about each live range. 240 struct RegInfo { 241 LiveRangeStage Stage = RS_New; 242 243 // Cascade - Eviction loop prevention. See canEvictInterference(). 244 unsigned Cascade = 0; 245 246 RegInfo() = default; 247 }; 248 249 IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo; 250 251 LiveRangeStage getStage(const LiveInterval &VirtReg) const { 252 return ExtraRegInfo[VirtReg.reg()].Stage; 253 } 254 255 void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) { 256 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 257 ExtraRegInfo[VirtReg.reg()].Stage = Stage; 258 } 259 260 template<typename Iterator> 261 void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) { 262 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 263 for (;Begin != End; ++Begin) { 264 Register Reg = *Begin; 265 if (ExtraRegInfo[Reg].Stage == RS_New) 266 ExtraRegInfo[Reg].Stage = NewStage; 267 } 268 } 269 270 /// Cost of evicting interference. 271 struct EvictionCost { 272 unsigned BrokenHints = 0; ///< Total number of broken hints. 273 float MaxWeight = 0; ///< Maximum spill weight evicted. 274 275 EvictionCost() = default; 276 277 bool isMax() const { return BrokenHints == ~0u; } 278 279 void setMax() { BrokenHints = ~0u; } 280 281 void setBrokenHints(unsigned NHints) { BrokenHints = NHints; } 282 283 bool operator<(const EvictionCost &O) const { 284 return std::tie(BrokenHints, MaxWeight) < 285 std::tie(O.BrokenHints, O.MaxWeight); 286 } 287 }; 288 289 /// EvictionTrack - Keeps track of past evictions in order to optimize region 290 /// split decision. 291 class EvictionTrack { 292 293 public: 294 using EvictorInfo = 295 std::pair<Register /* evictor */, MCRegister /* physreg */>; 296 using EvicteeInfo = llvm::DenseMap<Register /* evictee */, EvictorInfo>; 297 298 private: 299 /// Each Vreg that has been evicted in the last stage of selectOrSplit will 300 /// be mapped to the evictor Vreg and the PhysReg it was evicted from. 301 EvicteeInfo Evictees; 302 303 public: 304 /// Clear all eviction information. 305 void clear() { Evictees.clear(); } 306 307 /// Clear eviction information for the given evictee Vreg. 308 /// E.g. when Vreg get's a new allocation, the old eviction info is no 309 /// longer relevant. 310 /// \param Evictee The evictee Vreg for whom we want to clear collected 311 /// eviction info. 312 void clearEvicteeInfo(Register Evictee) { Evictees.erase(Evictee); } 313 314 /// Track new eviction. 315 /// The Evictor vreg has evicted the Evictee vreg from Physreg. 316 /// \param PhysReg The physical register Evictee was evicted from. 317 /// \param Evictor The evictor Vreg that evicted Evictee. 318 /// \param Evictee The evictee Vreg. 319 void addEviction(MCRegister PhysReg, Register Evictor, Register Evictee) { 320 Evictees[Evictee].first = Evictor; 321 Evictees[Evictee].second = PhysReg; 322 } 323 324 /// Return the Evictor Vreg which evicted Evictee Vreg from PhysReg. 325 /// \param Evictee The evictee vreg. 326 /// \return The Evictor vreg which evicted Evictee vreg from PhysReg. 0 if 327 /// nobody has evicted Evictee from PhysReg. 328 EvictorInfo getEvictor(Register Evictee) { 329 if (Evictees.count(Evictee)) { 330 return Evictees[Evictee]; 331 } 332 333 return EvictorInfo(0, 0); 334 } 335 }; 336 337 // Keeps track of past evictions in order to optimize region split decision. 338 EvictionTrack LastEvicted; 339 340 // splitting state. 341 std::unique_ptr<SplitAnalysis> SA; 342 std::unique_ptr<SplitEditor> SE; 343 344 /// Cached per-block interference maps 345 InterferenceCache IntfCache; 346 347 /// All basic blocks where the current register has uses. 348 SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints; 349 350 /// Global live range splitting candidate info. 351 struct GlobalSplitCandidate { 352 // Register intended for assignment, or 0. 353 MCRegister PhysReg; 354 355 // SplitKit interval index for this candidate. 356 unsigned IntvIdx; 357 358 // Interference for PhysReg. 359 InterferenceCache::Cursor Intf; 360 361 // Bundles where this candidate should be live. 362 BitVector LiveBundles; 363 SmallVector<unsigned, 8> ActiveBlocks; 364 365 void reset(InterferenceCache &Cache, MCRegister Reg) { 366 PhysReg = Reg; 367 IntvIdx = 0; 368 Intf.setPhysReg(Cache, Reg); 369 LiveBundles.clear(); 370 ActiveBlocks.clear(); 371 } 372 373 // Set B[I] = C for every live bundle where B[I] was NoCand. 374 unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) { 375 unsigned Count = 0; 376 for (unsigned I : LiveBundles.set_bits()) 377 if (B[I] == NoCand) { 378 B[I] = C; 379 Count++; 380 } 381 return Count; 382 } 383 }; 384 385 /// Candidate info for each PhysReg in AllocationOrder. 386 /// This vector never shrinks, but grows to the size of the largest register 387 /// class. 388 SmallVector<GlobalSplitCandidate, 32> GlobalCand; 389 390 enum : unsigned { NoCand = ~0u }; 391 392 /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to 393 /// NoCand which indicates the stack interval. 394 SmallVector<unsigned, 32> BundleCand; 395 396 /// Callee-save register cost, calculated once per machine function. 397 BlockFrequency CSRCost; 398 399 /// Run or not the local reassignment heuristic. This information is 400 /// obtained from the TargetSubtargetInfo. 401 bool EnableLocalReassign; 402 403 /// Enable or not the consideration of the cost of local intervals created 404 /// by a split candidate when choosing the best split candidate. 405 bool EnableAdvancedRASplitCost; 406 407 /// Set of broken hints that may be reconciled later because of eviction. 408 SmallSetVector<LiveInterval *, 8> SetOfBrokenHints; 409 410 /// The register cost values. This list will be recreated for each Machine 411 /// Function 412 ArrayRef<uint8_t> RegCosts; 413 414 public: 415 RAGreedy(const RegClassFilterFunc F = allocateAllRegClasses); 416 417 /// Return the pass name. 418 StringRef getPassName() const override { return "Greedy Register Allocator"; } 419 420 /// RAGreedy analysis usage. 421 void getAnalysisUsage(AnalysisUsage &AU) const override; 422 void releaseMemory() override; 423 Spiller &spiller() override { return *SpillerInstance; } 424 void enqueueImpl(LiveInterval *LI) override; 425 LiveInterval *dequeue() override; 426 MCRegister selectOrSplit(LiveInterval &, 427 SmallVectorImpl<Register> &) override; 428 void aboutToRemoveInterval(LiveInterval &) override; 429 430 /// Perform register allocation. 431 bool runOnMachineFunction(MachineFunction &mf) override; 432 433 MachineFunctionProperties getRequiredProperties() const override { 434 return MachineFunctionProperties().set( 435 MachineFunctionProperties::Property::NoPHIs); 436 } 437 438 MachineFunctionProperties getClearedProperties() const override { 439 return MachineFunctionProperties().set( 440 MachineFunctionProperties::Property::IsSSA); 441 } 442 443 static char ID; 444 445 private: 446 MCRegister selectOrSplitImpl(LiveInterval &, SmallVectorImpl<Register> &, 447 SmallVirtRegSet &, unsigned = 0); 448 449 bool LRE_CanEraseVirtReg(Register) override; 450 void LRE_WillShrinkVirtReg(Register) override; 451 void LRE_DidCloneVirtReg(Register, Register) override; 452 void enqueue(PQueue &CurQueue, LiveInterval *LI); 453 LiveInterval *dequeue(PQueue &CurQueue); 454 455 BlockFrequency calcSpillCost(); 456 bool addSplitConstraints(InterferenceCache::Cursor, BlockFrequency&); 457 bool addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>); 458 bool growRegion(GlobalSplitCandidate &Cand); 459 bool splitCanCauseEvictionChain(Register Evictee, GlobalSplitCandidate &Cand, 460 unsigned BBNumber, 461 const AllocationOrder &Order); 462 bool splitCanCauseLocalSpill(unsigned VirtRegToSplit, 463 GlobalSplitCandidate &Cand, unsigned BBNumber, 464 const AllocationOrder &Order); 465 BlockFrequency calcGlobalSplitCost(GlobalSplitCandidate &, 466 const AllocationOrder &Order, 467 bool *CanCauseEvictionChain); 468 bool calcCompactRegion(GlobalSplitCandidate&); 469 void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>); 470 void calcGapWeights(MCRegister, SmallVectorImpl<float> &); 471 Register canReassign(LiveInterval &VirtReg, Register PrevReg) const; 472 bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool) const; 473 bool canEvictInterference(LiveInterval &, MCRegister, bool, EvictionCost &, 474 const SmallVirtRegSet &) const; 475 bool canEvictInterferenceInRange(const LiveInterval &VirtReg, 476 MCRegister PhysReg, SlotIndex Start, 477 SlotIndex End, EvictionCost &MaxCost) const; 478 MCRegister getCheapestEvicteeWeight(const AllocationOrder &Order, 479 const LiveInterval &VirtReg, 480 SlotIndex Start, SlotIndex End, 481 float *BestEvictWeight) const; 482 void evictInterference(LiveInterval &, MCRegister, 483 SmallVectorImpl<Register> &); 484 bool mayRecolorAllInterferences(MCRegister PhysReg, LiveInterval &VirtReg, 485 SmallLISet &RecoloringCandidates, 486 const SmallVirtRegSet &FixedRegisters); 487 488 MCRegister tryAssign(LiveInterval&, AllocationOrder&, 489 SmallVectorImpl<Register>&, 490 const SmallVirtRegSet&); 491 MCRegister tryEvict(LiveInterval &, AllocationOrder &, 492 SmallVectorImpl<Register> &, uint8_t, 493 const SmallVirtRegSet &); 494 MCRegister tryRegionSplit(LiveInterval &, AllocationOrder &, 495 SmallVectorImpl<Register> &); 496 /// Calculate cost of region splitting. 497 unsigned calculateRegionSplitCost(LiveInterval &VirtReg, 498 AllocationOrder &Order, 499 BlockFrequency &BestCost, 500 unsigned &NumCands, bool IgnoreCSR, 501 bool *CanCauseEvictionChain = nullptr); 502 /// Perform region splitting. 503 unsigned doRegionSplit(LiveInterval &VirtReg, unsigned BestCand, 504 bool HasCompact, 505 SmallVectorImpl<Register> &NewVRegs); 506 /// Check other options before using a callee-saved register for the first 507 /// time. 508 MCRegister tryAssignCSRFirstTime(LiveInterval &VirtReg, 509 AllocationOrder &Order, MCRegister PhysReg, 510 uint8_t &CostPerUseLimit, 511 SmallVectorImpl<Register> &NewVRegs); 512 void initializeCSRCost(); 513 unsigned tryBlockSplit(LiveInterval&, AllocationOrder&, 514 SmallVectorImpl<Register>&); 515 unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&, 516 SmallVectorImpl<Register>&); 517 unsigned tryLocalSplit(LiveInterval&, AllocationOrder&, 518 SmallVectorImpl<Register>&); 519 unsigned trySplit(LiveInterval&, AllocationOrder&, 520 SmallVectorImpl<Register>&, 521 const SmallVirtRegSet&); 522 unsigned tryLastChanceRecoloring(LiveInterval &, AllocationOrder &, 523 SmallVectorImpl<Register> &, 524 SmallVirtRegSet &, unsigned); 525 bool tryRecoloringCandidates(PQueue &, SmallVectorImpl<Register> &, 526 SmallVirtRegSet &, unsigned); 527 void tryHintRecoloring(LiveInterval &); 528 void tryHintsRecoloring(); 529 530 /// Model the information carried by one end of a copy. 531 struct HintInfo { 532 /// The frequency of the copy. 533 BlockFrequency Freq; 534 /// The virtual register or physical register. 535 Register Reg; 536 /// Its currently assigned register. 537 /// In case of a physical register Reg == PhysReg. 538 MCRegister PhysReg; 539 540 HintInfo(BlockFrequency Freq, Register Reg, MCRegister PhysReg) 541 : Freq(Freq), Reg(Reg), PhysReg(PhysReg) {} 542 }; 543 using HintsInfo = SmallVector<HintInfo, 4>; 544 545 BlockFrequency getBrokenHintFreq(const HintsInfo &, MCRegister); 546 void collectHintInfo(Register, HintsInfo &); 547 548 bool isUnusedCalleeSavedReg(MCRegister PhysReg) const; 549 550 /// Greedy RA statistic to remark. 551 struct RAGreedyStats { 552 unsigned Reloads = 0; 553 unsigned FoldedReloads = 0; 554 unsigned ZeroCostFoldedReloads = 0; 555 unsigned Spills = 0; 556 unsigned FoldedSpills = 0; 557 unsigned Copies = 0; 558 float ReloadsCost = 0.0f; 559 float FoldedReloadsCost = 0.0f; 560 float SpillsCost = 0.0f; 561 float FoldedSpillsCost = 0.0f; 562 float CopiesCost = 0.0f; 563 564 bool isEmpty() { 565 return !(Reloads || FoldedReloads || Spills || FoldedSpills || 566 ZeroCostFoldedReloads || Copies); 567 } 568 569 void add(RAGreedyStats other) { 570 Reloads += other.Reloads; 571 FoldedReloads += other.FoldedReloads; 572 ZeroCostFoldedReloads += other.ZeroCostFoldedReloads; 573 Spills += other.Spills; 574 FoldedSpills += other.FoldedSpills; 575 Copies += other.Copies; 576 ReloadsCost += other.ReloadsCost; 577 FoldedReloadsCost += other.FoldedReloadsCost; 578 SpillsCost += other.SpillsCost; 579 FoldedSpillsCost += other.FoldedSpillsCost; 580 CopiesCost += other.CopiesCost; 581 } 582 583 void report(MachineOptimizationRemarkMissed &R); 584 }; 585 586 /// Compute statistic for a basic block. 587 RAGreedyStats computeStats(MachineBasicBlock &MBB); 588 589 /// Compute and report statistic through a remark. 590 RAGreedyStats reportStats(MachineLoop *L); 591 592 /// Report the statistic for each loop. 593 void reportStats(); 594 }; 595 596 } // end anonymous namespace 597 598 char RAGreedy::ID = 0; 599 char &llvm::RAGreedyID = RAGreedy::ID; 600 601 INITIALIZE_PASS_BEGIN(RAGreedy, "greedy", 602 "Greedy Register Allocator", false, false) 603 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables) 604 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 605 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 606 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer) 607 INITIALIZE_PASS_DEPENDENCY(MachineScheduler) 608 INITIALIZE_PASS_DEPENDENCY(LiveStacks) 609 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 610 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 611 INITIALIZE_PASS_DEPENDENCY(VirtRegMap) 612 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix) 613 INITIALIZE_PASS_DEPENDENCY(EdgeBundles) 614 INITIALIZE_PASS_DEPENDENCY(SpillPlacement) 615 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass) 616 INITIALIZE_PASS_END(RAGreedy, "greedy", 617 "Greedy Register Allocator", false, false) 618 619 #ifndef NDEBUG 620 const char *const RAGreedy::StageName[] = { 621 "RS_New", 622 "RS_Assign", 623 "RS_Split", 624 "RS_Split2", 625 "RS_Spill", 626 "RS_Memory", 627 "RS_Done" 628 }; 629 #endif 630 631 // Hysteresis to use when comparing floats. 632 // This helps stabilize decisions based on float comparisons. 