1 //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the RAGreedy function pass for register allocation in
10 // optimized builds.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RegAllocGreedy.h"
15 #include "AllocationOrder.h"
16 #include "InterferenceCache.h"
17 #include "LiveDebugVariables.h"
18 #include "RegAllocBase.h"
19 #include "RegAllocEvictionAdvisor.h"
20 #include "SpillPlacement.h"
21 #include "SplitKit.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/BitVector.h"
24 #include "llvm/ADT/IndexedMap.h"
25 #include "llvm/ADT/SetVector.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallSet.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/Analysis/AliasAnalysis.h"
32 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
33 #include "llvm/CodeGen/CalcSpillWeights.h"
34 #include "llvm/CodeGen/EdgeBundles.h"
35 #include "llvm/CodeGen/LiveInterval.h"
36 #include "llvm/CodeGen/LiveIntervalUnion.h"
37 #include "llvm/CodeGen/LiveIntervals.h"
38 #include "llvm/CodeGen/LiveRangeEdit.h"
39 #include "llvm/CodeGen/LiveRegMatrix.h"
40 #include "llvm/CodeGen/LiveStacks.h"
41 #include "llvm/CodeGen/MachineBasicBlock.h"
42 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
43 #include "llvm/CodeGen/MachineDominators.h"
44 #include "llvm/CodeGen/MachineFrameInfo.h"
45 #include "llvm/CodeGen/MachineFunction.h"
46 #include "llvm/CodeGen/MachineFunctionPass.h"
47 #include "llvm/CodeGen/MachineInstr.h"
48 #include "llvm/CodeGen/MachineLoopInfo.h"
49 #include "llvm/CodeGen/MachineOperand.h"
50 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
51 #include "llvm/CodeGen/MachineRegisterInfo.h"
52 #include "llvm/CodeGen/RegAllocRegistry.h"
53 #include "llvm/CodeGen/RegisterClassInfo.h"
54 #include "llvm/CodeGen/SlotIndexes.h"
55 #include "llvm/CodeGen/Spiller.h"
56 #include "llvm/CodeGen/TargetInstrInfo.h"
57 #include "llvm/CodeGen/TargetRegisterInfo.h"
58 #include "llvm/CodeGen/TargetSubtargetInfo.h"
59 #include "llvm/CodeGen/VirtRegMap.h"
60 #include "llvm/IR/DebugInfoMetadata.h"
61 #include "llvm/IR/Function.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/InitializePasses.h"
64 #include "llvm/MC/MCRegisterInfo.h"
65 #include "llvm/Pass.h"
66 #include "llvm/Support/BlockFrequency.h"
67 #include "llvm/Support/BranchProbability.h"
68 #include "llvm/Support/CommandLine.h"
69 #include "llvm/Support/Debug.h"
70 #include "llvm/Support/MathExtras.h"
71 #include "llvm/Support/Timer.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include <algorithm>
74 #include <cassert>
75 #include <cstdint>
76 #include <utility>
77 
78 using namespace llvm;
79 
80 #define DEBUG_TYPE "regalloc"
81 
82 STATISTIC(NumGlobalSplits, "Number of split global live ranges");
83 STATISTIC(NumLocalSplits,  "Number of split local live ranges");
84 STATISTIC(NumEvicted,      "Number of interferences evicted");
85 
86 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode(
87     "split-spill-mode", cl::Hidden,
88     cl::desc("Spill mode for splitting live ranges"),
89     cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"),
90                clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"),
91                clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")),
92     cl::init(SplitEditor::SM_Speed));
93 
94 static cl::opt<unsigned>
95 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden,
96                              cl::desc("Last chance recoloring max depth"),
97                              cl::init(5));
98 
99 static cl::opt<unsigned> LastChanceRecoloringMaxInterference(
100     "lcr-max-interf", cl::Hidden,
101     cl::desc("Last chance recoloring maximum number of considered"
102              " interference at a time"),
103     cl::init(8));
104 
105 static cl::opt<bool> ExhaustiveSearch(
106     "exhaustive-register-search", cl::NotHidden,
107     cl::desc("Exhaustive Search for registers bypassing the depth "
108              "and interference cutoffs of last chance recoloring"),
109     cl::Hidden);
110 
111 static cl::opt<bool> EnableDeferredSpilling(
112     "enable-deferred-spilling", cl::Hidden,
113     cl::desc("Instead of spilling a variable right away, defer the actual "
114              "code insertion to the end of the allocation. That way the "
115              "allocator might still find a suitable coloring for this "
116              "variable because of other evicted variables."),
117     cl::init(false));
118 
119 // FIXME: Find a good default for this flag and remove the flag.
120 static cl::opt<unsigned>
121 CSRFirstTimeCost("regalloc-csr-first-time-cost",
122               cl::desc("Cost for first time use of callee-saved register."),
123               cl::init(0), cl::Hidden);
124 
125 static cl::opt<unsigned long> GrowRegionComplexityBudget(
126     "grow-region-complexity-budget",
127     cl::desc("growRegion() does not scale with the number of BB edges, so "
128              "limit its budget and bail out once we reach the limit."),
129     cl::init(10000), cl::Hidden);
130 
131 static cl::opt<bool> GreedyRegClassPriorityTrumpsGlobalness(
132     "greedy-regclass-priority-trumps-globalness",
133     cl::desc("Change the greedy register allocator's live range priority "
134              "calculation to make the AllocationPriority of the register class "
135              "more important then whether the range is global"),
136     cl::Hidden);
137 
138 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
139                                        createGreedyRegisterAllocator);
140 
141 char RAGreedy::ID = 0;
142 char &llvm::RAGreedyID = RAGreedy::ID;
143 
144 INITIALIZE_PASS_BEGIN(RAGreedy, "greedy",
145                 "Greedy Register Allocator", false, false)
146 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
147 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
148 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
149 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer)
150 INITIALIZE_PASS_DEPENDENCY(MachineScheduler)
151 INITIALIZE_PASS_DEPENDENCY(LiveStacks)
152 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
153 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
154 INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
155 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix)
156 INITIALIZE_PASS_DEPENDENCY(EdgeBundles)
157 INITIALIZE_PASS_DEPENDENCY(SpillPlacement)
158 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass)
159 INITIALIZE_PASS_DEPENDENCY(RegAllocEvictionAdvisorAnalysis)
160 INITIALIZE_PASS_END(RAGreedy, "greedy",
161                 "Greedy Register Allocator", false, false)
162 
163 #ifndef NDEBUG
164 const char *const RAGreedy::StageName[] = {
165     "RS_New",
166     "RS_Assign",
167     "RS_Split",
168     "RS_Split2",
169     "RS_Spill",
170     "RS_Memory",
171     "RS_Done"
172 };
173 #endif
174 
175 // Hysteresis to use when comparing floats.
176 // This helps stabilize decisions based on float comparisons.
177 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875
178 
179 FunctionPass* llvm::createGreedyRegisterAllocator() {
180   return new RAGreedy();
181 }
182 
183 namespace llvm {
184 FunctionPass* createGreedyRegisterAllocator(
185   std::function<bool(const TargetRegisterInfo &TRI,
186                      const TargetRegisterClass &RC)> Ftor);
187 
188 }
189 
190 FunctionPass* llvm::createGreedyRegisterAllocator(
191   std::function<bool(const TargetRegisterInfo &TRI,
192                      const TargetRegisterClass &RC)> Ftor) {
193   return new RAGreedy(Ftor);
194 }
195 
196 RAGreedy::RAGreedy(RegClassFilterFunc F):
197   MachineFunctionPass(ID),
198   RegAllocBase(F) {
199 }
200 
201 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
202   AU.setPreservesCFG();
203   AU.addRequired<MachineBlockFrequencyInfo>();
204   AU.addPreserved<MachineBlockFrequencyInfo>();
205   AU.addRequired<AAResultsWrapperPass>();
206   AU.addPreserved<AAResultsWrapperPass>();
207   AU.addRequired<LiveIntervals>();
208   AU.addPreserved<LiveIntervals>();
209   AU.addRequired<SlotIndexes>();
210   AU.addPreserved<SlotIndexes>();
211   AU.addRequired<LiveDebugVariables>();
212   AU.addPreserved<LiveDebugVariables>();
213   AU.addRequired<LiveStacks>();
214   AU.addPreserved<LiveStacks>();
215   AU.addRequired<MachineDominatorTree>();
216   AU.addPreserved<MachineDominatorTree>();
217   AU.addRequired<MachineLoopInfo>();
218   AU.addPreserved<MachineLoopInfo>();
219   AU.addRequired<VirtRegMap>();
220   AU.addPreserved<VirtRegMap>();
221   AU.addRequired<LiveRegMatrix>();
222   AU.addPreserved<LiveRegMatrix>();
223   AU.addRequired<EdgeBundles>();
224   AU.addRequired<SpillPlacement>();
225   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
226   AU.addRequired<RegAllocEvictionAdvisorAnalysis>();
227   MachineFunctionPass::getAnalysisUsage(AU);
228 }
229 
230 //===----------------------------------------------------------------------===//
231 //                     LiveRangeEdit delegate methods
232 //===----------------------------------------------------------------------===//
233 
234 bool RAGreedy::LRE_CanEraseVirtReg(Register VirtReg) {
235   LiveInterval &LI = LIS->getInterval(VirtReg);
236   if (VRM->hasPhys(VirtReg)) {
237     Matrix->unassign(LI);
238     aboutToRemoveInterval(LI);
239     return true;
240   }
241   // Unassigned virtreg is probably in the priority queue.
242   // RegAllocBase will erase it after dequeueing.
243   // Nonetheless, clear the live-range so that the debug
244   // dump will show the right state for that VirtReg.
245   LI.clear();
246   return false;
247 }
248 
249 void RAGreedy::LRE_WillShrinkVirtReg(Register VirtReg) {
250   if (!VRM->hasPhys(VirtReg))
251     return;
252 
253   // Register is assigned, put it back on the queue for reassignment.
254   LiveInterval &LI = LIS->getInterval(VirtReg);
255   Matrix->unassign(LI);
256   RegAllocBase::enqueue(&LI);
257 }
258 
259 void RAGreedy::LRE_DidCloneVirtReg(Register New, Register Old) {
260   ExtraInfo->LRE_DidCloneVirtReg(New, Old);
261 }
262 
263 void RAGreedy::ExtraRegInfo::LRE_DidCloneVirtReg(Register New, Register Old) {
264   // Cloning a register we haven't even heard about yet?  Just ignore it.
265   if (!Info.inBounds(Old))
266     return;
267 
268   // LRE may clone a virtual register because dead code elimination causes it to
269   // be split into connected components. The new components are much smaller
270   // than the original, so they should get a new chance at being assigned.
271   // same stage as the parent.
272   Info[Old].Stage = RS_Assign;
273   Info.grow(New.id());
274   Info[New] = Info[Old];
275 }
276 
277 void RAGreedy::releaseMemory() {
278   SpillerInstance.reset();
279   GlobalCand.clear();
280 }
281 
282 void RAGreedy::enqueueImpl(const LiveInterval *LI) { enqueue(Queue, LI); }
283 
284 void RAGreedy::enqueue(PQueue &CurQueue, const LiveInterval *LI) {
285   // Prioritize live ranges by size, assigning larger ranges first.
286   // The queue holds (size, reg) pairs.
287   const unsigned Size = LI->getSize();
288   const Register Reg = LI->reg();
289   assert(Reg.isVirtual() && "Can only enqueue virtual registers");
290   unsigned Prio;
291 
292   auto Stage = ExtraInfo->getOrInitStage(Reg);
293   if (Stage == RS_New) {
294     Stage = RS_Assign;
295     ExtraInfo->setStage(Reg, Stage);
296   }
297   if (Stage == RS_Split) {
298     // Unsplit ranges that couldn't be allocated immediately are deferred until
299     // everything else has been allocated.
300     Prio = Size;
301   } else if (Stage == RS_Memory) {
302     // Memory operand should be considered last.
303     // Change the priority such that Memory operand are assigned in
304     // the reverse order that they came in.
305     // TODO: Make this a member variable and probably do something about hints.
306     static unsigned MemOp = 0;
307     Prio = MemOp++;
308   } else {
309     // Giant live ranges fall back to the global assignment heuristic, which
310     // prevents excessive spilling in pathological cases.
311     bool ReverseLocal = TRI->reverseLocalAssignment();
312     const TargetRegisterClass &RC = *MRI->getRegClass(Reg);
313     bool ForceGlobal =
314         !ReverseLocal && (Size / SlotIndex::InstrDist) >
315                              (2 * RegClassInfo.getNumAllocatableRegs(&RC));
316     unsigned GlobalBit = 0;
317 
318     if (Stage == RS_Assign && !ForceGlobal && !LI->empty() &&
319         LIS->intervalIsInOneMBB(*LI)) {
320       // Allocate original local ranges in linear instruction order. Since they
321       // are singly defined, this produces optimal coloring in the absence of
322       // global interference and other constraints.
323       if (!ReverseLocal)
324         Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex());
325       else {
326         // Allocating bottom up may allow many short LRGs to be assigned first
327         // to one of the cheap registers. This could be much faster for very
328         // large blocks on targets with many physical registers.
329         Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex());
330       }
331     } else {
332       // Allocate global and split ranges in long->short order. Long ranges that
333       // don't fit should be spilled (or split) ASAP so they don't create
334       // interference.  Mark a bit to prioritize global above local ranges.
335       Prio = Size;
336       GlobalBit = 1;
337     }
338     if (RegClassPriorityTrumpsGlobalness)
339       Prio |= RC.AllocationPriority << 25 | GlobalBit << 24;
340     else
341       Prio |= GlobalBit << 29 | RC.AllocationPriority << 24;
342 
343     // Mark a higher bit to prioritize global and local above RS_Split.
344     Prio |= (1u << 31);
345 
346     // Boost ranges that have a physical register hint.
347     if (VRM->hasKnownPreference(Reg))
348       Prio |= (1u << 30);
349   }
350   // The virtual register number is a tie breaker for same-sized ranges.
