1 //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the RAGreedy function pass for register allocation in 11 // optimized builds. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AllocationOrder.h" 16 #include "InterferenceCache.h" 17 #include "LiveDebugVariables.h" 18 #include "RegAllocBase.h" 19 #include "SpillPlacement.h" 20 #include "Spiller.h" 21 #include "SplitKit.h" 22 #include "llvm/ADT/ArrayRef.h" 23 #include "llvm/ADT/BitVector.h" 24 #include "llvm/ADT/DenseMap.h" 25 #include "llvm/ADT/IndexedMap.h" 26 #include "llvm/ADT/MapVector.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/SmallPtrSet.h" 29 #include "llvm/ADT/SmallSet.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/ADT/StringRef.h" 33 #include "llvm/Analysis/AliasAnalysis.h" 34 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 35 #include "llvm/CodeGen/CalcSpillWeights.h" 36 #include "llvm/CodeGen/EdgeBundles.h" 37 #include "llvm/CodeGen/LiveInterval.h" 38 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 39 #include "llvm/CodeGen/LiveIntervalUnion.h" 40 #include "llvm/CodeGen/LiveRangeEdit.h" 41 #include "llvm/CodeGen/LiveRegMatrix.h" 42 #include "llvm/CodeGen/LiveStackAnalysis.h" 43 #include "llvm/CodeGen/MachineBasicBlock.h" 44 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 45 #include "llvm/CodeGen/MachineDominators.h" 46 #include "llvm/CodeGen/MachineFrameInfo.h" 47 #include "llvm/CodeGen/MachineFunction.h" 48 #include "llvm/CodeGen/MachineFunctionPass.h" 49 #include "llvm/CodeGen/MachineInstr.h" 50 #include "llvm/CodeGen/MachineLoopInfo.h" 51 #include "llvm/CodeGen/MachineOperand.h" 52 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 53 #include "llvm/CodeGen/MachineRegisterInfo.h" 54 #include "llvm/CodeGen/RegAllocRegistry.h" 55 #include "llvm/CodeGen/RegisterClassInfo.h" 56 #include "llvm/CodeGen/SlotIndexes.h" 57 #include "llvm/CodeGen/VirtRegMap.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/LLVMContext.h" 60 #include "llvm/MC/MCRegisterInfo.h" 61 #include "llvm/Pass.h" 62 #include "llvm/Support/BlockFrequency.h" 63 #include "llvm/Support/BranchProbability.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Debug.h" 66 #include "llvm/Support/MathExtras.h" 67 #include "llvm/Support/Timer.h" 68 #include "llvm/Support/raw_ostream.h" 69 #include "llvm/Target/TargetInstrInfo.h" 70 #include "llvm/Target/TargetMachine.h" 71 #include "llvm/Target/TargetRegisterInfo.h" 72 #include "llvm/Target/TargetSubtargetInfo.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cstdint> 76 #include <memory> 77 #include <queue> 78 #include <tuple> 79 #include <utility> 80 81 using namespace llvm; 82 83 #define DEBUG_TYPE "regalloc" 84 85 STATISTIC(NumGlobalSplits, "Number of split global live ranges"); 86 STATISTIC(NumLocalSplits, "Number of split local live ranges"); 87 STATISTIC(NumEvicted, "Number of interferences evicted"); 88 89 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode( 90 "split-spill-mode", cl::Hidden, 91 cl::desc("Spill mode for splitting live ranges"), 92 cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"), 93 clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"), 94 clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")), 95 cl::init(SplitEditor::SM_Speed)); 96 97 static cl::opt<unsigned> 98 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden, 99 cl::desc("Last chance recoloring max depth"), 100 cl::init(5)); 101 102 static cl::opt<unsigned> LastChanceRecoloringMaxInterference( 103 "lcr-max-interf", cl::Hidden, 104 cl::desc("Last chance recoloring maximum number of considered" 105 " interference at a time"), 106 cl::init(8)); 107 108 static cl::opt<bool> 109 ExhaustiveSearch("exhaustive-register-search", cl::NotHidden, 110 cl::desc("Exhaustive Search for registers bypassing the depth " 111 "and interference cutoffs of last chance recoloring")); 112 113 static cl::opt<bool> EnableLocalReassignment( 114 "enable-local-reassign", cl::Hidden, 115 cl::desc("Local reassignment can yield better allocation decisions, but " 116 "may be compile time intensive"), 117 cl::init(false)); 118 119 static cl::opt<bool> EnableDeferredSpilling( 120 "enable-deferred-spilling", cl::Hidden, 121 cl::desc("Instead of spilling a variable right away, defer the actual " 122 "code insertion to the end of the allocation. That way the " 123 "allocator might still find a suitable coloring for this " 124 "variable because of other evicted variables."), 125 cl::init(false)); 126 127 // FIXME: Find a good default for this flag and remove the flag. 128 static cl::opt<unsigned> 129 CSRFirstTimeCost("regalloc-csr-first-time-cost", 130 cl::desc("Cost for first time use of callee-saved register."), 131 cl::init(0), cl::Hidden); 132 133 static cl::opt<bool> ConsiderLocalIntervalCost( 134 "condsider-local-interval-cost", cl::Hidden, 135 cl::desc("Consider the cost of local intervals created by a split " 136 "candidate when choosing the best split candidate."), 137 cl::init(false)); 138 139 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator", 140 createGreedyRegisterAllocator); 141 142 namespace { 143 144 class RAGreedy : public MachineFunctionPass, 145 public RegAllocBase, 146 private LiveRangeEdit::Delegate { 147 // Convenient shortcuts. 148 using PQueue = std::priority_queue<std::pair<unsigned, unsigned>>; 149 using SmallLISet = SmallPtrSet<LiveInterval *, 4>; 150 using SmallVirtRegSet = SmallSet<unsigned, 16>; 151 152 // context 153 MachineFunction *MF; 154 155 // Shortcuts to some useful interface. 156 const TargetInstrInfo *TII; 157 const TargetRegisterInfo *TRI; 158 RegisterClassInfo RCI; 159 160 // analyses 161 SlotIndexes *Indexes; 162 MachineBlockFrequencyInfo *MBFI; 163 MachineDominatorTree *DomTree; 164 MachineLoopInfo *Loops; 165 MachineOptimizationRemarkEmitter *ORE; 166 EdgeBundles *Bundles; 167 SpillPlacement *SpillPlacer; 168 LiveDebugVariables *DebugVars; 169 AliasAnalysis *AA; 170 171 // state 172 std::unique_ptr<Spiller> SpillerInstance; 173 PQueue Queue; 174 unsigned NextCascade; 175 176 // Live ranges pass through a number of stages as we try to allocate them. 177 // Some of the stages may also create new live ranges: 178 // 179 // - Region splitting. 180 // - Per-block splitting. 181 // - Local splitting. 182 // - Spilling. 183 // 184 // Ranges produced by one of the stages skip the previous stages when they are 185 // dequeued. This improves performance because we can skip interference checks 186 // that are unlikely to give any results. It also guarantees that the live 187 // range splitting algorithm terminates, something that is otherwise hard to 188 // ensure. 189 enum LiveRangeStage { 190 /// Newly created live range that has never been queued. 191 RS_New, 192 193 /// Only attempt assignment and eviction. Then requeue as RS_Split. 194 RS_Assign, 195 196 /// Attempt live range splitting if assignment is impossible. 197 RS_Split, 198 199 /// Attempt more aggressive live range splitting that is guaranteed to make 200 /// progress. This is used for split products that may not be making 201 /// progress. 202 RS_Split2, 203 204 /// Live range will be spilled. No more splitting will be attempted. 205 RS_Spill, 206 207 208 /// Live range is in memory. Because of other evictions, it might get moved 209 /// in a register in the end. 210 RS_Memory, 211 212 /// There is nothing more we can do to this live range. Abort compilation 213 /// if it can't be assigned. 214 RS_Done 215 }; 216 217 // Enum CutOffStage to keep a track whether the register allocation failed 218 // because of the cutoffs encountered in last chance recoloring. 219 // Note: This is used as bitmask. New value should be next power of 2. 220 enum CutOffStage { 221 // No cutoffs encountered 222 CO_None = 0, 223 224 // lcr-max-depth cutoff encountered 225 CO_Depth = 1, 226 227 // lcr-max-interf cutoff encountered 228 CO_Interf = 2 229 }; 230 231 uint8_t CutOffInfo; 232 233 #ifndef NDEBUG 234 static const char *const StageName[]; 235 #endif 236 237 // RegInfo - Keep additional information about each live range. 238 struct RegInfo { 239 LiveRangeStage Stage = RS_New; 240 241 // Cascade - Eviction loop prevention. See canEvictInterference(). 242 unsigned Cascade = 0; 243 244 RegInfo() = default; 245 }; 246 247 IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo; 248 249 LiveRangeStage getStage(const LiveInterval &VirtReg) const { 250 return ExtraRegInfo[VirtReg.reg].Stage; 251 } 252 253 void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) { 254 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 255 ExtraRegInfo[VirtReg.reg].Stage = Stage; 256 } 257 258 template<typename Iterator> 259 void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) { 260 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 261 for (;Begin != End; ++Begin) { 262 unsigned Reg = *Begin; 263 if (ExtraRegInfo[Reg].Stage == RS_New) 264 ExtraRegInfo[Reg].Stage = NewStage; 265 } 266 } 267 268 /// Cost of evicting interference. 269 struct EvictionCost { 270 unsigned BrokenHints = 0; ///< Total number of broken hints. 271 float MaxWeight = 0; ///< Maximum spill weight evicted. 272 273 EvictionCost() = default; 274 275 bool isMax() const { return BrokenHints == ~0u; } 276 277 void setMax() { BrokenHints = ~0u; } 278 279 void setBrokenHints(unsigned NHints) { BrokenHints = NHints; } 280 281 bool operator<(const EvictionCost &O) const { 282 return std::tie(BrokenHints, MaxWeight) < 283 std::tie(O.BrokenHints, O.MaxWeight); 284 } 285 }; 286 287 /// EvictionTrack - Keeps track of past evictions in order to optimize region 288 /// split decision. 289 class EvictionTrack { 290 291 public: 292 using EvictorInfo = 293 std::pair<unsigned /* evictor */, unsigned /* physreg */>; 294 using EvicteeInfo = llvm::MapVector<unsigned /* evictee */, EvictorInfo>; 295 296 private: 297 /// Each Vreg that has been evicted in the last stage of selectOrSplit will 298 /// be mapped to the evictor Vreg and the PhysReg it was evicted from. 299 EvicteeInfo Evictees; 300 301 public: 302 /// \brief Clear all eviction information. 303 void clear() { Evictees.clear(); } 304 305 /// \brief Clear eviction information for the given evictee Vreg. 306 /// E.g. when Vreg get's a new allocation, the old eviction info is no 307 /// longer relevant. 308 /// \param Evictee The evictee Vreg for whom we want to clear collected 309 /// eviction info. 310 void clearEvicteeInfo(unsigned Evictee) { Evictees.erase(Evictee); } 311 312 /// \brief Track new eviction. 313 /// The Evictor vreg has evicted the Evictee vreg from Physreg. 314 /// \praram PhysReg The phisical register Evictee was evicted from. 315 /// \praram Evictor The evictor Vreg that evicted Evictee. 316 /// \praram Evictee The evictee Vreg. 317 void addEviction(unsigned PhysReg, unsigned Evictor, unsigned Evictee) { 318 Evictees[Evictee].first = Evictor; 319 Evictees[Evictee].second = PhysReg; 320 } 321 322 /// Return the Evictor Vreg which evicted Evictee Vreg from PhysReg. 323 /// \praram Evictee The evictee vreg. 324 /// \return The Evictor vreg which evicted Evictee vreg from PhysReg. 0 if 325 /// nobody has evicted Evictee from PhysReg. 326 EvictorInfo getEvictor(unsigned Evictee) { 327 if (Evictees.count(Evictee)) { 328 return Evictees[Evictee]; 329 } 330 331 return EvictorInfo(0, 0); 332 } 333 }; 334 335 // Keeps track of past evictions in order to optimize region split decision. 336 EvictionTrack LastEvicted; 337 338 // splitting state. 339 std::unique_ptr<SplitAnalysis> SA; 340 std::unique_ptr<SplitEditor> SE; 341 342 /// Cached per-block interference maps 343 InterferenceCache IntfCache; 344 345 /// All basic blocks where the current register has uses. 346 SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints; 347 348 /// Global live range splitting candidate info. 349 struct GlobalSplitCandidate { 350 // Register intended for assignment, or 0. 351 unsigned PhysReg; 352 353 // SplitKit interval index for this candidate. 354 unsigned IntvIdx; 355 356 // Interference for PhysReg. 357 InterferenceCache::Cursor Intf; 358 359 // Bundles where this candidate should be live. 360 BitVector LiveBundles; 361 SmallVector<unsigned, 8> ActiveBlocks; 362 363 void reset(InterferenceCache &Cache, unsigned Reg) { 364 PhysReg = Reg; 365 IntvIdx = 0; 366 Intf.setPhysReg(Cache, Reg); 367 LiveBundles.clear(); 368 ActiveBlocks.clear(); 369 } 370 371 // Set B[i] = C for every live bundle where B[i] was NoCand. 372 unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) { 373 unsigned Count = 0; 374 for (unsigned i : LiveBundles.set_bits()) 375 if (B[i] == NoCand) { 376 B[i] = C; 377 Count++; 378 } 379 return Count; 380 } 381 }; 382 383 /// Candidate info for each PhysReg in AllocationOrder. 384 /// This vector never shrinks, but grows to the size of the largest register 385 /// class. 386 SmallVector<GlobalSplitCandidate, 32> GlobalCand; 387 388 enum : unsigned { NoCand = ~0u }; 389 390 /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to 391 /// NoCand which indicates the stack interval. 392 SmallVector<unsigned, 32> BundleCand; 393 394 /// Callee-save register cost, calculated once per machine function. 395 BlockFrequency CSRCost; 396 397 /// Run or not the local reassignment heuristic. This information is 398 /// obtained from the TargetSubtargetInfo. 399 bool EnableLocalReassign; 400 401 /// Enable or not the the consideration of the cost of local intervals created 402 /// by a split candidate when choosing the best split candidate. 403 bool EnableAdvancedRASplitCost; 404 405 /// Set of broken hints that may be reconciled later because of eviction. 406 SmallSetVector<LiveInterval *, 8> SetOfBrokenHints; 407 408 public: 409 RAGreedy(); 410 411 /// Return the pass name. 412 StringRef getPassName() const override { return "Greedy Register Allocator"; } 413 414 /// RAGreedy analysis usage. 415 void getAnalysisUsage(AnalysisUsage &AU) const override; 416 void releaseMemory() override; 417 Spiller &spiller() override { return *SpillerInstance; } 418 void enqueue(LiveInterval *LI) override; 419 LiveInterval *dequeue() override; 420 unsigned selectOrSplit(LiveInterval&, SmallVectorImpl<unsigned>&) override; 421 void aboutToRemoveInterval(LiveInterval &) override; 422 423 /// Perform register allocation. 