633 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875 634 635 FunctionPass* llvm::createGreedyRegisterAllocator() { 636 return new RAGreedy(); 637 } 638 639 namespace llvm { 640 FunctionPass* createGreedyRegisterAllocator( 641 std::function<bool(const TargetRegisterInfo &TRI, 642 const TargetRegisterClass &RC)> Ftor); 643 644 } 645 646 FunctionPass* llvm::createGreedyRegisterAllocator( 647 std::function<bool(const TargetRegisterInfo &TRI, 648 const TargetRegisterClass &RC)> Ftor) { 649 return new RAGreedy(Ftor); 650 } 651 652 RAGreedy::RAGreedy(RegClassFilterFunc F): 653 MachineFunctionPass(ID), 654 RegAllocBase(F) { 655 } 656 657 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const { 658 AU.setPreservesCFG(); 659 AU.addRequired<MachineBlockFrequencyInfo>(); 660 AU.addPreserved<MachineBlockFrequencyInfo>(); 661 AU.addRequired<AAResultsWrapperPass>(); 662 AU.addPreserved<AAResultsWrapperPass>(); 663 AU.addRequired<LiveIntervals>(); 664 AU.addPreserved<LiveIntervals>(); 665 AU.addRequired<SlotIndexes>(); 666 AU.addPreserved<SlotIndexes>(); 667 AU.addRequired<LiveDebugVariables>(); 668 AU.addPreserved<LiveDebugVariables>(); 669 AU.addRequired<LiveStacks>(); 670 AU.addPreserved<LiveStacks>(); 671 AU.addRequired<MachineDominatorTree>(); 672 AU.addPreserved<MachineDominatorTree>(); 673 AU.addRequired<MachineLoopInfo>(); 674 AU.addPreserved<MachineLoopInfo>(); 675 AU.addRequired<VirtRegMap>(); 676 AU.addPreserved<VirtRegMap>(); 677 AU.addRequired<LiveRegMatrix>(); 678 AU.addPreserved<LiveRegMatrix>(); 679 AU.addRequired<EdgeBundles>(); 680 AU.addRequired<SpillPlacement>(); 681 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 682 MachineFunctionPass::getAnalysisUsage(AU); 683 } 684 685 //===----------------------------------------------------------------------===// 686 // LiveRangeEdit delegate methods 687 //===----------------------------------------------------------------------===// 688 689 bool RAGreedy::LRE_CanEraseVirtReg(Register VirtReg) { 690 LiveInterval &LI = LIS->getInterval(VirtReg); 691 if (VRM->hasPhys(VirtReg)) { 692 Matrix->unassign(LI); 693 aboutToRemoveInterval(LI); 694 return true; 695 } 696 // Unassigned virtreg is probably in the priority queue. 697 // RegAllocBase will erase it after dequeueing. 698 // Nonetheless, clear the live-range so that the debug 699 // dump will show the right state for that VirtReg. 700 LI.clear(); 701 return false; 702 } 703 704 void RAGreedy::LRE_WillShrinkVirtReg(Register VirtReg) { 705 if (!VRM->hasPhys(VirtReg)) 706 return; 707 708 // Register is assigned, put it back on the queue for reassignment. 709 LiveInterval &LI = LIS->getInterval(VirtReg); 710 Matrix->unassign(LI); 711 RegAllocBase::enqueue(&LI); 712 } 713 714 void RAGreedy::LRE_DidCloneVirtReg(Register New, Register Old) { 715 // Cloning a register we haven't even heard about yet? Just ignore it. 716 if (!ExtraRegInfo.inBounds(Old)) 717 return; 718 719 // LRE may clone a virtual register because dead code elimination causes it to 720 // be split into connected components. The new components are much smaller 721 // than the original, so they should get a new chance at being assigned. 722 // same stage as the parent. 723 ExtraRegInfo[Old].Stage = RS_Assign; 724 ExtraRegInfo.grow(New); 725 ExtraRegInfo[New] = ExtraRegInfo[Old]; 726 } 727 728 void RAGreedy::releaseMemory() { 729 SpillerInstance.reset(); 730 ExtraRegInfo.clear(); 731 GlobalCand.clear(); 732 } 733 734 void RAGreedy::enqueueImpl(LiveInterval *LI) { enqueue(Queue, LI); } 735 736 void RAGreedy::enqueue(PQueue &CurQueue, LiveInterval *LI) { 737 // Prioritize live ranges by size, assigning larger ranges first. 738 // The queue holds (size, reg) pairs. 739 const unsigned Size = LI->getSize(); 740 const Register Reg = LI->reg(); 741 assert(Reg.isVirtual() && "Can only enqueue virtual registers"); 742 unsigned Prio; 743 744 ExtraRegInfo.grow(Reg); 745 if (ExtraRegInfo[Reg].Stage == RS_New) 746 ExtraRegInfo[Reg].Stage = RS_Assign; 747 748 if (ExtraRegInfo[Reg].Stage == RS_Split) { 749 // Unsplit ranges that couldn't be allocated immediately are deferred until 750 // everything else has been allocated. 751 Prio = Size; 752 } else if (ExtraRegInfo[Reg].Stage == RS_Memory) { 753 // Memory operand should be considered last. 754 // Change the priority such that Memory operand are assigned in 755 // the reverse order that they came in. 756 // TODO: Make this a member variable and probably do something about hints. 757 static unsigned MemOp = 0; 758 Prio = MemOp++; 759 } else { 760 // Giant live ranges fall back to the global assignment heuristic, which 761 // prevents excessive spilling in pathological cases. 762 bool ReverseLocal = TRI->reverseLocalAssignment(); 763 const TargetRegisterClass &RC = *MRI->getRegClass(Reg); 764 bool ForceGlobal = !ReverseLocal && 765 (Size / SlotIndex::InstrDist) > (2 * RC.getNumRegs()); 766 767 if (ExtraRegInfo[Reg].Stage == RS_Assign && !ForceGlobal && !LI->empty() && 768 LIS->intervalIsInOneMBB(*LI)) { 769 // Allocate original local ranges in linear instruction order. Since they 770 // are singly defined, this produces optimal coloring in the absence of 771 // global interference and other constraints. 772 if (!ReverseLocal) 773 Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex()); 774 else { 775 // Allocating bottom up may allow many short LRGs to be assigned first 776 // to one of the cheap registers. This could be much faster for very 777 // large blocks on targets with many physical registers. 778 Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex()); 779 } 780 Prio |= RC.AllocationPriority << 24; 781 } else { 782 // Allocate global and split ranges in long->short order. Long ranges that 783 // don't fit should be spilled (or split) ASAP so they don't create 784 // interference. Mark a bit to prioritize global above local ranges. 785 Prio = (1u << 29) + Size; 786 } 787 // Mark a higher bit to prioritize global and local above RS_Split. 788 Prio |= (1u << 31); 789 790 // Boost ranges that have a physical register hint. 791 if (VRM->hasKnownPreference(Reg)) 792 Prio |= (1u << 30); 793 } 794 // The virtual register number is a tie breaker for same-sized ranges. 795 // Give lower vreg numbers higher priority to assign them first. 796 CurQueue.push(std::make_pair(Prio, ~Reg)); 797 } 798 799 LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); } 800 801 LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) { 802 if (CurQueue.empty()) 803 return nullptr; 804 LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second); 805 CurQueue.pop(); 806 return LI; 807 } 808 809 //===----------------------------------------------------------------------===// 810 // Direct Assignment 811 //===----------------------------------------------------------------------===// 812 813 /// tryAssign - Try to assign VirtReg to an available register. 814 MCRegister RAGreedy::tryAssign(LiveInterval &VirtReg, 815 AllocationOrder &Order, 816 SmallVectorImpl<Register> &NewVRegs, 817 const SmallVirtRegSet &FixedRegisters) { 818 MCRegister PhysReg; 819 for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) { 820 assert(*I); 821 if (!Matrix->checkInterference(VirtReg, *I)) { 822 if (I.isHint()) 823 return *I; 824 else 825 PhysReg = *I; 826 } 827 } 828 if (!PhysReg.isValid()) 829 return PhysReg; 830 831 // PhysReg is available, but there may be a better choice. 832 833 // If we missed a simple hint, try to cheaply evict interference from the 834 // preferred register. 835 if (Register Hint = MRI->getSimpleHint(VirtReg.reg())) 836 if (Order.isHint(Hint)) { 837 MCRegister PhysHint = Hint.asMCReg(); 838 LLVM_DEBUG(dbgs() << "missed hint " << printReg(PhysHint, TRI) << '\n'); 839 EvictionCost MaxCost; 840 MaxCost.setBrokenHints(1); 841 if (canEvictInterference(VirtReg, PhysHint, true, MaxCost, 842 FixedRegisters)) { 843 evictInterference(VirtReg, PhysHint, NewVRegs); 844 return PhysHint; 845 } 846 // Record the missed hint, we may be able to recover 847 // at the end if the surrounding allocation changed. 848 SetOfBrokenHints.insert(&VirtReg); 849 } 850 851 // Try to evict interference from a cheaper alternative. 852 uint8_t Cost = RegCosts[PhysReg]; 853 854 // Most registers have 0 additional cost. 855 if (!Cost) 856 return PhysReg; 857 858 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is available at cost " 859 << Cost << '\n'); 860 MCRegister CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost, FixedRegisters); 861 return CheapReg ? CheapReg : PhysReg; 862 } 863 864 //===----------------------------------------------------------------------===// 865 // Interference eviction 866 //===----------------------------------------------------------------------===// 867 868 Register RAGreedy::canReassign(LiveInterval &VirtReg, Register PrevReg) const { 869 auto Order = 870 AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix); 871 MCRegister PhysReg; 872 for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) { 873 if ((*I).id() == PrevReg.id()) 874 continue; 875 876 MCRegUnitIterator Units(*I, TRI); 877 for (; Units.isValid(); ++Units) { 878 // Instantiate a "subquery", not to be confused with the Queries array. 879 LiveIntervalUnion::Query subQ(VirtReg, Matrix->getLiveUnions()[*Units]); 880 if (subQ.checkInterference()) 881 break; 882 } 883 // If no units have interference, break out with the current PhysReg. 884 if (!Units.isValid()) 885 PhysReg = *I; 886 } 887 if (PhysReg) 888 LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg << " from " 889 << printReg(PrevReg, TRI) << " to " 890 << printReg(PhysReg, TRI) << '\n'); 891 return PhysReg; 892 } 893 894 /// shouldEvict - determine if A should evict the assigned live range B. The 895 /// eviction policy defined by this function together with the allocation order 896 /// defined by enqueue() decides which registers ultimately end up being split 897 /// and spilled. 898 /// 899 /// Cascade numbers are used to prevent infinite loops if this function is a 900 /// cyclic relation. 901 /// 902 /// @param A The live range to be assigned. 903 /// @param IsHint True when A is about to be assigned to its preferred 904 /// register. 905 /// @param B The live range to be evicted. 906 /// @param BreaksHint True when B is already assigned to its preferred register. 907 bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint, 908 LiveInterval &B, bool BreaksHint) const { 909 bool CanSplit = getStage(B) < RS_Spill; 910 911 // Be fairly aggressive about following hints as long as the evictee can be 912 // split. 913 if (CanSplit && IsHint && !BreaksHint) 914 return true; 915 916 if (A.weight() > B.weight()) { 917 LLVM_DEBUG(dbgs() << "should evict: " << B << " w= " << B.weight() << '\n'); 918 return true; 919 } 920 return false; 921 } 922 923 /// canEvictInterference - Return true if all interferences between VirtReg and 924 /// PhysReg can be evicted. 925 /// 926 /// @param VirtReg Live range that is about to be assigned. 927 /// @param PhysReg Desired register for assignment. 928 /// @param IsHint True when PhysReg is VirtReg's preferred register. 929 /// @param MaxCost Only look for cheaper candidates and update with new cost 930 /// when returning true. 931 /// @returns True when interference can be evicted cheaper than MaxCost. 932 bool RAGreedy::canEvictInterference( 933 LiveInterval &VirtReg, MCRegister PhysReg, bool IsHint, 934 EvictionCost &MaxCost, const SmallVirtRegSet &FixedRegisters) const { 935 // It is only possible to evict virtual register interference. 936 if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg) 937 return false; 938 939 bool IsLocal = LIS->intervalIsInOneMBB(VirtReg); 940 941 // Find VirtReg's cascade number. This will be unassigned if VirtReg was never 942 // involved in an eviction before. If a cascade number was assigned, deny 943 // evicting anything with the same or a newer cascade number. This prevents 944 // infinite eviction loops. 945 // 946 // This works out so a register without a cascade number is allowed to evict 947 // anything, and it can be evicted by anything. 948 unsigned Cascade = ExtraRegInfo[VirtReg.reg()].Cascade; 949 if (!Cascade) 950 Cascade = NextCascade; 951 952 EvictionCost Cost; 953 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 954 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 955 // If there is 10 or more interferences, chances are one is heavier. 956 if (Q.collectInterferingVRegs(10) >= 10) 957 return false; 958 959 // Check if any interfering live range is heavier than MaxWeight. 960 for (LiveInterval *Intf : reverse(Q.interferingVRegs())) { 961 assert(Register::isVirtualRegister(Intf->reg()) && 962 "Only expecting virtual register interference from query"); 963 964 // Do not allow eviction of a virtual register if we are in the middle 965 // of last-chance recoloring and this virtual register is one that we 966 // have scavenged a physical register for. 967 if (FixedRegisters.count(Intf->reg())) 968 return false; 969 970 // Never evict spill products. They cannot split or spill. 971 if (getStage(*Intf) == RS_Done) 972 return false; 973 // Once a live range becomes small enough, it is urgent that we find a 974 // register for it. This is indicated by an infinite spill weight. These 975 // urgent live ranges get to evict almost anything. 976 // 977 // Also allow urgent evictions of unspillable ranges from a strictly 978 // larger allocation order. 979 bool Urgent = 980 !VirtReg.isSpillable() && 981 (Intf->isSpillable() || 982 RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg())) < 983 RegClassInfo.getNumAllocatableRegs( 984 MRI->getRegClass(Intf->reg()))); 985 // Only evict older cascades or live ranges without a cascade. 986 unsigned IntfCascade = ExtraRegInfo[Intf->reg()].Cascade; 987 if (Cascade <= IntfCascade) { 988 if (!Urgent) 989 return false; 990 // We permit breaking cascades for urgent evictions. It should be the 991 // last resort, though, so make it really expensive. 992 Cost.BrokenHints += 10; 993 } 994 // Would this break a satisfied hint? 995 bool BreaksHint = VRM->hasPreferredPhys(Intf->reg()); 996 // Update eviction cost. 997 Cost.BrokenHints += BreaksHint; 998 Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight()); 999 // Abort if this would be too expensive. 1000 if (!(Cost < MaxCost)) 1001 return false; 1002 if (Urgent) 1003 continue; 1004 // Apply the eviction policy for non-urgent evictions. 1005 if (!shouldEvict(VirtReg, IsHint, *Intf, BreaksHint)) 1006 return false; 1007 // If !MaxCost.isMax(), then we're just looking for a cheap register. 1008 // Evicting another local live range in this case could lead to suboptimal 1009 // coloring. 1010 if (!MaxCost.isMax() && IsLocal && LIS->intervalIsInOneMBB(*Intf) && 1011 (!EnableLocalReassign || !canReassign(*Intf, PhysReg))) { 1012 return false; 1013 } 1014 } 1015 } 1016 MaxCost = Cost; 1017 return true; 1018 } 1019 1020 /// Return true if all interferences between VirtReg and PhysReg between 1021 /// Start and End can be evicted. 1022 /// 1023 /// \param VirtReg Live range that is about to be assigned. 1024 /// \param PhysReg Desired register for assignment. 1025 /// \param Start Start of range to look for interferences. 1026 /// \param End End of range to look for interferences. 1027 /// \param MaxCost Only look for cheaper candidates and update with new cost 1028 /// when returning true. 1029 /// \return True when interference can be evicted cheaper than MaxCost. 1030 bool RAGreedy::canEvictInterferenceInRange(const LiveInterval &VirtReg, 1031 MCRegister PhysReg, SlotIndex Start, 1032 SlotIndex End, 1033 EvictionCost &MaxCost) const { 1034 EvictionCost Cost; 1035 1036 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 1037 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 1038 Q.collectInterferingVRegs(); 1039 1040 // Check if any interfering live range is heavier than MaxWeight. 1041 for (const LiveInterval *Intf : reverse(Q.interferingVRegs())) { 1042 // Check if interference overlast the segment in interest. 