1 //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the RAGreedy function pass for register allocation in
10 // optimized builds.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "AllocationOrder.h"
15 #include "InterferenceCache.h"
16 #include "LiveDebugVariables.h"
17 #include "RegAllocBase.h"
18 #include "SpillPlacement.h"
19 #include "SplitKit.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/BitVector.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/IndexedMap.h"
24 #include "llvm/ADT/MapVector.h"
25 #include "llvm/ADT/SetVector.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallSet.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/Analysis/AliasAnalysis.h"
32 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
33 #include "llvm/CodeGen/CalcSpillWeights.h"
34 #include "llvm/CodeGen/EdgeBundles.h"
35 #include "llvm/CodeGen/LiveInterval.h"
36 #include "llvm/CodeGen/LiveIntervalUnion.h"
37 #include "llvm/CodeGen/LiveIntervals.h"
38 #include "llvm/CodeGen/LiveRangeEdit.h"
39 #include "llvm/CodeGen/LiveRegMatrix.h"
40 #include "llvm/CodeGen/LiveStacks.h"
41 #include "llvm/CodeGen/MachineBasicBlock.h"
42 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
43 #include "llvm/CodeGen/MachineDominators.h"
44 #include "llvm/CodeGen/MachineFrameInfo.h"
45 #include "llvm/CodeGen/MachineFunction.h"
46 #include "llvm/CodeGen/MachineFunctionPass.h"
47 #include "llvm/CodeGen/MachineInstr.h"
48 #include "llvm/CodeGen/MachineLoopInfo.h"
49 #include "llvm/CodeGen/MachineOperand.h"
50 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
51 #include "llvm/CodeGen/MachineRegisterInfo.h"
52 #include "llvm/CodeGen/RegAllocRegistry.h"
53 #include "llvm/CodeGen/RegisterClassInfo.h"
54 #include "llvm/CodeGen/SlotIndexes.h"
55 #include "llvm/CodeGen/Spiller.h"
56 #include "llvm/CodeGen/TargetInstrInfo.h"
57 #include "llvm/CodeGen/TargetRegisterInfo.h"
58 #include "llvm/CodeGen/TargetSubtargetInfo.h"
59 #include "llvm/CodeGen/VirtRegMap.h"
60 #include "llvm/IR/Function.h"
61 #include "llvm/IR/LLVMContext.h"
62 #include "llvm/MC/MCRegisterInfo.h"
63 #include "llvm/Pass.h"
64 #include "llvm/Support/BlockFrequency.h"
65 #include "llvm/Support/BranchProbability.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/Debug.h"
68 #include "llvm/Support/MathExtras.h"
69 #include "llvm/Support/Timer.h"
70 #include "llvm/Support/raw_ostream.h"
71 #include "llvm/Target/TargetMachine.h"
72 #include "llvm/IR/DebugInfoMetadata.h"
73 #include <algorithm>
74 #include <cassert>
75 #include <cstdint>
76 #include <memory>
77 #include <queue>
78 #include <tuple>
79 #include <utility>
80 
81 using namespace llvm;
82 
83 #define DEBUG_TYPE "regalloc"
84 
85 STATISTIC(NumGlobalSplits, "Number of split global live ranges");
86 STATISTIC(NumLocalSplits,  "Number of split local live ranges");
87 STATISTIC(NumEvicted,      "Number of interferences evicted");
88 
89 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode(
90     "split-spill-mode", cl::Hidden,
91     cl::desc("Spill mode for splitting live ranges"),
92     cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"),
93                clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"),
94                clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")),
95     cl::init(SplitEditor::SM_Speed));
96 
97 static cl::opt<unsigned>
98 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden,
99                              cl::desc("Last chance recoloring max depth"),
100                              cl::init(5));
101 
102 static cl::opt<unsigned> LastChanceRecoloringMaxInterference(
103     "lcr-max-interf", cl::Hidden,
104     cl::desc("Last chance recoloring maximum number of considered"
105              " interference at a time"),
106     cl::init(8));
107 
108 static cl::opt<bool> ExhaustiveSearch(
109     "exhaustive-register-search", cl::NotHidden,
110     cl::desc("Exhaustive Search for registers bypassing the depth "
111              "and interference cutoffs of last chance recoloring"),
112     cl::Hidden);
113 
114 static cl::opt<bool> EnableLocalReassignment(
115     "enable-local-reassign", cl::Hidden,
116     cl::desc("Local reassignment can yield better allocation decisions, but "
117              "may be compile time intensive"),
118     cl::init(false));
119 
120 static cl::opt<bool> EnableDeferredSpilling(
121     "enable-deferred-spilling", cl::Hidden,
122     cl::desc("Instead of spilling a variable right away, defer the actual "
123              "code insertion to the end of the allocation. That way the "
124              "allocator might still find a suitable coloring for this "
125              "variable because of other evicted variables."),
126     cl::init(false));
127 
128 // FIXME: Find a good default for this flag and remove the flag.
129 static cl::opt<unsigned>
130 CSRFirstTimeCost("regalloc-csr-first-time-cost",
131               cl::desc("Cost for first time use of callee-saved register."),
132               cl::init(0), cl::Hidden);
133 
134 static cl::opt<bool> ConsiderLocalIntervalCost(
135     "consider-local-interval-cost", cl::Hidden,
136     cl::desc("Consider the cost of local intervals created by a split "
137              "candidate when choosing the best split candidate."),
138     cl::init(false));
139 
140 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
141                                        createGreedyRegisterAllocator);
142 
143 namespace {
144 
145 class RAGreedy : public MachineFunctionPass,
146                  public RegAllocBase,
147                  private LiveRangeEdit::Delegate {
148   // Convenient shortcuts.
149   using PQueue = std::priority_queue<std::pair<unsigned, unsigned>>;
150   using SmallLISet = SmallPtrSet<LiveInterval *, 4>;
151   using SmallVirtRegSet = SmallSet<Register, 16>;
152 
153   // context
154   MachineFunction *MF;
155 
156   // Shortcuts to some useful interface.
157   const TargetInstrInfo *TII;
158   const TargetRegisterInfo *TRI;
159   RegisterClassInfo RCI;
160 
161   // analyses
162   SlotIndexes *Indexes;
163   MachineBlockFrequencyInfo *MBFI;
164   MachineDominatorTree *DomTree;
165   MachineLoopInfo *Loops;
166   MachineOptimizationRemarkEmitter *ORE;
167   EdgeBundles *Bundles;
168   SpillPlacement *SpillPlacer;
169   LiveDebugVariables *DebugVars;
170   AliasAnalysis *AA;
171 
172   // state
173   std::unique_ptr<Spiller> SpillerInstance;
174   PQueue Queue;
175   unsigned NextCascade;
176   std::unique_ptr<VirtRegAuxInfo> VRAI;
177 
178   // Live ranges pass through a number of stages as we try to allocate them.
179   // Some of the stages may also create new live ranges:
180   //
181   // - Region splitting.
182   // - Per-block splitting.
183   // - Local splitting.
184   // - Spilling.
185   //
186   // Ranges produced by one of the stages skip the previous stages when they are
187   // dequeued. This improves performance because we can skip interference checks
188   // that are unlikely to give any results. It also guarantees that the live
189   // range splitting algorithm terminates, something that is otherwise hard to
190   // ensure.
191   enum LiveRangeStage {
192     /// Newly created live range that has never been queued.
193     RS_New,
194 
195     /// Only attempt assignment and eviction. Then requeue as RS_Split.
196     RS_Assign,
197 
198     /// Attempt live range splitting if assignment is impossible.
199     RS_Split,
200 
201     /// Attempt more aggressive live range splitting that is guaranteed to make
202     /// progress.  This is used for split products that may not be making
203     /// progress.
204     RS_Split2,
205 
206     /// Live range will be spilled.  No more splitting will be attempted.
207     RS_Spill,
208 
209 
210     /// Live range is in memory. Because of other evictions, it might get moved
211     /// in a register in the end.
212     RS_Memory,
213 
214     /// There is nothing more we can do to this live range.  Abort compilation
215     /// if it can't be assigned.
216     RS_Done
217   };
218 
219   // Enum CutOffStage to keep a track whether the register allocation failed
220   // because of the cutoffs encountered in last chance recoloring.
221   // Note: This is used as bitmask. New value should be next power of 2.
222   enum CutOffStage {
223     // No cutoffs encountered
224     CO_None = 0,
225 
226     // lcr-max-depth cutoff encountered
227     CO_Depth = 1,
228 
229     // lcr-max-interf cutoff encountered
230     CO_Interf = 2
231   };
232 
233   uint8_t CutOffInfo;
234 
235 #ifndef NDEBUG
236   static const char *const StageName[];
237 #endif
238 
239   // RegInfo - Keep additional information about each live range.
240   struct RegInfo {
241     LiveRangeStage Stage = RS_New;
242 
243     // Cascade - Eviction loop prevention. See canEvictInterference().
244     unsigned Cascade = 0;
245 
246     RegInfo() = default;
247   };
248 
249   IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo;
250 
251   LiveRangeStage getStage(const LiveInterval &VirtReg) const {
252     return ExtraRegInfo[VirtReg.reg()].Stage;
253   }
254 
255   void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) {
256     ExtraRegInfo.resize(MRI->getNumVirtRegs());
257     ExtraRegInfo[VirtReg.reg()].Stage = Stage;
258   }
259 
260   template<typename Iterator>
261   void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) {
262     ExtraRegInfo.resize(MRI->getNumVirtRegs());
263     for (;Begin != End; ++Begin) {
264       Register Reg = *Begin;
265       if (ExtraRegInfo[Reg].Stage == RS_New)
266         ExtraRegInfo[Reg].Stage = NewStage;
267     }
268   }
269 
270   /// Cost of evicting interference.
271   struct EvictionCost {
272     unsigned BrokenHints = 0; ///< Total number of broken hints.
273     float MaxWeight = 0;      ///< Maximum spill weight evicted.
274 
275     EvictionCost() = default;
276 
277     bool isMax() const { return BrokenHints == ~0u; }
278 
279     void setMax() { BrokenHints = ~0u; }
280 
281     void setBrokenHints(unsigned NHints) { BrokenHints = NHints; }
282 
283     bool operator<(const EvictionCost &O) const {
284       return std::tie(BrokenHints, MaxWeight) <
285              std::tie(O.BrokenHints, O.MaxWeight);
286     }
287   };
288 
289   /// EvictionTrack - Keeps track of past evictions in order to optimize region
290   /// split decision.
291   class EvictionTrack {
292 
293   public:
294     using EvictorInfo =
295         std::pair<Register /* evictor */, MCRegister /* physreg */>;
296     using EvicteeInfo = llvm::DenseMap<Register /* evictee */, EvictorInfo>;
297 
298   private:
299     /// Each Vreg that has been evicted in the last stage of selectOrSplit will
300     /// be mapped to the evictor Vreg and the PhysReg it was evicted from.
301     EvicteeInfo Evictees;
302 
303   public:
304     /// Clear all eviction information.
305     void clear() { Evictees.clear(); }
306 
307     ///  Clear eviction information for the given evictee Vreg.
308     /// E.g. when Vreg get's a new allocation, the old eviction info is no
309     /// longer relevant.
310     /// \param Evictee The evictee Vreg for whom we want to clear collected
311     /// eviction info.
312     void clearEvicteeInfo(Register Evictee) { Evictees.erase(Evictee); }
313 
314     /// Track new eviction.
315     /// The Evictor vreg has evicted the Evictee vreg from Physreg.
316     /// \param PhysReg The physical register Evictee was evicted from.
317     /// \param Evictor The evictor Vreg that evicted Evictee.
318     /// \param Evictee The evictee Vreg.
319     void addEviction(MCRegister PhysReg, Register Evictor, Register Evictee) {
320       Evictees[Evictee].first = Evictor;
321       Evictees[Evictee].second = PhysReg;
322     }
323 
324     /// Return the Evictor Vreg which evicted Evictee Vreg from PhysReg.
325     /// \param Evictee The evictee vreg.
326     /// \return The Evictor vreg which evicted Evictee vreg from PhysReg. 0 if
327     /// nobody has evicted Evictee from PhysReg.
328     EvictorInfo getEvictor(Register Evictee) {
329       if (Evictees.count(Evictee)) {
330         return Evictees[Evictee];
331       }
332 
333       return EvictorInfo(0, 0);
334     }
335   };
336 
337   // Keeps track of past evictions in order to optimize region split decision.
338   EvictionTrack LastEvicted;
339 
340   // splitting state.
341   std::unique_ptr<SplitAnalysis> SA;
342   std::unique_ptr<SplitEditor> SE;
343 
344   /// Cached per-block interference maps
345   InterferenceCache IntfCache;
346 
347   /// All basic blocks where the current register has uses.
348   SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints;
349 
350   /// Global live range splitting candidate info.
351   struct GlobalSplitCandidate {
352     // Register intended for assignment, or 0.
353     MCRegister PhysReg;
354 
355     // SplitKit interval index for this candidate.
356     unsigned IntvIdx;
357 
358     // Interference for PhysReg.
359     InterferenceCache::Cursor Intf;
360 
361     // Bundles where this candidate should be live.
362     BitVector LiveBundles;
363     SmallVector<unsigned, 8> ActiveBlocks;
364 
365     void reset(InterferenceCache &Cache, MCRegister Reg) {
366       PhysReg = Reg;
367       IntvIdx = 0;
368       Intf.setPhysReg(Cache, Reg);
369       LiveBundles.clear();
370       ActiveBlocks.clear();
371     }
372 
373     // Set B[I] = C for every live bundle where B[I] was NoCand.
374     unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) {
375       unsigned Count = 0;
376       for (unsigned I : LiveBundles.set_bits())
377         if (B[I] == NoCand) {
378           B[I] = C;
379           Count++;
380         }
381       return Count;
382     }
383   };
384 
385   /// Candidate info for each PhysReg in AllocationOrder.
386   /// This vector never shrinks, but grows to the size of the largest register
387   /// class.
388   SmallVector<GlobalSplitCandidate, 32> GlobalCand;
389 
390   enum : unsigned { NoCand = ~0u };
391 
392   /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to
393   /// NoCand which indicates the stack interval.
394   SmallVector<unsigned, 32> BundleCand;
395 
396   /// Callee-save register cost, calculated once per machine function.
397   BlockFrequency CSRCost;
398 
399   /// Run or not the local reassignment heuristic. This information is
400   /// obtained from the TargetSubtargetInfo.
401   bool EnableLocalReassign;
402 
403   /// Enable or not the consideration of the cost of local intervals created
404   /// by a split candidate when choosing the best split candidate.
405   bool EnableAdvancedRASplitCost;
406 
407   /// Set of broken hints that may be reconciled later because of eviction.
408   SmallSetVector<LiveInterval *, 8> SetOfBrokenHints;
409 
410   /// The register cost values. This list will be recreated for each Machine
411   /// Function
412   ArrayRef<uint8_t> RegCosts;
413 
414 public:
415   RAGreedy(const RegClassFilterFunc F = allocateAllRegClasses);
416 
417   /// Return the pass name.
418   StringRef getPassName() const override { return "Greedy Register Allocator"; }
419 
420   /// RAGreedy analysis usage.
421   void getAnalysisUsage(AnalysisUsage &AU) const override;
422   void releaseMemory() override;
423   Spiller &spiller() override { return *SpillerInstance; }
424   void enqueueImpl(LiveInterval *LI) override;
425   LiveInterval *dequeue() override;
426   MCRegister selectOrSplit(LiveInterval &,
427                            SmallVectorImpl<Register> &) override;
428   void aboutToRemoveInterval(LiveInterval &) override;
429 
430   /// Perform register allocation.