351   // Give lower vreg numbers higher priority to assign them first.
352   CurQueue.push(std::make_pair(Prio, ~Reg));
353 }
354 
355 const LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); }
356 
357 const LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) {
358   if (CurQueue.empty())
359     return nullptr;
360   LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second);
361   CurQueue.pop();
362   return LI;
363 }
364 
365 //===----------------------------------------------------------------------===//
366 //                            Direct Assignment
367 //===----------------------------------------------------------------------===//
368 
369 /// tryAssign - Try to assign VirtReg to an available register.
370 MCRegister RAGreedy::tryAssign(const LiveInterval &VirtReg,
371                                AllocationOrder &Order,
372                                SmallVectorImpl<Register> &NewVRegs,
373                                const SmallVirtRegSet &FixedRegisters) {
374   MCRegister PhysReg;
375   for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) {
376     assert(*I);
377     if (!Matrix->checkInterference(VirtReg, *I)) {
378       if (I.isHint())
379         return *I;
380       else
381         PhysReg = *I;
382     }
383   }
384   if (!PhysReg.isValid())
385     return PhysReg;
386 
387   // PhysReg is available, but there may be a better choice.
388 
389   // If we missed a simple hint, try to cheaply evict interference from the
390   // preferred register.
391   if (Register Hint = MRI->getSimpleHint(VirtReg.reg()))
392     if (Order.isHint(Hint)) {
393       MCRegister PhysHint = Hint.asMCReg();
394       LLVM_DEBUG(dbgs() << "missed hint " << printReg(PhysHint, TRI) << '\n');
395 
396       if (EvictAdvisor->canEvictHintInterference(VirtReg, PhysHint,
397                                                  FixedRegisters)) {
398         evictInterference(VirtReg, PhysHint, NewVRegs);
399         return PhysHint;
400       }
401       // Record the missed hint, we may be able to recover
402       // at the end if the surrounding allocation changed.
403       SetOfBrokenHints.insert(&VirtReg);
404     }
405 
406   // Try to evict interference from a cheaper alternative.
407   uint8_t Cost = RegCosts[PhysReg];
408 
409   // Most registers have 0 additional cost.
410   if (!Cost)
411     return PhysReg;
412 
413   LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is available at cost "
414                     << (unsigned)Cost << '\n');
415   MCRegister CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost, FixedRegisters);
416   return CheapReg ? CheapReg : PhysReg;
417 }
418 
419 //===----------------------------------------------------------------------===//
420 //                         Interference eviction
421 //===----------------------------------------------------------------------===//
422 
423 Register RegAllocEvictionAdvisor::canReassign(const LiveInterval &VirtReg,
424                                               Register PrevReg) const {
425   auto Order =
426       AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix);
427   MCRegister PhysReg;
428   for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) {
429     if ((*I).id() == PrevReg.id())
430       continue;
431 
432     MCRegUnitIterator Units(*I, TRI);
433     for (; Units.isValid(); ++Units) {
434       // Instantiate a "subquery", not to be confused with the Queries array.
435       LiveIntervalUnion::Query subQ(VirtReg, Matrix->getLiveUnions()[*Units]);
436       if (subQ.checkInterference())
437         break;
438     }
439     // If no units have interference, break out with the current PhysReg.
440     if (!Units.isValid())
441       PhysReg = *I;
442   }
443   if (PhysReg)
444     LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg << " from "
445                       << printReg(PrevReg, TRI) << " to "
446                       << printReg(PhysReg, TRI) << '\n');
447   return PhysReg;
448 }
449 
450 /// Return true if all interferences between VirtReg and PhysReg between
451 /// Start and End can be evicted.
452 ///
453 /// \param VirtReg Live range that is about to be assigned.
454 /// \param PhysReg Desired register for assignment.
455 /// \param Start   Start of range to look for interferences.
456 /// \param End     End of range to look for interferences.
457 /// \param MaxCost Only look for cheaper candidates and update with new cost
458 ///                when returning true.
459 /// \return True when interference can be evicted cheaper than MaxCost.
460 bool RAGreedy::canEvictInterferenceInRange(const LiveInterval &VirtReg,
461                                            MCRegister PhysReg, SlotIndex Start,
462                                            SlotIndex End,
463                                            EvictionCost &MaxCost) const {
464   EvictionCost Cost;
465 
466   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
467     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
468 
469     // Check if any interfering live range is heavier than MaxWeight.
470     for (const LiveInterval *Intf : reverse(Q.interferingVRegs())) {
471       // Check if interference overlast the segment in interest.
472       if (!Intf->overlaps(Start, End))
473         continue;
474 
475       // Never evict spill products. They cannot split or spill.
476       if (ExtraInfo->getStage(*Intf) == RS_Done)
477         return false;
478 
479       // Would this break a satisfied hint?
480       bool BreaksHint = VRM->hasPreferredPhys(Intf->reg());
481       // Update eviction cost.
482       Cost.BrokenHints += BreaksHint;
483       Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight());
484       // Abort if this would be too expensive.
485       if (!(Cost < MaxCost))
486         return false;
487     }
488   }
489 
490   if (Cost.MaxWeight == 0)
491     return false;
492 
493   MaxCost = Cost;
494   return true;
495 }
496 
497 /// Return the physical register that will be best
498 /// candidate for eviction by a local split interval that will be created
499 /// between Start and End.
500 ///
501 /// \param Order            The allocation order
502 /// \param VirtReg          Live range that is about to be assigned.
503 /// \param Start            Start of range to look for interferences
504 /// \param End              End of range to look for interferences
505 /// \param BestEvictweight  The eviction cost of that eviction
506 /// \return The PhysReg which is the best candidate for eviction and the
507 /// eviction cost in BestEvictweight
508 MCRegister RAGreedy::getCheapestEvicteeWeight(const AllocationOrder &Order,
509                                               const LiveInterval &VirtReg,
510                                               SlotIndex Start, SlotIndex End,
511                                               float *BestEvictweight) const {
512   EvictionCost BestEvictCost;
513   BestEvictCost.setMax();
514   BestEvictCost.MaxWeight = VirtReg.weight();
515   MCRegister BestEvicteePhys;
516 
517   // Go over all physical registers and find the best candidate for eviction
518   for (MCRegister PhysReg : Order.getOrder()) {
519 
520     if (!canEvictInterferenceInRange(VirtReg, PhysReg, Start, End,
521                                      BestEvictCost))
522       continue;
523 
524     // Best so far.
525     BestEvicteePhys = PhysReg;
526   }
527   *BestEvictweight = BestEvictCost.MaxWeight;
528   return BestEvicteePhys;
529 }
530 
531 /// evictInterference - Evict any interferring registers that prevent VirtReg
532 /// from being assigned to Physreg. This assumes that canEvictInterference
533 /// returned true.
534 void RAGreedy::evictInterference(const LiveInterval &VirtReg,
535                                  MCRegister PhysReg,
536                                  SmallVectorImpl<Register> &NewVRegs) {
537   // Make sure that VirtReg has a cascade number, and assign that cascade
538   // number to every evicted register. These live ranges than then only be
539   // evicted by a newer cascade, preventing infinite loops.
540   unsigned Cascade = ExtraInfo->getOrAssignNewCascade(VirtReg.reg());
541 
542   LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg, TRI)
543                     << " interference: Cascade " << Cascade << '\n');
544 
545   // Collect all interfering virtregs first.
546   SmallVector<const LiveInterval *, 8> Intfs;
547   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
548     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
549     // We usually have the interfering VRegs cached so collectInterferingVRegs()
550     // should be fast, we may need to recalculate if when different physregs
551     // overlap the same register unit so we had different SubRanges queried
552     // against it.
553     ArrayRef<const LiveInterval *> IVR = Q.interferingVRegs();
554     Intfs.append(IVR.begin(), IVR.end());
555   }
556 
557   // Evict them second. This will invalidate the queries.
558   for (const LiveInterval *Intf : Intfs) {
559     // The same VirtReg may be present in multiple RegUnits. Skip duplicates.
560     if (!VRM->hasPhys(Intf->reg()))
561       continue;
562 
563     LastEvicted.addEviction(PhysReg, VirtReg.reg(), Intf->reg());
564 
565     Matrix->unassign(*Intf);
566     assert((ExtraInfo->getCascade(Intf->reg()) < Cascade ||
567             VirtReg.isSpillable() < Intf->isSpillable()) &&
568            "Cannot decrease cascade number, illegal eviction");
569     ExtraInfo->setCascade(Intf->reg(), Cascade);
570     ++NumEvicted;
571     NewVRegs.push_back(Intf->reg());
572   }
573 }
574 
575 /// Returns true if the given \p PhysReg is a callee saved register and has not
576 /// been used for allocation yet.
577 bool RegAllocEvictionAdvisor::isUnusedCalleeSavedReg(MCRegister PhysReg) const {
578   MCRegister CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg);
579   if (!CSR)
580     return false;
581 
582   return !Matrix->isPhysRegUsed(PhysReg);
583 }
584 
585 Optional<unsigned>
586 RegAllocEvictionAdvisor::getOrderLimit(const LiveInterval &VirtReg,
587                                        const AllocationOrder &Order,
588                                        unsigned CostPerUseLimit) const {
589   unsigned OrderLimit = Order.getOrder().size();
590 
591   if (CostPerUseLimit < uint8_t(~0u)) {
592     // Check of any registers in RC are below CostPerUseLimit.
593     const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg());
594     uint8_t MinCost = RegClassInfo.getMinCost(RC);
595     if (MinCost >= CostPerUseLimit) {
596       LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = "
597                         << MinCost << ", no cheaper registers to be found.\n");
598       return None;
599     }
600 
601     // It is normal for register classes to have a long tail of registers with
602     // the same cost. We don't need to look at them if they're too expensive.
603     if (RegCosts[Order.getOrder().back()] >= CostPerUseLimit) {
604       OrderLimit = RegClassInfo.getLastCostChange(RC);
605       LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit
606                         << " regs.\n");
607     }
608   }
609   return OrderLimit;
610 }
611 
612 bool RegAllocEvictionAdvisor::canAllocatePhysReg(unsigned CostPerUseLimit,
613                                                  MCRegister PhysReg) const {
614   if (RegCosts[PhysReg] >= CostPerUseLimit)
615     return false;
616   // The first use of a callee-saved register in a function has cost 1.
617   // Don't start using a CSR when the CostPerUseLimit is low.
618   if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) {
619     LLVM_DEBUG(
620         dbgs() << printReg(PhysReg, TRI) << " would clobber CSR "
621                << printReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI)
622                << '\n');
623     return false;
624   }
625   return true;
626 }
627 
628 /// tryEvict - Try to evict all interferences for a physreg.
629 /// @param  VirtReg Currently unassigned virtual register.
630 /// @param  Order   Physregs to try.
631 /// @return         Physreg to assign VirtReg, or 0.
632 MCRegister RAGreedy::tryEvict(const LiveInterval &VirtReg,
633                               AllocationOrder &Order,
634                               SmallVectorImpl<Register> &NewVRegs,
635                               uint8_t CostPerUseLimit,
636                               const SmallVirtRegSet &FixedRegisters) {
637   NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription,
638                      TimePassesIsEnabled);
639 
640   MCRegister BestPhys = EvictAdvisor->tryFindEvictionCandidate(
641       VirtReg, Order, CostPerUseLimit, FixedRegisters);
642   if (BestPhys.isValid())
643     evictInterference(VirtReg, BestPhys, NewVRegs);
644   return BestPhys;
645 }
646 
647 //===----------------------------------------------------------------------===//
648 //                              Region Splitting
649 //===----------------------------------------------------------------------===//
650 
651 /// addSplitConstraints - Fill out the SplitConstraints vector based on the
652 /// interference pattern in Physreg and its aliases. Add the constraints to
653 /// SpillPlacement and return the static cost of this split in Cost, assuming
654 /// that all preferences in SplitConstraints are met.
655 /// Return false if there are no bundles with positive bias.
656 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
657                                    BlockFrequency &Cost) {
658   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
659 
660   // Reset interference dependent info.
661   SplitConstraints.resize(UseBlocks.size());
662   BlockFrequency StaticCost = 0;
663   for (unsigned I = 0; I != UseBlocks.size(); ++I) {
664     const SplitAnalysis::BlockInfo &BI = UseBlocks[I];
665     SpillPlacement::BlockConstraint &BC = SplitConstraints[I];
666 
667     BC.Number = BI.MBB->getNumber();
668     Intf.moveToBlock(BC.Number);
669     BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
670     BC.Exit = (BI.LiveOut &&
671                !LIS->getInstructionFromIndex(BI.LastInstr)->isImplicitDef())
672                   ? SpillPlacement::PrefReg
673                   : SpillPlacement::DontCare;
674     BC.ChangesValue = BI.FirstDef.isValid();
675 
676     if (!Intf.hasInterference())
677       continue;
678 
679     // Number of spill code instructions to insert.
680     unsigned Ins = 0;
681 
682     // Interference for the live-in value.
683     if (BI.LiveIn) {
684       if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) {
685         BC.Entry = SpillPlacement::MustSpill;
686         ++Ins;
687       } else if (Intf.first() < BI.FirstInstr) {
688         BC.Entry = SpillPlacement::PrefSpill;
689         ++Ins;
690       } else if (Intf.first() < BI.LastInstr) {
691         ++Ins;
692       }
693 
694       // Abort if the spill cannot be inserted at the MBB' start
695       if (((BC.Entry == SpillPlacement::MustSpill) ||
696            (BC.Entry == SpillPlacement::PrefSpill)) &&
697           SlotIndex::isEarlierInstr(BI.FirstInstr,
698                                     SA->getFirstSplitPoint(BC.Number)))
699         return false;
700     }
701 
702     // Interference for the live-out value.
703     if (BI.LiveOut) {
704       if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) {
705         BC.Exit = SpillPlacement::MustSpill;
706         ++Ins;
707       } else if (Intf.last() > BI.LastInstr) {
708         BC.Exit = SpillPlacement::PrefSpill;
709         ++Ins;
710       } else if (Intf.last() > BI.FirstInstr) {
711         ++Ins;
712       }
713     }
714 
715     // Accumulate the total frequency of inserted spill code.