1043 if (!Intf->overlaps(Start, End)) 1044 continue; 1045 1046 // Cannot evict non virtual reg interference. 1047 if (!Register::isVirtualRegister(Intf->reg())) 1048 return false; 1049 // Never evict spill products. They cannot split or spill. 1050 if (getStage(*Intf) == RS_Done) 1051 return false; 1052 1053 // Would this break a satisfied hint? 1054 bool BreaksHint = VRM->hasPreferredPhys(Intf->reg()); 1055 // Update eviction cost. 1056 Cost.BrokenHints += BreaksHint; 1057 Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight()); 1058 // Abort if this would be too expensive. 1059 if (!(Cost < MaxCost)) 1060 return false; 1061 } 1062 } 1063 1064 if (Cost.MaxWeight == 0) 1065 return false; 1066 1067 MaxCost = Cost; 1068 return true; 1069 } 1070 1071 /// Return the physical register that will be best 1072 /// candidate for eviction by a local split interval that will be created 1073 /// between Start and End. 1074 /// 1075 /// \param Order The allocation order 1076 /// \param VirtReg Live range that is about to be assigned. 1077 /// \param Start Start of range to look for interferences 1078 /// \param End End of range to look for interferences 1079 /// \param BestEvictweight The eviction cost of that eviction 1080 /// \return The PhysReg which is the best candidate for eviction and the 1081 /// eviction cost in BestEvictweight 1082 MCRegister RAGreedy::getCheapestEvicteeWeight(const AllocationOrder &Order, 1083 const LiveInterval &VirtReg, 1084 SlotIndex Start, SlotIndex End, 1085 float *BestEvictweight) const { 1086 EvictionCost BestEvictCost; 1087 BestEvictCost.setMax(); 1088 BestEvictCost.MaxWeight = VirtReg.weight(); 1089 MCRegister BestEvicteePhys; 1090 1091 // Go over all physical registers and find the best candidate for eviction 1092 for (MCRegister PhysReg : Order.getOrder()) { 1093 1094 if (!canEvictInterferenceInRange(VirtReg, PhysReg, Start, End, 1095 BestEvictCost)) 1096 continue; 1097 1098 // Best so far. 1099 BestEvicteePhys = PhysReg; 1100 } 1101 *BestEvictweight = BestEvictCost.MaxWeight; 1102 return BestEvicteePhys; 1103 } 1104 1105 /// evictInterference - Evict any interferring registers that prevent VirtReg 1106 /// from being assigned to Physreg. This assumes that canEvictInterference 1107 /// returned true. 1108 void RAGreedy::evictInterference(LiveInterval &VirtReg, MCRegister PhysReg, 1109 SmallVectorImpl<Register> &NewVRegs) { 1110 // Make sure that VirtReg has a cascade number, and assign that cascade 1111 // number to every evicted register. These live ranges than then only be 1112 // evicted by a newer cascade, preventing infinite loops. 1113 unsigned Cascade = ExtraRegInfo[VirtReg.reg()].Cascade; 1114 if (!Cascade) 1115 Cascade = ExtraRegInfo[VirtReg.reg()].Cascade = NextCascade++; 1116 1117 LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg, TRI) 1118 << " interference: Cascade " << Cascade << '\n'); 1119 1120 // Collect all interfering virtregs first. 1121 SmallVector<LiveInterval*, 8> Intfs; 1122 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 1123 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 1124 // We usually have the interfering VRegs cached so collectInterferingVRegs() 1125 // should be fast, we may need to recalculate if when different physregs 1126 // overlap the same register unit so we had different SubRanges queried 1127 // against it. 1128 Q.collectInterferingVRegs(); 1129 ArrayRef<LiveInterval*> IVR = Q.interferingVRegs(); 1130 Intfs.append(IVR.begin(), IVR.end()); 1131 } 1132 1133 // Evict them second. This will invalidate the queries. 1134 for (LiveInterval *Intf : Intfs) { 1135 // The same VirtReg may be present in multiple RegUnits. Skip duplicates. 1136 if (!VRM->hasPhys(Intf->reg())) 1137 continue; 1138 1139 LastEvicted.addEviction(PhysReg, VirtReg.reg(), Intf->reg()); 1140 1141 Matrix->unassign(*Intf); 1142 assert((ExtraRegInfo[Intf->reg()].Cascade < Cascade || 1143 VirtReg.isSpillable() < Intf->isSpillable()) && 1144 "Cannot decrease cascade number, illegal eviction"); 1145 ExtraRegInfo[Intf->reg()].Cascade = Cascade; 1146 ++NumEvicted; 1147 NewVRegs.push_back(Intf->reg()); 1148 } 1149 } 1150 1151 /// Returns true if the given \p PhysReg is a callee saved register and has not 1152 /// been used for allocation yet. 1153 bool RAGreedy::isUnusedCalleeSavedReg(MCRegister PhysReg) const { 1154 MCRegister CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg); 1155 if (!CSR) 1156 return false; 1157 1158 return !Matrix->isPhysRegUsed(PhysReg); 1159 } 1160 1161 /// tryEvict - Try to evict all interferences for a physreg. 1162 /// @param VirtReg Currently unassigned virtual register. 1163 /// @param Order Physregs to try. 1164 /// @return Physreg to assign VirtReg, or 0. 1165 MCRegister RAGreedy::tryEvict(LiveInterval &VirtReg, AllocationOrder &Order, 1166 SmallVectorImpl<Register> &NewVRegs, 1167 uint8_t CostPerUseLimit, 1168 const SmallVirtRegSet &FixedRegisters) { 1169 NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription, 1170 TimePassesIsEnabled); 1171 1172 // Keep track of the cheapest interference seen so far. 1173 EvictionCost BestCost; 1174 BestCost.setMax(); 1175 MCRegister BestPhys; 1176 unsigned OrderLimit = Order.getOrder().size(); 1177 1178 // When we are just looking for a reduced cost per use, don't break any 1179 // hints, and only evict smaller spill weights. 1180 if (CostPerUseLimit < uint8_t(~0u)) { 1181 BestCost.BrokenHints = 0; 1182 BestCost.MaxWeight = VirtReg.weight(); 1183 1184 // Check of any registers in RC are below CostPerUseLimit. 1185 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg()); 1186 uint8_t MinCost = RegClassInfo.getMinCost(RC); 1187 if (MinCost >= CostPerUseLimit) { 1188 LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = " 1189 << MinCost << ", no cheaper registers to be found.\n"); 1190 return 0; 1191 } 1192 1193 // It is normal for register classes to have a long tail of registers with 1194 // the same cost. We don't need to look at them if they're too expensive. 1195 if (RegCosts[Order.getOrder().back()] >= CostPerUseLimit) { 1196 OrderLimit = RegClassInfo.getLastCostChange(RC); 1197 LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit 1198 << " regs.\n"); 1199 } 1200 } 1201 1202 for (auto I = Order.begin(), E = Order.getOrderLimitEnd(OrderLimit); I != E; 1203 ++I) { 1204 MCRegister PhysReg = *I; 1205 assert(PhysReg); 1206 if (RegCosts[PhysReg] >= CostPerUseLimit) 1207 continue; 1208 // The first use of a callee-saved register in a function has cost 1. 1209 // Don't start using a CSR when the CostPerUseLimit is low. 1210 if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) { 1211 LLVM_DEBUG( 1212 dbgs() << printReg(PhysReg, TRI) << " would clobber CSR " 1213 << printReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI) 1214 << '\n'); 1215 continue; 1216 } 1217 1218 if (!canEvictInterference(VirtReg, PhysReg, false, BestCost, 1219 FixedRegisters)) 1220 continue; 1221 1222 // Best so far. 1223 BestPhys = PhysReg; 1224 1225 // Stop if the hint can be used. 1226 if (I.isHint()) 1227 break; 1228 } 1229 1230 if (BestPhys.isValid()) 1231 evictInterference(VirtReg, BestPhys, NewVRegs); 1232 return BestPhys; 1233 } 1234 1235 //===----------------------------------------------------------------------===// 1236 // Region Splitting 1237 //===----------------------------------------------------------------------===// 1238 1239 /// addSplitConstraints - Fill out the SplitConstraints vector based on the 1240 /// interference pattern in Physreg and its aliases. Add the constraints to 1241 /// SpillPlacement and return the static cost of this split in Cost, assuming 1242 /// that all preferences in SplitConstraints are met. 1243 /// Return false if there are no bundles with positive bias. 1244 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf, 1245 BlockFrequency &Cost) { 1246 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1247 1248 // Reset interference dependent info. 1249 SplitConstraints.resize(UseBlocks.size()); 1250 BlockFrequency StaticCost = 0; 1251 for (unsigned I = 0; I != UseBlocks.size(); ++I) { 1252 const SplitAnalysis::BlockInfo &BI = UseBlocks[I]; 1253 SpillPlacement::BlockConstraint &BC = SplitConstraints[I]; 1254 1255 BC.Number = BI.MBB->getNumber(); 1256 Intf.moveToBlock(BC.Number); 1257 BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare; 1258 BC.Exit = (BI.LiveOut && 1259 !LIS->getInstructionFromIndex(BI.LastInstr)->isImplicitDef()) 1260 ? SpillPlacement::PrefReg 1261 : SpillPlacement::DontCare; 1262 BC.ChangesValue = BI.FirstDef.isValid(); 1263 1264 if (!Intf.hasInterference()) 1265 continue; 1266 1267 // Number of spill code instructions to insert. 1268 unsigned Ins = 0; 1269 1270 // Interference for the live-in value. 1271 if (BI.LiveIn) { 1272 if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) { 1273 BC.Entry = SpillPlacement::MustSpill; 1274 ++Ins; 1275 } else if (Intf.first() < BI.FirstInstr) { 1276 BC.Entry = SpillPlacement::PrefSpill; 1277 ++Ins; 1278 } else if (Intf.first() < BI.LastInstr) { 1279 ++Ins; 1280 } 1281 1282 // Abort if the spill cannot be inserted at the MBB' start 1283 if (((BC.Entry == SpillPlacement::MustSpill) || 1284 (BC.Entry == SpillPlacement::PrefSpill)) && 1285 SlotIndex::isEarlierInstr(BI.FirstInstr, 1286 SA->getFirstSplitPoint(BC.Number))) 1287 return false; 1288 } 1289 1290 // Interference for the live-out value. 1291 if (BI.LiveOut) { 1292 if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) { 1293 BC.Exit = SpillPlacement::MustSpill; 1294 ++Ins; 1295 } else if (Intf.last() > BI.LastInstr) { 1296 BC.Exit = SpillPlacement::PrefSpill; 1297 ++Ins; 1298 } else if (Intf.last() > BI.FirstInstr) { 1299 ++Ins; 1300 } 1301 } 1302 1303 // Accumulate the total frequency of inserted spill code. 1304 while (Ins--) 1305 StaticCost += SpillPlacer->getBlockFrequency(BC.Number); 1306 } 1307 Cost = StaticCost; 1308 1309 // Add constraints for use-blocks. Note that these are the only constraints 1310 // that may add a positive bias, it is downhill from here. 1311 SpillPlacer->addConstraints(SplitConstraints); 1312 return SpillPlacer->scanActiveBundles(); 1313 } 1314 1315 /// addThroughConstraints - Add constraints and links to SpillPlacer from the 1316 /// live-through blocks in Blocks. 1317 bool RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf, 1318 ArrayRef<unsigned> Blocks) { 1319 const unsigned GroupSize = 8; 1320 SpillPlacement::BlockConstraint BCS[GroupSize]; 1321 unsigned TBS[GroupSize]; 1322 unsigned B = 0, T = 0; 1323 1324 for (unsigned Number : Blocks) { 1325 Intf.moveToBlock(Number); 1326 1327 if (!Intf.hasInterference()) { 1328 assert(T < GroupSize && "Array overflow"); 1329 TBS[T] = Number; 1330 if (++T == GroupSize) { 1331 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 1332 T = 0; 1333 } 1334 continue; 1335 } 1336 1337 assert(B < GroupSize && "Array overflow"); 1338 BCS[B].Number = Number; 1339 1340 // Abort if the spill cannot be inserted at the MBB' start 1341 MachineBasicBlock *MBB = MF->getBlockNumbered(Number); 1342 auto FirstNonDebugInstr = MBB->getFirstNonDebugInstr(); 1343 if (FirstNonDebugInstr != MBB->end() && 1344 SlotIndex::isEarlierInstr(LIS->getInstructionIndex(*FirstNonDebugInstr), 1345 SA->getFirstSplitPoint(Number))) 1346 return false; 1347 // Interference for the live-in value. 1348 if (Intf.first() <= Indexes->getMBBStartIdx(Number)) 1349 BCS[B].Entry = SpillPlacement::MustSpill; 1350 else 1351 BCS[B].Entry = SpillPlacement::PrefSpill; 1352 1353 // Interference for the live-out value. 1354 if (Intf.last() >= SA->getLastSplitPoint(Number)) 1355 BCS[B].Exit = SpillPlacement::MustSpill; 1356 else 1357 BCS[B].Exit = SpillPlacement::PrefSpill; 1358 1359 if (++B == GroupSize) { 1360 SpillPlacer->addConstraints(makeArrayRef(BCS, B)); 1361 B = 0; 1362 } 1363 } 1364 1365 SpillPlacer->addConstraints(makeArrayRef(BCS, B)); 1366 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 1367 return true; 1368 } 1369 1370 bool RAGreedy::growRegion(GlobalSplitCandidate &Cand) { 1371 // Keep track of through blocks that have not been added to SpillPlacer. 1372 BitVector Todo = SA->getThroughBlocks(); 1373 SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks; 1374 unsigned AddedTo = 0; 1375 #ifndef NDEBUG 1376 unsigned Visited = 0; 1377 #endif 1378 1379 while (true) { 1380 ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive(); 1381 // Find new through blocks in the periphery of PrefRegBundles. 1382 for (unsigned Bundle : NewBundles) { 1383 // Look at all blocks connected to Bundle in the full graph. 1384 ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle); 1385 for (unsigned Block : Blocks) { 1386 if (!Todo.test(Block)) 1387 continue; 1388 Todo.reset(Block); 1389 // This is a new through block. Add it to SpillPlacer later. 1390 ActiveBlocks.push_back(Block); 1391 #ifndef NDEBUG 1392 ++Visited; 1393 #endif 1394 } 1395 } 1396 // Any new blocks to add? 1397 if (ActiveBlocks.size() == AddedTo) 1398 break; 1399 1400 // Compute through constraints from the interference, or assume that all 1401 // through blocks prefer spilling when forming compact regions. 1402 auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo); 1403 if (Cand.PhysReg) { 1404 if (!addThroughConstraints(Cand.Intf, NewBlocks)) 1405 return false; 1406 } else 1407 // Provide a strong negative bias on through blocks to prevent unwanted 1408 // liveness on loop backedges. 1409 SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true); 1410 AddedTo = ActiveBlocks.size(); 1411 1412 // Perhaps iterating can enable more bundles? 1413 SpillPlacer->iterate(); 1414 } 1415 LLVM_DEBUG(dbgs() << ", v=" << Visited); 1416 return true; 1417 } 1418 1419 /// calcCompactRegion - Compute the set of edge bundles that should be live 1420 /// when splitting the current live range into compact regions. Compact 1421 /// regions can be computed without looking at interference. They are the 1422 /// regions formed by removing all the live-through blocks from the live range. 1423 /// 1424 /// Returns false if the current live range is already compact, or if the 1425 /// compact regions would form single block regions anyway. 1426 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) { 1427 // Without any through blocks, the live range is already compact. 1428 if (!SA->getNumThroughBlocks()) 1429 return false; 1430 1431 // Compact regions don't correspond to any physreg. 1432 Cand.reset(IntfCache, MCRegister::NoRegister); 1433 1434 LLVM_DEBUG(dbgs() << "Compact region bundles"); 1435 1436 // Use the spill placer to determine the live bundles. GrowRegion pretends 1437 // that all the through blocks have interference when PhysReg is unset. 1438 SpillPlacer->prepare(Cand.LiveBundles); 1439 1440 // The static split cost will be zero since Cand.Intf reports no interference. 1441 BlockFrequency Cost; 1442 if (!addSplitConstraints(Cand.Intf, Cost)) { 1443 LLVM_DEBUG(dbgs() << ", none.\n"); 1444 return false; 1445 } 1446 1447 if (!growRegion(Cand)) { 1448 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n"); 1449 return false; 1450 } 1451 1452 SpillPlacer->finish(); 1453 1454 if (!Cand.LiveBundles.any()) { 1455 LLVM_DEBUG(dbgs() << ", none.