431   bool runOnMachineFunction(MachineFunction &mf) override;
432 
433   MachineFunctionProperties getRequiredProperties() const override {
434     return MachineFunctionProperties().set(
435         MachineFunctionProperties::Property::NoPHIs);
436   }
437 
438   MachineFunctionProperties getClearedProperties() const override {
439     return MachineFunctionProperties().set(
440       MachineFunctionProperties::Property::IsSSA);
441   }
442 
443   static char ID;
444 
445 private:
446   MCRegister selectOrSplitImpl(LiveInterval &, SmallVectorImpl<Register> &,
447                                SmallVirtRegSet &, unsigned = 0);
448 
449   bool LRE_CanEraseVirtReg(Register) override;
450   void LRE_WillShrinkVirtReg(Register) override;
451   void LRE_DidCloneVirtReg(Register, Register) override;
452   void enqueue(PQueue &CurQueue, LiveInterval *LI);
453   LiveInterval *dequeue(PQueue &CurQueue);
454 
455   BlockFrequency calcSpillCost();
456   bool addSplitConstraints(InterferenceCache::Cursor, BlockFrequency&);
457   bool addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>);
458   bool growRegion(GlobalSplitCandidate &Cand);
459   bool splitCanCauseEvictionChain(Register Evictee, GlobalSplitCandidate &Cand,
460                                   unsigned BBNumber,
461                                   const AllocationOrder &Order);
462   bool splitCanCauseLocalSpill(unsigned VirtRegToSplit,
463                                GlobalSplitCandidate &Cand, unsigned BBNumber,
464                                const AllocationOrder &Order);
465   BlockFrequency calcGlobalSplitCost(GlobalSplitCandidate &,
466                                      const AllocationOrder &Order,
467                                      bool *CanCauseEvictionChain);
468   bool calcCompactRegion(GlobalSplitCandidate&);
469   void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>);
470   void calcGapWeights(MCRegister, SmallVectorImpl<float> &);
471   Register canReassign(LiveInterval &VirtReg, Register PrevReg) const;
472   bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool) const;
473   bool canEvictInterference(LiveInterval &, MCRegister, bool, EvictionCost &,
474                             const SmallVirtRegSet &) const;
475   bool canEvictInterferenceInRange(const LiveInterval &VirtReg,
476                                    MCRegister PhysReg, SlotIndex Start,
477                                    SlotIndex End, EvictionCost &MaxCost) const;
478   MCRegister getCheapestEvicteeWeight(const AllocationOrder &Order,
479                                       const LiveInterval &VirtReg,
480                                       SlotIndex Start, SlotIndex End,
481                                       float *BestEvictWeight) const;
482   void evictInterference(LiveInterval &, MCRegister,
483                          SmallVectorImpl<Register> &);
484   bool mayRecolorAllInterferences(MCRegister PhysReg, LiveInterval &VirtReg,
485                                   SmallLISet &RecoloringCandidates,
486                                   const SmallVirtRegSet &FixedRegisters);
487 
488   MCRegister tryAssign(LiveInterval&, AllocationOrder&,
489                      SmallVectorImpl<Register>&,
490                      const SmallVirtRegSet&);
491   MCRegister tryEvict(LiveInterval &, AllocationOrder &,
492                     SmallVectorImpl<Register> &, uint8_t,
493                     const SmallVirtRegSet &);
494   MCRegister tryRegionSplit(LiveInterval &, AllocationOrder &,
495                             SmallVectorImpl<Register> &);
496   /// Calculate cost of region splitting.
497   unsigned calculateRegionSplitCost(LiveInterval &VirtReg,
498                                     AllocationOrder &Order,
499                                     BlockFrequency &BestCost,
500                                     unsigned &NumCands, bool IgnoreCSR,
501                                     bool *CanCauseEvictionChain = nullptr);
502   /// Perform region splitting.
503   unsigned doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
504                          bool HasCompact,
505                          SmallVectorImpl<Register> &NewVRegs);
506   /// Check other options before using a callee-saved register for the first
507   /// time.
508   MCRegister tryAssignCSRFirstTime(LiveInterval &VirtReg,
509                                    AllocationOrder &Order, MCRegister PhysReg,
510                                    uint8_t &CostPerUseLimit,
511                                    SmallVectorImpl<Register> &NewVRegs);
512   void initializeCSRCost();
513   unsigned tryBlockSplit(LiveInterval&, AllocationOrder&,
514                          SmallVectorImpl<Register>&);
515   unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&,
516                                SmallVectorImpl<Register>&);
517   unsigned tryLocalSplit(LiveInterval&, AllocationOrder&,
518     SmallVectorImpl<Register>&);
519   unsigned trySplit(LiveInterval&, AllocationOrder&,
520                     SmallVectorImpl<Register>&,
521                     const SmallVirtRegSet&);
522   unsigned tryLastChanceRecoloring(LiveInterval &, AllocationOrder &,
523                                    SmallVectorImpl<Register> &,
524                                    SmallVirtRegSet &, unsigned);
525   bool tryRecoloringCandidates(PQueue &, SmallVectorImpl<Register> &,
526                                SmallVirtRegSet &, unsigned);
527   void tryHintRecoloring(LiveInterval &);
528   void tryHintsRecoloring();
529 
530   /// Model the information carried by one end of a copy.
531   struct HintInfo {
532     /// The frequency of the copy.
533     BlockFrequency Freq;
534     /// The virtual register or physical register.
535     Register Reg;
536     /// Its currently assigned register.
537     /// In case of a physical register Reg == PhysReg.
538     MCRegister PhysReg;
539 
540     HintInfo(BlockFrequency Freq, Register Reg, MCRegister PhysReg)
541         : Freq(Freq), Reg(Reg), PhysReg(PhysReg) {}
542   };
543   using HintsInfo = SmallVector<HintInfo, 4>;
544 
545   BlockFrequency getBrokenHintFreq(const HintsInfo &, MCRegister);
546   void collectHintInfo(Register, HintsInfo &);
547 
548   bool isUnusedCalleeSavedReg(MCRegister PhysReg) const;
549 
550   /// Greedy RA statistic to remark.
551   struct RAGreedyStats {
552     unsigned Reloads = 0;
553     unsigned FoldedReloads = 0;
554     unsigned ZeroCostFoldedReloads = 0;
555     unsigned Spills = 0;
556     unsigned FoldedSpills = 0;
557     unsigned Copies = 0;
558     float ReloadsCost = 0.0f;
559     float FoldedReloadsCost = 0.0f;
560     float SpillsCost = 0.0f;
561     float FoldedSpillsCost = 0.0f;
562     float CopiesCost = 0.0f;
563 
564     bool isEmpty() {
565       return !(Reloads || FoldedReloads || Spills || FoldedSpills ||
566                ZeroCostFoldedReloads || Copies);
567     }
568 
569     void add(RAGreedyStats other) {
570       Reloads += other.Reloads;
571       FoldedReloads += other.FoldedReloads;
572       ZeroCostFoldedReloads += other.ZeroCostFoldedReloads;
573       Spills += other.Spills;
574       FoldedSpills += other.FoldedSpills;
575       Copies += other.Copies;
576       ReloadsCost += other.ReloadsCost;
577       FoldedReloadsCost += other.FoldedReloadsCost;
578       SpillsCost += other.SpillsCost;
579       FoldedSpillsCost += other.FoldedSpillsCost;
580       CopiesCost += other.CopiesCost;
581     }
582 
583     void report(MachineOptimizationRemarkMissed &R);
584   };
585 
586   /// Compute statistic for a basic block.
587   RAGreedyStats computeStats(MachineBasicBlock &MBB);
588 
589   /// Compute and report statistic through a remark.
590   RAGreedyStats reportStats(MachineLoop *L);
591 
592   /// Report the statistic for each loop.
593   void reportStats();
594 };
595 
596 } // end anonymous namespace
597 
598 char RAGreedy::ID = 0;
599 char &llvm::RAGreedyID = RAGreedy::ID;
600 
601 INITIALIZE_PASS_BEGIN(RAGreedy, "greedy",
602                 "Greedy Register Allocator", false, false)
603 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
604 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
605 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
606 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer)
607 INITIALIZE_PASS_DEPENDENCY(MachineScheduler)
608 INITIALIZE_PASS_DEPENDENCY(LiveStacks)
609 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
610 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
611 INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
612 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix)
613 INITIALIZE_PASS_DEPENDENCY(EdgeBundles)
614 INITIALIZE_PASS_DEPENDENCY(SpillPlacement)
615 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass)
616 INITIALIZE_PASS_END(RAGreedy, "greedy",
617                 "Greedy Register Allocator", false, false)
618 
619 #ifndef NDEBUG
620 const char *const RAGreedy::StageName[] = {
621     "RS_New",
622     "RS_Assign",
623     "RS_Split",
624     "RS_Split2",
625     "RS_Spill",
626     "RS_Memory",
627     "RS_Done"
628 };
629 #endif
630 
631 // Hysteresis to use when comparing floats.
632 // This helps stabilize decisions based on float comparisons.
633 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875
634 
635 FunctionPass* llvm::createGreedyRegisterAllocator() {
636   return new RAGreedy();
637 }
638 
639 namespace llvm {
640 FunctionPass* createGreedyRegisterAllocator(
641   std::function<bool(const TargetRegisterInfo &TRI,
642                      const TargetRegisterClass &RC)> Ftor);
643 
644 }
645 
646 FunctionPass* llvm::createGreedyRegisterAllocator(
647   std::function<bool(const TargetRegisterInfo &TRI,
648                      const TargetRegisterClass &RC)> Ftor) {
649   return new RAGreedy(Ftor);
650 }
651 
652 RAGreedy::RAGreedy(RegClassFilterFunc F):
653   MachineFunctionPass(ID),
654   RegAllocBase(F) {
655 }
656 
657 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
658   AU.setPreservesCFG();
659   AU.addRequired<MachineBlockFrequencyInfo>();
660   AU.addPreserved<MachineBlockFrequencyInfo>();
661   AU.addRequired<AAResultsWrapperPass>();
662   AU.addPreserved<AAResultsWrapperPass>();
663   AU.addRequired<LiveIntervals>();
664   AU.addPreserved<LiveIntervals>();
665   AU.addRequired<SlotIndexes>();
666   AU.addPreserved<SlotIndexes>();
667   AU.addRequired<LiveDebugVariables>();
668   AU.addPreserved<LiveDebugVariables>();
669   AU.addRequired<LiveStacks>();
670   AU.addPreserved<LiveStacks>();
671   AU.addRequired<MachineDominatorTree>();
672   AU.addPreserved<MachineDominatorTree>();
673   AU.addRequired<MachineLoopInfo>();
674   AU.addPreserved<MachineLoopInfo>();
675   AU.addRequired<VirtRegMap>();
676   AU.addPreserved<VirtRegMap>();
677   AU.addRequired<LiveRegMatrix>();
678   AU.addPreserved<LiveRegMatrix>();
679   AU.addRequired<EdgeBundles>();
680   AU.addRequired<SpillPlacement>();
681   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
682   MachineFunctionPass::getAnalysisUsage(AU);
683 }
684 
685 //===----------------------------------------------------------------------===//
686 //                     LiveRangeEdit delegate methods
687 //===----------------------------------------------------------------------===//
688 
689 bool RAGreedy::LRE_CanEraseVirtReg(Register VirtReg) {
690   LiveInterval &LI = LIS->getInterval(VirtReg);
691   if (VRM->hasPhys(VirtReg)) {
692     Matrix->unassign(LI);
693     aboutToRemoveInterval(LI);
694     return true;
695   }
696   // Unassigned virtreg is probably in the priority queue.
697   // RegAllocBase will erase it after dequeueing.
698   // Nonetheless, clear the live-range so that the debug
699   // dump will show the right state for that VirtReg.
700   LI.clear();
701   return false;
702 }
703 
704 void RAGreedy::LRE_WillShrinkVirtReg(Register VirtReg) {
705   if (!VRM->hasPhys(VirtReg))
706     return;
707 
708   // Register is assigned, put it back on the queue for reassignment.
709   LiveInterval &LI = LIS->getInterval(VirtReg);
710   Matrix->unassign(LI);
711   RegAllocBase::enqueue(&LI);
712 }
713 
714 void RAGreedy::LRE_DidCloneVirtReg(Register New, Register Old) {
715   // Cloning a register we haven't even heard about yet?  Just ignore it.
716   if (!ExtraRegInfo.inBounds(Old))
717     return;
718 
719   // LRE may clone a virtual register because dead code elimination causes it to
720   // be split into connected components. The new components are much smaller
721   // than the original, so they should get a new chance at being assigned.
722   // same stage as the parent.
723   ExtraRegInfo[Old].Stage = RS_Assign;
724   ExtraRegInfo.grow(New);
725   ExtraRegInfo[New] = ExtraRegInfo[Old];
726 }
727 
728 void RAGreedy::releaseMemory() {
729   SpillerInstance.reset();
730   ExtraRegInfo.clear();
731   GlobalCand.clear();
732 }
733 
734 void RAGreedy::enqueueImpl(LiveInterval *LI) { enqueue(Queue, LI); }
735 
736 void RAGreedy::enqueue(PQueue &CurQueue, LiveInterval *LI) {
737   // Prioritize live ranges by size, assigning larger ranges first.
738   // The queue holds (size, reg) pairs.
739   const unsigned Size = LI->getSize();
740   const Register Reg = LI->reg();
741   assert(Reg.isVirtual() && "Can only enqueue virtual registers");
742   unsigned Prio;
743 
744   ExtraRegInfo.grow(Reg);
745   if (ExtraRegInfo[Reg].Stage == RS_New)
746     ExtraRegInfo[Reg].Stage = RS_Assign;
747 
748   if (ExtraRegInfo[Reg].Stage == RS_Split) {
749     // Unsplit ranges that couldn't be allocated immediately are deferred until
750     // everything else has been allocated.
751     Prio = Size;
752   } else if (ExtraRegInfo[Reg].Stage == RS_Memory) {
753     // Memory operand should be considered last.
754     // Change the priority such that Memory operand are assigned in
755     // the reverse order that they came in.
756     // TODO: Make this a member variable and probably do something about hints.
757     static unsigned MemOp = 0;
758     Prio = MemOp++;
759   } else {
760     // Giant live ranges fall back to the global assignment heuristic, which
761     // prevents excessive spilling in pathological cases.
762     bool ReverseLocal = TRI->reverseLocalAssignment();
763     const TargetRegisterClass &RC = *MRI->getRegClass(Reg);
764     bool ForceGlobal = !ReverseLocal &&
765       (Size / SlotIndex::InstrDist) > (2 * RC.getNumRegs());
766 
767     if (ExtraRegInfo[Reg].Stage == RS_Assign && !ForceGlobal && !LI->empty() &&
768         LIS->intervalIsInOneMBB(*LI)) {
769       // Allocate original local ranges in linear instruction order. Since they
770       // are singly defined, this produces optimal coloring in the absence of
771       // global interference and other constraints.
772       if (!ReverseLocal)
773         Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex());
774       else {
775         // Allocating bottom up may allow many short LRGs to be assigned first
776         // to one of the cheap registers. This could be much faster for very
777         // large blocks on targets with many physical registers.
778         Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex());
779       }
780       Prio |= RC.AllocationPriority << 24;
781     } else {
782       // Allocate global and split ranges in long->short order. Long ranges that
783       // don't fit should be spilled (or split) ASAP so they don't create
784       // interference.  Mark a bit to prioritize global above local ranges.
785       Prio = (1u << 29) + Size;
786     }
787     // Mark a higher bit to prioritize global and local above RS_Split.
788     Prio |= (1u << 31);
789 
790     // Boost ranges that have a physical register hint.
791     if (VRM->hasKnownPreference(Reg))
792       Prio |= (1u << 30);
793   }
794   // The virtual register number is a tie breaker for same-sized ranges.
795   // Give lower vreg numbers higher priority to assign them first.
796   CurQueue.push(std::make_pair(Prio, ~Reg));
797 }
798 
799 LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); }
800 
801 LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) {
802   if (CurQueue.empty())
803     return nullptr;
804   LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second);
805   CurQueue.pop();
806   return LI;
807 }
808 
809 //===----------------------------------------------------------------------===//
810 //                            Direct Assignment
811 //===----------------------------------------------------------------------===//
812 
813 /// tryAssign - Try to assign VirtReg to an available register.
814 MCRegister RAGreedy::tryAssign(LiveInterval &VirtReg,
815                              AllocationOrder &Order,
816                              SmallVectorImpl<Register> &NewVRegs,
817                              const SmallVirtRegSet &FixedRegisters) {
818   MCRegister PhysReg;
819   for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) {
820     assert(*I);
821     if (!Matrix->checkInterference(VirtReg, *I)) {
822       if (I.isHint())
823         return *I;
824       else
825         PhysReg = *I;
826     }
827   }
828   if (!PhysReg.isValid())
829     return PhysReg;
830 
831   // PhysReg is available, but there may be a better choice.
832 
833   // If we missed a simple hint, try to cheaply evict interference from the
834   // preferred register.
835   if (Register Hint = MRI->getSimpleHint(VirtReg.reg()))
836     if (Order.isHint(Hint)) {
837       MCRegister PhysHint = Hint.asMCReg();
838       LLVM_DEBUG(dbgs() << "missed hint " << printReg(PhysHint, TRI) << '\n');
839       EvictionCost MaxCost;
840       MaxCost.setBrokenHints(1);
841       if (canEvictInterference(VirtReg, PhysHint, true, MaxCost,
842                                FixedRegisters)) {
843         evictInterference(VirtReg, PhysHint, NewVRegs);
844         return PhysHint;
845       }
846       // Record the missed hint, we may be able to recover
847       // at the end if the surrounding allocation changed.
848       SetOfBrokenHints.insert(&VirtReg);
849     }
850 
851   // Try to evict interference from a cheaper alternative.
852   uint8_t Cost = RegCosts[PhysReg];
853 
854   // Most registers have 0 additional cost.
855   if (!Cost)
856     return PhysReg;
857 
858   LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is available at cost "
859                     << Cost << '\n');
860   MCRegister CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost, FixedRegisters);
861   return CheapReg ? CheapReg : PhysReg;
862 }
863 
864 //===----------------------------------------------------------------------===//
865 //                         Interference eviction
866 //===----------------------------------------------------------------------===//
867 
868 Register RAGreedy::canReassign(LiveInterval &VirtReg, Register PrevReg) const {
869   auto Order =
870       AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix);
871   MCRegister PhysReg;
872   for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) {
873     if ((*I).id() == PrevReg.id())
874       continue;
875 
876     MCRegUnitIterator Units(*I, TRI);
877     for (; Units.isValid(); ++Units) {
878       // Instantiate a "subquery", not to be confused with the Queries array.
879       LiveIntervalUnion::Query subQ(VirtReg, Matrix->getLiveUnions()[*Units]);
880       if (subQ.checkInterference())
881         break;
882     }
883     // If no units have interference, break out with the current PhysReg.