716     while (Ins--)
717       StaticCost += SpillPlacer->getBlockFrequency(BC.Number);
718   }
719   Cost = StaticCost;
720 
721   // Add constraints for use-blocks. Note that these are the only constraints
722   // that may add a positive bias, it is downhill from here.
723   SpillPlacer->addConstraints(SplitConstraints);
724   return SpillPlacer->scanActiveBundles();
725 }
726 
727 /// addThroughConstraints - Add constraints and links to SpillPlacer from the
728 /// live-through blocks in Blocks.
729 bool RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
730                                      ArrayRef<unsigned> Blocks) {
731   const unsigned GroupSize = 8;
732   SpillPlacement::BlockConstraint BCS[GroupSize];
733   unsigned TBS[GroupSize];
734   unsigned B = 0, T = 0;
735 
736   for (unsigned Number : Blocks) {
737     Intf.moveToBlock(Number);
738 
739     if (!Intf.hasInterference()) {
740       assert(T < GroupSize && "Array overflow");
741       TBS[T] = Number;
742       if (++T == GroupSize) {
743         SpillPlacer->addLinks(makeArrayRef(TBS, T));
744         T = 0;
745       }
746       continue;
747     }
748 
749     assert(B < GroupSize && "Array overflow");
750     BCS[B].Number = Number;
751 
752     // Abort if the spill cannot be inserted at the MBB' start
753     MachineBasicBlock *MBB = MF->getBlockNumbered(Number);
754     auto FirstNonDebugInstr = MBB->getFirstNonDebugInstr();
755     if (FirstNonDebugInstr != MBB->end() &&
756         SlotIndex::isEarlierInstr(LIS->getInstructionIndex(*FirstNonDebugInstr),
757                                   SA->getFirstSplitPoint(Number)))
758       return false;
759     // Interference for the live-in value.
760     if (Intf.first() <= Indexes->getMBBStartIdx(Number))
761       BCS[B].Entry = SpillPlacement::MustSpill;
762     else
763       BCS[B].Entry = SpillPlacement::PrefSpill;
764 
765     // Interference for the live-out value.
766     if (Intf.last() >= SA->getLastSplitPoint(Number))
767       BCS[B].Exit = SpillPlacement::MustSpill;
768     else
769       BCS[B].Exit = SpillPlacement::PrefSpill;
770 
771     if (++B == GroupSize) {
772       SpillPlacer->addConstraints(makeArrayRef(BCS, B));
773       B = 0;
774     }
775   }
776 
777   SpillPlacer->addConstraints(makeArrayRef(BCS, B));
778   SpillPlacer->addLinks(makeArrayRef(TBS, T));
779   return true;
780 }
781 
782 bool RAGreedy::growRegion(GlobalSplitCandidate &Cand) {
783   // Keep track of through blocks that have not been added to SpillPlacer.
784   BitVector Todo = SA->getThroughBlocks();
785   SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
786   unsigned AddedTo = 0;
787 #ifndef NDEBUG
788   unsigned Visited = 0;
789 #endif
790 
791   unsigned long Budget = GrowRegionComplexityBudget;
792   while (true) {
793     ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
794     // Find new through blocks in the periphery of PrefRegBundles.
795     for (unsigned Bundle : NewBundles) {
796       // Look at all blocks connected to Bundle in the full graph.
797       ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
798       // Limit compilation time by bailing out after we use all our budget.
799       if (Blocks.size() >= Budget)
800         return false;
801       Budget -= Blocks.size();
802       for (unsigned Block : Blocks) {
803         if (!Todo.test(Block))
804           continue;
805         Todo.reset(Block);
806         // This is a new through block. Add it to SpillPlacer later.
807         ActiveBlocks.push_back(Block);
808 #ifndef NDEBUG
809         ++Visited;
810 #endif
811       }
812     }
813     // Any new blocks to add?
814     if (ActiveBlocks.size() == AddedTo)
815       break;
816 
817     // Compute through constraints from the interference, or assume that all
818     // through blocks prefer spilling when forming compact regions.
819     auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo);
820     if (Cand.PhysReg) {
821       if (!addThroughConstraints(Cand.Intf, NewBlocks))
822         return false;
823     } else
824       // Provide a strong negative bias on through blocks to prevent unwanted
825       // liveness on loop backedges.
826       SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true);
827     AddedTo = ActiveBlocks.size();
828 
829     // Perhaps iterating can enable more bundles?
830     SpillPlacer->iterate();
831   }
832   LLVM_DEBUG(dbgs() << ", v=" << Visited);
833   return true;
834 }
835 
836 /// calcCompactRegion - Compute the set of edge bundles that should be live
837 /// when splitting the current live range into compact regions.  Compact
838 /// regions can be computed without looking at interference.  They are the
839 /// regions formed by removing all the live-through blocks from the live range.
840 ///
841 /// Returns false if the current live range is already compact, or if the
842 /// compact regions would form single block regions anyway.
843 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) {
844   // Without any through blocks, the live range is already compact.
845   if (!SA->getNumThroughBlocks())
846     return false;
847 
848   // Compact regions don't correspond to any physreg.
849   Cand.reset(IntfCache, MCRegister::NoRegister);
850 
851   LLVM_DEBUG(dbgs() << "Compact region bundles");
852 
853   // Use the spill placer to determine the live bundles. GrowRegion pretends
854   // that all the through blocks have interference when PhysReg is unset.
855   SpillPlacer->prepare(Cand.LiveBundles);
856 
857   // The static split cost will be zero since Cand.Intf reports no interference.
858   BlockFrequency Cost;
859   if (!addSplitConstraints(Cand.Intf, Cost)) {
860     LLVM_DEBUG(dbgs() << ", none.\n");
861     return false;
862   }
863 
864   if (!growRegion(Cand)) {
865     LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
866     return false;
867   }
868 
869   SpillPlacer->finish();
870 
871   if (!Cand.LiveBundles.any()) {
872     LLVM_DEBUG(dbgs() << ", none.\n");
873     return false;
874   }
875 
876   LLVM_DEBUG({
877     for (int I : Cand.LiveBundles.set_bits())
878       dbgs() << " EB#" << I;
879     dbgs() << ".\n";
880   });
881   return true;
882 }
883 
884 /// calcSpillCost - Compute how expensive it would be to split the live range in
885 /// SA around all use blocks instead of forming bundle regions.
886 BlockFrequency RAGreedy::calcSpillCost() {
887   BlockFrequency Cost = 0;
888   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
889   for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
890     unsigned Number = BI.MBB->getNumber();
891     // We normally only need one spill instruction - a load or a store.
892     Cost += SpillPlacer->getBlockFrequency(Number);
893 
894     // Unless the value is redefined in the block.
895     if (BI.LiveIn && BI.LiveOut && BI.FirstDef)
896       Cost += SpillPlacer->getBlockFrequency(Number);
897   }
898   return Cost;
899 }
900 
901 /// Check if splitting Evictee will create a local split interval in
902 /// basic block number BBNumber that may cause a bad eviction chain. This is
903 /// intended to prevent bad eviction sequences like:
904 /// movl	%ebp, 8(%esp)           # 4-byte Spill
905 /// movl	%ecx, %ebp
906 /// movl	%ebx, %ecx
907 /// movl	%edi, %ebx
908 /// movl	%edx, %edi
909 /// cltd
910 /// idivl	%esi
911 /// movl	%edi, %edx
912 /// movl	%ebx, %edi
913 /// movl	%ecx, %ebx
914 /// movl	%ebp, %ecx
915 /// movl	16(%esp), %ebp          # 4 - byte Reload
916 ///
917 /// Such sequences are created in 2 scenarios:
918 ///
919 /// Scenario #1:
920 /// %0 is evicted from physreg0 by %1.
921 /// Evictee %0 is intended for region splitting with split candidate
922 /// physreg0 (the reg %0 was evicted from).
923 /// Region splitting creates a local interval because of interference with the
924 /// evictor %1 (normally region splitting creates 2 interval, the "by reg"
925 /// and "by stack" intervals and local interval created when interference
926 /// occurs).
927 /// One of the split intervals ends up evicting %2 from physreg1.
928 /// Evictee %2 is intended for region splitting with split candidate
929 /// physreg1.
930 /// One of the split intervals ends up evicting %3 from physreg2, etc.
931 ///
932 /// Scenario #2
933 /// %0 is evicted from physreg0 by %1.
934 /// %2 is evicted from physreg2 by %3 etc.
935 /// Evictee %0 is intended for region splitting with split candidate
936 /// physreg1.
937 /// Region splitting creates a local interval because of interference with the
938 /// evictor %1.
939 /// One of the split intervals ends up evicting back original evictor %1
940 /// from physreg0 (the reg %0 was evicted from).
941 /// Another evictee %2 is intended for region splitting with split candidate
942 /// physreg1.
943 /// One of the split intervals ends up evicting %3 from physreg2, etc.
944 ///
945 /// \param Evictee  The register considered to be split.
946 /// \param Cand     The split candidate that determines the physical register
947 ///                 we are splitting for and the interferences.
948 /// \param BBNumber The number of a BB for which the region split process will
949 ///                 create a local split interval.
950 /// \param Order    The physical registers that may get evicted by a split
951 ///                 artifact of Evictee.
952 /// \return True if splitting Evictee may cause a bad eviction chain, false
953 /// otherwise.
954 bool RAGreedy::splitCanCauseEvictionChain(Register Evictee,
955                                           GlobalSplitCandidate &Cand,
956                                           unsigned BBNumber,
957                                           const AllocationOrder &Order) {
958   EvictionTrack::EvictorInfo VregEvictorInfo = LastEvicted.getEvictor(Evictee);
959   unsigned Evictor = VregEvictorInfo.first;
960   MCRegister PhysReg = VregEvictorInfo.second;
961 
962   // No actual evictor.
963   if (!Evictor || !PhysReg)
964     return false;
965 
966   float MaxWeight = 0;
967   MCRegister FutureEvictedPhysReg =
968       getCheapestEvicteeWeight(Order, LIS->getInterval(Evictee),
969                                Cand.Intf.first(), Cand.Intf.last(), &MaxWeight);
970 
971   // The bad eviction chain occurs when either the split candidate is the
972   // evicting reg or one of the split artifact will evict the evicting reg.
973   if ((PhysReg != Cand.PhysReg) && (PhysReg != FutureEvictedPhysReg))
974     return false;
975 
976   Cand.Intf.moveToBlock(BBNumber);
977 
978   // Check to see if the Evictor contains interference (with Evictee) in the
979   // given BB. If so, this interference caused the eviction of Evictee from
980   // PhysReg. This suggest that we will create a local interval during the
981   // region split to avoid this interference This local interval may cause a bad
982   // eviction chain.
983   if (!LIS->hasInterval(Evictor))
984     return false;
985   LiveInterval &EvictorLI = LIS->getInterval(Evictor);
986   if (EvictorLI.FindSegmentContaining(Cand.Intf.first()) == EvictorLI.end())
987     return false;
988 
989   // Now, check to see if the local interval we will create is going to be
990   // expensive enough to evict somebody If so, this may cause a bad eviction
991   // chain.
992   float splitArtifactWeight =
993       VRAI->futureWeight(LIS->getInterval(Evictee),
994                          Cand.Intf.first().getPrevIndex(), Cand.Intf.last());
995   if (splitArtifactWeight >= 0 && splitArtifactWeight < MaxWeight)
996     return false;
997 
998   return true;
999 }
1000 
1001 /// calcGlobalSplitCost - Return the global split cost of following the split
1002 /// pattern in LiveBundles. This cost should be added to the local cost of the
1003 /// interference pattern in SplitConstraints.
1004 ///
1005 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand,
1006                                              const AllocationOrder &Order) {
1007   BlockFrequency GlobalCost = 0;
1008   const BitVector &LiveBundles = Cand.LiveBundles;
1009   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1010   for (unsigned I = 0; I != UseBlocks.size(); ++I) {
1011     const SplitAnalysis::BlockInfo &BI = UseBlocks[I];
1012     SpillPlacement::BlockConstraint &BC = SplitConstraints[I];
1013     bool RegIn  = LiveBundles[Bundles->getBundle(BC.Number, false)];
1014     bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)];
1015     unsigned Ins = 0;
1016 
1017     Cand.Intf.moveToBlock(BC.Number);
1018 
1019     if (BI.LiveIn)
1020       Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
1021     if (BI.LiveOut)
1022       Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
1023     while (Ins--)
1024       GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1025   }
1026 
1027   for (unsigned Number : Cand.ActiveBlocks) {
1028     bool RegIn  = LiveBundles[Bundles->getBundle(Number, false)];
1029     bool RegOut = LiveBundles[Bundles->getBundle(Number, true)];
1030     if (!RegIn && !RegOut)
1031       continue;
1032     if (RegIn && RegOut) {
1033       // We need double spill code if this block has interference.
1034       Cand.Intf.moveToBlock(Number);
1035       if (Cand.Intf.hasInterference()) {
1036         GlobalCost += SpillPlacer->getBlockFrequency(Number);
1037         GlobalCost += SpillPlacer->getBlockFrequency(Number);
1038       }
1039       continue;
1040     }
1041     // live-in / stack-out or stack-in live-out.
1042     GlobalCost += SpillPlacer->getBlockFrequency(Number);
1043   }
1044   return GlobalCost;
1045 }
1046 
1047 /// splitAroundRegion - Split the current live range around the regions
1048 /// determined by BundleCand and GlobalCand.
1049 ///
1050 /// Before calling this function, GlobalCand and BundleCand must be initialized
1051 /// so each bundle is assigned to a valid candidate, or NoCand for the
1052 /// stack-bound bundles.  The shared SA/SE SplitAnalysis and SplitEditor
1053 /// objects must be initialized for the current live range, and intervals
1054 /// created for the used candidates.
1055 ///
1056 /// @param LREdit    The LiveRangeEdit object handling the current split.
1057 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value
1058 ///                  must appear in this list.