424 bool runOnMachineFunction(MachineFunction &mf) override; 425 426 MachineFunctionProperties getRequiredProperties() const override { 427 return MachineFunctionProperties().set( 428 MachineFunctionProperties::Property::NoPHIs); 429 } 430 431 static char ID; 432 433 private: 434 unsigned selectOrSplitImpl(LiveInterval &, SmallVectorImpl<unsigned> &, 435 SmallVirtRegSet &, unsigned = 0); 436 437 bool LRE_CanEraseVirtReg(unsigned) override; 438 void LRE_WillShrinkVirtReg(unsigned) override; 439 void LRE_DidCloneVirtReg(unsigned, unsigned) override; 440 void enqueue(PQueue &CurQueue, LiveInterval *LI); 441 LiveInterval *dequeue(PQueue &CurQueue); 442 443 BlockFrequency calcSpillCost(); 444 bool addSplitConstraints(InterferenceCache::Cursor, BlockFrequency&); 445 void addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>); 446 void growRegion(GlobalSplitCandidate &Cand); 447 bool splitCanCauseEvictionChain(unsigned Evictee, GlobalSplitCandidate &Cand, 448 unsigned BBNumber, 449 const AllocationOrder &Order); 450 BlockFrequency calcGlobalSplitCost(GlobalSplitCandidate &, 451 const AllocationOrder &Order, 452 bool *CanCauseEvictionChain); 453 bool calcCompactRegion(GlobalSplitCandidate&); 454 void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>); 455 void calcGapWeights(unsigned, SmallVectorImpl<float>&); 456 unsigned canReassign(LiveInterval &VirtReg, unsigned PhysReg); 457 bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool); 458 bool canEvictInterference(LiveInterval&, unsigned, bool, EvictionCost&); 459 bool canEvictInterferenceInRange(LiveInterval &VirtReg, unsigned PhysReg, 460 SlotIndex Start, SlotIndex End, 461 EvictionCost &MaxCost); 462 unsigned getCheapestEvicteeWeight(const AllocationOrder &Order, 463 LiveInterval &VirtReg, SlotIndex Start, 464 SlotIndex End, float *BestEvictWeight); 465 void evictInterference(LiveInterval&, unsigned, 466 SmallVectorImpl<unsigned>&); 467 bool mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg, 468 SmallLISet &RecoloringCandidates, 469 const SmallVirtRegSet &FixedRegisters); 470 471 unsigned tryAssign(LiveInterval&, AllocationOrder&, 472 SmallVectorImpl<unsigned>&); 473 unsigned tryEvict(LiveInterval&, AllocationOrder&, 474 SmallVectorImpl<unsigned>&, unsigned = ~0u); 475 unsigned tryRegionSplit(LiveInterval&, AllocationOrder&, 476 SmallVectorImpl<unsigned>&); 477 /// Calculate cost of region splitting. 478 unsigned calculateRegionSplitCost(LiveInterval &VirtReg, 479 AllocationOrder &Order, 480 BlockFrequency &BestCost, 481 unsigned &NumCands, bool IgnoreCSR, 482 bool *CanCauseEvictionChain = nullptr); 483 /// Perform region splitting. 484 unsigned doRegionSplit(LiveInterval &VirtReg, unsigned BestCand, 485 bool HasCompact, 486 SmallVectorImpl<unsigned> &NewVRegs); 487 /// Check other options before using a callee-saved register for the first 488 /// time. 489 unsigned tryAssignCSRFirstTime(LiveInterval &VirtReg, AllocationOrder &Order, 490 unsigned PhysReg, unsigned &CostPerUseLimit, 491 SmallVectorImpl<unsigned> &NewVRegs); 492 void initializeCSRCost(); 493 unsigned tryBlockSplit(LiveInterval&, AllocationOrder&, 494 SmallVectorImpl<unsigned>&); 495 unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&, 496 SmallVectorImpl<unsigned>&); 497 unsigned tryLocalSplit(LiveInterval&, AllocationOrder&, 498 SmallVectorImpl<unsigned>&); 499 unsigned trySplit(LiveInterval&, AllocationOrder&, 500 SmallVectorImpl<unsigned>&); 501 unsigned tryLastChanceRecoloring(LiveInterval &, AllocationOrder &, 502 SmallVectorImpl<unsigned> &, 503 SmallVirtRegSet &, unsigned); 504 bool tryRecoloringCandidates(PQueue &, SmallVectorImpl<unsigned> &, 505 SmallVirtRegSet &, unsigned); 506 void tryHintRecoloring(LiveInterval &); 507 void tryHintsRecoloring(); 508 509 /// Model the information carried by one end of a copy. 510 struct HintInfo { 511 /// The frequency of the copy. 512 BlockFrequency Freq; 513 /// The virtual register or physical register. 514 unsigned Reg; 515 /// Its currently assigned register. 516 /// In case of a physical register Reg == PhysReg. 517 unsigned PhysReg; 518 519 HintInfo(BlockFrequency Freq, unsigned Reg, unsigned PhysReg) 520 : Freq(Freq), Reg(Reg), PhysReg(PhysReg) {} 521 }; 522 using HintsInfo = SmallVector<HintInfo, 4>; 523 524 BlockFrequency getBrokenHintFreq(const HintsInfo &, unsigned); 525 void collectHintInfo(unsigned, HintsInfo &); 526 527 bool isUnusedCalleeSavedReg(unsigned PhysReg) const; 528 529 /// Compute and report the number of spills and reloads for a loop. 530 void reportNumberOfSplillsReloads(MachineLoop *L, unsigned &Reloads, 531 unsigned &FoldedReloads, unsigned &Spills, 532 unsigned &FoldedSpills); 533 534 /// Report the number of spills and reloads for each loop. 535 void reportNumberOfSplillsReloads() { 536 for (MachineLoop *L : *Loops) { 537 unsigned Reloads, FoldedReloads, Spills, FoldedSpills; 538 reportNumberOfSplillsReloads(L, Reloads, FoldedReloads, Spills, 539 FoldedSpills); 540 } 541 } 542 }; 543 544 } // end anonymous namespace 545 546 char RAGreedy::ID = 0; 547 char &llvm::RAGreedyID = RAGreedy::ID; 548 549 INITIALIZE_PASS_BEGIN(RAGreedy, "greedy", 550 "Greedy Register Allocator", false, false) 551 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables) 552 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 553 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 554 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer) 555 INITIALIZE_PASS_DEPENDENCY(MachineScheduler) 556 INITIALIZE_PASS_DEPENDENCY(LiveStacks) 557 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 558 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 559 INITIALIZE_PASS_DEPENDENCY(VirtRegMap) 560 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix) 561 INITIALIZE_PASS_DEPENDENCY(EdgeBundles) 562 INITIALIZE_PASS_DEPENDENCY(SpillPlacement) 563 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass) 564 INITIALIZE_PASS_END(RAGreedy, "greedy", 565 "Greedy Register Allocator", false, false) 566 567 #ifndef NDEBUG 568 const char *const RAGreedy::StageName[] = { 569 "RS_New", 570 "RS_Assign", 571 "RS_Split", 572 "RS_Split2", 573 "RS_Spill", 574 "RS_Memory", 575 "RS_Done" 576 }; 577 #endif 578 579 // Hysteresis to use when comparing floats. 580 // This helps stabilize decisions based on float comparisons. 581 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875 582 583 FunctionPass* llvm::createGreedyRegisterAllocator() { 584 return new RAGreedy(); 585 } 586 587 RAGreedy::RAGreedy(): MachineFunctionPass(ID) { 588 } 589 590 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const { 591 AU.setPreservesCFG(); 592 AU.addRequired<MachineBlockFrequencyInfo>(); 593 AU.addPreserved<MachineBlockFrequencyInfo>(); 594 AU.addRequired<AAResultsWrapperPass>(); 595 AU.addPreserved<AAResultsWrapperPass>(); 596 AU.addRequired<LiveIntervals>(); 597 AU.addPreserved<LiveIntervals>(); 598 AU.addRequired<SlotIndexes>(); 599 AU.addPreserved<SlotIndexes>(); 600 AU.addRequired<LiveDebugVariables>(); 601 AU.addPreserved<LiveDebugVariables>(); 602 AU.addRequired<LiveStacks>(); 603 AU.addPreserved<LiveStacks>(); 604 AU.addRequired<MachineDominatorTree>(); 605 AU.addPreserved<MachineDominatorTree>(); 606 AU.addRequired<MachineLoopInfo>(); 607 AU.addPreserved<MachineLoopInfo>(); 608 AU.addRequired<VirtRegMap>(); 609 AU.addPreserved<VirtRegMap>(); 610 AU.addRequired<LiveRegMatrix>(); 611 AU.addPreserved<LiveRegMatrix>(); 612 AU.addRequired<EdgeBundles>(); 613 AU.addRequired<SpillPlacement>(); 614 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 615 MachineFunctionPass::getAnalysisUsage(AU); 616 } 617 618 //===----------------------------------------------------------------------===// 619 // LiveRangeEdit delegate methods 620 //===----------------------------------------------------------------------===// 621 622 bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) { 623 LiveInterval &LI = LIS->getInterval(VirtReg); 624 if (VRM->hasPhys(VirtReg)) { 625 Matrix->unassign(LI); 626 aboutToRemoveInterval(LI); 627 return true; 628 } 629 // Unassigned virtreg is probably in the priority queue. 630 // RegAllocBase will erase it after dequeueing. 631 // Nonetheless, clear the live-range so that the debug 632 // dump will show the right state for that VirtReg. 633 LI.clear(); 634 return false; 635 } 636 637 void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) { 638 if (!VRM->hasPhys(VirtReg)) 639 return; 640 641 // Register is assigned, put it back on the queue for reassignment. 642 LiveInterval &LI = LIS->getInterval(VirtReg); 643 Matrix->unassign(LI); 644 enqueue(&LI); 645 } 646 647 void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) { 648 // Cloning a register we haven't even heard about yet? Just ignore it. 649 if (!ExtraRegInfo.inBounds(Old)) 650 return; 651 652 // LRE may clone a virtual register because dead code elimination causes it to 653 // be split into connected components. The new components are much smaller 654 // than the original, so they should get a new chance at being assigned. 655 // same stage as the parent. 656 ExtraRegInfo[Old].Stage = RS_Assign; 657 ExtraRegInfo.grow(New); 658 ExtraRegInfo[New] = ExtraRegInfo[Old]; 659 } 660 661 void RAGreedy::releaseMemory() { 662 SpillerInstance.reset(); 663 ExtraRegInfo.clear(); 664 GlobalCand.clear(); 665 } 666 667 void RAGreedy::enqueue(LiveInterval *LI) { enqueue(Queue, LI); } 668 669 void RAGreedy::enqueue(PQueue &CurQueue, LiveInterval *LI) { 670 // Prioritize live ranges by size, assigning larger ranges first. 671 // The queue holds (size, reg) pairs. 672 const unsigned Size = LI->getSize(); 673 const unsigned Reg = LI->reg; 674 assert(TargetRegisterInfo::isVirtualRegister(Reg) && 675 "Can only enqueue virtual registers"); 676 unsigned Prio; 677 678 ExtraRegInfo.grow(Reg); 679 if (ExtraRegInfo[Reg].Stage == RS_New) 680 ExtraRegInfo[Reg].Stage = RS_Assign; 681 682 if (ExtraRegInfo[Reg].Stage == RS_Split) { 683 // Unsplit ranges that couldn't be allocated immediately are deferred until 684 // everything else has been allocated. 685 Prio = Size; 686 } else if (ExtraRegInfo[Reg].Stage == RS_Memory) { 687 // Memory operand should be considered last. 688 // Change the priority such that Memory operand are assigned in 689 // the reverse order that they came in. 690 // TODO: Make this a member variable and probably do something about hints. 691 static unsigned MemOp = 0; 692 Prio = MemOp++; 693 } else { 694 // Giant live ranges fall back to the global assignment heuristic, which 695 // prevents excessive spilling in pathological cases. 696 bool ReverseLocal = TRI->reverseLocalAssignment(); 697 const TargetRegisterClass &RC = *MRI->getRegClass(Reg); 698 bool ForceGlobal = !ReverseLocal && 699 (Size / SlotIndex::InstrDist) > (2 * RC.getNumRegs()); 700 701 if (ExtraRegInfo[Reg].Stage == RS_Assign && !ForceGlobal && !LI->empty() && 702 LIS->intervalIsInOneMBB(*LI)) { 703 // Allocate original local ranges in linear instruction order. Since they 704 // are singly defined, this produces optimal coloring in the absence of 705 // global interference and other constraints. 706 if (!ReverseLocal) 707 Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex()); 708 else { 709 // Allocating bottom up may allow many short LRGs to be assigned first 710 // to one of the cheap registers. This could be much faster for very 711 // large blocks on targets with many physical registers. 712 Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex()); 713 } 714 Prio |= RC.AllocationPriority << 24; 715 } else { 716 // Allocate global and split ranges in long->short order. Long ranges that 717 // don't fit should be spilled (or split) ASAP so they don't create 718 // interference. Mark a bit to prioritize global above local ranges. 719 Prio = (1u << 29) + Size; 720 } 721 // Mark a higher bit to prioritize global and local above RS_Split. 722 Prio |= (1u << 31); 723 724 // Boost ranges that have a physical register hint. 725 if (VRM->hasKnownPreference(Reg)) 726 Prio |= (1u << 30); 727 } 728 // The virtual register number is a tie breaker for same-sized ranges. 729 // Give lower vreg numbers higher priority to assign them first. 730 CurQueue.push(std::make_pair(Prio, ~Reg)); 731 } 732 733 LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); } 734 735 LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) { 736 if (CurQueue.empty()) 737 return nullptr; 738 LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second); 739 CurQueue.pop(); 740 return LI; 741 } 742 743 //===----------------------------------------------------------------------===// 744 // Direct Assignment 745 //===----------------------------------------------------------------------===// 746 747 /// tryAssign - Try to assign VirtReg to an available register. 748 unsigned RAGreedy::tryAssign(LiveInterval &VirtReg, 749 AllocationOrder &Order, 750 SmallVectorImpl<unsigned> &NewVRegs) { 751 Order.rewind(); 752 unsigned PhysReg; 753 while ((PhysReg = Order.next())) 754 if (!Matrix->checkInterference(VirtReg, PhysReg)) 755 break; 756 if (!PhysReg || Order.isHint()) 757 return PhysReg; 758 759 // PhysReg is available, but there may be a better choice. 760 761 // If we missed a simple hint, try to cheaply evict interference from the 762 // preferred register. 763 if (unsigned Hint = MRI->getSimpleHint(VirtReg.reg)) 764 if (Order.isHint(Hint)) { 765 DEBUG(dbgs() << "missed hint " << PrintReg(Hint, TRI) << '\n'); 766 EvictionCost MaxCost; 767 MaxCost.setBrokenHints(1); 768 if (canEvictInterference(VirtReg, Hint, true, MaxCost)) { 769 evictInterference(VirtReg, Hint, NewVRegs); 770 return Hint; 771 } 772 // Record the missed hint, we may be able to recover 773 // at the end if the surrounding allocation changed. 774 SetOfBrokenHints.insert(&VirtReg); 775 } 776 777 // Try to evict interference from a cheaper alternative. 778 unsigned Cost = TRI->getCostPerUse(PhysReg); 779 780 // Most registers have 0 additional cost. 781 if (!Cost) 782 return PhysReg; 783 784 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is available at cost " << Cost 785 << '\n'); 786 unsigned CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost); 787 return CheapReg ? CheapReg : PhysReg; 788 } 789 790 //===----------------------------------------------------------------------===// 791 // Interference eviction 792 //===----------------------------------------------------------------------===// 793 794 unsigned RAGreedy::canReassign(LiveInterval &VirtReg, unsigned PrevReg) { 795 AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo, Matrix); 796 unsigned PhysReg; 797 while ((PhysReg = Order.next())) { 798 if (PhysReg == PrevReg) 799 continue; 800 801 MCRegUnitIterator Units(PhysReg, TRI); 802 for (; Units.isValid(); ++Units) { 803 // Instantiate a "subquery", not to be confused with the Queries array. 804 LiveIntervalUnion::Query subQ(VirtReg, Matrix->getLiveUnions()[*Units]); 805 if (subQ.checkInterference()) 806 break; 807 } 808 // If no units have interference, break out with the current PhysReg. 809 if (!Units.isValid()) 810 break; 811 } 812 if (PhysReg) 813 DEBUG(dbgs() << "can reassign: " << VirtReg << " from " 814 << PrintReg(PrevReg, TRI) << " to " << PrintReg(PhysReg, TRI) 815 << '\n'); 816 return PhysReg; 817 } 818 819 /// shouldEvict - determine if A should evict the assigned live range B. The 820 /// eviction policy defined by this function together with the allocation order 821 /// defined by enqueue() decides which registers ultimately end up being split 822 /// and spilled. 