884     if (!Units.isValid())
885       PhysReg = *I;
886   }
887   if (PhysReg)
888     LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg << " from "
889                       << printReg(PrevReg, TRI) << " to "
890                       << printReg(PhysReg, TRI) << '\n');
891   return PhysReg;
892 }
893 
894 /// shouldEvict - determine if A should evict the assigned live range B. The
895 /// eviction policy defined by this function together with the allocation order
896 /// defined by enqueue() decides which registers ultimately end up being split
897 /// and spilled.
898 ///
899 /// Cascade numbers are used to prevent infinite loops if this function is a
900 /// cyclic relation.
901 ///
902 /// @param A          The live range to be assigned.
903 /// @param IsHint     True when A is about to be assigned to its preferred
904 ///                   register.
905 /// @param B          The live range to be evicted.
906 /// @param BreaksHint True when B is already assigned to its preferred register.
907 bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint,
908                            LiveInterval &B, bool BreaksHint) const {
909   bool CanSplit = getStage(B) < RS_Spill;
910 
911   // Be fairly aggressive about following hints as long as the evictee can be
912   // split.
913   if (CanSplit && IsHint && !BreaksHint)
914     return true;
915 
916   if (A.weight() > B.weight()) {
917     LLVM_DEBUG(dbgs() << "should evict: " << B << " w= " << B.weight() << '\n');
918     return true;
919   }
920   return false;
921 }
922 
923 /// canEvictInterference - Return true if all interferences between VirtReg and
924 /// PhysReg can be evicted.
925 ///
926 /// @param VirtReg Live range that is about to be assigned.
927 /// @param PhysReg Desired register for assignment.
928 /// @param IsHint  True when PhysReg is VirtReg's preferred register.
929 /// @param MaxCost Only look for cheaper candidates and update with new cost
930 ///                when returning true.
931 /// @returns True when interference can be evicted cheaper than MaxCost.
932 bool RAGreedy::canEvictInterference(
933     LiveInterval &VirtReg, MCRegister PhysReg, bool IsHint,
934     EvictionCost &MaxCost, const SmallVirtRegSet &FixedRegisters) const {
935   // It is only possible to evict virtual register interference.
936   if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg)
937     return false;
938 
939   bool IsLocal = LIS->intervalIsInOneMBB(VirtReg);
940 
941   // Find VirtReg's cascade number. This will be unassigned if VirtReg was never
942   // involved in an eviction before. If a cascade number was assigned, deny
943   // evicting anything with the same or a newer cascade number. This prevents
944   // infinite eviction loops.
945   //
946   // This works out so a register without a cascade number is allowed to evict
947   // anything, and it can be evicted by anything.
948   unsigned Cascade = ExtraRegInfo[VirtReg.reg()].Cascade;
949   if (!Cascade)
950     Cascade = NextCascade;
951 
952   EvictionCost Cost;
953   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
954     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
955     // If there is 10 or more interferences, chances are one is heavier.
956     if (Q.collectInterferingVRegs(10) >= 10)
957       return false;
958 
959     // Check if any interfering live range is heavier than MaxWeight.
960     for (LiveInterval *Intf : reverse(Q.interferingVRegs())) {
961       assert(Register::isVirtualRegister(Intf->reg()) &&
962              "Only expecting virtual register interference from query");
963 
964       // Do not allow eviction of a virtual register if we are in the middle
965       // of last-chance recoloring and this virtual register is one that we
966       // have scavenged a physical register for.
967       if (FixedRegisters.count(Intf->reg()))
968         return false;
969 
970       // Never evict spill products. They cannot split or spill.
971       if (getStage(*Intf) == RS_Done)
972         return false;
973       // Once a live range becomes small enough, it is urgent that we find a
974       // register for it. This is indicated by an infinite spill weight. These
975       // urgent live ranges get to evict almost anything.
976       //
977       // Also allow urgent evictions of unspillable ranges from a strictly
978       // larger allocation order.
979       bool Urgent =
980           !VirtReg.isSpillable() &&
981           (Intf->isSpillable() ||
982            RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg())) <
983                RegClassInfo.getNumAllocatableRegs(
984                    MRI->getRegClass(Intf->reg())));
985       // Only evict older cascades or live ranges without a cascade.
986       unsigned IntfCascade = ExtraRegInfo[Intf->reg()].Cascade;
987       if (Cascade <= IntfCascade) {
988         if (!Urgent)
989           return false;
990         // We permit breaking cascades for urgent evictions. It should be the
991         // last resort, though, so make it really expensive.
992         Cost.BrokenHints += 10;
993       }
994       // Would this break a satisfied hint?
995       bool BreaksHint = VRM->hasPreferredPhys(Intf->reg());
996       // Update eviction cost.
997       Cost.BrokenHints += BreaksHint;
998       Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight());
999       // Abort if this would be too expensive.
1000       if (!(Cost < MaxCost))
1001         return false;
1002       if (Urgent)
1003         continue;
1004       // Apply the eviction policy for non-urgent evictions.
1005       if (!shouldEvict(VirtReg, IsHint, *Intf, BreaksHint))
1006         return false;
1007       // If !MaxCost.isMax(), then we're just looking for a cheap register.
1008       // Evicting another local live range in this case could lead to suboptimal
1009       // coloring.
1010       if (!MaxCost.isMax() && IsLocal && LIS->intervalIsInOneMBB(*Intf) &&
1011           (!EnableLocalReassign || !canReassign(*Intf, PhysReg))) {
1012         return false;
1013       }
1014     }
1015   }
1016   MaxCost = Cost;
1017   return true;
1018 }
1019 
1020 /// Return true if all interferences between VirtReg and PhysReg between
1021 /// Start and End can be evicted.
1022 ///
1023 /// \param VirtReg Live range that is about to be assigned.
1024 /// \param PhysReg Desired register for assignment.
1025 /// \param Start   Start of range to look for interferences.
1026 /// \param End     End of range to look for interferences.
1027 /// \param MaxCost Only look for cheaper candidates and update with new cost
1028 ///                when returning true.
1029 /// \return True when interference can be evicted cheaper than MaxCost.
1030 bool RAGreedy::canEvictInterferenceInRange(const LiveInterval &VirtReg,
1031                                            MCRegister PhysReg, SlotIndex Start,
1032                                            SlotIndex End,
1033                                            EvictionCost &MaxCost) const {
1034   EvictionCost Cost;
1035 
1036   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1037     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
1038     Q.collectInterferingVRegs();
1039 
1040     // Check if any interfering live range is heavier than MaxWeight.
1041     for (const LiveInterval *Intf : reverse(Q.interferingVRegs())) {
1042       // Check if interference overlast the segment in interest.
1043       if (!Intf->overlaps(Start, End))
1044         continue;
1045 
1046       // Cannot evict non virtual reg interference.
1047       if (!Register::isVirtualRegister(Intf->reg()))
1048         return false;
1049       // Never evict spill products. They cannot split or spill.
1050       if (getStage(*Intf) == RS_Done)
1051         return false;
1052 
1053       // Would this break a satisfied hint?
1054       bool BreaksHint = VRM->hasPreferredPhys(Intf->reg());
1055       // Update eviction cost.
1056       Cost.BrokenHints += BreaksHint;
1057       Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight());
1058       // Abort if this would be too expensive.
1059       if (!(Cost < MaxCost))
1060         return false;
1061     }
1062   }
1063 
1064   if (Cost.MaxWeight == 0)
1065     return false;
1066 
1067   MaxCost = Cost;
1068   return true;
1069 }
1070 
1071 /// Return the physical register that will be best
1072 /// candidate for eviction by a local split interval that will be created
1073 /// between Start and End.
1074 ///
1075 /// \param Order            The allocation order
1076 /// \param VirtReg          Live range that is about to be assigned.
1077 /// \param Start            Start of range to look for interferences
1078 /// \param End              End of range to look for interferences
1079 /// \param BestEvictweight  The eviction cost of that eviction
1080 /// \return The PhysReg which is the best candidate for eviction and the
1081 /// eviction cost in BestEvictweight
1082 MCRegister RAGreedy::getCheapestEvicteeWeight(const AllocationOrder &Order,
1083                                               const LiveInterval &VirtReg,
1084                                               SlotIndex Start, SlotIndex End,
1085                                               float *BestEvictweight) const {
1086   EvictionCost BestEvictCost;
1087   BestEvictCost.setMax();
1088   BestEvictCost.MaxWeight = VirtReg.weight();
1089   MCRegister BestEvicteePhys;
1090 
1091   // Go over all physical registers and find the best candidate for eviction
1092   for (MCRegister PhysReg : Order.getOrder()) {
1093 
1094     if (!canEvictInterferenceInRange(VirtReg, PhysReg, Start, End,
1095                                      BestEvictCost))
1096       continue;
1097 
1098     // Best so far.
1099     BestEvicteePhys = PhysReg;
1100   }
1101   *BestEvictweight = BestEvictCost.MaxWeight;
1102   return BestEvicteePhys;
1103 }
1104 
1105 /// evictInterference - Evict any interferring registers that prevent VirtReg
1106 /// from being assigned to Physreg. This assumes that canEvictInterference
1107 /// returned true.
1108 void RAGreedy::evictInterference(LiveInterval &VirtReg, MCRegister PhysReg,
1109                                  SmallVectorImpl<Register> &NewVRegs) {
1110   // Make sure that VirtReg has a cascade number, and assign that cascade
1111   // number to every evicted register. These live ranges than then only be
1112   // evicted by a newer cascade, preventing infinite loops.
1113   unsigned Cascade = ExtraRegInfo[VirtReg.reg()].Cascade;
1114   if (!Cascade)
1115     Cascade = ExtraRegInfo[VirtReg.reg()].Cascade = NextCascade++;
1116 
1117   LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg, TRI)
1118                     << " interference: Cascade " << Cascade << '\n');
1119 
1120   // Collect all interfering virtregs first.
1121   SmallVector<LiveInterval*, 8> Intfs;
1122   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1123     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
1124     // We usually have the interfering VRegs cached so collectInterferingVRegs()
1125     // should be fast, we may need to recalculate if when different physregs
1126     // overlap the same register unit so we had different SubRanges queried
1127     // against it.
1128     Q.collectInterferingVRegs();
1129     ArrayRef<LiveInterval*> IVR = Q.interferingVRegs();
1130     Intfs.append(IVR.begin(), IVR.end());
1131   }
1132 
1133   // Evict them second. This will invalidate the queries.
1134   for (LiveInterval *Intf : Intfs) {
1135     // The same VirtReg may be present in multiple RegUnits. Skip duplicates.
1136     if (!VRM->hasPhys(Intf->reg()))
1137       continue;
1138 
1139     LastEvicted.addEviction(PhysReg, VirtReg.reg(), Intf->reg());
1140 
1141     Matrix->unassign(*Intf);
1142     assert((ExtraRegInfo[Intf->reg()].Cascade < Cascade ||
1143             VirtReg.isSpillable() < Intf->isSpillable()) &&
1144            "Cannot decrease cascade number, illegal eviction");
1145     ExtraRegInfo[Intf->reg()].Cascade = Cascade;
1146     ++NumEvicted;
1147     NewVRegs.push_back(Intf->reg());
1148   }
1149 }
1150 
1151 /// Returns true if the given \p PhysReg is a callee saved register and has not
1152 /// been used for allocation yet.
1153 bool RAGreedy::isUnusedCalleeSavedReg(MCRegister PhysReg) const {
1154   MCRegister CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg);
1155   if (!CSR)
1156     return false;
1157 
1158   return !Matrix->isPhysRegUsed(PhysReg);
1159 }
1160 
1161 /// tryEvict - Try to evict all interferences for a physreg.
1162 /// @param  VirtReg Currently unassigned virtual register.
1163 /// @param  Order   Physregs to try.
1164 /// @return         Physreg to assign VirtReg, or 0.
1165 MCRegister RAGreedy::tryEvict(LiveInterval &VirtReg, AllocationOrder &Order,
1166                             SmallVectorImpl<Register> &NewVRegs,
1167                             uint8_t CostPerUseLimit,
1168                             const SmallVirtRegSet &FixedRegisters) {
1169   NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription,
1170                      TimePassesIsEnabled);
1171 
1172   // Keep track of the cheapest interference seen so far.
1173   EvictionCost BestCost;
1174   BestCost.setMax();
1175   MCRegister BestPhys;
1176   unsigned OrderLimit = Order.getOrder().size();
1177 
1178   // When we are just looking for a reduced cost per use, don't break any
1179   // hints, and only evict smaller spill weights.
1180   if (CostPerUseLimit < uint8_t(~0u)) {
1181     BestCost.BrokenHints = 0;
1182     BestCost.MaxWeight = VirtReg.weight();
1183 
1184     // Check of any registers in RC are below CostPerUseLimit.
1185     const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg());
1186     uint8_t MinCost = RegClassInfo.getMinCost(RC);
1187     if (MinCost >= CostPerUseLimit) {
1188       LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = "
1189                         << MinCost << ", no cheaper registers to be found.\n");
1190       return 0;
1191     }
1192 
1193     // It is normal for register classes to have a long tail of registers with
1194     // the same cost. We don't need to look at them if they're too expensive.
1195     if (RegCosts[Order.getOrder().back()] >= CostPerUseLimit) {
1196       OrderLimit = RegClassInfo.getLastCostChange(RC);
1197       LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit
1198                         << " regs.\n");
1199     }
1200   }
1201 
1202   for (auto I = Order.begin(), E = Order.getOrderLimitEnd(OrderLimit); I != E;
1203        ++I) {
1204     MCRegister PhysReg = *I;
1205     assert(PhysReg);
1206     if (RegCosts[PhysReg] >= CostPerUseLimit)
1207       continue;
1208     // The first use of a callee-saved register in a function has cost 1.
1209     // Don't start using a CSR when the CostPerUseLimit is low.
1210     if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) {
1211       LLVM_DEBUG(
1212           dbgs() << printReg(PhysReg, TRI) << " would clobber CSR "
1213                  << printReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI)
1214                  << '\n');
1215       continue;
1216     }
1217 
1218     if (!canEvictInterference(VirtReg, PhysReg, false, BestCost,
1219                               FixedRegisters))
1220       continue;
1221 
1222     // Best so far.
1223     BestPhys = PhysReg;
1224 
1225     // Stop if the hint can be used.
1226     if (I.isHint())
1227       break;
1228   }
1229 
1230   if (BestPhys.isValid())
1231     evictInterference(VirtReg, BestPhys, NewVRegs);
1232   return BestPhys;
1233 }
1234 
1235 //===----------------------------------------------------------------------===//
1236 //                              Region Splitting
1237 //===----------------------------------------------------------------------===//
1238 
1239 /// addSplitConstraints - Fill out the SplitConstraints vector based on the
1240 /// interference pattern in Physreg and its aliases. Add the constraints to
1241 /// SpillPlacement and return the static cost of this split in Cost, assuming
1242 /// that all preferences in SplitConstraints are met.
1243 /// Return false if there are no bundles with positive bias.
1244 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
1245                                    BlockFrequency &Cost) {
1246   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1247 
1248   // Reset interference dependent info.
1249   SplitConstraints.resize(UseBlocks.size());
1250   BlockFrequency StaticCost = 0;
1251   for (unsigned I = 0; I != UseBlocks.size(); ++I) {
1252     const SplitAnalysis::BlockInfo &BI = UseBlocks[I];
1253     SpillPlacement::BlockConstraint &BC = SplitConstraints[I];
1254 
1255     BC.Number = BI.MBB->getNumber();
1256     Intf.moveToBlock(BC.Number);
1257     BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
1258     BC.Exit = (BI.LiveOut &&
1259                !LIS->getInstructionFromIndex(BI.LastInstr)->isImplicitDef())
1260                   ? SpillPlacement::PrefReg
1261                   : SpillPlacement::DontCare;
1262     BC.ChangesValue = BI.FirstDef.isValid();
1263 
1264     if (!Intf.hasInterference())
1265       continue;
1266 
1267     // Number of spill code instructions to insert.
1268     unsigned Ins = 0;
1269 
1270     // Interference for the live-in value.
1271     if (BI.LiveIn) {
1272       if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) {
1273         BC.Entry = SpillPlacement::MustSpill;
1274         ++Ins;
1275       } else if (Intf.first() < BI.FirstInstr) {
1276         BC.Entry = SpillPlacement::PrefSpill;
1277         ++Ins;
1278       } else if (Intf.first() < BI.LastInstr) {
1279         ++Ins;
1280       }
1281 
1282       // Abort if the spill cannot be inserted at the MBB' start
1283       if (((BC.Entry == SpillPlacement::MustSpill) ||
1284            (BC.Entry == SpillPlacement::PrefSpill)) &&
1285           SlotIndex::isEarlierInstr(BI.FirstInstr,
1286                                     SA->getFirstSplitPoint(BC.Number)))
1287         return false;
1288     }
1289 
1290     // Interference for the live-out value.
1291     if (BI.LiveOut) {
1292       if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) {
1293         BC.Exit = SpillPlacement::MustSpill;
1294         ++Ins;
1295       } else if (Intf.last() > BI.LastInstr) {
1296         BC.Exit = SpillPlacement::PrefSpill;
1297         ++Ins;
1298       } else if (Intf.last() > BI.FirstInstr) {
1299         ++Ins;
1300       }
1301     }
1302 
1303     // Accumulate the total frequency of inserted spill code.