1059 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit,
1060                                  ArrayRef<unsigned> UsedCands) {
1061   // These are the intervals created for new global ranges. We may create more
1062   // intervals for local ranges.
1063   const unsigned NumGlobalIntvs = LREdit.size();
1064   LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs
1065                     << " globals.\n");
1066   assert(NumGlobalIntvs && "No global intervals configured");
1067 
1068   // Isolate even single instructions when dealing with a proper sub-class.
1069   // That guarantees register class inflation for the stack interval because it
1070   // is all copies.
1071   Register Reg = SA->getParent().reg();
1072   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1073 
1074   // First handle all the blocks with uses.
1075   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1076   for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
1077     unsigned Number = BI.MBB->getNumber();
1078     unsigned IntvIn = 0, IntvOut = 0;
1079     SlotIndex IntfIn, IntfOut;
1080     if (BI.LiveIn) {
1081       unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
1082       if (CandIn != NoCand) {
1083         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1084         IntvIn = Cand.IntvIdx;
1085         Cand.Intf.moveToBlock(Number);
1086         IntfIn = Cand.Intf.first();
1087       }
1088     }
1089     if (BI.LiveOut) {
1090       unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
1091       if (CandOut != NoCand) {
1092         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1093         IntvOut = Cand.IntvIdx;
1094         Cand.Intf.moveToBlock(Number);
1095         IntfOut = Cand.Intf.last();
1096       }
1097     }
1098 
1099     // Create separate intervals for isolated blocks with multiple uses.
1100     if (!IntvIn && !IntvOut) {
1101       LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " isolated.\n");
1102       if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1103         SE->splitSingleBlock(BI);
1104       continue;
1105     }
1106 
1107     if (IntvIn && IntvOut)
1108       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1109     else if (IntvIn)
1110       SE->splitRegInBlock(BI, IntvIn, IntfIn);
1111     else
1112       SE->splitRegOutBlock(BI, IntvOut, IntfOut);
1113   }
1114 
1115   // Handle live-through blocks. The relevant live-through blocks are stored in
1116   // the ActiveBlocks list with each candidate. We need to filter out
1117   // duplicates.
1118   BitVector Todo = SA->getThroughBlocks();
1119   for (unsigned UsedCand : UsedCands) {
1120     ArrayRef<unsigned> Blocks = GlobalCand[UsedCand].ActiveBlocks;
1121     for (unsigned Number : Blocks) {
1122       if (!Todo.test(Number))
1123         continue;
1124       Todo.reset(Number);
1125 
1126       unsigned IntvIn = 0, IntvOut = 0;
1127       SlotIndex IntfIn, IntfOut;
1128 
1129       unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
1130       if (CandIn != NoCand) {
1131         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1132         IntvIn = Cand.IntvIdx;
1133         Cand.Intf.moveToBlock(Number);
1134         IntfIn = Cand.Intf.first();
1135       }
1136 
1137       unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
1138       if (CandOut != NoCand) {
1139         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1140         IntvOut = Cand.IntvIdx;
1141         Cand.Intf.moveToBlock(Number);
1142         IntfOut = Cand.Intf.last();
1143       }
1144       if (!IntvIn && !IntvOut)
1145         continue;
1146       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1147     }
1148   }
1149 
1150   ++NumGlobalSplits;
1151 
1152   SmallVector<unsigned, 8> IntvMap;
1153   SE->finish(&IntvMap);
1154   DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
1155 
1156   unsigned OrigBlocks = SA->getNumLiveBlocks();
1157 
1158   // Sort out the new intervals created by splitting. We get four kinds:
1159   // - Remainder intervals should not be split again.
1160   // - Candidate intervals can be assigned to Cand.PhysReg.
1161   // - Block-local splits are candidates for local splitting.
1162   // - DCE leftovers should go back on the queue.
1163   for (unsigned I = 0, E = LREdit.size(); I != E; ++I) {
1164     const LiveInterval &Reg = LIS->getInterval(LREdit.get(I));
1165 
1166     // Ignore old intervals from DCE.
1167     if (ExtraInfo->getOrInitStage(Reg.reg()) != RS_New)
1168       continue;
1169 
1170     // Remainder interval. Don't try splitting again, spill if it doesn't
1171     // allocate.
1172     if (IntvMap[I] == 0) {
1173       ExtraInfo->setStage(Reg, RS_Spill);
1174       continue;
1175     }
1176 
1177     // Global intervals. Allow repeated splitting as long as the number of live
1178     // blocks is strictly decreasing.
1179     if (IntvMap[I] < NumGlobalIntvs) {
1180       if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
1181         LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
1182                           << " blocks as original.\n");
1183         // Don't allow repeated splitting as a safe guard against looping.
1184         ExtraInfo->setStage(Reg, RS_Split2);
1185       }
1186       continue;
1187     }
1188 
1189     // Other intervals are treated as new. This includes local intervals created
1190     // for blocks with multiple uses, and anything created by DCE.
1191   }
1192 
1193   if (VerifyEnabled)
1194     MF->verify(this, "After splitting live range around region");
1195 }
1196 
1197 MCRegister RAGreedy::tryRegionSplit(const LiveInterval &VirtReg,
1198                                     AllocationOrder &Order,
1199                                     SmallVectorImpl<Register> &NewVRegs) {
1200   if (!TRI->shouldRegionSplitForVirtReg(*MF, VirtReg))
1201     return MCRegister::NoRegister;
1202   unsigned NumCands = 0;
1203   BlockFrequency SpillCost = calcSpillCost();
1204   BlockFrequency BestCost;
1205 
1206   // Check if we can split this live range around a compact region.
1207   bool HasCompact = calcCompactRegion(GlobalCand.front());
1208   if (HasCompact) {
1209     // Yes, keep GlobalCand[0] as the compact region candidate.
1210     NumCands = 1;
1211     BestCost = BlockFrequency::getMaxFrequency();
1212   } else {
1213     // No benefit from the compact region, our fallback will be per-block
1214     // splitting. Make sure we find a solution that is cheaper than spilling.
1215     BestCost = SpillCost;
1216     LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = ";
1217                MBFI->printBlockFreq(dbgs(), BestCost) << '\n');
1218   }
1219 
1220   unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost,
1221                                                NumCands, false /*IgnoreCSR*/);
1222 
1223   // No solutions found, fall back to single block splitting.
1224   if (!HasCompact && BestCand == NoCand)
1225     return MCRegister::NoRegister;
1226 
1227   return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs);
1228 }
1229 
1230 unsigned RAGreedy::calculateRegionSplitCost(const LiveInterval &VirtReg,
1231                                             AllocationOrder &Order,
1232                                             BlockFrequency &BestCost,
1233                                             unsigned &NumCands,
1234                                             bool IgnoreCSR) {
1235   unsigned BestCand = NoCand;
1236   for (MCPhysReg PhysReg : Order) {
1237     assert(PhysReg);
1238     if (IgnoreCSR && EvictAdvisor->isUnusedCalleeSavedReg(PhysReg))
1239       continue;
1240 
1241     // Discard bad candidates before we run out of interference cache cursors.
1242     // This will only affect register classes with a lot of registers (>32).
1243     if (NumCands == IntfCache.getMaxCursors()) {
1244       unsigned WorstCount = ~0u;
1245       unsigned Worst = 0;
1246       for (unsigned CandIndex = 0; CandIndex != NumCands; ++CandIndex) {
1247         if (CandIndex == BestCand || !GlobalCand[CandIndex].PhysReg)
1248           continue;
1249         unsigned Count = GlobalCand[CandIndex].LiveBundles.count();
1250         if (Count < WorstCount) {
1251           Worst = CandIndex;
1252           WorstCount = Count;
1253         }
1254       }
1255       --NumCands;
1256       GlobalCand[Worst] = GlobalCand[NumCands];
1257       if (BestCand == NumCands)
1258         BestCand = Worst;
1259     }
1260 
1261     if (GlobalCand.size() <= NumCands)
1262       GlobalCand.resize(NumCands+1);
1263     GlobalSplitCandidate &Cand = GlobalCand[NumCands];
1264     Cand.reset(IntfCache, PhysReg);
1265 
1266     SpillPlacer->prepare(Cand.LiveBundles);
1267     BlockFrequency Cost;
1268     if (!addSplitConstraints(Cand.Intf, Cost)) {
1269       LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tno positive bundles\n");
1270       continue;
1271     }
1272     LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tstatic = ";
1273                MBFI->printBlockFreq(dbgs(), Cost));
1274     if (Cost >= BestCost) {
1275       LLVM_DEBUG({
1276         if (BestCand == NoCand)
1277           dbgs() << " worse than no bundles\n";
1278         else
1279           dbgs() << " worse than "
1280                  << printReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
1281       });
1282       continue;
1283     }
1284     if (!growRegion(Cand)) {
1285       LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
1286       continue;
1287     }
1288 
1289     SpillPlacer->finish();
1290 
1291     // No live bundles, defer to splitSingleBlocks().
1292     if (!Cand.LiveBundles.any()) {
1293       LLVM_DEBUG(dbgs() << " no bundles.\n");
1294       continue;
1295     }
1296 
1297     Cost += calcGlobalSplitCost(Cand, Order);
1298     LLVM_DEBUG({
1299       dbgs() << ", total = ";
1300       MBFI->printBlockFreq(dbgs(), Cost) << " with bundles";
1301       for (int I : Cand.LiveBundles.set_bits())
1302         dbgs() << " EB#" << I;
1303       dbgs() << ".\n";
1304     });
1305     if (Cost < BestCost) {
1306       BestCand = NumCands;
1307       BestCost = Cost;
1308     }
1309     ++NumCands;
1310   }
1311 
1312   return BestCand;
1313 }
1314 
1315 unsigned RAGreedy::doRegionSplit(const LiveInterval &VirtReg, unsigned BestCand,
1316                                  bool HasCompact,
1317                                  SmallVectorImpl<Register> &NewVRegs) {
1318   SmallVector<unsigned, 8> UsedCands;
1319   // Prepare split editor.
1320   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1321   SE->reset(LREdit, SplitSpillMode);
1322 
1323   // Assign all edge bundles to the preferred candidate, or NoCand.
1324   BundleCand.assign(Bundles->getNumBundles(), NoCand);
1325 
1326   // Assign bundles for the best candidate region.
1327   if (BestCand != NoCand) {
1328     GlobalSplitCandidate &Cand = GlobalCand[BestCand];
1329     if (unsigned B = Cand.getBundles(BundleCand, BestCand)) {
1330       UsedCands.push_back(BestCand);
1331       Cand.IntvIdx = SE->openIntv();
1332       LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand.PhysReg, TRI) << " in "
1333                         << B << " bundles, intv " << Cand.IntvIdx << ".\n");
1334       (void)B;
1335     }
1336   }
1337 
1338   // Assign bundles for the compact region.
1339   if (HasCompact) {
1340     GlobalSplitCandidate &Cand = GlobalCand.front();
1341     assert(!Cand.PhysReg && "Compact region has no physreg");
1342     if (unsigned B = Cand.getBundles(BundleCand, 0)) {
1343       UsedCands.push_back(0);
1344       Cand.IntvIdx = SE->openIntv();
1345       LLVM_DEBUG(dbgs() << "Split for compact region in " << B
1346                         << " bundles, intv " << Cand.IntvIdx << ".\n");
1347       (void)B;
1348     }
1349   }
1350 
1351   splitAroundRegion(LREdit, UsedCands);
1352   return 0;
1353 }
1354 
1355 //===----------------------------------------------------------------------===//
1356 //                            Per-Block Splitting
1357 //===----------------------------------------------------------------------===//
1358 
1359 /// tryBlockSplit - Split a global live range around every block with uses. This
1360 /// creates a lot of local live ranges, that will be split by tryLocalSplit if
1361 /// they don't allocate.
1362 unsigned RAGreedy::tryBlockSplit(const LiveInterval &VirtReg,
1363                                  AllocationOrder &Order,
1364                                  SmallVectorImpl<Register> &NewVRegs) {
1365   assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed");
1366   Register Reg = VirtReg.reg();
1367   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1368   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1369   SE->reset(LREdit, SplitSpillMode);
1370   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1371   for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
1372     if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1373       SE->splitSingleBlock(BI);
1374   }
1375   // No blocks were split.
1376   if (LREdit.empty())
1377     return 0;
1378 
1379   // We did split for some blocks.
1380   SmallVector<unsigned, 8> IntvMap;
1381   SE->finish(&IntvMap);
1382 
1383   // Tell LiveDebugVariables about the new ranges.
1384   DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
1385 
1386   // Sort out the new intervals created by splitting. The remainder interval
1387   // goes straight to spilling, the new local ranges get to stay RS_New.
1388   for (unsigned I = 0, E = LREdit.size(); I != E; ++I) {
1389     const LiveInterval &LI = LIS->getInterval(LREdit.get(I));
1390     if (ExtraInfo->getOrInitStage(LI.reg()) == RS_New && IntvMap[I] == 0)
1391       ExtraInfo->setStage(LI, RS_Spill);
1392   }
1393 
1394   if (VerifyEnabled)
1395     MF->verify(this, "After splitting live range around basic blocks");
1396   return 0;
1397 }
1398 
1399 //===----------------------------------------------------------------------===//
1400 //                         Per-Instruction Splitting
1401 //===----------------------------------------------------------------------===//
1402 
1403 /// Get the number of allocatable registers that match the constraints of \p Reg
1404 /// on \p MI and that are also in \p SuperRC.
1405 static unsigned getNumAllocatableRegsForConstraints(
1406     const MachineInstr *MI, Register Reg, const TargetRegisterClass *SuperRC,
1407     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
1408     const RegisterClassInfo &RCI) {
1409   assert(SuperRC && "Invalid register class");
1410 
1411   const TargetRegisterClass *ConstrainedRC =
1412       MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI,
1413                                              /* ExploreBundle */ true);
1414   if (!ConstrainedRC)
1415     return 0;
1416   return RCI.getNumAllocatableRegs(ConstrainedRC);
1417 }
1418 
1419 /// tryInstructionSplit - Split a live range around individual instructions.