\n"); 1456 return false; 1457 } 1458 1459 LLVM_DEBUG({ 1460 for (int I : Cand.LiveBundles.set_bits()) 1461 dbgs() << " EB#" << I; 1462 dbgs() << ".\n"; 1463 }); 1464 return true; 1465 } 1466 1467 /// calcSpillCost - Compute how expensive it would be to split the live range in 1468 /// SA around all use blocks instead of forming bundle regions. 1469 BlockFrequency RAGreedy::calcSpillCost() { 1470 BlockFrequency Cost = 0; 1471 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1472 for (const SplitAnalysis::BlockInfo &BI : UseBlocks) { 1473 unsigned Number = BI.MBB->getNumber(); 1474 // We normally only need one spill instruction - a load or a store. 1475 Cost += SpillPlacer->getBlockFrequency(Number); 1476 1477 // Unless the value is redefined in the block. 1478 if (BI.LiveIn && BI.LiveOut && BI.FirstDef) 1479 Cost += SpillPlacer->getBlockFrequency(Number); 1480 } 1481 return Cost; 1482 } 1483 1484 /// Check if splitting Evictee will create a local split interval in 1485 /// basic block number BBNumber that may cause a bad eviction chain. This is 1486 /// intended to prevent bad eviction sequences like: 1487 /// movl %ebp, 8(%esp) # 4-byte Spill 1488 /// movl %ecx, %ebp 1489 /// movl %ebx, %ecx 1490 /// movl %edi, %ebx 1491 /// movl %edx, %edi 1492 /// cltd 1493 /// idivl %esi 1494 /// movl %edi, %edx 1495 /// movl %ebx, %edi 1496 /// movl %ecx, %ebx 1497 /// movl %ebp, %ecx 1498 /// movl 16(%esp), %ebp # 4 - byte Reload 1499 /// 1500 /// Such sequences are created in 2 scenarios: 1501 /// 1502 /// Scenario #1: 1503 /// %0 is evicted from physreg0 by %1. 1504 /// Evictee %0 is intended for region splitting with split candidate 1505 /// physreg0 (the reg %0 was evicted from). 1506 /// Region splitting creates a local interval because of interference with the 1507 /// evictor %1 (normally region splitting creates 2 interval, the "by reg" 1508 /// and "by stack" intervals and local interval created when interference 1509 /// occurs). 1510 /// One of the split intervals ends up evicting %2 from physreg1. 1511 /// Evictee %2 is intended for region splitting with split candidate 1512 /// physreg1. 1513 /// One of the split intervals ends up evicting %3 from physreg2, etc. 1514 /// 1515 /// Scenario #2 1516 /// %0 is evicted from physreg0 by %1. 1517 /// %2 is evicted from physreg2 by %3 etc. 1518 /// Evictee %0 is intended for region splitting with split candidate 1519 /// physreg1. 1520 /// Region splitting creates a local interval because of interference with the 1521 /// evictor %1. 1522 /// One of the split intervals ends up evicting back original evictor %1 1523 /// from physreg0 (the reg %0 was evicted from). 1524 /// Another evictee %2 is intended for region splitting with split candidate 1525 /// physreg1. 1526 /// One of the split intervals ends up evicting %3 from physreg2, etc. 1527 /// 1528 /// \param Evictee The register considered to be split. 1529 /// \param Cand The split candidate that determines the physical register 1530 /// we are splitting for and the interferences. 1531 /// \param BBNumber The number of a BB for which the region split process will 1532 /// create a local split interval. 1533 /// \param Order The physical registers that may get evicted by a split 1534 /// artifact of Evictee. 1535 /// \return True if splitting Evictee may cause a bad eviction chain, false 1536 /// otherwise. 1537 bool RAGreedy::splitCanCauseEvictionChain(Register Evictee, 1538 GlobalSplitCandidate &Cand, 1539 unsigned BBNumber, 1540 const AllocationOrder &Order) { 1541 EvictionTrack::EvictorInfo VregEvictorInfo = LastEvicted.getEvictor(Evictee); 1542 unsigned Evictor = VregEvictorInfo.first; 1543 MCRegister PhysReg = VregEvictorInfo.second; 1544 1545 // No actual evictor. 1546 if (!Evictor || !PhysReg) 1547 return false; 1548 1549 float MaxWeight = 0; 1550 MCRegister FutureEvictedPhysReg = 1551 getCheapestEvicteeWeight(Order, LIS->getInterval(Evictee), 1552 Cand.Intf.first(), Cand.Intf.last(), &MaxWeight); 1553 1554 // The bad eviction chain occurs when either the split candidate is the 1555 // evicting reg or one of the split artifact will evict the evicting reg. 1556 if ((PhysReg != Cand.PhysReg) && (PhysReg != FutureEvictedPhysReg)) 1557 return false; 1558 1559 Cand.Intf.moveToBlock(BBNumber); 1560 1561 // Check to see if the Evictor contains interference (with Evictee) in the 1562 // given BB. If so, this interference caused the eviction of Evictee from 1563 // PhysReg. This suggest that we will create a local interval during the 1564 // region split to avoid this interference This local interval may cause a bad 1565 // eviction chain. 1566 if (!LIS->hasInterval(Evictor)) 1567 return false; 1568 LiveInterval &EvictorLI = LIS->getInterval(Evictor); 1569 if (EvictorLI.FindSegmentContaining(Cand.Intf.first()) == EvictorLI.end()) 1570 return false; 1571 1572 // Now, check to see if the local interval we will create is going to be 1573 // expensive enough to evict somebody If so, this may cause a bad eviction 1574 // chain. 1575 float splitArtifactWeight = 1576 VRAI->futureWeight(LIS->getInterval(Evictee), 1577 Cand.Intf.first().getPrevIndex(), Cand.Intf.last()); 1578 if (splitArtifactWeight >= 0 && splitArtifactWeight < MaxWeight) 1579 return false; 1580 1581 return true; 1582 } 1583 1584 /// Check if splitting VirtRegToSplit will create a local split interval 1585 /// in basic block number BBNumber that may cause a spill. 1586 /// 1587 /// \param VirtRegToSplit The register considered to be split. 1588 /// \param Cand The split candidate that determines the physical 1589 /// register we are splitting for and the interferences. 1590 /// \param BBNumber The number of a BB for which the region split process 1591 /// will create a local split interval. 1592 /// \param Order The physical registers that may get evicted by a 1593 /// split artifact of VirtRegToSplit. 1594 /// \return True if splitting VirtRegToSplit may cause a spill, false 1595 /// otherwise. 1596 bool RAGreedy::splitCanCauseLocalSpill(unsigned VirtRegToSplit, 1597 GlobalSplitCandidate &Cand, 1598 unsigned BBNumber, 1599 const AllocationOrder &Order) { 1600 Cand.Intf.moveToBlock(BBNumber); 1601 1602 // Check if the local interval will find a non interfereing assignment. 1603 for (auto PhysReg : Order.getOrder()) { 1604 if (!Matrix->checkInterference(Cand.Intf.first().getPrevIndex(), 1605 Cand.Intf.last(), PhysReg)) 1606 return false; 1607 } 1608 1609 // The local interval is not able to find non interferencing assignment 1610 // and not able to evict a less worthy interval, therfore, it can cause a 1611 // spill. 1612 return true; 1613 } 1614 1615 /// calcGlobalSplitCost - Return the global split cost of following the split 1616 /// pattern in LiveBundles. This cost should be added to the local cost of the 1617 /// interference pattern in SplitConstraints. 1618 /// 1619 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand, 1620 const AllocationOrder &Order, 1621 bool *CanCauseEvictionChain) { 1622 BlockFrequency GlobalCost = 0; 1623 const BitVector &LiveBundles = Cand.LiveBundles; 1624 Register VirtRegToSplit = SA->getParent().reg(); 1625 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1626 for (unsigned I = 0; I != UseBlocks.size(); ++I) { 1627 const SplitAnalysis::BlockInfo &BI = UseBlocks[I]; 1628 SpillPlacement::BlockConstraint &BC = SplitConstraints[I]; 1629 bool RegIn = LiveBundles[Bundles->getBundle(BC.Number, false)]; 1630 bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)]; 1631 unsigned Ins = 0; 1632 1633 Cand.Intf.moveToBlock(BC.Number); 1634 // Check wheather a local interval is going to be created during the region 1635 // split. Calculate adavanced spilt cost (cost of local intervals) if option 1636 // is enabled. 1637 if (EnableAdvancedRASplitCost && Cand.Intf.hasInterference() && BI.LiveIn && 1638 BI.LiveOut && RegIn && RegOut) { 1639 1640 if (CanCauseEvictionChain && 1641 splitCanCauseEvictionChain(VirtRegToSplit, Cand, BC.Number, Order)) { 1642 // This interference causes our eviction from this assignment, we might 1643 // evict somebody else and eventually someone will spill, add that cost. 1644 // See splitCanCauseEvictionChain for detailed description of scenarios. 1645 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1646 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1647 1648 *CanCauseEvictionChain = true; 1649 1650 } else if (splitCanCauseLocalSpill(VirtRegToSplit, Cand, BC.Number, 1651 Order)) { 1652 // This interference causes local interval to spill, add that cost. 1653 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1654 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1655 } 1656 } 1657 1658 if (BI.LiveIn) 1659 Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg); 1660 if (BI.LiveOut) 1661 Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg); 1662 while (Ins--) 1663 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1664 } 1665 1666 for (unsigned Number : Cand.ActiveBlocks) { 1667 bool RegIn = LiveBundles[Bundles->getBundle(Number, false)]; 1668 bool RegOut = LiveBundles[Bundles->getBundle(Number, true)]; 1669 if (!RegIn && !RegOut) 1670 continue; 1671 if (RegIn && RegOut) { 1672 // We need double spill code if this block has interference. 1673 Cand.Intf.moveToBlock(Number); 1674 if (Cand.Intf.hasInterference()) { 1675 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1676 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1677 1678 // Check wheather a local interval is going to be created during the 1679 // region split. 1680 if (EnableAdvancedRASplitCost && CanCauseEvictionChain && 1681 splitCanCauseEvictionChain(VirtRegToSplit, Cand, Number, Order)) { 1682 // This interference cause our eviction from this assignment, we might 1683 // evict somebody else, add that cost. 1684 // See splitCanCauseEvictionChain for detailed description of 1685 // scenarios. 1686 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1687 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1688 1689 *CanCauseEvictionChain = true; 1690 } 1691 } 1692 continue; 1693 } 1694 // live-in / stack-out or stack-in live-out. 1695 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1696 } 1697 return GlobalCost; 1698 } 1699 1700 /// splitAroundRegion - Split the current live range around the regions 1701 /// determined by BundleCand and GlobalCand. 1702 /// 1703 /// Before calling this function, GlobalCand and BundleCand must be initialized 1704 /// so each bundle is assigned to a valid candidate, or NoCand for the 1705 /// stack-bound bundles. The shared SA/SE SplitAnalysis and SplitEditor 1706 /// objects must be initialized for the current live range, and intervals 1707 /// created for the used candidates. 1708 /// 1709 /// @param LREdit The LiveRangeEdit object handling the current split. 1710 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value 1711 /// must appear in this list. 1712 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit, 1713 ArrayRef<unsigned> UsedCands) { 1714 // These are the intervals created for new global ranges. We may create more 1715 // intervals for local ranges. 1716 const unsigned NumGlobalIntvs = LREdit.size(); 1717 LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs 1718 << " globals.\n"); 1719 assert(NumGlobalIntvs && "No global intervals configured"); 1720 1721 // Isolate even single instructions when dealing with a proper sub-class. 1722 // That guarantees register class inflation for the stack interval because it 1723 // is all copies. 1724 Register Reg = SA->getParent().reg(); 1725 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 1726 1727 // First handle all the blocks with uses. 1728 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1729 for (const SplitAnalysis::BlockInfo &BI : UseBlocks) { 1730 unsigned Number = BI.MBB->getNumber(); 1731 unsigned IntvIn = 0, IntvOut = 0; 1732 SlotIndex IntfIn, IntfOut; 1733 if (BI.LiveIn) { 1734 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)]; 1735 if (CandIn != NoCand) { 1736 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 1737 IntvIn = Cand.IntvIdx; 1738 Cand.Intf.moveToBlock(Number); 1739 IntfIn = Cand.Intf.first(); 1740 } 1741 } 1742 if (BI.LiveOut) { 1743 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)]; 1744 if (CandOut != NoCand) { 1745 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 1746 IntvOut = Cand.IntvIdx; 1747 Cand.Intf.moveToBlock(Number); 1748 IntfOut = Cand.Intf.last(); 1749 } 1750 } 1751 1752 // Create separate intervals for isolated blocks with multiple uses. 1753 if (!IntvIn && !IntvOut) { 1754 LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " isolated.\n"); 1755 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 1756 SE->splitSingleBlock(BI); 1757 continue; 1758 } 1759 1760 if (IntvIn && IntvOut) 1761 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1762 else if (IntvIn) 1763 SE->splitRegInBlock(BI, IntvIn, IntfIn); 1764 else 1765 SE->splitRegOutBlock(BI, IntvOut, IntfOut); 1766 } 1767 1768 // Handle live-through blocks. The relevant live-through blocks are stored in 1769 // the ActiveBlocks list with each candidate. We need to filter out 1770 // duplicates. 1771 BitVector Todo = SA->getThroughBlocks(); 1772 for (unsigned c = 0; c != UsedCands.size(); ++c) { 1773 ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks; 1774 for (unsigned Number : Blocks) { 1775 if (!Todo.test(Number)) 1776 continue; 1777 Todo.reset(Number); 1778 1779 unsigned IntvIn = 0, IntvOut = 0; 1780 SlotIndex IntfIn, IntfOut; 1781 1782 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)]; 1783 if (CandIn != NoCand) { 1784 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 1785 IntvIn = Cand.IntvIdx; 1786 Cand.Intf.moveToBlock(Number); 1787 IntfIn = Cand.Intf.first(); 1788 } 1789 1790 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)]; 1791 if (CandOut != NoCand) { 1792 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 1793 IntvOut = Cand.IntvIdx; 1794 Cand.Intf.moveToBlock(Number); 1795 IntfOut = Cand.Intf.last(); 1796 } 1797 if (!IntvIn && !IntvOut) 1798 continue; 1799 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1800 } 1801 } 1802 1803 ++NumGlobalSplits; 1804 1805 SmallVector<unsigned, 8> IntvMap; 1806 SE->finish(&IntvMap); 1807 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 1808 1809 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 1810 unsigned OrigBlocks = SA->getNumLiveBlocks(); 1811 1812 // Sort out the new intervals created by splitting. We get four kinds: 1813 // - Remainder intervals should not be split again. 1814 // - Candidate intervals can be assigned to Cand.PhysReg. 1815 // - Block-local splits are candidates for local splitting. 1816 // - DCE leftovers should go back on the queue. 1817 for (unsigned I = 0, E = LREdit.size(); I != E; ++I) { 1818 LiveInterval &Reg = LIS->getInterval(LREdit.get(I)); 1819 1820 // Ignore old intervals from DCE. 1821 if (getStage(Reg) != RS_New) 1822 continue; 1823 1824 // Remainder interval. Don't try splitting again, spill if it doesn't 1825 // allocate. 