823 /// 824 /// Cascade numbers are used to prevent infinite loops if this function is a 825 /// cyclic relation. 826 /// 827 /// @param A The live range to be assigned. 828 /// @param IsHint True when A is about to be assigned to its preferred 829 /// register. 830 /// @param B The live range to be evicted. 831 /// @param BreaksHint True when B is already assigned to its preferred register. 832 bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint, 833 LiveInterval &B, bool BreaksHint) { 834 bool CanSplit = getStage(B) < RS_Spill; 835 836 // Be fairly aggressive about following hints as long as the evictee can be 837 // split. 838 if (CanSplit && IsHint && !BreaksHint) 839 return true; 840 841 if (A.weight > B.weight) { 842 DEBUG(dbgs() << "should evict: " << B << " w= " << B.weight << '\n'); 843 return true; 844 } 845 return false; 846 } 847 848 /// canEvictInterference - Return true if all interferences between VirtReg and 849 /// PhysReg can be evicted. 850 /// 851 /// @param VirtReg Live range that is about to be assigned. 852 /// @param PhysReg Desired register for assignment. 853 /// @param IsHint True when PhysReg is VirtReg's preferred register. 854 /// @param MaxCost Only look for cheaper candidates and update with new cost 855 /// when returning true. 856 /// @returns True when interference can be evicted cheaper than MaxCost. 857 bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg, 858 bool IsHint, EvictionCost &MaxCost) { 859 // It is only possible to evict virtual register interference. 860 if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg) 861 return false; 862 863 bool IsLocal = LIS->intervalIsInOneMBB(VirtReg); 864 865 // Find VirtReg's cascade number. This will be unassigned if VirtReg was never 866 // involved in an eviction before. If a cascade number was assigned, deny 867 // evicting anything with the same or a newer cascade number. This prevents 868 // infinite eviction loops. 869 // 870 // This works out so a register without a cascade number is allowed to evict 871 // anything, and it can be evicted by anything. 872 unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade; 873 if (!Cascade) 874 Cascade = NextCascade; 875 876 EvictionCost Cost; 877 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 878 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 879 // If there is 10 or more interferences, chances are one is heavier. 880 if (Q.collectInterferingVRegs(10) >= 10) 881 return false; 882 883 // Check if any interfering live range is heavier than MaxWeight. 884 for (unsigned i = Q.interferingVRegs().size(); i; --i) { 885 LiveInterval *Intf = Q.interferingVRegs()[i - 1]; 886 assert(TargetRegisterInfo::isVirtualRegister(Intf->reg) && 887 "Only expecting virtual register interference from query"); 888 // Never evict spill products. They cannot split or spill. 889 if (getStage(*Intf) == RS_Done) 890 return false; 891 // Once a live range becomes small enough, it is urgent that we find a 892 // register for it. This is indicated by an infinite spill weight. These 893 // urgent live ranges get to evict almost anything. 894 // 895 // Also allow urgent evictions of unspillable ranges from a strictly 896 // larger allocation order. 897 bool Urgent = !VirtReg.isSpillable() && 898 (Intf->isSpillable() || 899 RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg)) < 900 RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(Intf->reg))); 901 // Only evict older cascades or live ranges without a cascade. 902 unsigned IntfCascade = ExtraRegInfo[Intf->reg].Cascade; 903 if (Cascade <= IntfCascade) { 904 if (!Urgent) 905 return false; 906 // We permit breaking cascades for urgent evictions. It should be the 907 // last resort, though, so make it really expensive. 908 Cost.BrokenHints += 10; 909 } 910 // Would this break a satisfied hint? 911 bool BreaksHint = VRM->hasPreferredPhys(Intf->reg); 912 // Update eviction cost. 913 Cost.BrokenHints += BreaksHint; 914 Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight); 915 // Abort if this would be too expensive. 916 if (!(Cost < MaxCost)) 917 return false; 918 if (Urgent) 919 continue; 920 // Apply the eviction policy for non-urgent evictions. 921 if (!shouldEvict(VirtReg, IsHint, *Intf, BreaksHint)) 922 return false; 923 // If !MaxCost.isMax(), then we're just looking for a cheap register. 924 // Evicting another local live range in this case could lead to suboptimal 925 // coloring. 926 if (!MaxCost.isMax() && IsLocal && LIS->intervalIsInOneMBB(*Intf) && 927 (!EnableLocalReassign || !canReassign(*Intf, PhysReg))) { 928 return false; 929 } 930 } 931 } 932 MaxCost = Cost; 933 return true; 934 } 935 936 /// \brief Return true if all interferences between VirtReg and PhysReg between 937 /// Start and End can be evicted. 938 /// 939 /// \param VirtReg Live range that is about to be assigned. 940 /// \param PhysReg Desired register for assignment. 941 /// \param Start Start of range to look for interferences. 942 /// \param End End of range to look for interferences. 943 /// \param MaxCost Only look for cheaper candidates and update with new cost 944 /// when returning true. 945 /// \return True when interference can be evicted cheaper than MaxCost. 946 bool RAGreedy::canEvictInterferenceInRange(LiveInterval &VirtReg, 947 unsigned PhysReg, SlotIndex Start, 948 SlotIndex End, 949 EvictionCost &MaxCost) { 950 EvictionCost Cost; 951 952 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 953 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 954 955 // Check if any interfering live range is heavier than MaxWeight. 956 for (unsigned i = Q.interferingVRegs().size(); i; --i) { 957 LiveInterval *Intf = Q.interferingVRegs()[i - 1]; 958 959 // Check if interference overlast the segment in interest. 960 if (!Intf->overlaps(Start, End)) 961 continue; 962 963 // Cannot evict non virtual reg interference. 964 if (!TargetRegisterInfo::isVirtualRegister(Intf->reg)) 965 return false; 966 // Never evict spill products. They cannot split or spill. 967 if (getStage(*Intf) == RS_Done) 968 return false; 969 970 // Would this break a satisfied hint? 971 bool BreaksHint = VRM->hasPreferredPhys(Intf->reg); 972 // Update eviction cost. 973 Cost.BrokenHints += BreaksHint; 974 Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight); 975 // Abort if this would be too expensive. 976 if (!(Cost < MaxCost)) 977 return false; 978 } 979 } 980 981 if (Cost.MaxWeight == 0) 982 return false; 983 984 MaxCost = Cost; 985 return true; 986 } 987 988 /// \brief Return tthe physical register that will be best 989 /// candidate for eviction by a local split interval that will be created 990 /// between Start and End. 991 /// 992 /// \param Order The allocation order 993 /// \param VirtReg Live range that is about to be assigned. 994 /// \param Start Start of range to look for interferences 995 /// \param End End of range to look for interferences 996 /// \param BestEvictweight The eviction cost of that eviction 997 /// \return The PhysReg which is the best candidate for eviction and the 998 /// eviction cost in BestEvictweight 999 unsigned RAGreedy::getCheapestEvicteeWeight(const AllocationOrder &Order, 1000 LiveInterval &VirtReg, 1001 SlotIndex Start, SlotIndex End, 1002 float *BestEvictweight) { 1003 EvictionCost BestEvictCost; 1004 BestEvictCost.setMax(); 1005 BestEvictCost.MaxWeight = VirtReg.weight; 1006 unsigned BestEvicteePhys = 0; 1007 1008 // Go over all physical registers and find the best candidate for eviction 1009 for (auto PhysReg : Order.getOrder()) { 1010 1011 if (!canEvictInterferenceInRange(VirtReg, PhysReg, Start, End, 1012 BestEvictCost)) 1013 continue; 1014 1015 // Best so far. 1016 BestEvicteePhys = PhysReg; 1017 } 1018 *BestEvictweight = BestEvictCost.MaxWeight; 1019 return BestEvicteePhys; 1020 } 1021 1022 /// evictInterference - Evict any interferring registers that prevent VirtReg 1023 /// from being assigned to Physreg. This assumes that canEvictInterference 1024 /// returned true. 1025 void RAGreedy::evictInterference(LiveInterval &VirtReg, unsigned PhysReg, 1026 SmallVectorImpl<unsigned> &NewVRegs) { 1027 // Make sure that VirtReg has a cascade number, and assign that cascade 1028 // number to every evicted register. These live ranges than then only be 1029 // evicted by a newer cascade, preventing infinite loops. 1030 unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade; 1031 if (!Cascade) 1032 Cascade = ExtraRegInfo[VirtReg.reg].Cascade = NextCascade++; 1033 1034 DEBUG(dbgs() << "evicting " << PrintReg(PhysReg, TRI) 1035 << " interference: Cascade " << Cascade << '\n'); 1036 1037 // Collect all interfering virtregs first. 1038 SmallVector<LiveInterval*, 8> Intfs; 1039 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 1040 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 1041 // We usually have the interfering VRegs cached so collectInterferingVRegs() 1042 // should be fast, we may need to recalculate if when different physregs 1043 // overlap the same register unit so we had different SubRanges queried 1044 // against it. 1045 Q.collectInterferingVRegs(); 1046 ArrayRef<LiveInterval*> IVR = Q.interferingVRegs(); 1047 Intfs.append(IVR.begin(), IVR.end()); 1048 } 1049 1050 // Evict them second. This will invalidate the queries. 1051 for (unsigned i = 0, e = Intfs.size(); i != e; ++i) { 1052 LiveInterval *Intf = Intfs[i]; 1053 // The same VirtReg may be present in multiple RegUnits. Skip duplicates. 1054 if (!VRM->hasPhys(Intf->reg)) 1055 continue; 1056 1057 LastEvicted.addEviction(PhysReg, VirtReg.reg, Intf->reg); 1058 1059 Matrix->unassign(*Intf); 1060 assert((ExtraRegInfo[Intf->reg].Cascade < Cascade || 1061 VirtReg.isSpillable() < Intf->isSpillable()) && 1062 "Cannot decrease cascade number, illegal eviction"); 1063 ExtraRegInfo[Intf->reg].Cascade = Cascade; 1064 ++NumEvicted; 1065 NewVRegs.push_back(Intf->reg); 1066 } 1067 } 1068 1069 /// Returns true if the given \p PhysReg is a callee saved register and has not 1070 /// been used for allocation yet. 1071 bool RAGreedy::isUnusedCalleeSavedReg(unsigned PhysReg) const { 1072 unsigned CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg); 1073 if (CSR == 0) 1074 return false; 1075 1076 return !Matrix->isPhysRegUsed(PhysReg); 1077 } 1078 1079 /// tryEvict - Try to evict all interferences for a physreg. 1080 /// @param VirtReg Currently unassigned virtual register. 1081 /// @param Order Physregs to try. 1082 /// @return Physreg to assign VirtReg, or 0. 1083 unsigned RAGreedy::tryEvict(LiveInterval &VirtReg, 1084 AllocationOrder &Order, 1085 SmallVectorImpl<unsigned> &NewVRegs, 1086 unsigned CostPerUseLimit) { 1087 NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription, 1088 TimePassesIsEnabled); 1089 1090 // Keep track of the cheapest interference seen so far. 1091 EvictionCost BestCost; 1092 BestCost.setMax(); 1093 unsigned BestPhys = 0; 1094 unsigned OrderLimit = Order.getOrder().size(); 1095 1096 // When we are just looking for a reduced cost per use, don't break any 1097 // hints, and only evict smaller spill weights. 1098 if (CostPerUseLimit < ~0u) { 1099 BestCost.BrokenHints = 0; 1100 BestCost.MaxWeight = VirtReg.weight; 1101 1102 // Check of any registers in RC are below CostPerUseLimit. 1103 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg); 1104 unsigned MinCost = RegClassInfo.getMinCost(RC); 1105 if (MinCost >= CostPerUseLimit) { 1106 DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = " << MinCost 1107 << ", no cheaper registers to be found.\n"); 1108 return 0; 1109 } 1110 1111 // It is normal for register classes to have a long tail of registers with 1112 // the same cost. We don't need to look at them if they're too expensive. 1113 if (TRI->getCostPerUse(Order.getOrder().back()) >= CostPerUseLimit) { 1114 OrderLimit = RegClassInfo.getLastCostChange(RC); 1115 DEBUG(dbgs() << "Only trying the first " << OrderLimit << " regs.\n"); 1116 } 1117 } 1118 1119 Order.rewind(); 1120 while (unsigned PhysReg = Order.next(OrderLimit)) { 1121 if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit) 1122 continue; 1123 // The first use of a callee-saved register in a function has cost 1. 1124 // Don't start using a CSR when the CostPerUseLimit is low. 1125 if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) { 1126 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " would clobber CSR " 1127 << PrintReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI) 1128 << '\n'); 1129 continue; 1130 } 1131 1132 if (!canEvictInterference(VirtReg, PhysReg, false, BestCost)) 1133 continue; 1134 1135 // Best so far. 1136 BestPhys = PhysReg; 1137 1138 // Stop if the hint can be used. 1139 if (Order.isHint()) 1140 break; 1141 } 1142 1143 if (!BestPhys) 1144 return 0; 1145 1146 evictInterference(VirtReg, BestPhys, NewVRegs); 1147 return BestPhys; 1148 } 1149 1150 //===----------------------------------------------------------------------===// 1151 // Region Splitting 1152 //===----------------------------------------------------------------------===// 1153 1154 /// addSplitConstraints - Fill out the SplitConstraints vector based on the 1155 /// interference pattern in Physreg and its aliases. Add the constraints to 1156 /// SpillPlacement and return the static cost of this split in Cost, assuming 1157 /// that all preferences in SplitConstraints are met. 1158 /// Return false if there are no bundles with positive bias. 1159 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf, 1160 BlockFrequency &Cost) { 1161 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1162 1163 // Reset interference dependent info. 1164 SplitConstraints.resize(UseBlocks.size()); 1165 BlockFrequency StaticCost = 0; 1166 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1167 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1168 SpillPlacement::BlockConstraint &BC = SplitConstraints[i]; 1169 1170 BC.Number = BI.MBB->getNumber(); 1171 Intf.moveToBlock(BC.Number); 1172 BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare; 1173 BC.Exit = BI.LiveOut ? SpillPlacement::PrefReg : SpillPlacement::DontCare; 1174 BC.ChangesValue = BI.FirstDef.isValid(); 1175 1176 if (!Intf.hasInterference()) 1177 continue; 1178 1179 // Number of spill code instructions to insert. 1180 unsigned Ins = 0; 1181 1182 // Interference for the live-in value. 1183 if (BI.LiveIn) { 1184 if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) { 1185 BC.Entry = SpillPlacement::MustSpill; 1186 ++Ins; 1187 } else if (Intf.first() < BI.FirstInstr) { 1188 BC.Entry = SpillPlacement::PrefSpill; 1189 ++Ins; 1190 } else if (Intf.first() < BI.LastInstr) { 1191 ++Ins; 1192 } 1193 } 1194 1195 // Interference for the live-out value. 