1420 /// This is normally not worthwhile since the spiller is doing essentially the
1421 /// same thing. However, when the live range is in a constrained register
1422 /// class, it may help to insert copies such that parts of the live range can
1423 /// be moved to a larger register class.
1424 ///
1425 /// This is similar to spilling to a larger register class.
1426 unsigned RAGreedy::tryInstructionSplit(const LiveInterval &VirtReg,
1427                                        AllocationOrder &Order,
1428                                        SmallVectorImpl<Register> &NewVRegs) {
1429   const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg());
1430   // There is no point to this if there are no larger sub-classes.
1431   if (!RegClassInfo.isProperSubClass(CurRC))
1432     return 0;
1433 
1434   // Always enable split spill mode, since we're effectively spilling to a
1435   // register.
1436   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1437   SE->reset(LREdit, SplitEditor::SM_Size);
1438 
1439   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1440   if (Uses.size() <= 1)
1441     return 0;
1442 
1443   LLVM_DEBUG(dbgs() << "Split around " << Uses.size()
1444                     << " individual instrs.\n");
1445 
1446   const TargetRegisterClass *SuperRC =
1447       TRI->getLargestLegalSuperClass(CurRC, *MF);
1448   unsigned SuperRCNumAllocatableRegs =
1449       RegClassInfo.getNumAllocatableRegs(SuperRC);
1450   // Split around every non-copy instruction if this split will relax
1451   // the constraints on the virtual register.
1452   // Otherwise, splitting just inserts uncoalescable copies that do not help
1453   // the allocation.
1454   for (const SlotIndex Use : Uses) {
1455     if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Use))
1456       if (MI->isFullCopy() ||
1457           SuperRCNumAllocatableRegs ==
1458               getNumAllocatableRegsForConstraints(MI, VirtReg.reg(), SuperRC,
1459                                                   TII, TRI, RegClassInfo)) {
1460         LLVM_DEBUG(dbgs() << "    skip:\t" << Use << '\t' << *MI);
1461         continue;
1462       }
1463     SE->openIntv();
1464     SlotIndex SegStart = SE->enterIntvBefore(Use);
1465     SlotIndex SegStop = SE->leaveIntvAfter(Use);
1466     SE->useIntv(SegStart, SegStop);
1467   }
1468 
1469   if (LREdit.empty()) {
1470     LLVM_DEBUG(dbgs() << "All uses were copies.\n");
1471     return 0;
1472   }
1473 
1474   SmallVector<unsigned, 8> IntvMap;
1475   SE->finish(&IntvMap);
1476   DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS);
1477   // Assign all new registers to RS_Spill. This was the last chance.
1478   ExtraInfo->setStage(LREdit.begin(), LREdit.end(), RS_Spill);
1479   return 0;
1480 }
1481 
1482 //===----------------------------------------------------------------------===//
1483 //                             Local Splitting
1484 //===----------------------------------------------------------------------===//
1485 
1486 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted
1487 /// in order to use PhysReg between two entries in SA->UseSlots.
1488 ///
1489 /// GapWeight[I] represents the gap between UseSlots[I] and UseSlots[I + 1].
1490 ///
1491 void RAGreedy::calcGapWeights(MCRegister PhysReg,
1492                               SmallVectorImpl<float> &GapWeight) {
1493   assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
1494   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1495   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1496   const unsigned NumGaps = Uses.size()-1;
1497 
1498   // Start and end points for the interference check.
1499   SlotIndex StartIdx =
1500     BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr;
1501   SlotIndex StopIdx =
1502     BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr;
1503 
1504   GapWeight.assign(NumGaps, 0.0f);
1505 
1506   // Add interference from each overlapping register.
1507   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1508     if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units)
1509           .checkInterference())
1510       continue;
1511 
1512     // We know that VirtReg is a continuous interval from FirstInstr to
1513     // LastInstr, so we don't need InterferenceQuery.
1514     //
1515     // Interference that overlaps an instruction is counted in both gaps
1516     // surrounding the instruction. The exception is interference before
1517     // StartIdx and after StopIdx.
1518     //
1519     LiveIntervalUnion::SegmentIter IntI =
1520       Matrix->getLiveUnions()[*Units] .find(StartIdx);
1521     for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
1522       // Skip the gaps before IntI.
1523       while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
1524         if (++Gap == NumGaps)
1525           break;
1526       if (Gap == NumGaps)
1527         break;
1528 
1529       // Update the gaps covered by IntI.
1530       const float weight = IntI.value()->weight();
1531       for (; Gap != NumGaps; ++Gap) {
1532         GapWeight[Gap] = std::max(GapWeight[Gap], weight);
1533         if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
1534           break;
1535       }
1536       if (Gap == NumGaps)
1537         break;
1538     }
1539   }
1540 
1541   // Add fixed interference.
1542   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1543     const LiveRange &LR = LIS->getRegUnit(*Units);
1544     LiveRange::const_iterator I = LR.find(StartIdx);
1545     LiveRange::const_iterator E = LR.end();
1546 
1547     // Same loop as above. Mark any overlapped gaps as HUGE_VALF.
1548     for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) {
1549       while (Uses[Gap+1].getBoundaryIndex() < I->start)
1550         if (++Gap == NumGaps)
1551           break;
1552       if (Gap == NumGaps)
1553         break;
1554 
1555       for (; Gap != NumGaps; ++Gap) {
1556         GapWeight[Gap] = huge_valf;
1557         if (Uses[Gap+1].getBaseIndex() >= I->end)
1558           break;
1559       }
1560       if (Gap == NumGaps)
1561         break;
1562     }
1563   }
1564 }
1565 
1566 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
1567 /// basic block.
1568 ///
1569 unsigned RAGreedy::tryLocalSplit(const LiveInterval &VirtReg,
1570                                  AllocationOrder &Order,
1571                                  SmallVectorImpl<Register> &NewVRegs) {
1572   // TODO: the function currently only handles a single UseBlock; it should be
1573   // possible to generalize.
1574   if (SA->getUseBlocks().size() != 1)
1575     return 0;
1576 
1577   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1578 
1579   // Note that it is possible to have an interval that is live-in or live-out
1580   // while only covering a single block - A phi-def can use undef values from
1581   // predecessors, and the block could be a single-block loop.
1582   // We don't bother doing anything clever about such a case, we simply assume
1583   // that the interval is continuous from FirstInstr to LastInstr. We should
1584   // make sure that we don't do anything illegal to such an interval, though.
1585 
1586   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1587   if (Uses.size() <= 2)
1588     return 0;
1589   const unsigned NumGaps = Uses.size()-1;
1590 
1591   LLVM_DEBUG({
1592     dbgs() << "tryLocalSplit: ";
1593     for (const auto &Use : Uses)
1594       dbgs() << ' ' << Use;
1595     dbgs() << '\n';
1596   });
1597 
1598   // If VirtReg is live across any register mask operands, compute a list of
1599   // gaps with register masks.
1600   SmallVector<unsigned, 8> RegMaskGaps;
1601   if (Matrix->checkRegMaskInterference(VirtReg)) {
1602     // Get regmask slots for the whole block.
1603     ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber());
1604     LLVM_DEBUG(dbgs() << RMS.size() << " regmasks in block:");
1605     // Constrain to VirtReg's live range.
1606     unsigned RI =
1607         llvm::lower_bound(RMS, Uses.front().getRegSlot()) - RMS.begin();
1608     unsigned RE = RMS.size();
1609     for (unsigned I = 0; I != NumGaps && RI != RE; ++I) {
1610       // Look for Uses[I] <= RMS <= Uses[I + 1].
1611       assert(!SlotIndex::isEarlierInstr(RMS[RI], Uses[I]));
1612       if (SlotIndex::isEarlierInstr(Uses[I + 1], RMS[RI]))
1613         continue;
1614       // Skip a regmask on the same instruction as the last use. It doesn't
1615       // overlap the live range.
1616       if (SlotIndex::isSameInstr(Uses[I + 1], RMS[RI]) && I + 1 == NumGaps)
1617         break;
1618       LLVM_DEBUG(dbgs() << ' ' << RMS[RI] << ':' << Uses[I] << '-'
1619                         << Uses[I + 1]);
1620       RegMaskGaps.push_back(I);
1621       // Advance ri to the next gap. A regmask on one of the uses counts in
1622       // both gaps.
1623       while (RI != RE && SlotIndex::isEarlierInstr(RMS[RI], Uses[I + 1]))
1624         ++RI;
1625     }
1626     LLVM_DEBUG(dbgs() << '\n');
1627   }
1628 
1629   // Since we allow local split results to be split again, there is a risk of
1630   // creating infinite loops. It is tempting to require that the new live
1631   // ranges have less instructions than the original. That would guarantee
1632   // convergence, but it is too strict. A live range with 3 instructions can be
1633   // split 2+3 (including the COPY), and we want to allow that.
1634   //
1635   // Instead we use these rules:
1636   //
1637   // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the
1638   //    noop split, of course).
1639   // 2. Require progress be made for ranges with getStage() == RS_Split2. All
1640   //    the new ranges must have fewer instructions than before the split.
1641   // 3. New ranges with the same number of instructions are marked RS_Split2,
1642   //    smaller ranges are marked RS_New.
1643   //
1644   // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
1645   // excessive splitting and infinite loops.
1646   //
1647   bool ProgressRequired = ExtraInfo->getStage(VirtReg) >= RS_Split2;
1648 
1649   // Best split candidate.
1650   unsigned BestBefore = NumGaps;
1651   unsigned BestAfter = 0;
1652   float BestDiff = 0;
1653 
1654   const float blockFreq =
1655     SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() *
1656     (1.0f / MBFI->getEntryFreq());
1657   SmallVector<float, 8> GapWeight;
1658 
1659   for (MCPhysReg PhysReg : Order) {
1660     assert(PhysReg);
1661     // Keep track of the largest spill weight that would need to be evicted in
1662     // order to make use of PhysReg between UseSlots[I] and UseSlots[I + 1].
1663     calcGapWeights(PhysReg, GapWeight);
1664 
1665     // Remove any gaps with regmask clobbers.
1666     if (Matrix->checkRegMaskInterference(VirtReg, PhysReg))
1667       for (unsigned I = 0, E = RegMaskGaps.size(); I != E; ++I)
1668         GapWeight[RegMaskGaps[I]] = huge_valf;
1669 
1670     // Try to find the best sequence of gaps to close.
1671     // The new spill weight must be larger than any gap interference.
1672 
1673     // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
1674     unsigned SplitBefore = 0, SplitAfter = 1;
1675 
1676     // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
1677     // It is the spill weight that needs to be evicted.
1678     float MaxGap = GapWeight[0];
1679 
1680     while (true) {
1681       // Live before/after split?
1682       const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
1683       const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
1684 
1685       LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << ' ' << Uses[SplitBefore]
1686                         << '-' << Uses[SplitAfter] << " I=" << MaxGap);
1687 
1688       // Stop before the interval gets so big we wouldn't be making progress.
1689       if (!LiveBefore && !LiveAfter) {
1690         LLVM_DEBUG(dbgs() << " all\n");
1691         break;
1692       }
1693       // Should the interval be extended or shrunk?
1694       bool Shrink = true;
1695 
1696       // How many gaps would the new range have?
1697       unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
1698 
1699       // Legally, without causing looping?
1700       bool Legal = !ProgressRequired || NewGaps < NumGaps;
1701 
1702       if (Legal && MaxGap < huge_valf) {
1703         // Estimate the new spill weight. Each instruction reads or writes the
1704         // register. Conservatively assume there are no read-modify-write
1705         // instructions.
1706         //
1707         // Try to guess the size of the new interval.
1708         const float EstWeight = normalizeSpillWeight(
1709             blockFreq * (NewGaps + 1),
1710             Uses[SplitBefore].distance(Uses[SplitAfter]) +
1711                 (LiveBefore + LiveAfter) * SlotIndex::InstrDist,
1712             1);
1713         // Would this split be possible to allocate?
1714         // Never allocate all gaps, we wouldn't be making progress.
1715         LLVM_DEBUG(dbgs() << " w=" << EstWeight);
1716         if (EstWeight * Hysteresis >= MaxGap) {
1717           Shrink = false;
1718           float Diff = EstWeight - MaxGap;
1719           if (Diff > BestDiff) {
1720             LLVM_DEBUG(dbgs() << " (best)");
1721             BestDiff = Hysteresis * Diff;
1722             BestBefore = SplitBefore;
1723             BestAfter = SplitAfter;
1724           }
1725         }
1726       }
1727 
1728       // Try to shrink.
1729       if (Shrink) {
1730         if (++SplitBefore < SplitAfter) {
1731           LLVM_DEBUG(dbgs() << " shrink\n");
1732           // Recompute the max when necessary.
1733           if (GapWeight[SplitBefore - 1] >= MaxGap) {
1734             MaxGap = GapWeight[SplitBefore];
1735             for (unsigned I = SplitBefore + 1; I != SplitAfter; ++I)
1736               MaxGap = std::max(MaxGap, GapWeight[I]);
1737           }
1738           continue;
1739         }
1740         MaxGap = 0;
1741       }
1742 
1743       // Try to extend the interval.
1744       if (SplitAfter >= NumGaps) {
1745         LLVM_DEBUG(dbgs() << " end\n");
1746         break;
1747       }
1748 
1749       LLVM_DEBUG(dbgs() << " extend\n");
1750       MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
1751     }
1752   }
1753 
1754   // Didn't find any candidates?
1755   if (BestBefore == NumGaps)
1756     return 0;
1757 
1758   LLVM_DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] << '-'
1759                     << Uses[BestAfter] << ", " << BestDiff << ", "
1760                     << (BestAfter - BestBefore + 1) << " instrs\n");
1761 
1762   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1763   SE->reset(LREdit);
1764 
1765   SE->openIntv();
1766   SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
1767   SlotIndex SegStop  = SE->leaveIntvAfter(Uses[BestAfter]);
1768   SE->useIntv(SegStart, SegStop);
1769   SmallVector<unsigned, 8> IntvMap;
1770   SE->finish(&IntvMap);
1771   DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS);
1772   // If the new range has the same number of instructions as before, mark it as
1773   // RS_Split2 so the next split will be forced to make progress. Otherwise,
1774   // leave the new intervals as RS_New so they can compete.