1304     while (Ins--)
1305       StaticCost += SpillPlacer->getBlockFrequency(BC.Number);
1306   }
1307   Cost = StaticCost;
1308 
1309   // Add constraints for use-blocks. Note that these are the only constraints
1310   // that may add a positive bias, it is downhill from here.
1311   SpillPlacer->addConstraints(SplitConstraints);
1312   return SpillPlacer->scanActiveBundles();
1313 }
1314 
1315 /// addThroughConstraints - Add constraints and links to SpillPlacer from the
1316 /// live-through blocks in Blocks.
1317 bool RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
1318                                      ArrayRef<unsigned> Blocks) {
1319   const unsigned GroupSize = 8;
1320   SpillPlacement::BlockConstraint BCS[GroupSize];
1321   unsigned TBS[GroupSize];
1322   unsigned B = 0, T = 0;
1323 
1324   for (unsigned Number : Blocks) {
1325     Intf.moveToBlock(Number);
1326 
1327     if (!Intf.hasInterference()) {
1328       assert(T < GroupSize && "Array overflow");
1329       TBS[T] = Number;
1330       if (++T == GroupSize) {
1331         SpillPlacer->addLinks(makeArrayRef(TBS, T));
1332         T = 0;
1333       }
1334       continue;
1335     }
1336 
1337     assert(B < GroupSize && "Array overflow");
1338     BCS[B].Number = Number;
1339 
1340     // Abort if the spill cannot be inserted at the MBB' start
1341     MachineBasicBlock *MBB = MF->getBlockNumbered(Number);
1342     auto FirstNonDebugInstr = MBB->getFirstNonDebugInstr();
1343     if (FirstNonDebugInstr != MBB->end() &&
1344         SlotIndex::isEarlierInstr(LIS->getInstructionIndex(*FirstNonDebugInstr),
1345                                   SA->getFirstSplitPoint(Number)))
1346       return false;
1347     // Interference for the live-in value.
1348     if (Intf.first() <= Indexes->getMBBStartIdx(Number))
1349       BCS[B].Entry = SpillPlacement::MustSpill;
1350     else
1351       BCS[B].Entry = SpillPlacement::PrefSpill;
1352 
1353     // Interference for the live-out value.
1354     if (Intf.last() >= SA->getLastSplitPoint(Number))
1355       BCS[B].Exit = SpillPlacement::MustSpill;
1356     else
1357       BCS[B].Exit = SpillPlacement::PrefSpill;
1358 
1359     if (++B == GroupSize) {
1360       SpillPlacer->addConstraints(makeArrayRef(BCS, B));
1361       B = 0;
1362     }
1363   }
1364 
1365   SpillPlacer->addConstraints(makeArrayRef(BCS, B));
1366   SpillPlacer->addLinks(makeArrayRef(TBS, T));
1367   return true;
1368 }
1369 
1370 bool RAGreedy::growRegion(GlobalSplitCandidate &Cand) {
1371   // Keep track of through blocks that have not been added to SpillPlacer.
1372   BitVector Todo = SA->getThroughBlocks();
1373   SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
1374   unsigned AddedTo = 0;
1375 #ifndef NDEBUG
1376   unsigned Visited = 0;
1377 #endif
1378 
1379   while (true) {
1380     ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
1381     // Find new through blocks in the periphery of PrefRegBundles.
1382     for (unsigned Bundle : NewBundles) {
1383       // Look at all blocks connected to Bundle in the full graph.
1384       ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
1385       for (unsigned Block : Blocks) {
1386         if (!Todo.test(Block))
1387           continue;
1388         Todo.reset(Block);
1389         // This is a new through block. Add it to SpillPlacer later.
1390         ActiveBlocks.push_back(Block);
1391 #ifndef NDEBUG
1392         ++Visited;
1393 #endif
1394       }
1395     }
1396     // Any new blocks to add?
1397     if (ActiveBlocks.size() == AddedTo)
1398       break;
1399 
1400     // Compute through constraints from the interference, or assume that all
1401     // through blocks prefer spilling when forming compact regions.
1402     auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo);
1403     if (Cand.PhysReg) {
1404       if (!addThroughConstraints(Cand.Intf, NewBlocks))
1405         return false;
1406     } else
1407       // Provide a strong negative bias on through blocks to prevent unwanted
1408       // liveness on loop backedges.
1409       SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true);
1410     AddedTo = ActiveBlocks.size();
1411 
1412     // Perhaps iterating can enable more bundles?
1413     SpillPlacer->iterate();
1414   }
1415   LLVM_DEBUG(dbgs() << ", v=" << Visited);
1416   return true;
1417 }
1418 
1419 /// calcCompactRegion - Compute the set of edge bundles that should be live
1420 /// when splitting the current live range into compact regions.  Compact
1421 /// regions can be computed without looking at interference.  They are the
1422 /// regions formed by removing all the live-through blocks from the live range.
1423 ///
1424 /// Returns false if the current live range is already compact, or if the
1425 /// compact regions would form single block regions anyway.
1426 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) {
1427   // Without any through blocks, the live range is already compact.
1428   if (!SA->getNumThroughBlocks())
1429     return false;
1430 
1431   // Compact regions don't correspond to any physreg.
1432   Cand.reset(IntfCache, MCRegister::NoRegister);
1433 
1434   LLVM_DEBUG(dbgs() << "Compact region bundles");
1435 
1436   // Use the spill placer to determine the live bundles. GrowRegion pretends
1437   // that all the through blocks have interference when PhysReg is unset.
1438   SpillPlacer->prepare(Cand.LiveBundles);
1439 
1440   // The static split cost will be zero since Cand.Intf reports no interference.
1441   BlockFrequency Cost;
1442   if (!addSplitConstraints(Cand.Intf, Cost)) {
1443     LLVM_DEBUG(dbgs() << ", none.\n");
1444     return false;
1445   }
1446 
1447   if (!growRegion(Cand)) {
1448     LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
1449     return false;
1450   }
1451 
1452   SpillPlacer->finish();
1453 
1454   if (!Cand.LiveBundles.any()) {
1455     LLVM_DEBUG(dbgs() << ", none.\n");
1456     return false;
1457   }
1458 
1459   LLVM_DEBUG({
1460     for (int I : Cand.LiveBundles.set_bits())
1461       dbgs() << " EB#" << I;
1462     dbgs() << ".\n";
1463   });
1464   return true;
1465 }
1466 
1467 /// calcSpillCost - Compute how expensive it would be to split the live range in
1468 /// SA around all use blocks instead of forming bundle regions.
1469 BlockFrequency RAGreedy::calcSpillCost() {
1470   BlockFrequency Cost = 0;
1471   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1472   for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
1473     unsigned Number = BI.MBB->getNumber();
1474     // We normally only need one spill instruction - a load or a store.
1475     Cost += SpillPlacer->getBlockFrequency(Number);
1476 
1477     // Unless the value is redefined in the block.
1478     if (BI.LiveIn && BI.LiveOut && BI.FirstDef)
1479       Cost += SpillPlacer->getBlockFrequency(Number);
1480   }
1481   return Cost;
1482 }
1483 
1484 /// Check if splitting Evictee will create a local split interval in
1485 /// basic block number BBNumber that may cause a bad eviction chain. This is
1486 /// intended to prevent bad eviction sequences like:
1487 /// movl	%ebp, 8(%esp)           # 4-byte Spill
1488 /// movl	%ecx, %ebp
1489 /// movl	%ebx, %ecx
1490 /// movl	%edi, %ebx
1491 /// movl	%edx, %edi
1492 /// cltd
1493 /// idivl	%esi
1494 /// movl	%edi, %edx
1495 /// movl	%ebx, %edi
1496 /// movl	%ecx, %ebx
1497 /// movl	%ebp, %ecx
1498 /// movl	16(%esp), %ebp          # 4 - byte Reload
1499 ///
1500 /// Such sequences are created in 2 scenarios:
1501 ///
1502 /// Scenario #1:
1503 /// %0 is evicted from physreg0 by %1.
1504 /// Evictee %0 is intended for region splitting with split candidate
1505 /// physreg0 (the reg %0 was evicted from).
1506 /// Region splitting creates a local interval because of interference with the
1507 /// evictor %1 (normally region splitting creates 2 interval, the "by reg"
1508 /// and "by stack" intervals and local interval created when interference
1509 /// occurs).
1510 /// One of the split intervals ends up evicting %2 from physreg1.
1511 /// Evictee %2 is intended for region splitting with split candidate
1512 /// physreg1.
1513 /// One of the split intervals ends up evicting %3 from physreg2, etc.
1514 ///
1515 /// Scenario #2
1516 /// %0 is evicted from physreg0 by %1.
1517 /// %2 is evicted from physreg2 by %3 etc.
1518 /// Evictee %0 is intended for region splitting with split candidate
1519 /// physreg1.
1520 /// Region splitting creates a local interval because of interference with the
1521 /// evictor %1.
1522 /// One of the split intervals ends up evicting back original evictor %1
1523 /// from physreg0 (the reg %0 was evicted from).
1524 /// Another evictee %2 is intended for region splitting with split candidate
1525 /// physreg1.
1526 /// One of the split intervals ends up evicting %3 from physreg2, etc.
1527 ///
1528 /// \param Evictee  The register considered to be split.
1529 /// \param Cand     The split candidate that determines the physical register
1530 ///                 we are splitting for and the interferences.
1531 /// \param BBNumber The number of a BB for which the region split process will
1532 ///                 create a local split interval.
1533 /// \param Order    The physical registers that may get evicted by a split
1534 ///                 artifact of Evictee.
1535 /// \return True if splitting Evictee may cause a bad eviction chain, false
1536 /// otherwise.
1537 bool RAGreedy::splitCanCauseEvictionChain(Register Evictee,
1538                                           GlobalSplitCandidate &Cand,
1539                                           unsigned BBNumber,
1540                                           const AllocationOrder &Order) {
1541   EvictionTrack::EvictorInfo VregEvictorInfo = LastEvicted.getEvictor(Evictee);
1542   unsigned Evictor = VregEvictorInfo.first;
1543   MCRegister PhysReg = VregEvictorInfo.second;
1544 
1545   // No actual evictor.
1546   if (!Evictor || !PhysReg)
1547     return false;
1548 
1549   float MaxWeight = 0;
1550   MCRegister FutureEvictedPhysReg =
1551       getCheapestEvicteeWeight(Order, LIS->getInterval(Evictee),
1552                                Cand.Intf.first(), Cand.Intf.last(), &MaxWeight);
1553 
1554   // The bad eviction chain occurs when either the split candidate is the
1555   // evicting reg or one of the split artifact will evict the evicting reg.
1556   if ((PhysReg != Cand.PhysReg) && (PhysReg != FutureEvictedPhysReg))
1557     return false;
1558 
1559   Cand.Intf.moveToBlock(BBNumber);
1560 
1561   // Check to see if the Evictor contains interference (with Evictee) in the
1562   // given BB. If so, this interference caused the eviction of Evictee from
1563   // PhysReg. This suggest that we will create a local interval during the
1564   // region split to avoid this interference This local interval may cause a bad
1565   // eviction chain.
1566   if (!LIS->hasInterval(Evictor))
1567     return false;
1568   LiveInterval &EvictorLI = LIS->getInterval(Evictor);
1569   if (EvictorLI.FindSegmentContaining(Cand.Intf.first()) == EvictorLI.end())
1570     return false;
1571 
1572   // Now, check to see if the local interval we will create is going to be
1573   // expensive enough to evict somebody If so, this may cause a bad eviction
1574   // chain.
1575   float splitArtifactWeight =
1576       VRAI->futureWeight(LIS->getInterval(Evictee),
1577                          Cand.Intf.first().getPrevIndex(), Cand.Intf.last());
1578   if (splitArtifactWeight >= 0 && splitArtifactWeight < MaxWeight)
1579     return false;
1580 
1581   return true;
1582 }
1583 
1584 /// Check if splitting VirtRegToSplit will create a local split interval
1585 /// in basic block number BBNumber that may cause a spill.
1586 ///
1587 /// \param VirtRegToSplit The register considered to be split.
1588 /// \param Cand           The split candidate that determines the physical
1589 ///                       register we are splitting for and the interferences.
1590 /// \param BBNumber       The number of a BB for which the region split process
1591 ///                       will create a local split interval.
1592 /// \param Order          The physical registers that may get evicted by a
1593 ///                       split artifact of VirtRegToSplit.
1594 /// \return True if splitting VirtRegToSplit may cause a spill, false
1595 /// otherwise.
1596 bool RAGreedy::splitCanCauseLocalSpill(unsigned VirtRegToSplit,
1597                                        GlobalSplitCandidate &Cand,
1598                                        unsigned BBNumber,
1599                                        const AllocationOrder &Order) {
1600   Cand.Intf.moveToBlock(BBNumber);
1601 
1602   // Check if the local interval will find a non interfereing assignment.
1603   for (auto PhysReg : Order.getOrder()) {
1604     if (!Matrix->checkInterference(Cand.Intf.first().getPrevIndex(),
1605                                    Cand.Intf.last(), PhysReg))
1606       return false;
1607   }
1608 
1609   // The local interval is not able to find non interferencing assignment
1610   // and not able to evict a less worthy interval, therfore, it can cause a
1611   // spill.
1612   return true;
1613 }
1614 
1615 /// calcGlobalSplitCost - Return the global split cost of following the split
1616 /// pattern in LiveBundles. This cost should be added to the local cost of the
1617 /// interference pattern in SplitConstraints.
1618 ///
1619 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand,
1620                                              const AllocationOrder &Order,
1621                                              bool *CanCauseEvictionChain) {
1622   BlockFrequency GlobalCost = 0;
1623   const BitVector &LiveBundles = Cand.LiveBundles;
1624   Register VirtRegToSplit = SA->getParent().reg();
1625   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1626   for (unsigned I = 0; I != UseBlocks.size(); ++I) {
1627     const SplitAnalysis::BlockInfo &BI = UseBlocks[I];
1628     SpillPlacement::BlockConstraint &BC = SplitConstraints[I];
1629     bool RegIn  = LiveBundles[Bundles->getBundle(BC.Number, false)];
1630     bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)];
1631     unsigned Ins = 0;
1632 
1633     Cand.Intf.moveToBlock(BC.Number);
1634     // Check wheather a local interval is going to be created during the region
1635     // split. Calculate adavanced spilt cost (cost of local intervals) if option
1636     // is enabled.
1637     if (EnableAdvancedRASplitCost && Cand.Intf.hasInterference() && BI.LiveIn &&
1638         BI.LiveOut && RegIn && RegOut) {
1639 
1640       if (CanCauseEvictionChain &&
1641           splitCanCauseEvictionChain(VirtRegToSplit, Cand, BC.Number, Order)) {
1642         // This interference causes our eviction from this assignment, we might
1643         // evict somebody else and eventually someone will spill, add that cost.
1644         // See splitCanCauseEvictionChain for detailed description of scenarios.
1645         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1646         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1647 
1648         *CanCauseEvictionChain = true;
1649 
1650       } else if (splitCanCauseLocalSpill(VirtRegToSplit, Cand, BC.Number,
1651                                          Order)) {
1652         // This interference causes local interval to spill, add that cost.
1653         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1654         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1655       }
1656     }
1657 
1658     if (BI.LiveIn)
1659       Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
1660     if (BI.LiveOut)
1661       Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
1662     while (Ins--)
1663       GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1664   }
1665 
1666   for (unsigned Number : Cand.ActiveBlocks) {
1667     bool RegIn  = LiveBundles[Bundles->getBundle(Number, false)];
1668     bool RegOut = LiveBundles[Bundles->getBundle(Number, true)];
1669     if (!RegIn && !RegOut)
1670       continue;
1671     if (RegIn && RegOut) {
1672       // We need double spill code if this block has interference.
1673       Cand.Intf.moveToBlock(Number);
1674       if (Cand.Intf.hasInterference()) {
1675         GlobalCost += SpillPlacer->getBlockFrequency(Number);
1676         GlobalCost += SpillPlacer->getBlockFrequency(Number);
1677 
1678         // Check wheather a local interval is going to be created during the
1679         // region split.
1680         if (EnableAdvancedRASplitCost && CanCauseEvictionChain &&
1681             splitCanCauseEvictionChain(VirtRegToSplit, Cand, Number, Order)) {
1682           // This interference cause our eviction from this assignment, we might
1683           // evict somebody else, add that cost.
1684           // See splitCanCauseEvictionChain for detailed description of
1685           // scenarios.
1686           GlobalCost += SpillPlacer->getBlockFrequency(Number);
1687           GlobalCost += SpillPlacer->getBlockFrequency(Number);
1688 
1689           *CanCauseEvictionChain = true;
1690         }
1691       }
1692       continue;
1693     }
1694     // live-in / stack-out or stack-in live-out.
1695     GlobalCost += SpillPlacer->getBlockFrequency(Number);
1696   }
1697   return GlobalCost;
1698 }
1699 
1700 /// splitAroundRegion - Split the current live range around the regions
1701 /// determined by BundleCand and GlobalCand.
1702 ///
1703 /// Before calling this function, GlobalCand and BundleCand must be initialized
1704 /// so each bundle is assigned to a valid candidate, or NoCand for the
1705 /// stack-bound bundles.  The shared SA/SE SplitAnalysis and SplitEditor
1706 /// objects must be initialized for the current live range, and intervals
1707 /// created for the used candidates.