1826 if (IntvMap[I] == 0) { 1827 setStage(Reg, RS_Spill); 1828 continue; 1829 } 1830 1831 // Global intervals. Allow repeated splitting as long as the number of live 1832 // blocks is strictly decreasing. 1833 if (IntvMap[I] < NumGlobalIntvs) { 1834 if (SA->countLiveBlocks(&Reg) >= OrigBlocks) { 1835 LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks 1836 << " blocks as original.\n"); 1837 // Don't allow repeated splitting as a safe guard against looping. 1838 setStage(Reg, RS_Split2); 1839 } 1840 continue; 1841 } 1842 1843 // Other intervals are treated as new. This includes local intervals created 1844 // for blocks with multiple uses, and anything created by DCE. 1845 } 1846 1847 if (VerifyEnabled) 1848 MF->verify(this, "After splitting live range around region"); 1849 } 1850 1851 MCRegister RAGreedy::tryRegionSplit(LiveInterval &VirtReg, 1852 AllocationOrder &Order, 1853 SmallVectorImpl<Register> &NewVRegs) { 1854 if (!TRI->shouldRegionSplitForVirtReg(*MF, VirtReg)) 1855 return MCRegister::NoRegister; 1856 unsigned NumCands = 0; 1857 BlockFrequency SpillCost = calcSpillCost(); 1858 BlockFrequency BestCost; 1859 1860 // Check if we can split this live range around a compact region. 1861 bool HasCompact = calcCompactRegion(GlobalCand.front()); 1862 if (HasCompact) { 1863 // Yes, keep GlobalCand[0] as the compact region candidate. 1864 NumCands = 1; 1865 BestCost = BlockFrequency::getMaxFrequency(); 1866 } else { 1867 // No benefit from the compact region, our fallback will be per-block 1868 // splitting. Make sure we find a solution that is cheaper than spilling. 1869 BestCost = SpillCost; 1870 LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = "; 1871 MBFI->printBlockFreq(dbgs(), BestCost) << '\n'); 1872 } 1873 1874 bool CanCauseEvictionChain = false; 1875 unsigned BestCand = 1876 calculateRegionSplitCost(VirtReg, Order, BestCost, NumCands, 1877 false /*IgnoreCSR*/, &CanCauseEvictionChain); 1878 1879 // Split candidates with compact regions can cause a bad eviction sequence. 1880 // See splitCanCauseEvictionChain for detailed description of scenarios. 1881 // To avoid it, we need to comapre the cost with the spill cost and not the 1882 // current max frequency. 1883 if (HasCompact && (BestCost > SpillCost) && (BestCand != NoCand) && 1884 CanCauseEvictionChain) { 1885 return MCRegister::NoRegister; 1886 } 1887 1888 // No solutions found, fall back to single block splitting. 1889 if (!HasCompact && BestCand == NoCand) 1890 return MCRegister::NoRegister; 1891 1892 return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs); 1893 } 1894 1895 unsigned RAGreedy::calculateRegionSplitCost(LiveInterval &VirtReg, 1896 AllocationOrder &Order, 1897 BlockFrequency &BestCost, 1898 unsigned &NumCands, bool IgnoreCSR, 1899 bool *CanCauseEvictionChain) { 1900 unsigned BestCand = NoCand; 1901 for (MCPhysReg PhysReg : Order) { 1902 assert(PhysReg); 1903 if (IgnoreCSR && isUnusedCalleeSavedReg(PhysReg)) 1904 continue; 1905 1906 // Discard bad candidates before we run out of interference cache cursors. 1907 // This will only affect register classes with a lot of registers (>32). 1908 if (NumCands == IntfCache.getMaxCursors()) { 1909 unsigned WorstCount = ~0u; 1910 unsigned Worst = 0; 1911 for (unsigned CandIndex = 0; CandIndex != NumCands; ++CandIndex) { 1912 if (CandIndex == BestCand || !GlobalCand[CandIndex].PhysReg) 1913 continue; 1914 unsigned Count = GlobalCand[CandIndex].LiveBundles.count(); 1915 if (Count < WorstCount) { 1916 Worst = CandIndex; 1917 WorstCount = Count; 1918 } 1919 } 1920 --NumCands; 1921 GlobalCand[Worst] = GlobalCand[NumCands]; 1922 if (BestCand == NumCands) 1923 BestCand = Worst; 1924 } 1925 1926 if (GlobalCand.size() <= NumCands) 1927 GlobalCand.resize(NumCands+1); 1928 GlobalSplitCandidate &Cand = GlobalCand[NumCands]; 1929 Cand.reset(IntfCache, PhysReg); 1930 1931 SpillPlacer->prepare(Cand.LiveBundles); 1932 BlockFrequency Cost; 1933 if (!addSplitConstraints(Cand.Intf, Cost)) { 1934 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tno positive bundles\n"); 1935 continue; 1936 } 1937 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tstatic = "; 1938 MBFI->printBlockFreq(dbgs(), Cost)); 1939 if (Cost >= BestCost) { 1940 LLVM_DEBUG({ 1941 if (BestCand == NoCand) 1942 dbgs() << " worse than no bundles\n"; 1943 else 1944 dbgs() << " worse than " 1945 << printReg(GlobalCand[BestCand].PhysReg, TRI) << '\n'; 1946 }); 1947 continue; 1948 } 1949 if (!growRegion(Cand)) { 1950 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n"); 1951 continue; 1952 } 1953 1954 SpillPlacer->finish(); 1955 1956 // No live bundles, defer to splitSingleBlocks(). 1957 if (!Cand.LiveBundles.any()) { 1958 LLVM_DEBUG(dbgs() << " no bundles.\n"); 1959 continue; 1960 } 1961 1962 bool HasEvictionChain = false; 1963 Cost += calcGlobalSplitCost(Cand, Order, &HasEvictionChain); 1964 LLVM_DEBUG({ 1965 dbgs() << ", total = "; 1966 MBFI->printBlockFreq(dbgs(), Cost) << " with bundles"; 1967 for (int I : Cand.LiveBundles.set_bits()) 1968 dbgs() << " EB#" << I; 1969 dbgs() << ".\n"; 1970 }); 1971 if (Cost < BestCost) { 1972 BestCand = NumCands; 1973 BestCost = Cost; 1974 // See splitCanCauseEvictionChain for detailed description of bad 1975 // eviction chain scenarios. 1976 if (CanCauseEvictionChain) 1977 *CanCauseEvictionChain = HasEvictionChain; 1978 } 1979 ++NumCands; 1980 } 1981 1982 if (CanCauseEvictionChain && BestCand != NoCand) { 1983 // See splitCanCauseEvictionChain for detailed description of bad 1984 // eviction chain scenarios. 1985 LLVM_DEBUG(dbgs() << "Best split candidate of vreg " 1986 << printReg(VirtReg.reg(), TRI) << " may "); 1987 if (!(*CanCauseEvictionChain)) 1988 LLVM_DEBUG(dbgs() << "not "); 1989 LLVM_DEBUG(dbgs() << "cause bad eviction chain\n"); 1990 } 1991 1992 return BestCand; 1993 } 1994 1995 unsigned RAGreedy::doRegionSplit(LiveInterval &VirtReg, unsigned BestCand, 1996 bool HasCompact, 1997 SmallVectorImpl<Register> &NewVRegs) { 1998 SmallVector<unsigned, 8> UsedCands; 1999 // Prepare split editor. 2000 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2001 SE->reset(LREdit, SplitSpillMode); 2002 2003 // Assign all edge bundles to the preferred candidate, or NoCand. 2004 BundleCand.assign(Bundles->getNumBundles(), NoCand); 2005 2006 // Assign bundles for the best candidate region. 2007 if (BestCand != NoCand) { 2008 GlobalSplitCandidate &Cand = GlobalCand[BestCand]; 2009 if (unsigned B = Cand.getBundles(BundleCand, BestCand)) { 2010 UsedCands.push_back(BestCand); 2011 Cand.IntvIdx = SE->openIntv(); 2012 LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand.PhysReg, TRI) << " in " 2013 << B << " bundles, intv " << Cand.IntvIdx << ".\n"); 2014 (void)B; 2015 } 2016 } 2017 2018 // Assign bundles for the compact region. 2019 if (HasCompact) { 2020 GlobalSplitCandidate &Cand = GlobalCand.front(); 2021 assert(!Cand.PhysReg && "Compact region has no physreg"); 2022 if (unsigned B = Cand.getBundles(BundleCand, 0)) { 2023 UsedCands.push_back(0); 2024 Cand.IntvIdx = SE->openIntv(); 2025 LLVM_DEBUG(dbgs() << "Split for compact region in " << B 2026 << " bundles, intv " << Cand.IntvIdx << ".\n"); 2027 (void)B; 2028 } 2029 } 2030 2031 splitAroundRegion(LREdit, UsedCands); 2032 return 0; 2033 } 2034 2035 //===----------------------------------------------------------------------===// 2036 // Per-Block Splitting 2037 //===----------------------------------------------------------------------===// 2038 2039 /// tryBlockSplit - Split a global live range around every block with uses. This 2040 /// creates a lot of local live ranges, that will be split by tryLocalSplit if 2041 /// they don't allocate. 2042 unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order, 2043 SmallVectorImpl<Register> &NewVRegs) { 2044 assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed"); 2045 Register Reg = VirtReg.reg(); 2046 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 2047 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2048 SE->reset(LREdit, SplitSpillMode); 2049 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 2050 for (const SplitAnalysis::BlockInfo &BI : UseBlocks) { 2051 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 2052 SE->splitSingleBlock(BI); 2053 } 2054 // No blocks were split. 2055 if (LREdit.empty()) 2056 return 0; 2057 2058 // We did split for some blocks. 2059 SmallVector<unsigned, 8> IntvMap; 2060 SE->finish(&IntvMap); 2061 2062 // Tell LiveDebugVariables about the new ranges. 2063 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 2064 2065 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 2066 2067 // Sort out the new intervals created by splitting. The remainder interval 2068 // goes straight to spilling, the new local ranges get to stay RS_New. 2069 for (unsigned I = 0, E = LREdit.size(); I != E; ++I) { 2070 LiveInterval &LI = LIS->getInterval(LREdit.get(I)); 2071 if (getStage(LI) == RS_New && IntvMap[I] == 0) 2072 setStage(LI, RS_Spill); 2073 } 2074 2075 if (VerifyEnabled) 2076 MF->verify(this, "After splitting live range around basic blocks"); 2077 return 0; 2078 } 2079 2080 //===----------------------------------------------------------------------===// 2081 // Per-Instruction Splitting 2082 //===----------------------------------------------------------------------===// 2083 2084 /// Get the number of allocatable registers that match the constraints of \p Reg 2085 /// on \p MI and that are also in \p SuperRC. 2086 static unsigned getNumAllocatableRegsForConstraints( 2087 const MachineInstr *MI, Register Reg, const TargetRegisterClass *SuperRC, 2088 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI, 2089 const RegisterClassInfo &RCI) { 2090 assert(SuperRC && "Invalid register class"); 2091 2092 const TargetRegisterClass *ConstrainedRC = 2093 MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI, 2094 /* ExploreBundle */ true); 2095 if (!ConstrainedRC) 2096 return 0; 2097 return RCI.getNumAllocatableRegs(ConstrainedRC); 2098 } 2099 2100 /// tryInstructionSplit - Split a live range around individual instructions. 2101 /// This is normally not worthwhile since the spiller is doing essentially the 2102 /// same thing. However, when the live range is in a constrained register 2103 /// class, it may help to insert copies such that parts of the live range can 2104 /// be moved to a larger register class. 2105 /// 2106 /// This is similar to spilling to a larger register class. 2107 unsigned 2108 RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order, 2109 SmallVectorImpl<Register> &NewVRegs) { 2110 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg()); 2111 // There is no point to this if there are no larger sub-classes. 2112 if (!RegClassInfo.isProperSubClass(CurRC)) 2113 return 0; 2114 2115 // Always enable split spill mode, since we're effectively spilling to a 2116 // register. 2117 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2118 SE->reset(LREdit, SplitEditor::SM_Size); 2119 2120 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 2121 if (Uses.size() <= 1) 2122 return 0; 2123 2124 LLVM_DEBUG(dbgs() << "Split around " << Uses.size() 2125 << " individual instrs.\n"); 2126 2127 const TargetRegisterClass *SuperRC = 2128 TRI->getLargestLegalSuperClass(CurRC, *MF); 2129 unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC); 2130 // Split around every non-copy instruction if this split will relax 2131 // the constraints on the virtual register. 2132 // Otherwise, splitting just inserts uncoalescable copies that do not help 2133 // the allocation. 2134 for (const auto &Use : Uses) { 2135 if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Use)) 2136 if (MI->isFullCopy() || 2137 SuperRCNumAllocatableRegs == 2138 getNumAllocatableRegsForConstraints(MI, VirtReg.reg(), SuperRC, 2139 TII, TRI, RCI)) { 2140 LLVM_DEBUG(dbgs() << " skip:\t" << Use << '\t' << *MI); 2141 continue; 2142 } 2143 SE->openIntv(); 2144 SlotIndex SegStart = SE->enterIntvBefore(Use); 2145 SlotIndex SegStop = SE->leaveIntvAfter(Use); 2146 SE->useIntv(SegStart, SegStop); 2147 } 2148 2149 if (LREdit.empty()) { 2150 LLVM_DEBUG(dbgs() << "All uses were copies.\n"); 2151 return 0; 2152 } 2153 2154 SmallVector<unsigned, 8> IntvMap; 2155 SE->finish(&IntvMap); 2156 DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS); 2157 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 2158 2159 // Assign all new registers to RS_Spill. This was the last chance. 2160 setStage(LREdit.begin(), LREdit.end(), RS_Spill); 2161 return 0; 2162 } 2163 2164 //===----------------------------------------------------------------------===// 2165 // Local Splitting 2166 //===----------------------------------------------------------------------===// 2167 2168 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted 2169 /// in order to use PhysReg between two entries in SA->UseSlots. 2170 /// 2171 /// GapWeight[I] represents the gap between UseSlots[I] and UseSlots[I + 1]. 2172 /// 2173 void RAGreedy::calcGapWeights(MCRegister PhysReg, 2174 SmallVectorImpl<float> &GapWeight) { 2175 assert(SA->getUseBlocks().size() == 1 && "Not a local interval"); 2176 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 2177 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 2178 const unsigned NumGaps = Uses.size()-1; 2179 2180 // Start and end points for the interference check. 2181 SlotIndex StartIdx = 2182 BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr; 2183 SlotIndex StopIdx = 2184 BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr; 2185 2186 GapWeight.assign(NumGaps, 0.0f); 2187 2188 // Add interference from each overlapping register. 2189 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 2190 if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units) 2191 .checkInterference()) 2192 continue; 2193 2194 // We know that VirtReg is a continuous interval from FirstInstr to 2195 // LastInstr, so we don't need InterferenceQuery. 2196 // 2197 // Interference that overlaps an instruction is counted in both gaps 2198 // surrounding the instruction. The exception is interference before 2199 // StartIdx and after StopIdx. 2200 // 2201 LiveIntervalUnion::SegmentIter IntI = 2202 Matrix->getLiveUnions()[*Units] .find(StartIdx); 2203 for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) { 2204 // Skip the gaps before IntI. 2205 while (Uses[Gap+1].getBoundaryIndex() < IntI.start()) 2206 if (++Gap == NumGaps) 2207 break; 2208 if (Gap == NumGaps) 2209 break; 2210 2211 // Update the gaps covered by IntI. 2212 const float weight = IntI.value()->weight(); 2213 for (; Gap != NumGaps; ++Gap) { 2214 GapWeight[Gap] = std::max(GapWeight[Gap], weight); 2215 if (Uses[Gap+1].getBaseIndex() >= IntI.stop()) 2216 break; 2217 } 2218 if (Gap == NumGaps) 2219 break; 2220 } 2221 } 2222 2223 // Add fixed interference. 