1775   bool LiveBefore = BestBefore != 0 || BI.LiveIn;
1776   bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
1777   unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
1778   if (NewGaps >= NumGaps) {
1779     LLVM_DEBUG(dbgs() << "Tagging non-progress ranges:");
1780     assert(!ProgressRequired && "Didn't make progress when it was required.");
1781     for (unsigned I = 0, E = IntvMap.size(); I != E; ++I)
1782       if (IntvMap[I] == 1) {
1783         ExtraInfo->setStage(LIS->getInterval(LREdit.get(I)), RS_Split2);
1784         LLVM_DEBUG(dbgs() << ' ' << printReg(LREdit.get(I)));
1785       }
1786     LLVM_DEBUG(dbgs() << '\n');
1787   }
1788   ++NumLocalSplits;
1789 
1790   return 0;
1791 }
1792 
1793 //===----------------------------------------------------------------------===//
1794 //                          Live Range Splitting
1795 //===----------------------------------------------------------------------===//
1796 
1797 /// trySplit - Try to split VirtReg or one of its interferences, making it
1798 /// assignable.
1799 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
1800 unsigned RAGreedy::trySplit(const LiveInterval &VirtReg, AllocationOrder &Order,
1801                             SmallVectorImpl<Register> &NewVRegs,
1802                             const SmallVirtRegSet &FixedRegisters) {
1803   // Ranges must be Split2 or less.
1804   if (ExtraInfo->getStage(VirtReg) >= RS_Spill)
1805     return 0;
1806 
1807   // Local intervals are handled separately.
1808   if (LIS->intervalIsInOneMBB(VirtReg)) {
1809     NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName,
1810                        TimerGroupDescription, TimePassesIsEnabled);
1811     SA->analyze(&VirtReg);
1812     Register PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs);
1813     if (PhysReg || !NewVRegs.empty())
1814       return PhysReg;
1815     return tryInstructionSplit(VirtReg, Order, NewVRegs);
1816   }
1817 
1818   NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName,
1819                      TimerGroupDescription, TimePassesIsEnabled);
1820 
1821   SA->analyze(&VirtReg);
1822 
1823   // First try to split around a region spanning multiple blocks. RS_Split2
1824   // ranges already made dubious progress with region splitting, so they go
1825   // straight to single block splitting.
1826   if (ExtraInfo->getStage(VirtReg) < RS_Split2) {
1827     MCRegister PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
1828     if (PhysReg || !NewVRegs.empty())
1829       return PhysReg;
1830   }
1831 
1832   // Then isolate blocks.
1833   return tryBlockSplit(VirtReg, Order, NewVRegs);
1834 }
1835 
1836 //===----------------------------------------------------------------------===//
1837 //                          Last Chance Recoloring
1838 //===----------------------------------------------------------------------===//
1839 
1840 /// Return true if \p reg has any tied def operand.
1841 static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg) {
1842   for (const MachineOperand &MO : MRI->def_operands(reg))
1843     if (MO.isTied())
1844       return true;
1845 
1846   return false;
1847 }
1848 
1849 /// Return true if the existing assignment of \p Intf overlaps, but is not the
1850 /// same, as \p PhysReg.
1851 static bool assignedRegPartiallyOverlaps(const TargetRegisterInfo &TRI,
1852                                          const VirtRegMap &VRM,
1853                                          MCRegister PhysReg,
1854                                          const LiveInterval &Intf) {
1855   MCRegister AssignedReg = VRM.getPhys(Intf.reg());
1856   if (PhysReg == AssignedReg)
1857     return false;
1858   return TRI.regsOverlap(PhysReg, AssignedReg);
1859 }
1860 
1861 /// mayRecolorAllInterferences - Check if the virtual registers that
1862 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be
1863 /// recolored to free \p PhysReg.
1864 /// When true is returned, \p RecoloringCandidates has been augmented with all
1865 /// the live intervals that need to be recolored in order to free \p PhysReg
1866 /// for \p VirtReg.
1867 /// \p FixedRegisters contains all the virtual registers that cannot be
1868 /// recolored.
1869 bool RAGreedy::mayRecolorAllInterferences(
1870     MCRegister PhysReg, const LiveInterval &VirtReg,
1871     SmallLISet &RecoloringCandidates, const SmallVirtRegSet &FixedRegisters) {
1872   const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg());
1873 
1874   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1875     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
1876     // If there is LastChanceRecoloringMaxInterference or more interferences,
1877     // chances are one would not be recolorable.
1878     if (Q.interferingVRegs(LastChanceRecoloringMaxInterference).size() >=
1879             LastChanceRecoloringMaxInterference &&
1880         !ExhaustiveSearch) {
1881       LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n");
1882       CutOffInfo |= CO_Interf;
1883       return false;
1884     }
1885     for (const LiveInterval *Intf : reverse(Q.interferingVRegs())) {
1886       // If Intf is done and sits on the same register class as VirtReg, it
1887       // would not be recolorable as it is in the same state as
1888       // VirtReg. However there are at least two exceptions.
1889       //
1890       // If VirtReg has tied defs and Intf doesn't, then
1891       // there is still a point in examining if it can be recolorable.
1892       //
1893       // Additionally, if the register class has overlapping tuple members, it
1894       // may still be recolorable using a different tuple. This is more likely
1895       // if the existing assignment aliases with the candidate.
1896       //
1897       if (((ExtraInfo->getStage(*Intf) == RS_Done &&
1898             MRI->getRegClass(Intf->reg()) == CurRC &&
1899             !assignedRegPartiallyOverlaps(*TRI, *VRM, PhysReg, *Intf)) &&
1900            !(hasTiedDef(MRI, VirtReg.reg()) &&
1901              !hasTiedDef(MRI, Intf->reg()))) ||
1902           FixedRegisters.count(Intf->reg())) {
1903         LLVM_DEBUG(
1904             dbgs() << "Early abort: the interference is not recolorable.\n");
1905         return false;
1906       }
1907       RecoloringCandidates.insert(Intf);
1908     }
1909   }
1910   return true;
1911 }
1912 
1913 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring
1914 /// its interferences.
1915 /// Last chance recoloring chooses a color for \p VirtReg and recolors every
1916 /// virtual register that was using it. The recoloring process may recursively
1917 /// use the last chance recoloring. Therefore, when a virtual register has been
1918 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot
1919 /// be last-chance-recolored again during this recoloring "session".
1920 /// E.g.,
1921 /// Let
1922 /// vA can use {R1, R2    }
1923 /// vB can use {    R2, R3}
1924 /// vC can use {R1        }
1925 /// Where vA, vB, and vC cannot be split anymore (they are reloads for
1926 /// instance) and they all interfere.
1927 ///
1928 /// vA is assigned R1
1929 /// vB is assigned R2
1930 /// vC tries to evict vA but vA is already done.
1931 /// Regular register allocation fails.
1932 ///
1933 /// Last chance recoloring kicks in:
1934 /// vC does as if vA was evicted => vC uses R1.
1935 /// vC is marked as fixed.
1936 /// vA needs to find a color.
1937 /// None are available.
1938 /// vA cannot evict vC: vC is a fixed virtual register now.
1939 /// vA does as if vB was evicted => vA uses R2.
1940 /// vB needs to find a color.
1941 /// R3 is available.
1942 /// Recoloring => vC = R1, vA = R2, vB = R3
1943 ///
1944 /// \p Order defines the preferred allocation order for \p VirtReg.
1945 /// \p NewRegs will contain any new virtual register that have been created
1946 /// (split, spill) during the process and that must be assigned.
1947 /// \p FixedRegisters contains all the virtual registers that cannot be
1948 /// recolored.
1949 ///
1950 /// \p RecolorStack tracks the original assignments of successfully recolored
1951 /// registers.
1952 ///
1953 /// \p Depth gives the current depth of the last chance recoloring.
1954 /// \return a physical register that can be used for VirtReg or ~0u if none
1955 /// exists.
1956 unsigned RAGreedy::tryLastChanceRecoloring(const LiveInterval &VirtReg,
1957                                            AllocationOrder &Order,
1958                                            SmallVectorImpl<Register> &NewVRegs,
1959                                            SmallVirtRegSet &FixedRegisters,
1960                                            RecoloringStack &RecolorStack,
1961                                            unsigned Depth) {
1962   if (!TRI->shouldUseLastChanceRecoloringForVirtReg(*MF, VirtReg))
1963     return ~0u;
1964 
1965   LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n');
1966 
1967   const ssize_t EntryStackSize = RecolorStack.size();
1968 
1969   // Ranges must be Done.
1970   assert((ExtraInfo->getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) &&
1971          "Last chance recoloring should really be last chance");
1972   // Set the max depth to LastChanceRecoloringMaxDepth.
1973   // We may want to reconsider that if we end up with a too large search space
1974   // for target with hundreds of registers.
1975   // Indeed, in that case we may want to cut the search space earlier.
1976   if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) {
1977     LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n");
1978     CutOffInfo |= CO_Depth;
1979     return ~0u;
1980   }
1981 
1982   // Set of Live intervals that will need to be recolored.
1983   SmallLISet RecoloringCandidates;
1984 
1985   // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in
1986   // this recoloring "session".
1987   assert(!FixedRegisters.count(VirtReg.reg()));
1988   FixedRegisters.insert(VirtReg.reg());
1989   SmallVector<Register, 4> CurrentNewVRegs;
1990 
1991   for (MCRegister PhysReg : Order) {
1992     assert(PhysReg.isValid());
1993     LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg << " to "
1994                       << printReg(PhysReg, TRI) << '\n');
1995     RecoloringCandidates.clear();
1996     CurrentNewVRegs.clear();
1997 
1998     // It is only possible to recolor virtual register interference.
1999     if (Matrix->checkInterference(VirtReg, PhysReg) >
2000         LiveRegMatrix::IK_VirtReg) {
2001       LLVM_DEBUG(
2002           dbgs() << "Some interferences are not with virtual registers.\n");
2003 
2004       continue;
2005     }
2006 
2007     // Early give up on this PhysReg if it is obvious we cannot recolor all
2008     // the interferences.
2009     if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates,
2010                                     FixedRegisters)) {
2011       LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n");
2012       continue;
2013     }
2014 
2015     // RecoloringCandidates contains all the virtual registers that interfere
2016     // with VirtReg on PhysReg (or one of its aliases). Enqueue them for
2017     // recoloring and perform the actual recoloring.
2018     PQueue RecoloringQueue;
2019     for (const LiveInterval *RC : RecoloringCandidates) {
2020       Register ItVirtReg = RC->reg();
2021       enqueue(RecoloringQueue, RC);
2022       assert(VRM->hasPhys(ItVirtReg) &&
2023              "Interferences are supposed to be with allocated variables");
2024 
2025       // Record the current allocation.
2026       RecolorStack.push_back(std::make_pair(RC, VRM->getPhys(ItVirtReg)));
2027 
2028       // unset the related struct.
2029       Matrix->unassign(*RC);
2030     }
2031 
2032     // Do as if VirtReg was assigned to PhysReg so that the underlying
2033     // recoloring has the right information about the interferes and
2034     // available colors.
2035     Matrix->assign(VirtReg, PhysReg);
2036 
2037     // Save the current recoloring state.
2038     // If we cannot recolor all the interferences, we will have to start again
2039     // at this point for the next physical register.
2040     SmallVirtRegSet SaveFixedRegisters(FixedRegisters);
2041     if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs,
2042                                 FixedRegisters, RecolorStack, Depth)) {
2043       // Push the queued vregs into the main queue.
2044       for (Register NewVReg : CurrentNewVRegs)
2045         NewVRegs.push_back(NewVReg);
2046       // Do not mess up with the global assignment process.
2047       // I.e., VirtReg must be unassigned.
2048       Matrix->unassign(VirtReg);
2049       return PhysReg;
2050     }
2051 
2052     LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to "
2053                       << printReg(PhysReg, TRI) << '\n');
2054 
2055     // The recoloring attempt failed, undo the changes.
2056     FixedRegisters = SaveFixedRegisters;
2057     Matrix->unassign(VirtReg);
2058 
2059     // For a newly created vreg which is also in RecoloringCandidates,
2060     // don't add it to NewVRegs because its physical register will be restored
2061     // below. Other vregs in CurrentNewVRegs are created by calling
2062     // selectOrSplit and should be added into NewVRegs.
2063     for (Register &R : CurrentNewVRegs) {
2064       if (RecoloringCandidates.count(&LIS->getInterval(R)))
2065         continue;
2066       NewVRegs.push_back(R);
2067     }
2068 
2069     // Roll back our unsuccessful recoloring. Also roll back any successful
2070     // recolorings in any recursive recoloring attempts, since it's possible
2071     // they would have introduced conflicts with assignments we will be
2072     // restoring further up the stack. Perform all unassignments prior to
2073     // reassigning, since sub-recolorings may have conflicted with the registers
2074     // we are going to restore to their original assignments.
2075     for (ssize_t I = RecolorStack.size() - 1; I >= EntryStackSize; --I) {
2076       const LiveInterval *LI;
2077       MCRegister PhysReg;
2078       std::tie(LI, PhysReg) = RecolorStack[I];
2079 
2080       if (VRM->hasPhys(LI->reg()))
2081         Matrix->unassign(*LI);
2082     }
2083 
2084     for (size_t I = EntryStackSize; I != RecolorStack.size(); ++I) {
2085       const LiveInterval *LI;
2086       MCRegister PhysReg;
2087       std::tie(LI, PhysReg) = RecolorStack[I];
2088       Matrix->assign(*LI, PhysReg);
2089     }
2090 
2091     // Pop the stack of recoloring attempts.
2092     RecolorStack.resize(EntryStackSize);
2093   }
2094 
2095   // Last chance recoloring did not worked either, give up.