1708 ///
1709 /// @param LREdit    The LiveRangeEdit object handling the current split.
1710 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value
1711 ///                  must appear in this list.
1712 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit,
1713                                  ArrayRef<unsigned> UsedCands) {
1714   // These are the intervals created for new global ranges. We may create more
1715   // intervals for local ranges.
1716   const unsigned NumGlobalIntvs = LREdit.size();
1717   LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs
1718                     << " globals.\n");
1719   assert(NumGlobalIntvs && "No global intervals configured");
1720 
1721   // Isolate even single instructions when dealing with a proper sub-class.
1722   // That guarantees register class inflation for the stack interval because it
1723   // is all copies.
1724   Register Reg = SA->getParent().reg();
1725   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1726 
1727   // First handle all the blocks with uses.
1728   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1729   for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
1730     unsigned Number = BI.MBB->getNumber();
1731     unsigned IntvIn = 0, IntvOut = 0;
1732     SlotIndex IntfIn, IntfOut;
1733     if (BI.LiveIn) {
1734       unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
1735       if (CandIn != NoCand) {
1736         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1737         IntvIn = Cand.IntvIdx;
1738         Cand.Intf.moveToBlock(Number);
1739         IntfIn = Cand.Intf.first();
1740       }
1741     }
1742     if (BI.LiveOut) {
1743       unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
1744       if (CandOut != NoCand) {
1745         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1746         IntvOut = Cand.IntvIdx;
1747         Cand.Intf.moveToBlock(Number);
1748         IntfOut = Cand.Intf.last();
1749       }
1750     }
1751 
1752     // Create separate intervals for isolated blocks with multiple uses.
1753     if (!IntvIn && !IntvOut) {
1754       LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " isolated.\n");
1755       if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1756         SE->splitSingleBlock(BI);
1757       continue;
1758     }
1759 
1760     if (IntvIn && IntvOut)
1761       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1762     else if (IntvIn)
1763       SE->splitRegInBlock(BI, IntvIn, IntfIn);
1764     else
1765       SE->splitRegOutBlock(BI, IntvOut, IntfOut);
1766   }
1767 
1768   // Handle live-through blocks. The relevant live-through blocks are stored in
1769   // the ActiveBlocks list with each candidate. We need to filter out
1770   // duplicates.
1771   BitVector Todo = SA->getThroughBlocks();
1772   for (unsigned c = 0; c != UsedCands.size(); ++c) {
1773     ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks;
1774     for (unsigned Number : Blocks) {
1775       if (!Todo.test(Number))
1776         continue;
1777       Todo.reset(Number);
1778 
1779       unsigned IntvIn = 0, IntvOut = 0;
1780       SlotIndex IntfIn, IntfOut;
1781 
1782       unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
1783       if (CandIn != NoCand) {
1784         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1785         IntvIn = Cand.IntvIdx;
1786         Cand.Intf.moveToBlock(Number);
1787         IntfIn = Cand.Intf.first();
1788       }
1789 
1790       unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
1791       if (CandOut != NoCand) {
1792         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1793         IntvOut = Cand.IntvIdx;
1794         Cand.Intf.moveToBlock(Number);
1795         IntfOut = Cand.Intf.last();
1796       }
1797       if (!IntvIn && !IntvOut)
1798         continue;
1799       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1800     }
1801   }
1802 
1803   ++NumGlobalSplits;
1804 
1805   SmallVector<unsigned, 8> IntvMap;
1806   SE->finish(&IntvMap);
1807   DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
1808 
1809   ExtraRegInfo.resize(MRI->getNumVirtRegs());
1810   unsigned OrigBlocks = SA->getNumLiveBlocks();
1811 
1812   // Sort out the new intervals created by splitting. We get four kinds:
1813   // - Remainder intervals should not be split again.
1814   // - Candidate intervals can be assigned to Cand.PhysReg.
1815   // - Block-local splits are candidates for local splitting.
1816   // - DCE leftovers should go back on the queue.
1817   for (unsigned I = 0, E = LREdit.size(); I != E; ++I) {
1818     LiveInterval &Reg = LIS->getInterval(LREdit.get(I));
1819 
1820     // Ignore old intervals from DCE.
1821     if (getStage(Reg) != RS_New)
1822       continue;
1823 
1824     // Remainder interval. Don't try splitting again, spill if it doesn't
1825     // allocate.
1826     if (IntvMap[I] == 0) {
1827       setStage(Reg, RS_Spill);
1828       continue;
1829     }
1830 
1831     // Global intervals. Allow repeated splitting as long as the number of live
1832     // blocks is strictly decreasing.
1833     if (IntvMap[I] < NumGlobalIntvs) {
1834       if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
1835         LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
1836                           << " blocks as original.\n");
1837         // Don't allow repeated splitting as a safe guard against looping.
1838         setStage(Reg, RS_Split2);
1839       }
1840       continue;
1841     }
1842 
1843     // Other intervals are treated as new. This includes local intervals created
1844     // for blocks with multiple uses, and anything created by DCE.
1845   }
1846 
1847   if (VerifyEnabled)
1848     MF->verify(this, "After splitting live range around region");
1849 }
1850 
1851 MCRegister RAGreedy::tryRegionSplit(LiveInterval &VirtReg,
1852                                     AllocationOrder &Order,
1853                                     SmallVectorImpl<Register> &NewVRegs) {
1854   if (!TRI->shouldRegionSplitForVirtReg(*MF, VirtReg))
1855     return MCRegister::NoRegister;
1856   unsigned NumCands = 0;
1857   BlockFrequency SpillCost = calcSpillCost();
1858   BlockFrequency BestCost;
1859 
1860   // Check if we can split this live range around a compact region.
1861   bool HasCompact = calcCompactRegion(GlobalCand.front());
1862   if (HasCompact) {
1863     // Yes, keep GlobalCand[0] as the compact region candidate.
1864     NumCands = 1;
1865     BestCost = BlockFrequency::getMaxFrequency();
1866   } else {
1867     // No benefit from the compact region, our fallback will be per-block
1868     // splitting. Make sure we find a solution that is cheaper than spilling.
1869     BestCost = SpillCost;
1870     LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = ";
1871                MBFI->printBlockFreq(dbgs(), BestCost) << '\n');
1872   }
1873 
1874   bool CanCauseEvictionChain = false;
1875   unsigned BestCand =
1876       calculateRegionSplitCost(VirtReg, Order, BestCost, NumCands,
1877                                false /*IgnoreCSR*/, &CanCauseEvictionChain);
1878 
1879   // Split candidates with compact regions can cause a bad eviction sequence.
1880   // See splitCanCauseEvictionChain for detailed description of scenarios.
1881   // To avoid it, we need to comapre the cost with the spill cost and not the
1882   // current max frequency.
1883   if (HasCompact && (BestCost > SpillCost) && (BestCand != NoCand) &&
1884     CanCauseEvictionChain) {
1885     return MCRegister::NoRegister;
1886   }
1887 
1888   // No solutions found, fall back to single block splitting.
1889   if (!HasCompact && BestCand == NoCand)
1890     return MCRegister::NoRegister;
1891 
1892   return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs);
1893 }
1894 
1895 unsigned RAGreedy::calculateRegionSplitCost(LiveInterval &VirtReg,
1896                                             AllocationOrder &Order,
1897                                             BlockFrequency &BestCost,
1898                                             unsigned &NumCands, bool IgnoreCSR,
1899                                             bool *CanCauseEvictionChain) {
1900   unsigned BestCand = NoCand;
1901   for (MCPhysReg PhysReg : Order) {
1902     assert(PhysReg);
1903     if (IgnoreCSR && isUnusedCalleeSavedReg(PhysReg))
1904       continue;
1905 
1906     // Discard bad candidates before we run out of interference cache cursors.
1907     // This will only affect register classes with a lot of registers (>32).
1908     if (NumCands == IntfCache.getMaxCursors()) {
1909       unsigned WorstCount = ~0u;
1910       unsigned Worst = 0;
1911       for (unsigned CandIndex = 0; CandIndex != NumCands; ++CandIndex) {
1912         if (CandIndex == BestCand || !GlobalCand[CandIndex].PhysReg)
1913           continue;
1914         unsigned Count = GlobalCand[CandIndex].LiveBundles.count();
1915         if (Count < WorstCount) {
1916           Worst = CandIndex;
1917           WorstCount = Count;
1918         }
1919       }
1920       --NumCands;
1921       GlobalCand[Worst] = GlobalCand[NumCands];
1922       if (BestCand == NumCands)
1923         BestCand = Worst;
1924     }
1925 
1926     if (GlobalCand.size() <= NumCands)
1927       GlobalCand.resize(NumCands+1);
1928     GlobalSplitCandidate &Cand = GlobalCand[NumCands];
1929     Cand.reset(IntfCache, PhysReg);
1930 
1931     SpillPlacer->prepare(Cand.LiveBundles);
1932     BlockFrequency Cost;
1933     if (!addSplitConstraints(Cand.Intf, Cost)) {
1934       LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tno positive bundles\n");
1935       continue;
1936     }
1937     LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tstatic = ";
1938                MBFI->printBlockFreq(dbgs(), Cost));
1939     if (Cost >= BestCost) {
1940       LLVM_DEBUG({
1941         if (BestCand == NoCand)
1942           dbgs() << " worse than no bundles\n";
1943         else
1944           dbgs() << " worse than "
1945                  << printReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
1946       });
1947       continue;
1948     }
1949     if (!growRegion(Cand)) {
1950       LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
1951       continue;
1952     }
1953 
1954     SpillPlacer->finish();
1955 
1956     // No live bundles, defer to splitSingleBlocks().
1957     if (!Cand.LiveBundles.any()) {
1958       LLVM_DEBUG(dbgs() << " no bundles.\n");
1959       continue;
1960     }
1961 
1962     bool HasEvictionChain = false;
1963     Cost += calcGlobalSplitCost(Cand, Order, &HasEvictionChain);
1964     LLVM_DEBUG({
1965       dbgs() << ", total = ";
1966       MBFI->printBlockFreq(dbgs(), Cost) << " with bundles";
1967       for (int I : Cand.LiveBundles.set_bits())
1968         dbgs() << " EB#" << I;
1969       dbgs() << ".\n";
1970     });
1971     if (Cost < BestCost) {
1972       BestCand = NumCands;
1973       BestCost = Cost;
1974       // See splitCanCauseEvictionChain for detailed description of bad
1975       // eviction chain scenarios.
1976       if (CanCauseEvictionChain)
1977         *CanCauseEvictionChain = HasEvictionChain;
1978     }
1979     ++NumCands;
1980   }
1981 
1982   if (CanCauseEvictionChain && BestCand != NoCand) {
1983     // See splitCanCauseEvictionChain for detailed description of bad
1984     // eviction chain scenarios.
1985     LLVM_DEBUG(dbgs() << "Best split candidate of vreg "
1986                       << printReg(VirtReg.reg(), TRI) << "  may ");
1987     if (!(*CanCauseEvictionChain))
1988       LLVM_DEBUG(dbgs() << "not ");
1989     LLVM_DEBUG(dbgs() << "cause bad eviction chain\n");
1990   }
1991 
1992   return BestCand;
1993 }
1994 
1995 unsigned RAGreedy::doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
1996                                  bool HasCompact,
1997                                  SmallVectorImpl<Register> &NewVRegs) {
1998   SmallVector<unsigned, 8> UsedCands;
1999   // Prepare split editor.
2000   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2001   SE->reset(LREdit, SplitSpillMode);
2002 
2003   // Assign all edge bundles to the preferred candidate, or NoCand.
2004   BundleCand.assign(Bundles->getNumBundles(), NoCand);
2005 
2006   // Assign bundles for the best candidate region.
2007   if (BestCand != NoCand) {
2008     GlobalSplitCandidate &Cand = GlobalCand[BestCand];
2009     if (unsigned B = Cand.getBundles(BundleCand, BestCand)) {
2010       UsedCands.push_back(BestCand);
2011       Cand.IntvIdx = SE->openIntv();
2012       LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand.PhysReg, TRI) << " in "
2013                         << B << " bundles, intv " << Cand.IntvIdx << ".\n");
2014       (void)B;
2015     }
2016   }
2017 
2018   // Assign bundles for the compact region.
2019   if (HasCompact) {
2020     GlobalSplitCandidate &Cand = GlobalCand.front();
2021     assert(!Cand.PhysReg && "Compact region has no physreg");
2022     if (unsigned B = Cand.getBundles(BundleCand, 0)) {
2023       UsedCands.push_back(0);
2024       Cand.IntvIdx = SE->openIntv();
2025       LLVM_DEBUG(dbgs() << "Split for compact region in " << B
2026                         << " bundles, intv " << Cand.IntvIdx << ".\n");
2027       (void)B;
2028     }
2029   }
2030 
2031   splitAroundRegion(LREdit, UsedCands);
2032   return 0;
2033 }
2034 
2035 //===----------------------------------------------------------------------===//
2036 //                            Per-Block Splitting
2037 //===----------------------------------------------------------------------===//
2038 
2039 /// tryBlockSplit - Split a global live range around every block with uses. This
2040 /// creates a lot of local live ranges, that will be split by tryLocalSplit if
2041 /// they don't allocate.
2042 unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order,
2043                                  SmallVectorImpl<Register> &NewVRegs) {
2044   assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed");
2045   Register Reg = VirtReg.reg();
2046   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
2047   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2048   SE->reset(LREdit, SplitSpillMode);
2049   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
2050   for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
2051     if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
2052       SE->splitSingleBlock(BI);
2053   }
2054   // No blocks were split.
2055   if (LREdit.empty())
2056     return 0;
2057 
2058   // We did split for some blocks.
2059   SmallVector<unsigned, 8> IntvMap;
2060   SE->finish(&IntvMap);
2061 
2062   // Tell LiveDebugVariables about the new ranges.
2063   DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
2064 
2065   ExtraRegInfo.resize(MRI->getNumVirtRegs());
2066 
2067   // Sort out the new intervals created by splitting. The remainder interval
2068   // goes straight to spilling, the new local ranges get to stay RS_New.
2069   for (unsigned I = 0, E = LREdit.size(); I != E; ++I) {
2070     LiveInterval &LI = LIS->getInterval(LREdit.get(I));
2071     if (getStage(LI) == RS_New && IntvMap[I] == 0)
2072       setStage(LI, RS_Spill);
2073   }
2074 
2075   if (VerifyEnabled)
2076     MF->verify(this, "After splitting live range around basic blocks");
2077   return 0;
2078 }
2079 
2080 //===----------------------------------------------------------------------===//
2081 //                         Per-Instruction Splitting
2082 //===----------------------------------------------------------------------===//
2083 
2084 /// Get the number of allocatable registers that match the constraints of \p Reg
2085 /// on \p MI and that are also in \p SuperRC.
2086 static unsigned getNumAllocatableRegsForConstraints(
2087     const MachineInstr *MI, Register Reg, const TargetRegisterClass *SuperRC,
2088     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
2089     const RegisterClassInfo &RCI) {
2090   assert(SuperRC && "Invalid register class");
2091 
2092   const TargetRegisterClass *ConstrainedRC =
2093       MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI,
2094                                              /* ExploreBundle */ true);
2095   if (!ConstrainedRC)
2096     return 0;
2097   return RCI.getNumAllocatableRegs(ConstrainedRC);
2098 }
2099 
2100 /// tryInstructionSplit - Split a live range around individual instructions.
2101 /// This is normally not worthwhile since the spiller is doing essentially the
2102 /// same thing. However, when the live range is in a constrained register
2103 /// class, it may help to insert copies such that parts of the live range can
2104 /// be moved to a larger register class.
2105 ///
2106 /// This is similar to spilling to a larger register class.
2107 unsigned
2108 RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
2109                               SmallVectorImpl<Register> &NewVRegs) {
2110   const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg());
2111   // There is no point to this if there are no larger sub-classes.
2112   if (!RegClassInfo.isProperSubClass(CurRC))
2113     return 0;
2114 
2115   // Always enable split spill mode, since we're effectively spilling to a
2116   // register.
2117   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2118   SE->reset(LREdit, SplitEditor::SM_Size);
2119 
2120   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
2121   if (Uses.size() <= 1)
2122     return 0;
2123 
2124   LLVM_DEBUG(dbgs() << "Split around " << Uses.size()
2125                     << " individual instrs.\n");
2126 
2127   const TargetRegisterClass *SuperRC =
2128       TRI->getLargestLegalSuperClass(CurRC, *MF);
2129   unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC);
2130   // Split around every non-copy instruction if this split will relax
2131   // the constraints on the virtual register.
2132   // Otherwise, splitting just inserts uncoalescable copies that do not help
2133   // the allocation.