2224 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 2225 const LiveRange &LR = LIS->getRegUnit(*Units); 2226 LiveRange::const_iterator I = LR.find(StartIdx); 2227 LiveRange::const_iterator E = LR.end(); 2228 2229 // Same loop as above. Mark any overlapped gaps as HUGE_VALF. 2230 for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) { 2231 while (Uses[Gap+1].getBoundaryIndex() < I->start) 2232 if (++Gap == NumGaps) 2233 break; 2234 if (Gap == NumGaps) 2235 break; 2236 2237 for (; Gap != NumGaps; ++Gap) { 2238 GapWeight[Gap] = huge_valf; 2239 if (Uses[Gap+1].getBaseIndex() >= I->end) 2240 break; 2241 } 2242 if (Gap == NumGaps) 2243 break; 2244 } 2245 } 2246 } 2247 2248 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only 2249 /// basic block. 2250 /// 2251 unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order, 2252 SmallVectorImpl<Register> &NewVRegs) { 2253 // TODO: the function currently only handles a single UseBlock; it should be 2254 // possible to generalize. 2255 if (SA->getUseBlocks().size() != 1) 2256 return 0; 2257 2258 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 2259 2260 // Note that it is possible to have an interval that is live-in or live-out 2261 // while only covering a single block - A phi-def can use undef values from 2262 // predecessors, and the block could be a single-block loop. 2263 // We don't bother doing anything clever about such a case, we simply assume 2264 // that the interval is continuous from FirstInstr to LastInstr. We should 2265 // make sure that we don't do anything illegal to such an interval, though. 2266 2267 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 2268 if (Uses.size() <= 2) 2269 return 0; 2270 const unsigned NumGaps = Uses.size()-1; 2271 2272 LLVM_DEBUG({ 2273 dbgs() << "tryLocalSplit: "; 2274 for (const auto &Use : Uses) 2275 dbgs() << ' ' << Use; 2276 dbgs() << '\n'; 2277 }); 2278 2279 // If VirtReg is live across any register mask operands, compute a list of 2280 // gaps with register masks. 2281 SmallVector<unsigned, 8> RegMaskGaps; 2282 if (Matrix->checkRegMaskInterference(VirtReg)) { 2283 // Get regmask slots for the whole block. 2284 ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber()); 2285 LLVM_DEBUG(dbgs() << RMS.size() << " regmasks in block:"); 2286 // Constrain to VirtReg's live range. 2287 unsigned RI = 2288 llvm::lower_bound(RMS, Uses.front().getRegSlot()) - RMS.begin(); 2289 unsigned RE = RMS.size(); 2290 for (unsigned I = 0; I != NumGaps && RI != RE; ++I) { 2291 // Look for Uses[I] <= RMS <= Uses[I + 1]. 2292 assert(!SlotIndex::isEarlierInstr(RMS[RI], Uses[I])); 2293 if (SlotIndex::isEarlierInstr(Uses[I + 1], RMS[RI])) 2294 continue; 2295 // Skip a regmask on the same instruction as the last use. It doesn't 2296 // overlap the live range. 2297 if (SlotIndex::isSameInstr(Uses[I + 1], RMS[RI]) && I + 1 == NumGaps) 2298 break; 2299 LLVM_DEBUG(dbgs() << ' ' << RMS[RI] << ':' << Uses[I] << '-' 2300 << Uses[I + 1]); 2301 RegMaskGaps.push_back(I); 2302 // Advance ri to the next gap. A regmask on one of the uses counts in 2303 // both gaps. 2304 while (RI != RE && SlotIndex::isEarlierInstr(RMS[RI], Uses[I + 1])) 2305 ++RI; 2306 } 2307 LLVM_DEBUG(dbgs() << '\n'); 2308 } 2309 2310 // Since we allow local split results to be split again, there is a risk of 2311 // creating infinite loops. It is tempting to require that the new live 2312 // ranges have less instructions than the original. That would guarantee 2313 // convergence, but it is too strict. A live range with 3 instructions can be 2314 // split 2+3 (including the COPY), and we want to allow that. 2315 // 2316 // Instead we use these rules: 2317 // 2318 // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the 2319 // noop split, of course). 2320 // 2. Require progress be made for ranges with getStage() == RS_Split2. All 2321 // the new ranges must have fewer instructions than before the split. 2322 // 3. New ranges with the same number of instructions are marked RS_Split2, 2323 // smaller ranges are marked RS_New. 2324 // 2325 // These rules allow a 3 -> 2+3 split once, which we need. They also prevent 2326 // excessive splitting and infinite loops. 2327 // 2328 bool ProgressRequired = getStage(VirtReg) >= RS_Split2; 2329 2330 // Best split candidate. 2331 unsigned BestBefore = NumGaps; 2332 unsigned BestAfter = 0; 2333 float BestDiff = 0; 2334 2335 const float blockFreq = 2336 SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() * 2337 (1.0f / MBFI->getEntryFreq()); 2338 SmallVector<float, 8> GapWeight; 2339 2340 for (MCPhysReg PhysReg : Order) { 2341 assert(PhysReg); 2342 // Keep track of the largest spill weight that would need to be evicted in 2343 // order to make use of PhysReg between UseSlots[I] and UseSlots[I + 1]. 2344 calcGapWeights(PhysReg, GapWeight); 2345 2346 // Remove any gaps with regmask clobbers. 2347 if (Matrix->checkRegMaskInterference(VirtReg, PhysReg)) 2348 for (unsigned I = 0, E = RegMaskGaps.size(); I != E; ++I) 2349 GapWeight[RegMaskGaps[I]] = huge_valf; 2350 2351 // Try to find the best sequence of gaps to close. 2352 // The new spill weight must be larger than any gap interference. 2353 2354 // We will split before Uses[SplitBefore] and after Uses[SplitAfter]. 2355 unsigned SplitBefore = 0, SplitAfter = 1; 2356 2357 // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]). 2358 // It is the spill weight that needs to be evicted. 2359 float MaxGap = GapWeight[0]; 2360 2361 while (true) { 2362 // Live before/after split? 2363 const bool LiveBefore = SplitBefore != 0 || BI.LiveIn; 2364 const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut; 2365 2366 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << ' ' << Uses[SplitBefore] 2367 << '-' << Uses[SplitAfter] << " I=" << MaxGap); 2368 2369 // Stop before the interval gets so big we wouldn't be making progress. 2370 if (!LiveBefore && !LiveAfter) { 2371 LLVM_DEBUG(dbgs() << " all\n"); 2372 break; 2373 } 2374 // Should the interval be extended or shrunk? 2375 bool Shrink = true; 2376 2377 // How many gaps would the new range have? 2378 unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter; 2379 2380 // Legally, without causing looping? 2381 bool Legal = !ProgressRequired || NewGaps < NumGaps; 2382 2383 if (Legal && MaxGap < huge_valf) { 2384 // Estimate the new spill weight. Each instruction reads or writes the 2385 // register. Conservatively assume there are no read-modify-write 2386 // instructions. 2387 // 2388 // Try to guess the size of the new interval. 2389 const float EstWeight = normalizeSpillWeight( 2390 blockFreq * (NewGaps + 1), 2391 Uses[SplitBefore].distance(Uses[SplitAfter]) + 2392 (LiveBefore + LiveAfter) * SlotIndex::InstrDist, 2393 1); 2394 // Would this split be possible to allocate? 2395 // Never allocate all gaps, we wouldn't be making progress. 2396 LLVM_DEBUG(dbgs() << " w=" << EstWeight); 2397 if (EstWeight * Hysteresis >= MaxGap) { 2398 Shrink = false; 2399 float Diff = EstWeight - MaxGap; 2400 if (Diff > BestDiff) { 2401 LLVM_DEBUG(dbgs() << " (best)"); 2402 BestDiff = Hysteresis * Diff; 2403 BestBefore = SplitBefore; 2404 BestAfter = SplitAfter; 2405 } 2406 } 2407 } 2408 2409 // Try to shrink. 2410 if (Shrink) { 2411 if (++SplitBefore < SplitAfter) { 2412 LLVM_DEBUG(dbgs() << " shrink\n"); 2413 // Recompute the max when necessary. 2414 if (GapWeight[SplitBefore - 1] >= MaxGap) { 2415 MaxGap = GapWeight[SplitBefore]; 2416 for (unsigned I = SplitBefore + 1; I != SplitAfter; ++I) 2417 MaxGap = std::max(MaxGap, GapWeight[I]); 2418 } 2419 continue; 2420 } 2421 MaxGap = 0; 2422 } 2423 2424 // Try to extend the interval. 2425 if (SplitAfter >= NumGaps) { 2426 LLVM_DEBUG(dbgs() << " end\n"); 2427 break; 2428 } 2429 2430 LLVM_DEBUG(dbgs() << " extend\n"); 2431 MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]); 2432 } 2433 } 2434 2435 // Didn't find any candidates? 2436 if (BestBefore == NumGaps) 2437 return 0; 2438 2439 LLVM_DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] << '-' 2440 << Uses[BestAfter] << ", " << BestDiff << ", " 2441 << (BestAfter - BestBefore + 1) << " instrs\n"); 2442 2443 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2444 SE->reset(LREdit); 2445 2446 SE->openIntv(); 2447 SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]); 2448 SlotIndex SegStop = SE->leaveIntvAfter(Uses[BestAfter]); 2449 SE->useIntv(SegStart, SegStop); 2450 SmallVector<unsigned, 8> IntvMap; 2451 SE->finish(&IntvMap); 2452 DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS); 2453 2454 // If the new range has the same number of instructions as before, mark it as 2455 // RS_Split2 so the next split will be forced to make progress. Otherwise, 2456 // leave the new intervals as RS_New so they can compete. 2457 bool LiveBefore = BestBefore != 0 || BI.LiveIn; 2458 bool LiveAfter = BestAfter != NumGaps || BI.LiveOut; 2459 unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter; 2460 if (NewGaps >= NumGaps) { 2461 LLVM_DEBUG(dbgs() << "Tagging non-progress ranges: "); 2462 assert(!ProgressRequired && "Didn't make progress when it was required."); 2463 for (unsigned I = 0, E = IntvMap.size(); I != E; ++I) 2464 if (IntvMap[I] == 1) { 2465 setStage(LIS->getInterval(LREdit.get(I)), RS_Split2); 2466 LLVM_DEBUG(dbgs() << printReg(LREdit.get(I))); 2467 } 2468 LLVM_DEBUG(dbgs() << '\n'); 2469 } 2470 ++NumLocalSplits; 2471 2472 return 0; 2473 } 2474 2475 //===----------------------------------------------------------------------===// 2476 // Live Range Splitting 2477 //===----------------------------------------------------------------------===// 2478 2479 /// trySplit - Try to split VirtReg or one of its interferences, making it 2480 /// assignable. 2481 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs. 2482 unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order, 2483 SmallVectorImpl<Register> &NewVRegs, 2484 const SmallVirtRegSet &FixedRegisters) { 2485 // Ranges must be Split2 or less. 2486 if (getStage(VirtReg) >= RS_Spill) 2487 return 0; 2488 2489 // Local intervals are handled separately. 2490 if (LIS->intervalIsInOneMBB(VirtReg)) { 2491 NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName, 2492 TimerGroupDescription, TimePassesIsEnabled); 2493 SA->analyze(&VirtReg); 2494 Register PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs); 2495 if (PhysReg || !NewVRegs.empty()) 2496 return PhysReg; 2497 return tryInstructionSplit(VirtReg, Order, NewVRegs); 2498 } 2499 2500 NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName, 2501 TimerGroupDescription, TimePassesIsEnabled); 2502 2503 SA->analyze(&VirtReg); 2504 2505 // FIXME: SplitAnalysis may repair broken live ranges coming from the 2506 // coalescer. That may cause the range to become allocatable which means that 2507 // tryRegionSplit won't be making progress. This check should be replaced with 2508 // an assertion when the coalescer is fixed. 2509 if (SA->didRepairRange()) { 2510 // VirtReg has changed, so all cached queries are invalid. 2511 Matrix->invalidateVirtRegs(); 2512 if (Register PhysReg = tryAssign(VirtReg, Order, NewVRegs, FixedRegisters)) 2513 return PhysReg; 2514 } 2515 2516 // First try to split around a region spanning multiple blocks. RS_Split2 2517 // ranges already made dubious progress with region splitting, so they go 2518 // straight to single block splitting. 2519 if (getStage(VirtReg) < RS_Split2) { 2520 MCRegister PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs); 2521 if (PhysReg || !NewVRegs.empty()) 2522 return PhysReg; 2523 } 2524 2525 // Then isolate blocks. 2526 return tryBlockSplit(VirtReg, Order, NewVRegs); 2527 } 2528 2529 //===----------------------------------------------------------------------===// 2530 // Last Chance Recoloring 2531 //===----------------------------------------------------------------------===// 2532 2533 /// Return true if \p reg has any tied def operand. 2534 static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg) { 2535 for (const MachineOperand &MO : MRI->def_operands(reg)) 2536 if (MO.isTied()) 2537 return true; 2538 2539 return false; 2540 } 2541 2542 /// mayRecolorAllInterferences - Check if the virtual registers that 2543 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be 2544 /// recolored to free \p PhysReg. 2545 /// When true is returned, \p RecoloringCandidates has been augmented with all 2546 /// the live intervals that need to be recolored in order to free \p PhysReg 2547 /// for \p VirtReg. 2548 /// \p FixedRegisters contains all the virtual registers that cannot be 2549 /// recolored. 2550 bool RAGreedy::mayRecolorAllInterferences( 2551 MCRegister PhysReg, LiveInterval &VirtReg, SmallLISet &RecoloringCandidates, 2552 const SmallVirtRegSet &FixedRegisters) { 2553 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg()); 2554 2555 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 2556 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 2557 // If there is LastChanceRecoloringMaxInterference or more interferences, 2558 // chances are one would not be recolorable. 2559 if (Q.collectInterferingVRegs(LastChanceRecoloringMaxInterference) >= 2560 LastChanceRecoloringMaxInterference && !ExhaustiveSearch) { 2561 LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n"); 2562 CutOffInfo |= CO_Interf; 2563 return false; 2564 } 2565 for (LiveInterval *Intf : reverse(Q.interferingVRegs())) { 2566 // If Intf is done and sit on the same register class as VirtReg, 2567 // it would not be recolorable as it is in the same state as VirtReg. 2568 // However, if VirtReg has tied defs and Intf doesn't, then 2569 // there is still a point in examining if it can be recolorable. 2570 if (((getStage(*Intf) == RS_Done && 2571 MRI->getRegClass(Intf->reg()) == CurRC) && 2572 !(hasTiedDef(MRI, VirtReg.reg()) && 2573 !hasTiedDef(MRI, Intf->reg()))) || 2574 FixedRegisters.count(Intf->reg())) { 2575 LLVM_DEBUG( 2576 dbgs() << "Early abort: the interference is not recolorable.\n"); 2577 return false; 2578 } 2579 RecoloringCandidates.insert(Intf); 2580 } 2581 } 2582 return true; 2583 } 2584 2585 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring 2586 /// its interferences. 2587 /// Last chance recoloring chooses a color for \p VirtReg and recolors every 2588 /// virtual register that was using it. The recoloring process may recursively 2589 /// use the last chance recoloring. Therefore, when a virtual register has been 2590 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot 2591 /// be last-chance-recolored again during this recoloring "session". 2592 /// E.g., 2593 /// Let 2594 /// vA can use {R1, R2 } 2595 /// vB can use { R2, R3} 2596 /// vC can use {R1 } 2597 /// Where vA, vB, and vC cannot be split anymore (they are reloads for 2598 /// instance) and they all interfere. 2599 /// 2600 /// vA is assigned R1 2601 /// vB is assigned R2 2602 /// vC tries to evict vA but vA is already done. 2603 /// Regular register allocation fails. 2604 /// 2605 /// Last chance recoloring kicks in: 2606 /// vC does as if vA was evicted => vC uses R1. 2607 /// vC is marked as fixed. 2608 /// vA needs to find a color. 2609 /// None are available. 2610 /// vA cannot evict vC: vC is a fixed virtual register now. 2611 /// vA does as if vB was evicted => vA uses R2. 