1196 if (BI.LiveOut) { 1197 if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) { 1198 BC.Exit = SpillPlacement::MustSpill; 1199 ++Ins; 1200 } else if (Intf.last() > BI.LastInstr) { 1201 BC.Exit = SpillPlacement::PrefSpill; 1202 ++Ins; 1203 } else if (Intf.last() > BI.FirstInstr) { 1204 ++Ins; 1205 } 1206 } 1207 1208 // Accumulate the total frequency of inserted spill code. 1209 while (Ins--) 1210 StaticCost += SpillPlacer->getBlockFrequency(BC.Number); 1211 } 1212 Cost = StaticCost; 1213 1214 // Add constraints for use-blocks. Note that these are the only constraints 1215 // that may add a positive bias, it is downhill from here. 1216 SpillPlacer->addConstraints(SplitConstraints); 1217 return SpillPlacer->scanActiveBundles(); 1218 } 1219 1220 /// addThroughConstraints - Add constraints and links to SpillPlacer from the 1221 /// live-through blocks in Blocks. 1222 void RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf, 1223 ArrayRef<unsigned> Blocks) { 1224 const unsigned GroupSize = 8; 1225 SpillPlacement::BlockConstraint BCS[GroupSize]; 1226 unsigned TBS[GroupSize]; 1227 unsigned B = 0, T = 0; 1228 1229 for (unsigned i = 0; i != Blocks.size(); ++i) { 1230 unsigned Number = Blocks[i]; 1231 Intf.moveToBlock(Number); 1232 1233 if (!Intf.hasInterference()) { 1234 assert(T < GroupSize && "Array overflow"); 1235 TBS[T] = Number; 1236 if (++T == GroupSize) { 1237 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 1238 T = 0; 1239 } 1240 continue; 1241 } 1242 1243 assert(B < GroupSize && "Array overflow"); 1244 BCS[B].Number = Number; 1245 1246 // Interference for the live-in value. 1247 if (Intf.first() <= Indexes->getMBBStartIdx(Number)) 1248 BCS[B].Entry = SpillPlacement::MustSpill; 1249 else 1250 BCS[B].Entry = SpillPlacement::PrefSpill; 1251 1252 // Interference for the live-out value. 1253 if (Intf.last() >= SA->getLastSplitPoint(Number)) 1254 BCS[B].Exit = SpillPlacement::MustSpill; 1255 else 1256 BCS[B].Exit = SpillPlacement::PrefSpill; 1257 1258 if (++B == GroupSize) { 1259 SpillPlacer->addConstraints(makeArrayRef(BCS, B)); 1260 B = 0; 1261 } 1262 } 1263 1264 SpillPlacer->addConstraints(makeArrayRef(BCS, B)); 1265 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 1266 } 1267 1268 void RAGreedy::growRegion(GlobalSplitCandidate &Cand) { 1269 // Keep track of through blocks that have not been added to SpillPlacer. 1270 BitVector Todo = SA->getThroughBlocks(); 1271 SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks; 1272 unsigned AddedTo = 0; 1273 #ifndef NDEBUG 1274 unsigned Visited = 0; 1275 #endif 1276 1277 while (true) { 1278 ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive(); 1279 // Find new through blocks in the periphery of PrefRegBundles. 1280 for (int i = 0, e = NewBundles.size(); i != e; ++i) { 1281 unsigned Bundle = NewBundles[i]; 1282 // Look at all blocks connected to Bundle in the full graph. 1283 ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle); 1284 for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end(); 1285 I != E; ++I) { 1286 unsigned Block = *I; 1287 if (!Todo.test(Block)) 1288 continue; 1289 Todo.reset(Block); 1290 // This is a new through block. Add it to SpillPlacer later. 1291 ActiveBlocks.push_back(Block); 1292 #ifndef NDEBUG 1293 ++Visited; 1294 #endif 1295 } 1296 } 1297 // Any new blocks to add? 1298 if (ActiveBlocks.size() == AddedTo) 1299 break; 1300 1301 // Compute through constraints from the interference, or assume that all 1302 // through blocks prefer spilling when forming compact regions. 1303 auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo); 1304 if (Cand.PhysReg) 1305 addThroughConstraints(Cand.Intf, NewBlocks); 1306 else 1307 // Provide a strong negative bias on through blocks to prevent unwanted 1308 // liveness on loop backedges. 1309 SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true); 1310 AddedTo = ActiveBlocks.size(); 1311 1312 // Perhaps iterating can enable more bundles? 1313 SpillPlacer->iterate(); 1314 } 1315 DEBUG(dbgs() << ", v=" << Visited); 1316 } 1317 1318 /// calcCompactRegion - Compute the set of edge bundles that should be live 1319 /// when splitting the current live range into compact regions. Compact 1320 /// regions can be computed without looking at interference. They are the 1321 /// regions formed by removing all the live-through blocks from the live range. 1322 /// 1323 /// Returns false if the current live range is already compact, or if the 1324 /// compact regions would form single block regions anyway. 1325 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) { 1326 // Without any through blocks, the live range is already compact. 1327 if (!SA->getNumThroughBlocks()) 1328 return false; 1329 1330 // Compact regions don't correspond to any physreg. 1331 Cand.reset(IntfCache, 0); 1332 1333 DEBUG(dbgs() << "Compact region bundles"); 1334 1335 // Use the spill placer to determine the live bundles. GrowRegion pretends 1336 // that all the through blocks have interference when PhysReg is unset. 1337 SpillPlacer->prepare(Cand.LiveBundles); 1338 1339 // The static split cost will be zero since Cand.Intf reports no interference. 1340 BlockFrequency Cost; 1341 if (!addSplitConstraints(Cand.Intf, Cost)) { 1342 DEBUG(dbgs() << ", none.\n"); 1343 return false; 1344 } 1345 1346 growRegion(Cand); 1347 SpillPlacer->finish(); 1348 1349 if (!Cand.LiveBundles.any()) { 1350 DEBUG(dbgs() << ", none.\n"); 1351 return false; 1352 } 1353 1354 DEBUG({ 1355 for (int i : Cand.LiveBundles.set_bits()) 1356 dbgs() << " EB#" << i; 1357 dbgs() << ".\n"; 1358 }); 1359 return true; 1360 } 1361 1362 /// calcSpillCost - Compute how expensive it would be to split the live range in 1363 /// SA around all use blocks instead of forming bundle regions. 1364 BlockFrequency RAGreedy::calcSpillCost() { 1365 BlockFrequency Cost = 0; 1366 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1367 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1368 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1369 unsigned Number = BI.MBB->getNumber(); 1370 // We normally only need one spill instruction - a load or a store. 1371 Cost += SpillPlacer->getBlockFrequency(Number); 1372 1373 // Unless the value is redefined in the block. 1374 if (BI.LiveIn && BI.LiveOut && BI.FirstDef) 1375 Cost += SpillPlacer->getBlockFrequency(Number); 1376 } 1377 return Cost; 1378 } 1379 1380 /// \brief Check if splitting Evictee will create a local split interval in 1381 /// basic block number BBNumber that may cause a bad eviction chain. This is 1382 /// intended to prevent bad eviction sequences like: 1383 /// movl %ebp, 8(%esp) # 4-byte Spill 1384 /// movl %ecx, %ebp 1385 /// movl %ebx, %ecx 1386 /// movl %edi, %ebx 1387 /// movl %edx, %edi 1388 /// cltd 1389 /// idivl %esi 1390 /// movl %edi, %edx 1391 /// movl %ebx, %edi 1392 /// movl %ecx, %ebx 1393 /// movl %ebp, %ecx 1394 /// movl 16(%esp), %ebp # 4 - byte Reload 1395 /// 1396 /// Such sequences are created in 2 scenarios: 1397 /// 1398 /// Scenario #1: 1399 /// vreg0 is evicted from physreg0 by vreg1. 1400 /// Evictee vreg0 is intended for region splitting with split candidate 1401 /// physreg0 (the reg vreg0 was evicted from). 1402 /// Region splitting creates a local interval because of interference with the 1403 /// evictor vreg1 (normally region spliitting creates 2 interval, the "by reg" 1404 /// and "by stack" intervals and local interval created when interference 1405 /// occurs). 1406 /// One of the split intervals ends up evicting vreg2 from physreg1. 1407 /// Evictee vreg2 is intended for region splitting with split candidate 1408 /// physreg1. 1409 /// One of the split intervals ends up evicting vreg3 from physreg2, etc. 1410 /// 1411 /// Scenario #2 1412 /// vreg0 is evicted from physreg0 by vreg1. 1413 /// vreg2 is evicted from physreg2 by vreg3 etc. 1414 /// Evictee vreg0 is intended for region splitting with split candidate 1415 /// physreg1. 1416 /// Region splitting creates a local interval because of interference with the 1417 /// evictor vreg1. 1418 /// One of the split intervals ends up evicting back original evictor vreg1 1419 /// from physreg0 (the reg vreg0 was evicted from). 1420 /// Another evictee vreg2 is intended for region splitting with split candidate 1421 /// physreg1. 1422 /// One of the split intervals ends up evicting vreg3 from physreg2, etc. 1423 /// 1424 /// \param Evictee The register considered to be split. 1425 /// \param Cand The split candidate that determines the physical register 1426 /// we are splitting for and the interferences. 1427 /// \param BBNumber The number of a BB for which the region split process will 1428 /// create a local split interval. 1429 /// \param Order The phisical registers that may get evicted by a split 1430 /// artifact of Evictee. 1431 /// \return True if splitting Evictee may cause a bad eviction chain, false 1432 /// otherwise. 1433 bool RAGreedy::splitCanCauseEvictionChain(unsigned Evictee, 1434 GlobalSplitCandidate &Cand, 1435 unsigned BBNumber, 1436 const AllocationOrder &Order) { 1437 EvictionTrack::EvictorInfo VregEvictorInfo = LastEvicted.getEvictor(Evictee); 1438 unsigned Evictor = VregEvictorInfo.first; 1439 unsigned PhysReg = VregEvictorInfo.second; 1440 1441 // No actual evictor. 1442 if (!Evictor || !PhysReg) 1443 return false; 1444 1445 float MaxWeight = 0; 1446 unsigned FutureEvictedPhysReg = 1447 getCheapestEvicteeWeight(Order, LIS->getInterval(Evictee), 1448 Cand.Intf.first(), Cand.Intf.last(), &MaxWeight); 1449 1450 // The bad eviction chain occurs when either the split candidate the the 1451 // evited reg or one of the split artifact will evict the evicting reg. 1452 if ((PhysReg != Cand.PhysReg) && (PhysReg != FutureEvictedPhysReg)) 1453 return false; 1454 1455 Cand.Intf.moveToBlock(BBNumber); 1456 1457 // Check to see if the Evictor contains interference (with Evictee) in the 1458 // given BB. If so, this interference caused the eviction of Evictee from 1459 // PhysReg. This suggest that we will create a local interval during the 1460 // region split to avoid this interference This local interval may cause a bad 1461 // eviction chain. 1462 if (!LIS->hasInterval(Evictor)) 1463 return false; 1464 LiveInterval &EvictorLI = LIS->getInterval(Evictor); 1465 if (EvictorLI.FindSegmentContaining(Cand.Intf.first()) == EvictorLI.end()) 1466 return false; 1467 1468 // Now, check to see if the local interval we will create is going to be 1469 // expensive enough to evict somebody If so, this may cause a bad eviction 1470 // chain. 1471 VirtRegAuxInfo VRAI(*MF, *LIS, VRM, getAnalysis<MachineLoopInfo>(), *MBFI); 1472 float splitArtifactWeight = 1473 VRAI.futureWeight(LIS->getInterval(Evictee), 1474 Cand.Intf.first().getPrevIndex(), Cand.Intf.last()); 1475 if (splitArtifactWeight >= 0 && splitArtifactWeight < MaxWeight) 1476 return false; 1477 1478 return true; 1479 } 1480 1481 /// calcGlobalSplitCost - Return the global split cost of following the split 1482 /// pattern in LiveBundles. This cost should be added to the local cost of the 1483 /// interference pattern in SplitConstraints. 1484 /// 1485 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand, 1486 const AllocationOrder &Order, 1487 bool *CanCauseEvictionChain) { 1488 BlockFrequency GlobalCost = 0; 1489 const BitVector &LiveBundles = Cand.LiveBundles; 1490 unsigned VirtRegToSplit = SA->getParent().reg; 1491 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1492 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1493 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1494 SpillPlacement::BlockConstraint &BC = SplitConstraints[i]; 1495 bool RegIn = LiveBundles[Bundles->getBundle(BC.Number, false)]; 1496 bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)]; 1497 unsigned Ins = 0; 1498 1499 Cand.Intf.moveToBlock(BC.Number); 1500 // Check wheather a local interval is going to be created during the region 1501 // split. 1502 if (EnableAdvancedRASplitCost && CanCauseEvictionChain && 1503 Cand.Intf.hasInterference() && BI.LiveIn && BI.LiveOut && RegIn && 1504 RegOut) { 1505 1506 if (splitCanCauseEvictionChain(VirtRegToSplit, Cand, BC.Number, Order)) { 1507 // This interfernce cause our eviction from this assignment, we might 1508 // evict somebody else, add that cost. 1509 // See splitCanCauseEvictionChain for detailed description of scenarios. 1510 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1511 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1512 1513 *CanCauseEvictionChain = true; 1514 } 1515 } 1516 1517 if (BI.LiveIn) 1518 Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg); 1519 if (BI.LiveOut) 1520 Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg); 1521 while (Ins--) 1522 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1523 } 1524 1525 for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) { 1526 unsigned Number = Cand.ActiveBlocks[i]; 1527 bool RegIn = LiveBundles[Bundles->getBundle(Number, false)]; 1528 bool RegOut = LiveBundles[Bundles->getBundle(Number, true)]; 1529 if (!RegIn && !RegOut) 1530 continue; 1531 if (RegIn && RegOut) { 1532 // We need double spill code if this block has interference. 1533 Cand.Intf.moveToBlock(Number); 1534 if (Cand.Intf.hasInterference()) { 1535 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1536 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1537 1538 // Check wheather a local interval is going to be created during the 1539 // region split. 1540 if (EnableAdvancedRASplitCost && CanCauseEvictionChain && 1541 splitCanCauseEvictionChain(VirtRegToSplit, Cand, Number, Order)) { 1542 // This interfernce cause our eviction from this assignment, we might 1543 // evict somebody else, add that cost. 1544 // See splitCanCauseEvictionChain for detailed description of 1545 // scenarios. 1546 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1547 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1548 1549 *CanCauseEvictionChain = true; 1550 } 1551 } 1552 continue; 1553 } 1554 // live-in / stack-out or stack-in live-out. 1555 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1556 } 1557 return GlobalCost; 1558 } 1559 1560 /// splitAroundRegion - Split the current live range around the regions 1561 /// determined by BundleCand and GlobalCand. 1562 /// 1563 /// Before calling this function, GlobalCand and BundleCand must be initialized 1564 /// so each bundle is assigned to a valid candidate, or NoCand for the 1565 /// stack-bound bundles. The shared SA/SE SplitAnalysis and SplitEditor 1566 /// objects must be initialized for the current live range, and intervals 1567 /// created for the used candidates. 1568 /// 1569 /// @param LREdit The LiveRangeEdit object handling the current split. 1570 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value 1571 /// must appear in this list. 1572 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit, 1573 ArrayRef<unsigned> UsedCands) { 1574 // These are the intervals created for new global ranges. We may create more 1575 // intervals for local ranges. 