2134   for (const auto &Use : Uses) {
2135     if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Use))
2136       if (MI->isFullCopy() ||
2137           SuperRCNumAllocatableRegs ==
2138               getNumAllocatableRegsForConstraints(MI, VirtReg.reg(), SuperRC,
2139                                                   TII, TRI, RCI)) {
2140         LLVM_DEBUG(dbgs() << "    skip:\t" << Use << '\t' << *MI);
2141         continue;
2142       }
2143     SE->openIntv();
2144     SlotIndex SegStart = SE->enterIntvBefore(Use);
2145     SlotIndex SegStop = SE->leaveIntvAfter(Use);
2146     SE->useIntv(SegStart, SegStop);
2147   }
2148 
2149   if (LREdit.empty()) {
2150     LLVM_DEBUG(dbgs() << "All uses were copies.\n");
2151     return 0;
2152   }
2153 
2154   SmallVector<unsigned, 8> IntvMap;
2155   SE->finish(&IntvMap);
2156   DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS);
2157   ExtraRegInfo.resize(MRI->getNumVirtRegs());
2158 
2159   // Assign all new registers to RS_Spill. This was the last chance.
2160   setStage(LREdit.begin(), LREdit.end(), RS_Spill);
2161   return 0;
2162 }
2163 
2164 //===----------------------------------------------------------------------===//
2165 //                             Local Splitting
2166 //===----------------------------------------------------------------------===//
2167 
2168 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted
2169 /// in order to use PhysReg between two entries in SA->UseSlots.
2170 ///
2171 /// GapWeight[I] represents the gap between UseSlots[I] and UseSlots[I + 1].
2172 ///
2173 void RAGreedy::calcGapWeights(MCRegister PhysReg,
2174                               SmallVectorImpl<float> &GapWeight) {
2175   assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
2176   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
2177   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
2178   const unsigned NumGaps = Uses.size()-1;
2179 
2180   // Start and end points for the interference check.
2181   SlotIndex StartIdx =
2182     BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr;
2183   SlotIndex StopIdx =
2184     BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr;
2185 
2186   GapWeight.assign(NumGaps, 0.0f);
2187 
2188   // Add interference from each overlapping register.
2189   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2190     if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units)
2191           .checkInterference())
2192       continue;
2193 
2194     // We know that VirtReg is a continuous interval from FirstInstr to
2195     // LastInstr, so we don't need InterferenceQuery.
2196     //
2197     // Interference that overlaps an instruction is counted in both gaps
2198     // surrounding the instruction. The exception is interference before
2199     // StartIdx and after StopIdx.
2200     //
2201     LiveIntervalUnion::SegmentIter IntI =
2202       Matrix->getLiveUnions()[*Units] .find(StartIdx);
2203     for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
2204       // Skip the gaps before IntI.
2205       while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
2206         if (++Gap == NumGaps)
2207           break;
2208       if (Gap == NumGaps)
2209         break;
2210 
2211       // Update the gaps covered by IntI.
2212       const float weight = IntI.value()->weight();
2213       for (; Gap != NumGaps; ++Gap) {
2214         GapWeight[Gap] = std::max(GapWeight[Gap], weight);
2215         if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
2216           break;
2217       }
2218       if (Gap == NumGaps)
2219         break;
2220     }
2221   }
2222 
2223   // Add fixed interference.
2224   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2225     const LiveRange &LR = LIS->getRegUnit(*Units);
2226     LiveRange::const_iterator I = LR.find(StartIdx);
2227     LiveRange::const_iterator E = LR.end();
2228 
2229     // Same loop as above. Mark any overlapped gaps as HUGE_VALF.
2230     for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) {
2231       while (Uses[Gap+1].getBoundaryIndex() < I->start)
2232         if (++Gap == NumGaps)
2233           break;
2234       if (Gap == NumGaps)
2235         break;
2236 
2237       for (; Gap != NumGaps; ++Gap) {
2238         GapWeight[Gap] = huge_valf;
2239         if (Uses[Gap+1].getBaseIndex() >= I->end)
2240           break;
2241       }
2242       if (Gap == NumGaps)
2243         break;
2244     }
2245   }
2246 }
2247 
2248 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
2249 /// basic block.
2250 ///
2251 unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
2252                                  SmallVectorImpl<Register> &NewVRegs) {
2253   // TODO: the function currently only handles a single UseBlock; it should be
2254   // possible to generalize.
2255   if (SA->getUseBlocks().size() != 1)
2256     return 0;
2257 
2258   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
2259 
2260   // Note that it is possible to have an interval that is live-in or live-out
2261   // while only covering a single block - A phi-def can use undef values from
2262   // predecessors, and the block could be a single-block loop.
2263   // We don't bother doing anything clever about such a case, we simply assume
2264   // that the interval is continuous from FirstInstr to LastInstr. We should
2265   // make sure that we don't do anything illegal to such an interval, though.
2266 
2267   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
2268   if (Uses.size() <= 2)
2269     return 0;
2270   const unsigned NumGaps = Uses.size()-1;
2271 
2272   LLVM_DEBUG({
2273     dbgs() << "tryLocalSplit: ";
2274     for (const auto &Use : Uses)
2275       dbgs() << ' ' << Use;
2276     dbgs() << '\n';
2277   });
2278 
2279   // If VirtReg is live across any register mask operands, compute a list of
2280   // gaps with register masks.
2281   SmallVector<unsigned, 8> RegMaskGaps;
2282   if (Matrix->checkRegMaskInterference(VirtReg)) {
2283     // Get regmask slots for the whole block.
2284     ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber());
2285     LLVM_DEBUG(dbgs() << RMS.size() << " regmasks in block:");
2286     // Constrain to VirtReg's live range.
2287     unsigned RI =
2288         llvm::lower_bound(RMS, Uses.front().getRegSlot()) - RMS.begin();
2289     unsigned RE = RMS.size();
2290     for (unsigned I = 0; I != NumGaps && RI != RE; ++I) {
2291       // Look for Uses[I] <= RMS <= Uses[I + 1].
2292       assert(!SlotIndex::isEarlierInstr(RMS[RI], Uses[I]));
2293       if (SlotIndex::isEarlierInstr(Uses[I + 1], RMS[RI]))
2294         continue;
2295       // Skip a regmask on the same instruction as the last use. It doesn't
2296       // overlap the live range.
2297       if (SlotIndex::isSameInstr(Uses[I + 1], RMS[RI]) && I + 1 == NumGaps)
2298         break;
2299       LLVM_DEBUG(dbgs() << ' ' << RMS[RI] << ':' << Uses[I] << '-'
2300                         << Uses[I + 1]);
2301       RegMaskGaps.push_back(I);
2302       // Advance ri to the next gap. A regmask on one of the uses counts in
2303       // both gaps.
2304       while (RI != RE && SlotIndex::isEarlierInstr(RMS[RI], Uses[I + 1]))
2305         ++RI;
2306     }
2307     LLVM_DEBUG(dbgs() << '\n');
2308   }
2309 
2310   // Since we allow local split results to be split again, there is a risk of
2311   // creating infinite loops. It is tempting to require that the new live
2312   // ranges have less instructions than the original. That would guarantee
2313   // convergence, but it is too strict. A live range with 3 instructions can be
2314   // split 2+3 (including the COPY), and we want to allow that.
2315   //
2316   // Instead we use these rules:
2317   //
2318   // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the
2319   //    noop split, of course).
2320   // 2. Require progress be made for ranges with getStage() == RS_Split2. All
2321   //    the new ranges must have fewer instructions than before the split.
2322   // 3. New ranges with the same number of instructions are marked RS_Split2,
2323   //    smaller ranges are marked RS_New.
2324   //
2325   // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
2326   // excessive splitting and infinite loops.
2327   //
2328   bool ProgressRequired = getStage(VirtReg) >= RS_Split2;
2329 
2330   // Best split candidate.
2331   unsigned BestBefore = NumGaps;
2332   unsigned BestAfter = 0;
2333   float BestDiff = 0;
2334 
2335   const float blockFreq =
2336     SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() *
2337     (1.0f / MBFI->getEntryFreq());
2338   SmallVector<float, 8> GapWeight;
2339 
2340   for (MCPhysReg PhysReg : Order) {
2341     assert(PhysReg);
2342     // Keep track of the largest spill weight that would need to be evicted in
2343     // order to make use of PhysReg between UseSlots[I] and UseSlots[I + 1].
2344     calcGapWeights(PhysReg, GapWeight);
2345 
2346     // Remove any gaps with regmask clobbers.
2347     if (Matrix->checkRegMaskInterference(VirtReg, PhysReg))
2348       for (unsigned I = 0, E = RegMaskGaps.size(); I != E; ++I)
2349         GapWeight[RegMaskGaps[I]] = huge_valf;
2350 
2351     // Try to find the best sequence of gaps to close.
2352     // The new spill weight must be larger than any gap interference.
2353 
2354     // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
2355     unsigned SplitBefore = 0, SplitAfter = 1;
2356 
2357     // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
2358     // It is the spill weight that needs to be evicted.
2359     float MaxGap = GapWeight[0];
2360 
2361     while (true) {
2362       // Live before/after split?
2363       const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
2364       const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
2365 
2366       LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << ' ' << Uses[SplitBefore]
2367                         << '-' << Uses[SplitAfter] << " I=" << MaxGap);
2368 
2369       // Stop before the interval gets so big we wouldn't be making progress.
2370       if (!LiveBefore && !LiveAfter) {
2371         LLVM_DEBUG(dbgs() << " all\n");
2372         break;
2373       }
2374       // Should the interval be extended or shrunk?
2375       bool Shrink = true;
2376 
2377       // How many gaps would the new range have?
2378       unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
2379 
2380       // Legally, without causing looping?
2381       bool Legal = !ProgressRequired || NewGaps < NumGaps;
2382 
2383       if (Legal && MaxGap < huge_valf) {
2384         // Estimate the new spill weight. Each instruction reads or writes the
2385         // register. Conservatively assume there are no read-modify-write
2386         // instructions.
2387         //
2388         // Try to guess the size of the new interval.
2389         const float EstWeight = normalizeSpillWeight(
2390             blockFreq * (NewGaps + 1),
2391             Uses[SplitBefore].distance(Uses[SplitAfter]) +
2392                 (LiveBefore + LiveAfter) * SlotIndex::InstrDist,
2393             1);
2394         // Would this split be possible to allocate?
2395         // Never allocate all gaps, we wouldn't be making progress.
2396         LLVM_DEBUG(dbgs() << " w=" << EstWeight);
2397         if (EstWeight * Hysteresis >= MaxGap) {
2398           Shrink = false;
2399           float Diff = EstWeight - MaxGap;
2400           if (Diff > BestDiff) {
2401             LLVM_DEBUG(dbgs() << " (best)");
2402             BestDiff = Hysteresis * Diff;
2403             BestBefore = SplitBefore;
2404             BestAfter = SplitAfter;
2405           }
2406         }
2407       }
2408 
2409       // Try to shrink.
2410       if (Shrink) {
2411         if (++SplitBefore < SplitAfter) {
2412           LLVM_DEBUG(dbgs() << " shrink\n");
2413           // Recompute the max when necessary.
2414           if (GapWeight[SplitBefore - 1] >= MaxGap) {
2415             MaxGap = GapWeight[SplitBefore];
2416             for (unsigned I = SplitBefore + 1; I != SplitAfter; ++I)
2417               MaxGap = std::max(MaxGap, GapWeight[I]);
2418           }
2419           continue;
2420         }
2421         MaxGap = 0;
2422       }
2423 
2424       // Try to extend the interval.
2425       if (SplitAfter >= NumGaps) {
2426         LLVM_DEBUG(dbgs() << " end\n");
2427         break;
2428       }
2429 
2430       LLVM_DEBUG(dbgs() << " extend\n");
2431       MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
2432     }
2433   }
2434 
2435   // Didn't find any candidates?
2436   if (BestBefore == NumGaps)
2437     return 0;
2438 
2439   LLVM_DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] << '-'
2440                     << Uses[BestAfter] << ", " << BestDiff << ", "
2441                     << (BestAfter - BestBefore + 1) << " instrs\n");
2442 
2443   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2444   SE->reset(LREdit);
2445 
2446   SE->openIntv();
2447   SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
2448   SlotIndex SegStop  = SE->leaveIntvAfter(Uses[BestAfter]);
2449   SE->useIntv(SegStart, SegStop);
2450   SmallVector<unsigned, 8> IntvMap;
2451   SE->finish(&IntvMap);
2452   DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS);
2453 
2454   // If the new range has the same number of instructions as before, mark it as
2455   // RS_Split2 so the next split will be forced to make progress. Otherwise,
2456   // leave the new intervals as RS_New so they can compete.
2457   bool LiveBefore = BestBefore != 0 || BI.LiveIn;
2458   bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
2459   unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
2460   if (NewGaps >= NumGaps) {
2461     LLVM_DEBUG(dbgs() << "Tagging non-progress ranges: ");
2462     assert(!ProgressRequired && "Didn't make progress when it was required.");
2463     for (unsigned I = 0, E = IntvMap.size(); I != E; ++I)
2464       if (IntvMap[I] == 1) {
2465         setStage(LIS->getInterval(LREdit.get(I)), RS_Split2);
2466         LLVM_DEBUG(dbgs() << printReg(LREdit.get(I)));
2467       }
2468     LLVM_DEBUG(dbgs() << '\n');
2469   }
2470   ++NumLocalSplits;
2471 
2472   return 0;
2473 }
2474 
2475 //===----------------------------------------------------------------------===//
2476 //                          Live Range Splitting
2477 //===----------------------------------------------------------------------===//
2478 
2479 /// trySplit - Try to split VirtReg or one of its interferences, making it
2480 /// assignable.
2481 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
2482 unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
2483                             SmallVectorImpl<Register> &NewVRegs,
2484                             const SmallVirtRegSet &FixedRegisters) {
2485   // Ranges must be Split2 or less.
2486   if (getStage(VirtReg) >= RS_Spill)
2487     return 0;
2488 
2489   // Local intervals are handled separately.
2490   if (LIS->intervalIsInOneMBB(VirtReg)) {
2491     NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName,
2492                        TimerGroupDescription, TimePassesIsEnabled);
2493     SA->analyze(&VirtReg);
2494     Register PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs);
2495     if (PhysReg || !NewVRegs.empty())
2496       return PhysReg;
2497     return tryInstructionSplit(VirtReg, Order, NewVRegs);
2498   }
2499 
2500   NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName,
2501                      TimerGroupDescription, TimePassesIsEnabled);
2502 
2503   SA->analyze(&VirtReg);
2504 
2505   // FIXME: SplitAnalysis may repair broken live ranges coming from the
2506   // coalescer. That may cause the range to become allocatable which means that
2507   // tryRegionSplit won't be making progress. This check should be replaced with
2508   // an assertion when the coalescer is fixed.
2509   if (SA->didRepairRange()) {
2510     // VirtReg has changed, so all cached queries are invalid.
2511     Matrix->invalidateVirtRegs();
2512     if (Register PhysReg = tryAssign(VirtReg, Order, NewVRegs, FixedRegisters))
2513       return PhysReg;
2514   }
2515 
2516   // First try to split around a region spanning multiple blocks. RS_Split2
2517   // ranges already made dubious progress with region splitting, so they go
2518   // straight to single block splitting.
2519   if (getStage(VirtReg) < RS_Split2) {
2520     MCRegister PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
2521     if (PhysReg || !NewVRegs.empty())
2522       return PhysReg;
2523   }
2524 
2525   // Then isolate blocks.
2526   return tryBlockSplit(VirtReg, Order, NewVRegs);
2527 }
2528 
2529 //===----------------------------------------------------------------------===//
2530 //                          Last Chance Recoloring
2531 //===----------------------------------------------------------------------===//
2532 
2533 /// Return true if \p reg has any tied def operand.
2534 static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg) {
2535   for (const MachineOperand &MO : MRI->def_operands(reg))
2536     if (MO.isTied())
2537       return true;
2538 
2539   return false;
2540 }
2541 
2542 /// mayRecolorAllInterferences - Check if the virtual registers that
2543 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be
2544 /// recolored to free \p PhysReg.
2545 /// When true is returned, \p RecoloringCandidates has been augmented with all
2546 /// the live intervals that need to be recolored in order to free \p PhysReg
2547 /// for \p VirtReg.
2548 /// \p FixedRegisters contains all the virtual registers that cannot be
2549 /// recolored.
2550 bool RAGreedy::mayRecolorAllInterferences(
2551     MCRegister PhysReg, LiveInterval &VirtReg, SmallLISet &RecoloringCandidates,
2552     const SmallVirtRegSet &FixedRegisters) {
2553   const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg());
2554 
2555   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2556     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
2557     // If there is LastChanceRecoloringMaxInterference or more interferences,
2558     // chances are one would not be recolorable.
2559     if (Q.collectInterferingVRegs(LastChanceRecoloringMaxInterference) >=
2560         LastChanceRecoloringMaxInterference && !ExhaustiveSearch) {
2561       LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n");
2562       CutOffInfo |= CO_Interf;
2563       return false;
2564     }
2565     for (LiveInterval *Intf : reverse(Q.interferingVRegs())) {
2566       // If Intf is done and sit on the same register class as VirtReg,
2567       // it would not be recolorable as it is in the same state as VirtReg.
2568       // However, if VirtReg has tied defs and Intf doesn't, then
2569       // there is still a point in examining if it can be recolorable.
2570       if (((getStage(*Intf) == RS_Done &&
2571             MRI->getRegClass(Intf->reg()) == CurRC) &&
2572            !(hasTiedDef(MRI, VirtReg.reg()) &&
2573              !hasTiedDef(MRI, Intf->reg()))) ||
2574           FixedRegisters.count(Intf->reg())) {
2575         LLVM_DEBUG(
2576             dbgs() << "Early abort: the interference is not recolorable.\n");
2577         return false;
2578       }
2579       RecoloringCandidates.insert(Intf);
2580     }
2581   }
2582   return true;
2583 }
2584 
2585 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring
2586 /// its interferences.