2612 /// vB needs to find a color. 2613 /// R3 is available. 2614 /// Recoloring => vC = R1, vA = R2, vB = R3 2615 /// 2616 /// \p Order defines the preferred allocation order for \p VirtReg. 2617 /// \p NewRegs will contain any new virtual register that have been created 2618 /// (split, spill) during the process and that must be assigned. 2619 /// \p FixedRegisters contains all the virtual registers that cannot be 2620 /// recolored. 2621 /// \p Depth gives the current depth of the last chance recoloring. 2622 /// \return a physical register that can be used for VirtReg or ~0u if none 2623 /// exists. 2624 unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg, 2625 AllocationOrder &Order, 2626 SmallVectorImpl<Register> &NewVRegs, 2627 SmallVirtRegSet &FixedRegisters, 2628 unsigned Depth) { 2629 if (!TRI->shouldUseLastChanceRecoloringForVirtReg(*MF, VirtReg)) 2630 return ~0u; 2631 2632 LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n'); 2633 // Ranges must be Done. 2634 assert((getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) && 2635 "Last chance recoloring should really be last chance"); 2636 // Set the max depth to LastChanceRecoloringMaxDepth. 2637 // We may want to reconsider that if we end up with a too large search space 2638 // for target with hundreds of registers. 2639 // Indeed, in that case we may want to cut the search space earlier. 2640 if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) { 2641 LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n"); 2642 CutOffInfo |= CO_Depth; 2643 return ~0u; 2644 } 2645 2646 // Set of Live intervals that will need to be recolored. 2647 SmallLISet RecoloringCandidates; 2648 // Record the original mapping virtual register to physical register in case 2649 // the recoloring fails. 2650 DenseMap<Register, MCRegister> VirtRegToPhysReg; 2651 // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in 2652 // this recoloring "session". 2653 assert(!FixedRegisters.count(VirtReg.reg())); 2654 FixedRegisters.insert(VirtReg.reg()); 2655 SmallVector<Register, 4> CurrentNewVRegs; 2656 2657 for (MCRegister PhysReg : Order) { 2658 assert(PhysReg.isValid()); 2659 LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg << " to " 2660 << printReg(PhysReg, TRI) << '\n'); 2661 RecoloringCandidates.clear(); 2662 VirtRegToPhysReg.clear(); 2663 CurrentNewVRegs.clear(); 2664 2665 // It is only possible to recolor virtual register interference. 2666 if (Matrix->checkInterference(VirtReg, PhysReg) > 2667 LiveRegMatrix::IK_VirtReg) { 2668 LLVM_DEBUG( 2669 dbgs() << "Some interferences are not with virtual registers.\n"); 2670 2671 continue; 2672 } 2673 2674 // Early give up on this PhysReg if it is obvious we cannot recolor all 2675 // the interferences. 2676 if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates, 2677 FixedRegisters)) { 2678 LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n"); 2679 continue; 2680 } 2681 2682 // RecoloringCandidates contains all the virtual registers that interfer 2683 // with VirtReg on PhysReg (or one of its aliases). 2684 // Enqueue them for recoloring and perform the actual recoloring. 2685 PQueue RecoloringQueue; 2686 for (LiveInterval *RC : RecoloringCandidates) { 2687 Register ItVirtReg = RC->reg(); 2688 enqueue(RecoloringQueue, RC); 2689 assert(VRM->hasPhys(ItVirtReg) && 2690 "Interferences are supposed to be with allocated variables"); 2691 2692 // Record the current allocation. 2693 VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg); 2694 // unset the related struct. 2695 Matrix->unassign(*RC); 2696 } 2697 2698 // Do as if VirtReg was assigned to PhysReg so that the underlying 2699 // recoloring has the right information about the interferes and 2700 // available colors. 2701 Matrix->assign(VirtReg, PhysReg); 2702 2703 // Save the current recoloring state. 2704 // If we cannot recolor all the interferences, we will have to start again 2705 // at this point for the next physical register. 2706 SmallVirtRegSet SaveFixedRegisters(FixedRegisters); 2707 if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs, 2708 FixedRegisters, Depth)) { 2709 // Push the queued vregs into the main queue. 2710 for (Register NewVReg : CurrentNewVRegs) 2711 NewVRegs.push_back(NewVReg); 2712 // Do not mess up with the global assignment process. 2713 // I.e., VirtReg must be unassigned. 2714 Matrix->unassign(VirtReg); 2715 return PhysReg; 2716 } 2717 2718 LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to " 2719 << printReg(PhysReg, TRI) << '\n'); 2720 2721 // The recoloring attempt failed, undo the changes. 2722 FixedRegisters = SaveFixedRegisters; 2723 Matrix->unassign(VirtReg); 2724 2725 // For a newly created vreg which is also in RecoloringCandidates, 2726 // don't add it to NewVRegs because its physical register will be restored 2727 // below. Other vregs in CurrentNewVRegs are created by calling 2728 // selectOrSplit and should be added into NewVRegs. 2729 for (Register &R : CurrentNewVRegs) { 2730 if (RecoloringCandidates.count(&LIS->getInterval(R))) 2731 continue; 2732 NewVRegs.push_back(R); 2733 } 2734 2735 for (LiveInterval *RC : RecoloringCandidates) { 2736 Register ItVirtReg = RC->reg(); 2737 if (VRM->hasPhys(ItVirtReg)) 2738 Matrix->unassign(*RC); 2739 MCRegister ItPhysReg = VirtRegToPhysReg[ItVirtReg]; 2740 Matrix->assign(*RC, ItPhysReg); 2741 } 2742 } 2743 2744 // Last chance recoloring did not worked either, give up. 2745 return ~0u; 2746 } 2747 2748 /// tryRecoloringCandidates - Try to assign a new color to every register 2749 /// in \RecoloringQueue. 2750 /// \p NewRegs will contain any new virtual register created during the 2751 /// recoloring process. 2752 /// \p FixedRegisters[in/out] contains all the registers that have been 2753 /// recolored. 2754 /// \return true if all virtual registers in RecoloringQueue were successfully 2755 /// recolored, false otherwise. 2756 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue, 2757 SmallVectorImpl<Register> &NewVRegs, 2758 SmallVirtRegSet &FixedRegisters, 2759 unsigned Depth) { 2760 while (!RecoloringQueue.empty()) { 2761 LiveInterval *LI = dequeue(RecoloringQueue); 2762 LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI << '\n'); 2763 MCRegister PhysReg = 2764 selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, Depth + 1); 2765 // When splitting happens, the live-range may actually be empty. 2766 // In that case, this is okay to continue the recoloring even 2767 // if we did not find an alternative color for it. Indeed, 2768 // there will not be anything to color for LI in the end. 2769 if (PhysReg == ~0u || (!PhysReg && !LI->empty())) 2770 return false; 2771 2772 if (!PhysReg) { 2773 assert(LI->empty() && "Only empty live-range do not require a register"); 2774 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI 2775 << " succeeded. Empty LI.\n"); 2776 continue; 2777 } 2778 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI 2779 << " succeeded with: " << printReg(PhysReg, TRI) << '\n'); 2780 2781 Matrix->assign(*LI, PhysReg); 2782 FixedRegisters.insert(LI->reg()); 2783 } 2784 return true; 2785 } 2786 2787 //===----------------------------------------------------------------------===// 2788 // Main Entry Point 2789 //===----------------------------------------------------------------------===// 2790 2791 MCRegister RAGreedy::selectOrSplit(LiveInterval &VirtReg, 2792 SmallVectorImpl<Register> &NewVRegs) { 2793 CutOffInfo = CO_None; 2794 LLVMContext &Ctx = MF->getFunction().getContext(); 2795 SmallVirtRegSet FixedRegisters; 2796 MCRegister Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters); 2797 if (Reg == ~0U && (CutOffInfo != CO_None)) { 2798 uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf); 2799 if (CutOffEncountered == CO_Depth) 2800 Ctx.emitError("register allocation failed: maximum depth for recoloring " 2801 "reached. Use -fexhaustive-register-search to skip " 2802 "cutoffs"); 2803 else if (CutOffEncountered == CO_Interf) 2804 Ctx.emitError("register allocation failed: maximum interference for " 2805 "recoloring reached. Use -fexhaustive-register-search " 2806 "to skip cutoffs"); 2807 else if (CutOffEncountered == (CO_Depth | CO_Interf)) 2808 Ctx.emitError("register allocation failed: maximum interference and " 2809 "depth for recoloring reached. Use " 2810 "-fexhaustive-register-search to skip cutoffs"); 2811 } 2812 return Reg; 2813 } 2814 2815 /// Using a CSR for the first time has a cost because it causes push|pop 2816 /// to be added to prologue|epilogue. Splitting a cold section of the live 2817 /// range can have lower cost than using the CSR for the first time; 2818 /// Spilling a live range in the cold path can have lower cost than using 2819 /// the CSR for the first time. Returns the physical register if we decide 2820 /// to use the CSR; otherwise return 0. 2821 MCRegister 2822 RAGreedy::tryAssignCSRFirstTime(LiveInterval &VirtReg, AllocationOrder &Order, 2823 MCRegister PhysReg, uint8_t &CostPerUseLimit, 2824 SmallVectorImpl<Register> &NewVRegs) { 2825 if (getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) { 2826 // We choose spill over using the CSR for the first time if the spill cost 2827 // is lower than CSRCost. 2828 SA->analyze(&VirtReg); 2829 if (calcSpillCost() >= CSRCost) 2830 return PhysReg; 2831 2832 // We are going to spill, set CostPerUseLimit to 1 to make sure that 2833 // we will not use a callee-saved register in tryEvict. 2834 CostPerUseLimit = 1; 2835 return 0; 2836 } 2837 if (getStage(VirtReg) < RS_Split) { 2838 // We choose pre-splitting over using the CSR for the first time if 2839 // the cost of splitting is lower than CSRCost. 2840 SA->analyze(&VirtReg); 2841 unsigned NumCands = 0; 2842 BlockFrequency BestCost = CSRCost; // Don't modify CSRCost. 2843 unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost, 2844 NumCands, true /*IgnoreCSR*/); 2845 if (BestCand == NoCand) 2846 // Use the CSR if we can't find a region split below CSRCost. 2847 return PhysReg; 2848 2849 // Perform the actual pre-splitting. 2850 doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs); 2851 return 0; 2852 } 2853 return PhysReg; 2854 } 2855 2856 void RAGreedy::aboutToRemoveInterval(LiveInterval &LI) { 2857 // Do not keep invalid information around. 2858 SetOfBrokenHints.remove(&LI); 2859 } 2860 2861 void RAGreedy::initializeCSRCost() { 2862 // We use the larger one out of the command-line option and the value report 2863 // by TRI. 2864 CSRCost = BlockFrequency( 2865 std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost())); 2866 if (!CSRCost.getFrequency()) 2867 return; 2868 2869 // Raw cost is relative to Entry == 2^14; scale it appropriately. 2870 uint64_t ActualEntry = MBFI->getEntryFreq(); 2871 if (!ActualEntry) { 2872 CSRCost = 0; 2873 return; 2874 } 2875 uint64_t FixedEntry = 1 << 14; 2876 if (ActualEntry < FixedEntry) 2877 CSRCost *= BranchProbability(ActualEntry, FixedEntry); 2878 else if (ActualEntry <= UINT32_MAX) 2879 // Invert the fraction and divide. 2880 CSRCost /= BranchProbability(FixedEntry, ActualEntry); 2881 else 2882 // Can't use BranchProbability in general, since it takes 32-bit numbers. 2883 CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry); 2884 } 2885 2886 /// Collect the hint info for \p Reg. 2887 /// The results are stored into \p Out. 2888 /// \p Out is not cleared before being populated. 2889 void RAGreedy::collectHintInfo(Register Reg, HintsInfo &Out) { 2890 for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) { 2891 if (!Instr.isFullCopy()) 2892 continue; 2893 // Look for the other end of the copy. 2894 Register OtherReg = Instr.getOperand(0).getReg(); 2895 if (OtherReg == Reg) { 2896 OtherReg = Instr.getOperand(1).getReg(); 2897 if (OtherReg == Reg) 2898 continue; 2899 } 2900 // Get the current assignment. 2901 MCRegister OtherPhysReg = 2902 OtherReg.isPhysical() ? OtherReg.asMCReg() : VRM->getPhys(OtherReg); 2903 // Push the collected information. 2904 Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg, 2905 OtherPhysReg)); 2906 } 2907 } 2908 2909 /// Using the given \p List, compute the cost of the broken hints if 2910 /// \p PhysReg was used. 2911 /// \return The cost of \p List for \p PhysReg. 2912 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List, 2913 MCRegister PhysReg) { 2914 BlockFrequency Cost = 0; 2915 for (const HintInfo &Info : List) { 2916 if (Info.PhysReg != PhysReg) 2917 Cost += Info.Freq; 2918 } 2919 return Cost; 2920 } 2921 2922 /// Using the register assigned to \p VirtReg, try to recolor 2923 /// all the live ranges that are copy-related with \p VirtReg. 2924 /// The recoloring is then propagated to all the live-ranges that have 2925 /// been recolored and so on, until no more copies can be coalesced or 2926 /// it is not profitable. 2927 /// For a given live range, profitability is determined by the sum of the 2928 /// frequencies of the non-identity copies it would introduce with the old 2929 /// and new register. 2930 void RAGreedy::tryHintRecoloring(LiveInterval &VirtReg) { 2931 // We have a broken hint, check if it is possible to fix it by 2932 // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted 2933 // some register and PhysReg may be available for the other live-ranges. 2934 SmallSet<Register, 4> Visited; 2935 SmallVector<unsigned, 2> RecoloringCandidates; 2936 HintsInfo Info; 2937 Register Reg = VirtReg.reg(); 2938 MCRegister PhysReg = VRM->getPhys(Reg); 2939 // Start the recoloring algorithm from the input live-interval, then 2940 // it will propagate to the ones that are copy-related with it. 2941 Visited.insert(Reg); 2942 RecoloringCandidates.push_back(Reg); 2943 2944 LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg, TRI) 2945 << '(' << printReg(PhysReg, TRI) << ")\n"); 2946 2947 do { 2948 Reg = RecoloringCandidates.pop_back_val(); 2949 2950 // We cannot recolor physical register. 2951 if (Register::isPhysicalRegister(Reg)) 2952 continue; 2953 2954 // This may be a skipped class 2955 if (!VRM->hasPhys(Reg)) { 2956 assert(!ShouldAllocateClass(*TRI, *MRI->getRegClass(Reg)) && 2957 "We have an unallocated variable which should have been handled"); 2958 continue; 2959 } 2960 2961 // Get the live interval mapped with this virtual register to be able 2962 // to check for the interference with the new color. 2963 LiveInterval &LI = LIS->getInterval(Reg); 2964 MCRegister CurrPhys = VRM->getPhys(Reg); 2965 // Check that the new color matches the register class constraints and 2966 // that it is free for this live range. 2967 if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) || 2968 Matrix->checkInterference(LI, PhysReg))) 2969 continue; 2970 2971 LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << '(' << printReg(CurrPhys, TRI) 2972 << ") is recolorable.\n"); 2973 2974 // Gather the hint info. 2975 Info.clear(); 2976 collectHintInfo(Reg, Info); 2977 // Check if recoloring the live-range will increase the cost of the 2978 // non-identity copies. 