1576 const unsigned NumGlobalIntvs = LREdit.size(); 1577 DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs << " globals.\n"); 1578 assert(NumGlobalIntvs && "No global intervals configured"); 1579 1580 // Isolate even single instructions when dealing with a proper sub-class. 1581 // That guarantees register class inflation for the stack interval because it 1582 // is all copies. 1583 unsigned Reg = SA->getParent().reg; 1584 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 1585 1586 // First handle all the blocks with uses. 1587 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1588 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1589 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1590 unsigned Number = BI.MBB->getNumber(); 1591 unsigned IntvIn = 0, IntvOut = 0; 1592 SlotIndex IntfIn, IntfOut; 1593 if (BI.LiveIn) { 1594 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)]; 1595 if (CandIn != NoCand) { 1596 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 1597 IntvIn = Cand.IntvIdx; 1598 Cand.Intf.moveToBlock(Number); 1599 IntfIn = Cand.Intf.first(); 1600 } 1601 } 1602 if (BI.LiveOut) { 1603 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)]; 1604 if (CandOut != NoCand) { 1605 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 1606 IntvOut = Cand.IntvIdx; 1607 Cand.Intf.moveToBlock(Number); 1608 IntfOut = Cand.Intf.last(); 1609 } 1610 } 1611 1612 // Create separate intervals for isolated blocks with multiple uses. 1613 if (!IntvIn && !IntvOut) { 1614 DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " isolated.\n"); 1615 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 1616 SE->splitSingleBlock(BI); 1617 continue; 1618 } 1619 1620 if (IntvIn && IntvOut) 1621 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1622 else if (IntvIn) 1623 SE->splitRegInBlock(BI, IntvIn, IntfIn); 1624 else 1625 SE->splitRegOutBlock(BI, IntvOut, IntfOut); 1626 } 1627 1628 // Handle live-through blocks. The relevant live-through blocks are stored in 1629 // the ActiveBlocks list with each candidate. We need to filter out 1630 // duplicates. 1631 BitVector Todo = SA->getThroughBlocks(); 1632 for (unsigned c = 0; c != UsedCands.size(); ++c) { 1633 ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks; 1634 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { 1635 unsigned Number = Blocks[i]; 1636 if (!Todo.test(Number)) 1637 continue; 1638 Todo.reset(Number); 1639 1640 unsigned IntvIn = 0, IntvOut = 0; 1641 SlotIndex IntfIn, IntfOut; 1642 1643 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)]; 1644 if (CandIn != NoCand) { 1645 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 1646 IntvIn = Cand.IntvIdx; 1647 Cand.Intf.moveToBlock(Number); 1648 IntfIn = Cand.Intf.first(); 1649 } 1650 1651 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)]; 1652 if (CandOut != NoCand) { 1653 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 1654 IntvOut = Cand.IntvIdx; 1655 Cand.Intf.moveToBlock(Number); 1656 IntfOut = Cand.Intf.last(); 1657 } 1658 if (!IntvIn && !IntvOut) 1659 continue; 1660 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1661 } 1662 } 1663 1664 ++NumGlobalSplits; 1665 1666 SmallVector<unsigned, 8> IntvMap; 1667 SE->finish(&IntvMap); 1668 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 1669 1670 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 1671 unsigned OrigBlocks = SA->getNumLiveBlocks(); 1672 1673 // Sort out the new intervals created by splitting. We get four kinds: 1674 // - Remainder intervals should not be split again. 1675 // - Candidate intervals can be assigned to Cand.PhysReg. 1676 // - Block-local splits are candidates for local splitting. 1677 // - DCE leftovers should go back on the queue. 1678 for (unsigned i = 0, e = LREdit.size(); i != e; ++i) { 1679 LiveInterval &Reg = LIS->getInterval(LREdit.get(i)); 1680 1681 // Ignore old intervals from DCE. 1682 if (getStage(Reg) != RS_New) 1683 continue; 1684 1685 // Remainder interval. Don't try splitting again, spill if it doesn't 1686 // allocate. 1687 if (IntvMap[i] == 0) { 1688 setStage(Reg, RS_Spill); 1689 continue; 1690 } 1691 1692 // Global intervals. Allow repeated splitting as long as the number of live 1693 // blocks is strictly decreasing. 1694 if (IntvMap[i] < NumGlobalIntvs) { 1695 if (SA->countLiveBlocks(&Reg) >= OrigBlocks) { 1696 DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks 1697 << " blocks as original.\n"); 1698 // Don't allow repeated splitting as a safe guard against looping. 1699 setStage(Reg, RS_Split2); 1700 } 1701 continue; 1702 } 1703 1704 // Other intervals are treated as new. This includes local intervals created 1705 // for blocks with multiple uses, and anything created by DCE. 1706 } 1707 1708 if (VerifyEnabled) 1709 MF->verify(this, "After splitting live range around region"); 1710 } 1711 1712 unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order, 1713 SmallVectorImpl<unsigned> &NewVRegs) { 1714 unsigned NumCands = 0; 1715 BlockFrequency SpillCost = calcSpillCost(); 1716 BlockFrequency BestCost; 1717 1718 // Check if we can split this live range around a compact region. 1719 bool HasCompact = calcCompactRegion(GlobalCand.front()); 1720 if (HasCompact) { 1721 // Yes, keep GlobalCand[0] as the compact region candidate. 1722 NumCands = 1; 1723 BestCost = BlockFrequency::getMaxFrequency(); 1724 } else { 1725 // No benefit from the compact region, our fallback will be per-block 1726 // splitting. Make sure we find a solution that is cheaper than spilling. 1727 BestCost = SpillCost; 1728 DEBUG(dbgs() << "Cost of isolating all blocks = "; 1729 MBFI->printBlockFreq(dbgs(), BestCost) << '\n'); 1730 } 1731 1732 bool CanCauseEvictionChain = false; 1733 unsigned BestCand = 1734 calculateRegionSplitCost(VirtReg, Order, BestCost, NumCands, 1735 false /*IgnoreCSR*/, &CanCauseEvictionChain); 1736 1737 // Split candidates with compact regions can cause a bad eviction sequence. 1738 // See splitCanCauseEvictionChain for detailed description of scenarios. 1739 // To avoid it, we need to comapre the cost with the spill cost and not the 1740 // current max frequency. 1741 if (HasCompact && (BestCost > SpillCost) && (BestCand != NoCand) && 1742 CanCauseEvictionChain) { 1743 return 0; 1744 } 1745 1746 // No solutions found, fall back to single block splitting. 1747 if (!HasCompact && BestCand == NoCand) 1748 return 0; 1749 1750 return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs); 1751 } 1752 1753 unsigned RAGreedy::calculateRegionSplitCost(LiveInterval &VirtReg, 1754 AllocationOrder &Order, 1755 BlockFrequency &BestCost, 1756 unsigned &NumCands, bool IgnoreCSR, 1757 bool *CanCauseEvictionChain) { 1758 unsigned BestCand = NoCand; 1759 Order.rewind(); 1760 while (unsigned PhysReg = Order.next()) { 1761 if (IgnoreCSR && isUnusedCalleeSavedReg(PhysReg)) 1762 continue; 1763 1764 // Discard bad candidates before we run out of interference cache cursors. 1765 // This will only affect register classes with a lot of registers (>32). 1766 if (NumCands == IntfCache.getMaxCursors()) { 1767 unsigned WorstCount = ~0u; 1768 unsigned Worst = 0; 1769 for (unsigned i = 0; i != NumCands; ++i) { 1770 if (i == BestCand || !GlobalCand[i].PhysReg) 1771 continue; 1772 unsigned Count = GlobalCand[i].LiveBundles.count(); 1773 if (Count < WorstCount) { 1774 Worst = i; 1775 WorstCount = Count; 1776 } 1777 } 1778 --NumCands; 1779 GlobalCand[Worst] = GlobalCand[NumCands]; 1780 if (BestCand == NumCands) 1781 BestCand = Worst; 1782 } 1783 1784 if (GlobalCand.size() <= NumCands) 1785 GlobalCand.resize(NumCands+1); 1786 GlobalSplitCandidate &Cand = GlobalCand[NumCands]; 1787 Cand.reset(IntfCache, PhysReg); 1788 1789 SpillPlacer->prepare(Cand.LiveBundles); 1790 BlockFrequency Cost; 1791 if (!addSplitConstraints(Cand.Intf, Cost)) { 1792 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tno positive bundles\n"); 1793 continue; 1794 } 1795 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tstatic = "; 1796 MBFI->printBlockFreq(dbgs(), Cost)); 1797 if (Cost >= BestCost) { 1798 DEBUG({ 1799 if (BestCand == NoCand) 1800 dbgs() << " worse than no bundles\n"; 1801 else 1802 dbgs() << " worse than " 1803 << PrintReg(GlobalCand[BestCand].PhysReg, TRI) << '\n'; 1804 }); 1805 continue; 1806 } 1807 growRegion(Cand); 1808 1809 SpillPlacer->finish(); 1810 1811 // No live bundles, defer to splitSingleBlocks(). 1812 if (!Cand.LiveBundles.any()) { 1813 DEBUG(dbgs() << " no bundles.\n"); 1814 continue; 1815 } 1816 1817 bool HasEvictionChain = false; 1818 Cost += calcGlobalSplitCost(Cand, Order, &HasEvictionChain); 1819 DEBUG({ 1820 dbgs() << ", total = "; MBFI->printBlockFreq(dbgs(), Cost) 1821 << " with bundles"; 1822 for (int i : Cand.LiveBundles.set_bits()) 1823 dbgs() << " EB#" << i; 1824 dbgs() << ".\n"; 1825 }); 1826 if (Cost < BestCost) { 1827 BestCand = NumCands; 1828 BestCost = Cost; 1829 // See splitCanCauseEvictionChain for detailed description of bad 1830 // eviction chain scenarios. 1831 if (CanCauseEvictionChain) 1832 *CanCauseEvictionChain = HasEvictionChain; 1833 } 1834 ++NumCands; 1835 } 1836 1837 if (CanCauseEvictionChain && BestCand != NoCand) { 1838 // See splitCanCauseEvictionChain for detailed description of bad 1839 // eviction chain scenarios. 1840 DEBUG(dbgs() << "Best split candidate of vreg " 1841 << PrintReg(VirtReg.reg, TRI) << " may "); 1842 if (!(*CanCauseEvictionChain)) 1843 DEBUG(dbgs() << "not "); 1844 DEBUG(dbgs() << "cause bad eviction chain\n"); 1845 } 1846 1847 return BestCand; 1848 } 1849 1850 unsigned RAGreedy::doRegionSplit(LiveInterval &VirtReg, unsigned BestCand, 1851 bool HasCompact, 1852 SmallVectorImpl<unsigned> &NewVRegs) { 1853 SmallVector<unsigned, 8> UsedCands; 1854 // Prepare split editor. 1855 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1856 SE->reset(LREdit, SplitSpillMode); 1857 1858 // Assign all edge bundles to the preferred candidate, or NoCand. 1859 BundleCand.assign(Bundles->getNumBundles(), NoCand); 1860 1861 // Assign bundles for the best candidate region. 1862 if (BestCand != NoCand) { 1863 GlobalSplitCandidate &Cand = GlobalCand[BestCand]; 1864 if (unsigned B = Cand.getBundles(BundleCand, BestCand)) { 1865 UsedCands.push_back(BestCand); 1866 Cand.IntvIdx = SE->openIntv(); 1867 DEBUG(dbgs() << "Split for " << PrintReg(Cand.PhysReg, TRI) << " in " 1868 << B << " bundles, intv " << Cand.IntvIdx << ".\n"); 1869 (void)B; 1870 } 1871 } 1872 1873 // Assign bundles for the compact region. 1874 if (HasCompact) { 1875 GlobalSplitCandidate &Cand = GlobalCand.front(); 1876 assert(!Cand.PhysReg && "Compact region has no physreg"); 1877 if (unsigned B = Cand.getBundles(BundleCand, 0)) { 1878 UsedCands.push_back(0); 1879 Cand.IntvIdx = SE->openIntv(); 1880 DEBUG(dbgs() << "Split for compact region in " << B << " bundles, intv " 1881 << Cand.IntvIdx << ".\n"); 1882 (void)B; 1883 } 1884 } 1885 1886 splitAroundRegion(LREdit, UsedCands); 1887 return 0; 1888 } 1889 1890 //===----------------------------------------------------------------------===// 1891 // Per-Block Splitting 1892 //===----------------------------------------------------------------------===// 1893 1894 /// tryBlockSplit - Split a global live range around every block with uses. This 1895 /// creates a lot of local live ranges, that will be split by tryLocalSplit if 1896 /// they don't allocate. 1897 unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order, 1898 SmallVectorImpl<unsigned> &NewVRegs) { 1899 assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed"); 1900 unsigned Reg = VirtReg.reg; 1901 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 1902 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1903 SE->reset(LREdit, SplitSpillMode); 1904 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1905 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1906 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1907 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 1908 SE->splitSingleBlock(BI); 1909 } 1910 // No blocks were split. 1911 if (LREdit.empty()) 1912 return 0; 1913 1914 // We did split for some blocks. 1915 SmallVector<unsigned, 8> IntvMap; 1916 SE->finish(&IntvMap); 1917 1918 // Tell LiveDebugVariables about the new ranges. 1919 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 1920 1921 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 1922 1923 // Sort out the new intervals created by splitting. The remainder interval 1924 // goes straight to spilling, the new local ranges get to stay RS_New. 1925 for (unsigned i = 0, e = LREdit.size(); i != e; ++i) { 1926 LiveInterval &LI = LIS->getInterval(LREdit.get(i)); 1927 if (getStage(LI) == RS_New && IntvMap[i] == 0) 1928 setStage(LI, RS_Spill); 1929 } 1930 1931 if (VerifyEnabled) 1932 MF->verify(this, "After splitting live range around basic blocks"); 1933 return 0; 1934 } 1935 1936 //===----------------------------------------------------------------------===// 1937 // Per-Instruction Splitting 1938 //===----------------------------------------------------------------------===// 1939 1940 /// Get the number of allocatable registers that match the constraints of \p Reg 1941 /// on \p MI and that are also in \p SuperRC. 1942 static unsigned getNumAllocatableRegsForConstraints( 1943 const MachineInstr *MI, unsigned Reg, const TargetRegisterClass *SuperRC, 1944 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI, 1945 const RegisterClassInfo &RCI) { 1946 assert(SuperRC && "Invalid register class"); 1947 1948 const TargetRegisterClass *ConstrainedRC = 1949 MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI, 1950 /* ExploreBundle */ true); 1951 if (!ConstrainedRC) 1952 return 0; 1953 return RCI.getNumAllocatableRegs(ConstrainedRC); 1954 } 1955 1956 /// tryInstructionSplit - Split a live range around individual instructions. 1957 /// This is normally not worthwhile since the spiller is doing essentially the 1958 /// same thing. However, when the live range is in a constrained register 1959 /// class, it may help to insert copies such that parts of the live range can 1960 /// be moved to a larger register class. 1961 /// 1962 /// This is similar to spilling to a larger register class. 1963 unsigned 1964 RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order, 1965 SmallVectorImpl<unsigned> &NewVRegs) { 1966 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg); 1967 // There is no point to this if there are no larger sub-classes. 1968 if (!RegClassInfo.isProperSubClass(CurRC)) 1969 return 0; 1970 1971 // Always enable split spill mode, since we're effectively spilling to a 1972 // register. 1973 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1974 SE->reset(LREdit, SplitEditor::SM_Size); 1975 1976 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 1977 if (Uses.size() <= 1) 1978 return 0; 1979 1980 DEBUG(dbgs() << "Split around " << Uses.size() << " individual instrs.