2587 /// Last chance recoloring chooses a color for \p VirtReg and recolors every
2588 /// virtual register that was using it. The recoloring process may recursively
2589 /// use the last chance recoloring. Therefore, when a virtual register has been
2590 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot
2591 /// be last-chance-recolored again during this recoloring "session".
2592 /// E.g.,
2593 /// Let
2594 /// vA can use {R1, R2    }
2595 /// vB can use {    R2, R3}
2596 /// vC can use {R1        }
2597 /// Where vA, vB, and vC cannot be split anymore (they are reloads for
2598 /// instance) and they all interfere.
2599 ///
2600 /// vA is assigned R1
2601 /// vB is assigned R2
2602 /// vC tries to evict vA but vA is already done.
2603 /// Regular register allocation fails.
2604 ///
2605 /// Last chance recoloring kicks in:
2606 /// vC does as if vA was evicted => vC uses R1.
2607 /// vC is marked as fixed.
2608 /// vA needs to find a color.
2609 /// None are available.
2610 /// vA cannot evict vC: vC is a fixed virtual register now.
2611 /// vA does as if vB was evicted => vA uses R2.
2612 /// vB needs to find a color.
2613 /// R3 is available.
2614 /// Recoloring => vC = R1, vA = R2, vB = R3
2615 ///
2616 /// \p Order defines the preferred allocation order for \p VirtReg.
2617 /// \p NewRegs will contain any new virtual register that have been created
2618 /// (split, spill) during the process and that must be assigned.
2619 /// \p FixedRegisters contains all the virtual registers that cannot be
2620 /// recolored.
2621 /// \p Depth gives the current depth of the last chance recoloring.
2622 /// \return a physical register that can be used for VirtReg or ~0u if none
2623 /// exists.
2624 unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg,
2625                                            AllocationOrder &Order,
2626                                            SmallVectorImpl<Register> &NewVRegs,
2627                                            SmallVirtRegSet &FixedRegisters,
2628                                            unsigned Depth) {
2629   if (!TRI->shouldUseLastChanceRecoloringForVirtReg(*MF, VirtReg))
2630     return ~0u;
2631 
2632   LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n');
2633   // Ranges must be Done.
2634   assert((getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) &&
2635          "Last chance recoloring should really be last chance");
2636   // Set the max depth to LastChanceRecoloringMaxDepth.
2637   // We may want to reconsider that if we end up with a too large search space
2638   // for target with hundreds of registers.
2639   // Indeed, in that case we may want to cut the search space earlier.
2640   if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) {
2641     LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n");
2642     CutOffInfo |= CO_Depth;
2643     return ~0u;
2644   }
2645 
2646   // Set of Live intervals that will need to be recolored.
2647   SmallLISet RecoloringCandidates;
2648   // Record the original mapping virtual register to physical register in case
2649   // the recoloring fails.
2650   DenseMap<Register, MCRegister> VirtRegToPhysReg;
2651   // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in
2652   // this recoloring "session".
2653   assert(!FixedRegisters.count(VirtReg.reg()));
2654   FixedRegisters.insert(VirtReg.reg());
2655   SmallVector<Register, 4> CurrentNewVRegs;
2656 
2657   for (MCRegister PhysReg : Order) {
2658     assert(PhysReg.isValid());
2659     LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg << " to "
2660                       << printReg(PhysReg, TRI) << '\n');
2661     RecoloringCandidates.clear();
2662     VirtRegToPhysReg.clear();
2663     CurrentNewVRegs.clear();
2664 
2665     // It is only possible to recolor virtual register interference.
2666     if (Matrix->checkInterference(VirtReg, PhysReg) >
2667         LiveRegMatrix::IK_VirtReg) {
2668       LLVM_DEBUG(
2669           dbgs() << "Some interferences are not with virtual registers.\n");
2670 
2671       continue;
2672     }
2673 
2674     // Early give up on this PhysReg if it is obvious we cannot recolor all
2675     // the interferences.
2676     if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates,
2677                                     FixedRegisters)) {
2678       LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n");
2679       continue;
2680     }
2681 
2682     // RecoloringCandidates contains all the virtual registers that interfer
2683     // with VirtReg on PhysReg (or one of its aliases).
2684     // Enqueue them for recoloring and perform the actual recoloring.
2685     PQueue RecoloringQueue;
2686     for (LiveInterval *RC : RecoloringCandidates) {
2687       Register ItVirtReg = RC->reg();
2688       enqueue(RecoloringQueue, RC);
2689       assert(VRM->hasPhys(ItVirtReg) &&
2690              "Interferences are supposed to be with allocated variables");
2691 
2692       // Record the current allocation.
2693       VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg);
2694       // unset the related struct.
2695       Matrix->unassign(*RC);
2696     }
2697 
2698     // Do as if VirtReg was assigned to PhysReg so that the underlying
2699     // recoloring has the right information about the interferes and
2700     // available colors.
2701     Matrix->assign(VirtReg, PhysReg);
2702 
2703     // Save the current recoloring state.
2704     // If we cannot recolor all the interferences, we will have to start again
2705     // at this point for the next physical register.
2706     SmallVirtRegSet SaveFixedRegisters(FixedRegisters);
2707     if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs,
2708                                 FixedRegisters, Depth)) {
2709       // Push the queued vregs into the main queue.
2710       for (Register NewVReg : CurrentNewVRegs)
2711         NewVRegs.push_back(NewVReg);
2712       // Do not mess up with the global assignment process.
2713       // I.e., VirtReg must be unassigned.
2714       Matrix->unassign(VirtReg);
2715       return PhysReg;
2716     }
2717 
2718     LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to "
2719                       << printReg(PhysReg, TRI) << '\n');
2720 
2721     // The recoloring attempt failed, undo the changes.
2722     FixedRegisters = SaveFixedRegisters;
2723     Matrix->unassign(VirtReg);
2724 
2725     // For a newly created vreg which is also in RecoloringCandidates,
2726     // don't add it to NewVRegs because its physical register will be restored
2727     // below. Other vregs in CurrentNewVRegs are created by calling
2728     // selectOrSplit and should be added into NewVRegs.
2729     for (Register &R : CurrentNewVRegs) {
2730       if (RecoloringCandidates.count(&LIS->getInterval(R)))
2731         continue;
2732       NewVRegs.push_back(R);
2733     }
2734 
2735     for (LiveInterval *RC : RecoloringCandidates) {
2736       Register ItVirtReg = RC->reg();
2737       if (VRM->hasPhys(ItVirtReg))
2738         Matrix->unassign(*RC);
2739       MCRegister ItPhysReg = VirtRegToPhysReg[ItVirtReg];
2740       Matrix->assign(*RC, ItPhysReg);
2741     }
2742   }
2743 
2744   // Last chance recoloring did not worked either, give up.
2745   return ~0u;
2746 }
2747 
2748 /// tryRecoloringCandidates - Try to assign a new color to every register
2749 /// in \RecoloringQueue.
2750 /// \p NewRegs will contain any new virtual register created during the
2751 /// recoloring process.
2752 /// \p FixedRegisters[in/out] contains all the registers that have been
2753 /// recolored.
2754 /// \return true if all virtual registers in RecoloringQueue were successfully
2755 /// recolored, false otherwise.
2756 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue,
2757                                        SmallVectorImpl<Register> &NewVRegs,
2758                                        SmallVirtRegSet &FixedRegisters,
2759                                        unsigned Depth) {
2760   while (!RecoloringQueue.empty()) {
2761     LiveInterval *LI = dequeue(RecoloringQueue);
2762     LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI << '\n');
2763     MCRegister PhysReg =
2764         selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, Depth + 1);
2765     // When splitting happens, the live-range may actually be empty.
2766     // In that case, this is okay to continue the recoloring even
2767     // if we did not find an alternative color for it. Indeed,
2768     // there will not be anything to color for LI in the end.
2769     if (PhysReg == ~0u || (!PhysReg && !LI->empty()))
2770       return false;
2771 
2772     if (!PhysReg) {
2773       assert(LI->empty() && "Only empty live-range do not require a register");
2774       LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2775                         << " succeeded. Empty LI.\n");
2776       continue;
2777     }
2778     LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2779                       << " succeeded with: " << printReg(PhysReg, TRI) << '\n');
2780 
2781     Matrix->assign(*LI, PhysReg);
2782     FixedRegisters.insert(LI->reg());
2783   }
2784   return true;
2785 }
2786 
2787 //===----------------------------------------------------------------------===//
2788 //                            Main Entry Point
2789 //===----------------------------------------------------------------------===//
2790 
2791 MCRegister RAGreedy::selectOrSplit(LiveInterval &VirtReg,
2792                                    SmallVectorImpl<Register> &NewVRegs) {
2793   CutOffInfo = CO_None;
2794   LLVMContext &Ctx = MF->getFunction().getContext();
2795   SmallVirtRegSet FixedRegisters;
2796   MCRegister Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters);
2797   if (Reg == ~0U && (CutOffInfo != CO_None)) {
2798     uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf);
2799     if (CutOffEncountered == CO_Depth)
2800       Ctx.emitError("register allocation failed: maximum depth for recoloring "
2801                     "reached. Use -fexhaustive-register-search to skip "
2802                     "cutoffs");
2803     else if (CutOffEncountered == CO_Interf)
2804       Ctx.emitError("register allocation failed: maximum interference for "
2805                     "recoloring reached. Use -fexhaustive-register-search "
2806                     "to skip cutoffs");
2807     else if (CutOffEncountered == (CO_Depth | CO_Interf))
2808       Ctx.emitError("register allocation failed: maximum interference and "
2809                     "depth for recoloring reached. Use "
2810                     "-fexhaustive-register-search to skip cutoffs");
2811   }
2812   return Reg;
2813 }
2814 
2815 /// Using a CSR for the first time has a cost because it causes push|pop
2816 /// to be added to prologue|epilogue. Splitting a cold section of the live
2817 /// range can have lower cost than using the CSR for the first time;
2818 /// Spilling a live range in the cold path can have lower cost than using
2819 /// the CSR for the first time. Returns the physical register if we decide
2820 /// to use the CSR; otherwise return 0.
2821 MCRegister
2822 RAGreedy::tryAssignCSRFirstTime(LiveInterval &VirtReg, AllocationOrder &Order,
2823                                 MCRegister PhysReg, uint8_t &CostPerUseLimit,
2824                                 SmallVectorImpl<Register> &NewVRegs) {
2825   if (getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) {
2826     // We choose spill over using the CSR for the first time if the spill cost
2827     // is lower than CSRCost.
2828     SA->analyze(&VirtReg);
2829     if (calcSpillCost() >= CSRCost)
2830       return PhysReg;
2831 
2832     // We are going to spill, set CostPerUseLimit to 1 to make sure that
2833     // we will not use a callee-saved register in tryEvict.
2834     CostPerUseLimit = 1;
2835     return 0;
2836   }
2837   if (getStage(VirtReg) < RS_Split) {
2838     // We choose pre-splitting over using the CSR for the first time if
2839     // the cost of splitting is lower than CSRCost.
2840     SA->analyze(&VirtReg);
2841     unsigned NumCands = 0;
2842     BlockFrequency BestCost = CSRCost; // Don't modify CSRCost.
2843     unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost,
2844                                                  NumCands, true /*IgnoreCSR*/);
2845     if (BestCand == NoCand)
2846       // Use the CSR if we can't find a region split below CSRCost.
2847       return PhysReg;
2848 
2849     // Perform the actual pre-splitting.
2850     doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs);
2851     return 0;
2852   }
2853   return PhysReg;
2854 }
2855 
2856 void RAGreedy::aboutToRemoveInterval(LiveInterval &LI) {
2857   // Do not keep invalid information around.
2858   SetOfBrokenHints.remove(&LI);
2859 }
2860 
2861 void RAGreedy::initializeCSRCost() {
2862   // We use the larger one out of the command-line option and the value report
2863   // by TRI.
2864   CSRCost = BlockFrequency(
2865       std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost()));
2866   if (!CSRCost.getFrequency())
2867     return;
2868 
2869   // Raw cost is relative to Entry == 2^14; scale it appropriately.
2870   uint64_t ActualEntry = MBFI->getEntryFreq();
2871   if (!ActualEntry) {
2872     CSRCost = 0;
2873     return;
2874   }
2875   uint64_t FixedEntry = 1 << 14;
2876   if (ActualEntry < FixedEntry)
2877     CSRCost *= BranchProbability(ActualEntry, FixedEntry);
2878   else if (ActualEntry <= UINT32_MAX)
2879     // Invert the fraction and divide.
2880     CSRCost /= BranchProbability(FixedEntry, ActualEntry);
2881   else
2882     // Can't use BranchProbability in general, since it takes 32-bit numbers.
2883     CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry);
2884 }
2885 
2886 /// Collect the hint info for \p Reg.
2887 /// The results are stored into \p Out.
2888 /// \p Out is not cleared before being populated.
2889 void RAGreedy::collectHintInfo(Register Reg, HintsInfo &Out) {
2890   for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) {
2891     if (!Instr.isFullCopy())
2892       continue;
2893     // Look for the other end of the copy.
2894     Register OtherReg = Instr.getOperand(0).getReg();
2895     if (OtherReg == Reg) {
2896       OtherReg = Instr.getOperand(1).getReg();
2897       if (OtherReg == Reg)
2898         continue;
2899     }
2900     // Get the current assignment.
2901     MCRegister OtherPhysReg =
2902         OtherReg.isPhysical() ? OtherReg.asMCReg() : VRM->getPhys(OtherReg);
2903     // Push the collected information.
2904     Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg,
2905                            OtherPhysReg));
2906   }
2907 }
2908 
2909 /// Using the given \p List, compute the cost of the broken hints if
2910 /// \p PhysReg was used.
2911 /// \return The cost of \p List for \p PhysReg.
2912 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List,
2913                                            MCRegister PhysReg) {
2914   BlockFrequency Cost = 0;
2915   for (const HintInfo &Info : List) {
2916     if (Info.PhysReg != PhysReg)
2917       Cost += Info.Freq;
2918   }
2919   return Cost;
2920 }
2921 
2922 /// Using the register assigned to \p VirtReg, try to recolor
2923 /// all the live ranges that are copy-related with \p VirtReg.
2924 /// The recoloring is then propagated to all the live-ranges that have
2925 /// been recolored and so on, until no more copies can be coalesced or
2926 /// it is not profitable.
2927 /// For a given live range, profitability is determined by the sum of the
2928 /// frequencies of the non-identity copies it would introduce with the old
2929 /// and new register.
2930 void RAGreedy::tryHintRecoloring(LiveInterval &VirtReg) {
2931   // We have a broken hint, check if it is possible to fix it by
2932   // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted
2933   // some register and PhysReg may be available for the other live-ranges.
2934   SmallSet<Register, 4> Visited;
2935   SmallVector<unsigned, 2> RecoloringCandidates;
2936   HintsInfo Info;
2937   Register Reg = VirtReg.reg();
2938   MCRegister PhysReg = VRM->getPhys(Reg);
2939   // Start the recoloring algorithm from the input live-interval, then
2940   // it will propagate to the ones that are copy-related with it.
2941   Visited.insert(Reg);
2942   RecoloringCandidates.push_back(Reg);
2943 
2944   LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg, TRI)
2945                     << '(' << printReg(PhysReg, TRI) << ")\n");
2946 
2947   do {
2948     Reg = RecoloringCandidates.pop_back_val();
2949 
2950     // We cannot recolor physical register.
2951     if (Register::isPhysicalRegister(Reg))
2952       continue;
2953 
2954     // This may be a skipped class
2955     if (!VRM->hasPhys(Reg)) {
2956       assert(!ShouldAllocateClass(*TRI, *MRI->getRegClass(Reg)) &&
2957              "We have an unallocated variable which should have been handled");
2958       continue;
2959     }
2960 
2961     // Get the live interval mapped with this virtual register to be able
2962     // to check for the interference with the new color.
2963     LiveInterval &LI = LIS->getInterval(Reg);
2964     MCRegister CurrPhys = VRM->getPhys(Reg);
2965     // Check that the new color matches the register class constraints and
2966     // that it is free for this live range.
2967     if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) ||
2968                                 Matrix->checkInterference(LI, PhysReg)))
2969       continue;
2970 
2971     LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << '(' << printReg(CurrPhys, TRI)
2972                       << ") is recolorable.\n");
2973 
2974     // Gather the hint info.
2975     Info.clear();
2976     collectHintInfo(Reg, Info);
2977     // Check if recoloring the live-range will increase the cost of the
2978     // non-identity copies.
2979     if (CurrPhys != PhysReg) {
2980       LLVM_DEBUG(dbgs() << "Checking profitability:\n");
2981       BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys);
2982       BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg);
2983       LLVM_DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency()
2984                         << "\nNew Cost: " << NewCopiesCost.getFrequency()
2985                         << '\n');
2986       if (OldCopiesCost < NewCopiesCost) {
2987         LLVM_DEBUG(dbgs() << "=> Not profitable.\n");
2988         continue;
2989       }
2990       // At this point, the cost is either cheaper or equal. If it is
2991       // equal, we consider this is profitable because it may expose
2992       // more recoloring opportunities.