2096   return ~0u;
2097 }
2098 
2099 /// tryRecoloringCandidates - Try to assign a new color to every register
2100 /// in \RecoloringQueue.
2101 /// \p NewRegs will contain any new virtual register created during the
2102 /// recoloring process.
2103 /// \p FixedRegisters[in/out] contains all the registers that have been
2104 /// recolored.
2105 /// \return true if all virtual registers in RecoloringQueue were successfully
2106 /// recolored, false otherwise.
2107 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue,
2108                                        SmallVectorImpl<Register> &NewVRegs,
2109                                        SmallVirtRegSet &FixedRegisters,
2110                                        RecoloringStack &RecolorStack,
2111                                        unsigned Depth) {
2112   while (!RecoloringQueue.empty()) {
2113     const LiveInterval *LI = dequeue(RecoloringQueue);
2114     LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI << '\n');
2115     MCRegister PhysReg = selectOrSplitImpl(*LI, NewVRegs, FixedRegisters,
2116                                            RecolorStack, Depth + 1);
2117     // When splitting happens, the live-range may actually be empty.
2118     // In that case, this is okay to continue the recoloring even
2119     // if we did not find an alternative color for it. Indeed,
2120     // there will not be anything to color for LI in the end.
2121     if (PhysReg == ~0u || (!PhysReg && !LI->empty()))
2122       return false;
2123 
2124     if (!PhysReg) {
2125       assert(LI->empty() && "Only empty live-range do not require a register");
2126       LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2127                         << " succeeded. Empty LI.\n");
2128       continue;
2129     }
2130     LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2131                       << " succeeded with: " << printReg(PhysReg, TRI) << '\n');
2132 
2133     Matrix->assign(*LI, PhysReg);
2134     FixedRegisters.insert(LI->reg());
2135   }
2136   return true;
2137 }
2138 
2139 //===----------------------------------------------------------------------===//
2140 //                            Main Entry Point
2141 //===----------------------------------------------------------------------===//
2142 
2143 MCRegister RAGreedy::selectOrSplit(const LiveInterval &VirtReg,
2144                                    SmallVectorImpl<Register> &NewVRegs) {
2145   CutOffInfo = CO_None;
2146   LLVMContext &Ctx = MF->getFunction().getContext();
2147   SmallVirtRegSet FixedRegisters;
2148   RecoloringStack RecolorStack;
2149   MCRegister Reg =
2150       selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters, RecolorStack);
2151   if (Reg == ~0U && (CutOffInfo != CO_None)) {
2152     uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf);
2153     if (CutOffEncountered == CO_Depth)
2154       Ctx.emitError("register allocation failed: maximum depth for recoloring "
2155                     "reached. Use -fexhaustive-register-search to skip "
2156                     "cutoffs");
2157     else if (CutOffEncountered == CO_Interf)
2158       Ctx.emitError("register allocation failed: maximum interference for "
2159                     "recoloring reached. Use -fexhaustive-register-search "
2160                     "to skip cutoffs");
2161     else if (CutOffEncountered == (CO_Depth | CO_Interf))
2162       Ctx.emitError("register allocation failed: maximum interference and "
2163                     "depth for recoloring reached. Use "
2164                     "-fexhaustive-register-search to skip cutoffs");
2165   }
2166   return Reg;
2167 }
2168 
2169 /// Using a CSR for the first time has a cost because it causes push|pop
2170 /// to be added to prologue|epilogue. Splitting a cold section of the live
2171 /// range can have lower cost than using the CSR for the first time;
2172 /// Spilling a live range in the cold path can have lower cost than using
2173 /// the CSR for the first time. Returns the physical register if we decide
2174 /// to use the CSR; otherwise return 0.
2175 MCRegister RAGreedy::tryAssignCSRFirstTime(
2176     const LiveInterval &VirtReg, AllocationOrder &Order, MCRegister PhysReg,
2177     uint8_t &CostPerUseLimit, SmallVectorImpl<Register> &NewVRegs) {
2178   if (ExtraInfo->getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) {
2179     // We choose spill over using the CSR for the first time if the spill cost
2180     // is lower than CSRCost.
2181     SA->analyze(&VirtReg);
2182     if (calcSpillCost() >= CSRCost)
2183       return PhysReg;
2184 
2185     // We are going to spill, set CostPerUseLimit to 1 to make sure that
2186     // we will not use a callee-saved register in tryEvict.
2187     CostPerUseLimit = 1;
2188     return 0;
2189   }
2190   if (ExtraInfo->getStage(VirtReg) < RS_Split) {
2191     // We choose pre-splitting over using the CSR for the first time if
2192     // the cost of splitting is lower than CSRCost.
2193     SA->analyze(&VirtReg);
2194     unsigned NumCands = 0;
2195     BlockFrequency BestCost = CSRCost; // Don't modify CSRCost.
2196     unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost,
2197                                                  NumCands, true /*IgnoreCSR*/);
2198     if (BestCand == NoCand)
2199       // Use the CSR if we can't find a region split below CSRCost.
2200       return PhysReg;
2201 
2202     // Perform the actual pre-splitting.
2203     doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs);
2204     return 0;
2205   }
2206   return PhysReg;
2207 }
2208 
2209 void RAGreedy::aboutToRemoveInterval(const LiveInterval &LI) {
2210   // Do not keep invalid information around.
2211   SetOfBrokenHints.remove(&LI);
2212 }
2213 
2214 void RAGreedy::initializeCSRCost() {
2215   // We use the larger one out of the command-line option and the value report
2216   // by TRI.
2217   CSRCost = BlockFrequency(
2218       std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost()));
2219   if (!CSRCost.getFrequency())
2220     return;
2221 
2222   // Raw cost is relative to Entry == 2^14; scale it appropriately.
2223   uint64_t ActualEntry = MBFI->getEntryFreq();
2224   if (!ActualEntry) {
2225     CSRCost = 0;
2226     return;
2227   }
2228   uint64_t FixedEntry = 1 << 14;
2229   if (ActualEntry < FixedEntry)
2230     CSRCost *= BranchProbability(ActualEntry, FixedEntry);
2231   else if (ActualEntry <= UINT32_MAX)
2232     // Invert the fraction and divide.
2233     CSRCost /= BranchProbability(FixedEntry, ActualEntry);
2234   else
2235     // Can't use BranchProbability in general, since it takes 32-bit numbers.
2236     CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry);
2237 }
2238 
2239 /// Collect the hint info for \p Reg.
2240 /// The results are stored into \p Out.
2241 /// \p Out is not cleared before being populated.
2242 void RAGreedy::collectHintInfo(Register Reg, HintsInfo &Out) {
2243   for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) {
2244     if (!Instr.isFullCopy())
2245       continue;
2246     // Look for the other end of the copy.
2247     Register OtherReg = Instr.getOperand(0).getReg();
2248     if (OtherReg == Reg) {
2249       OtherReg = Instr.getOperand(1).getReg();
2250       if (OtherReg == Reg)
2251         continue;
2252     }
2253     // Get the current assignment.
2254     MCRegister OtherPhysReg =
2255         OtherReg.isPhysical() ? OtherReg.asMCReg() : VRM->getPhys(OtherReg);
2256     // Push the collected information.
2257     Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg,
2258                            OtherPhysReg));
2259   }
2260 }
2261 
2262 /// Using the given \p List, compute the cost of the broken hints if
2263 /// \p PhysReg was used.
2264 /// \return The cost of \p List for \p PhysReg.
2265 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List,
2266                                            MCRegister PhysReg) {
2267   BlockFrequency Cost = 0;
2268   for (const HintInfo &Info : List) {
2269     if (Info.PhysReg != PhysReg)
2270       Cost += Info.Freq;
2271   }
2272   return Cost;
2273 }
2274 
2275 /// Using the register assigned to \p VirtReg, try to recolor
2276 /// all the live ranges that are copy-related with \p VirtReg.
2277 /// The recoloring is then propagated to all the live-ranges that have
2278 /// been recolored and so on, until no more copies can be coalesced or
2279 /// it is not profitable.
2280 /// For a given live range, profitability is determined by the sum of the
2281 /// frequencies of the non-identity copies it would introduce with the old
2282 /// and new register.
2283 void RAGreedy::tryHintRecoloring(const LiveInterval &VirtReg) {
2284   // We have a broken hint, check if it is possible to fix it by
2285   // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted
2286   // some register and PhysReg may be available for the other live-ranges.
2287   SmallSet<Register, 4> Visited;
2288   SmallVector<unsigned, 2> RecoloringCandidates;
2289   HintsInfo Info;
2290   Register Reg = VirtReg.reg();
2291   MCRegister PhysReg = VRM->getPhys(Reg);
2292   // Start the recoloring algorithm from the input live-interval, then
2293   // it will propagate to the ones that are copy-related with it.
2294   Visited.insert(Reg);
2295   RecoloringCandidates.push_back(Reg);
2296 
2297   LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg, TRI)
2298                     << '(' << printReg(PhysReg, TRI) << ")\n");
2299 
2300   do {
2301     Reg = RecoloringCandidates.pop_back_val();
2302 
2303     // We cannot recolor physical register.
2304     if (Register::isPhysicalRegister(Reg))
2305       continue;
2306 
2307     // This may be a skipped class
2308     if (!VRM->hasPhys(Reg)) {
2309       assert(!ShouldAllocateClass(*TRI, *MRI->getRegClass(Reg)) &&
2310              "We have an unallocated variable which should have been handled");
2311       continue;
2312     }
2313 
2314     // Get the live interval mapped with this virtual register to be able
2315     // to check for the interference with the new color.
2316     LiveInterval &LI = LIS->getInterval(Reg);
2317     MCRegister CurrPhys = VRM->getPhys(Reg);
2318     // Check that the new color matches the register class constraints and
2319     // that it is free for this live range.
2320     if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) ||
2321                                 Matrix->checkInterference(LI, PhysReg)))
2322       continue;
2323 
2324     LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << '(' << printReg(CurrPhys, TRI)
2325                       << ") is recolorable.\n");
2326 
2327     // Gather the hint info.
2328     Info.clear();
2329     collectHintInfo(Reg, Info);
2330     // Check if recoloring the live-range will increase the cost of the
2331     // non-identity copies.
2332     if (CurrPhys != PhysReg) {
2333       LLVM_DEBUG(dbgs() << "Checking profitability:\n");
2334       BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys);
2335       BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg);
2336       LLVM_DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency()
2337                         << "\nNew Cost: " << NewCopiesCost.getFrequency()
2338                         << '\n');
2339       if (OldCopiesCost < NewCopiesCost) {
2340         LLVM_DEBUG(dbgs() << "=> Not profitable.\n");
2341         continue;
2342       }
2343       // At this point, the cost is either cheaper or equal. If it is
2344       // equal, we consider this is profitable because it may expose
2345       // more recoloring opportunities.
2346       LLVM_DEBUG(dbgs() << "=> Profitable.\n");
2347       // Recolor the live-range.
2348       Matrix->unassign(LI);
2349       Matrix->assign(LI, PhysReg);
2350     }
2351     // Push all copy-related live-ranges to keep reconciling the broken
2352     // hints.
2353     for (const HintInfo &HI : Info) {
2354       if (Visited.insert(HI.Reg).second)
2355         RecoloringCandidates.push_back(HI.Reg);
2356     }
2357   } while (!RecoloringCandidates.empty());
2358 }
2359 
2360 /// Try to recolor broken hints.
2361 /// Broken hints may be repaired by recoloring when an evicted variable
2362 /// freed up a register for a larger live-range.
2363 /// Consider the following example:
2364 /// BB1:
2365 ///   a =
2366 ///   b =
2367 /// BB2:
2368 ///   ...
2369 ///   = b
2370 ///   = a
2371 /// Let us assume b gets split:
2372 /// BB1:
2373 ///   a =
2374 ///   b =
2375 /// BB2:
2376 ///   c = b
2377 ///   ...
2378 ///   d = c
2379 ///   = d
2380 ///   = a
2381 /// Because of how the allocation work, b, c, and d may be assigned different
2382 /// colors. Now, if a gets evicted later:
2383 /// BB1:
2384 ///   a =
2385 ///   st a, SpillSlot
2386 ///   b =
2387 /// BB2:
2388 ///   c = b
2389 ///   ...
2390 ///   d = c
2391 ///   = d
2392 ///   e = ld SpillSlot
2393 ///   = e
2394 /// This is likely that we can assign the same register for b, c, and d,
2395 /// getting rid of 2 copies.
2396 void RAGreedy::tryHintsRecoloring() {
2397   for (const LiveInterval *LI : SetOfBrokenHints) {
2398     assert(Register::isVirtualRegister(LI->reg()) &&
2399            "Recoloring is possible only for virtual registers");
2400     // Some dead defs may be around (e.g., because of debug uses).
2401     // Ignore those.
2402     if (!VRM->hasPhys(LI->reg()))
2403       continue;
2404     tryHintRecoloring(*LI);
2405   }
2406 }
2407 
2408 MCRegister RAGreedy::selectOrSplitImpl(const LiveInterval &VirtReg,
2409                                        SmallVectorImpl<Register> &NewVRegs,
2410                                        SmallVirtRegSet &FixedRegisters,
2411                                        RecoloringStack &RecolorStack,
2412                                        unsigned Depth) {
2413   uint8_t CostPerUseLimit = uint8_t(~0u);
2414   // First try assigning a free register.
2415   auto Order =
2416       AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix);
2417   if (MCRegister PhysReg =
2418           tryAssign(VirtReg, Order, NewVRegs, FixedRegisters)) {
2419     // If VirtReg got an assignment, the eviction info is no longer relevant.
2420     LastEvicted.clearEvicteeInfo(VirtReg.reg());
2421     // When NewVRegs is not empty, we may have made decisions such as evicting
2422     // a virtual register, go with the earlier decisions and use the physical
2423     // register.