\n"); 1981 1982 const TargetRegisterClass *SuperRC = 1983 TRI->getLargestLegalSuperClass(CurRC, *MF); 1984 unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC); 1985 // Split around every non-copy instruction if this split will relax 1986 // the constraints on the virtual register. 1987 // Otherwise, splitting just inserts uncoalescable copies that do not help 1988 // the allocation. 1989 for (unsigned i = 0; i != Uses.size(); ++i) { 1990 if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Uses[i])) 1991 if (MI->isFullCopy() || 1992 SuperRCNumAllocatableRegs == 1993 getNumAllocatableRegsForConstraints(MI, VirtReg.reg, SuperRC, TII, 1994 TRI, RCI)) { 1995 DEBUG(dbgs() << " skip:\t" << Uses[i] << '\t' << *MI); 1996 continue; 1997 } 1998 SE->openIntv(); 1999 SlotIndex SegStart = SE->enterIntvBefore(Uses[i]); 2000 SlotIndex SegStop = SE->leaveIntvAfter(Uses[i]); 2001 SE->useIntv(SegStart, SegStop); 2002 } 2003 2004 if (LREdit.empty()) { 2005 DEBUG(dbgs() << "All uses were copies.\n"); 2006 return 0; 2007 } 2008 2009 SmallVector<unsigned, 8> IntvMap; 2010 SE->finish(&IntvMap); 2011 DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS); 2012 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 2013 2014 // Assign all new registers to RS_Spill. This was the last chance. 2015 setStage(LREdit.begin(), LREdit.end(), RS_Spill); 2016 return 0; 2017 } 2018 2019 //===----------------------------------------------------------------------===// 2020 // Local Splitting 2021 //===----------------------------------------------------------------------===// 2022 2023 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted 2024 /// in order to use PhysReg between two entries in SA->UseSlots. 2025 /// 2026 /// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1]. 2027 /// 2028 void RAGreedy::calcGapWeights(unsigned PhysReg, 2029 SmallVectorImpl<float> &GapWeight) { 2030 assert(SA->getUseBlocks().size() == 1 && "Not a local interval"); 2031 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 2032 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 2033 const unsigned NumGaps = Uses.size()-1; 2034 2035 // Start and end points for the interference check. 2036 SlotIndex StartIdx = 2037 BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr; 2038 SlotIndex StopIdx = 2039 BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr; 2040 2041 GapWeight.assign(NumGaps, 0.0f); 2042 2043 // Add interference from each overlapping register. 2044 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 2045 if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units) 2046 .checkInterference()) 2047 continue; 2048 2049 // We know that VirtReg is a continuous interval from FirstInstr to 2050 // LastInstr, so we don't need InterferenceQuery. 2051 // 2052 // Interference that overlaps an instruction is counted in both gaps 2053 // surrounding the instruction. The exception is interference before 2054 // StartIdx and after StopIdx. 2055 // 2056 LiveIntervalUnion::SegmentIter IntI = 2057 Matrix->getLiveUnions()[*Units] .find(StartIdx); 2058 for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) { 2059 // Skip the gaps before IntI. 2060 while (Uses[Gap+1].getBoundaryIndex() < IntI.start()) 2061 if (++Gap == NumGaps) 2062 break; 2063 if (Gap == NumGaps) 2064 break; 2065 2066 // Update the gaps covered by IntI. 2067 const float weight = IntI.value()->weight; 2068 for (; Gap != NumGaps; ++Gap) { 2069 GapWeight[Gap] = std::max(GapWeight[Gap], weight); 2070 if (Uses[Gap+1].getBaseIndex() >= IntI.stop()) 2071 break; 2072 } 2073 if (Gap == NumGaps) 2074 break; 2075 } 2076 } 2077 2078 // Add fixed interference. 2079 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 2080 const LiveRange &LR = LIS->getRegUnit(*Units); 2081 LiveRange::const_iterator I = LR.find(StartIdx); 2082 LiveRange::const_iterator E = LR.end(); 2083 2084 // Same loop as above. Mark any overlapped gaps as HUGE_VALF. 2085 for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) { 2086 while (Uses[Gap+1].getBoundaryIndex() < I->start) 2087 if (++Gap == NumGaps) 2088 break; 2089 if (Gap == NumGaps) 2090 break; 2091 2092 for (; Gap != NumGaps; ++Gap) { 2093 GapWeight[Gap] = huge_valf; 2094 if (Uses[Gap+1].getBaseIndex() >= I->end) 2095 break; 2096 } 2097 if (Gap == NumGaps) 2098 break; 2099 } 2100 } 2101 } 2102 2103 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only 2104 /// basic block. 2105 /// 2106 unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order, 2107 SmallVectorImpl<unsigned> &NewVRegs) { 2108 assert(SA->getUseBlocks().size() == 1 && "Not a local interval"); 2109 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 2110 2111 // Note that it is possible to have an interval that is live-in or live-out 2112 // while only covering a single block - A phi-def can use undef values from 2113 // predecessors, and the block could be a single-block loop. 2114 // We don't bother doing anything clever about such a case, we simply assume 2115 // that the interval is continuous from FirstInstr to LastInstr. We should 2116 // make sure that we don't do anything illegal to such an interval, though. 2117 2118 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 2119 if (Uses.size() <= 2) 2120 return 0; 2121 const unsigned NumGaps = Uses.size()-1; 2122 2123 DEBUG({ 2124 dbgs() << "tryLocalSplit: "; 2125 for (unsigned i = 0, e = Uses.size(); i != e; ++i) 2126 dbgs() << ' ' << Uses[i]; 2127 dbgs() << '\n'; 2128 }); 2129 2130 // If VirtReg is live across any register mask operands, compute a list of 2131 // gaps with register masks. 2132 SmallVector<unsigned, 8> RegMaskGaps; 2133 if (Matrix->checkRegMaskInterference(VirtReg)) { 2134 // Get regmask slots for the whole block. 2135 ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber()); 2136 DEBUG(dbgs() << RMS.size() << " regmasks in block:"); 2137 // Constrain to VirtReg's live range. 2138 unsigned ri = std::lower_bound(RMS.begin(), RMS.end(), 2139 Uses.front().getRegSlot()) - RMS.begin(); 2140 unsigned re = RMS.size(); 2141 for (unsigned i = 0; i != NumGaps && ri != re; ++i) { 2142 // Look for Uses[i] <= RMS <= Uses[i+1]. 2143 assert(!SlotIndex::isEarlierInstr(RMS[ri], Uses[i])); 2144 if (SlotIndex::isEarlierInstr(Uses[i+1], RMS[ri])) 2145 continue; 2146 // Skip a regmask on the same instruction as the last use. It doesn't 2147 // overlap the live range. 2148 if (SlotIndex::isSameInstr(Uses[i+1], RMS[ri]) && i+1 == NumGaps) 2149 break; 2150 DEBUG(dbgs() << ' ' << RMS[ri] << ':' << Uses[i] << '-' << Uses[i+1]); 2151 RegMaskGaps.push_back(i); 2152 // Advance ri to the next gap. A regmask on one of the uses counts in 2153 // both gaps. 2154 while (ri != re && SlotIndex::isEarlierInstr(RMS[ri], Uses[i+1])) 2155 ++ri; 2156 } 2157 DEBUG(dbgs() << '\n'); 2158 } 2159 2160 // Since we allow local split results to be split again, there is a risk of 2161 // creating infinite loops. It is tempting to require that the new live 2162 // ranges have less instructions than the original. That would guarantee 2163 // convergence, but it is too strict. A live range with 3 instructions can be 2164 // split 2+3 (including the COPY), and we want to allow that. 2165 // 2166 // Instead we use these rules: 2167 // 2168 // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the 2169 // noop split, of course). 2170 // 2. Require progress be made for ranges with getStage() == RS_Split2. All 2171 // the new ranges must have fewer instructions than before the split. 2172 // 3. New ranges with the same number of instructions are marked RS_Split2, 2173 // smaller ranges are marked RS_New. 2174 // 2175 // These rules allow a 3 -> 2+3 split once, which we need. They also prevent 2176 // excessive splitting and infinite loops. 2177 // 2178 bool ProgressRequired = getStage(VirtReg) >= RS_Split2; 2179 2180 // Best split candidate. 2181 unsigned BestBefore = NumGaps; 2182 unsigned BestAfter = 0; 2183 float BestDiff = 0; 2184 2185 const float blockFreq = 2186 SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() * 2187 (1.0f / MBFI->getEntryFreq()); 2188 SmallVector<float, 8> GapWeight; 2189 2190 Order.rewind(); 2191 while (unsigned PhysReg = Order.next()) { 2192 // Keep track of the largest spill weight that would need to be evicted in 2193 // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1]. 2194 calcGapWeights(PhysReg, GapWeight); 2195 2196 // Remove any gaps with regmask clobbers. 2197 if (Matrix->checkRegMaskInterference(VirtReg, PhysReg)) 2198 for (unsigned i = 0, e = RegMaskGaps.size(); i != e; ++i) 2199 GapWeight[RegMaskGaps[i]] = huge_valf; 2200 2201 // Try to find the best sequence of gaps to close. 2202 // The new spill weight must be larger than any gap interference. 2203 2204 // We will split before Uses[SplitBefore] and after Uses[SplitAfter]. 2205 unsigned SplitBefore = 0, SplitAfter = 1; 2206 2207 // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]). 2208 // It is the spill weight that needs to be evicted. 2209 float MaxGap = GapWeight[0]; 2210 2211 while (true) { 2212 // Live before/after split? 2213 const bool LiveBefore = SplitBefore != 0 || BI.LiveIn; 2214 const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut; 2215 2216 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << ' ' 2217 << Uses[SplitBefore] << '-' << Uses[SplitAfter] 2218 << " i=" << MaxGap); 2219 2220 // Stop before the interval gets so big we wouldn't be making progress. 2221 if (!LiveBefore && !LiveAfter) { 2222 DEBUG(dbgs() << " all\n"); 2223 break; 2224 } 2225 // Should the interval be extended or shrunk? 2226 bool Shrink = true; 2227 2228 // How many gaps would the new range have? 2229 unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter; 2230 2231 // Legally, without causing looping? 2232 bool Legal = !ProgressRequired || NewGaps < NumGaps; 2233 2234 if (Legal && MaxGap < huge_valf) { 2235 // Estimate the new spill weight. Each instruction reads or writes the 2236 // register. Conservatively assume there are no read-modify-write 2237 // instructions. 2238 // 2239 // Try to guess the size of the new interval. 2240 const float EstWeight = normalizeSpillWeight( 2241 blockFreq * (NewGaps + 1), 2242 Uses[SplitBefore].distance(Uses[SplitAfter]) + 2243 (LiveBefore + LiveAfter) * SlotIndex::InstrDist, 2244 1); 2245 // Would this split be possible to allocate? 2246 // Never allocate all gaps, we wouldn't be making progress. 2247 DEBUG(dbgs() << " w=" << EstWeight); 2248 if (EstWeight * Hysteresis >= MaxGap) { 2249 Shrink = false; 2250 float Diff = EstWeight - MaxGap; 2251 if (Diff > BestDiff) { 2252 DEBUG(dbgs() << " (best)"); 2253 BestDiff = Hysteresis * Diff; 2254 BestBefore = SplitBefore; 2255 BestAfter = SplitAfter; 2256 } 2257 } 2258 } 2259 2260 // Try to shrink. 2261 if (Shrink) { 2262 if (++SplitBefore < SplitAfter) { 2263 DEBUG(dbgs() << " shrink\n"); 2264 // Recompute the max when necessary. 2265 if (GapWeight[SplitBefore - 1] >= MaxGap) { 2266 MaxGap = GapWeight[SplitBefore]; 2267 for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i) 2268 MaxGap = std::max(MaxGap, GapWeight[i]); 2269 } 2270 continue; 2271 } 2272 MaxGap = 0; 2273 } 2274 2275 // Try to extend the interval. 2276 if (SplitAfter >= NumGaps) { 2277 DEBUG(dbgs() << " end\n"); 2278 break; 2279 } 2280 2281 DEBUG(dbgs() << " extend\n"); 2282 MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]); 2283 } 2284 } 2285 2286 // Didn't find any candidates? 2287 if (BestBefore == NumGaps) 2288 return 0; 2289 2290 DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] 2291 << '-' << Uses[BestAfter] << ", " << BestDiff 2292 << ", " << (BestAfter - BestBefore + 1) << " instrs\n"); 2293 2294 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2295 SE->reset(LREdit); 2296 2297 SE->openIntv(); 2298 SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]); 2299 SlotIndex SegStop = SE->leaveIntvAfter(Uses[BestAfter]); 2300 SE->useIntv(SegStart, SegStop); 2301 SmallVector<unsigned, 8> IntvMap; 2302 SE->finish(&IntvMap); 2303 DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS); 2304 2305 // If the new range has the same number of instructions as before, mark it as 2306 // RS_Split2 so the next split will be forced to make progress. Otherwise, 2307 // leave the new intervals as RS_New so they can compete. 2308 bool LiveBefore = BestBefore != 0 || BI.LiveIn; 2309 bool LiveAfter = BestAfter != NumGaps || BI.LiveOut; 2310 unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter; 2311 if (NewGaps >= NumGaps) { 2312 DEBUG(dbgs() << "Tagging non-progress ranges: "); 2313 assert(!ProgressRequired && "Didn't make progress when it was required."); 2314 for (unsigned i = 0, e = IntvMap.size(); i != e; ++i) 2315 if (IntvMap[i] == 1) { 2316 setStage(LIS->getInterval(LREdit.get(i)), RS_Split2); 2317 DEBUG(dbgs() << PrintReg(LREdit.get(i))); 2318 } 2319 DEBUG(dbgs() << '\n'); 2320 } 2321 ++NumLocalSplits; 2322 2323 return 0; 2324 } 2325 2326 //===----------------------------------------------------------------------===// 2327 // Live Range Splitting 2328 //===----------------------------------------------------------------------===// 2329 2330 /// trySplit - Try to split VirtReg or one of its interferences, making it 2331 /// assignable. 2332 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs. 2333 unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order, 2334 SmallVectorImpl<unsigned>&NewVRegs) { 2335 // Ranges must be Split2 or less. 2336 if (getStage(VirtReg) >= RS_Spill) 2337 return 0; 2338 2339 // Local intervals are handled separately. 2340 if (LIS->intervalIsInOneMBB(VirtReg)) { 2341 NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName, 2342 TimerGroupDescription, TimePassesIsEnabled); 2343 SA->analyze(&VirtReg); 2344 unsigned PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs); 2345 if (PhysReg || !NewVRegs.empty()) 2346 return PhysReg; 2347 return tryInstructionSplit(VirtReg, Order, NewVRegs); 2348 } 2349 2350 NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName, 2351 TimerGroupDescription, TimePassesIsEnabled); 2352 2353 SA->analyze(&VirtReg); 2354 2355 // FIXME: SplitAnalysis may repair broken live ranges coming from the 2356 // coalescer. That may cause the range to become allocatable which means that 2357 // tryRegionSplit won't be making progress. This check should be replaced with 2358 // an assertion when the coalescer is fixed. 2359 if (SA->didRepairRange()) { 2360 // VirtReg has changed, so all cached queries are invalid. 2361 Matrix->invalidateVirtRegs(); 2362 if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs)) 2363 return PhysReg; 2364 } 2365 2366 // First try to split around a region spanning multiple blocks. RS_Split2 2367 // ranges already made dubious progress with region splitting, so they go 2368 // straight to single block splitting. 