2979 if (CurrPhys != PhysReg) { 2980 LLVM_DEBUG(dbgs() << "Checking profitability:\n"); 2981 BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys); 2982 BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg); 2983 LLVM_DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency() 2984 << "\nNew Cost: " << NewCopiesCost.getFrequency() 2985 << '\n'); 2986 if (OldCopiesCost < NewCopiesCost) { 2987 LLVM_DEBUG(dbgs() << "=> Not profitable.\n"); 2988 continue; 2989 } 2990 // At this point, the cost is either cheaper or equal. If it is 2991 // equal, we consider this is profitable because it may expose 2992 // more recoloring opportunities. 2993 LLVM_DEBUG(dbgs() << "=> Profitable.\n"); 2994 // Recolor the live-range. 2995 Matrix->unassign(LI); 2996 Matrix->assign(LI, PhysReg); 2997 } 2998 // Push all copy-related live-ranges to keep reconciling the broken 2999 // hints. 3000 for (const HintInfo &HI : Info) { 3001 if (Visited.insert(HI.Reg).second) 3002 RecoloringCandidates.push_back(HI.Reg); 3003 } 3004 } while (!RecoloringCandidates.empty()); 3005 } 3006 3007 /// Try to recolor broken hints. 3008 /// Broken hints may be repaired by recoloring when an evicted variable 3009 /// freed up a register for a larger live-range. 3010 /// Consider the following example: 3011 /// BB1: 3012 /// a = 3013 /// b = 3014 /// BB2: 3015 /// ... 3016 /// = b 3017 /// = a 3018 /// Let us assume b gets split: 3019 /// BB1: 3020 /// a = 3021 /// b = 3022 /// BB2: 3023 /// c = b 3024 /// ... 3025 /// d = c 3026 /// = d 3027 /// = a 3028 /// Because of how the allocation work, b, c, and d may be assigned different 3029 /// colors. Now, if a gets evicted later: 3030 /// BB1: 3031 /// a = 3032 /// st a, SpillSlot 3033 /// b = 3034 /// BB2: 3035 /// c = b 3036 /// ... 3037 /// d = c 3038 /// = d 3039 /// e = ld SpillSlot 3040 /// = e 3041 /// This is likely that we can assign the same register for b, c, and d, 3042 /// getting rid of 2 copies. 3043 void RAGreedy::tryHintsRecoloring() { 3044 for (LiveInterval *LI : SetOfBrokenHints) { 3045 assert(Register::isVirtualRegister(LI->reg()) && 3046 "Recoloring is possible only for virtual registers"); 3047 // Some dead defs may be around (e.g., because of debug uses). 3048 // Ignore those. 3049 if (!VRM->hasPhys(LI->reg())) 3050 continue; 3051 tryHintRecoloring(*LI); 3052 } 3053 } 3054 3055 MCRegister RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg, 3056 SmallVectorImpl<Register> &NewVRegs, 3057 SmallVirtRegSet &FixedRegisters, 3058 unsigned Depth) { 3059 uint8_t CostPerUseLimit = uint8_t(~0u); 3060 // First try assigning a free register. 3061 auto Order = 3062 AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix); 3063 if (MCRegister PhysReg = 3064 tryAssign(VirtReg, Order, NewVRegs, FixedRegisters)) { 3065 // If VirtReg got an assignment, the eviction info is no longer relevant. 3066 LastEvicted.clearEvicteeInfo(VirtReg.reg()); 3067 // When NewVRegs is not empty, we may have made decisions such as evicting 3068 // a virtual register, go with the earlier decisions and use the physical 3069 // register. 3070 if (CSRCost.getFrequency() && isUnusedCalleeSavedReg(PhysReg) && 3071 NewVRegs.empty()) { 3072 MCRegister CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg, 3073 CostPerUseLimit, NewVRegs); 3074 if (CSRReg || !NewVRegs.empty()) 3075 // Return now if we decide to use a CSR or create new vregs due to 3076 // pre-splitting. 3077 return CSRReg; 3078 } else 3079 return PhysReg; 3080 } 3081 3082 LiveRangeStage Stage = getStage(VirtReg); 3083 LLVM_DEBUG(dbgs() << StageName[Stage] << " Cascade " 3084 << ExtraRegInfo[VirtReg.reg()].Cascade << '\n'); 3085 3086 // Try to evict a less worthy live range, but only for ranges from the primary 3087 // queue. The RS_Split ranges already failed to do this, and they should not 3088 // get a second chance until they have been split. 3089 if (Stage != RS_Split) 3090 if (Register PhysReg = 3091 tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit, 3092 FixedRegisters)) { 3093 Register Hint = MRI->getSimpleHint(VirtReg.reg()); 3094 // If VirtReg has a hint and that hint is broken record this 3095 // virtual register as a recoloring candidate for broken hint. 3096 // Indeed, since we evicted a variable in its neighborhood it is 3097 // likely we can at least partially recolor some of the 3098 // copy-related live-ranges. 3099 if (Hint && Hint != PhysReg) 3100 SetOfBrokenHints.insert(&VirtReg); 3101 // If VirtReg eviction someone, the eviction info for it as an evictee is 3102 // no longer relevant. 3103 LastEvicted.clearEvicteeInfo(VirtReg.reg()); 3104 return PhysReg; 3105 } 3106 3107 assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs"); 3108 3109 // The first time we see a live range, don't try to split or spill. 3110 // Wait until the second time, when all smaller ranges have been allocated. 3111 // This gives a better picture of the interference to split around. 3112 if (Stage < RS_Split) { 3113 setStage(VirtReg, RS_Split); 3114 LLVM_DEBUG(dbgs() << "wait for second round\n"); 3115 NewVRegs.push_back(VirtReg.reg()); 3116 return 0; 3117 } 3118 3119 if (Stage < RS_Spill) { 3120 // Try splitting VirtReg or interferences. 3121 unsigned NewVRegSizeBefore = NewVRegs.size(); 3122 Register PhysReg = trySplit(VirtReg, Order, NewVRegs, FixedRegisters); 3123 if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore)) { 3124 // If VirtReg got split, the eviction info is no longer relevant. 3125 LastEvicted.clearEvicteeInfo(VirtReg.reg()); 3126 return PhysReg; 3127 } 3128 } 3129 3130 // If we couldn't allocate a register from spilling, there is probably some 3131 // invalid inline assembly. The base class will report it. 3132 if (Stage >= RS_Done || !VirtReg.isSpillable()) 3133 return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters, 3134 Depth); 3135 3136 // Finally spill VirtReg itself. 3137 if ((EnableDeferredSpilling || 3138 TRI->shouldUseDeferredSpillingForVirtReg(*MF, VirtReg)) && 3139 getStage(VirtReg) < RS_Memory) { 3140 // TODO: This is experimental and in particular, we do not model 3141 // the live range splitting done by spilling correctly. 3142 // We would need a deep integration with the spiller to do the 3143 // right thing here. Anyway, that is still good for early testing. 3144 setStage(VirtReg, RS_Memory); 3145 LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n"); 3146 NewVRegs.push_back(VirtReg.reg()); 3147 } else { 3148 NamedRegionTimer T("spill", "Spiller", TimerGroupName, 3149 TimerGroupDescription, TimePassesIsEnabled); 3150 LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 3151 spiller().spill(LRE); 3152 setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done); 3153 3154 // Tell LiveDebugVariables about the new ranges. Ranges not being covered by 3155 // the new regs are kept in LDV (still mapping to the old register), until 3156 // we rewrite spilled locations in LDV at a later stage. 3157 DebugVars->splitRegister(VirtReg.reg(), LRE.regs(), *LIS); 3158 3159 if (VerifyEnabled) 3160 MF->verify(this, "After spilling"); 3161 } 3162 3163 // The live virtual register requesting allocation was spilled, so tell 3164 // the caller not to allocate anything during this round. 3165 return 0; 3166 } 3167 3168 void RAGreedy::RAGreedyStats::report(MachineOptimizationRemarkMissed &R) { 3169 using namespace ore; 3170 if (Spills) { 3171 R << NV("NumSpills", Spills) << " spills "; 3172 R << NV("TotalSpillsCost", SpillsCost) << " total spills cost "; 3173 } 3174 if (FoldedSpills) { 3175 R << NV("NumFoldedSpills", FoldedSpills) << " folded spills "; 3176 R << NV("TotalFoldedSpillsCost", FoldedSpillsCost) 3177 << " total folded spills cost "; 3178 } 3179 if (Reloads) { 3180 R << NV("NumReloads", Reloads) << " reloads "; 3181 R << NV("TotalReloadsCost", ReloadsCost) << " total reloads cost "; 3182 } 3183 if (FoldedReloads) { 3184 R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads "; 3185 R << NV("TotalFoldedReloadsCost", FoldedReloadsCost) 3186 << " total folded reloads cost "; 3187 } 3188 if (ZeroCostFoldedReloads) 3189 R << NV("NumZeroCostFoldedReloads", ZeroCostFoldedReloads) 3190 << " zero cost folded reloads "; 3191 if (Copies) { 3192 R << NV("NumVRCopies", Copies) << " virtual registers copies "; 3193 R << NV("TotalCopiesCost", CopiesCost) << " total copies cost "; 3194 } 3195 } 3196 3197 RAGreedy::RAGreedyStats RAGreedy::computeStats(MachineBasicBlock &MBB) { 3198 RAGreedyStats Stats; 3199 const MachineFrameInfo &MFI = MF->getFrameInfo(); 3200 int FI; 3201 3202 auto isSpillSlotAccess = [&MFI](const MachineMemOperand *A) { 3203 return MFI.isSpillSlotObjectIndex(cast<FixedStackPseudoSourceValue>( 3204 A->getPseudoValue())->getFrameIndex()); 3205 }; 3206 auto isPatchpointInstr = [](const MachineInstr &MI) { 3207 return MI.getOpcode() == TargetOpcode::PATCHPOINT || 3208 MI.getOpcode() == TargetOpcode::STACKMAP || 3209 MI.getOpcode() == TargetOpcode::STATEPOINT; 3210 }; 3211 for (MachineInstr &MI : MBB) { 3212 if (MI.isCopy()) { 3213 MachineOperand &Dest = MI.getOperand(0); 3214 MachineOperand &Src = MI.getOperand(1); 3215 if (Dest.isReg() && Src.isReg() && Dest.getReg().isVirtual() && 3216 Src.getReg().isVirtual()) 3217 ++Stats.Copies; 3218 continue; 3219 } 3220 3221 SmallVector<const MachineMemOperand *, 2> Accesses; 3222 if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) { 3223 ++Stats.Reloads; 3224 continue; 3225 } 3226 if (TII->isStoreToStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) { 3227 ++Stats.Spills; 3228 continue; 3229 } 3230 if (TII->hasLoadFromStackSlot(MI, Accesses) && 3231 llvm::any_of(Accesses, isSpillSlotAccess)) { 3232 if (!isPatchpointInstr(MI)) { 3233 Stats.FoldedReloads += Accesses.size(); 3234 continue; 3235 } 3236 // For statepoint there may be folded and zero cost folded stack reloads. 3237 std::pair<unsigned, unsigned> NonZeroCostRange = 3238 TII->getPatchpointUnfoldableRange(MI); 3239 SmallSet<unsigned, 16> FoldedReloads; 3240 SmallSet<unsigned, 16> ZeroCostFoldedReloads; 3241 for (unsigned Idx = 0, E = MI.getNumOperands(); Idx < E; ++Idx) { 3242 MachineOperand &MO = MI.getOperand(Idx); 3243 if (!MO.isFI() || !MFI.isSpillSlotObjectIndex(MO.getIndex())) 3244 continue; 3245 if (Idx >= NonZeroCostRange.first && Idx < NonZeroCostRange.second) 3246 FoldedReloads.insert(MO.getIndex()); 3247 else 3248 ZeroCostFoldedReloads.insert(MO.getIndex()); 3249 } 3250 // If stack slot is used in folded reload it is not zero cost then. 3251 for (unsigned Slot : FoldedReloads) 3252 ZeroCostFoldedReloads.erase(Slot); 3253 Stats.FoldedReloads += FoldedReloads.size(); 3254 Stats.ZeroCostFoldedReloads += ZeroCostFoldedReloads.size(); 3255 continue; 3256 } 3257 Accesses.clear(); 3258 if (TII->hasStoreToStackSlot(MI, Accesses) && 3259 llvm::any_of(Accesses, isSpillSlotAccess)) { 3260 Stats.FoldedSpills += Accesses.size(); 3261 } 3262 } 3263 // Set cost of collected statistic by multiplication to relative frequency of 3264 // this basic block. 3265 float RelFreq = MBFI->getBlockFreqRelativeToEntryBlock(&MBB); 3266 Stats.ReloadsCost = RelFreq * Stats.Reloads; 3267 Stats.FoldedReloadsCost = RelFreq * Stats.FoldedReloads; 3268 Stats.SpillsCost = RelFreq * Stats.Spills; 3269 Stats.FoldedSpillsCost = RelFreq * Stats.FoldedSpills; 3270 Stats.CopiesCost = RelFreq * Stats.Copies; 3271 return Stats; 3272 } 3273 3274 RAGreedy::RAGreedyStats RAGreedy::reportStats(MachineLoop *L) { 3275 RAGreedyStats Stats; 3276 3277 // Sum up the spill and reloads in subloops. 3278 for (MachineLoop *SubLoop : *L) 3279 Stats.add(reportStats(SubLoop)); 3280 3281 for (MachineBasicBlock *MBB : L->getBlocks()) 3282 // Handle blocks that were not included in subloops. 3283 if (Loops->getLoopFor(MBB) == L) 3284 Stats.add(computeStats(*MBB)); 3285 3286 if (!Stats.isEmpty()) { 3287 using namespace ore; 3288 3289 ORE->emit([&]() { 3290 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReloadCopies", 3291 L->getStartLoc(), L->getHeader()); 3292 Stats.report(R); 3293 R << "generated in loop"; 3294 return R; 3295 }); 3296 } 3297 return Stats; 3298 } 3299 3300 void RAGreedy::reportStats() { 3301 if (!ORE->allowExtraAnalysis(DEBUG_TYPE)) 3302 return; 3303 RAGreedyStats Stats; 3304 for (MachineLoop *L : *Loops) 3305 Stats.add(reportStats(L)); 3306 // Process non-loop blocks. 3307 for (MachineBasicBlock &MBB : *MF) 3308 if (!Loops->getLoopFor(&MBB)) 3309 Stats.add(computeStats(MBB)); 3310 if (!Stats.isEmpty()) { 3311 using namespace ore; 3312 3313 ORE->emit([&]() { 3314 DebugLoc Loc; 3315 if (auto *SP = MF->getFunction().getSubprogram()) 3316 Loc = DILocation::get(SP->getContext(), SP->getLine(), 1, SP); 3317 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "SpillReloadCopies", Loc, 3318 &MF->front()); 3319 Stats.report(R); 3320 R << "generated in function"; 3321 return R; 3322 }); 3323 } 3324 } 3325 3326 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) { 3327 LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n" 3328 << "********** Function: " << mf.getName() << '\n'); 3329 3330 MF = &mf; 3331 TRI = MF->getSubtarget().getRegisterInfo(); 3332 TII = MF->getSubtarget().getInstrInfo(); 3333 RCI.runOnMachineFunction(mf); 3334 3335 EnableLocalReassign = EnableLocalReassignment || 3336 MF->getSubtarget().enableRALocalReassignment( 3337 MF->getTarget().getOptLevel()); 3338 3339 EnableAdvancedRASplitCost = 3340 ConsiderLocalIntervalCost.getNumOccurrences() 3341 ? ConsiderLocalIntervalCost 3342 : MF->getSubtarget().enableAdvancedRASplitCost(); 3343 3344 if (VerifyEnabled) 3345 MF->verify(this, "Before greedy register allocator"); 3346 3347 RegAllocBase::init(getAnalysis<VirtRegMap>(), 3348 getAnalysis<LiveIntervals>(), 3349 getAnalysis<LiveRegMatrix>()); 3350 Indexes = &getAnalysis<SlotIndexes>(); 3351 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 3352 DomTree = &getAnalysis<MachineDominatorTree>(); 3353 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 3354 Loops = &getAnalysis<MachineLoopInfo>(); 3355 Bundles = &getAnalysis<EdgeBundles>(); 3356 SpillPlacer = &getAnalysis<SpillPlacement>(); 3357 DebugVars = &getAnalysis<LiveDebugVariables>(); 3358 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3359 3360 initializeCSRCost(); 3361 3362 RegCosts = TRI->getRegisterCosts(*MF); 3363 3364 VRAI = std::make_unique<VirtRegAuxInfo>(*MF, *LIS, *VRM, *Loops, *MBFI); 3365 SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM, *VRAI)); 3366 3367 VRAI->calculateSpillWeightsAndHints(); 3368 3369 LLVM_DEBUG(LIS->dump()); 3370 3371 SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops)); 3372 SE.reset(new SplitEditor(*SA, *AA, *LIS, *VRM, *DomTree, *MBFI, *VRAI)); 3373 ExtraRegInfo.clear(); 3374 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 3375 NextCascade = 1; 3376 IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI); 3377 GlobalCand.resize(32); // This will grow as needed. 3378 SetOfBrokenHints.clear(); 3379 LastEvicted.clear(); 3380 3381 allocatePhysRegs(); 3382 tryHintsRecoloring(); 3383 3384 if (VerifyEnabled) 3385 MF->verify(this, "Before post optimization"); 3386 postOptimization(); 3387 reportStats(); 3388 3389 releaseMemory(); 3390 return true; 3391 } 3392