2424     if (CSRCost.getFrequency() &&
2425         EvictAdvisor->isUnusedCalleeSavedReg(PhysReg) && NewVRegs.empty()) {
2426       MCRegister CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg,
2427                                                 CostPerUseLimit, NewVRegs);
2428       if (CSRReg || !NewVRegs.empty())
2429         // Return now if we decide to use a CSR or create new vregs due to
2430         // pre-splitting.
2431         return CSRReg;
2432     } else
2433       return PhysReg;
2434   }
2435 
2436   LiveRangeStage Stage = ExtraInfo->getStage(VirtReg);
2437   LLVM_DEBUG(dbgs() << StageName[Stage] << " Cascade "
2438                     << ExtraInfo->getCascade(VirtReg.reg()) << '\n');
2439 
2440   // Try to evict a less worthy live range, but only for ranges from the primary
2441   // queue. The RS_Split ranges already failed to do this, and they should not
2442   // get a second chance until they have been split.
2443   if (Stage != RS_Split)
2444     if (Register PhysReg =
2445             tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit,
2446                      FixedRegisters)) {
2447       Register Hint = MRI->getSimpleHint(VirtReg.reg());
2448       // If VirtReg has a hint and that hint is broken record this
2449       // virtual register as a recoloring candidate for broken hint.
2450       // Indeed, since we evicted a variable in its neighborhood it is
2451       // likely we can at least partially recolor some of the
2452       // copy-related live-ranges.
2453       if (Hint && Hint != PhysReg)
2454         SetOfBrokenHints.insert(&VirtReg);
2455       // If VirtReg eviction someone, the eviction info for it as an evictee is
2456       // no longer relevant.
2457       LastEvicted.clearEvicteeInfo(VirtReg.reg());
2458       return PhysReg;
2459     }
2460 
2461   assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs");
2462 
2463   // The first time we see a live range, don't try to split or spill.
2464   // Wait until the second time, when all smaller ranges have been allocated.
2465   // This gives a better picture of the interference to split around.
2466   if (Stage < RS_Split) {
2467     ExtraInfo->setStage(VirtReg, RS_Split);
2468     LLVM_DEBUG(dbgs() << "wait for second round\n");
2469     NewVRegs.push_back(VirtReg.reg());
2470     return 0;
2471   }
2472 
2473   if (Stage < RS_Spill) {
2474     // Try splitting VirtReg or interferences.
2475     unsigned NewVRegSizeBefore = NewVRegs.size();
2476     Register PhysReg = trySplit(VirtReg, Order, NewVRegs, FixedRegisters);
2477     if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore)) {
2478       // If VirtReg got split, the eviction info is no longer relevant.
2479       LastEvicted.clearEvicteeInfo(VirtReg.reg());
2480       return PhysReg;
2481     }
2482   }
2483 
2484   // If we couldn't allocate a register from spilling, there is probably some
2485   // invalid inline assembly. The base class will report it.
2486   if (Stage >= RS_Done || !VirtReg.isSpillable()) {
2487     return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters,
2488                                    RecolorStack, Depth);
2489   }
2490 
2491   // Finally spill VirtReg itself.
2492   if ((EnableDeferredSpilling ||
2493        TRI->shouldUseDeferredSpillingForVirtReg(*MF, VirtReg)) &&
2494       ExtraInfo->getStage(VirtReg) < RS_Memory) {
2495     // TODO: This is experimental and in particular, we do not model
2496     // the live range splitting done by spilling correctly.
2497     // We would need a deep integration with the spiller to do the
2498     // right thing here. Anyway, that is still good for early testing.
2499     ExtraInfo->setStage(VirtReg, RS_Memory);
2500     LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n");
2501     NewVRegs.push_back(VirtReg.reg());
2502   } else {
2503     NamedRegionTimer T("spill", "Spiller", TimerGroupName,
2504                        TimerGroupDescription, TimePassesIsEnabled);
2505     LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2506     spiller().spill(LRE);
2507     ExtraInfo->setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done);
2508 
2509     // Tell LiveDebugVariables about the new ranges. Ranges not being covered by
2510     // the new regs are kept in LDV (still mapping to the old register), until
2511     // we rewrite spilled locations in LDV at a later stage.
2512     DebugVars->splitRegister(VirtReg.reg(), LRE.regs(), *LIS);
2513 
2514     if (VerifyEnabled)
2515       MF->verify(this, "After spilling");
2516   }
2517 
2518   // The live virtual register requesting allocation was spilled, so tell
2519   // the caller not to allocate anything during this round.
2520   return 0;
2521 }
2522 
2523 void RAGreedy::RAGreedyStats::report(MachineOptimizationRemarkMissed &R) {
2524   using namespace ore;
2525   if (Spills) {
2526     R << NV("NumSpills", Spills) << " spills ";
2527     R << NV("TotalSpillsCost", SpillsCost) << " total spills cost ";
2528   }
2529   if (FoldedSpills) {
2530     R << NV("NumFoldedSpills", FoldedSpills) << " folded spills ";
2531     R << NV("TotalFoldedSpillsCost", FoldedSpillsCost)
2532       << " total folded spills cost ";
2533   }
2534   if (Reloads) {
2535     R << NV("NumReloads", Reloads) << " reloads ";
2536     R << NV("TotalReloadsCost", ReloadsCost) << " total reloads cost ";
2537   }
2538   if (FoldedReloads) {
2539     R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads ";
2540     R << NV("TotalFoldedReloadsCost", FoldedReloadsCost)
2541       << " total folded reloads cost ";
2542   }
2543   if (ZeroCostFoldedReloads)
2544     R << NV("NumZeroCostFoldedReloads", ZeroCostFoldedReloads)
2545       << " zero cost folded reloads ";
2546   if (Copies) {
2547     R << NV("NumVRCopies", Copies) << " virtual registers copies ";
2548     R << NV("TotalCopiesCost", CopiesCost) << " total copies cost ";
2549   }
2550 }
2551 
2552 RAGreedy::RAGreedyStats RAGreedy::computeStats(MachineBasicBlock &MBB) {
2553   RAGreedyStats Stats;
2554   const MachineFrameInfo &MFI = MF->getFrameInfo();
2555   int FI;
2556 
2557   auto isSpillSlotAccess = [&MFI](const MachineMemOperand *A) {
2558     return MFI.isSpillSlotObjectIndex(cast<FixedStackPseudoSourceValue>(
2559         A->getPseudoValue())->getFrameIndex());
2560   };
2561   auto isPatchpointInstr = [](const MachineInstr &MI) {
2562     return MI.getOpcode() == TargetOpcode::PATCHPOINT ||
2563            MI.getOpcode() == TargetOpcode::STACKMAP ||
2564            MI.getOpcode() == TargetOpcode::STATEPOINT;
2565   };
2566   for (MachineInstr &MI : MBB) {
2567     if (MI.isCopy()) {
2568       MachineOperand &Dest = MI.getOperand(0);
2569       MachineOperand &Src = MI.getOperand(1);
2570       if (Dest.isReg() && Src.isReg() && Dest.getReg().isVirtual() &&
2571           Src.getReg().isVirtual())
2572         ++Stats.Copies;
2573       continue;
2574     }
2575 
2576     SmallVector<const MachineMemOperand *, 2> Accesses;
2577     if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) {
2578       ++Stats.Reloads;
2579       continue;
2580     }
2581     if (TII->isStoreToStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) {
2582       ++Stats.Spills;
2583       continue;
2584     }
2585     if (TII->hasLoadFromStackSlot(MI, Accesses) &&
2586         llvm::any_of(Accesses, isSpillSlotAccess)) {
2587       if (!isPatchpointInstr(MI)) {
2588         Stats.FoldedReloads += Accesses.size();
2589         continue;
2590       }
2591       // For statepoint there may be folded and zero cost folded stack reloads.
2592       std::pair<unsigned, unsigned> NonZeroCostRange =
2593           TII->getPatchpointUnfoldableRange(MI);
2594       SmallSet<unsigned, 16> FoldedReloads;
2595       SmallSet<unsigned, 16> ZeroCostFoldedReloads;
2596       for (unsigned Idx = 0, E = MI.getNumOperands(); Idx < E; ++Idx) {
2597         MachineOperand &MO = MI.getOperand(Idx);
2598         if (!MO.isFI() || !MFI.isSpillSlotObjectIndex(MO.getIndex()))
2599           continue;
2600         if (Idx >= NonZeroCostRange.first && Idx < NonZeroCostRange.second)
2601           FoldedReloads.insert(MO.getIndex());
2602         else
2603           ZeroCostFoldedReloads.insert(MO.getIndex());
2604       }
2605       // If stack slot is used in folded reload it is not zero cost then.
2606       for (unsigned Slot : FoldedReloads)
2607         ZeroCostFoldedReloads.erase(Slot);
2608       Stats.FoldedReloads += FoldedReloads.size();
2609       Stats.ZeroCostFoldedReloads += ZeroCostFoldedReloads.size();
2610       continue;
2611     }
2612     Accesses.clear();
2613     if (TII->hasStoreToStackSlot(MI, Accesses) &&
2614         llvm::any_of(Accesses, isSpillSlotAccess)) {
2615       Stats.FoldedSpills += Accesses.size();
2616     }
2617   }
2618   // Set cost of collected statistic by multiplication to relative frequency of
2619   // this basic block.
2620   float RelFreq = MBFI->getBlockFreqRelativeToEntryBlock(&MBB);
2621   Stats.ReloadsCost = RelFreq * Stats.Reloads;
2622   Stats.FoldedReloadsCost = RelFreq * Stats.FoldedReloads;
2623   Stats.SpillsCost = RelFreq * Stats.Spills;
2624   Stats.FoldedSpillsCost = RelFreq * Stats.FoldedSpills;
2625   Stats.CopiesCost = RelFreq * Stats.Copies;
2626   return Stats;
2627 }
2628 
2629 RAGreedy::RAGreedyStats RAGreedy::reportStats(MachineLoop *L) {
2630   RAGreedyStats Stats;
2631 
2632   // Sum up the spill and reloads in subloops.
2633   for (MachineLoop *SubLoop : *L)
2634     Stats.add(reportStats(SubLoop));
2635 
2636   for (MachineBasicBlock *MBB : L->getBlocks())
2637     // Handle blocks that were not included in subloops.
2638     if (Loops->getLoopFor(MBB) == L)
2639       Stats.add(computeStats(*MBB));
2640 
2641   if (!Stats.isEmpty()) {
2642     using namespace ore;
2643 
2644     ORE->emit([&]() {
2645       MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReloadCopies",
2646                                         L->getStartLoc(), L->getHeader());
2647       Stats.report(R);
2648       R << "generated in loop";
2649       return R;
2650     });
2651   }
2652   return Stats;
2653 }
2654 
2655 void RAGreedy::reportStats() {
2656   if (!ORE->allowExtraAnalysis(DEBUG_TYPE))
2657     return;
2658   RAGreedyStats Stats;
2659   for (MachineLoop *L : *Loops)
2660     Stats.add(reportStats(L));
2661   // Process non-loop blocks.
2662   for (MachineBasicBlock &MBB : *MF)
2663     if (!Loops->getLoopFor(&MBB))
2664       Stats.add(computeStats(MBB));
2665   if (!Stats.isEmpty()) {
2666     using namespace ore;
2667 
2668     ORE->emit([&]() {
2669       DebugLoc Loc;
2670       if (auto *SP = MF->getFunction().getSubprogram())
2671         Loc = DILocation::get(SP->getContext(), SP->getLine(), 1, SP);
2672       MachineOptimizationRemarkMissed R(DEBUG_TYPE, "SpillReloadCopies", Loc,
2673                                         &MF->front());
2674       Stats.report(R);
2675       R << "generated in function";
2676       return R;
2677     });
2678   }
2679 }
2680 
2681 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
2682   LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
2683                     << "********** Function: " << mf.getName() << '\n');
2684 
2685   MF = &mf;
2686   TII = MF->getSubtarget().getInstrInfo();
2687 
2688   if (VerifyEnabled)
2689     MF->verify(this, "Before greedy register allocator");
2690 
2691   RegAllocBase::init(getAnalysis<VirtRegMap>(),
2692                      getAnalysis<LiveIntervals>(),
2693                      getAnalysis<LiveRegMatrix>());
2694   Indexes = &getAnalysis<SlotIndexes>();
2695   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
2696   DomTree = &getAnalysis<MachineDominatorTree>();
2697   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
2698   Loops = &getAnalysis<MachineLoopInfo>();
2699   Bundles = &getAnalysis<EdgeBundles>();
2700   SpillPlacer = &getAnalysis<SpillPlacement>();
2701   DebugVars = &getAnalysis<LiveDebugVariables>();
2702   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2703 
2704   initializeCSRCost();
2705 
2706   RegCosts = TRI->getRegisterCosts(*MF);
2707   RegClassPriorityTrumpsGlobalness =
2708       GreedyRegClassPriorityTrumpsGlobalness.getNumOccurrences()
2709           ? GreedyRegClassPriorityTrumpsGlobalness
2710           : TRI->regClassPriorityTrumpsGlobalness(*MF);
2711 
2712   ExtraInfo.emplace();
2713   EvictAdvisor =
2714       getAnalysis<RegAllocEvictionAdvisorAnalysis>().getAdvisor(*MF, *this);
2715 
2716   VRAI = std::make_unique<VirtRegAuxInfo>(*MF, *LIS, *VRM, *Loops, *MBFI);
2717   SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM, *VRAI));
2718 
2719   VRAI->calculateSpillWeightsAndHints();
2720 
2721   LLVM_DEBUG(LIS->dump());
2722 
2723   SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
2724   SE.reset(new SplitEditor(*SA, *AA, *LIS, *VRM, *DomTree, *MBFI, *VRAI));
2725 
2726   IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI);
2727   GlobalCand.resize(32);  // This will grow as needed.
2728   SetOfBrokenHints.clear();
2729   LastEvicted.clear();
2730 
2731   allocatePhysRegs();
2732   tryHintsRecoloring();
2733 
2734   if (VerifyEnabled)
2735     MF->verify(this, "Before post optimization");
2736   postOptimization();
2737   reportStats();
2738 
2739   releaseMemory();
2740   return true;
2741 }
2742