2369 if (getStage(VirtReg) < RS_Split2) { 2370 unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs); 2371 if (PhysReg || !NewVRegs.empty()) 2372 return PhysReg; 2373 } 2374 2375 // Then isolate blocks. 2376 return tryBlockSplit(VirtReg, Order, NewVRegs); 2377 } 2378 2379 //===----------------------------------------------------------------------===// 2380 // Last Chance Recoloring 2381 //===----------------------------------------------------------------------===// 2382 2383 /// Return true if \p reg has any tied def operand. 2384 static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg) { 2385 for (const MachineOperand &MO : MRI->def_operands(reg)) 2386 if (MO.isTied()) 2387 return true; 2388 2389 return false; 2390 } 2391 2392 /// mayRecolorAllInterferences - Check if the virtual registers that 2393 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be 2394 /// recolored to free \p PhysReg. 2395 /// When true is returned, \p RecoloringCandidates has been augmented with all 2396 /// the live intervals that need to be recolored in order to free \p PhysReg 2397 /// for \p VirtReg. 2398 /// \p FixedRegisters contains all the virtual registers that cannot be 2399 /// recolored. 2400 bool 2401 RAGreedy::mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg, 2402 SmallLISet &RecoloringCandidates, 2403 const SmallVirtRegSet &FixedRegisters) { 2404 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg); 2405 2406 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 2407 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 2408 // If there is LastChanceRecoloringMaxInterference or more interferences, 2409 // chances are one would not be recolorable. 2410 if (Q.collectInterferingVRegs(LastChanceRecoloringMaxInterference) >= 2411 LastChanceRecoloringMaxInterference && !ExhaustiveSearch) { 2412 DEBUG(dbgs() << "Early abort: too many interferences.\n"); 2413 CutOffInfo |= CO_Interf; 2414 return false; 2415 } 2416 for (unsigned i = Q.interferingVRegs().size(); i; --i) { 2417 LiveInterval *Intf = Q.interferingVRegs()[i - 1]; 2418 // If Intf is done and sit on the same register class as VirtReg, 2419 // it would not be recolorable as it is in the same state as VirtReg. 2420 // However, if VirtReg has tied defs and Intf doesn't, then 2421 // there is still a point in examining if it can be recolorable. 2422 if (((getStage(*Intf) == RS_Done && 2423 MRI->getRegClass(Intf->reg) == CurRC) && 2424 !(hasTiedDef(MRI, VirtReg.reg) && !hasTiedDef(MRI, Intf->reg))) || 2425 FixedRegisters.count(Intf->reg)) { 2426 DEBUG(dbgs() << "Early abort: the interference is not recolorable.\n"); 2427 return false; 2428 } 2429 RecoloringCandidates.insert(Intf); 2430 } 2431 } 2432 return true; 2433 } 2434 2435 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring 2436 /// its interferences. 2437 /// Last chance recoloring chooses a color for \p VirtReg and recolors every 2438 /// virtual register that was using it. The recoloring process may recursively 2439 /// use the last chance recoloring. Therefore, when a virtual register has been 2440 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot 2441 /// be last-chance-recolored again during this recoloring "session". 2442 /// E.g., 2443 /// Let 2444 /// vA can use {R1, R2 } 2445 /// vB can use { R2, R3} 2446 /// vC can use {R1 } 2447 /// Where vA, vB, and vC cannot be split anymore (they are reloads for 2448 /// instance) and they all interfere. 2449 /// 2450 /// vA is assigned R1 2451 /// vB is assigned R2 2452 /// vC tries to evict vA but vA is already done. 2453 /// Regular register allocation fails. 2454 /// 2455 /// Last chance recoloring kicks in: 2456 /// vC does as if vA was evicted => vC uses R1. 2457 /// vC is marked as fixed. 2458 /// vA needs to find a color. 2459 /// None are available. 2460 /// vA cannot evict vC: vC is a fixed virtual register now. 2461 /// vA does as if vB was evicted => vA uses R2. 2462 /// vB needs to find a color. 2463 /// R3 is available. 2464 /// Recoloring => vC = R1, vA = R2, vB = R3 2465 /// 2466 /// \p Order defines the preferred allocation order for \p VirtReg. 2467 /// \p NewRegs will contain any new virtual register that have been created 2468 /// (split, spill) during the process and that must be assigned. 2469 /// \p FixedRegisters contains all the virtual registers that cannot be 2470 /// recolored. 2471 /// \p Depth gives the current depth of the last chance recoloring. 2472 /// \return a physical register that can be used for VirtReg or ~0u if none 2473 /// exists. 2474 unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg, 2475 AllocationOrder &Order, 2476 SmallVectorImpl<unsigned> &NewVRegs, 2477 SmallVirtRegSet &FixedRegisters, 2478 unsigned Depth) { 2479 DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n'); 2480 // Ranges must be Done. 2481 assert((getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) && 2482 "Last chance recoloring should really be last chance"); 2483 // Set the max depth to LastChanceRecoloringMaxDepth. 2484 // We may want to reconsider that if we end up with a too large search space 2485 // for target with hundreds of registers. 2486 // Indeed, in that case we may want to cut the search space earlier. 2487 if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) { 2488 DEBUG(dbgs() << "Abort because max depth has been reached.\n"); 2489 CutOffInfo |= CO_Depth; 2490 return ~0u; 2491 } 2492 2493 // Set of Live intervals that will need to be recolored. 2494 SmallLISet RecoloringCandidates; 2495 // Record the original mapping virtual register to physical register in case 2496 // the recoloring fails. 2497 DenseMap<unsigned, unsigned> VirtRegToPhysReg; 2498 // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in 2499 // this recoloring "session". 2500 FixedRegisters.insert(VirtReg.reg); 2501 SmallVector<unsigned, 4> CurrentNewVRegs; 2502 2503 Order.rewind(); 2504 while (unsigned PhysReg = Order.next()) { 2505 DEBUG(dbgs() << "Try to assign: " << VirtReg << " to " 2506 << PrintReg(PhysReg, TRI) << '\n'); 2507 RecoloringCandidates.clear(); 2508 VirtRegToPhysReg.clear(); 2509 CurrentNewVRegs.clear(); 2510 2511 // It is only possible to recolor virtual register interference. 2512 if (Matrix->checkInterference(VirtReg, PhysReg) > 2513 LiveRegMatrix::IK_VirtReg) { 2514 DEBUG(dbgs() << "Some interferences are not with virtual registers.\n"); 2515 2516 continue; 2517 } 2518 2519 // Early give up on this PhysReg if it is obvious we cannot recolor all 2520 // the interferences. 2521 if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates, 2522 FixedRegisters)) { 2523 DEBUG(dbgs() << "Some interferences cannot be recolored.\n"); 2524 continue; 2525 } 2526 2527 // RecoloringCandidates contains all the virtual registers that interfer 2528 // with VirtReg on PhysReg (or one of its aliases). 2529 // Enqueue them for recoloring and perform the actual recoloring. 2530 PQueue RecoloringQueue; 2531 for (SmallLISet::iterator It = RecoloringCandidates.begin(), 2532 EndIt = RecoloringCandidates.end(); 2533 It != EndIt; ++It) { 2534 unsigned ItVirtReg = (*It)->reg; 2535 enqueue(RecoloringQueue, *It); 2536 assert(VRM->hasPhys(ItVirtReg) && 2537 "Interferences are supposed to be with allocated vairables"); 2538 2539 // Record the current allocation. 2540 VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg); 2541 // unset the related struct. 2542 Matrix->unassign(**It); 2543 } 2544 2545 // Do as if VirtReg was assigned to PhysReg so that the underlying 2546 // recoloring has the right information about the interferes and 2547 // available colors. 2548 Matrix->assign(VirtReg, PhysReg); 2549 2550 // Save the current recoloring state. 2551 // If we cannot recolor all the interferences, we will have to start again 2552 // at this point for the next physical register. 2553 SmallVirtRegSet SaveFixedRegisters(FixedRegisters); 2554 if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs, 2555 FixedRegisters, Depth)) { 2556 // Push the queued vregs into the main queue. 2557 for (unsigned NewVReg : CurrentNewVRegs) 2558 NewVRegs.push_back(NewVReg); 2559 // Do not mess up with the global assignment process. 2560 // I.e., VirtReg must be unassigned. 2561 Matrix->unassign(VirtReg); 2562 return PhysReg; 2563 } 2564 2565 DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to " 2566 << PrintReg(PhysReg, TRI) << '\n'); 2567 2568 // The recoloring attempt failed, undo the changes. 2569 FixedRegisters = SaveFixedRegisters; 2570 Matrix->unassign(VirtReg); 2571 2572 // For a newly created vreg which is also in RecoloringCandidates, 2573 // don't add it to NewVRegs because its physical register will be restored 2574 // below. Other vregs in CurrentNewVRegs are created by calling 2575 // selectOrSplit and should be added into NewVRegs. 2576 for (SmallVectorImpl<unsigned>::iterator Next = CurrentNewVRegs.begin(), 2577 End = CurrentNewVRegs.end(); 2578 Next != End; ++Next) { 2579 if (RecoloringCandidates.count(&LIS->getInterval(*Next))) 2580 continue; 2581 NewVRegs.push_back(*Next); 2582 } 2583 2584 for (SmallLISet::iterator It = RecoloringCandidates.begin(), 2585 EndIt = RecoloringCandidates.end(); 2586 It != EndIt; ++It) { 2587 unsigned ItVirtReg = (*It)->reg; 2588 if (VRM->hasPhys(ItVirtReg)) 2589 Matrix->unassign(**It); 2590 unsigned ItPhysReg = VirtRegToPhysReg[ItVirtReg]; 2591 Matrix->assign(**It, ItPhysReg); 2592 } 2593 } 2594 2595 // Last chance recoloring did not worked either, give up. 2596 return ~0u; 2597 } 2598 2599 /// tryRecoloringCandidates - Try to assign a new color to every register 2600 /// in \RecoloringQueue. 2601 /// \p NewRegs will contain any new virtual register created during the 2602 /// recoloring process. 2603 /// \p FixedRegisters[in/out] contains all the registers that have been 2604 /// recolored. 2605 /// \return true if all virtual registers in RecoloringQueue were successfully 2606 /// recolored, false otherwise. 2607 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue, 2608 SmallVectorImpl<unsigned> &NewVRegs, 2609 SmallVirtRegSet &FixedRegisters, 2610 unsigned Depth) { 2611 while (!RecoloringQueue.empty()) { 2612 LiveInterval *LI = dequeue(RecoloringQueue); 2613 DEBUG(dbgs() << "Try to recolor: " << *LI << '\n'); 2614 unsigned PhysReg; 2615 PhysReg = selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, Depth + 1); 2616 // When splitting happens, the live-range may actually be empty. 2617 // In that case, this is okay to continue the recoloring even 2618 // if we did not find an alternative color for it. Indeed, 2619 // there will not be anything to color for LI in the end. 2620 if (PhysReg == ~0u || (!PhysReg && !LI->empty())) 2621 return false; 2622 2623 if (!PhysReg) { 2624 assert(LI->empty() && "Only empty live-range do not require a register"); 2625 DEBUG(dbgs() << "Recoloring of " << *LI << " succeeded. Empty LI.\n"); 2626 continue; 2627 } 2628 DEBUG(dbgs() << "Recoloring of " << *LI 2629 << " succeeded with: " << PrintReg(PhysReg, TRI) << '\n'); 2630 2631 Matrix->assign(*LI, PhysReg); 2632 FixedRegisters.insert(LI->reg); 2633 } 2634 return true; 2635 } 2636 2637 //===----------------------------------------------------------------------===// 2638 // Main Entry Point 2639 //===----------------------------------------------------------------------===// 2640 2641 unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg, 2642 SmallVectorImpl<unsigned> &NewVRegs) { 2643 CutOffInfo = CO_None; 2644 LLVMContext &Ctx = MF->getFunction()->getContext(); 2645 SmallVirtRegSet FixedRegisters; 2646 unsigned Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters); 2647 if (Reg == ~0U && (CutOffInfo != CO_None)) { 2648 uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf); 2649 if (CutOffEncountered == CO_Depth) 2650 Ctx.emitError("register allocation failed: maximum depth for recoloring " 2651 "reached. Use -fexhaustive-register-search to skip " 2652 "cutoffs"); 2653 else if (CutOffEncountered == CO_Interf) 2654 Ctx.emitError("register allocation failed: maximum interference for " 2655 "recoloring reached. Use -fexhaustive-register-search " 2656 "to skip cutoffs"); 2657 else if (CutOffEncountered == (CO_Depth | CO_Interf)) 2658 Ctx.emitError("register allocation failed: maximum interference and " 2659 "depth for recoloring reached. Use " 2660 "-fexhaustive-register-search to skip cutoffs"); 2661 } 2662 return Reg; 2663 } 2664 2665 /// Using a CSR for the first time has a cost because it causes push|pop 2666 /// to be added to prologue|epilogue. Splitting a cold section of the live 2667 /// range can have lower cost than using the CSR for the first time; 2668 /// Spilling a live range in the cold path can have lower cost than using 2669 /// the CSR for the first time. Returns the physical register if we decide 2670 /// to use the CSR; otherwise return 0. 2671 unsigned RAGreedy::tryAssignCSRFirstTime(LiveInterval &VirtReg, 2672 AllocationOrder &Order, 2673 unsigned PhysReg, 2674 unsigned &CostPerUseLimit, 2675 SmallVectorImpl<unsigned> &NewVRegs) { 2676 if (getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) { 2677 // We choose spill over using the CSR for the first time if the spill cost 2678 // is lower than CSRCost. 2679 SA->analyze(&VirtReg); 2680 if (calcSpillCost() >= CSRCost) 2681 return PhysReg; 2682 2683 // We are going to spill, set CostPerUseLimit to 1 to make sure that 2684 // we will not use a callee-saved register in tryEvict. 2685 CostPerUseLimit = 1; 2686 return 0; 2687 } 2688 if (getStage(VirtReg) < RS_Split) { 2689 // We choose pre-splitting over using the CSR for the first time if 2690 // the cost of splitting is lower than CSRCost. 2691 SA->analyze(&VirtReg); 2692 unsigned NumCands = 0; 2693 BlockFrequency BestCost = CSRCost; // Don't modify CSRCost. 2694 unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost, 2695 NumCands, true /*IgnoreCSR*/); 2696 if (BestCand == NoCand) 2697 // Use the CSR if we can't find a region split below CSRCost. 2698 return PhysReg; 2699 2700 // Perform the actual pre-splitting. 2701 doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs); 2702 return 0; 2703 } 2704 return PhysReg; 2705 } 2706 2707 void RAGreedy::aboutToRemoveInterval(LiveInterval &LI) { 2708 // Do not keep invalid information around. 2709 SetOfBrokenHints.remove(&LI); 2710 } 2711 2712 void RAGreedy::initializeCSRCost() { 2713 // We use the larger one out of the command-line option and the value report 2714 // by TRI. 2715 CSRCost = BlockFrequency( 2716 std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost())); 2717 if (!CSRCost.getFrequency()) 2718 return; 2719 2720 // Raw cost is relative to Entry == 2^14; scale it appropriately. 2721 uint64_t ActualEntry = MBFI->getEntryFreq(); 2722 if (!ActualEntry) { 2723 CSRCost = 0; 2724 return; 2725 } 2726 uint64_t FixedEntry = 1 << 14; 2727 if (ActualEntry < FixedEntry) 2728 CSRCost *= BranchProbability(ActualEntry, FixedEntry); 2729 else if (ActualEntry <= UINT32_MAX) 2730 // Invert the fraction and divide. 