2993       LLVM_DEBUG(dbgs() << "=> Profitable.\n");
2994       // Recolor the live-range.
2995       Matrix->unassign(LI);
2996       Matrix->assign(LI, PhysReg);
2997     }
2998     // Push all copy-related live-ranges to keep reconciling the broken
2999     // hints.
3000     for (const HintInfo &HI : Info) {
3001       if (Visited.insert(HI.Reg).second)
3002         RecoloringCandidates.push_back(HI.Reg);
3003     }
3004   } while (!RecoloringCandidates.empty());
3005 }
3006 
3007 /// Try to recolor broken hints.
3008 /// Broken hints may be repaired by recoloring when an evicted variable
3009 /// freed up a register for a larger live-range.
3010 /// Consider the following example:
3011 /// BB1:
3012 ///   a =
3013 ///   b =
3014 /// BB2:
3015 ///   ...
3016 ///   = b
3017 ///   = a
3018 /// Let us assume b gets split:
3019 /// BB1:
3020 ///   a =
3021 ///   b =
3022 /// BB2:
3023 ///   c = b
3024 ///   ...
3025 ///   d = c
3026 ///   = d
3027 ///   = a
3028 /// Because of how the allocation work, b, c, and d may be assigned different
3029 /// colors. Now, if a gets evicted later:
3030 /// BB1:
3031 ///   a =
3032 ///   st a, SpillSlot
3033 ///   b =
3034 /// BB2:
3035 ///   c = b
3036 ///   ...
3037 ///   d = c
3038 ///   = d
3039 ///   e = ld SpillSlot
3040 ///   = e
3041 /// This is likely that we can assign the same register for b, c, and d,
3042 /// getting rid of 2 copies.
3043 void RAGreedy::tryHintsRecoloring() {
3044   for (LiveInterval *LI : SetOfBrokenHints) {
3045     assert(Register::isVirtualRegister(LI->reg()) &&
3046            "Recoloring is possible only for virtual registers");
3047     // Some dead defs may be around (e.g., because of debug uses).
3048     // Ignore those.
3049     if (!VRM->hasPhys(LI->reg()))
3050       continue;
3051     tryHintRecoloring(*LI);
3052   }
3053 }
3054 
3055 MCRegister RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg,
3056                                        SmallVectorImpl<Register> &NewVRegs,
3057                                        SmallVirtRegSet &FixedRegisters,
3058                                        unsigned Depth) {
3059   uint8_t CostPerUseLimit = uint8_t(~0u);
3060   // First try assigning a free register.
3061   auto Order =
3062       AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix);
3063   if (MCRegister PhysReg =
3064           tryAssign(VirtReg, Order, NewVRegs, FixedRegisters)) {
3065     // If VirtReg got an assignment, the eviction info is no longer relevant.
3066     LastEvicted.clearEvicteeInfo(VirtReg.reg());
3067     // When NewVRegs is not empty, we may have made decisions such as evicting
3068     // a virtual register, go with the earlier decisions and use the physical
3069     // register.
3070     if (CSRCost.getFrequency() && isUnusedCalleeSavedReg(PhysReg) &&
3071         NewVRegs.empty()) {
3072       MCRegister CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg,
3073                                                 CostPerUseLimit, NewVRegs);
3074       if (CSRReg || !NewVRegs.empty())
3075         // Return now if we decide to use a CSR or create new vregs due to
3076         // pre-splitting.
3077         return CSRReg;
3078     } else
3079       return PhysReg;
3080   }
3081 
3082   LiveRangeStage Stage = getStage(VirtReg);
3083   LLVM_DEBUG(dbgs() << StageName[Stage] << " Cascade "
3084                     << ExtraRegInfo[VirtReg.reg()].Cascade << '\n');
3085 
3086   // Try to evict a less worthy live range, but only for ranges from the primary
3087   // queue. The RS_Split ranges already failed to do this, and they should not
3088   // get a second chance until they have been split.
3089   if (Stage != RS_Split)
3090     if (Register PhysReg =
3091             tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit,
3092                      FixedRegisters)) {
3093       Register Hint = MRI->getSimpleHint(VirtReg.reg());
3094       // If VirtReg has a hint and that hint is broken record this
3095       // virtual register as a recoloring candidate for broken hint.
3096       // Indeed, since we evicted a variable in its neighborhood it is
3097       // likely we can at least partially recolor some of the
3098       // copy-related live-ranges.
3099       if (Hint && Hint != PhysReg)
3100         SetOfBrokenHints.insert(&VirtReg);
3101       // If VirtReg eviction someone, the eviction info for it as an evictee is
3102       // no longer relevant.
3103       LastEvicted.clearEvicteeInfo(VirtReg.reg());
3104       return PhysReg;
3105     }
3106 
3107   assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs");
3108 
3109   // The first time we see a live range, don't try to split or spill.
3110   // Wait until the second time, when all smaller ranges have been allocated.
3111   // This gives a better picture of the interference to split around.
3112   if (Stage < RS_Split) {
3113     setStage(VirtReg, RS_Split);
3114     LLVM_DEBUG(dbgs() << "wait for second round\n");
3115     NewVRegs.push_back(VirtReg.reg());
3116     return 0;
3117   }
3118 
3119   if (Stage < RS_Spill) {
3120     // Try splitting VirtReg or interferences.
3121     unsigned NewVRegSizeBefore = NewVRegs.size();
3122     Register PhysReg = trySplit(VirtReg, Order, NewVRegs, FixedRegisters);
3123     if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore)) {
3124       // If VirtReg got split, the eviction info is no longer relevant.
3125       LastEvicted.clearEvicteeInfo(VirtReg.reg());
3126       return PhysReg;
3127     }
3128   }
3129 
3130   // If we couldn't allocate a register from spilling, there is probably some
3131   // invalid inline assembly. The base class will report it.
3132   if (Stage >= RS_Done || !VirtReg.isSpillable())
3133     return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters,
3134                                    Depth);
3135 
3136   // Finally spill VirtReg itself.
3137   if ((EnableDeferredSpilling ||
3138        TRI->shouldUseDeferredSpillingForVirtReg(*MF, VirtReg)) &&
3139       getStage(VirtReg) < RS_Memory) {
3140     // TODO: This is experimental and in particular, we do not model
3141     // the live range splitting done by spilling correctly.
3142     // We would need a deep integration with the spiller to do the
3143     // right thing here. Anyway, that is still good for early testing.
3144     setStage(VirtReg, RS_Memory);
3145     LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n");
3146     NewVRegs.push_back(VirtReg.reg());
3147   } else {
3148     NamedRegionTimer T("spill", "Spiller", TimerGroupName,
3149                        TimerGroupDescription, TimePassesIsEnabled);
3150     LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
3151     spiller().spill(LRE);
3152     setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done);
3153 
3154     // Tell LiveDebugVariables about the new ranges. Ranges not being covered by
3155     // the new regs are kept in LDV (still mapping to the old register), until
3156     // we rewrite spilled locations in LDV at a later stage.
3157     DebugVars->splitRegister(VirtReg.reg(), LRE.regs(), *LIS);
3158 
3159     if (VerifyEnabled)
3160       MF->verify(this, "After spilling");
3161   }
3162 
3163   // The live virtual register requesting allocation was spilled, so tell
3164   // the caller not to allocate anything during this round.
3165   return 0;
3166 }
3167 
3168 void RAGreedy::RAGreedyStats::report(MachineOptimizationRemarkMissed &R) {
3169   using namespace ore;
3170   if (Spills) {
3171     R << NV("NumSpills", Spills) << " spills ";
3172     R << NV("TotalSpillsCost", SpillsCost) << " total spills cost ";
3173   }
3174   if (FoldedSpills) {
3175     R << NV("NumFoldedSpills", FoldedSpills) << " folded spills ";
3176     R << NV("TotalFoldedSpillsCost", FoldedSpillsCost)
3177       << " total folded spills cost ";
3178   }
3179   if (Reloads) {
3180     R << NV("NumReloads", Reloads) << " reloads ";
3181     R << NV("TotalReloadsCost", ReloadsCost) << " total reloads cost ";
3182   }
3183   if (FoldedReloads) {
3184     R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads ";
3185     R << NV("TotalFoldedReloadsCost", FoldedReloadsCost)
3186       << " total folded reloads cost ";
3187   }
3188   if (ZeroCostFoldedReloads)
3189     R << NV("NumZeroCostFoldedReloads", ZeroCostFoldedReloads)
3190       << " zero cost folded reloads ";
3191   if (Copies) {
3192     R << NV("NumVRCopies", Copies) << " virtual registers copies ";
3193     R << NV("TotalCopiesCost", CopiesCost) << " total copies cost ";
3194   }
3195 }
3196 
3197 RAGreedy::RAGreedyStats RAGreedy::computeStats(MachineBasicBlock &MBB) {
3198   RAGreedyStats Stats;
3199   const MachineFrameInfo &MFI = MF->getFrameInfo();
3200   int FI;
3201 
3202   auto isSpillSlotAccess = [&MFI](const MachineMemOperand *A) {
3203     return MFI.isSpillSlotObjectIndex(cast<FixedStackPseudoSourceValue>(
3204         A->getPseudoValue())->getFrameIndex());
3205   };
3206   auto isPatchpointInstr = [](const MachineInstr &MI) {
3207     return MI.getOpcode() == TargetOpcode::PATCHPOINT ||
3208            MI.getOpcode() == TargetOpcode::STACKMAP ||
3209            MI.getOpcode() == TargetOpcode::STATEPOINT;
3210   };
3211   for (MachineInstr &MI : MBB) {
3212     if (MI.isCopy()) {
3213       MachineOperand &Dest = MI.getOperand(0);
3214       MachineOperand &Src = MI.getOperand(1);
3215       if (Dest.isReg() && Src.isReg() && Dest.getReg().isVirtual() &&
3216           Src.getReg().isVirtual())
3217         ++Stats.Copies;
3218       continue;
3219     }
3220 
3221     SmallVector<const MachineMemOperand *, 2> Accesses;
3222     if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) {
3223       ++Stats.Reloads;
3224       continue;
3225     }
3226     if (TII->isStoreToStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) {
3227       ++Stats.Spills;
3228       continue;
3229     }
3230     if (TII->hasLoadFromStackSlot(MI, Accesses) &&
3231         llvm::any_of(Accesses, isSpillSlotAccess)) {
3232       if (!isPatchpointInstr(MI)) {
3233         Stats.FoldedReloads += Accesses.size();
3234         continue;
3235       }
3236       // For statepoint there may be folded and zero cost folded stack reloads.
3237       std::pair<unsigned, unsigned> NonZeroCostRange =
3238           TII->getPatchpointUnfoldableRange(MI);
3239       SmallSet<unsigned, 16> FoldedReloads;
3240       SmallSet<unsigned, 16> ZeroCostFoldedReloads;
3241       for (unsigned Idx = 0, E = MI.getNumOperands(); Idx < E; ++Idx) {
3242         MachineOperand &MO = MI.getOperand(Idx);
3243         if (!MO.isFI() || !MFI.isSpillSlotObjectIndex(MO.getIndex()))
3244           continue;
3245         if (Idx >= NonZeroCostRange.first && Idx < NonZeroCostRange.second)
3246           FoldedReloads.insert(MO.getIndex());
3247         else
3248           ZeroCostFoldedReloads.insert(MO.getIndex());
3249       }
3250       // If stack slot is used in folded reload it is not zero cost then.
3251       for (unsigned Slot : FoldedReloads)
3252         ZeroCostFoldedReloads.erase(Slot);
3253       Stats.FoldedReloads += FoldedReloads.size();
3254       Stats.ZeroCostFoldedReloads += ZeroCostFoldedReloads.size();
3255       continue;
3256     }
3257     Accesses.clear();
3258     if (TII->hasStoreToStackSlot(MI, Accesses) &&
3259         llvm::any_of(Accesses, isSpillSlotAccess)) {
3260       Stats.FoldedSpills += Accesses.size();
3261     }
3262   }
3263   // Set cost of collected statistic by multiplication to relative frequency of
3264   // this basic block.
3265   float RelFreq = MBFI->getBlockFreqRelativeToEntryBlock(&MBB);
3266   Stats.ReloadsCost = RelFreq * Stats.Reloads;
3267   Stats.FoldedReloadsCost = RelFreq * Stats.FoldedReloads;
3268   Stats.SpillsCost = RelFreq * Stats.Spills;
3269   Stats.FoldedSpillsCost = RelFreq * Stats.FoldedSpills;
3270   Stats.CopiesCost = RelFreq * Stats.Copies;
3271   return Stats;
3272 }
3273 
3274 RAGreedy::RAGreedyStats RAGreedy::reportStats(MachineLoop *L) {
3275   RAGreedyStats Stats;
3276 
3277   // Sum up the spill and reloads in subloops.
3278   for (MachineLoop *SubLoop : *L)
3279     Stats.add(reportStats(SubLoop));
3280 
3281   for (MachineBasicBlock *MBB : L->getBlocks())
3282     // Handle blocks that were not included in subloops.
3283     if (Loops->getLoopFor(MBB) == L)
3284       Stats.add(computeStats(*MBB));
3285 
3286   if (!Stats.isEmpty()) {
3287     using namespace ore;
3288 
3289     ORE->emit([&]() {
3290       MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReloadCopies",
3291                                         L->getStartLoc(), L->getHeader());
3292       Stats.report(R);
3293       R << "generated in loop";
3294       return R;
3295     });
3296   }
3297   return Stats;
3298 }
3299 
3300 void RAGreedy::reportStats() {
3301   if (!ORE->allowExtraAnalysis(DEBUG_TYPE))
3302     return;
3303   RAGreedyStats Stats;
3304   for (MachineLoop *L : *Loops)
3305     Stats.add(reportStats(L));
3306   // Process non-loop blocks.
3307   for (MachineBasicBlock &MBB : *MF)
3308     if (!Loops->getLoopFor(&MBB))
3309       Stats.add(computeStats(MBB));
3310   if (!Stats.isEmpty()) {
3311     using namespace ore;
3312 
3313     ORE->emit([&]() {
3314       DebugLoc Loc;
3315       if (auto *SP = MF->getFunction().getSubprogram())
3316         Loc = DILocation::get(SP->getContext(), SP->getLine(), 1, SP);
3317       MachineOptimizationRemarkMissed R(DEBUG_TYPE, "SpillReloadCopies", Loc,
3318                                         &MF->front());
3319       Stats.report(R);
3320       R << "generated in function";
3321       return R;
3322     });
3323   }
3324 }
3325 
3326 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
3327   LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
3328                     << "********** Function: " << mf.getName() << '\n');
3329 
3330   MF = &mf;
3331   TRI = MF->getSubtarget().getRegisterInfo();
3332   TII = MF->getSubtarget().getInstrInfo();
3333   RCI.runOnMachineFunction(mf);
3334 
3335   EnableLocalReassign = EnableLocalReassignment ||
3336                         MF->getSubtarget().enableRALocalReassignment(
3337                             MF->getTarget().getOptLevel());
3338 
3339   EnableAdvancedRASplitCost =
3340       ConsiderLocalIntervalCost.getNumOccurrences()
3341           ? ConsiderLocalIntervalCost
3342           : MF->getSubtarget().enableAdvancedRASplitCost();
3343 
3344   if (VerifyEnabled)
3345     MF->verify(this, "Before greedy register allocator");
3346 
3347   RegAllocBase::init(getAnalysis<VirtRegMap>(),
3348                      getAnalysis<LiveIntervals>(),
3349                      getAnalysis<LiveRegMatrix>());
3350   Indexes = &getAnalysis<SlotIndexes>();
3351   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
3352   DomTree = &getAnalysis<MachineDominatorTree>();
3353   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
3354   Loops = &getAnalysis<MachineLoopInfo>();
3355   Bundles = &getAnalysis<EdgeBundles>();
3356   SpillPlacer = &getAnalysis<SpillPlacement>();
3357   DebugVars = &getAnalysis<LiveDebugVariables>();
3358   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
3359 
3360   initializeCSRCost();
3361 
3362   RegCosts = TRI->getRegisterCosts(*MF);
3363 
3364   VRAI = std::make_unique<VirtRegAuxInfo>(*MF, *LIS, *VRM, *Loops, *MBFI);
3365   SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM, *VRAI));
3366 
3367   VRAI->calculateSpillWeightsAndHints();
3368 
3369   LLVM_DEBUG(LIS->dump());
3370 
3371   SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
3372   SE.reset(new SplitEditor(*SA, *AA, *LIS, *VRM, *DomTree, *MBFI, *VRAI));
3373   ExtraRegInfo.clear();
3374   ExtraRegInfo.resize(MRI->getNumVirtRegs());
3375   NextCascade = 1;
3376   IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI);
3377   GlobalCand.resize(32);  // This will grow as needed.
3378   SetOfBrokenHints.clear();
3379   LastEvicted.clear();
3380 
3381   allocatePhysRegs();
3382   tryHintsRecoloring();
3383 
3384   if (VerifyEnabled)
3385     MF->verify(this, "Before post optimization");
3386   postOptimization();
3387   reportStats();
3388 
3389   releaseMemory();
3390   return true;
3391 }
3392