2731 CSRCost /= BranchProbability(FixedEntry, ActualEntry); 2732 else 2733 // Can't use BranchProbability in general, since it takes 32-bit numbers. 2734 CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry); 2735 } 2736 2737 /// \brief Collect the hint info for \p Reg. 2738 /// The results are stored into \p Out. 2739 /// \p Out is not cleared before being populated. 2740 void RAGreedy::collectHintInfo(unsigned Reg, HintsInfo &Out) { 2741 for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) { 2742 if (!Instr.isFullCopy()) 2743 continue; 2744 // Look for the other end of the copy. 2745 unsigned OtherReg = Instr.getOperand(0).getReg(); 2746 if (OtherReg == Reg) { 2747 OtherReg = Instr.getOperand(1).getReg(); 2748 if (OtherReg == Reg) 2749 continue; 2750 } 2751 // Get the current assignment. 2752 unsigned OtherPhysReg = TargetRegisterInfo::isPhysicalRegister(OtherReg) 2753 ? OtherReg 2754 : VRM->getPhys(OtherReg); 2755 // Push the collected information. 2756 Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg, 2757 OtherPhysReg)); 2758 } 2759 } 2760 2761 /// \brief Using the given \p List, compute the cost of the broken hints if 2762 /// \p PhysReg was used. 2763 /// \return The cost of \p List for \p PhysReg. 2764 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List, 2765 unsigned PhysReg) { 2766 BlockFrequency Cost = 0; 2767 for (const HintInfo &Info : List) { 2768 if (Info.PhysReg != PhysReg) 2769 Cost += Info.Freq; 2770 } 2771 return Cost; 2772 } 2773 2774 /// \brief Using the register assigned to \p VirtReg, try to recolor 2775 /// all the live ranges that are copy-related with \p VirtReg. 2776 /// The recoloring is then propagated to all the live-ranges that have 2777 /// been recolored and so on, until no more copies can be coalesced or 2778 /// it is not profitable. 2779 /// For a given live range, profitability is determined by the sum of the 2780 /// frequencies of the non-identity copies it would introduce with the old 2781 /// and new register. 2782 void RAGreedy::tryHintRecoloring(LiveInterval &VirtReg) { 2783 // We have a broken hint, check if it is possible to fix it by 2784 // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted 2785 // some register and PhysReg may be available for the other live-ranges. 2786 SmallSet<unsigned, 4> Visited; 2787 SmallVector<unsigned, 2> RecoloringCandidates; 2788 HintsInfo Info; 2789 unsigned Reg = VirtReg.reg; 2790 unsigned PhysReg = VRM->getPhys(Reg); 2791 // Start the recoloring algorithm from the input live-interval, then 2792 // it will propagate to the ones that are copy-related with it. 2793 Visited.insert(Reg); 2794 RecoloringCandidates.push_back(Reg); 2795 2796 DEBUG(dbgs() << "Trying to reconcile hints for: " << PrintReg(Reg, TRI) << '(' 2797 << PrintReg(PhysReg, TRI) << ")\n"); 2798 2799 do { 2800 Reg = RecoloringCandidates.pop_back_val(); 2801 2802 // We cannot recolor physical register. 2803 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 2804 continue; 2805 2806 assert(VRM->hasPhys(Reg) && "We have unallocated variable!!"); 2807 2808 // Get the live interval mapped with this virtual register to be able 2809 // to check for the interference with the new color. 2810 LiveInterval &LI = LIS->getInterval(Reg); 2811 unsigned CurrPhys = VRM->getPhys(Reg); 2812 // Check that the new color matches the register class constraints and 2813 // that it is free for this live range. 2814 if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) || 2815 Matrix->checkInterference(LI, PhysReg))) 2816 continue; 2817 2818 DEBUG(dbgs() << PrintReg(Reg, TRI) << '(' << PrintReg(CurrPhys, TRI) 2819 << ") is recolorable.\n"); 2820 2821 // Gather the hint info. 2822 Info.clear(); 2823 collectHintInfo(Reg, Info); 2824 // Check if recoloring the live-range will increase the cost of the 2825 // non-identity copies. 2826 if (CurrPhys != PhysReg) { 2827 DEBUG(dbgs() << "Checking profitability:\n"); 2828 BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys); 2829 BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg); 2830 DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency() 2831 << "\nNew Cost: " << NewCopiesCost.getFrequency() << '\n'); 2832 if (OldCopiesCost < NewCopiesCost) { 2833 DEBUG(dbgs() << "=> Not profitable.\n"); 2834 continue; 2835 } 2836 // At this point, the cost is either cheaper or equal. If it is 2837 // equal, we consider this is profitable because it may expose 2838 // more recoloring opportunities. 2839 DEBUG(dbgs() << "=> Profitable.\n"); 2840 // Recolor the live-range. 2841 Matrix->unassign(LI); 2842 Matrix->assign(LI, PhysReg); 2843 } 2844 // Push all copy-related live-ranges to keep reconciling the broken 2845 // hints. 2846 for (const HintInfo &HI : Info) { 2847 if (Visited.insert(HI.Reg).second) 2848 RecoloringCandidates.push_back(HI.Reg); 2849 } 2850 } while (!RecoloringCandidates.empty()); 2851 } 2852 2853 /// \brief Try to recolor broken hints. 2854 /// Broken hints may be repaired by recoloring when an evicted variable 2855 /// freed up a register for a larger live-range. 2856 /// Consider the following example: 2857 /// BB1: 2858 /// a = 2859 /// b = 2860 /// BB2: 2861 /// ... 2862 /// = b 2863 /// = a 2864 /// Let us assume b gets split: 2865 /// BB1: 2866 /// a = 2867 /// b = 2868 /// BB2: 2869 /// c = b 2870 /// ... 2871 /// d = c 2872 /// = d 2873 /// = a 2874 /// Because of how the allocation work, b, c, and d may be assigned different 2875 /// colors. Now, if a gets evicted later: 2876 /// BB1: 2877 /// a = 2878 /// st a, SpillSlot 2879 /// b = 2880 /// BB2: 2881 /// c = b 2882 /// ... 2883 /// d = c 2884 /// = d 2885 /// e = ld SpillSlot 2886 /// = e 2887 /// This is likely that we can assign the same register for b, c, and d, 2888 /// getting rid of 2 copies. 2889 void RAGreedy::tryHintsRecoloring() { 2890 for (LiveInterval *LI : SetOfBrokenHints) { 2891 assert(TargetRegisterInfo::isVirtualRegister(LI->reg) && 2892 "Recoloring is possible only for virtual registers"); 2893 // Some dead defs may be around (e.g., because of debug uses). 2894 // Ignore those. 2895 if (!VRM->hasPhys(LI->reg)) 2896 continue; 2897 tryHintRecoloring(*LI); 2898 } 2899 } 2900 2901 unsigned RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg, 2902 SmallVectorImpl<unsigned> &NewVRegs, 2903 SmallVirtRegSet &FixedRegisters, 2904 unsigned Depth) { 2905 unsigned CostPerUseLimit = ~0u; 2906 // First try assigning a free register. 2907 AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo, Matrix); 2908 if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs)) { 2909 // If VirtReg got an assignment, the eviction info is no longre relevant. 2910 LastEvicted.clearEvicteeInfo(VirtReg.reg); 2911 // When NewVRegs is not empty, we may have made decisions such as evicting 2912 // a virtual register, go with the earlier decisions and use the physical 2913 // register. 2914 if (CSRCost.getFrequency() && isUnusedCalleeSavedReg(PhysReg) && 2915 NewVRegs.empty()) { 2916 unsigned CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg, 2917 CostPerUseLimit, NewVRegs); 2918 if (CSRReg || !NewVRegs.empty()) 2919 // Return now if we decide to use a CSR or create new vregs due to 2920 // pre-splitting. 2921 return CSRReg; 2922 } else 2923 return PhysReg; 2924 } 2925 2926 LiveRangeStage Stage = getStage(VirtReg); 2927 DEBUG(dbgs() << StageName[Stage] 2928 << " Cascade " << ExtraRegInfo[VirtReg.reg].Cascade << '\n'); 2929 2930 // Try to evict a less worthy live range, but only for ranges from the primary 2931 // queue. The RS_Split ranges already failed to do this, and they should not 2932 // get a second chance until they have been split. 2933 if (Stage != RS_Split) 2934 if (unsigned PhysReg = 2935 tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit)) { 2936 unsigned Hint = MRI->getSimpleHint(VirtReg.reg); 2937 // If VirtReg has a hint and that hint is broken record this 2938 // virtual register as a recoloring candidate for broken hint. 2939 // Indeed, since we evicted a variable in its neighborhood it is 2940 // likely we can at least partially recolor some of the 2941 // copy-related live-ranges. 2942 if (Hint && Hint != PhysReg) 2943 SetOfBrokenHints.insert(&VirtReg); 2944 // If VirtReg eviction someone, the eviction info for it as an evictee is 2945 // no longre relevant. 2946 LastEvicted.clearEvicteeInfo(VirtReg.reg); 2947 return PhysReg; 2948 } 2949 2950 assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs"); 2951 2952 // The first time we see a live range, don't try to split or spill. 2953 // Wait until the second time, when all smaller ranges have been allocated. 2954 // This gives a better picture of the interference to split around. 2955 if (Stage < RS_Split) { 2956 setStage(VirtReg, RS_Split); 2957 DEBUG(dbgs() << "wait for second round\n"); 2958 NewVRegs.push_back(VirtReg.reg); 2959 return 0; 2960 } 2961 2962 if (Stage < RS_Spill) { 2963 // Try splitting VirtReg or interferences. 2964 unsigned NewVRegSizeBefore = NewVRegs.size(); 2965 unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs); 2966 if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore)) { 2967 // If VirtReg got split, the eviction info is no longre relevant. 2968 LastEvicted.clearEvicteeInfo(VirtReg.reg); 2969 return PhysReg; 2970 } 2971 } 2972 2973 // If we couldn't allocate a register from spilling, there is probably some 2974 // invalid inline assembly. The base class will report it. 2975 if (Stage >= RS_Done || !VirtReg.isSpillable()) 2976 return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters, 2977 Depth); 2978 2979 // Finally spill VirtReg itself. 2980 if (EnableDeferredSpilling && getStage(VirtReg) < RS_Memory) { 2981 // TODO: This is experimental and in particular, we do not model 2982 // the live range splitting done by spilling correctly. 2983 // We would need a deep integration with the spiller to do the 2984 // right thing here. Anyway, that is still good for early testing. 2985 setStage(VirtReg, RS_Memory); 2986 DEBUG(dbgs() << "Do as if this register is in memory\n"); 2987 NewVRegs.push_back(VirtReg.reg); 2988 } else { 2989 NamedRegionTimer T("spill", "Spiller", TimerGroupName, 2990 TimerGroupDescription, TimePassesIsEnabled); 2991 LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2992 spiller().spill(LRE); 2993 setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done); 2994 2995 if (VerifyEnabled) 2996 MF->verify(this, "After spilling"); 2997 } 2998 2999 // The live virtual register requesting allocation was spilled, so tell 3000 // the caller not to allocate anything during this round. 3001 return 0; 3002 } 3003 3004 void RAGreedy::reportNumberOfSplillsReloads(MachineLoop *L, unsigned &Reloads, 3005 unsigned &FoldedReloads, 3006 unsigned &Spills, 3007 unsigned &FoldedSpills) { 3008 Reloads = 0; 3009 FoldedReloads = 0; 3010 Spills = 0; 3011 FoldedSpills = 0; 3012 3013 // Sum up the spill and reloads in subloops. 3014 for (MachineLoop *SubLoop : *L) { 3015 unsigned SubReloads; 3016 unsigned SubFoldedReloads; 3017 unsigned SubSpills; 3018 unsigned SubFoldedSpills; 3019 3020 reportNumberOfSplillsReloads(SubLoop, SubReloads, SubFoldedReloads, 3021 SubSpills, SubFoldedSpills); 3022 Reloads += SubReloads; 3023 FoldedReloads += SubFoldedReloads; 3024 Spills += SubSpills; 3025 FoldedSpills += SubFoldedSpills; 3026 } 3027 3028 const MachineFrameInfo &MFI = MF->getFrameInfo(); 3029 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 3030 int FI; 3031 3032 for (MachineBasicBlock *MBB : L->getBlocks()) 3033 // Handle blocks that were not included in subloops. 3034 if (Loops->getLoopFor(MBB) == L) 3035 for (MachineInstr &MI : *MBB) { 3036 const MachineMemOperand *MMO; 3037 3038 if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) 3039 ++Reloads; 3040 else if (TII->hasLoadFromStackSlot(MI, MMO, FI) && 3041 MFI.isSpillSlotObjectIndex(FI)) 3042 ++FoldedReloads; 3043 else if (TII->isStoreToStackSlot(MI, FI) && 3044 MFI.isSpillSlotObjectIndex(FI)) 3045 ++Spills; 3046 else if (TII->hasStoreToStackSlot(MI, MMO, FI) && 3047 MFI.isSpillSlotObjectIndex(FI)) 3048 ++FoldedSpills; 3049 } 3050 3051 if (Reloads || FoldedReloads || Spills || FoldedSpills) { 3052 using namespace ore; 3053 3054 ORE->emit([&]() { 3055 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReload", 3056 L->getStartLoc(), L->getHeader()); 3057 if (Spills) 3058 R << NV("NumSpills", Spills) << " spills "; 3059 if (FoldedSpills) 3060 R << NV("NumFoldedSpills", FoldedSpills) << " folded spills "; 3061 if (Reloads) 3062 R << NV("NumReloads", Reloads) << " reloads "; 3063 if (FoldedReloads) 3064 R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads "; 3065 R << "generated in loop"; 3066 return R; 3067 }); 3068 } 3069 } 3070 3071 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) { 3072 DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n" 3073 << "********** Function: " << mf.getName() << '\n'); 3074 3075 MF = &mf; 3076 TRI = MF->getSubtarget().getRegisterInfo(); 3077 TII = MF->getSubtarget().getInstrInfo(); 3078 RCI.runOnMachineFunction(mf); 3079 3080 EnableLocalReassign = EnableLocalReassignment || 3081 MF->getSubtarget().enableRALocalReassignment( 3082 MF->getTarget().getOptLevel()); 3083 3084 EnableAdvancedRASplitCost = ConsiderLocalIntervalCost || 3085 MF->getSubtarget().enableAdvancedRASplitCost(); 3086 3087 if (VerifyEnabled) 3088 MF->verify(this, "Before greedy register allocator"); 3089 3090 RegAllocBase::init(getAnalysis<VirtRegMap>(), 3091 getAnalysis<LiveIntervals>(), 3092 getAnalysis<LiveRegMatrix>()); 3093 Indexes = &getAnalysis<SlotIndexes>(); 3094 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 3095 DomTree = &getAnalysis<MachineDominatorTree>(); 3096 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 3097 SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM)); 3098 Loops = &getAnalysis<MachineLoopInfo>(); 3099 Bundles = &getAnalysis<EdgeBundles>(); 3100 SpillPlacer = &getAnalysis<SpillPlacement>(); 3101 DebugVars = &getAnalysis<LiveDebugVariables>(); 3102 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3103 3104 initializeCSRCost(); 3105 3106 calculateSpillWeightsAndHints(*LIS, mf, VRM, *Loops, *MBFI); 3107 3108 DEBUG(LIS->dump()); 3109 3110 SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops)); 3111 SE.reset(new SplitEditor(*SA, *AA, *LIS, *VRM, *DomTree, *MBFI)); 3112 ExtraRegInfo.clear(); 3113 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 3114 NextCascade = 1; 3115 IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI); 3116 GlobalCand.resize(32); // This will grow as needed. 3117 SetOfBrokenHints.clear(); 3118 LastEvicted.clear(); 3119 3120 allocatePhysRegs(); 3121 tryHintsRecoloring(); 3122 postOptimization(); 3123 reportNumberOfSplillsReloads(); 3124 3125 releaseMemory(); 3126 return true; 3127 } 3128